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LOCKING-FREE FINITE ELEMENT METHODS FOR SHELLS

DOUGLAS N. ARNOLD AND FRANCO BREZZI

Abstract. We propose a new family of finite element methods for the Naghdi
shell model, one method associated with each nonnegative integer k. The
methods are based on a nonstandard mixed formulation, and the kth method
employs triangular Lagrange finite elements of degree k+2 augmented by bub-
ble functions of degree k+ 3 for both the displacement and rotation variables,
and discontinuous piecewise polynomials of degree k for the shear and mem-
brane stresses. This method can be implemented in terms of the displacement
and rotation variables alone, as the minimization of an altered energy func-
tional over the space mentioned. The alteration consists of the introduction of
a weighted local projection into part, but not all, of the shear and membrane
energy terms of the usual Naghdi energy. The relative error in the method,
measured in a norm which combines the H1 norm of the displacement and ro-
tation fields and an appropriate norm of the shear and membrane stress fields,
converges to zero with order k+1 uniformly with respect to the shell thickness
for smooth solutions, at least under the assumption that certain geometrical
coefficients in the Nagdhi model are replaced by piecewise constants.

1. Introduction

A number of important variational problems of mechanics involve an internal
energy functional of the form E1+ε−2E2 with ε a parameter that may become small.
For example, the displacement energy of an isotropic, linearly elastic material has
this form, whereE1 andE2 give the contributions to the energy due to the deviatoric
and dilational strains, respectively, and ε =

√
1− 2ν with ν the Poisson ratio (so ε

is small for nearly incompressible materials). A second example is provided by the
Reissner–Mindlin model of plate bending. In this case, E1 represents the elastic
energy due to bending and E2 that due to transverse shear. The small parameter
ε is the plate thickness. A third example is given by the Koiter shell model, with
the decomposition this time corresponding to energy due to bending and that due
to membrane stresses, and ε again representing the thickness. The case considered
in this paper is the shell model of Naghdi [14], [15]. Here, E1 again represents
the elastic energy due to bending while E2 is now the sum of the contributions
to the energy due to transverse shear and that due to membrane stresses. More
information on these models can be found in many texts, e.g., [5], [12], [18].

Received by the editor December 2, 1993 and, in revised form, April 3, 1995 and November
13, 1995.

1991 Mathematics Subject Classification. Primary 65N30, 73K15, 73V05.
Key words and phrases. Shell, locking, finite element.
The work of the first author was supported by National Science Foundation grants DMS-

9205300 and DMS-9500672. The work of the second author was partially supported by the HCM
Program on Shells, contract number ERBCHRXCT 940536.

c©1997 American Mathematical Society

1



2 DOUGLAS N. ARNOLD AND FRANCO BREZZI

When the finite element method is used to discretize a problem of this sort,
that is, when the total energy—which is the internal energy plus that due to the
loading—is minimized over a finite element space, the convergence of the method
will typically deteriorate as ε becomes small. In fact, for many standard choices
of finite element spaces there is no convergence uniform in ε as the mesh is refined
(although it is certainly true that for any fixed ε the discrete solution converges
to the exact solution). In practice, one sees a large discretization error when ε is
small, even for quite refined meshes. Indeed, in many practical computations it
may well be impossible to achieve an acceptable level of error using standard finite
elements. This phenomenon of growing discretization error as ε decreases is referred
to as locking. For the problem of nearly incompressible elasticity, the term Poisson
locking is used. For the Reissner–Mindlin model, one speaks of shear locking, and
for the Koiter shell model, membrane locking. In the case of the Naghdi shell model
studied in this paper both shear and membrane locking enter.

The usual approaches to circumventing locking are the use of special finite ele-
ment spaces and/or the alteration of the energy form. These techniques are often
equivalent to the use of stable elements for a mixed variational reformulation of the
problem. There is a considerable literature devoted to the development and math-
ematical justification of locking-free finite elements. For Poisson locking, which
is closely related to the limiting Stokes problem, many locking-free methods are
known. Cf. [11] or [7]. For the Reissner–Mindlin plate, several methods have been
proven to be free of locking in recent years [2], [7, Ch. 7]. However, as far as we
know, very little mathematical analysis has been done for locking in shell prob-
lems. In the pioneering paper [16] some methods are analyzed in the special case of
bending-dominated cylindrical shells. The results are illuminating, but also quite
discouraging; in particular, for low-order methods convergence is shown only for
tensor product meshes. In spite of its importance, the problem of finding numerical
methods for shells that can be mathematically proven to be locking-free is still wide
open.

In this paper we present a sequence of mixed finite element methods for the
Naghdi shell, one for each positive integer order, which we conjecture to be locking-
free in that the relative error in the numerical solution tends to zero with an order
limited only by the approximation properties of the finite elements and the smooth-
ness of the solution, but which is uniform with respect to the shell thickness. While
we have not proved this in general, we prove it to be the case under the assump-
tion that the coefficients which enter the internal energy expression are piecewise
constant functions. This assumption, which is very restrictive, is motivated by our
technique of analysis. We do not believe that it is necessary. The exact statement
of the result is given in §4, where its interpretation is discussed more fully. In par-
ticular the norm we use to measure the approximation error couples the primitive
variables of the Naghdi model (displacement and rotation) with auxilliary stress
variables. It may happen that the relative error in the primitive variables alone
does not tend to zero with optimal order, uniformly in the plate thickness. As
discussed in that section, in the case of bending-dominated shell problems, the case
for which locking is generally considered to be most troublesome, there is uniform
convergence of the relative error in the primitive variables. However, this may not
occur for membrane-dominated problems, and so our methods may not be appro-
priate for such problems.
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The mixed formulation we introduce is not quite the standard one. It is based
on a splitting of the shear and membrane energy terms so that part of each of these
terms is included with the bending energy term before passing to the mixed formu-
lation. It turns out that this minor alteration to the standard mixed formulation
renders the development of stable mixed elements much simpler. This idea, which,
in the limiting case of zero plate thickness, reduces to the use of an augmented
Lagrangian, has appeared before in many contexts. For scalar second-order elliptic
problems it can be found in [8]. We applied it to the Reissner–Mindlin plate in [1]
as did Zhou in [17]. For an application to an orthotropic heat flow problem, see [4].
In the context of shells, this idea is mentioned in [16]; cf. (4.10) and Remark 4.1 in
that paper.

Of course there is a vast literature on the numerical approximation of shells, and
many works are concerned, either explicitly or implicitly, with the development of
accurate, locking-free methods, even if no mathematical theory is available. Rather
than selectively reference that literature, we refer the reader to the books [5], [12],
[18].

The organization of the paper is as follows. In the next section we present the
Naghdi model and the mixed formulation for it. In §3 a simple abstract framework
is presented in preparation for the analysis of §4. In that section, the finite element
methods are presented and the uniform convergence in ε is proved.

2. The Naghdi shell model and a mixed formulation

We employ the convention that Greek indices range over 1 and 2 and Latin indices
over 1, 2, and 3. Products containing repeated indices (which will always occur as
a subscript and a superscript) are summed. Thus, for example, bαi = aαβbβi means
that bαi = aα1b1i+aα2b2i for i = 1, 2, 3 and α = 1, 2. We use overarrows to indicate
3-vectors, undertildes to indicate 2-vectors, and double undertildes to indicate 2×2

symmetric tensors. Thus ~v = (vi), v∼
= (vα), and λ

≈
= (λαβ) with λαβ = λβα.

For simplicity we suppose that the middle surface of the shell can be represented

by a single chart. Let Ω be a bounded open set in R2 with closure Ω̄ and let ~r be
a smooth one-to-one mapping of Ω̄ into R3, for which the vectors

~a1 =
∂~r

∂x1
, ~a2 =

∂~r

∂x2

are linearly independent at each point of Ω̄. Then for each x
∼
∈ Ω, the vectors ~a1(x

∼
)

and ~a2(x
∼

) define a basis for the tangent space to the midsurface S̄ = ~r(Ω̄) at the

point ~r(x
∼

). We also set

~a3 =
~a1 × ~a2

| ~a1 × ~a2|
,

which is a unit normal vector at ~r(x
∼

), so that the vectors ~a1(x
∼

), ~a2(x
∼

), ~a3(x
∼

) form

a basis for R3. We let t denote the shell thickness, so that the shell occupies the
region

{~r(x
∼

) + x3 ~a3(x
∼

) | x
∼
∈ Ω,−t/2 < x3 < t/2 } ⊂ R3.
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The first and second fundamental forms of the midsurface are defined by the
2× 2-matrix-valued functions given by

aαβ = ~aα · ~aβ , bαβ = ~a3 ·
∂2~r

∂xα∂xβ
= ~a3 ·

∂ ~aα
∂xβ

= − ~aα ·
∂ ~a3

∂xβ
.

The last equality follows from the orthogonality of ~aα and ~a3. Note that both
fundamental forms are symmetric in α and β. We also define the inverse matrix to

(aαβ) denoting its components by aαβ . Setting ~aα = aαβ ~aβ , we have aαβ = ~aα · ~aβ .
Multiplication by aαβ raises indices on other tensors as well, so aαβbβγ = bαγ .
Finally, we let a denote the determinant of the matrix (aαβ), a never-vanishing

function on Ω̄, so that if f : S → R is any function, then
∫
S
f =

∫
Ω
f(~r(x

∼
))
√
a dx
∼

.

For an arbitrary displacement field ~u = (ui) and rotation field θ
∼

= (θα) with

ui, θα ∈ H1(Ω), define the change of curvature tensor Υ
≈

, the transverse shear strain

tensor Φ
∼

, and the membrane strain tensor Λ
≈

by

Υαβ(~u, θ
∼

) =
1

2
[θα|β + θβ|α − bγα(uγ|β − bγβu3)− bγβ(uγ|α − bγαu3)](1)

=
1

2
[θα,β + θβ,α − bγα(uγ,β − Γδγβuδ)

− bγβ(uγ,α − Γδγαuδ) + bγαbγβu3]− Γδαβθδ,

Φα(~u, θ
∼

) = u3|α + bγαuγ + θα = u3,α + bγαuγ + θα,(2)

Λαβ(~u) =
1

2
(uα|β + uβ|α)− bαβu3 =

1

2
(uα,β + uβ,α)− Γδαβuδ − bαβu3,(3)

where the Christoffel symbol Γδαβ := ~aδ · ∂ ~aβ/∂xα.
Set

aαβγδ =
E

1− ν2
(aαγaβδ + νaαβaγδ),(4)

with E > 0 and ν ∈ (0, 1/2) denoting the Young’s modulus and Poisson ratio of
the material. Let Γd denote a nonempty subset of ∂Ω and set

H1
Γd

= { v ∈ H1(Ω) | v|Γd = 0 }, V = { (~v, ψ
∼

) | vi, ψα ∈ H1
Γd
}.

The norm in V is given by ‖~u, ψ
∼
‖2V = ‖~v‖21 + ‖ψ

∼
‖21. The Naghdi model determines

(~u, θ
∼

) as the minimizer over V of the energy functional

E(~v, ψ
∼

) = EB +ES +EM +EL

:=
t3

2

∫
Ω

aαβγδ

12
Υαβ(~v, ψ

∼
)Υγδ(~v, ψ∼

)
√
a dx
∼

+
t

2

∫
Ω

aαβ
E

2(1 + ν)
Φα(~v, ψ

∼
)Φβ(~v, ψ

∼
)
√
a dx
∼

+
t

2

∫
Ω

aαβγδΛαβ(~v)Λγδ(~v)
√
adx
∼
− t3

∫
Ω

f ivi
√
adx
∼
.

(5)
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Here, t3f i~ai denotes the resultant of the applied forces on the middle surface.

Equivalently, (~u, θ
∼

) ∈ V is determined by the weak equations

∫
Ω

aαβγδ

12
Υαβ(~u, θ

∼
)Υγδ(~v, ψ∼

)
√
a dx
∼

+ t−2

∫
Ω

aαβ
E

2(1 + ν)
Φα(~u, θ

∼
)Φβ(~v, ψ

∼
)
√
a dx
∼

+ t−2

∫
Ω

aαβγδΛαβ(~u)Λγδ(~v)
√
a dx
∼

=

∫
Ω

f iui
√
a dx
∼

for all (~v, ψ
∼

) ∈ V.

To define a mixed formulation, we set

φα = (t−2 − c0)
E

2(1 + ν)
Φα(~u, θ

∼
),

λγδ = (t−2 − c0)
E

1− ν2
[Λγδ(~u) + νaγδa

αβΛαβ(~u)]

(6)

and seek pairs (~u, θ
∼

) ∈ V and (φ
∼
, λ
≈

) ∈W := {
(
η
∼
, χ
≈

) | ηα, χαβ ∈ L2(Ω) } such that

A(~u, θ
∼

;~v, ψ
∼

) +B(~v, ψ
∼

; φ
∼
, λ
≈

) = F (~v) for all (~v, ψ
∼

) ∈ V,(7)

B(~u, θ
∼

; η
∼
, χ
≈

)− t2

1− c0t2
C(φ
∼
, λ
≈

; η
∼
, χ
≈

) = 0 for all (η
∼
, χ
≈

) ∈W.(8)

Here,

A(~u, θ
∼

;~v, ψ
∼

) =

∫
Ω

aαβγδ

12
Υαβ(~u, θ

∼
)Υγδ(~v, ψ∼

)
√
a dx
∼

(9)

+ c0

∫
Ω

aαβ
E

2(1 + ν)
Φα(~u, θ

∼
)Φβ(~v, ψ

∼
)
√
adx
∼

+ c0

∫
Ω

aαβγδΛαβ(~u)Λγδ(~v)
√
adx
∼
,

B(~v, ψ
∼

; η
∼
, χ
≈

) =

∫
Ω

aαβΦα(~v, ψ
∼

)ηβ
√
a dx
∼

+

∫
Ω

aαβγδΛαβ(~v)χγδ
√
adx
∼
,(10)

C(φ
∼
, λ
≈

; η
∼
, χ
≈

) =

∫
Ω

aαβ
2(1 + ν)

E
φαηβ

√
a dx
∼

+

∫
Ω

aαγaβδλαβχγδ
√
a dx
∼
,(11)

F (~v) =

∫
Ω

f iui
√
a dx
∼
.(12)

Aside from the factor of t−2−c0, φ
∼

and λ
≈

represent the transverse shear stresses and

membrane stresses, respectively (note that aαγaβδλαβ = (t−2 − c0)aαβγδΛαβ(~u)).
The quantity c0, which has the units of reciprocal of the square of length, is an
arbitrary positive constant, independent of t. It may be chosen, for example, to be
the reciprocal of the area of the middle surface of the plate. Different values could
be taken for the two separate occurrences in equation (6). By insisting that c0 be
positive, rather than making the more usual choice c0 = 0, we obtain the following
result, which greatly simplifies the development of stable mixed finite elements. For
a proof see [6].

Lemma 1. The bilinear form A is an inner product on V and the corresponding
norm is equivalent to the H1 norm.



6 DOUGLAS N. ARNOLD AND FRANCO BREZZI

3. An abstract stability result

In this section, in which the notation is independent of the others, we let V and
W denote Hilbert spaces, and suppose that we are given three bounded bilinear
forms

A : V × V → R, B : V ×W → R, C : W ×W → R,

a bounded linear form F : V → R, and a parameter ε ∈ (0, 1). We consider the
abstract problem:

Problem Aε. Find u ∈ V , p ∈W such that

A(u, v) +B(v, p) = F (v) for all v ∈ V,
B(u, q)− ε2C(p, q) = 0 for all w ∈W.

We shall denote the bounds on the bilinear forms by ‖A‖, ‖B‖, and ‖C‖. More-
over, we shall assume that A and C are positive definite, so there exist positive
constants c1 and c2 for which A(v, v) ≥ c1‖v‖2V and C(w,w) ≥ c2‖w‖2W for all
v ∈ V and w ∈W . We define a seminorm on W by

|||q||| = sup
06=v∈V

B(v, q)

‖v‖V
for all q ∈W,

so that |||q||| ≤ ‖B‖‖q‖W . The following theorem follows easily from the Lax-
Milgram lemma applied to the positive definite form(

(u, p), (v, q)
)
7→ A(u, v) +B(v, p)−B(u, q) + ε2C(p, q),

the obvious choice of test functions, and the definition of the seminorm.

Theorem 2. There exists a unique solution u, p to Problem Aε. Moreover, there
is a constant C depending only on ‖A‖, ‖C‖, c1 and c2, for which

‖u‖V + |||p|||+ ε‖p‖W ≤ C‖F‖V ∗ .

Now let Vh ⊂ V and Wh ⊂W denote finite-dimensional subspaces, and consider
the discrete problem:

Problem Aεh. Find uh ∈ Vh, ph ∈Wh such that

A(uh, v) +B(v, ph) = F (v) for all v ∈ Vh,
B(uh, q)− ε2C(ph, q) = 0 for all w ∈Wh.

Theorem 3. There exists a unique solution uh, ph to Problem Aεh. Moreover,
there is a constant C depending only on ‖A‖, ‖B‖, ‖C‖, c1 and c2, for which

‖u− uh‖V + ε‖p− ph‖W ≤ C inf
v∈Vh
q∈Wh

(ε−1‖u− v‖V + |||p− q|||+ ε‖p− q‖W ).

Proof. Existence and uniqueness is again a direct consequence of the Lax-Milgram
lemma. To get the estimate, we note that for any u∗ ∈ Vh and p∗ ∈Wh we have

A(uh − u∗, v) +B(v, ph − p∗)(13)

= A(u− u∗, v) +B(v, p− p∗) for all v ∈ Vh,
B(uh − u∗, q)− ε2C(ph − p∗, q)(14)

= B(u− u∗, q)− ε2C(p− p∗, q) for all q ∈Wh.
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Choosing v = uh − u∗, q = ph − p∗ and subtracting (14) from (13), we get

c1‖uh − u∗‖2V + c2ε
2‖ph − p∗‖2W(15)

≤ ‖A‖‖u− u∗‖V ‖uh − u∗‖V + ‖uh − u∗‖V |||p− p∗|||
+ ‖B‖‖u− u∗‖V ‖ph − p∗‖W + ε2‖C‖‖p− p∗‖W ‖ph − p∗‖W .

We easily deduce that

‖uh − u∗‖V + ε‖ph − p∗‖W ≤ C(ε−1‖u− u∗‖V + |||p− p∗|||+ ε‖p− p∗‖W ),

and then the desired estimate follows from the triangle inequality.

Notice that the estimates provided for u− uh and p− ph in Theorem 3 are not
uniform in ε. To obtain uniform estimates, we need a stability hypothesis. Namely,
we shall assume that there exists γh > 0 for which

sup
06=v∈Vh

B(v, q)

‖v‖V
≥ γh|||q||| for all q ∈Wh.(16)

We then obtain a quasi-optimal estimate uniformly in ε.

Theorem 4. There exists a constant C depending only on ‖A‖, ‖C‖, c1, c2, and
γh, for which

‖u− uh‖V + |||p− ph|||+ ε‖p− ph‖W ≤ C inf
v∈Vh
q∈Wh

(‖u− v‖V + |||p− q|||+ ε‖p− q‖W ).

Proof. With the same choice of test functions as in the proof of the previous theo-
rem, but treating the term B(u− u∗, ph − p∗) differently, we get

c1‖uh − u∗‖2V + c2ε
2‖ph − p∗‖2W

≤ ‖A‖‖u− u∗‖V ‖uh − u∗‖V + ‖uh − u∗‖V |||p− p∗|||
+ ‖u− u∗‖V |||ph − p∗|||+ ε2‖C‖‖p− p∗‖W‖ph − p∗‖W .

Further, from (13) and (16) we have

γh|||ph − p∗||| ≤ ‖A‖‖uh − u∗‖V + ‖A‖‖u− u∗‖V + |||p− p∗|||,

and so

|||ph − p∗||| ≤ C(‖uh − u∗‖V + ‖u− u∗‖V + |||p− p∗|||).

Combining these estimates, we get

‖uh − u∗‖V + |||ph − p∗|||+ ε‖ph − p∗‖W
≤ C(‖u− u∗‖V + |||p− p∗|||+ ε‖p− p∗‖W ),

from which the theorem follows.



8 DOUGLAS N. ARNOLD AND FRANCO BREZZI

4. Finite elements for the Naghdi shell

Our goal is now to discretize the mixed formulation of the Naghdi shell model
presented in §2 and analyze the error in the framework of §3. We take the spaces
V and W and the forms A, B, C, and F as defined in §2 and set ε = t/

√
1− c0t2 =

O(t). Clearly, the forms are all bounded and C is positive definite. In light of
Lemma 1, A is positive definite as well. Hence, Theorem 2 gives the well-posedness
of the mixed formulation, and for any choice of finite element spaces Vh ⊂ V and
Wh ⊂ W , Theorem 3 gives a convergence result. However, we wish to obtain a
convergence estimate which is uniform in t, and so want to apply Theorem 4. This
requires that we find finite element spaces satisfying (16) with γh bounded below
by a positive constant independent of h.

To do so, we henceforth assume that Ω is a polygon which is triangulated by a
regular sequence of triangulations Th indexed by the meshsize h. (By regular, we
mean that there is a positive lower bound for all the angles of all the triangles in
all the triangulations, but we do not assume quasi-uniformity.) The set Γd where
Dirichlet boundary conditions are imposed is assumed to be a union of edges of
triangles in each Th. We use the notation Pk(T ) for the set of functions on T which
are the restrictions of polynomials of degree no greater than k and define

Lsk(Th) = { v ∈ Hs(Ω) | v|T ∈ Pk(T ) for all T ∈ Th },
Bk(Th) = { v ∈ L0

k(Th) | v ∈ H̊1(T ) for all T ∈ Th }.

For the shell problem we shall take

Vh = {
(~v, ψ
∼

) ∈ V | vi, ψα ∈ L1
k+2(Th) +Bk+3(Th) },

Wh = { (η
∼
, χ
≈

) ∈W | ηα, χαβ ∈ L0
k(Th) },

where k is any fixed nonnegative integer (this method shall turn out to converge
with order k + 1 in H1 for displacement and rotation). That is, we use Lagrange
finite elements of degree k+ 2 augmented by bubble functions of one degree higher
for the components of the displacement and rotation, and discontinuous piecewise
polynomials of degree k for the components of the shear and membrane stresses.
The nodal diagrams for this element choice are shown in Figure 1.

Before proceeding to the analysis, we discuss briefly the implementation of this
method. The stress unknowns may be eliminated analytically from the discrete
equations, giving a finite element method involving only the displacements and
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Figure 1. Degrees of freedom for displacements and rotations and
for shear stresses and membrane stresses in the cases k = 0 and
k = 1
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rotations. Specifically, let

P 1
h : { η

∼
| ηα ∈ L2(Ω) } → { η

∼
| ηα ∈ L0

k(Th) }

denote the orthogonal projection with respect to the inner product

(φ
∼
, η
∼

) 7→
∫

Ω

aαβφαηβ
√
a dx
∼

and, similarly, let

P 2
h : {χ

≈
|χαβ ∈ L2(Ω) } → {χ

≈
|χαβ ∈ L0

k(Th) }

denote the orthogonal projection with respect to the inner product

(λ
≈
, χ
≈

) 7→
∫

Ω

aαγaβδλαβχβδ
√
adx
∼
.

From the discrete version of (8) we deduce that

φ
∼h

= (t−2 − c0)
E

2(1 + ν)
P 1
hΦ
∼

(~uh, θ∼h
), λ

≈h
= (t−2 − c0)P 2

hΛ
∼
∗(~uh),

where

Λ∗γδ(
~uh) =

E

1− ν2
[Λγδ(~uh) + νaγδa

αβΛαβ(~uh)].

It then follows from the discrete version of (7) that (~uh, θ∼h
) can be determined as

the minimizer over Vh of the altered energy functional

Eh(~v, ψ
∼

) = EB + c0t
2ES + (1− c0t2)ESh + c0t

2EM + (1− c0t2)EMh +EL,

where EB , ES , EM , and EL are defined in (5) and ESh and EMh are derived from
ES and EM by replacing φ

∼∼
and Λ

≈
by P 1

hφ∼∼
and P 2

hΛ
≈

, respectively. The insertion of

such projections and other reduction operators into energy terms subject to locking
is known in the engineering literature as “selective reduced integration.” Since we
introduce the projections into only part of the shear and membrane energy terms,
our method may be described as “partial selective reduced integration.”

We now turn to the major task of this paper, the verification of (16) for the
elements just introduced. Unfortunately, in order to do so, we need to make an
assumption on the coefficients entering into the bilinear form B. Namely, we as-
sume that each of the quantities aαβ , bαβ , and Γγαβ belong to L0

0(Th), that is, they
are piecewise constant. Of course this assumption is very restrictive. It is intro-
duced only because it is necessary for the numerical analysis. We conjecture that
this restriction is a consequence of the technique of proof, and that in fact it is
unnecessary. With this restriction, we are able to prove our main result.

Theorem 5. Assume that aαβ, bαβ, Γδαβ belong to L0
0(Th), and let a denote the

determinant of (aαβ), (aαβ) the inverse matrix, and bγα = aγβbαβ. Define forms
A, B, C, and F by (1)–(4) and (9)–(12), where f i ∈ L2(Ω), E > 0, ν ∈ (0, 1/2),

c0 > 0, and t ∈
(
0, 1/
√
c0
)
. Then there exist unique pairs (~u, θ

∼
) ∈ V and (φ

∼
, λ
≈

) ∈W

satisfying (7) and (8), and unique pairs (~uh, θ∼h
) ∈ Vh and (φ

∼h
, λ
≈h

) ∈Wh satisfying
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the same equations with the test functions restricted to Vh and Wh. Moreover, there

exists a constant C independent of h, t, and ~f such that

‖~u− ~uh‖1 + ‖θ
∼
− θ
∼h
‖1 + |||φ

∼
− φ
∼h
, λ
≈
− λ
≈h
|||+ t‖φ

∼
− φ
∼h
‖0 + t‖λ

≈
− λ
≈h
‖0

≤ C inf
(~v,ψ
∼

)∈Vh
(η
∼
,χ
≈

)∈Wh

(‖~u− ~v‖1 + ‖θ
∼
− ψ
∼
‖1 + |||φ

∼
− η
∼
, λ
≈
− χ
≈
|||+ t‖φ

∼
− η
∼
‖0 + t‖λ

≈
− χ
≈
‖0),

where

|||η
∼
, χ
≈
||| := sup

(~v,ψ
∼

)∈V

B(~v, ψ
∼

; η
∼
, χ
≈

)

‖~v, ψ
∼
‖V

.

Since |||η
∼
, χ
≈
||| ≤ C(‖η

∼
‖0 + ‖χ

≈
‖0) we immediately get kth-order convergence uni-

form in t for smooth solutions.

Corollary 6. Under the hypotheses of the theorem we have

‖~u− ~uh‖1 + ‖θ
∼
− θ
∼h
‖1+|||φ

∼
− φ
∼h
, λ
≈
− λ
≈h
|||+ t‖φ

∼
− φ
∼h
‖0 + t‖λ

≈
− λ
≈h
‖0(17)

≤ Chk+1(‖~u‖k+2 + ‖θ
∼
‖k+2 + ‖φ

∼
‖k+1 + ‖λ

≈
‖k+1),

where the constant C does not depend on h, t, or ~f .

Before turning to the proof of Theorem 5 and Corollary 6, we discuss their

interpretation. Let U denote the solution (~u, θ
∼
, φ
∼
, λ
≈

) and set

|U | = ‖~u‖1 + ‖θ
∼
‖1 + |||φ

∼
, λ
≈
|||+ t‖φ

∼
‖0 + t‖λ

≈
‖0.

Similarly, define Uh to be the discrete solution. Then |U | is bounded above and be-
low by positive constants uniformly in t, and, assuming that the solution is smooth
enough that the norms on the right-hand side of (17) remain bounded uniformly
in t, the error |U − Uh| is uniformly of the order O(hk+1). In particular, the rela-
tive error |U − Uh|/|U | tends to zero as fast as is permitted by the approximation
properties of the finite element spaces used, that is with O(hk+1), uniformly in t.
In this sense we have indeed shown our method to be free of locking. However, this
statement may be misleading, so we comment on several aspects of it.

First, from the point of view of approximation order, our choice of elements
is unbalanced. The finite element space for displacement and rotation contains
all Lagrange elements of degree k + 2, and so is capable of approximating the
displacements and rotations with order k+2 in H1, but, because of the lower order
of approximation of the elements used for the stress fields, only convergence of
order k + 1 is obtained. In fact, the shape functions of degree greater than k + 1
for displacement and rotation are used to achieve stability rather than accurate
approximation. An analogous situation is the use of quadratic shape functions for
velocity in the P2–P0 Stokes element. A careful reading of the analysis below shows
that we can reduce the space used for the rotation variables to L1

k+1(Th)+Bk+2(Th)
and still retain stability, but this is not possible for the displacement variables.
Actually, our choice of elements was made primarily for the relative simplicity of
the stability analysis which follows. It is likely that with a more sophisticated
analysis, for example one employing macroelement techniques, better balanced and
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more economical elements could be shown to be stable for the mixed formulation
of this paper.

Second, while the norm ||| · ||| in which we measure the stresses arises naturally
from the shell problem, it is not easy to interpret it concretely, and its exact rela-
tionship to Sobolev norms depends on the geometry of the shell and the boundary
conditions. Thus, the significance of the t-independent bound on the error in the
stress variables is unclear.

Third, while it cannot happen under our scaling that |U | tends to zero with t, it

may well happen that ‖~u‖1 + ‖θ
∼
‖1 tends to zero. This is the case of a membrane-

dominated shell problem. In this case our results, which couple the displacement
and stress errors, do not establish convergence of the displacement-rotation relative
error

‖u− ~uh‖1 + ‖θ
∼
− θ
∼h
‖1

‖u‖1 + ‖θ
∼
‖1

uniformly in t. However, locking is generally considered a problem mostly in the

case of bending-dominated shell problems, i.e., problems for which ‖~u‖1 remains
bounded away from zero as t tends to zero, and our results do imply uniform
convergence rates for the displacement and rotation in that case.

Fourth, the right-hand side of (17) cannot be expected to remain bounded as
t tends to zero. The analogous quantity for the Reissner–Mindlin plate model
is known to become unbounded, owing to boundary layers, as has been analyzed
thoroughly in [3]. No such analysis yet exists for the Naghdi shell model. This lack
of uniform regularity of the solution will preclude uniform O(hk+1) convergence
of the numerical method except under special conditions (e.g., periodic problems).
This difficulty, however, is quite distinct from the locking problem treated in this
paper. In any case, Theorem 5 shows that the finite element solution provides
the best approximation that the regularity of the solution allows, uniformly with
respect to t. Moreover, when the presence of boundary layers precludes the optimal
rates of convergence uniform in t, it is still possible that such convergence occurs on
interior subdomains. Interior convergence results of this sort have been established
for some Reissner–Mindlin plate elements in [10] and [13]. We also mention that by
analyzing more carefully the norm ||| · |||, instead of simply bounding it by the L2

norm, the norm on the solution which appears on the right-hand side of (17) can
probably be replaced with a weaker one (but generally not by one that is bounded
uniformly in t). Cf. the use of the Helmholtz Theorem to treat the analogous term
in the Reissner–Mindlin plate model [2].

We now turn to the proof of Theorem 5. In view of Theorem 4, it suffices to
establish the following lemma.

Lemma 7. Under the hypotheses of the theorem there exists a positive number γ
independent of h for which

sup
(~v,ψ
∼

)∈Vh

B(~v, ψ
∼

; η
∼
, χ
≈

)

‖~v, ψ
∼
‖V

≥ γ|||η
∼
, χ
≈
||| for all (η

∼
, χ
≈

) ∈Wh.(18)

Proof. Suppose that we can construct a linear operator

πh : H1
Γd → L1

k+2(Th) ∩H1
Γd +Bk+3(Th)(19)
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for which

‖πhv‖1 ≤ C‖v‖1 for all v ∈ H1
Γd
,(20)

with C independent of h and such that∫
e

(v − πhv)p ds(21)

=

∫
T

(v − πhv)p dx
∼

= 0 for all e ∈ Eh, T ∈ Th, v ∈ H1
Γd
, p ∈ Pk(T ),

where Eh denotes the set of all edges of triangles in Th. Note that it follows from
Green’s theorem and (21) that∫

T

(v − πhv),α p dx∼
= 0 for all T ∈ Th, v ∈ H1

Γd
, p ∈ Pk(T ),

as well. Therefore, if we define Πh : V → Vh by Πh(~v, ψ
∼

) =
(
(πhvi), (πhψα)

)
, we

have

B
(
Πh(~v, ψ

∼
); η
∼
, χ
≈

)
= B

(~v, ψ
∼

; η
∼
, χ
≈

)
for all (η

∼
, χ
≈

) ∈Wh

and

‖Πh(~v, ψ
∼

)‖V ≤ C0‖~v, ψ∼‖V

with C0 independent of h. Then, given (η
∼
, χ
≈

) ∈Wh, we may choose (~v, ψ
∼

) ∈ V for

which

B(~v, ψ
∼

; η
∼
, χ
≈

)

‖~v, ψ
∼
‖V

≥ 1

2
|||η
∼
, χ
≈
|||

(which is possible by the definition of the seminorm) and bound the left-hand side
of (18) below by

B
(
Πh(~v, ψ

∼
); η
∼
, χ
≈

)
‖Πh(~v, ψ

∼
)‖V

=
B
(~v, ψ
∼

; η
∼
, χ
≈

)
‖Πh(~v, ψ

∼
)‖V

≥
B(~v, ψ

∼
; η
∼
, χ
≈

)

C0‖~v, ψ∼‖V
≥ 1

2C0
|||η
∼
, χ
≈
|||,

so the lemma holds with γ = 1/(2C0).
It remains to construct the operator π satisfying (19)–(21), which we do in four

steps. First, let π0
h : H1

Γd
→ L1

1(Th) ∩H1
Γd

satisfy

‖v − π0
hv‖0,T + hT ‖v − π0

hv‖1,T ≤ ChT ‖v‖1,T̃ for all T ∈ Th, v ∈ H1
Γd .(22)

Here, hT denotes the diameter of the triangle T , and T̃ denotes the union of the
triangles in Th which meet T . The construction of such an operator is described in
[9]. Second, define

π1
h : H1

Γd → L1
k+2(Th) ∩H1

Γd

by the conditions π1
hv = 0 at all vertices of all triangles in Th and∫

e

(v − π1
hv)p ds = 0 for all e ∈ Eh, v ∈ H1

Γd
, p ∈ Pk(e),(23) ∫

T

(v − π1
hv)p dx

∼
= 0 for all T ∈ Th, v ∈ H1

Γd , p ∈ Pk−1(T ).



LOCKING-FREE FINITE ELEMENT METHODS FOR SHELLS 13

By a straightforward scaling argument we obtain

‖v − π1
hv‖0,T + hT ‖v − π1

hv‖1,T ≤ C(‖v‖0,T + hT ‖v‖1,T ) for all T ∈ Th, v ∈ H1
Γd .

(24)

Third, define π2
h : H1

Γd
→ Bk+3(Th) by∫

T

(v − π2
hv)p dx

∼
= 0 for all T ∈ Th, v ∈ H1

Γd
, p ∈ Pk(T ).(25)

For this operator, scaling gives

‖v − π2
hv‖0,T + hT ‖v − π2

hv‖1,T ≤ C‖v‖0,T for all T ∈ Th, v ∈ H1
Γd
.(26)

Finally, we set

πhv = π0
hv + π1

h(v − π0
hv) + π2

h[v − π0
hv − π1

h(v − π0
hv)].(27)

From (22), (24), and (26) we deduce that

‖πhv‖1,T ≤ C‖v‖1,T̃ for all v ∈ H1
Γd

, T ∈ Th,

and (21) follows immediately, while (20) follows from (23), (25), and (27). This
completes the proof of Lemma 7, and so of Theorem 5.
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