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LoCoH: Nonparameteric Kernel Methods for Constructing
Home Ranges and Utilization Distributions
Wayne M. Getz1,2*, Scott Fortmann-Roe1, Paul C. Cross3,4., Andrew J. Lyons1., Sadie J. Ryan1.¤, Christopher C. Wilmers5

1 Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America, 2 Mammal
Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa, 3 Northern Rocky Mountain Science Center,
U.S. Geological Survey, Montana State University, Bozeman, Montana, United States of America, 4 Department of Ecology, Montana State University,
Bozeman, Montana, United States of America, 5 Environmental Studies Department, University of California, Santa Cruz, California, United States of
America

Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and
utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural
systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon
(MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of
its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases.
Here we extend the LoCoH in two ways: ‘‘fixed sphere-of-influence,’’ or r-LoCoH (kernels constructed from all points within
a fixed radius r of each reference point), and an ‘‘adaptive sphere-of-influence,’’ or a-LoCoH (kernels constructed from all points
within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal
to a), and compare them to the original ‘‘fixed-number-of-points,’’ or k-LoCoH (all kernels constructed from k-1 nearest
neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured
data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate
that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas
(holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and
irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with
software for all three methods available at http://locoh.cnr.berkeley.edu).

Citation: Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, et al (2007) LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges
and Utilization Distributions. PLoS ONE 2(2): e207. doi:10.1371/journal.pone.0000207

INTRODUCTION
Ecology is currently undergoing a revolution in terms of our ability

to collect large sets of data with unprecedented precision on the

position of individuals in the landscape (e.g. plus-minus several

meters using current GPS technology [1]) at regularly spaced

intervals of time. This revolution is leading to the emergence of

movement ecology, a new subfield of ecology [2]. GPS position

data is often used to construct home ranges (HRs) [3–6] or utiliza-

tion distributions (UDs) [7–13], where the former are bounded

areas used by animals for some defined purpose (e.g. foraging or

seeking mates), while the latter are represented by isopleths

demarcating regions in space with different probabilities or rates of

usage by individuals.

Currently, the boundary of the HR is commonly delimited

using the 95% isopleth of an unbounded UD, where the UD is

typically constructed using the symmetric bivariate Gaussian (i.e.

a parametric) kernel method [14–19], although other methods

may be preferred when the UD is multimodal [20]. For compara-

tive and other reasons enumerated below, bounds on the

innermost 95% of the data are also used to estimate the areas of

HRs even for methods of construction that are able to produce

HRs bounded by a 100% isopleth of a UD (e.g. the minimum

convex polygon—MCP, bounded parametric kernel methods, our

LoCoH methods). In the future, use of the 95% isopleth to bound

HRs may change in view of Börger et al.’s [21] recent study in

which they recommend estimating the area of HRs using isopleths

in the 50–90% range. They demonstrate that using isopleths in

this range produces area estimates that are less biased by sample

size than when using isopleths above 90% or below 50% (the latter

sometimes being used to estimate core areas of HR use).

The reasons for omitting outlying points in estimating the size of

HRs are threefold: (1) locations based on relatively inaccurate

triangulation of radio collars result in imprecise location estimates

(this is philosophically consistent with the parametric kernel

methods, such as the radially symmetric—i.e. one parameter—

bivariate Gaussian or harmonic kernels, that associate a smooth

distribution with each data point); (2) HR area estimates using

MCP and parametric kernel construction methods are very

sensitive to outlying points [21]; and (3) outlying points may well

reflect exploratory animal movements rather than those necessary

for survival and reproduction. The first of these three points is no
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longer relevant for methods applied to GPS data since these data

are spatially precise [22].

Here we describe extensions to a recently developed local convex

hull (LoCoH) approach [23] that produces bounded HRs and has

been shown to have superior convergence properties compared to

the parametric kernel methods used in constructing HRs and UDs.

This LoCoH method is both a generalization of the minimum

convex polygon (MCP) method and essentially a non-parametric

kernel method. LoCoH applies the MCP construction to a subset of

data localized in space, and the local convex polygon (i.e. local hull)

is constructed using the k-1 nearest neighbors of each data point,

thereby producing a set of nonparametric kernels whose union is

the UD. Thus LoCoH uses kernels with forms arising directly out of

the data, unlike parametric kernels that have a form specified in

most cases by a one parameter function (e.g. symmetric bivariate

Gaussian centered on the data point with width parameter h), even

though the union of these parametric kernels can produce rather

irregular surfaces with multiple peaks.

The advantage of LoCoH’s direct use of data becomes evident

when constructing UDs from data influenced by idiosyncratic

geometries such as geomorphological boundaries and holes (e.g.

lakes or rocky outcrops) associated with the space over which

animals move [23]. In particular, as illustrated in examples

considered here and elsewhere [23], [24], LoCoH methods are

more adept than parametric kernel methods at locating such

geographical features as reserve boundaries, rivers, lakes, in-

hospitable terrain, and so on. Further, these features can be

assessed automatically by linking LoCoH constructions with

spectral images provided by new remote sensing technologies that

have resolutions matching or exceeding those of the data (e.g. 1–

10 m resolution SPOT imagery, Quickbird and Superbird images,

IKONOS satellite imagery [22]). Statistical analyses can then be

carried out to address ecological questions relating, among other

things, to resource use [25] or social behavior [26].

In this paper, we present two modifications of the ‘‘fixed k’’

LoCoH method, which has been referred to as the k-NNCH (k-

nearest neighbor convex hulls) because each local kernel is a k-

point convex hull constructed from a root point and its k-1 nearest

neighbors [23]. The first modification is a ‘‘fixed radius’’ r, or r-

LoCoH, method in which all the points in a fixed ‘‘sphere of

influence’’ of radius r around each root point are used to construct

the local hulls. The second modification is an adaptive, or a-

LoCoH, method in which all points within a variable sphere

around a root point are used to construct the local hulls such that

the sum of the distances between nearby points and the root point

is less than or equal to a. Thus the adaptive method allows the

number of points involved in the construction of the LoCoH

kernels to increase with increasing density of data.

After presenting a description of the methods and reviewing the

MSHC approach (minimum spurious hole covering—see [23]) to

selecting an appropriate value for k, r, or a, we compare the

performance of parametric kernel and LoCoH methods in

estimating UD isopleths from data generated from known

distributions with challenging spatial features (e.g. narrow valleys

or corridors). We then compare results obtained from the

application of parametric and LoCoH kernel methods to both

manufactured and real data, the latter from GPS collars placed on

African buffalo in the Kruger National Park, South Africa. In

particular, we demonstrate the superior performance of LoCoH

compared with parametric kernel methods in the context of

estimating the size of HRs and delineating geological and

ecological features in home ranges.

Finally, we note that links to software for the implementation of

LoCoH using ArcView/ArcGIS, or in the R Statistical package

Adehabitat, or as a web application can be found at http://locoh.

cnr.berkeley.edu.

METHODS

A. Constructions
Fixed number of points: k-LoCoH As elaborated in more

detail in Getz and Wilmers [23], the method begins by

constructing the convex hull associated with each point (the

root) and its k-1 nearest neighbors. The union of all these hulls is

finite and can be used to represent the home range of the

associated individual. (For a method based on a-hulls see Burgman

and Fox [27]. To obtain a UD, the hulls are ordered from the

smallest to the largest, where the smallest hulls are indicative of

frequently used areas. By progressively taking the union of these

from the smallest upwards, until x% of points are included (with

some rounding error), the boundaries of the resulting union

represents the x% isopleth of the densest set of points in the UD.

Depending on convention the HR can be defined as the area

bounded by the 100% isopleth of the UD or, for purposes of

comparison, the 95% isopleth which is the one most commonly

used for UDs constructed from more traditional, particularly non-

compact, kernels such as the symmetric bivariate Gaussian.

Fixed radius: r-LoCoH Instead of choosing, as in the fixed k

LoCoH, the k-1 nearest neighbors to each point, we use all points

at distance r or closer to the root point to construct the local hull

associated with the root and all points within a ‘‘sphere of

influence’’ of radius r. Since all the local convex hulls now are

approximately the same size, to construct the UD we sort these

hulls from those containing the most points to those containing the

fewest, with a size (area) sorting only being used to order hulls

containing the same number of points. As before, we progressively

take the union of hulls from most to fewest points and smallest to

largest when they have the same number of points until x% of

points (with some rounding error) are included. Also, as before, the

boundaries of the resulting union represent the x% isopleth of the

densest set of points in the HR.

If r is sufficiently small so that some points have only one or no

neighbors then in the one-neighbor case the point is connected to

the construction by a line, while in the no-neighbors case the point

is isolated from the construction. In both cases, the points do not

contribute any area to the construction. If the proportion of such

points is p then the area bounded by the construction is the

100(12p)% isopleth. If construction of a 100% isopleth is needed,

then the algorithm can be modified to include at least the two

nearest neighbors irrespective of the value of r.

The above method for constructing a fixed radius LoCoH is

reminiscent of fixed kernel methods that use kernels with finite

support, such as the uniform or Epanechnikov kernels [16], except

in LoCoH the elements are data dependent and hence variable in

shape while the parametric kernels have the same repeated

element associated with each point.

Adaptive or a-LoCoH method The adaptive or a-LoCoH

method uses all points within a variable sphere around a root point

such that the sum of the distances between these points and the

root point is less than or equal to a. Essentially, this method adjusts

the radius of the circle that circumscribes each local convex hull,

such that smaller convex hulls arise in high use areas, thereby

providing more clearly defined isopleths in regions where data are

more abundant. Thus, for example, the a-LoCoH method is

particularly useful in defining UD boundaries that arise when an

individual regularly visits the shore of a lake, the edge of a cliff, or

the bank of a river. Also, provided the value a exceeds the sum of

the two greatest distances between points in our data set, the

LoCoH
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construction will always produce the 100% isopleth while keeping

the radius of LoCoH elements small in high density regions of the

data. On the other hand, if a does not exceed the sum of the two

greatest distances between points in our data set, then to obtain the

100% isopleth we need to specify that at least the two nearest

neighbors are always included irrespective of the value of a.

Rules for selecting k, r or a For relatively low values of k, r,

or a, the resulting LoCoH construction from the union of the

LoCoH elements associated with each data point may contain

many unused areas (or holes) that disappear with increasing k, r, or

a. For HRs with known topologies (i.e. where the number of holes

that the UD should contain is known ahead of time) the

‘‘minimum spurious hole covering’’ (MSHC) rule [23] may be

used to select the smallest value of k, r, or a that produces

a covering that has the same topology as the given set (e.g. see

Figs. 1 and 2). If the topology of the UD is not known, we can

guess its genus (number of holes) by identifying relatively large

physical features, such as lakes, mountain peaks, or inhospitable

habitats. We expect these objects to produce real holes in the data

that should be reflected in the UD construction. Of course, real

holes at scales that are relatively small compared with the size of

the home range may be missed. Differences between real and

spurious holes in LoCoH constructions may be evident in plots of

area covered by the UD against the value of the parameter k, r, or

a: with increasing parameter values the estimated area may level

off once all spurious holes are covered [23–24], but should

increase again when one or more real holes becomes totally or

partially spuriously covered. Identifying these plateaus in UD

construction determines the value to use. We denote these values

by k̂, r̂ and â. Only experience with the method, however, will

reveal appropriate methods for deciding when this leveling off has

been achieved. While this MSHC rule is subjective, we show in

this paper that the a-LoCoH method is remarkably robust to

changes in the parameter a.

For our manufactured data sets where the boundaries of the

areas are known, or in cases of field data where the boundaries of

particular holes are known, values of the parameters for k, r, and

a can be obtained by minimizing the sum of Type I and II errors

(Type I errors arise from excluding regions that are part of the HR

Figure 1. The actual points used in the analysis, selected at random within boundaries defined in the methods to conform with the specified isopleth
rules, are plotted here in the upper row for data sets A, B, and C. For each set, the 20% isopleth surrounds the densest aggregation of points that
appear as relatively black areas in each of the plots. UDs constructed using the fixed kernel least-squares cross-validation method for these data are
illustrations in the lower row (sizes have been adjusted to provide visual correspondence—where precise estimates of the fits are given in Table 1).
doi:10.1371/journal.pone.0000207.g001

Figure 2. Kruger National Park, showing the location of the four collared
buffalo used in the empirical data test of the study. The Satara and
Lower Sabie regions are shown as insets 1 and 2, respectively.
doi:10.1371/journal.pone.0000207.g002

LoCoH
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while Type II errors arise from including regions that are not: see

[23]) in terms of how well our LoCoH methods identify the

boundaries of the areas in question. As a starting point for finding

these optimal values, denoted by k*, r*, and a*, a set of heuristic

values, denoted by k1, r1, and a1 respectively, were selected using

the following ‘‘rules of thumb:’’

N k1~
ffiffiffi
n
p

values (n is the number of points in the set)

N r1 is half of the maximum nearest neighbor distance between

points (i.e. the radius of a sphere that will allow all points to be

joined to at least one additional point)

N a1 is maximum distance between any two points in the data set.

Parametric kernel constructions For purposes of compar-

ison we constructed UDs using symmetric bivariate Gaussian

kernels. Although we sought to use the optimized value for the

width parameter, h, using the least-squares cross-validation

(LSCV) method (see [18]; but see [28] for problems with this

method), for one of the generated data sets and for the buffalo

data, the method did not converge using either the R-Adehabitat

toolbox or the Animal Movement Extension for ArcView 3.x [29].

This is a common problem with the method so we used

Silverman’s ad-hoc method instead for generating the width

parameter h [14].

B. Data
Manufactured Data We manufactured three datasets (Fig. 1

A–C) with known 20% and 100% isopleths so that we could use

these to compare the accuracy of our three methods.

Dataset A: The 100% isopleth is constructed from a ring

centered at the (x,y) = (20,0) with an inner radius of one and an

outer radius of five. The ring contains 78% of the points and was

connected by a corridor width of 14 and a height of 0.5 containing

2% of the points. This corridor connects to a circle located at (0, 0)

with a radius of one that contains 20% of the highest density points

in the construction. Thus this circle is also the 20% isopleth. We

randomly distributed 1,000 points in the dataset according to the

isopleth rules: 78% in the ring, 20% in the small dense circle and

2% in the connecting corridor. The area bounded by the densest

20% and the 100% isopleths is 3.1 and 85.3 units respectively.

Dataset B: The polygon defined by joining lines to the ordered

set of points (210, 0), (22, 2), (27, 8), (0, 3), (2, 10), (2, 1), (10,

23), (2, 22), (2, 28), and (0, 23) is the 100% isopleth boundary

for these data. The 20% densest point aggregation is within the

triangle (2, 22), (2, 28), and (0, 23). A rectangular hole in the

data set is bounded by the lower left corner of (20.5, 21.5), and

has a width and height of 1.5 and 3 respectively. We randomly

distributed 1,002 points in the dataset concordant with the isopleth

rules, but otherwise at random. The area bounded by the densest

20% and the 100% isopleths is 6.0 and 68.0 units respectively.

Dataset C: The 100% isopleth was created from a circle

centered at (0, 0) and radius 10, with two circular holes of radius

2.2 centered at (4, 4) and (24, 4) and a triangular hole with

vertices (26.5, 23), (6.5, 23), and (0, 27). We constructed the

20% isopleth from a circle centered at (0, 0) with a radius of one.

Lastly, we randomly distributed 1,002 points in the dataset

concordant with the isopleth rules, but otherwise at random. The

area bounded by the densest 20% and the 100% isopleths is 3.1

and 257.0 units respectively.

Buffalo data We collected field data on African buffalo

movements using VHF and GPS collars place on individuals from

November 2000 to August 2006 in the Satara and Lower Sabie

regions of the Kruger National Park. For the purposes of

demonstrating the LoCoH methodology we restrict our analyses

to GPS recordings of locations taken once an hour from four adult

females over the following periods of times: female T13, July 15,

2005 to Oct 29, 2005; female T15, Sept 16, 2005 to Feb 16, 2006;

female T7, Sept 15, 2005 to Jan 29, 2006; female T16, July 27,

2005 to October 8, 2005. These data were collected in decimal

degrees and re-projected to Universal Transverse Mercator

(UTM) [WGS84, Zone 36S] in ArcGIS 9. These data represent

two buffalo at each of two sites in Kruger National Park: the first is

the Satara region (T07 and T15) and the second is the Lower

Sabie region (T13 and T16) (Fig. 2). In both regions, areas within

the range of the buffalo are known to be physically inaccessible. A

7.7 km2 fenced exclosure exists in the Satara region while a small

ridge (,4.15 km2) that is too steep for the buffalo to climb exists

within the Lower Sabie region. Both the exclosure and ridge serve

as ‘‘known holes’’ that can be used to assess the performance of the

methods, as discussed below.

C. Analysis
Error analysis using manufactured data For each of the

datasets we constructed k-, r-, and a-LoCoH UDs over a range of

parameter values. In every case, we calculated the Type I and

Type II errors associated with the 20% and 100% isopleth

constructions. We took the total error to be the sum of Type I and

Type II errors for the isopleth in question; although for some

applications, if the relative importance of Type I and II errors

differs, a weighted sum can be used. Here we simply define the

optimal k, r, or a to be the values that minimize the total error for

the corresponding method. As discussed above, for the symmetric

bivariate Gaussian kernel method we followed the convention of

using the 95% isopleth to bound the UDs, but also included the

99% isopleth for purposes of comparison. We then identified the

isopleth that minimized the total error.

We constructed images of the resulting LoCoH UDs for our

optimal parameter values, as well as half and twice the optimal

values.

Lastly, we examined how the total error of the UDs constructed

using the different methods changed as we used different sample

sizes. We generated random samples containing 1000, 800, 600,

400, and 200 points using the specifications and isopleth rules

outlined earlier for each manufactured dataset. We repeated this

process 15 times (this number is relatively low but suffices if we are

generating estimates purely for comparative purposes among

methods) as a way of generating error estimates (i.e. for a total of

75 samples per dataset). We located the optimal value of k, r, and

a for each sample and plotted the resulting total error as a function

of sample size.

Error analysis using Buffalo data For purposes of compar-

ison, we generated UDs for each of the four individuals using each

of the 4 different methods. Since we were uncertain over what

range of values we should explore the performance of our MSHC

algorithm, we initially constructed UDs using our heuristic rules

for selecting k1, r1, and a1. For the two data sets from Satara, for

which the exclosure is precisely known, we then assessed to what

extent the known holes were covered with these initial parameter

guesses and used this information to locate the values of the

parameters where the known holes were completely covered for

the first time—that is the MSHC parameter values k̂, r̂, and â. For

all three methods we always ensured that at least the two nearest

neighbors were included: thus in all cases the 100% isopleth could

be constructed. We then divided the intervals [0,k̂], [0,r̂], and [0,â]

into 20 subsections and calculated the proportion of the known

holes covered for each of the 20 parameter values in question with

respect to the two data sets under consideration.

LoCoH
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RESULTS

Manufactured Data
For each of the three data sets we plot in Figs 3A–C the total errors

associated with the k-LoCoH, r-LoCoH, and a-LoCoH construc-

tions of home ranges (100% isopleth) and the 20% isopleths as

a function of the parameters, k, r and a respectively. In the case of

the home range constructions, the optimal value of r (i.e. the value

that minimizes the total error associated with the r-LoCoH

constructions) is evident from the graphs. For the k-LoCoH home

range constructions, the optimum k is obvious for data set A, but

less so for data sets B and C. On the other hand, the total error

curves for the a-LoCoH home range construction become rather

flat beyond small values of a and the optimum value is not that

obvious from the graph (which is why, as we will see below, that

this method is the most robust of the three LoCoH methods). For

all the cases the value of the parameters that minimize total error

for the HR are given in Table 1 where, for purposes of compar-

ison, the errors associated with the symmetric bivariate Gaussian

kernel construction are listed for the 95% isopleths, the 99%

isopleths, as well as the isopleth constructions that minimized the

total error (to within a resolution of isopleths differing by J%). All

three LoCoH methods have errors that are considerably lower

than those of the symmetric bivariate Gaussian kernel (GK)

constructions. In particular, the a-LoCoH estimates were either

best (data sets A and C) or tied for best (data set B) with error levels

between 8.6–8.8%, while the optimal GK estimate error levels

where 20.9%, 22.2%, and 14.6% for data sets A–C respectively:

Figure 3. Type I (dotted line), Type II (dashed line) and Total Error (solid line) (percentages) associated with the construction of 100% and 20%
isopleths are plotted for the k-LoCoH, r-LoCoH, and a-LoCoH methods as a function of the parameters, k, r and a respectively for the three data sets
(A, B, and C).
doi:10.1371/journal.pone.0000207.g003

LoCoH
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that is, error rates of around 2–3 times those of the a-LoCoH

constructions.

Also note in Table 1 that the Type I and Type II errors

associated with the three LoCoH methods are relatively similar,

whereas this is not generally true for the symmetric bivariate

Gaussian kernel method. In addition, the plots of error levels for

the LoCoH constructions (Fig. 3) indicate that a-LoCoH construc-

tions were less sensitive than the k- and r-LoCoH constructions to

variation in the proportional changes to the values of the

parameters around their optimal values. With regard to errors

associated with estimating the construction of the 20% isopleth,

the r-LoCoH method breaks down as soon as the value of r

increase beyond a critical value (e.g. in datasets A and C around

the radius of the core set of points in the data sets), while the

k-LoCoH and a-LoCoH methods are more reliable, with the

former actually performing better for data set B and the latter

performing better for data sets A and C.

For each of the three data sets, the errors of the LoCoH models

are plotted as a function of sample size for the optimal (i.e. error

minimizing) values of the parameters (Figs. 4A–C). For all values

and all cases the errors decrease with sample size. For dataset A,

r-LoCoH moves quickly from performing the best (but well within

the error bars) for the smallest sample size to performing by far the

worst for the largest sample size. a-LoCoH is consistently strong

throughout this dataset. For dataset B, k- and a-LoCoH have

nearly identical accuracy except for the smallest sample size where

a-LoCoH obtains a smaller error. r-LoCoH lags behind across all

sample sizes in this dataset. In dataset C, the three methods

perform roughly equally (within the error bars) with r-LoCoH

appearing to be slightly superior, followed by a-LoCoH, and lastly

by k-LoCoH.

The optimal value k* increased with sample size for all three

data sets (Table 2) with the heuristic initial guess k1~
ffiffiffiffiffiffiffiffi
200
p

~14:1
very close to the optimal value for all three sets of data when

n = 200 but not as close when n = 1000: in the latter case a rule of

k~
ffiffiffi
n
p

=2~
ffiffiffiffiffiffiffiffiffiffi
1000
p

=2&16 works better than the heuristic rule. As

expected, the optimal value of r decreased with increasing point

density. The optimal value of a also decreased, but not strictly

monotonically (Table 2). The heuristic rule for r produced a value

r1 that was generally lower than the optimal r* by factor of 1.5 to 3.

Table 1. Total Error, with Type I and Type II Errors in parentheses for manufactured data sets A–C, as a percentage of total home
range size, is listed for estimates obtained using the three LoCoH methods (100% isopleths and optimal—that is error
minimizing—values k*, r* and a*) and the Gaussian kernel (GK) method (95%, 99% and optimal isopleths).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Data (true area) A (85.3 units) B (68.0 units) C (257.0 units)

k-LoCoH 13.4% (8.8%, 4.6%) 8.7% (4.9%, 3.8%) 9.0% (6.7%, 2.3%)

k& 15 27 17

r-LoCoH 15.0% (8.4%, 6.6%) 10.3% (5.9%, 4.4%) 8.8% (5.6%, 3.2%)

r& 2.0 1.0 1.75

a-LoCoH 8.8% (5.9%, 2.9%) 8.7%$ (4.6%, 4.0%) 8.6% (5.4%, 3.2%)

a& 21.0 19 19

GK 95% 27.3% (22.2%, 5.2%) 30.3% (2.9%, 27.4%) 20.2% (14.9%, 5.2%)

GK 99% 20.9% (10.4%, 10.4%) 56.6% (0.4%, 56.2%) 15.0% (3.9%, 11.1%)

GK minimum* 20.9% (10.4%, 10.4%) 22.2% (10.9%, 11.5%) 14.6% (6.1%, 8.6%)

(isopleth)** (99%) (87.5%) (98.25%)

The best estimate is in bold type.
&optimal values reflect integer resolution for k and 0.25 resolution for r and a; *minimizes total error; $0.1 difference in sum due to rounding; **search resolution is

a quarter of a percent apart.
doi:10.1371/journal.pone.0000207.t001..
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Figure 4. The effect of sample size on the optimal (i.e. error minimizing) value of parameters, k, r and a and total errors associated with the
construction of the 100% isopleth using the k-LoCoH (solid line), r-LoCoH (dashed line), and a-LoCoH (dotted line) methods respectively for the three
data sets (A, B, and C). Mean and standard error for fifteen randomly generated datasets for each sample size are plotted.
doi:10.1371/journal.pone.0000207.g004
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On the other hand, the heuristic rule for a produced a value a1 that

was surprisingly close to a*, in some cases being very close, and

others being too high or low by a factor of only 0.2.

In Figs. 5–7, the UDs for the half-optimal, optimal, and twice-

optimal parameter values are plotted for data sets A, B and C,

respectively. These constructions illustrate that the a-LoCoH

method is the least sensitive to changes in the value of the

parameter a, r-LoCoH the most sensitive, and k-LoCoH is inter-

mediate. Moreover, of the three methods, k-LoCoH is most likely

to create spurious holes (Type I errors) at half the optimal k value,

while r-LoCoH is most likely to fill in real holes (Type II errors).

For the sake of completeness and to permit visual comparisons,

the fixed kernel least-square cross validation UDs (95th percentile)

are plotted for data sets A, B, and C in Fig. 1, where we see that for

all three sets of data, unlike the LoCoH method, the method fails

to identify any of the holes.

Buffalo data
Silverman’s parametric kernel method [14] yielded considerably

larger area estimates in three of the four cases than the MSHC a-

LoCoH method (Table 3; Fig. 8a, T07: 244 vs. 173; Fig. 8c, T13:

142 vs. 95; Fig. 8d, T16: 84 vs. 55). Only in one case was the

situation reversed (Table 3; Fig. 8b, T15: 121 vs. 153): this appears

to be a function of the distribution of the data into a few high-

density areas with a few oddly shaped sparse regions. Both the

kernel method and the a-LoCoH method at the 95% isopleth

exclude a number of these points, but the a-LoCoH method locally

accommodates the denser areas, which, in this case, includes them.

The kernel method, applying a constant function, drops all but the

95% densest areas according to a single metric.

In the Satara area (Figs. 8a and b) the hashed object embedded

in the UD is a large animal exclosure. In the Lower Sabie area,

a ridge area that is too steep for buffalo is shown as a hashed object

(Figs. 8c and d). Both the MSHC a-LoCoH and parametric kernel

methods left at least half of the enclosure at Satara uncovered

when the 95% isopleth was used as a boundary, but impressively

so did the 100% isopleth boundary of the MSHC a-LoCoH.

(Figs. 8a–b) (the 100% isopleth of the parametric kernel method

covers the entire exclosure). The parametric kernel method failed

to identify the ridge area embedded within the T13 data in Lower

Sabie by completely covering the ridge, while the MSCH a-

LoCoH 95% isopleth defined the left boundary of the ridge rather

clearly and even left the ridge partially uncovered in the 100%

isopleth construction (Figs. 8c and d). The MSHC a-LoCoH also

covered less of the ridge in both the 95% and 100% isopleth

constructions than the parametric kernel method did for its 95%

isopleth construction.

Note that the symmetric bivariate Gaussian kernel UDs have

slightly jagged boundaries because they are generated from an

underlying grid, while LoCoH UDs are generated directly from

the polygonal elements.

DISCUSSION
In statistics, nonparametric methods always require fewer

assumptions than the corresponding parametric methods. In the

case of UD constructions, both parametric and LoCoH kernel

methods require common assumptions about data to avoid

misinterpretations that come from bias with respect to the way

the data are collected. By definition, however, parametric kernel

methods always involve additional assumptions about the form of

the distributions governing the data that nonparametric methods

do not make. Thus, although traditional kernel methods can

produce UDs and HRs that follow highly irregular data, they are

still based upon parametric kernels that require the investigator to

specify their functional form. LoCoH kernels, on the other hand,

take their form directly from the data, thereby relieving the

investigator of the burden and bias associated with choosing

a functional form for the kernels. Further, parametric kernel UD

constructions are almost always based on non-compact (i.e.

unbounded) symmetric bivariate Gaussian kernels. This implies

an ad-hoc decision must be made on which isopleth to use in HR

constructions. Although, typically, the 95th percentile is used a 90th

percentile boundary may decrease sample size bias [21] and

handle poor convergence of area estimates with increasing sample

size better. In the latter case, areas of the true home range are

invariably omitted. Also, in some cases (as we mention in our

methods section) the LSCV method for selecting the best value for

the symmetric bivariate Gaussian smoothing or width parameter h

does not converge and an ad-hoc method must be used to select its

value.

Even bounded parametric kernel methods (e.g. Epanechnichov

kernels) will always overshoot the data by an amount equal to the

value of the kernel radius parameter h, no matter how dense the

data. On the other hand, LoCoH methods do not overshoot the

data, since they use the data directly; and hence converge on true

boundaries as the density of data increases [23]. The only errors

that LoCoH makes are small: it locally approximates the actual

boundary by fitting a line between the two points closest to the true

boundary element in question. In essence, our analysis suggests

that we should move beyond the assumption, implicit in

parametric kernel methods, that all points are internal and

recognize that many animals not only visit the boundaries of their

range, but may even patrol them as a way of warding of

competitors [30].

Table 2. Comparison of our heuristic rules for choosing initial parameter values k1, r1 and a1 and optimal parameter values k*, r*
and a* for the manufactured data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Data (true area) k-LoCoH r-LoCoH a-LoCoH

k1 k* r1 r* a1 a*

A: 200 points 14.1 13.5 (0.70) 1.41 (0.18) 2.37 (0.05) 25.5 (0.04) 24.9 (1.00)

1000 points 31.6 14.5 (0.42) 0.56 (0.00) 1.67 (0.06) 25.7 (0.00) 23.3 (0.84)

B: 200 points 14.1 11.9 (0.48) 0.74 (0.08) 1.51 (0.04) 18.4 (0.12) 15.5 (0.74)

1000 points 31.6 20.6 (0.60) 0.57 (0.00) 0.79 (0.00) 19.6 (0.00) 14.0 (0.23)

C: 200 points 14.1 12.7 (0.42) 1.00 (0.03) 3.10 (0.05) 19.7 (0.03) 24.4 (0.82)

1000 points 31.6 17.3 (0.27) 0.46 (0.00) 0.79 (0.03) 19.9 (0.00) 20.7 (0.59)

Mean values are given with standard error in parentheses calculated over 15 different samplings of the data.
doi:10.1371/journal.pone.0000207.t002..
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In a previous publication, we demonstrated the superiority of k-

LoCoH over symmetric bivariate Gaussian kernel methods [23],

whether fixed or adaptive and using Silvermen’s ad-hoc or the

least-squares-cross-validation algorithm [14,18]) for selecting the

smoothing parameter, for identifying holes in UDs and estimating

the areas of HRs. From the results presented here, it is clear that a-

LoCoH is superior to both r-LoCoH and k-LoCoH. A priori it was

not clear to us whether k or r-LoCoH would be the superior

method, but with hindsight, r-LoCoH is generally the worst

performer because it is essentially a non-parametric kernel method

in which all elements are approximately the same size (determined

by the value of r). On the other hand, the k-LoCoH method adapts

the size of the kernel elements resulting in smaller kernels in

regions with a higher density of locations. The a-LoCoH method

also has this latter adaptive property; but additionally results in the

construction of more robust UDs, because it is the method that is

the most insensitive to suboptimal value choices for its kernel

parameter (as illustrated in Figs. 5–7). Further, for the datasets

we analyzed, our heuristic rule for selecting a1 typically provided

a value that was within 30% of the value a* while our heuristic

rules for r1 and k1 fluctuated from almost the same to twice as

large as the corresponding MSHC values in the case of k-

LoCoH, and from 1/3 to 3 times less than corresponding MSHC

values in the case of r-LoCoH. Thus, researchers should feel

more confident using a1 than r1 or k1 when a priori information

on holes is unavailable. Further this confidence in a1 over r1 or k1

still applies even if we modify our heuristic rules for selecting r1
and k1 to:

N r1 is the maximum of all the nearest neighbor distances

associated with the data

N k1~2
ffiffiffi
n
p �

3 where n is the number of points in the set.

Figure 5. Illustrations of UDs constructed for data set A using k-LoCoH, r-LoCoH, and a-LoCoH methods with half, actual, and twice the optimal k, r
and a parameter values. The darkest to lightest areas represent ascending decile areas from the 10th to 100th percentile isopleths.
doi:10.1371/journal.pone.0000207.g005

LoCoH

PLoS ONE | www.plosone.org 8 February 2007 | Issue 2 | e207



In this modified case, both r1 and k1 would only be with 50% of

r* and k* respectively. Further, it is not clear that these two rules

would remain robust as sample size increase, while, from Table 2,

our heuristic rule for a seems much less affected by changes to

sample size than is the case for r and k. Thus our overall conclusion

is that a-LoCoH is the best method unless some compelling reason

exists to have all the kernels constructed either from the same

number of points (k-LoCoH) or for all to be of similar size (r-

LoCoH).

There has been some confusion about the need for points to

have a certain temporal properties. This issue has recently been

clarified by Börger et al. [21], and it is becoming clear that

Figure 6. Illustrations of UDs constructed for data set B using k-LoCoH,
r-LoCoH, and a-LoCoH methods with half, actual, and twice the optimal
k, r and a parameter values. The darkest to lightest areas represent
ascending decile areas from the 10th to 100th percentile isopleths.
doi:10.1371/journal.pone.0000207.g006

Figure 7. Illustrations of UDs constructed for data set B using k-LoCoH,
r-LoCoH, and a-LoCoH methods with half, actual, and twice the optimal
k, r and a parameter values. The darkest to lightest areas represent
ascending decile areas from the 10th to 100th percentile isopleths.
doi:10.1371/journal.pone.0000207.g007

Figure 8. Comparisons of UD constructions using an a-LoCoH estimators where the value of the parameter is â obtained using the MSHC method
(see text for details), and a parametric kernel, where the smoothing parameter h is calculated using the ad-hoc method of Silverman (1986). Panels: a.
collar T07 and b. collar T15, both in the Satara Region; and c. collar T13 and d. collar T16. both in the Lower Sabie Region. Black circles are GPS collar
locations and the hatched shape is the exclosure in a. and b. and the ridge area in c. and d. The left figure of each panel shows the 100% isopleth in
light grey and the 95% isopleth in dark grey, using the a-LoCoH method. The right figure of each panel shows the 100% kernel in light grey and the
95% parametric kernel in dark grey.
doi:10.1371/journal.pone.0000207.g008

LoCoH

PLoS ONE | www.plosone.org 9 February 2007 | Issue 2 | e207



important biological information is contained in spatiotemporal

autocorrelations of data points [6,31,32]. It is important to note,

however, that an assumption necessary to ensure the construction

of adequate unbiased UDs is that the data points have been

collected suitably often to obtain a representative sample of points

over time to cover all modes of behavior. If this is not the case,

then we have to be careful how we interpret the resulting UDs. In

particular, as the sampling intensity decreases, say to twice or four

times a day, it becomes increasingly likely that sparse, but regular

sampling may coincide with particular activities (e.g. sleeping,

drinking, eating) and result in UDs biased towards these activities.

Moreover, the scale at which the utilization can be interpreted will

still depend on the frequency of data points, even for extremely

regularly spaced points. For example, our buffalo data, collected at

hourly was still too sparse relative to rate of movement of

individuals with regard to identifying small physical obstacles on

the landscape, including a small hill that we know is not utilized by

buffalo in the Kruger National Park.

As with any numerical method that draws directly upon data,

LoCoH HR estimates and UD constructions are only as good as

the data they rely upon to carry out the numerical computations. If

these data are particularly noisy, then holes will be filled and sharp

boundaries blurred. Fortunately, the resolution of GPS data is

sufficient to accurately assess the location of sharp boundaries to

within a couple of meters when information is collected at

appropriately high frequencies (i.e. as they relate to the rate at

which individuals move along the boundaries of their range).

Assuming high quality data, the great advantage of LoCoH over

parametric kernel methods is that LoCoH estimates convergence

to true values with increasing sample size. This allows one to study

the convergence properties by comparing estimates using a tenth,

quarter, half, and all the data. If half the data, for example gives an

estimate, within a desired tolerance of the estimate obtained by all

the data (e.g. 1% or 0.1%), then one can be confident about the

precision of the estimate. Of course, one can also carry out

bootstrapping procedures to obtain standard errors [33]. In the

end, if one is interested in detecting features in the environment

that may influence the way animals utilize space, there is not

substitute for using several different methods—both parametric

and nonparametric—to construct maps overlaid on geographical

and physical feature maps and visually comparing and inspecting

the results to identify features that may be attracting, repealing, or

excluding individuals.

In summary, LoCoH methods are superior to bounded and,

especially, unbounded parametric kernel methods for constructing

UDs and HRs because they directly draw upon the actual spatial

structure of data that may well be influenced by hard boundaries

and irregular exclusionary areas in the environment. Also, our

analysis indicates that the a-LoCoH nonparametric kernel method

is generally superior to the other methods that we considered, both

in constructing UDs and in estimating the size of HRs.
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