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SUMMARY

Locking in finite elements has been a major concern since its early developments. It appears because poor
numerical interpolation leads to an over-constrained system. This paper proposes a new formulation that
asymptotically suppresses locking for the Element Free Galerkin (EFG) method in incompressible limit, i.e. the
so-called volumetric locking. Originally it was claimed that EFG did not present volumetric locking. However,
recently, performing a modal analysis, the senior author has shown that EFG presents volumetric locking. In fact,
it is concluded that an increase of the dilation parameter attenuates, but never suppresses, the volumetric locking
and that, as in standard finite elements, an increase in the order of reproducibility (interpolation degree) reduces
the relative number of locking modes. Here an improved formulation of the Element Free Galerkin method is
proposed in order to alleviate volumetric locking.

Diffuse derivatives are defined in the thesis of the second author and their convergence to the derivatives of the
exact solution, when the radius of the support goes to zero (for a fixed dilation parameter), it’s proved. Therefore
diffuse divergence converges to the exact divergence. Since the diffuse divergence-free condition can be imposed
a priori, new interpolation functions are defined that asymptotically verify the incompressibility condition. Modal
analysis and numerical results for classical benchmark tests in solids corroborate this issue. Copyright c

�
2002

John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a recent paper [1] locking of the Element Free Galerkin (EFG) method near the incompressible
limit, i.e. the so-called volumetric locking, has been studied. In particular, the standard EFG behavior
is compared with finite elements, bilinear and biquadratic interpolations. Locking of standard finite
elements has been extensively studied and one can find in the literature several remedies to suppress or
at least alleviate locking [3].
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2 Y.VIDAL, P.VILLON AND A.HUERTA

However, even recently [4] it was claimed that mesh-free methods did not exhibit volumetric locking.
Now it is clear that this is not true. For instance, in [5] the numerical inf-sup condition is used to analyze
the EFG method. Moreover, several authors have studied the influence of the dilation parameter in
locking phenomena, either by numerical experiments [5, 6] or by heuristic arguments [7] based on
the constraint ratio proposed by Hughes [3]. Now it is clear [1] that the dilation parameter attenuates
locking but does not suppress the locking modes and that, as in finite elements, an increase in the order
of consistency decreases the number of locking modes. The remedies proposed in the literature are
extensions of the methods developed for finite elements [5, 7].

Here a novel approach is explored. It consist in using interpolation functions that verify
approximately the divergence-free restriction. These interpolating functions can be defined a priori
and are independent of the particle distribution. Moreover, as the density of particles is increased (i.e.
as the discretization is refined) the divergence-free condition is better approximated. This method is
based on diffuse derivatives [8], which converge to the derivatives of the exact solution when the radius
of the support goes to zero (for a fixed dilation parameter) [2].

2. Diffuse derivatives

2.1. Preliminaries of the EFG method

This section will not be devoted to develop or discuss mesh-free methods in detail or their relation with
moving least squares (MLS) interpolants. There are well known references with excellent presentations
of mesh-free methods, see for instance [8, 9, 10, 11, 12]. Here some basic notions will be recalled in
order to introduce the notation and the approach employed in following sections.

The moving least squares approach is based on the local (i.e. at any point � in the neighborhood of� ) approximation of the unknown scalar function � � ��� by ��� as� � ���	�
� � � ��� ������ T� ����� � � � for � near � (1)

where the coefficients � � � ������ � � � � � � � � � � � � � � � � � � � �  T are not constant, they depend on point � ,
and � � ���  � $ � � ��� � $�� � ��� � � � � � $ � � ���  T includes a complete basis of the subspace of polynomials
of degree ' . In one dimension, it is usual that $�( � ) � coincides with the monomials

) ( , and, in this
particular case, +  ' . The coefficients � are obtained by the minimization of the functional . / � � �
centered in � and defined as. / � � �	 2( 4 5 6�7

� � � � ( � : � � � ( ��; � � � ( ��� � � � = > (2)

where 7
� ��� � ( � is a weighting function (positive, even and with compact support) which characterizes

the mesh-free method. For instance, if 7
� � � � ( � is continuous together with its first ? derivatives,

the interpolation is also continuous together with its first ? derivatives. The particles cover the
computational domain @ , @�A B nsd , and in particular a number of particles � � (  �( 4 5 6 belong to the
support of 7

� ��� � ( � . The minimization of . / � � � induces the standard normal equations in a weighted
least squares problem F � � � � � � �� 2( 4 5 6 7

� ��� � ( ��� � � ( ��� � � ( � (3)

where, as usual, the Gram matrix
F � � � is the scalar product of the interpolation polynomials:F � � �	 2( 4 5 6	7

� ��� � ( ��� � � ( � T � � � ( � � (4)
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That is, � � �����  2( 4 5 6�7
� � � � ( � � � � ( � � � � ( � (5)

must define a discrete scalar product. Thus, several conditions on the particle distribution are implicitly
assumed, see for instance [13].

Once the normal equations are solved (3) the coefficients � are substituted in (1). Since the weighting
function 7 usually favors the central point � , it seems reasonable to assume that such an approximation
is more accurate precisely at �  � and thus the approximation (1) is particularized at � , that is,

� � � ��� � � � � ���� T� � ��� � � �	 � T� � � F � � � � ��2( 4 5 6�7
� � � � ( � � � � ( ��� � � ( � � (6)

This expression can also be written in a standard interpolation form

� � � � �	 2( 4 5 6
� �( � � ��� � � ( ���2( 4 5 6

�
7
� ��� � ( � � T� � � F � � � � ��� � � ( �	� � � � ( � (7)

2.2. The diffuse derivative

The approximation of the derivative of � is the derivative of ��� . This requires to derive (6), that is
 �
 ) ( �

 � �
 ) ( 


 � T
 ) ( � � � ��� � T

 �
 ) ( for  �� � � � � � nsd. (8)

Note that the derivative of the polynomials in � is trivial but the derivative of the coefficients �
requires the resolution of a linear system of equations with the same matrix

F
, see [14]. Moreover, the

derivatives of the polynomials can be done a priori but the derivatives of the coefficients require the
knowledge of the cloud of particles surrounding each point � .

Thus the concept of diffuse derivative, see [2, 8], defined as� � �� ) ( 

 � �
�� (����� ��� /

 
 � T
�� ( ���� ��� /
� � � �	 
 � T
 ) ( � � � � for ��� � � � � � nsd (9)

is from a computational cost point of view an interesting alternative to (8). Moreover, the diffuse
derivative converges at optimal rate to the derivative of � , see the demonstration in [2]. For an
approximation ��� to � with an order of consistency ' (i.e. � includes a complete base of the subspace
of polynomials of degree ' ), then���� 
 � �
 ) �( ;

� � � �� ) �(
���� � � ! � � � # % ' � � �� ' � ��� * , ?  - � � � � � ' and for  �� � � � � � nsd. (10)

3. Pseudo-divergence free condition

3.1. Diffuse divergence

In the previous section the diffuse derivative was introduced and it was recalled that it converges
to the actual derivative as # . - . Moreover, diffuse derivatives only act on the polynomials � .
Incompressible computations require that the approximating field must be divergence free. That is, the
solution / � � � , now a vector / 0 B nsd . B nsd , verifies 1 2 /  - , and the approximation / � � � � should
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also be divergence-free. This condition however depends on the interpolation space. Here, instead of
requiring a divergence-free interpolation, the diffuse divergence of the approximation

/ � 
��� � � �...� �nsd

���� 
��� � T � �

...� T � nsd
���� �� $ � � � �
	 nsd $�� � � ��	 nsd ����� $ � � � �
	 nsd 

�����
� � � � �� � � � �

...� � � � �
������ �� T �

(11)
is imposed equal to zero, i.e.

1�� 2 / �  nsd2 ( � �
� /	�� ) ( 

nsd2 ( � �

 � T
 ) ( � ( � � �	 � 1 2�� T� � �  � � � �	 - � (12)

Note that 	 nsd is the identity matrix of order nsd and the coefficients have been rearranged as� T  � � ��� � ����� � ��� nsd� � � �� T� � / � � � � � ����� � � � nsd� � � �� T! � / � ����� � � � � ����� � � � nsd� � � �� T" � / �  � (13)

Equation (12) must hold at each point � and for any approximation. Thus appropriate interpolation
functions, � , must be defined in order to verify (12) and thus ensure asymptotically a divergence-free
interpolation (i.e. the divergence-free condition is fulfilled as # . - ).
3.2. A 2D pseudo-divergence free interpolation

The previous concepts are particularized for a two-dimensional case and allow to define the pseudo-
divergence-free interpolation functions. Suppose for instance that consistency of order two is desired,
then � T  � � � ) � � ) > � ) > � � ) � ) > � ) >>  , thus� T  # � - ) � - ) > - ) > � % ' - ) � ) > - ) >> % ' -- � - ) � - ) > - ) > � % ' - ) � ) > - ) >> % '�) (14)
and � T  � � ��� � � ��� > � � � � � � � > � > � � � > � > � * � � � * � > � -�� � � -�� > � . � � � . � >  � (15)

The pseudo-divergence-free condition (12) is, in this case, written as

1 � 2 / �  
 � T
 ) � � � �

 � T
 ) > � >  -

� (16)

which implies � � � � � � � > � > ��� ) � � � * � ��� � -�� > ��� ) > � � -�� � � � . � > �� - � (17)
and consequently, � � � � � � > � >  - � � * � � � � -�� >  - � � -�� � � � . � >  - � (18)

The influence of these three restrictions in the interpolation functions (14) can be viewed as follows# � - ) � - ) > - ) > � % ' - ) � ) > - ) >> % ' -- � ; ) > ) � - - ; ) � ) > ) > � % ' ; ) >> % ' - - - ) � (19)

where one should note that the coefficients in the
) � and

) > directions are now coupled and that the
total number of degrees of freedom has decreased.
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3.3. The pseudo-divergence-free EFG method

Using (19), let � � be the new interpolation matrix (where obviously the unnecessary columns have
been removed). The interpolation is then defined as

/ � ���	� / � � ��� ���� # � � � � ��� ���� �> � ��� ��� ) �� T� � ��� � � � � � (20)

The vector version of the discrete scalar product defined in (5),� / ��� �  2( 4 5 6�7
� � � � ( � / T� � ( � � � � ( � (21)

allows now to reproduce the MLS approximation. Thus at each point � the normal equations should
be solved, see (3), F � � � � � � �	 � � � � � � with

F � � � 0  � � � � � � � � (22)

Thus, as previously, the coefficients � are substituted in (20) and the approximation is particularized
at �  � . Then, equation (6) becomes

/ � � ��� / � � � ���� T� � � � � � � ���� T� � � � F � � � � � � � � � � ��� (23)

and a final expression similar to (7) can be found as

/ � � � ���2( 4 5 6
� �( � � � / � � ( �	 2( 4 5 6

�
7
� � � � ( � � T� � � � F � � � � � � � � � ( �	� / � � ( � � (24)

It is important to note that the matrix of interpolation functions
� �( is now a full matrix not a diagonal

one as standard EFG would induce in this non scalar problem. This is due to the fact that the two
components of the solution are linked by the incompressibility restriction.

4. Modal analysis

4.1. Preliminaries

The modal analysis presented here follows the same rationale originally presented in [1]. It is restricted
to small deformations, namely � s / , where / is the displacement and � s the symmetric gradient,
i.e. � s  �> � � � ���  . Moreover, linear elastic isotropic materials under plane strain conditions are
considered. Dirichlet boundary conditions are imposed on �	� , a traction 
 is prescribed along the
Neumann boundary ��� and there is a body force  . Thus, the problem that needs to be solved may be
stated as: solve for /���� � ������ > such that�
� � �

� � � s � 0 � s / � @ � � �� � � � � � � ; ' � � � � � � � � � � � � /�� � @
 � �  � � � @ � � �� 
 � � ��� , � ��� � ���� ��� � > � (25)

In this equation, the standard vector subspaces of � � are employed for the solution /� � ���� � > 0  ! /�� � � � � > $ /  / � on � � (
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6 Y.VIDAL, P.VILLON AND A.HUERTA

(Dirichlet conditions, / � , are automatically satisfied) and for the test functions �� � ���� ��� � > 0  ! � � � � � � > $ � �� on � � (
(zero values are imposed along ��� ).

This equation shows the inherent difficulties of the incompressible limit. The standard a priori error
estimate emanating from (25) and based on the energy norm, which is induced by the LHS of (25), is� / ; /�� � ��� �	�
 4��� � / ;�� � � !�� � � � ��� � � ��� (26)

where � � is the finite dimensional subspace of � � ���� � > in which the approximation /�� is sought,!�� � � � � is a constant independent of � (characteristic size of the mesh), and � � $ � is a positive monotone
function of $ (degree of the polynomials used for the interpolation). The subindices of the constant !
indicate that it depends on the Poisson ratio, the order of the interpolation and the exact solution itself.

From (25) one can observe the difficulties of the energy norm to produce a small infimum in (26) for
values of � close to - � � . In fact, in order to have finite values of the energy norm the divergence-free
condition must be enforced in the continuum case, i.e. � � /  - for / � � � ������ > , and also in the
finite dimensional space, i.e. � � /��  - for / ��� � � A � � ������ > . In fact, locking will occur when
the approximation space � � is not rich enough for the approximation to verify the divergence-free
condition.

Under these conditions, it is evident that locking may be studied from the LHS of (25). This is the
basis for the modal analysis of locking. The discrete eigenfunctions (the eigenvectors) corresponding
to the LHS of (25) are computed because they completely describe, in the corresponding space, the
behavior of the bilinear operator induced by this LHS.

In computational mechanics it is standard to write the strain,  , and the stress, ! , tensors in vector
form. Moreover, under the assumptions already discussed, they are related as

  " $ � !  &  � &  �� � � � � � � ; ' � � �� � ;�� � -� � ;�� -- - � � > �>
�� �

Where $ is the vector of nodal displacements (the coefficients corresponding to the approximation /	�
in the base of � � ), and " is the standard matrix relating displacements and strains. Then, the stiffness
matrix can be computed as usual, )

 � � " � & " � @ �
The modal analysis presented in the following is based on

)
, which is naturally related to the energy

norm in the finite dimensional interpolation space, � � , defined by the finite elements employed (and
characterized by " ).

4.2. Comparing EFG and pseudo-divergence-free EFG

The incompressible limit is studied by evaluating the eigenvalues associated to each mode as the
Poisson ratio, � , tends to - � � . As in [1] the logarithm of the eigenvalue is plotted as a function of
the logarithm of - � � ; � . Then each mode is classified in three groups: (1) modes that do not present
any locking behavior, (2) modes that do have physical locking, i.e. the eigenvalue goes to infinity
because it is a volumetric mode, and (3) modes associated to non-physical locking, i.e. the eigenvalue
goes to infinity but there is no volume variation. In the latter case, the displacement field conserves the

6
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Non-locking Physical locking Non-physical locking

Figure 1. Modes for a ����� distribution of particles with bilinear consistency and �����
	��� � .

Non-locking Physical locking Non-physical locking

Figure 2. Modes for a ����� distribution of particles with bilinear consistency and �����
	��� � .

total area but suffers from non-physical locking. The interpolation space is not rich enough to ensure
the divergence-free condition. In fact these modes do verify that�

� � � / � � �  - �
but do not comply with the local divergence-free condition. This is clearly a non-physical locking
behavior.

The modal analysis is performed on a distribution of ����� particles and for bilinear consistency,
i.e. �  � � � ) � � ) > � ) � ) >  T. Figures 1 and 2 show the modes already classified for two different
dilation parameters, # % �  � � ' and ' � ' . And Figure 3 compares the eigenvalues obtained by standard
EFG and the pseudo-divergence-free interpolation for two particular non-physical locking modes with

# % �� � � ' , ' � ' and � � ' . Note first that the pseudo-divergence-free interpolation has not suppresses
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