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ABSTRACT

Sharding is used to address the performance and scalability issues of the blockchain protocols, which
divides the overall transaction processing costs among multiple clusters of nodes. Shards require
less storage capacity and communication and computation cost per node than the existing whole
blockchain networks, and they operate in parallel to maximize performance. However, existing
sharding solutions use locks for transaction isolation which lowers the system throughput and may
introduce deadlocks. In this paper, we propose a lockless transaction method for ensuring transaction
isolation without using locks, which improves the concurrency and throughput of the transactions. In
our method, transactions are split into subtransactions to enable parallel processing in multiple shards.
We use versions for the transaction accounts to implement consistency among the shards. We provide
formal proof for liveness and correctness. We also evaluate experimentally our proposed protocol and
compare the execution time and throughput with lock-based approaches. The experiments show that
the transaction execution time is considerably shorter than the lock-based time and near to the ideal
(no-lock) execution time.

Keywords Blockchains · Blockchain Sharding · Lockless Transactions · Transaction Conflicts · Parallel Commits

1 Introduction

The popularity of blockchains has grown due to their numerous benefits in decentralized applications. They have several
special features such as fault tolerance, transparency, non-repudiation, and immutability [25]. To maximize bandwidth
usage, every transaction is hashed with a cryptographic function and multiple transactions are divided into blocks
[9]. After that, a ledger is created by chaining all the blocks together using a consensus mechanism to append blocks.
Assuming that nobody else can be trusted, every node is in charge of keeping its own copy of the distributed ledger. As
a result, if someone or some system attempts to alter or restore a portion of these transactions it will be detected, which
provides assurances of data integrity and finality.

The distributed cryptocurrency blockchain system known as Bitcoin [22] is one of the first and most well-known
instances of how blockchain was originally designed for the reliable exchange of digital goods. A permissionless
blockchain allows anyone to join or leave the network without having to reveal their true identity. No participant
can be truly trusted in such situations. Due to the lack of identity, a computationally intensive consensus process
called proof-of-work that is based on cryptography is required. On the other hand, in permissioned systems the
environment is more controlled and allows for more power-efficient consensus protocols based on Byzantine agreement
[1]; nevertheless, even these blockchain protocols do not scale well due to large communication overhead.
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Unfortunately, conventional blockchain applications have a fully replicated architecture where each node stores a copy
of the whole blockchain and processes every transaction which causes scalability issues in contemporary very big
data-based applications [23]. When the number of transactions and storage nodes increases, the blockchain system
not only takes a longer time to achieve a consensus among nodes but also takes more time to process the transaction;
therefore, it reduces the overall performance of the system. To mitigate the scalability issue of the blockchain, several
blockchain protocols like Elastico [20], OmniLedger [18], RapidChain [27], and ByShard [14] has proposed to introduce
sharding to provide scalability which divides the whole replicated single blockchain system to multiple shards and each
shard processes its own transactions independently.

The blockchain nodes are divided into clusters of nodes called shards. Subsets in each shard may contain Byzantine
nodes. We presume that each shard employs a BFT (Byzantine Fault Tolerant) consensus algorithm with authentication,
such as PBFT [7]. Existing sharding solutions such as, Elastico [20], OmniLedger [18], and RapidChain [27] are
tailored for supporting open (or permissionless) cryptocurrency applications and are not easily generalizable to other
systems. To address system-specific specialized approaches towards sharding, Hellings et al. [14], introduced ByShard,
and combine two conventional sharded database concepts, two-phase commit and two-phase locking for atomicity and
isolation of transactions in a Byzantine environment. However, their sharding solutions are not optimal as the locks are
expensive, and when a process locks a data set for reading or writing, all other processes attempting to access the same
data set are blocked until the lock is released, which lowers system throughput.

In this paper, we propose a different method for ensuring transaction isolation without using locks, which improves the
transaction processing time. We propose a novel algorithm for ensuring atomicity and isolation of the transactions in
the distributed environment.

1.1 Contributions

To our knowledge, we give the first lockless approach to blockchain sharding. We provide the following contributions:

• We provide a lockless protocol for sharded blockchains. Our protocol is based on multi-version concurrency
control of the various shared objects (accounts) that the transactions access. A transaction is first split into
subtransactions that execute in parallel in multiple shards. Using object versioning, the subtransactions can
detect whether there is a conflict with other subtransactions that attempt to access the same shared objects
concurrently. In case of a conflict, a transaction may need to restart and attempt to commit again.

• We provide correctness proofs for the safety and liveness of our proposed protocol. We also evaluate our
protocol experimentally through simulations and we observe that the transaction execution time is considerably
faster than the lock-based approaches and also the throughput of the transactions is improved with an increasing
number of shards.

Paper Organization: The rest of this paper is structured as follows: Section 2 provides previous related works.
Section 3 describes the preliminaries for this study and the sharding model. Section 4 discusses our proposed lockless
sharding protocol. In 5 we provide the correctness analysis. Section 6 discusses the performance evaluation of our
work, experimental setup, and experimental results. Finally, we give our conclusions in Section 7.

2 Related Work

Several proposals have come forward to address the blockchain scalability issue in the consensus layer [15, 17, 10, 16,
12]. Although these protocols have addressed the scalability issues to some extent, the system still cannot maintain good
performance as the network size grows too large (thousand or more node participants). The sharding technique has
been used to further improve the scalability of a blockchain network. Sharding is a fundamental concept in databases
which has been recently used to improve the efficiency of blockchains [14, 27].
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The way that conventional big database systems achieve scalability is by separating the whole database into shards (or
partitions) [2], which increases the efficiency of the system by dividing the workload among the shards. To ensure ACID
characteristics [11] of the database transactions, coordination is needed among the multiple shards if the transaction
access multiple shards objects. In the distributed database system two-phase commit (2PC), and two-phase locking
(2PL) [8], are used for atomicity, concurrency control, and isolation for the transactions. And we achieved these
characteristics in our model in a different way without using locks.

Similarly, the blockchain network can be split up into smaller committees using the well-researched and tested technique
of sharding, which also serves to scale up databases and lower the overhead of consensus algorithms. Elastico [20],
OmniLedger [18], and RapidChain [27] are a few examples of sharded blockchains. These methods are not generalizable
to other applications since they concentrate on a simple data model, that is the unspent transaction output (UTXO)
model [13]. In addition, these methods use locks for the isolation of transactions. As in databases, a blockchain
transaction must be isolated since it interacts with the global state. In reality, it is necessary to avoid dirty, phantom,
or unrepeatable reads [3]. Additionally, transactions must comply with all of the ACID properties [11]. Typically,
two-phase locking [8] is used to accomplish optimistic concurrency control [19], serializable snapshot isolation [6, 24].

To mitigate the system-specific specialized approaches towards sharding, Hellings et al. [14], propose ByShard. It uses
a two-phase commit to ensure the atomicity of the transaction and two-phase locking for isolation of the transaction in a
Byzantine environment of the blockchain system. However, locking is expensive because when a process locks a data
set for reading or writing, all other processes attempting to access the same data-set are blocked until the lock is released,
which lowers system throughput. An innovative lock-free method for ensuring transaction isolation is presented by
Hagar Meir et al. [21], In order to construct version-based snapshot isolation, it takes advantage of the key-value pair
versioning that already exists in the database and is mostly utilized at the validation phase of the transaction to detect
the read-write [21]. However, they are not addressing their solution in a sharding-based blockchain model.

In our solution, we are using a lockless approach to achieve transaction isolation with sharding. We use multiversion
concurrency control [5], as we describe in our proposed model in Section 4.

3 Preliminaries and Sharding Model

Blocks and Blockchain: Similar to a page in a record-keeping book (ledger), a block in a blockchain is a data
structure that contains a sequence of transactions. A block has a header with additional metadata, including the block
hash and a Merkle root hash for all the transactions in the block. Blockchain is a chain (linked list) of blocks, which is
an immutable, distributed, decentralized, peer-to-peer ledger replicated over several nodes connected in a network that
allows the recording of transactions.

Shards: We assume that the system consists of a set of N (replica) nodes, where n = |N |. We design a sharded
system as a partitioning of the N nodes into w shards S1, S2, . . . , Sw, where N = ∪iSi and each Si ⊆ N is a subset of
the nodes such that Si ∩ Sj = ∅, for i 6= j. Let ni = |Si| represent the number of replica nodes in shard Si, and fi
represent the number of Byzantine nodes in shard Si. Similar to related work [27], to achieve Byzantine fault tolerance
in each shard we assume that ni > 3fi within each shard. Hence, we focus on the consistency aspects, assuming there
is an underlying consensus protocol in each shard.

Let O be a set of shared objects that are accessed by the transactions. Similar to related work [14] we assume that every
shard is responsible for a subset of the shared objects (accounts) that are accessed by the transactions. Namely, O is
partitioned into subsets O1, . . . ,Ow, where Oi is the set of objects handled by shard Sz . Every shard Si maintains
its own local ledger (local chain) Li and runs a local consensus algorithm to achieve this (e.g. PBFT [7]). The shard
Si processes subtransactions related to the object set Oi (see below for the description of subtransactions). The local
chains define implicitly the global blockchain, that is, the global order of all transactions is implied by the order of their
respective subtransactions in the local chains.

3



Lockless Blockchain Sharding with Multiversion Control R. Adhikari & C. Busch

Timing Assumptions: We consider a semi-synchronous setting where communication delay is upper bounded by
some time ∆1, which means that every message is guaranteed to be delivered within ∆1 time. Our sharding protocol
does not require knowledge of ∆1. We assume that every transaction has a unique ID based on its generation timestamp,
hence IDs grow over time. Due to the semi-synchronous model, since local clocks are not perfectly synchronized, we
assume a new timestamp (generated at any node in N ) will be strictly larger than any timestamp generated c ·∆1 time
earlier (where the constant c depends on the system). Hence, we assume that for a transaction Ti that arrives at time t,
any other transaction Tj that arrives after t+ c ·∆1 will have always a higher ID than Ti.

For guaranteeing liveness in our protocol, we assume that each ∆2 time each shard sends the lowest transaction ID
from its transaction pool to other shards. Here ∆2 is known to each shard (in order to periodically perform the lowest
ID transmission) but is not related to ∆1. In this way, each shard maintains the set of lowest transaction IDs which are
periodically updated with new lowest ID information from each shard. The transaction which has the global lowest ID
gets within a bounded time high priority and is eventually added to the blockchain. The process of propagating the
lowest IDs is running in the background while the normal execution phases take place.

Similar to previous works [14], we assume that each shard runs locally a PBFT-style [7] consensus algorithm in every
phase of our algorithm which takes bounded time ∆3 for decisions (e.g. in [14] it is assumed that ∆3 = 30ms). Our
protocol does not need to know ∆3.

Subtransactions: We model each transaction Ti which consist of subtransactions Ti,k1 , . . . , Ti,kj , such that:

• Subtransaction Ti,kl uses only objects in Okl in shard Skl . We also say that the subtransaction Ti,kl belongs to
shard Skl .

• The subtransactions of a transaction Ti do not depend on each other and can be executed in parallel in any
relative order.

• A subtransaction consists of two parts: (i) condition checking, where various explicit conditions on the objects
are checked, and (ii) updates on the objects.

Example 1. Consider a transaction (T1) consisting of read-write operations on the accounts with several conditions.

T1 = “Transfer 2000 from Rock account to Asma account, if Rock has 3000 and Asma has 500 and Mark has 200”. We
split this transaction into three subtransactions, where shards r, a, and m are responsible for the respective accounts of
Rock, Asma, and Mark:

T1,r : “Check Rock has 3000”
: “Remove 2000 from Rock account”

T1,m : “Check Mark has 200”

T1,a : “Check Asma has 500”
: “Add 2000 to Asma account”

After splitting the transaction T1 into its subtransactions we send each subtransaction to its respective shard associated
with that account. If the conditions are satisfied (for example in T1,r check if Rock has 3000) and the transaction is
valid (for example in T1,r Rock has indeed 2000 in the account to be removed) then the destination shards are ready
to commit the subtransactions which imply that T1 will commit as well. Otherwise, if any of the conditions in the
subtransactions is not satisfied or the subtransactions are invalid, then the corresponding subtransactions abort, which
results in T1 aborting as well. In this case, all subtransactions of T1 will also be forced to abort.

4 Sharding Algorithm

Our sharding protocol consists of two parts, the leader shard algorithm (Algorithm 1), and the destination shard
algorithm (Algorithm 2).
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Every transaction has a designated leader shard, which will handle its processing. Each leader shard has a transaction
pool for all the transactions that have it as their leader. The job of the leader shard is to pick a transaction from the
transaction pool and split it into subtransactions and send them to destination shards. The leader shard interacts with the
destination shards through a protocol with seven phases which decide whether the subtransactions they receive are able
to commit locally or not. The leader shard picks the transaction from its transaction pool on the basis of the priority of
the transactions so that the earliest transaction (i.e. with lower ID) proceeds first. Whereas the destination shard checks
each received subtransaction and if it is valid then it commits it and appends it to its local ledger, otherwise, it aborts the
subtransaction and sends the corresponding message to its leader shard.

To achieve transaction isolation, we use multi-version concurrency control [5] in each destination shard, which
saves multiple versions of each object (account) so that data can be safely read and modified simultaneously. When
a destination shard processes a subtransaction, it takes a snapshot of the current version of each object that the
subtransaction will access. When the subtransaction is about to commit, it compares the latest version with the recorded
snapshot version. If these are the same then the subtransaction is eligible to commit; otherwise, the subtransaction
cannot commit. The leader shard is informed accordingly from the destination shards. If all subtransactions are
eligible to commit then the whole transaction will commit and is removed from the leader shard pool. If however, a
subtransaction is not eligible to commit, the whole transaction will restart and is reinserted back into its pool.

In our algorithm, each transaction whose conditional statements are satisfied will eventually commit (as we show in
the correctness proofs). Our algorithm may attempt to commit the transaction multiple times by restarting it in case
of conflicts with other transactions. However, if the condition of a transaction is not satisfied then the transaction is
aborted and will not restart (is removed completely from the pool). Using the object versions the algorithm guarantees
safety, as it does not allow conflicting transactions to commit concurrently. To ensure liveness, the algorithm prioritizes
earlier generated transactions.

4.1 Detailed Algorithm

We now describe the details of our protocol in Algorithms 1 and 2. Our combined protocol consists of seven phases. As
mentioned in Section 3, to ensure liveness, periodically every ∆2 time, each leader shard sends the lowest ID from its
transaction pool to every other shard. So that in case of conflict, priority is given to the transaction with the smallest
known ID. In this way, each destination shard maintains in T ′′

l (Algorithm 2) the lowest known ID that it received from
all leader shards. If a subtransaction realizes that it belongs to a transaction with the smallest ID in the system then it
gets the highest priority and enforces itself to commit. This is further achieved with the help of a rollback mechanism
that we discuss below.

Now we describe each phase of our algorithm. For simplicity of presentation, we assume that each subtransaction
accesses a single object in each destination shard. However, our algorithms can be generalized for the case where each
subtransaction accesses multiple objects.

Phase 1: (Algorithm 1) the leader shard (Sk) picks a transaction with the lowest transaction ID from its transaction
pool (Pk) and splits that transaction Ti into its subtransaction Ti,j and sends each Ti,j to corresponding destination
shards (Sj) in parallel.

Phase 2: (Algorithm 2) after receiving the subtransaction Ti,j in destination shard (Sj) accessing an object, say Od, it
takes the latest version (say Vd) of the object Od. After that, it checks the conditions (constraints) of the subtransaction
Ti,j . If the constraints match (means subtransaction is eligible to commit) then, it adds the Ti,j to the read set R(Od)

and if Ti,j will also write to Od then it also adds Ti,j to write set W (Od) and sends a “commit vote” to the leader shard
Sk. Otherwise, it sends a “abort vote” to the leader shard.

Phase 3: (Algorithm 1) the leader shard Sk collects the votes from all the destination shards, and if it gets all “commit
vote”, (that means constraints are matched in all respective destination shards) then it sends the “commit” message
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Algorithm 1: Leader Shard Sk
1 Let Pk be the pool of pending transactions in shard Sk;
// Periodically, every ∆2 time the transaction with lowest ID in Pk is sent to every

other shard
2 Let Ck be the committed transaction pool;

// Phase 1
3 Pick transaction Ti with lowest ID from Pk and remove it from Pk;
4 Split Ti into subtransactions;
5 Let S(Ti) be the set of destination shards for the subtransactions of Ti;
6 Send each subtransaction Ti,j to the corresponding destination shard Sj (in parallel for all subtransactions of Ti);

// Phase 3
7 if “commit vote” message is received from all shards in S(Ti) then
8 Send “commit” message to all shards in S(Ti);
9 else if “abort vote” message is received from any shard in S(Ti) then

10 Send “abort” message to all shards in S(Ti);
11 end

// Phase 5
12 if “committed” message is received from all shards in S(Ti) then
13 Send “release” to all shards in S(Ti);
14 else if “restart vote” message is received from any shard in S(Ti) then
15 Send “restart” message to all shards in S(Ti);
16 else if “aborted” message is received from all shards in S(Ti) then
17 Transaction Ti is discarded;
18 end

// Phase 7
19 if “released” message is received from all shards in S(Ti) then
20 Transaction Ti has completed;
21 Add Ti to Ck;
22 else if “restarted” message is received from all shards in S(Ti) then
23 Transaction Ti is reinserted into the pool Pk to be processed again;
24 end

// Handling Force Rollback Messages
25 if “force rollback T ′

x,j” message is received and Sk is the leader shard of the respective transaction T ′ then
26 if T ′ ∈ Ck then
27 Get subtransaction information from Ck;
28 Send respective “force rollback T ′

x,z” to all destination shards of T ′;
29 if “rollbacked T ′

x,z” message is received from all destination shards of T ′ and Sk is the leader shard of the
transaction T ′ then

30 Insert T ′ back in the pool Pk;
31 if T ′ ∈ Ck then
32 Remove T ′ from Ck;
33 end
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Algorithm 2: Destination Shard Sj

1 T ′′
l ← the lowest transaction ID from the IDs propagation process;

// Phase 2
2 Subtransaction Ti,j from leader shard Sk is received;
3 Suppose Ti,j accesses object Od;
4 Let R(Od) and W (Od) be a set of transactions that will respectively read or write Od;
5 Let Vd be the latest version of object Od;
6 if constraint match then
7 Add Ti,j to R(Od);
8 if Ti,j will write to Od then
9 Add Ti,j to W (Od);

10 Send “commit vote” message to Sk;
11 else
12 Send “abort vote” message to Sk;
13 end

// Phase 4
14 if “commit” message is received from Sk then
15 if (((W (Od) \ {Ti,j} = ∅) or (Ti,j ∈W (Od) and R(Od) \ {Ti,j} = ∅)) and (the latest version of object Od

is still Vd)) or (Ti,j = T ′′
l ) then

16 Append transaction Ti,j to local chain Lj ;
17 Send “committed” message to Sk;
18 if Ti,j = T ′′

l // Ti,j has the lowest ID in the system
19 then
20 For each T ′

x,j ∈W (Od) send “force rollback” message to its respective leader shard;
21 end
22 else
23 send “restart vote” message to Sk;
24 end
25 else if “abort” message is received from Sk then
26 Send “aborted” message to Sk;
27 end

// Phase 6
28 if “restart” message is received from Sk then
29 Remove Ti,j from R(Od) and W (Od) and from local chain Lj ;
30 Send “restarted” message to the leader Sk;
31 else if “release” message is received from Sk then
32 if Ti,j in W (Od) then
33 Create new version Vd + 1 for the object Od;
34 end
35 Remove Ti,j from R(Od) and W (Od);
36 Send “released” message to Sk;
37 end

// Handling Force Rollback Messages
38 if “force rollback T ′

x,j” message is received then
39 Remove T ′

x,j from R(Od) and W (Od);
40 Let Z be the suffix in local chain Lj starting from T ′

x,j ;
41 Remove from Lj the suffix Z and send “rollbacked T ′

x,j” message to its leader shard;
42 For each subtransaction T ′

x,j in Z, send “force rollback T ′
x,j” message to the leader shard of T ′

x,j ;
43 end
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to the corresponding destination shards. Similarly, if it gets any “abort vote” then it sends an “abort” message to all
respective destination shards.

Phase 4: (Algorithm 2) if the destination shard receives a “commit” message from a leader shard then, it checks
the read set (R(Od)) and write set (W (Od)) of the accessing object and also checks the version of the object. If the
subtransaction Ti,j is only reading the object Od and the latest version of the object Od is still the same (i.e. Vd) then
the shard appends this subtransaction to its local ledger Lj and sends “committed” message to the leader. Similarly, if
Ti,j is trying to update object Od and the read set only contains Ti,j (i.e. (Ti,j ∈ W (Od) and R(Od) \ {Ti,j} = ∅))
and the latest version of the object Od is still same as the previously taken version (i.e. Vd) (that means the object is not
modified by other transactions) then it does the necessary update operation and adds the subtransaction Ti,j to its local
chain and sends the “committed” message to the leader shard. Moreover, if the transaction ID of subtransaction Ti,j is
equal to the lowest known transaction ID (T ′′

l ), that means the current subtransaction Ti,j is the earliest subtransaction
among all and it has a higher priority to execute. So it appends the subtransaction Ti,j to its local chain and sends a
“committed” message to its leader shard, and also sends “force rollback” to the leader of the subtransaction which is in
the write set (W (Od)). Otherwise, it sends a “restart vote”, which means there is another higher-priority transaction
accessing the object Od and not released yet. Similarly, if it receives the “abort” message then it sends an “aborted”
message to its leader shard.

Phase 5: (Algorithm 1) if it receives a “committed” message from all destination shards (means that eligible to commit
subtransactions are added to their local chain) then it sends a “release” message to the respective destination shards
to release the subtransactions from their read set, write set and also to update the version of the object if required.
Similarly, if the leader receives any “restart vote” message from any shards then it sends the “restart” message to the
respective destination shards because some of the shards may have appended the subtransaction to their local chain so
that should be removed, and restart should be consistent in all shards. Moreover, if it receives an “aborted” message
from all destination shards, then transaction Ti is discarded.

Phase 6: (Algorithm 2) if the destination shard receives a “restart” message from the leader shard, then it removes the
transaction Ti,j from R(Od) and W (Od) and also removes Ti,j from its local chain Lk if it already added and sends
“restarted” message to the leader. Similarly, if it receives a “release” message and Ti,j is already in W (Od) that means
it updated the object Od so it creates the new version of the object as Vd + 1. After that, it removes Ti,j from R(Od)

and W (Od) and sends a “released” message to its leader shard.

Phase 7: (Algorithm 1) if the leader shard receives a “released” message from all destination shards that means
the transaction Ti is completed, so it adds Ti to the pool of committed transactions (Ck) so that it can get all the
subtransaction information of Ti in case of rollback. Similarly, if it receives a “restarted” message from all destination
shards, then this transaction needs to be processed again, and is reinserted into the transaction pool Pk.

Handling Rollbacks: This part of our protocol executes only in the special case (i.e. when the current transaction
has the highest priority to execute than the already running transaction accessing the same object). After receiving
the “force rollback” message from destination shards, the leader shard checks whether that subtransaction belongs
to the committed transaction pool (Ck) or not. If the transaction of that subtransaction is in Ck then it gets the other
subtransaction information from Ck otherwise it has the information about the currently running transaction, then it
sends a “force rollback” message to all respective destination shards because it should be rollbacked in all the shards to
be consistent. So if the destination shard receives the “force rollback T ′

x,j” message from the leader then it rollbacks
T ′
x,j from its shards and sends “rollbacked T ′

x,j” message to its leader. Furthermore, if there exists some depending
subtransaction T ′ on T ′

x,j accessed the version of the object added by T ′
x,j then all depending transactions should

be rollbacked and it sends “rollback T ′” to its leader shard so this function executes recursively to rollback all the
transactions which read the version of object added by T ′. The leader shard collects the “rollbacked” messages from all
the destination shards, and after receiving all the “rollbacked” messages from all the respective shards for the transaction
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T ′, it adds T ′ to its transaction pool to be processed again and removes T ′ from the committed pool (Ck) if T ′ is already
in Ck.

Example 2. Consider two conflicting transactions T1 and T2 consisting of read-write operations on the accounts. We
explain how our protocol handles these transactions.

T1 = “Transfer 2000 from Rock account to Asma account, if Rock has 3000 and Asma has 500 and Mark has
200”.

T2 = “Transfer 500 from Asma account to Bob account, if Asma has 5000”.

Suppose leader shard (Sk1) handles transaction T1 and splits it into three subtransactions, where shards Sr, Sa, and
Sm are responsible for the respective accounts of Rock, Asma, and Mark. Similarly, the leader shard (Sk2) handles
transaction T2 and splits it into two subtransactions where shard Sa is responsible for the Asma account and shard Sb is
responsible for the Bob account.

T1,r : “Check Rock has 3000”
: “Remove 2000 from Rock account”

T1,a : “Check Asma has 500”
: “Add 2000 to Asma account”

T1,m : “Check Mark has 200”

T2,a : “Check Asma has 5000”
: “Remove 500 from Asma account”

T2,b : “Add 500 to Bob account”

Let us consider both leader shards (Sk1 and Sk2) are trying to execute their transaction in parallel. At this condition,
there are two subtransactions accessing the same account of Asma (i.e. T1,a, T2,a) so there will be a conflict on the
respective subtransactions. So, in our algorithm, each destination shard takes the version of every account and checks
that version at the time of commit. In case of conflicts, the transaction that updated earlier the read and write sets (R
and W ) at the destination shard will have a chance to commit.

5 Correctness Analysis

Consider a set of transactions T = {T1, T2, . . . , Tζ}. The objective is to arrange all transactions in T in a sequence
B = Ti1 , Ti2 , . . . , Tiζ , which is agreed upon by all non-faulty nodes in N . We also write Til ≺B Til′ for l < l′ to
denote the relative order between two transactions in the sequence B. The sharding system does not maintain the actual
B as a single blockchain (or ledger) explicitly, but rather, the blockchain consists of a collection of local chains which if
combined they jointly give the whole blockchain B.

Each shard Sα maintains a local chain Lα of the sub-transactions Ti,α that it receives. The subtransactions are
appended in Lα according to the order that they commit in Sα. If Ti,α ≺Lα Tj,α, and Ti,α conflicts with Tj,α (the two
subtransactions conflict if they access the same object in Sα and one of the two is updating the object), then we say that
Ti,α causes Tj,α and we write Ti,α →Lα Tj,α.

We define the local chain system as the tuple L = (L1, . . . , Lw) consisting of local chains in shards. If Ti,α →Lα Tj,α,
we can also simply write Ti,α →L Tj,α. The casual relation→ can be extended across two local chains Lα and Lβ ,
α 6= β, in the following way.

• If Ti,α →Lα Tj,α and Tj has a subtransaction Tj,β .

• If Ti has subtransactions Ti,α and Ti,β such that Ti,β →Lβ Tj,β .

9
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In both cases, we say that Ti,α causes Tj,β , and we write Ti,α →L Tj,β . Consider from now on the transitive closure of
the causal relation→L.

We say that the local chain system L is valid if there is no subtransaction Ti,α such that Ti,α →L Ti,α. That is, L is a
valid local chain system if there is no cyclic (transitive) causal relationship of a subtransaction to itself.

We say that a sequence B is a valid serialization of the local chain system L if B is a sequence of all the subtransactions
which preserves the causal relationship of L. Namely, if Ti,α →L Tj,β then Ti,α ≺B Tj,β . We say that a sequence
B is a blockchain serialization of L if B is a valid serialization of L, and for each transaction Ti its subtransactions
Ti,j1 , . . . , Ti,jk appear consecutively in B (without being interleaved by subtransactions of other transactions).

The goal is to show that our sharding protocol generates a local chain system L that has a blockchain serialization B.
We introduce the shard-coherence property which we will use to prove the existence of B.

Definition 1 (Shard-coherence). We say that transactions Ti and Tj are shard-coherent with respect to local chain
system L if whenever two of their subtransactions are casually related as Ti,α →L Tj,β , then for any two of their
conflicting subtransactions Ti,γ and Tj,γ it holds that Ti,γ ≺Lγ Tj,γ . The local chain system L is shard-coherent if
every pair of transactions are shard-coherent.

The following result shows that in order to build a blockchain serialization B from a chain system L, it suffices to prove
that L is shard-coherent.

Proposition 1. If a local chain system L is shard-coherent, then L has a blockchain serialization B.

The proof of Proposition 1 follows directly from Corollary 1 and Lemma 3 given below. In the results below consider a
local chain system L = (L1, . . . , Lw) for transactions T = {T1, T2, . . . , Tζ}.

Lemma 1. If L is a valid local chain system, then L has a valid serialization.

Proof. Consider the sequence A of subtransactions which is the concatenation of sequences L1, L2, . . . , Lw. Suppose
that A = a1, a2, . . . , aδ , where aσ = Tiσ,jσ where Tiσ,jσ is a subtransaction of transaction Tiσ ∈ T .

From A we incrementally build a sequence A′ which is a valid serialization of L. Let A′
σ denote the sequence that we

obtain after we appropriately insert (as explained below) the σth element of A into A′. We prove by induction that A′
σ

is a valid serialization of the involved subtransactions of the respective induced subsystem Lσ of L that consists of the
σ subtransactions of L under consideration (the subsystem Lσ keeps from each Li the involved subtransactions; note
that the subsystem is valid). The main claim follows when we consider σ = ζ which gives A′ = A′

σ .

For the basis case σ = 1, and A′
1 = a1 which is trivially a valid serialization of the single subtransaction. Suppose that

we built A′
σ which is a valid serialization of the first σ subtransactions in A, where σ < ζ.

In order to build A′
σ+1 we take aσ+1 and insert it into A′

σ, as follows. Suppose that A′
σ = a′1, . . . , a

′
σ. If there is

no a′i ∈ A′
σ such that aσ+1 →L a′i, then append aσ+1 at the end of A′

σ, to obtain A′
σ+1, which is clearly a valid

serialization.

Otherwise, let a′i be the earliest subtransaction in A′
σ (i is the smallest index within A′

σ) such that aσ+1 →L a
′
i, and let

a′j be the latest subtransaction in A′
σ (j is the largest index within A′

σ) such that a′j →L aσ+1. We examine two cases:

• j < i: in this case we append aσ+1 just before a′i (and clearly after a′j) in A′
σ to obtain A′

σ+1, which gives a
valid serialization.

• i < j: we examine three sub-cases as follows.

– a′i →L a
′
j : this case is impossible since this would create a cycle aσ+1 →L aσ+1 in the causal relation

→L, and hence, L would not be valid, contradicting the assumptions.
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– a′j →L a′i: since a′i ≺A′
σ
a′j this would imply that in A′

σ is not a valid serialization of the involved
subtransactions of A, which contradicts the induction hypothesis.

– a′j and a′i are not related by →L to one another: consider the subsequence s of A′
σ from a′i to a′j

(including a′i and a′j). Let s1 be the subsequence of s that includes all a′q such that a′i →L a
′
q; let s2 be

the subsequence of s that includes all a′q such that a′q →L a
′
j ; let s3 be the remaining elements of s. Note

that s1 and s2 are disjoint, since otherwise a′i →L a
′
j . Next, we move all the elements in the sequence s2

(keeping their relative order) to be before the first element in s1. Moreover, add aσ+1 between the last
element of s2 and the first element of s1. The resulting sequence A′

σ+1 is clearly a valid serialization of
the involved subtransactions.

Lemma 2. If the local chain system L has a valid serialization, then L is blockchain serializable.

Proof. Let A be a valid serialization of L. Suppose that A = a1, a2, . . . , aδ, where aσ = Tiσ,jσ and Tiσ,jσ is a
subtransaction of Tiσ ∈ T .

We will rearrange the subtransactions in A to a new sequence A′ such that each transaction Ti has its subtransactions
consecutively in A′. We will show how to do the transformation for a single transaction, and this can repeat for the
remaining transactions.

For a transaction Ti let Ti,j1 , . . . , Ti,jq denote its subtransactions, with respective positions as1 , . . . , asq in A.

From the validity of A and transitivity of→L, we have that if for some l ∈ [q], aj →L asl , then aj ≺A asl′ , for every
l′ ∈ [q]. Hence, if asl is the earliest subtransaction of Ti in A (i.e. sl has the smallest index among those with l ∈ [q]),
any aj that causes (through→L) any of the subtransactions of Ti must appear in A before asl . Therefore, we can move
the subtransactions of Ti and arrange them to appear consecutively starting at the position of asl , so that as1 will take
the place of asl , as2 will appear immediately after as1 , and so on, until asq .

Let A′ be the resulting sequence after we rearrange the subtransactions of Ti. Clearly, this transformation of A has
preserved its validity and also the subtransactions of Ti appear consecutively in A′. By repeating this process for each
remaining transaction we obtain the final A′. By induction (on the number of transactions), it is clear that the final A′ is
a blockchain serialization of L.

From Lemmas 1 and 2 we obtain the following corollary.

Corollary 1. A valid local chain system L is blockchain serializable.

Lemma 3. If a local chain system L is shard-coherent, then L is valid.

Proof. Suppose that L is shard-coherent. Suppose for the sake of contradiction that there is subtransaction Ti,j such
that Ti,jk →L Ti,jk (that is, there is a cycle in L with respect to causal relation→L).

Let p = a1, a2, . . . , a` be a transitive “relation path”, where each node in ai is a subtransaction of some transaction in
T and a1 = a` = Ti,jk , and ai →L ai+1, for each 1 ≤ i < `. Among all possible relation paths starting and ending to
Ti,jk , let p be the longest (and if there are multiple paths of the same longest length then pick one of them arbitrarily).
Note that it has to be ` > 2 since a subtransaction alone by itself cannot create cyclic dependencies.

First, consider the case where each subtransaction in p is in the same shard Sα = Sjk as that of Ti,jk . We consider two
sub-cases:

• a1 ≺Lα a2: let ar, 1 < r < `, have the largest index r such that a1 ≺Lα ar. Then clearly, ar+1 ≺Lα ar
(note that ar+1 exists since we took r < ` and also it holds ` > 2). However, since ar →L ar+1, the
shard-coherence property of L is violated between ar and ar+1, a contradiction.
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• a2 ≺Lα a1: since a1 →L a2, the shard-coherence of L is violated between a1 and a2, a contradiction.

Next, consider the case where some subtransaction in p is in a different shard than Sα. Let ar, where 1 ≤ r < ` be the
first subtransaction (with the smallest index r) in p which is in a different shard, say Sβ , where α 6= β.

We now show that ar+1 must also be in Sβ conflicting with ar. Suppose to the contrary that ar+1 is not in Sβ . Since
ar →L ar+1, there must be a subtransaction T ′ in Sβ which conflicts with ar, such that ar →Lβ T

′ and T ′ →L ar+1.
However, this implies that p can be augmented with T ′, which is a contradiction since p is the longest relation path.
Thus, ar+1 is in Sβ . Moreover, ar+1 must be conflicting with ar, since otherwise we would find as above some other
transaction T ′ that conflicts with ar which could be inserted into p to increase its length. We examine two cases:

• ar ≺Lβ ar+1: from the cyclicity of path p we have that ar+1 →L ar (going through a1). Hence, the
shard-coherency is violated between ar and ar+1, a contradiction.

• ar+1 ≺Lβ ar: from p we have that ar →L ar+1. Hence, the shard-coherency is violated between ar and
ar+1, a contradiction.

Next, we continue to show that in our sharding protocol two transactions that conflict in the same shard, they cannot
have some of their phases interleave.

Lemma 4. If two transactions Ti and Tj conflict in a destination shard Sγ , and their respective subtransactions
are processed concurrently by Sγ so that they both go past phase 2 in Sγ concurrently, then at least one of the two
transactions will restart or rollback.

Proof. Suppose transactions Ti and Tj have respective subtransactions Ti,γ and Tj,γ in Sγ . Moreover, suppose that
these subtransactions conflict in Sγ by accessing the same object Od and at least one of two of them is updating Od.

Without loss of generality assume that Ti,γ is updating Od. Suppose that Ti,γ has finished executing phase 2. Hence,
Ti,γ has been added to write set W (Od). Then when Tj,γ reaches phase 4, it will observe that Ti,γ is already in W (Od)

which will force Tj,γ to restart.

On the other hand, if Tj,γ has the lowest ID then when Tj,γ will reach phase 4 it will force Ti,j to rollback. In either
case, one of the two transactions will either restart or rollback.

Theorem 1 (Safety). The local chain system L produced by our protocol has a blockchain serialization B.

Proof. From Proposition 1, we only need to prove that L is shard-coherent.

Consider any two transactions Ti and Tj such that Ti,α →L Tj,β . Suppose that Ti,γ and Tj,γ conflict in shard Sγ
because they access at least one common object Od and one of the two subtransactions updates Od. It suffices to show
that Ti,γ ≺Lγ Tj,γ .

Since Ti,α →L Tj,β , from the definition of the →L relation, we have that there is a sequence of transactions
Tk1 , Tk2 , . . . , Tkz with Tk1 = Ti, Tkz = Tj and Tki → Tki+1

, for 1 ≤ i < z, such that any pair of consecutive
transactions Tkl and Tkl+1

have respective conflicting subtransactions Tkl,δ and Tkl+1,δ on some common shard Sδ
such that Tkl,δ ≺Lδ Tkl+1,δ .

Since Tkl,δ and Tkl+1,δ are appended in the local chain Lδ , while they both conflict, we have from Lemma 4 that they
cannot go past phase 2 concurrently without one of them restarting or rolling back. Therefore, Tkl,δ finishes phase 6,
before Tkl+1,δ enters phase 4.
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This implies that phase 5 of Tkl (at its leader shard) finishes before phase 5 of Tkl+1
starts (at its leader shard). Therefore,

by induction, we can easily show that the end of phase 5 of Ti (at its leader shard) occurs earlier than the beginning of
phase 5 of Tj (at its leader shard).

Suppose now that Tj,γ ≺Lγ Ti,γ . Since Ti and Tj commit in Sγ and also conflict in Sγ by sharing the same object,
then from Lemma 4, phase 6 of Tj ends before phase 4 of Ti starts in Sγ . Therefore, phase 5 of Tj ends before phase 5
of Ti starts (at their respective home shards). This is a contradiction. Therefore, Ti,γ ≺Lγ Tj,γ , as needed.

Theorem 2 (Liveness). Our protocol guarantees that every issued transaction will eventually commit.

Proof. Consider the timing assumptions for ∆1, ∆2, and ∆3 as described in Section 3. Consider a transaction Ti with
ID ID(Ti) generated at time t. In the worst case, Ti will execute when its ID is the lowest in the system, through force
rollback messages.

After c ·∆1 time steps, every new transaction generated will have a larger ID than ID(Ti), and hence lower precedence
than Ti. It takes additional time ∆2 to propagate ID(Ti).

Let ID′
min be the smallest ID of all transactions considering all the pools of all shards at time t. Let q be the number of

transactions which at time t+ ∆2 + c ·∆1 have ID at least ID′
min and less than ID(Ti). In the worst case, all of these q

transactions may commit before Ti. As we have 7 phases in our protocol, for each committed transaction, the combined
upper bound for communication and consensus delay time is 7(∆1 + ∆3). Hence, it takes at most q · 7(∆1 + ∆3) time
to commit the q transactions. Therefore, by time t+ q · 7(∆1 + ∆3) + ∆2 + c ·∆1 transaction Ti will be committed in
the blockchain.

6 Performance Evaluation

We set up our experiments in a virtual machine in M1 MAC PC with a 10-core CPU and 32-core GPU, including 32 GB
RAM. We used Python programming language for the experiments which supports multiprocessing and multithreading.
We virtually created multiple shards within a machine and conducted the experiment with different numbers of shards.
For the communication between the shards, we use socket programming in Python, which enables the communication
between shards by message passing. Same as previous work [14], we also assume that each shard runs the consensus
algorithm and takes 30ms (say ∆3) for decisions.

We generate 1000 accounts randomly by using the combination of the English alphabet letters and assigned an initial
balance of 3000 to each account. Moreover, we generate 1500 transactions by randomly selecting the account from
1000 accounts. Each transaction includes the read and writes operations with some constraints. The generated 1500
transactions are divided with respect to the number of shards and randomly assigned to the transaction pool of each
leader shard.

We show the experimental results in three categories. Firstly, optimal (no lock), means there is no transaction isolation;
concurrent transactions can access the accounts and update those accounts without any consideration of the data
consistency. Secondly, We used the concept of exclusive lock protocol to ensure transaction isolation and concurrency
control. This approach acquires a lock on an object (account), at the time of accessing it and releases the lock after the
transaction completes [4]. This prevents other transactions from accessing the same object until the lock is released,
ensuring that transactions do not interfere with each other. When a transaction acquires an exclusive lock on a data
item, no other transaction can read or modify that data item until the lock is released, providing exclusive access to the
data. In our implementation, when an object is locked, other transactions attempting to access the same object wait
until the lock is released. This guarantees that the transaction holding the lock has exclusive access to the data and can
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modify it without interference from other transactions. Finally, we used our protocol to achieve transaction isolation
and concurrency control without using a lock, which takes a snapshot of each object (account) and if there is conflict
occurs then priority to access the object is given to the earliest transaction and other transaction are restart and rollback
to re-execute again.

Experimental Results: In the first experiment, we evaluate the average throughput of the transactions using 1500
generated transactions, in which each transaction checks whether the account has sufficient balance or not before
transferring from its own account to another account, and the other three constraints. If the transaction is valid and
satisfies all the conditions then the transaction is executed by removing the balance from one account and adding that
balance to another account (i.e. two write operations). To measure the average throughput of transactions, we initialize
the start time at the beginning of the transaction processing and capture the final time after processing all the 1500
transactions.

The average throughput of the transaction with respect to the number of shards is shown in Figure 1, where we measure
the average throughput of the transactions by varying the number of shards. From the experiment, we observe that
the throughput increases with the number of shards. From Figure 1 we can see that the transaction throughput of our
protocol is better than the lock-based protocol and quite close to the no-lock protocol.

Figure 1: Average transaction throughput with the num-
ber of shards

Figure 2: Average execution time of a transaction with
numbers of constraints

In the second experiment, we set up the environment with four shards and calculate the average execution time of a
transaction with respect to the number of conditions in each transaction. We increases the constraints of the transactions
and recorded the execution of the transactions. In each experiment, we found that the average execution time of our
protocol is less than the lock-based protocol also shown in Figure 2. From the experimental result, we see that as
the number of conditions to execute the transaction increased, the commit process takes a long time. As a result, in
the lock-based protocol, the lock is kept for a long period, which adds a lot of overhead and takes more time for the
execution of transactions than in our proposed protocol.

7 Conclusion

In this research work, we presented a lockless transaction scheduling protocol for blockchain sharding. Our protocol is
based on taking a snapshot version of the various shared objects (accounts) that the transactions access in each shard.
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We provide a correctness proof with the safety and liveness properties of our protocol. We also evaluate our protocol
experimentally through simulations and we observe that the transaction execution time is considerably faster than the
lock-based approaches and also the throughput of the transactions is improved with an increasing number of shards.

This study still has some room for improvement. One possible extension could be a study on efficient communication
between leader shards and destination shards. Introducing a formal performance analysis for blockchain sharding is
another interesting topic for future work, which will quantify the performance based on parameters of the blockchain,
such as the number of shards and the sizes of the shards.

In recent literature, Schwarzmann [26] reviewed several requirements that need to be satisfied by electronic poll
book systems, such as ensuring correctness, security, integrity, fault-tolerance, consistent distributed storage, etc. Our
proposed protocol can be used to address some of these issues because it not only provides blockchain features but
also offers scalability and better performance for recording transactions. Overall, our protocol may offer many unique
features for electronic check-in poll book systems, including decentralization, immutability, and consensus.
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