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Abstract

Motivation: Compositional analysis is based on the premise that a relatively small propor-

tion of taxa are “differentially abundant”, while the ratios of the relative abundances of the

remaining taxa remain unchanged. Most existing methods of compositional analysis such as

ANCOM or ANCOM-BC use log-transformed data, but log-transformation of data with per-

vasive zero counts is problematic, and these methods cannot always control the false discovery

rate (FDR). Further, high-throughput microbiome data such as 16S amplicon or metagenomic

sequencing are subject to experimental biases that are introduced in every step of the exper-

imental workflow. McLaren, Willis and Callahan [1] have recently proposed a model for how

these biases affect relative abundance data.

Methods: Motivated by [1], we show that the (log) odds ratios in a logistic regression com-

paring counts in two taxa are invariant to experimental biases. With this motivation, we

propose LOCOM, a robust logistic regression approach to compositional analysis, that does

not require pseudocounts. We use a Firth bias-corrected estimating function to account for

sparse data. Inference is based on permutation to account for overdispersion and small sample

sizes. Traits can be either binary or continuous, and adjustment for continuous and/or discrete

confounding covariates is supported.

Results: Our simulations indicate that LOCOM always preserved FDR and had much im-

proved sensitivity over existing methods. In contrast, ANCOM often had inflated FDR;

ANCOM-BC largely controlled FDR but still had modest inflation occasionally; ALDEx2

generally had low sensitivity. LOCOM and ANCOM were robust to experimental biases in

every situation, while ANCOM-BC and ALDEx2 had elevated FDR when biases at causal and

non-causal taxa were differentially distributed. The flexibility of our method for a variety of

microbiome studies is illustrated by the analysis of data from two microbiome studies.

Availability and implementation: Our R package LOCOM is available on GitHub at

https://github.com/yijuanhu/LOCOM in formats appropriate for Macintosh or Windows.
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Background 1

Microbiome association studies are useful for the development of microbial biomarkers 2

for prognosis and diagnosis of a disease or for the development of microbial targets (e.g., 3

pathogenic or probiotic bacteria) for drug discovery, by detecting the taxa that are most 4

strongly associated with the trait of interest (e.g., a clinical outcome or environmental factor). 5

Read count data from 16S amplicon or metagenomic sequencing are typically summarized 6

in a taxa count (or feature) table. Because the total sample read count (library size) is an 7

experimental artifact, only the relative abundances of taxa, not absolute abundances, can be 8

measured. Thus, microbial data are compositional (constrained to sum to 1). Analysis of 9

microbial associations is further encumbered by data sparsity (having 50–90% zero counts 10

in the taxa count table), high-dimensionality (having hundreds to thousands of taxa), and 11

overdispersion. In addition, most microbiome association studies have relatively small sample 12

sizes; further complications arise as the traits of interest may be either binary or continuous, 13

and the detected associations may need to be adjusted for confounding covariates. Finally, any 14

method for detecting taxon-trait associations should control the false discovery rate (FDR) 15

[2]. The capability to handle all these features is essential for any statistical method to be 16

practically useful. 17

There are (at least) two biological models for how microbial communities may change when 18

comparing groups with different phenotypes or along a phenotypic gradient. In one model, a 19

substantial proportion of the taxa in the community change; the concept “community state 20

types” exemplifies this approach (see e.g., [3, 4]). The null hypothesis of “no differential 21

abundance” that is tested at a taxon is that the taxon relative abundance remains the same, 22

i.e., any change in taxon relative abundance across conditions is of interest. Methods for 23

testing this hypothesis include metagenomeSeq [5] and the LDM [6]. In the other model, 24

only a few key taxa are considered to change, while the other taxa show changes in relative 25

abundance because of the compositional constraint. Thus, the null hypothesis is that the 26
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ratios of the relative abundances of the other taxa are unchanged. Methods for testing this 27

hypothesis include ANCOM [7], ANCOM-BC [8], ALDEx2 [9], WRENCH [10], and DACOMP 28

[11]. Because the hypothesis in the second model accounts for the compositional constraint 29

that a change in relative abundance for one taxon necessarily implies a counterbalancing 30

change in other taxa, it is generally referred to as compositional analysis [12]. 31

Methods for compositional analysis are typically based on some form of log-ratio trans- 32

formation of the read count data. The ratio can be formed against a reference taxon or the 33

geometric mean of relative abundances of all taxa, referred to as additive log-ratio (alr) or 34

centered log-ratio (clr) transformation, respectively [13]. Thus, zero count data, which cannot 35

be log-transformed, is the major challenge in using compositional methods on microbiome 36

data. A common practice is to add a pseudocount, most frequently 1 or 0.5 or even smaller 37

values, to the zeros or all entries of the taxa count table [5, 7, 8, 13–15]. However, there is 38

no consensus on how to choose the pseudocount, and it has been shown that the choice of 39

pseudocount can affect the conclusions of a compositional analysis [16, 17]. 40

The most popular pseudocount-based method for compositional analysis is perhaps AN- 41

COM [7], which has now evolved into ANCOM-BC [8]. After adding 0.001 to all count data, 42

ANCOM performs the alr transformation and treats the transformed data as the response 43

of the linear regression model that includes the traits of interest and confounding variables 44

as covariates. For each taxon, ANCOM uses all other taxa, one at a time, as the reference 45

in forming the alr transformation, and then it employs a heuristic strategy to declare taxa 46

that are significantly differentially abundant (outputting rankings of taxa instead of p-values). 47

ANCOM-BC first estimates sampling fractions that are different across samples, and then 48

models the log of read count data, in which zeros are replaced by pseudocount 1, through a 49

linear regression model including the estimated sampling fraction as an offset term. This is 50

essentially a normalization approach that first attempts to recover the absolute abundances 51

of taxa and then test hypotheses about the absolute abundances. Unlike ANCOM, ANCOM- 52

BC provides p-values for individual taxa. Both ANCOM and ANCOM-BC are restricted to 53
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group comparisons and can not handle continuous traits of interest, although adjustment for 54

confounding covariates is supported. 55

Several methods have been developed that circumvent the use of pseudocount. ALDEx2 [9] 56

first draws Monte-Carlo samples of non-zero relative abundances from Dirichlet distributions 57

(with parameters constructed from read count data plus a uniform prior 0.5). Then, the 58

sampled relative abundances are clr transformed and tested against the traits of interest via 59

linear regression to yield p-values and adjusted p-values by the Benjamini-Hochberg (BH) 60

procedure [18], both of which are averaged over sampling replicates to give the final p-values 61

and adjusted p-values. In our simulations, we found that ALDEx2 tends to have low power, 62

possibly due to the noise introduced in the sampling process. DACOMP [11] is a normalization 63

approach that first selects a set of null reference taxa by a data-adaptive procedure and then 64

normalizes read count data by rarefaction so that each taxon within the reference has similar 65

counts across samples. However, the selected reference set may mistakenly contain causal 66

taxa, which may compromise the performance of the normalization. In addition, adjustment 67

for confounding covariates is not supported, although continuous traits of interest are allowed. 68

WRENCH [10] is also a normalization approach that estimates group-specific compositional 69

factors to bring the read counts of null taxa across groups to a similar level and employs 70

DESeq2 to detect differentially abundant taxa. It is limited to group comparisons without 71

confounding covariates. 72

It is also of interest to test differential abundance at the community (i.e., global) level, 73

rather than taxon by taxon, using the compositional analysis approach. The most commonly 74

used method for testing community-level hypotheses about the microbiome is PERMANOVA 75

[19], which is a distance-based version of ANOVA. In the context of compositional analysis, 76

the Aitchison distance can be used [12], which is simply the Euclidean distance applied to the 77

clr transformed data [20]. Again, the clr transformation necessitates the use of pseudocount, 78

so the choice of pseudocount may affect the outcome of the test. 79

Finally, it is of particular interest to develop a method that can provide valid inference even 80
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in the presence of experimental bias. Experimental bias is ubiquitous because each step in 81

the sequencing experimental workflow (i.e., DNA extraction, PCR amplification, amplicon or 82

metagenomic sequencing, and bioinformatics processing) preferentially measures (i.e., extracts, 83

amplifies, sequences, and bioinformatically identifies) some taxa over others [1, 21–23]. For 84

example, bacterial species differ in how easily they are lysed and therefore how much DNA 85

they yield during DNA extraction [24]. As a result, the bias distorts the measured taxon 86

relative abundances from their actual values. 87

We are particularly interested in the case of differential bias, where the bias of taxa that 88

are associated with a trait is systematically different from the bias of null taxa. A concrete 89

example of this is the differential bias between bacteria in the phyla Bacteroidetes and Firmi- 90

cutes. Bacteroidetes are gram-negative, while Firmicutes are gram-positive. It is known that 91

gram-positive bacteria have strong cell walls and are hence harder to lyse than gram-negative 92

bacteria; thus gram-positive bacteria may be underrepresented due to bias in the extraction 93

step of sample processing. The Bacteroidetes-Firmicutes ratio has been implicated in a num- 94

ber of studies of the gut microbiome (e.g., [25, 26]). Thus, studies that compare Bacteroidetes 95

to Firmicutes may be affected by differential extraction bias. In some of our simulations, we 96

consider the effect this kind of differential bias can have on the FDR. 97

In this article, we develop a novel method for compositional analysis of differential abun- 98

dance, at both the taxon level and the global level, based on a robust version of logistic 99

regression that we call LOCOM (LOgistic COMpositional). Our method circumvents the use 100

of pseudocount, does not require the reference taxon to be null, and does not require normal- 101

ization of the data. Further, it is applicable to a variety of microbiome studies with binary 102

or continuous traits of interest and can account for potentially confounding covariates. In the 103

methods section, we give the motivation for using logistic regression as a way to minimize 104

the effect of experimental bias in analyzing microbiome data, and describe the details of our 105

approach. In the results section, we present simulation studies that compare the performance 106

of LOCOM to other compositional methods. We also compare results from LOCOM and other 107
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methods in the analysis of two microbiome datasets. We conclude with a discussion section. 108

Methods 109

Let Yij be the read count of the jth taxon (j = 1, . . . , J) in the ith sample (i = 1, . . . , n) 110

and Ni the library size of the ith sample. We denote by Pij the observed relative abundance, 111

given by Yij/Ni. We let Xi be a vector of q covariates including the (possibly multiple) traits 112

of interest and other (confounding) covariates that we wish to adjust for, but excluding the 113

intercept. 114

Motivation 115

Our starting point is the model of McClaren, Willis and Callahan [1], as expanded by 116

Zhao and Satten [27], which relates the expected value of the observed relative abundance, 117

denoted by pij, to the true relative abundance we would measure in an experiment with no 118

experimental bias, denoted by πij. In particular, this model assumes that 119

log(pij) = log(πij) + γj + αi, (1)

where γj is the taxon-specific bias factor that describes how the relative abundance is distorted 120

by the bias, and αi is the sample-specific normalization factor that ensures the composition 121

constraint
∑J

j=1 pij = 1. Following [27], we further assume that the true relative abundance 122

πij can be described by a baseline relative abundance π0
j that would characterize the true 123

relative abundance of taxon j for a sample having Xi = 0 and a term that describes how the 124

baseline relative abundance is changed in the presence of covariates Xi 6= 0. Then, we can 125

replace (1) by 126

log(pij) = log(π0
j ) +XT

i βj + γj + αi, (2)

where βj describes the way the true relative abundance changes with covariates Xi and is 127

our parameter of interest. The presence of bias factors in (1) and (2) imply that inference 128

based on the observed relative abundances Pij may not give valid inference on βj. It is clear 129
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that, without knowing the bias factor γj, we cannot estimate log(π0
j ) as log(π

0
j ) and γj always 130

appear together as a sum. 131

We can examine equation (2) to see if there are any combinations of parameters that 132

could potentially be estimated without knowing the bias factors. Analyzing log (probability) 133

ratios such as log(pij/pij′) removes the effect of αi (which depends on bias factors through 134

normalization) but does not remove the effect of γj. However, if we use (2) to write odds 135

ratios of observed relative abundances for two different taxa and two different samples, we 136

find 137

log

(
pijpi′j′

pij′pi′j

)
= (Xi −Xi′)

T(βj − βj′), (3)

which is independent of bias factors. This motivates the choice of logistic regression to analyze 138

microbiome count data. 139

Note that testing βj − βj′ = 0 in (3) corresponds to testing pij/pij′ = pi′j/pi′j′ , which is 140

exactly the null hypothesis in a compositional analysis, e.g., in popular compositional models 141

of the microbiome such as ANCOM and ALDEx2. As a result, logistic regression based on 142

(3) is of interest even without the bias-removal motivation provided here. 143

Multivariate logistic regression model 144

Equation (3) implies a polychotomous logistic regression of the full n×J taxa count table. 145

This is numerically difficult as the analysis of each taxon potentially requires all βj parameters. 146

Instead, we follow Begg and Grey [28] and analyze data using individualized logistic regression 147

of just two taxa at a time. Rather than considering all possible pairs of taxa, we choose one 148

taxon (without loss of generality, the Jth taxon) to be a reference taxon, and compare all 149

other taxa to the reference taxon. Then, if we define µij = pij/(pij +piJ), equation (2) implies 150

log

(
µij

1− µij

)
= θj +XT

i (βj − βJ), 1 ≤ j ≤ J − 1 (4)

where the intercept θj =
[
log(π0

j )−log(π0
J)
]
+(γj−γJ) is treated as a free, nuisance parameter. 151

The model is over-parameterized and only J − 1 of (β1, β2, . . . , βJ) are identifiable. We set 152
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βJ = 0 to ensure identifiability. According to [28], the efficiency of individualized logistic 153

regression highly depends on the prevalence (relative abundance) of the reference category, so 154

we recommend that the reference taxon be a common taxon that is present in a large number 155

of samples. 156

To avoid distributional assumptions in a standard logistic regression, we consider the score

functions as estimating functions. When a taxon is rare and/or the sample size is small, it

may occur that all (or nearly all) counts for that taxon are zero in one group (e.g., the case or

control group), which is referred to as separation in the literature on logistic regression. It is

known that the Firth bias correction [29], when applied to logistic regression [30], solves the

problem of separation. Hence, we estimate βj by solving the Firth-corrected score equations

Uj(βj) =
n∑

i=1

[
Yij −Mijµij + hi

(
0.5− µij

)]
Xi = 0,

where Mij = Yij + YiJ and hi is the ith diagonal element of the weighted hat matrix 157

W
1

2

j X(XTWjX)−1XTW
1

2

j with the weight matrix Wj = Diag [Mijµij(1− µij)]. We let β̂j 158

denote the estimator of βj obtained by solving the above equation. 159

Testing hypotheses at individual taxa 160

Now we derive the formula for the null hypotheses that correspond to null taxa. Write βj = 161

(βj,1, βj,−1), where βj,1 is the coefficient for the trait of interest and βj,−1 for the other covariates. 162

We assume one trait of interest here although our methodology is readily generalizable to test 163

multiple traits simultaneously. The naive formula βj,1 = 0 corresponds to a null taxon only 164

when the reference taxon used in (4) is null. As we have no such knowledge about the reference 165

taxon a priori, we seek a formula that does not require such knowledge; in addition, we need 166

a test for the reference taxon per se. 167

To this end, we make the assumption that more than half of the taxa are null taxa, which

has been frequently adopted in compositional methods [10, 11]. We use the formula

Hj0 : βj,1 −medianj′=1,...,J{βj′,1} = 0,
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where j = 1, . . . , J . Recall that βJ,1 = 0, which is included in the median calculation 168

and also used to obtain a test for the reference taxon. With the assumption, we expect 169

medianj′=1,...,J{βj′,1} to correspond to the value of βj′,1 for some null taxon j′. Thus, Hj0 170

always corresponds to a test of taxon j against a null taxon, irrespective of whether the 171

reference taxon J is null or not. Note that the clr transformation log(πij/ J

√∏
j′ πij′) is equiv- 172

alent to subtracting meanj′=1,...,J{βj′,1} off βj,1, but the mean is sensitive to large or outlying 173

observations. 174

For testing Hj0, it is natural to use the test statistic Zj = β̂j,1−medianj′=1,...,J{β̂j′,1}. In the 175

simplest case testing a binary trait with no other covariates, Zj is invariant to different choices 176

of the reference taxon, since all pairwise log odds ratios (βj − βj′) in this case are estimated 177

by the empirical log odds ratios log{n1jn0j′/(n0jn1j′)}, where nxj =
∑

i:Xi=x Yij. This holds 178

even if the Firth-corrected estimator is used because, in this simple case, the Firth-corrected 179

estimator corresponds to adding 1/2 to each nxj [29, 30]. For general cases, we evaluate the 180

dependence of Zj on the reference taxon via simulations. 181

To avoid distributional assumptions in sparse microbiome data, we assess the significance 182

of Zj using the permutation scheme for logistic regression proposed by Potter [31]. Specifically, 183

the covariate vector Xi is partitioned into (Ti, Ci) where Ti denotes the trait of interest and Ci 184

the other covariates including the intercept. A linear regression of Ti on Ci is fit to obtain the 185

residual Tir, which is then permuted to obtain T
(b)
ir and to construct the new covariate vector 186

X
(b)
i =

(
T

(b)
ir , Ci

)
. We follow the same procedure as for the observed dataset to obtain the 187

estimate of βj,1 from the bth permutation replicate, denoted by β̂
(b)
j,1 , and the corresponding 188

statistic Z
(b)
j = β̂

(b)
j,1 − medianj′

{
β̂
(b)
j′,1

}
. We adopt Sandve’s sequential stopping rule [32] with 189

a minor modification to stop the permutation procedure, which is described below. At the 190

Bth current permutation, we record the numbers of times that Z
(b)
j falls on the left and 191

right hand side of Zj by Lj and Rj, respectively, and count the number of rejection to be 192

2min(Lj + 1, Rj + 1). The current p-value is given by pj = 2min(Lj + 1, Rj + 1)/(B + 1) and 193

the current q-value is calculated according to [32]. The permutation procedure is continued 194
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until each taxon either has the q-value below the nominal FDR level or has the number of 195

rejection exceeding a pre-specified level (e.g., 100). This stopping rule is slightly different from 196

Sandve’s in that we obtain β̂
(b)
j,1 for every taxon at every permutation, rather than stopping 197

permutation early for some taxa, because the median calculation requires β̂
(b)
j,1 from all taxa. 198

Testing the global hypothesis 199

The global null hypothesis is that there are no differentially abundant taxa, i.e., Hj0 holds 200

for every taxon. Given the p-values at individual taxa, it is straightforward to construct a 201

global test statistic by combining the individual p-values. Here we adopt the harmonic-mean 202

approach proposed by Wilson et al. [33] to combining p-values, which is more robust to 203

the dependence structure among taxa than Fisher’s method. The harmonic mean of pjs is 204

J/
(∑J

j=1 p
−1
j

)
, whose smaller values correspond to stronger evidence against the null hypoth- 205

esis. To have a usual test statistic with a reversed directionality, we choose Zglobal =
∑J

j=1 p
−1
j . 206

We use all permutation replicates generated for taxon-level tests, say B, to assess the signifi- 207

cance of Zglobal. At the bth permutation replicate, the test statistic is Z
(b)
global =

∑J

j=1

{
p
(b)
j

}
−1
, 208

where p
(b)
j is the p-value of taxon j at this null replicate. Following [34], we calculate the null p- 209

value p
(b)
j using the rank statistic to be p

(b)
j = 2B−1 min

{[
rank

(
Z
(b)
j

)
−0.5

]
,
[
B− rank

(
Z
(b)
j

)
+ 210

0.5
]}

, where rank
(
Z

(b)
j

)
is the rank of Z

(b)
j among B such statistics. Let Rglobal be the number 211

of times that Z
(b)
global falls on the right hand side of Zglobal. Then, the global p-value is given by 212

(
Rglobal + 1

)
/(B + 1). 213

Results 214

Simulation studies 215

We used simulation studies to evaluate the performance of LOCOM and compare its perfor- 216

mance to other currently-available compositional analysis packages. We based our simulations 217

on data on 856 taxa of the upper-respiratory-tract (URT) microbiome; these taxa correspond 218
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to the “OTUs” in the original report on these data by Charlson et al. [35]. We considered both 219

binary and continuous traits of interest and both binary and continuous confounders, as well 220

as the case of no confounder. We assumed two causal mechanisms. For the first mechanism 221

(referred to as M1), we randomly sampled 20 taxa (after excluding the most abundant taxon) 222

whose mean relative abundances were greater than 0.005 as observed in the URT data to be 223

causal (i.e., associated with the trait of interest). For the second mechanism (referred to as 224

M2), we selected the top five most abundant taxa (having mean relative abundance 0.105, 225

0.062, 0.054, 0.050, and 0.049) to be causal. For simulations with a confounding covariate, we 226

assumed the confounder was associated with 20 taxa under M1 (10 sampled at random from 227

the 20 causal taxa and 10 from the null taxa) and 5 taxa under M2 (2 from the 5 causal taxa 228

and 3 from the null taxa). We simulated most data without adding experimental bias, but 229

did conduct one set of simulations having differential experimental bias. We focused on data 230

sets having 100 observations but also considered some data sets with 200 observations. 231

To be specific, we let Ti denote the trait and Ci the confounder for the ith sample. To 232

generate a binary trait, we selected an equal number of samples with Ti = 1 and Ti = 0. When 233

a binary confounder was present, we drew Ci from the Bernoulli distribution with probability 234

0.2 in samples with Ti = 0 and from the Bernoulli distribution with probability 0.8 in samples 235

with Ti = 1. When a continuous confounder was present, we drew Ci from the uniform 236

distribution U [−1, 1] in samples with Ti = 0 and U [0, 2] in samples with Ti = 1. To generate 237

a continuous trait, we sampled it from U [−1, 1] when there was no confounder. When there 238

was a binary confounder, we used the aforementioned data generated for a binary trait and 239

a continuous confounder but exchanged the roles of trait and confounder. When there was a 240

continuous confounder, we generated Ti from U [−1, 1] and a third variable Zi from U [−1, 1] 241

independently of Ti, and then constructed the confounder Ci = ρTi+
√
1− ρ2Zi, where ρ was 242

fixed at 0.5. 243

To simulate read count data for the 856 taxa, we first sampled the baseline (when Ti = 0

and Ci = 0) relative abundances π
(0)
i =

(
π
(0)
i1 , π

(0)
i2 , . . . , π

(0)
iJ

)
of all taxa for each sample from
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the Dirichlet distribution Dirichlet(π, θ), where the mean parameter π and overdispersion

parameter θ took the estimated mean and overdispersion (0.02) in the Dirichlet-Multinomial

(DM) model fitted to the URT data. We formed the relative abundances pij for all taxa by

spiking the j′th causal taxon with an exp(βj′,1)-fold change and the j′′th confounder-associated

taxon with an exp(βj′′,2)-fold change, then re-normalizing the relative abundances, so that

pij =
exp

(
γj + βj,1Ti + βj,2Ci

)
π
(0)
ij∑J

j′=1 exp
(
γj′ + βj′,1Ti + βj′,2Ci

)
π
(0)
ij′

,

where γj was the bias factor for the jth taxon. Note that βj,1 = 0 for null taxa, βj,2 = 0 for 244

confounder-independent taxa, and γj = 0 for all taxa for data without experimental bias. In 245

most cases, for simplicity, we set βj,1 = β for all causal taxa, and thus β is a single parameter 246

that we refer to as the effect size; we refer to exp(β) as the fold change. In some cases, we 247

also considered the more general scenario when different values were sampled for different βj,1. 248

We fixed βj,2 = log(2) for all confounder-associated taxa. When there was no confounder, we 249

simply dropped the term βj,2Ci in calculating pij. In cases with differential experimental bias, 250

we drew γj from N(0, 0.82) for non-causal taxa and from N(1, 0.82) for causal taxa. Finally, 251

we generated the taxon count data for each sample using the Multinomial model with mean 252

πi = (πi1, πi2, . . . , πiJ) and library size sampled from N(10000, (10000/3)2) and left-truncated 253

at 2000. 254

We applied two versions of LOCOM: one used the most abundant null taxon as the ref- 255

erence, which is referred to as LOCOM-null, and one used the most abundant causal taxon 256

as the reference, referred to as LOCOM-causal. In practice when the most abundant taxon is 257

chosen as the reference, LOCOM-null would be used in M1 and LOCOM-causal in M2; the 258

other version served as an internal check of the robustness of LOCOM to the choice of the ref- 259

erence taxon. For testing the global hypothesis, we compared LOCOM to PERMANOVA (the 260

adonis2 function in the vegan R package) based on the Aitchison distance, which is referred 261

to as PERMANOVA-half and PERMANOVA-one corresponding to adding pseudocount 0.5 262

and 1, respectively, to all cells. The type I error and power of the global test were assessed 263
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at the nominal level 0.05 based on 5000 and 1000 replicates of data, respectively. For test- 264

ing individual taxa, we compared LOCOM to ANCOM, ANCOM-BC, ALDEx2, DACOMP, 265

and WRENCH. However, ANCOM, ANCOM-BC, and WRENCH cannot handle continuous 266

traits; DACOMP and WRENCH cannot adjust for other covariates. Prior to analysis, we 267

removed taxa having fewer than 20% presence (i.e., present in fewer than 20% of samples) 268

in each simulated dataset. For ANCOM and ANCOM-BC, we also considered their own fil- 269

tering criterion with 10% presence as the cutoff and refer to these methods as ANCOMo and 270

ANCOM-BCo. In the case with a binary trait only, we considered two additional methods, 271

Pseudo-half and Pseudo-one, which add pseudocount 0.5 and 1, respectively, to all cells, form 272

the alr using the most abundant null taxon as the reference, perform the Wilcoxon rank-sum 273

test at individual log ratios, and correct multiple comparisons using the Benjamini-Hochberg 274

method. Because the reference was selected to be a taxon known to be null, these methods are 275

not applicable to real studies but are included in the simulations here to assess the properties 276

of the pseudocount approach to testing individual taxa. The sensitivity (proportion of truly 277

causal taxa that were detected) and empirical FDR were assessed at nominal FDR 20% based 278

on 1000 replicates of data. We chose a relatively high nominal FDR because the numbers of 279

causal taxa in both M1 and M2 were small. 280

Simulation results 281

The type I error of the global tests for all simulation scenarios are summarized in Table S1. 282

In all scenarios, LOCOM-null and LOCOM-causal yielded type I error rates that were close to 283

the nominal level and generally closer for sample size 200 than 100. Note that, in cases when 284

there was a confounder, there was substantial inflation of type I error when the confounder 285

was not accounted for (Table S2), demonstrating that LOCOM is effective in adjusting for 286

confounders. The PERMANOVA tests also controlled type I error. In cases without any 287

confounder, the zero data were similarly distributed across trait values under the (global) 288

null, so the effect of adding pseudocount is non-differential. In cases with a confounder, the 289
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taxa associated with the confounder caused the zeros to be differentially distributed across 290

trait values, so that adding pseudocount had a differential effect for different trait values; 291

however, this difference was controlled by adding the confounder as a covariate in the model. 292

Note that, although the pseudocount approach did not lead to invalid global tests, it did lead 293

to invalid tests at individual taxa (in the presence of causal taxa), as indicated in the FDR of 294

Pseudo-one and Pseudo-half (Figures 1 and Figures S3). 295

Figures 1–4 present power of the global tests and sensitivity and empirical FDR of the 296

individual taxon tests, for a binary or continuous trait without and with a binary confounder. 297

The results for cases with a continuous confounder are deferred to Figures S1–S2, which show 298

similar patterns of results to their counterparts with a binary confounder (Figures 3–4). While 299

these figures pertain to the sample size 100, Figures S3–S8 pertain to the sample size 200 and 300

show similar patterns of results to their counterparts with the sample size 100. 301

In the simplest scenario with a binary trait and no confounder (Figures 1 and S3), LOCOM- 302

null and LOCOM-causal yielded identical results; in fact, the two methods gave identical p- 303

values for every dataset in this case, which corroborates our claim that the test is invariant 304

to different reference taxa. In other scenarios, LOCOM-null and LOCOM-causal produced 305

similar results although the one using the more abundant taxon as the reference (LOCOM- 306

null in M1 and LOCOM-causal in M2) tended to be more powerful and more sensitive. In all 307

scenarios, the LOCOM tests yielded the highest power for testing the global hypothesis and 308

the highest sensitivity for testing individual taxa while always controlling the FDR. 309

The competing methods generally have limited application to the scenarios we consid- 310

ered and significantly inferior performance to LOCOM. PERMANOVA had similar power to 311

LOCOM in M1 but lost substantial power to LOCOM in M2. For testing individual taxa, 312

ALDEx2 is the only method that is applicable to all scenarios; although it controlled the FDR 313

in most cases, it still lost control occasionally (S3 and S7) and it had much lower sensitivity 314

than LOCOM in all cases. ANCOM and ANCOM-BC are only applicable for testing binary 315

traits, with or without confounders. ANCOM easily lost control of FDR, especially with their 316
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own, less stringent filtering criterion. ANCOM-BC controlled the FDR better than ANCOM 317

but still had some modest inflation (e.g., Figure 3). Both ANCOM and ANCOM-BC had 318

substantially lower sensitivity than LOCOM when they controlled the FDR. DACOMP is 319

applicable for testing both binary and continuous traits but without any confounder; in these 320

scenarios, DACOMP largely controlled the FDR but still lost control occasionally (Figure S3, 321

under M2); although the sensitivity of DACOMP tended to be the largest among all compet- 322

ing methods, it is significantly lower than that of LOCOM. WRENCH is only applicable to 323

one scenario (with a binary trait and no confounder) in which case it had inflated FDR and 324

nevertheless low sensitivity. 325

Results for simulated data with differential experimental bias (and a binary trait and no 326

confounder) are shown in Figure 5. These simulations showed that while LOCOM, ANCOM, 327

and DACOMP were unaffected by differential bias, ANCOM-BC, ALDEx2, and WRENCH 328

were sensitive to differential bias, and yielded significantly inflated FDR in the presence of 329

such bias. 330

Results for simulated data with heterogeneous βj,1 values are displayed in Figure S9. The 331

patterns we observed with heterogeneous βj,1 values were similar to those seen in the analogous 332

simulations with homogeneous βj,1 values (Figure 3). 333

URT microbiome data 334

The data for our first example were generated as part of a study to examine the effect of 335

cigarette smoking on the orpharyngeal and nospharyngeal microbiome [35]. We focused on 336

the left orpharyngeal microbiome in this analysis. The 16S sequence data were summarized 337

into a taxa count table consisting of data from 60 samples and 856 taxa. The trait of interest 338

was a binary variable for smoking status, which classified the samples into 28 smokers and 339

32 nonsmokers. Other covariates include gender and antibiotic use within the last 3 months. 340

There was an imbalance in the proportion of males by smoking status (75% in smokers, 56% 341

in non-smokers), indicating a potential confounding effect of gender. Since there were only 342
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three samples who used antibiotics within the last 3 months, we excluded these samples from 343

our analysis and adjusted for gender only. We adopted the same filter (20% presence) as in the 344

simulation studies, which resulted in 111 taxa for downstream analysis. We applied LOCOM 345

with the most abundant taxon (having mean relative abundance 10.5% before filtering and 346

11.4% after filtering) as the reference. Given the need to adjust for gender, we only applied 347

ANCOM, ANCOM-BC, and ALDEx2 as a comparison. The nominal FDR was set at 10%. 348

As shown in the upper panel of Table 1, the global p-value of LOCOM is 0.0045, which 349

indicates a significant difference in the overall microbiome profile between smokers and non- 350

smokers after adjusting for gender. At the taxon level, LOCOM, ALDEx2, ANCOM, and 351

ANCOM-BC detected 6, 0, 2, and 2 taxa, respectively; Figure S10 displays a Venn diagram 352

of these sets of taxa; Table S3 lists information on the 6 taxa detected by LOCOM. Figure 353

6 shows the distributions of relative abundance across four covariate groups cross-classified 354

by smoking status and gender, for taxa detected by LOCOM, ANCOM, and ANCOM-BC, as 355

well as for two null taxa. One null taxon is the taxon with the median β̂j,1 value. The other is 356

the average of a group of null taxa for improved stability. The two null taxa both had lower 357

relative abundance in smokers than in non-smokers, among either females or males. The six 358

taxa detected by LOCOM all had the opposite trend (i.e., higher relative abundance in smokers 359

than in non-smokers), indicating that these taxa are likely to be real signals (i.e., overgrew 360

in smokers). The taxon detected by ANCOM only also had the opposite trend to the null 361

taxa, but it was not detected by LOCOM because the adjusted p-value (0.137) by LOCOM 362

did not meet the nominal FDR. The taxon detected by ANCOM-BC only had a similar trend 363

as the null taxa, suggesting that this taxon may actually be a null taxon; indeed, the adjusted 364

p-value by LOCOM is 0.674. Note that the difference in relative abundance distributions 365

between smokers and non-smokers at null taxa may be considered as the counterbalancing 366

change that the null taxa underwent in response to the changes at the causal taxa. 367

The original analysis of this dataset [35] reported that Megasphaera and Veillonella spp. 368

were most enriched in the left oropharynx of smokers compared to non-smokers. Later, a 369
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large study of oral microbiome (from oral wash samples) in 1204 American adults [36] reported 370

enrichment of Atopobium, Streptococcus, and Veillonella in smokers compared to non-smokers. 371

More recently, a shotgun metagenomic sequencing study of salivary microbiome in Hungary 372

population [37] reported enrichment of Prevotella and Megasphaera in smokers compared to 373

non-smokers. Thus, all six taxa detected by LOCOM have been implicated in the literature, 374

even if we only consider the latter two independent studies. These taxa were largely missed 375

by ANCOM and ANCOM-BC. 376

PPI microbiome data 377

The data for our second example were generated in a study of the association between the 378

mucosal microbiome in the prepouch-ileum (PPI) and host gene expression among patients 379

with IBD [38]. The PPI microbiome data from 196 IBD patients were summarized in a taxa 380

count table with 7,000 taxa classified at the genus level. The gene expression data at 33,297 381

host transcripts, as well as clinical metadata such as antibiotic use (yes/no), inflammation 382

score (0–9), and disease type (familial adenomatous polyposis/FAP and non-FAP) were also 383

available. The data also included nine gene principal components (gPCs) that together ex- 384

plained 50% of the total variance in host gene expression. Here, we included all nine gPCs as 385

multiple traits of interest into one model while adjusting for the three potentially confounding 386

covariates. We filtered out taxa based on our previous filtering criterion, which resulted in 387

507 taxa to be included in the analysis. We applied LOCOM with the most abundant (8.2%) 388

taxon as the reference. Given the continuous traits of interest and the three covariates, we 389

only considered ALDEx2 for comparison. The nominal FDR was set at 10%. 390

The results of PPI data analysis are presented in the lower panel of Table 1. LOCOM 391

discovered that gPC2, gPC3, and gPC5 had significant associations with the overall microbial 392

profiles at the α = 0.05 level. LOCOM detected 2, 2, and 32 taxa as associated with gPC2, 393

gPC3, and gPC5, respectively, at the 10% FDR level, and did not detect any taxa for the 394

gPCs that were not found to be associated with the microbiome by the global test. Among the 395
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32 taxa associated with gPC5, 15 belong to the genus Escherichia (Table S3), which appeared 396

frequently in the literature of IBD according to a highly-cited review article [39]. ALDEx2 397

failed to detect any taxa. 398

Discussion 399

We have presented LOCOM, a novel compositional approach for testing differential abun- 400

dance in the microbiome data, at both the taxon level and the global level. The global statistic 401

is an aggregate of p-values from tests of individual taxa, so results from the taxon-level and 402

global tests are coherent. LOCOM allows both binary and continuous traits of interest, can 403

test multiple traits simultaneously, and can adjust for confounding covariates. In our simu- 404

lations, the taxa detected by LOCOM always preserved FDR while those identified by the 405

competing methods did not, even though LOCOM had clearly superior sensitivity. In ad- 406

dition, LOCOM also provided a global test that always controled the type I error and had 407

good power compared to PERMANOVA. In analysis of the URT microbiome data, we demon- 408

strated that the taxa detected by LOCOM were likely to be real signals while those detected 409

by ANCOM and/or ANCOM-BC but not LOCOM may be false positives. In analysis of the 410

PPI microbiome data, since global and taxon-specific tests were coherent, LOCOM identified 411

significant taxa only for gene principal components that were globally significant. 412

It is possible to generalize LOCOM to test a categorical trait with more than two levels. 413

Ordered categories could be handled in the framework presented here by assigning an appro- 414

priate score to each category and then treating this score as a continuous variable. For a 415

categorical trait with K unordered categories, we would presumably need to estimate K − 1 416

effect sizes to fully describe the variable; we could then compare some summary (e.g., max 417

or mean) of these effect sizes to the equivalent value in the null permutations. Although this 418

better analysis would require some software development and simulation testing, a simpler pro- 419

posal could provide results within the existing framework, by calculating separate (marginal) 420

p-values for each of the K−1 components and then combining these p-values into a single test 421
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statistic, e.g., by using the harmonic mean statistic we used to form our global test. Choosing 422

these K − 1 components to be orthogonal may be helpful here. We hope to modify LOCOM 423

to incorporate multi-category variables in future work. 424

Our filtering criterion to exclude taxa with fewer than 20% presence in the sample worked 425

well for the extensive simulation studies we conducted. In fact, a compositional analysis 426

performs best when non-null taxa are relatively common throughout all samples. Analyses 427

that look for the effect of rare taxa should probably be focussed on a presence-absence analysis 428

[40, 41], or on a method based directly on relative abundances. 429

The compositional null hypothesis considered here is also appropriate in other experimental 430

settings, such as studies of gene expression. This hypothesis corresponds to the scenario that 431

a small number of microbes have “bloomed” while the absolute counts of the others have 432

not changed; this is the reason we made the assumption that more than half of the taxa are 433

null taxa, which is commonly made in other compositional methods. In the gene expression 434

experiment, we often see only a few genes that are differentially expressed; the majority of 435

genes have the same expression in cases and controls. However, it is not completely clear that 436

the compositional hypothesis is applicable to microbiome data because, unlike genes, microbes 437

interact with each other: not only do they compete for resources, but they also change their 438

environment in ways that favor some microbes and suppress others. For example, Lactobacilli 439

generally make lactic acid, which changes the pH of the environment. This suppresses microbes 440

that do not thrive in an acidic environment while encouraging growth of microbes that do. 441

Because the microbiota are a community, it is not unreasonable to expect that potentially every 442

taxon changes between cases and controls. The “community change” null hypothesis may also 443

be reasonable because, when comparing the alpha diversity with causal taxa spiked in to a case 444

group, the control group would have a lower alpha diversity (i.e., lower evenness); if this change 445

in alpha diversity is meaningful, then the “community change” null hypothesis is appropriate. 446

When the “community change” null hypothesis seems more reasonable than the compositional 447

null hypothesis, then a method that applies directly to relative abundance data such as the 448
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LDM is more appropriate. Note that, unlike the compositional null, the “community change” 449

null hypothesis will consider all taxon relative abundances to be potentially changed if extra 450

counts of a small number of taxa are “spiked in”. However, the LDM when applied to relative 451

abundance data is not invariant to experimental bias the way LOCOM is; in fact, hypotheses 452

based on differences in relative abundances typically require tests based on unbiased data to 453

be valid. 454

We showed both theoretically and with simulation studies that LOCOM is unaffected by 455

experimental bias, even when bias factors are differentially distributed between causal and 456

non-causal taxa. While some competing compositional methods (ANCOM and DACOMP) 457

share this robustness, others (ANCOM-BC, ALDEx2 and WRENCH) do not. This may 458

be related to the choice of centering; in general, the centered log ratio will not be robust 459

when there are cells with zero counts, since this centering will depend on the set of taxa 460

seen in each sample even if a pseudocount is used. Thus, the centering may not cancel out 461

when comparing log ratios from different samples, leaving these comparisons affected by the 462

particular bias factors that characterize the data being analyzed. Note that any compositional 463

method should perform well when the bias is non-differential, since the centering will be the 464

same on average in each sample. 465

We have implemented our method in the R package LOCOM, which is computationally 466

efficient for data with small sample sizes but can take longer for larger sample sizes. For 467

example, using parallel computing (by parallelizing permutation replicates) with 4 cores of a 468

MacBook Pro laptop (1.4 GHz Quad-Core Intel Core i5, 8GB memory), it took 11s to analyze 469

a simulated dataset with 100 samples, 11s to analyze the URT data, and 40 mins to analyze 470

the PPI data. In considering this last timing, it should be noted that the analysis considered 9 471

traits simultaneously in the presence of 3 confounding covariates, and as such is more complex 472

than the typical microbiome analysis. In addition, LOCOM could be further parallelized by 473

splitting the data into subsets with sets of taxa that only share the reference taxon and then 474

combining the values of βj,1 from each dataset (care should be taken to use the same seed for 475
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each analysis so that the same set of permutations is used). 476
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Table 1: Results in analysis of the two real datasets

Global p-value Number of detected taxa

Trait LOCOM LOCOM ALDEx2 ANCOM ANCOM-BC

URT microbiome data

Smoking 0.0045 6 0 2 2

PPI microbiome data

gPC1 0.70 0 0 NA NA

gPC2 0.020 2 0 NA NA

gPC3 0.018 2 0 NA NA

gPC4 0.16 0 0 NA NA

gPC5 0.0070 32 0 NA NA

gPC6 0.59 0 0 NA NA

gPC7 0.11 0 0 NA NA

gPC8 0.21 0 0 NA NA

gPC9 0.11 0 0 NA NA

Note: ANCOM and ANCOM-BC are not applicable for testing continuous traits.
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Figure 1: Simulation results for data (n = 100) with a binary trait (and no confounder).
The power at exp(β) = 1 corresponds to the type I error. The gray dotted line indicates the
nominal type I error 0.05 in the first row and the nominal FDR 20% in the last row.
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Figure 2: Simulation results for data (n = 100) with a continuous trait (and no
confounder).

29



0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

M1

P
o
w

e
r

1 1.5 2 2.5 3 3.5 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

M2

1 1.25 1.5 1.75 2

PERMANOVA−half
PERMANOVA−one
LOCOM−null
LOCOM−causal

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
e

n
s
it
iv

it
y

1 1.5 2 2.5 3 3.5 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ANCOM 
ANCOMo 
ANCOM−BC 
ANCOM−BCo 
ALDEx2

1 1.25 1.5 1.75 2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

E
m

p
ir

ic
a

l 
F

D
R

1 1.5 2 2.5 3 3.5 4

 exp(β)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1 21.25 1.5 1.75      
 exp(β)

Figure 3: Simulation results for data (n = 100) with a binary trait and a binary
confounder.
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Figure 4: Simulation results for data (n = 100) with a continuous trait and a binary
confounder.
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Figure 5: Simulation results for data (n = 100) with differential experimental bias in the
binary-trait setting (no confounder).

32



0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

UTR−1 (Veillonella)

R
e

la
ti
ve

 a
b
u

n
d

a
n

c
e

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

UTR−2 (Streptococcus)

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

UTR−3 (Atopobium)
R

e
la

ti
ve

 a
b
u

n
d

a
n

c
e

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

UTR−4 (Megasphaera)
0

.0
0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5

UTR−5 (Prevotella)

R
e

la
ti
ve

 a
b
u

n
d

a
n

c
e

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

UTR−6 (Prevotella)

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

Taxon detected by ANCOM only 
 (Prevotella)

R
e

la
ti
ve

 a
b
u

n
d

a
n

c
e

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Taxon detected by ANCOM−BC only 
 (Fusobacterium)

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

A null OTU

R
e

la
ti
ve

 a
b
u

n
d

a
n

c
e

Non−Smoker 

 Female

Smoker  

 Female

Non−Smoker  

 Male

Smoker 

 Male

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

A group of null OTUs

Non−Smoker 

 Female

Smoker  

 Female

Non−Smoker  

 Male

Smoker 

 Male

Figure 6: Distributions of relative abundances for taxa in the URT data. The red dots
represent the means. The six taxa in rows 1-3 were detected by LOCOM; among these,
URT-1 was also detected by ANCOM-BC and URT-5 was also detected by ANCOM. In the
last row, “A null taxon” corresponds to the taxon (Shigella) with the median β̂j,1 value. “A

group of null taxa” include the taxon with the median β̂j,1 value and 20 taxa with β̂j,1 values
closest to (10 less than and 10 greater than) the median; their relative abundances were
averaged.
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