
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

LocLess: Do You Really Care Where Your Cloud Files Are?

Michalas, A. and Yigzaw, K.Y.

This is a copy of the author’s accepted version of a paper subsequently published in the

proceedings of Cloud Security and Data Privacy by Design (CloudSPD’16), Workshop

co-located with the 9th IEEE/ACM International Conference on Utility and Cloud

Computing, Luxembourg, 12 to Dec 2016.

It is available online at:

https://dx.doi.org/10.1109/CloudCom.2016.0090

© 2016 IEEE . Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

https://dx.doi.org/10.1109/CloudCom.2016.0090
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

LocLess: Do you Really Care

Where Your Cloud Files Are?

Antonis Michalas

Cyber Security Group,

Department of Computer Science

University of Westminster,

London, UK

a.michalas@westminster.ac.uk

Kassaye Yitbarek Yigzaw

Department of Computer Science,

UiT The Arctic University of Norway,

Norwegian Centre for E-health Research,

Tromsø, Norway

kassaye.y.yigzaw@uit.no

Abstract—Physical location of data in cloud storage is a problem
that gains a lot of attention not only from the actual cloud
providers but also from the end users’ who lately raise many
concerns regarding the privacy of their data. It is a common
practice that cloud service providers create replicate users’ data
across multiple physical locations. However, moving data in
different countries means that basically the access rights are
transferred based on the local laws of the corresponding country.
In other words, when a cloud service provider stores users’ data
in a different country then the transferred data is subject to the
data protection laws of the country where the servers are located.
In this paper, we propose LocLess, a protocol which is based on
a symmetric searchable encryption scheme for protecting users’
data from unauthorized access even if the data is transferred to
different locations. The idea behind LocLess is that “Once data
is placed on the cloud in an unencrypted form or encrypted with
a key that is known to the cloud service provider, data privacy
becomes an illusion”. Hence, the proposed solution is solely based
on encrypting data with a key that is only known to the data
owner.

Index Terms—Security, Cloud Computing, Data Protection,
Storage Protection, Searchable Encryption, Location Sensitive

I. INTRODUCTION

While location-based services are becoming more and more

popular we have now reached to a point where even novice

users are concerned about protecting their privacy. More pre-

cisely, many users believe that giving away private information,

such as their exact geographical location, age, home-town etc.,

lead to blatant violation of their privacy. As a result, they try

to protect their privacy by evaluating all services before they

actually start using them. One of the first things that users

try to protect is their actual location. To this end, they try to

avoid being tracked by simply turning off the corresponding

location services from the applications that have installed on

their smart-phone devices.

Even though keeping the location of individuals private

is becoming more and more popular and companies try to

build mechanisms that will eventually provide the necessary

guarantees to the users, things seems to be a bit different

when it comes to cloud-based services [1], [2]. Lately, along

with the already traditional questions about the safety of cloud

environments we have also seen concerns about the physical

location of data. More precisely, users demand to be able to

track the physical location of the data that they store on the

cloud. In other words, users take the role of a spying agent

who tries to breach the privacy of the the cloud service provider.

This problem is known as the geolocation of data placement in

cloud environments.

When users store their data on a cloud service provider,

they hand it over to a provider that may have data centres in

different geographical locations, countries or even continents.

Moreover, it is a common practice that cloud service providers

create replicas of the received data in order to protect users’

information from possible failures of the initial servers that are

storing the data. As a result, users’ data are transferred between

multiple servers that might be located in several different

locations around the world, and they might be even managed

and processed by external data centres.

The generation of data replicas and the placement of data in

multiple remote locations has as a result that user’ may never

know where exactly her data and the corresponding replicas

are stored. While this seems to be an innocent practice and in

many cases would not affect the experience of the end user’, it

is considered as an important security flaw that can lead to the

breach of privacy of cloud users’. The main reason for this, is

the fact that if the cloud service provider has servers in a foreign

country, the laws of that country may govern users’ data when

stored in that server. As a result, many important foreign laws

may govern users’ data and a third party can request access

to the data of a certain user’ directly from the cloud service

provider. In such a case, user’s data may be revealed without

her consent, or even her knowledge.

Cloud service providers want the freedom to move data to

different servers for load balancing or to take advantage of the

lower cost of utilities or personnel in different geographies.

However, by doing so, they may inadvertently expose their

customers’ data to the laws of countries other than those

where the customer opted to operate. Hence, while a cloud

service provider may take advantage of the friendly business

environment in a country, it may also subject equipment and

data stored in this equipment to the monitoring and surveillance

of the government in that country.

There is a significant number of proposed protocols [3]–[9]

that try to offer a reliable solution with which users will be

able to verify at any time the exact geographical location of

her data as well as the corresponding replicas. However, it has

been observed that these approaches have many limitations.

In addition to that, some of the existing solutions rely on

unrealistic assumptions. For example, the existence of a GPS

device in the server rooms. However, server rooms are usually

located in isolated places where there is no GPS signal. Hence,

a solution based on such an assumption is considered as

quixotic.

A. Our Contribution

In this paper, we present LocLess – a protocol through which

cloud users’ will be able to store their data on the cloud in such

a way that location of the underlying servers will not affect their

privacy. More precisely, after analyzing the existing geolocation

systems for the cloud, we make the following argument:

“Once data is placed on the cloud in an unencrypted form or

encrypted with a key that is known to the cloud service

provider, data privacy becomes an illusion”.

Driven by this argument, we propose a protocol that allows

cloud users’ to upload data of two different types:

1) Data that should always remain private. In other words,

even if the cloud service provider transfers the data or

replicas of the data in a location where a third party might

be able to access no valuable information about the actual

content will be revealed.

2) Data that users’ do not necessarily wish to protect from

unauthorized access. Meaning that the actual location of

the underlying server is irrelevant.

To achieve the first goal, we propose a protocol that is solely

based on a Symmetric Searchable Encryption scheme [10]

while for the second one we rely on standard techniques for

secure upload of data on the cloud.

B. Organization

In Section II, we present the state-of-the-art research for

verifying the physical location of data in cloud storage. In

Section III, we define the problem of trusted geolocation in

cloud computing and the primitives used throughout the paper,

while in Section IV we describe the proposed protocol. In

Section V, we provide a security analysis and in Section VI

we conclude the paper.

II. RELATED WORK

In this section, we present the most important works that

have been proposed in order to tackle the problem of data

geolocation in cloud environments. In addition to that, we

present a set of cryptographic tools that have been used by

several solutions.

Proof of Retrievability (PoR): PoR was introduced in [11]

and is a cryptographic proof of knowledge scheme which

enables a user (verifier) to determine whether a host (prover)

possesses a file f . More precisely, a host can prove to a user

that she can retrieve the file without having knowledge of f .

A PoR scheme consists of five algorithms, but for simplicity,

in the rest of the paper we denote by POR(P,V) an execution

of the protocol between a prover P and a verifier V . PoR

schemes have used by many protocols in order to provide a

reliable solution to the problem of physical location of data in

cloud storage.

Watson et al. [3] argued that there are limitations to the

accuracy of verifying the location of data in a cloud storage.

Authors showed that when a corrupted cloud service provider

colludes with malicious hosts, it is infeasible for a user’ to

correctly verify the exact geographical location of the stored

data. Moreover, authors were the first to take into consideration

cases where two or more malicious hosts collude and create

replicas of the stored files. This assumption led them to argue

that the task of restricting where the geographic location of data

is impossible. Additionally, they proposed a proof of location

(PoL) scheme that can be used by a user in order to obtain the

location of a stored file.

Benson et al. [6] proposed a protocol for approximately

calculating the location of data in Infrastructure-as-a-Service

storage with a per-data center granularity. The solution assumes

that the locations of all data centres where the cloud service

provider stores data are known, that the cloud service provider

does not have any exclusive Internet connection between the

data centres and that for each data center, there is a trusted third

party node located geographically close to it, relative to the

distance between the data centres. The proposed method relied

on the Haversine distance as a passive distance measurement

between the data centers to determine the location of the data

centres where a certain piece of data is stored. Moreover, the

paper discusses techniques to determine the location without

having the list of data centres disclosed and detect the changes

within a location. Apart from the proposed method itself, the

authors contribute with a solid overview of the cloud data

geolocation approaches.

Albeshri et al. [4], [5] proposed a protocol which combines

a PoR scheme with a time-based distance-bounding protocol

to determine the distance between a data centre and a verifier.

The proposed solution assumes that a tamper-proof GPS device

is attached to the local network of the cloud service provider

and a third party will communicate with this device in order

to verify the location of the stored data on behalf of a user’.

Gondree and Peterson [7] proposed a Constraints-Based Data

geolocation (CBDG) solution for determining the location of

data and its “binding” to specific locations. More precisely,

authors extended the solutions proposed in [6], [8] by designing

a generic framework for actively monitoring the location of

stored data in the cloud using latency based techniques. The

suggested approach combined probabilistic provable data pos-

session with geolocation in a CBDG protocol, which is solely

based on a PoR scheme.

One of the most promising solutions is the one presented

in [12] where authors presented SecLoc. SecLoc is based on

Key-Policy Attribute-Based Encryption [13] and achieves data

confidentiality, location-sensitivity and computing efficiency.

More precisely, SecLoc ensures that the cloud user’s data is

stored and can be processed only at locations that satisfy user

specified location constraints. If the cloud providers (uninten-

tionally) copy the user data to nodes outside the expected re-

gions, the user data will become inaccessible at those ineligible

locations.

III. PROBLEM STATEMENT & DEFINITIONS

In this section, we define the problem of geolocation in cloud

computing along with the primitives that we use in the rest of

the paper. Furthermore, we explicitly define the capabilities of

the adversary by defining the threat model that we consider.

Cloud Service Provider (CSP): We consider a cloud

computing environment based on a trusted IaaS provider like

the one described in [14] and [15]. The IaaS platform consists

of cloud hosts which operate virtual machine guests and

communicate through a network. In addition to that, we assume

a PaaS provider is built on top of the IaaS platform and can host

multiple outsourced databases. Furthermore, the PaaS provider

offers an API through which a developer can built a privacy-

privacy preserving application that offers searchable encryption

functionality like the one presented in [16] and [17].

CSP ’s Locations & Hosts: We assume that a CSP uses

a set of geographically distributed hosts. Let L = {l1, . . . , ln}
be the set of all locations where CSP can store data. Then the

set Si =
{

si
1
, . . . , sik

}

is defined as the set of all hosts owned

by CSP in a location li.

Trusted User Locations: Each user ui who wishes to store

a file f needs to define a list of trusted locations. Let Ti ⊆ L
be the set of all trusted locations for user ui. Then the set of

hosts in Ti is denoted as STi
=

{

sTi

1
, . . . , sTi

l

}

.

Distance Between a Host & a Location: Most of the

protocols that are dealing with the problem of physical location

of data in cloud storage are using distance bounding techniques

in order to measure the distance between a host and a location.

Therefore, we denote the distance between a host sik and a

location lj as follows:

dist
(

sik, lj
)

=







0, if sik is located in lj

|li − lj |, otherwise

One of the core components of our solution is the Symmetric

Searchable Encryption (SSE) component which will allow

users’ to encrypt their data using a symmetric secret key and

later be able to search directly on the encrypted data. In the

rest of the paper, we will be assuming the existence of the

following SSE scheme as defined in [17].

Definition 1 (Dynamic Index-based SSE): A

dynamic index-based symmetric searchable encryption

scheme is a tuple of nine polynomial algorithms

SSE = (Gen,Enc, SearchToken,AddToken,DeleteToken,
Search,Add,Delete,Dec) such that:

• Gen is probabilistic key-generation algorithm that takes as

input a security parameter and outputs a secret key K. It

is used by the client to generate her secret-key.

• Enc is a probabilistic algorithm that takes as input a secret

key K and a collection of files f and outputs an encrypted

index γ and a sequence of ciphertexts c. It is used by the

client to get ciphertexts corresponding to her files as well

as an encrypted index which are then sent to the storage

server.

• SearchToken is a (possibly probabilistic) algorithm that

takes as input a secret key K and a keyword w and outputs

a search token τs(w). It is used by the client in order to

create a search token for some specific keyword. The token

is then sent to the storage server.

• AddToken is a (possibly probabilistic) algorithm that takes

as input a secret key K and a file f and outputs an add

token τa(f) and a ciphertext cf . It is used by the client in

order to create an add token for a new file as well as the

encryption of the file which are then sent to the storage

server.

• DeleteToken is a (possibly probabilistic) algorithm that

takes as input a secret key K and a file f and outputs

a delete token τd(f). It is used by the client in order to

create a delete token for some file which is then sent to

the storage server.

• Search is a deterministic algorithm that takes as input an

encrypted index γ, a sequence of ciphertexts c and a search

token τs(w) and outputs a sequence of file identifiers

Iw ⊂ c. This algorithm is used by the storage server upon

receive of a search token in order to perform the search

over the encrypted data and determine which ciphertexts

correspond to the searched keyword and thus should be

sent to the client.

• Add is a deterministic algorithm that takes as input an

encrypted index γ, a sequence of ciphertexts c, an add

token τa(f) and a ciphertext cf and outputs a new

encrypted index γ′ and a new sequence of ciphertexts c
′.

This algorithm is used by the storage server upon receive

of an add token in order to update the encrypted index and

the ciphertext vector to include the data corresponding to

the new file.

• Delete is a deterministic algorithm that takes as input an

encrypted index γ, a sequence of ciphertexts c and a delete

token τd(f) and outputs a new encrypted index γ′ and a

new sequence of ciphertexts c
′. This algorithm is used by

the storage server upon receive of a delete token in order

to update the encrypted index and the ciphertext vector to

delete the data corresponding to the deleted file.

• Dec is a deterministic algorithm that takes as input a secret

key K and a ciphertext c and outputs a file f . It is used

by the client to decrypt the ciphertexts that she gets from

the storage server.

Problem Statement: Let U = {u1, . . . , un} be the set of

authorized users of the CSP . We assume that a user ui wishes

to store a file f in the storage cloud provided by CSP. The

problem is how to achieve the following:

1) ui must be able to select a set Ti of locations that are

considered as trusted and in which f should be stored;

2) ui must have the option to validate the location of f at

any time;

3) Even if the CSP acts maliciously and stores replicas of

data in a location lm /∈ Ti, ui must be able to store f in

such a way that CSP will not be able to learn any valuable

information about the content of f ;

Adversarial Model: Similar to existing works in the area,

we make the following assumptions regarding the threat model

we consider. First, we assume physical security of the CSP

as well as of the devices that are used by the users to send

and retrieve data to the cloud. Furthermore, we assume that

the communication channel between a user’ ui and the CSP is

secure. Thus, all the communication from and to the CSP is

considered secure. In addition to that, we also assume that all

cryptographic operations that are used throughout the protocol

are semantically secure, and an adversary is not able to break

any cryptographic mechanism. Finally, we assume that the

adversary is acting under the semi-honest threat model. In the

semi-honest adversarial model, even corrupted entities correctly

follow the protocol specifications. However, adversaries over-

hear all messages and may attempt to use them in order to learn

information that otherwise should remain private.

IV. LOCLESS

In this section, we introduce our protocol which satisfies

the criteria mentioned in the problem statement and offers

secure storage functionality for the users’ of a cloud-based

application that stores their personal records in the cloud.

Before we proceed with the actual description of the protocol

we provide a high-level overview of the phases that our protocol

consists. Figure 1 contains a high-level representation of the

main functions that our protocol consists of (details have been

omitted for clarity).

The protocol considers a cloud service provider which uses a

set of hosts distributed in different geographic locations. Hence,

CSP can transfer data to any possible remote location without

asking for the permission of the data owner. Our protocol is

divided into four main phases: the registration and login phase,

the key generation phase, the secure placement of data in the

cloud by a user and finally the retrieval of data by user in a

privacy-preserving manner.

Registration: Before accessing cloud data, a new user’ first

needs to register. To do so, the registration phase requires the

user to contact the CSP and submit her identity. Then, CSP

is responsible for verifying the validity of the user and can

also prevent a user from creating multiple accounts/identities

by simply checking if a user with the same identity has already

created an account. After the verification process, user’ can

login to her account by simply using a standard client where

will have to provide her credentials. During the first login, user’

will have to select a list of possible locations that would like

to store her data. To this end, CSP sends a list with all geo-

graphically distributed hosts that owns. So, CSP contacts ui by

sending m1 = 〈t, ui,L = {l1, . . . , ln} , σCSP (ui||L))〉, where

t is a timestamp, L is the set of all possible locations that CSP

can store data, σCSP (ui||L) is a signature of the unique id of

the user’ concatenated with the list of geographically distributed

hosts that are managed by the CSP. Upon reception of m1, ui

first checks the timestamp in order to verify the freshness of

the message. Then, uses the public key of the CSP to verify

the signature and the the integrity of the actual message. If

this verification is correct, then proceeds in selecting a list

STi
⊆ L of locations out of those in L who wishes to store

her files in the future. As a next step, ui verifies the actual

geographical location of the selected hosts by running a dis-

tance bounding protocol such as the one describe in [18]. After

verifying the location of the selected hosts, ui contacts CSP by

sending m2 =
〈

t′,STi
=

{

sTi

1
, . . . , sTi

l

}

, σi(ui||STi
)
〉

. Upon

reception of m2, CSP verifies the integrity and the freshness

of the message and configures a set of VMs operated by hosts

that are located in a subset of STi
. From this point, ui will be

able to start storing data on remote locations that are managed

by the CSP.

Store Data: After the successful selection of possible remote

locations for storing data, ui can start interacting with the CSP

for storing and retrieving data from the corresponding hosts.

As we described in Section I-A, this can be done with two

different ways.

Scenario 1: First, we consider the case where ui wishes

to protect her data from any kind of unauthorized access. Even

if the cloud service provider transfers the data or replicas of

the data in a location outside of STi
ui needs to be sure

that no one else apart from herself will be able to read the

actual content of the stored data. To achieve that, ui will be

using a SSE scheme to encrypt the data before sending it

to the CSP. To do so, ui needs to have a unique symmetric

encryption key that will be used to keep her data hidden from

any potential attacker. Thus, before start sending data to the

CSP, ui executes Ki ← Gen(1) to generate a symmetric secret

key. Ki will be used to encrypt user’s private data. After the

successful generation of Ki, ui is now ready to store encrypted

data to the CSP. Lets assume that ui wants to securely store a

collection of files fi to the storage offered by the CSP. To do

so, ui executes (γi, ci)← Enc (fi,Ki) and outputs a collection

of ciphertexts ci as well as an encrypted index γi. Both γi
and ci are then sent to the CSP via a secure channel. Upon

reception, CSP stores ci along with the encrypted index γi in

a local database. Since the encryption has been taken place

by the user’ and without the interaction of the CSP and we

have assumed that user’s machine is not compromised then the

CSP or any other internal or external attacker will not be able

to extract any valuable information about the content of the

encrypted file as long as the key is Ki is secure.

Scenario 2: Second, we consider the simple scenario

where ui does not necessarily wish to protect her data from

unauthorized access. Meaning that the actual location of the

underlying server is irrelevant. This scenario is straightforward

and can be done with any standard ways of uploading files to

the cloud. However, in LocLess ui will still have the ability to

check the location where her files are stored. More precisely,

we assume that ui wishes to store a collection of files fj to

the storage offered by the CSP. To do so, ui sends fi over a

secure channel to the CSP along with STi
. Upon reception, CSP

stores the received files as well as replicas in different locations

from the set STi
. Then, ui has the option to verify the location

of the files by running a distance bounding protocol such as

the one described in [18]. However, in this scenario we make

two major assumptions: (1) CSP is trusted – meaning that will

not lie about the number of generated replicas and (2) that the

distance bounding protocol cannot be hijacked. Nevertheless,

both of these assumptions can be considered as unrealistic since

they weaken the actual threat model that we have assumed.

Having though in mind that the collection of files fj stored by

ui are not considered as confidential, our protocol is sound.

Search Over the Encrypted Data: Now that ui has stored a

collection of files in the cloud storage she can start searching

directly over her encrypted data. Lets assume that ui wishes

User

Cloud	Registra0on

PaaS	Provider

Trusted	IaaS	Provider

Cloud	Provider

DB	with	

encrypted	data

Indexers	on	

encrypted	data

Database	that	Stores	Users’	

Encrypted	Data

Sends	Encrypted	Data	

to	the	Cloud	Provider

Stores	the	Received	Data	

to	an	External	Database

Registers	to	the	service	and	selects	a	list	of	

loca<ons	with	available	hosts

Generates	a	Request	for	

Update	or	Delete	

Processes	the	Request	and	Updates	

or	Deletes	the	Corresponding	

Encrypted	Data

Hosts	in	different	geographical	loca<ons	

operated	by	the	CSP

Fig. 1. High level overview LocLess

to search over her data for a specific keyword w. First,

ui executes the τs(w)← SearchToken (Ki, w) and outputs a

search token τs(w) that is sent to the CSP. Upon reception, CSP

executes Search(γi, ci, τs(w))→ Iw and outputs a sequence of

file identifiers Iw which is a subset of ci and contains a list

of ciphertexts that includes the keyword w. The resulted Iw is

sent back to ui. Upon reception, ui executes the Dec algorithm

by giving as input her secret key and the sequence of encrypted

files that corresponds to the list of identifiers that received from

the CSP. By doing this, ui gains access to the plaintext of data

that contains the keyword w.

Update Stored (Encrypted) Data: Apart from storing data and

searching over the encrypted data, the user also needs to update

her stored data. Here, we consider the scenario where ui wishes

to add a new file f to the cloud storage. A naive approach

that ui could follow would be to run Enc algorithm again,

generate the ciphertext of f and send it to the CSP. However,

this would mean that ui would also create a new encrypted

index that would correspond to the encryption of file f . Such

an approach is not efficient since the user would end-up with

a huge list of encrypted indexes that are not related to each

other and every time that wishes to perform a search over

her data would require from the CSP to search over all the

encrypted indexes. To avoid this, ui needs to store her new file

and instead of creating a separate encrypted index she needs to

update the current one in order to also include the newly added

file. To achieve that, ui first generates an add token by executing

(τα(f), cf)← AddToken(Ki, f) and sends it to the CSP. Upon

reception, CSP executes Add (γi, ci, τα(f), cf)→ (γ′, c′i) and

outputs an updated encrypted index γ′

i and an updated sequence

of ciphertexts c′i that corresponds to the data stored by ui. Thus,

by running the Add algorithm, CSP stores the ciphertext of f
and updates the existing encrypted index and ciphertext list of

ui.

Delete Stored Data: The final operation that ui needs to be able

to execute, is the deletion of a file. Lets assume that ui wishes

to delete the file f that stored in the previous step. Similar to the

previous case, the deletion of a file will also require the update

of the existing encrypted index as well as the sequence of stored

ciphertexts. To this end, ui generates a delete token by execut-

ing τd(f)← DeleteToken (Ki, f). Then, ui sends τd(f) to the

CSP who executes Delete (γ′

i, c
′

i, τd(f))→ (γ′′

i , c
′′

i). Similar to

the Add algorithm, Delete after removing the requested file f
then updates both the corresponding encrypted index and the

sequence of ciphertexts that are related to user ui.

V. SECURITY ANALYSIS

In this section, we are discussing the security of LocLess.

The discussion focuses explicitly on the protection of data that

can be accessed by unauthorized parties when they are placed

maliciously, or without the actual agreement of the user’, in

locations that are not included in the trusted locations STi
that

were defined by the user’ during the registration phase.

The actual security of LocLess is solely based on the

symmetric searchable encryption scheme that is used. More

precisely, as long as the underlying cryptosystem is secure

LocLess can effectively protect users’ private data from unau-

thorized access. More precisely, the user’ sends the files to the

CSP in an encrypted form and the encryption has taken place

by the user’ without the interaction of the CSP. In addition to

that, we have assumed that user’s machine is not compromised.

In other words, we have assumed that the symmetric key Ki that

is used to protect user’s data is secure and will never leave the

perimeter of the user’ or exposed to any malicious entity. As a

result, even if the CSP acts maliciously and creates replicas of

data that are placed in locations other than the ones in STi
that

were defined by the user’ then user’s data is protected from

both internal and external attacks since any attacker that can

access the stored ciphertexts will not be able to decrypt the

data even if she collaborates with the CSP.

Although LocLess manages to protect users’ data by consid-

ering the actual location as irrelevant to the actual security of

the data our approach has limitations. More precisely, the use

of symmetric searchable encryption sacrifices the powerful pro-

cessing capability brought by the cloud computing technology

since very limited number of queries can be implemented over

encrypted data [12]. Moreover, the allowed queries are also

time consuming and in many cases requires lot of computation

power. Thus making LocLess difficult to use with devices that

rely on limited resources (e.g. limited battery life). However,

we hope that with the future developments and improvements

of searchable encryption schemes LocLess will offer a signif-

icant experience to the cloud users’. Finally, this can lead to

DoS [19]–[22] attacks. However such attacks are out of the

scope of this work.

VI. CONCLUSION

In this paper, we proposed LocLess, a protocol that allows

cloud users’ to store their data on the cloud in such a way that

location of the underlying servers will not affect their privacy.

LocLess is based on a symmetric searchable encryption scheme

and protects users’ data from both internal and external attacks.

As future steps, we plan to implement our protocol in order to

measure its performance and prove its effectiveness in a real

cloud environment.

As future steps, we plan to implement our protocol in order

to measure its performance and prove its effectiveness in a real

cloud environment. Furthermore, we plan to explore the incor-

poration of our protocol with mobile sensing applications and

more precisely with privacy preserving reputation systems for

cloud-based participatory sensing applications. The envisioned

system will be based on [23]–[26] and will effectively maintain

the privacy and anonymity of users’ [27]–[30].

REFERENCES

[1] A. Michalas, N. Paladi, and C. Gehrmann, “Security aspects of e-health
systems migration to the cloud,” in e-Health Networking, Applications

and Services (Healthcom), 2014 IEEE 16th International Conference on,
pp. 212–218, IEEE, 2014.

[2] A. Michalas and M. Bakopoulos, “Secgod google docs: Now i feel safer!,”
in Internet Technology And Secured Transactions, 2012 International

Conference for, pp. 589–595, Dec 2012.

[3] G. J. Watson, R. Safavi-Naini, M. Alimomeni, M. E. Locasto, and
S. Narayan, “Lost: Location based storage,” in Proceedings of the 2012

ACM Workshop on Cloud Computing Security Workshop, CCSW ’12,
(New York, NY, USA), pp. 59–70, ACM, 2012.

[4] A. Albeshri, C. Boyd, and J. G. Nieto, “Geoproof: Proofs of geo-
graphic location for cloud computing environment,” in Proceedings of the

2012 32Nd International Conference on Distributed Computing Systems

Workshops, ICDCSW ’12, (Washington, DC, USA), pp. 506–514, IEEE
Computer Society, 2012.

[5] A. Albeshri, C. Boyd, and J. Nieto, “Enhanced geoproof: improved
geographic assurance for data in the cloud,” International Journal of

Information Security, pp. 1–8, 2013.

[6] K. Benson, R. Dowsley, and H. Shacham, “Do you know where your
cloud files are?,” in Proceedings of the 3rd ACM Workshop on Cloud

Computing Security Workshop, CCSW ’11, (New York, NY, USA),
pp. 73–82, ACM, 2011.

[7] M. Gondree and Z. N. Peterson, “Geolocation of data in the cloud,”
in Proceedings of the Third ACM Conference on Data and Application

Security and Privacy, CODASPY ’13, (New York, NY, USA), pp. 25–36,
ACM, 2013.

[8] Z. N. J. Peterson, M. Gondree, and R. Beverly, “A position paper on
data sovereignty: The importance of geolocating data in the cloud,” in
Proceedings of the 3rd USENIX Conference on Hot Topics in Cloud

Computing, HotCloud’11, (Berkeley, CA, USA), pp. 9–9, USENIX
Association, 2011.

[9] K. Bowers, M. van Dijk, A. Juels, A. Oprea, and R. Rivest, “How to
tell if your cloud files are vulnerable to drive crashes,” in Proceedings

of the 18th ACM conference on Computer and communications security,
pp. 501–514, ACM, 2011.

[10] R. Dowsley, A. Michalas, and M. Nagel, “A report on design and
implementation of protected searchable data in iaas,” tech. rep., Swedish
Institute of Computer Science (SICS), 2016.

[11] A. Juels and B. S. Kaliski, Jr., “Pors: Proofs of retrievability for large
files,” in Proceedings of the 14th ACM Conference on Computer and

Communications Security, CCS ’07, (New York, NY, USA), pp. 584–
597, ACM, 2007.

[12] J. Li, A. Squicciarini, D. Lin, S. Liang, and C. Jia, “Secloc: Securing
location-sensitive storage in the cloud,” in Proceedings of the 20th ACM

Symposium on Access Control Models and Technologies, SACMAT ’15,
(New York, NY, USA), pp. 51–61, ACM, 2015.

[13] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption
for fine-grained access control of encrypted data,” in Proceedings of the

13th ACM Conference on Computer and Communications Security, CCS
’06, (New York, NY, USA), pp. 89–98, ACM, 2006.

[14] N. Paladi, A. Michalas, and C. Gehrmann, “Domain based storage
protection with secure access control for the cloud,” in Proceedings of the

2014 International Workshop on Security in Cloud Computing, ASIACCS
’14, (New York, NY, USA), ACM, 2014.

[15] N. Paladi, C. Gehrmann, and A. Michalas, “Providing user security
guarantees in public infrastructure clouds,” IEEE Transactions on Cloud

Computing, vol. PP, no. 99, pp. 1–1, 2016.
[16] Y. Verginadis, A. Michalas, P. Gouvas, G. Schiefer, G. Hbsch, and

I. Paraskakis, “Paasword: A holistic data privacy and security by design
framework for cloud services,” in Proceedings of the 5th International

Conference on Cloud Computing and Services Science, pp. 206–213,
2015.

[17] A. Michalas and R. Dowsley, “Towards trusted ehealth services in the
cloud,” in 2015 IEEE/ACM 8th International Conference on Utility and

Cloud Computing (UCC), pp. 618–623, Dec 2015.
[18] C. Cremers, K. B. Rasmussen, B. Schmidt, and S. Capkun, “Distance

hijacking attacks on distance bounding protocols,” in 2012 IEEE Sympo-

sium on Security and Privacy, pp. 113–127, May 2012.
[19] A. Michalas, N. Komninos, N. R. Prasad, and V. A. Oleshchuk, “New

client puzzle approach for dos resistance in ad hoc networks,” in Informa-

tion Theory and Information Security (ICITIS), 2010 IEEE International

Conference, pp. 568–573, IEEE, 2010.
[20] A. Michalas, N. Komninos, and N. R. Prasad, “Mitigate dos and ddos

attack in mobile ad hoc networks,” International Journal of Digital Crime

and Forensics (IJDCF), vol. 3, no. 1, pp. 14–36, 2011.
[21] A. Michalas, N. Komninos, and N. Prasad, “Multiplayer game for ddos

attacks resilience in ad hoc networks,” in Wireless Communication,

Vehicular Technology, Information Theory and Aerospace Electronic

Systems Technology (Wireless VITAE), 2011 2nd International Conference

on, pp. 1–5, Feb 2011.
[22] A. Michalas, N. Komninos, and N. R. Prasad, “Cryptographic puzzles

and game theory against dos and ddos attacks in networks,” International

Journal of Computer Research, vol. 19, no. 1, p. 79, 2012.
[23] T. Dimitriou and A. Michalas, “Multi-party trust computation in de-

centralized environments,” in New Technologies, Mobility and Security

(NTMS), 2012 5th International Conference on, pp. 1–5, May 2012.
[24] T. Dimitriou and A. Michalas, “Multi-party trust computation in decen-

tralized environments in the presence of malicious adversaries,” Ad Hoc

Networks, vol. 15, pp. 53 – 66, 2014.
[25] A. Michalas, T. Dimitriou, T. Giannetsos, N. Komninos, and N. Prasad,

“Vulnerabilities of decentralized additive reputation systems regarding the
privacy of individual votes,” Wireless Personal Communications, vol. 66,
no. 3, pp. 559–575, 2012.

[26] A. Michalas, V. A. Oleshchuk, N. Komninos, and N. R. Prasad, “Privacy-
preserving scheme for mobile ad hoc networks,” in Computers and

Communications (ISCC), 2011 IEEE Symposium on, pp. 752–757, June
2011.

[27] A. Michalas and T. Giannetsos, “The data of things: Strategies, patterns
and practice of cloud-based participatory sensing,” in Proceedings of

the 1st International Conference on Innovations in InfoBusineess and

Technology, 2016.
[28] A. Michalas and N. Komninos, “The lord of the sense: A privacy

preserving reputation system for participatory sensing applications,” in
Computers and Communication (ISCC), 2014 IEEE Symposium, pp. 1–6,
IEEE, 2014.

[29] A. Michalas, M. Bakopoulos, N. Komninos, and N. R. Prasad, “Secure
and trusted communication in emergency situations,” in Sarnoff Sympo-

sium (SARNOFF), 2012 35th IEEE, pp. 1–5, May 2012.
[30] K. Yigzaw, A. Michalas, and J. Bellika, “Secure and scalable statistical

computation of questionnaire data in r,” IEEE Access, vol. PP, no. 99,
pp. 1–1, 2016.

