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In the recent years, virtual reality has been used as an effective tool for a wide 

range of areas such as training, rehabilitation, education and games. The affordability of 

the new generation headsets helped this medium to become more widespread. However, 

in order for virtual reality to become mainstream, more content that is specifically 

designed for this medium is needed. Since virtual reality is a different technology than 

the computer systems, different design principles may be required for these content for 

better user experience. One of the crucial components of virtual reality applications is 

locomotion, since the viewpoint of the user is very important in immersing the users into 

virtual reality and locomotion is used for moving the viewpoint of user in virtual 

environments. Locomotion in virtual reality is expected to have a direct effect on user 

experience in terms of many elements such as effort, enjoyment, frustration, motion 

sickness and presence. Up to date, many locomotion techniques for virtual reality have 

been studied in the literature. However, many of these techniques were evaluated in large 

tracked areas. Although professional motion tracking systems can track large areas, 

today’s new generation affordable commercial virtual reality systems can only track 

room scale environments. This dissertation aims at evaluating different locomotion 

techniques in room scale tracked areas for neurotypical individuals and individuals with 

ASD. Several previous studies concurred that virtual reality is an effective medium for 
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the training and rehabilitation of individuals with ASD. However, no previous study 

evaluated locomotion in virtual reality for this specific population. Thus, this dissertation 

aims at finding out the suitable virtual reality locomotion techniques for individuals with 

ASD. 

With these motivations, in this dissertation, locomotion techniques for room scale 

virtual reality were evaluated under three experiments: virtual reality for vocational 

rehabilitation system, evaluation of eight virtual reality locomotion techniques, and point 

& teleport direction specification experiment. 

In the first experiment of virtual reality for vocational rehabilitation system, 

locomotion, interaction, and display components in an immersive virtual reality system 

for vocational rehabilitation was evaluated by 10 neurotypical individuals and 9 

individuals with high functioning ASD. The results indicated that neurotypical 

individuals favored real walking over walk-in-place; tangible interaction over haptic 

device, touch & snap and touch screen; and head mounted display over curtain screen. 

For the participants with high functioning ASD, real walking was favored over walk-in-

place; touch screen was favored over haptic device, tangible interaction and touch & 

snap; and curtain screen was favored over head mounted display. 

In the second experiment, eight virtual reality locomotion techniques were 

evaluated in a room scale tracked area (2m by 2m). These eight locomotion techniques 

were: redirected walking, walk-in-place, stepper machine, point & teleport, joystick, 

trackball, hand flapping and flying. Among these locomotion techniques, the three were 

commonly used in virtual reality (redirected walking, walk-in-place and joystick), the 
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two were unexplored –explored previously only by a few related studies (stepper 

machine and point & teleport), and the three were selected and/or modified for 

individuals with ASD based on their common characteristics (trackball, hand flapping 

and flying). These eight techniques were evaluated in an immersive virtual reality test 

environment. A user study was performed with 16 neurotypical participants and 15 

participants with high functioning ASD. The results indicated that for neurotypical 

individuals, point & teleport, joystick and redirected walking were suitable virtual reality 

locomotion techniques for room scale tracked areas whereas hand flapping and flying 

were not suitable. For individuals with high functioning ASD, point & teleport, joystick 

and walk-in-place were suitable virtual reality locomotion techniques for room scale 

tracked areas whereas hand flapping and flying were not suitable. 

Locomotion techniques that are similar to point & teleport have been starting to 

be used in commercial video games, however were not evaluated in the literature. For 

this reason, a separate experiment was performed as the third experiment to investigate 

the effects of an additional direction specification component of point & teleport. Since 

this direction specification component exerted an additional cognitive load into the use 

of the same technique, which was recommended to be avoided for individuals with ASD 

in the literature, it was only evaluated by neurotypical individuals. An immersive virtual 

maze environment was developed and a user study was performed with 16 neurotypical 

users. The results indicated that the additional direction specification feature did not 

improve the user experience. 
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Virtual reality has become more affordable and widely used in the recent years 

than ever. Besides the various applications for neurotypical individuals such as video 

games and educational experiences; virtual reality is considered as a promising area for 

individuals with autism since it offers realistic experiences that can be used for training 

and rehabilitation. Virtual reality applications have many aspects such as hardware, 

interaction and locomotion. Locomotion is an important component of video games since 

it can have a strong influence on user experience. A good virtual reality experience needs 

to be designed carefully, considering the needs of the targeted audience. Individuals with 

autism are described to have deficits and strengths attributed to their condition. This 

chapter presents general information about autism spectrum disorder, virtual reality 

applications, locomotion, motivation and contributions, and the organization of this 

dissertation.  

1.1 Autism Spectrum Disorder 

Autism spectrum disorder (ASD) is described as a neurodevelopmental disorder 

with persistent deficits of social skills, communication, cognitive processing, language-

related abilities, executive functioning, adapting to changes, and increased repetitive 

behaviors or constant interests [1]. Autism is reported to be prevalent in 1% of the world 

population. Since autism is a disorder that is spread on a spectrum, individuals with ASD 
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cannot be characterized by strict characteristics. There is no currently known treatment 

to autism; however supportive training and intervention programs are known to provide 

improvement in the skills of individuals with ASD that are needed to live more typical 

lives [2]. 

1.2 Virtual Reality Applications 

Although virtual reality (VR) has been present for decades, in the recent years it 

has become more accessible and popular for many uses. Entertainment and training are 

the two main areas in which virtual reality applications are used. Many immersive virtual 

environments combine head mounted displays and motion tracking devices to immerse 

users in visual experiences that change consistently with their body motion [3]. Head 

mounted displays improved significantly –both in capability and cost– since they were 

first introduced in 1968 [4]. Similar advances in the tracking technology have also 

emerged. Now, relatively inexpensive, commodity tools, like the Oculus Rift [5] and 

Microsoft Kinect [6], allow the general public to experience and use immersive virtual 

reality in their homes. With virtual reality systems, users can experience different places 

and scenarios than their actual physical environment. This has many advantages such as; 

time and expense savings because of the reduced transportation costs to different work 

places, and safety that comes with the training in a controlled environment. Furthermore, 

virtual reality systems can even help people experience situations that would be difficult 

or impossible to access otherwise, such as war zones, underwater deep spaces, and the 

center of a tornado. These capabilities enable VR systems to enhance training, 

architecture, entertainment, and many other areas. [7]. Among these training areas, using 
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virtual reality for training individuals with autism has been getting attention recently [8-

11]. 

Individuals with autism are known to have strong interests in computer 

technologies [12, 13]. In particular, virtual reality training systems have several properties 

that resonates with the characteristics of individuals with autism. These properties 

include: interactivity; real time feedback; practicing potentially dangerous situations in 

safe, simulated encounters; the ability to layer on more complexity; the predictability of 

the virtual environments; customization; and being primarily visual. 

1.3 Locomotion 

Effective virtual reality systems often require several characteristics that are 

designed harmoniously, such as interaction, locomotion, audio, visual and task design. 

Each of these components is important in themselves for a good virtual reality experience. 

Specifically, locomotion is  among the most common and important tasks within 3D 

virtual reality systems [14]. Locomotion is defined as travel that is restricted to self-

propulsion [15]. Locomotion is required to move to an aimed location in virtual world. 

In immersive virtual environments with head-tracking, the virtual viewpoint can be 

adjusted via moving and rotating the head while walking on the tracked area. Immersive 

virtual environments that use head-mounted displays are usually suitable to be explored 

on foot. But in virtual reality, it is usually difficult to maintain spatial knowledge in the 

virtual environment [16]. Furthermore, locomotion methods likely contributed to user 

motion sickness, since they directly control viewpoint. 
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In a virtual environment, the walkable space may have infinite size and the user 

should be able to walk and explore that space freely. However, in real physical places, 

users have limited space. If the virtual space and the real space have similar sizes, then a 

1:1 mapping can be used for navigation. But if the virtual area is larger than the actual 

area, users may eventually go outside the real tracking space. This interrupts the tracking 

and makes a negative impact on the presence and user experience. To solve this problem, 

numerous different locomotion techniques have been proposed by the academic 

community so far. 

Locomotion usually is not the main goal of most immersive virtual reality systems. 

These systems usually have the aim of training, giving therapies or entertaining the users 

while the users move around in the virtual environment. Nonetheless, a wrong selection 

of locomotion technique or a poorly implemented one may distract the user, which may 

result in less benefits gained from the system. The users may not even want to continue 

using the system due to motion sickness or frustration. 

1.4 Motivation and Contributions of the Dissertation 

As with many other components of virtual reality, locomotion has several 

attributes that need to be selected carefully according to the context, goals, and audience 

of the system. For neurotypical users, a general input system is recommended to be 

hands-free and eyes free in order to let the user perform main tasks easily [17]. Similarly, 

a good locomotion technique is recommended not use the hands or visual focus of the 

user unless the main purpose of the system is navigation. Techniques taking advantage 

of proprioception are favored since they are suggested to provide more presence. 
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Proprioception is defined as a person’s sense of where their body parts are. As an 

example, a driver can change the gears of a car without looking, because of 

proprioception [15]. However, most of the previous studies in the literature investigated 

locomotion in large tracked areas. Today’s commercial virtual reality systems can only 

track room scale environments and no extensive literature exists on the implications of 

virtual reality locomotion techniques for room scale tracked areas. On the other hand, all 

of the previous studies were performed with neurotypical populations, not with 

individuals with autism. Although there has been extensive research on locomotion 

techniques for neurotypical populations, no research on VR locomotion has been done 

for individuals with autism. Even in virtual reality studies that involved individuals with 

autism, no study looked into how these techniques were performed or what the 

preferences of the users were. Most of these studies for training individuals with ASD 

employed standard controllers such as keyboard and joystick. Studies using CAVE - like 

projection based immersive environments allowed for real walking of the users only in a 

limited area and did not provide virtual navigation beyond this physical limit. The 

common tendencies and deficits of people with autism may not be compatible with the 

commonly used locomotion techniques for typical individuals. Thus, it is important to 

study the understanding and the experience of this specific population with the existing 

commonly used locomotion techniques. New locomotion techniques exploiting the 

strengths and deficits of people with autism may also be developed and evaluated. 
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With these motivations, our research questions were as follows: 

 What are the implications of the state of the art VR locomotion techniques 

for room scale tracked environments? 

 Which locomotion technique would provide the best user experience for 

high functioning individuals with ASD in VR? 

 What are the implications of the increasingly utilized and recently popular 

VR point & teleport technique? 

 Can point & teleport technique be improved with an additional direction 

specification feature? 

Based on all these motivations and research questions, the contributions of this 

dissertation can be summarized as follows: 

 An extensive literature review on the state-of-the-art virtual reality 

locomotion techniques. 

 Implementation of locomotion and interaction techniques and display 

preferences in an advanced immersive virtual reality tool for vocational 

rehabilitation of individuals with disabilities, and evaluation with a user 

study of 10 neurotypical individuals and 9 individuals with high 

functioning ASD. 

 Implications of the user study results for locomotion, interaction and 

displays in room scale virtual reality systems for neurotypical individuals 

and individuals with high functioning ASD. 
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 Design and implementation of eight locomotion techniques in a room scale 

tracked immersive virtual reality experiment: three commonly used 

techniques (redirected walking, walk-in-place and joystick); two 

unexplored techniques (stepper machine and point & teleport); and three 

ASD aimed techniques (trackball controller, hand flapping and flying), and 

evaluation with a user study of 16 neurotypical individuals and 15 

individuals with high functioning ASD. 

 Implications of the user study results on the comparison of eight 

locomotion techniques in room scale virtual reality systems for 

neurotypical individuals and individuals with high functioning ASD. 

 Design and implementation of a modified version of point & teleport with 

direction specification in an immersive room scale tracked virtual maze 

environment, and evaluation with a user study of 16 neurotypical 

individuals. 

 Implications of the results for the use of point & teleport –a technique that 

is being used commercial virtual reality games but has not been explored 

in the literature– in room scale virtual reality systems for neurotypical 

individuals. 

 Detailed information about the implementation of the eight virtual reality 

locomotion techniques and the direction specification modification of point 

& teleport. 
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1.5 Organization of the Dissertation 

The remainder of this dissertation is organized as described as mentioned below: 

Chapter 2 presents previous studies about the virtual reality locomotion techniques and 

systems for neurotypical individuals and individuals with ASD. Chapter 3 discusses the 

first experiment of virtual reality for vocational rehabilitation of individuals with 

disabilities system, with a focus on locomotion, interaction and display preferences in a 

user study with both neurotypical individuals and individuals with high functioning 

ASD. Chapter 4 presents information about the implementation of the locomotion 

techniques in this dissertation. Chapter 5 includes the second experiment on the 

evaluation of eight virtual reality locomotion techniques: redirected walking, walk-in-

place, stepper machine, point & teleport, joystick, trackball, hand flapping and flying 

with a user study with both neurotypical individuals and individuals with high 

functioning ASD. Chapter 6 discusses the third experiment on evaluating the direction 

specification feature of the point & teleport locomotion technique in a user study with 

neurotypical individuals. Chapter 7 draws conclusions from the results of the user 

studies in this dissertation and specifies directions for future work. 
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Several studies show that the advances in technology have been assisting 

individuals with ASD for a long time. Goldsmith et al. collected and published the early 

examples of the technologies that were used for children with ASD [18]. In general, the 

developed systems used an interaction technique that seemed to be the most suitable by 

the authors for the application and the selection of that technique was rarely justified 

since the main goal of these studies was to explore the effectiveness of virtual reality in 

training individuals with ASD. Interaction techniques among the uppermost important 

elements of virtual reality since they are directly related to the user’s experience with the 

system. Existing systems support a variety of interaction techniques for different 

platforms and input devices, from conventional devices such as mice or joysticks, to 

modern devices such as touch gestures, speech-recognition devices, and digitally 

augmented environments. Locomotion is an important aspect of virtual reality that can 

affect user experience significantly in terms of presence, enjoyment, frustration, and 

tiredness. 

In this chapter, a new taxonomy was proposed and used in an extensive survey of 

state-of-the-art virtual reality locomotion techniques. Virtual reality applications for 

individuals with autism were shared with a focus on identifying appropriate locomotion 

CHAPTER 2:  BACKGROUND AND RELATED WORK 
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techniques for these individuals. Major issues and future research considerations were 

discussed. 

2.1 Terminology and Definitions on Virtual Reality, Interaction and Locomotion 

The important terms that are used in this dissertation are shared in this subsection 

with their definitions. 

 Avatar: a virtual and interactive representation of a person in virtual reality 

applications [15]. 

 CAVE: a physical environment with projections on the walls, ceiling and 

floor [15]. 

 Desktop virtual systems: virtual reality applications which are displayed 

on a 2D desktop computer screen so that a user can see through the eyes of 

the virtual character, but the experience would not be 3D [15]. 

 Gesture: a meaningful motion that can be categorized as a sign, signal, or 

symbol, usually made by the hand, foot or body [15]. 

 Haptic device: an interaction device that enables the users to feel the force 

feedback when touched a virtual object. 

 Head-mounted display (HMD): a visual display that covers the eyes of the 

user so that the virtual world could be rendered based on the head position 

and orientation [15]. 

 Immersion: the experience of being physically within a virtual world that a 

virtual reality application provides to the users [15]. 
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 Locomotion: means of travel that is restricted to the user’s self-propulsion 

[15]. 

 Motion sickness: disturbances such as nausea, disorientation and tired eyes 

that are caused by a virtual experience [15]. 

 Optical motion tracking: A motion tracking system that uses surrounding 

cameras to track the reflective markers via infrared light. 

 Point & teleport: a locomotion technique in which the user points to where 

they would like to go and teleported there instantaneously. 

 Presence: the feeling of being part of a virtual environment. The level of 

immersiveness of a virtual reality application is likely to increase the 

presence [15]. 

 Proprioceptive: the internal sense of body position and movement even 

when not seeing [15]. 

 Real time: actions that take place with no delay [15]. 

 Redirected Walking: a locomotion technique in which the view of the user 

is altered based on their movements [19]. 

 Tactile: sensory information that arises from making contact with objects 

[15]. 

 Virtual reality: a model of reality with which users can interact and get 

sensory information such as sight, sound and touch, may be used 

interchangeably with virtual environments [15]. 
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 Virtual world: the entire virtual environment in a virtual reality application 

[15]. 

 Walk-in-place: a locomotion technique in which the user marches in place 

and is moved in the virtual world according to their head or body directions 

[20]. 

 Wayfinding: navigation with cognitive effort [15]. 

2.1.1 Interaction Techniques 

Most of the assistive training applications were implemented using a single 

interaction technique.  The recent applications usually used touchscreen devices since 

they are easy to use, affordable and available. Furthermore, one of the recent studies 

showed that the tablet applications with multi touch interactions could make children 

with ASD more verbally and physically engaged as compared to the traditionally 

performed similar activities [21]. In a study conducted by Madsen et al., the researchers 

developed touch screen applications for teaching children with ASD to recognize facial 

expressions [22]. In this study, lessons learned about the software and hardware design 

of touch screen applications for this specific population were shared very briefly. In a 

study on developing an expression recognition game for individuals with ASD using 

touch enabled mobile devices, the research team has studied the previously existing 

popular ASD games and tried to consolidate some good design practices regarding 

designing user interfaces for an audience of children with ASD [23]. 

Another popular approach in designing applications for individuals with ASD is 

using touchless interactions. The availability of the depth sensors, such as Microsoft 
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Kinect and their usage for skeleton tracking made this technique easily usable and 

popular. Moreover, some researchers suggest not to use wearable sensors since some 

individuals with ASD may not prefer to wear any sensors on them [24]. A study made on 

five children with ASD showed that games with touchless interaction helped in 

improving the attention skills for children with autism. However, the authors stated that 

the interaction technique was not tested on being appropriate or not for this special user 

group [25]. Another recent study for individuals with ASD was aiming at improving their 

motor skills [26]. With this goal, the researchers developed a motion based touchless 

application and tested the results. This study focused on the importance of physical 

activity, but did not justify why the authors chose to use this interaction technique while 

developing the application. 

There were also some applications that used more than one interaction technique 

simultaneously. One study focused on full body interaction techniques for low 

functioning children with ASD [27]. An environment similar to a virtual reality cave was 

developed with surrounding projectors, cameras and sensors. Some touchless interaction 

techniques as well as touch based interaction techniques were implemented, and the 

children’s acceptance of the system was discussed. Most of the children accepted the 

system and used it effectively. 

With the emerging technology of virtual reality, some researchers have been 

integrating virtual reality interaction techniques into training applications for people 

with ASD. In a study, researchers utilized a VR system to train children with ASD on 

street crossing [28]. The results showed that training in virtual reality improved the 
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related skills of those children. In another study, a virtual reality driving training system 

was developed [29]. In this system, gaze tracking was implemented to track where the 

users looked during the training sessions since individuals with ASDs’ gaze positions 

were reported to be different from neurotypical individuals. The users were trained to 

look at the important regions such as traffic lights, traffic signs and pedestrians. The 

results showed that effective training was achieved using the developed virtual reality 

system with the incorporation of gaze positions. 

Although many studies focused on using only one interaction technique per 

application, there have been some studies in the literature that used two different 

interaction techniques in the same application or in different applications that were 

developed for the same purpose for individuals with ASD. One example was a study that 

aimed at increasing the social engagement of children with ASD [30]. Two different 

games were used with two different interaction techniques. One was using multiple mice 

while the other was using a Diamond touch surface. The study did not test the differences 

observed while using these interaction techniques and did not make any suggestions for 

researchers. There was a detailed study on a training tool for children with ASD [31]. In 

the study, a tangible user interface design was compared with the traditional mouse-

based approach. The results of the study showed more learning progress using the 

tangible user interface. Another recent study showed observations on the usability of 

basic 3D interactions such as translation and rotation for the adolescents with ASD [32]. 

The authors aimed at finding the differences in the usage of 3D user interaction 

techniques between neurotypical individuals and individuals with autism. The results 
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showed that the deficits in hand-eye coordination of individuals with ASD caused some 

difficulties in using the 3D interaction techniques. The authors suggested that developers 

should add some assistive cues to aid individuals with ASD with the hand-eye 

coordination. 

2.1.2 Locomotion Techniques 

To discuss the existing commonly used virtual reality locomotion techniques in 

the literature, we propose a new taxonomy that is focused on the virtual reality system 

components. Our taxonomy has three levels. We first divide the previous studies into 

two as algorithm based locomotion techniques and tool based locomotion techniques. We 

then divide these two groups into two as real walking and gesture based locomotion 

techniques, and stationary and mobile tools. Finally, we divide these groups into two 

according to the technique as redirected walking and environment change, walking in 

place and flying/leaning, walkers and standard controllers, and wearables and robots. A 

summary of this new taxonomy that is proposed in this dissertation can be seen in Figure 

2-1. 

Obviously, the tool based techniques also involve some algorithms that drive their 

implementation. The distinction we make here emphasizes whether the algorithm can be 

implemented across different types of hardware (e.g., marker based optical or magnetic 

motion tracking systems, or markerless depth sensors), or it was developed for use with 

a specific device, such as an omnidirectional treadmill. 
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Figure 2-1: Taxonomy for locomotion technique studies. 

2.2 Algorithm Based Locomotion Techniques 

Some locomotion techniques that are used in immersive virtual environments are 

heavily based on algorithms. Although the tool based techniques also use some advanced 

algorithms, they depend on the hardware they are using. In this subsection, the 

locomotion techniques that use general virtual reality hardware that are not specifically 

designed for tracking or helping locomotion in virtual environments are discussed. The 

main groups of this taxonomy level are: real walking and gesture based techniques. Both 

have some advantages and disadvantages and both are used in immersive virtual 

environments extensively. 

2.2.1 Real Walking 

Real walking is considered to be the most intuitive locomotion type in immersive 

VR. It was also found to be more presence-enhancing as compared to the other navigation 

techniques [33]. Furthermore, it was asserted to be superior over other the techniques 

across the navigational tasks [34], cognitive map buildings [35], and cognitive demands 

[36]. But there are strong limitations for this technique as well, and sometimes it is 
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impossible to use real walking in immersive VR because of the motion tracking 

constraints [37]. The main limitation is size of the tracked area. If the area of the virtual 

environment is bigger than the physical area, individuals may eventually walk outside 

the physical space while trying to reach far spaces in the virtual environment. To 

overcome this limitation, some techniques have been implemented to help the users in 

exploring larger virtual environments with real walking. These techniques are discussed 

in the following sub-subsections. 

2.2.1.1 Redirected Walking 

It was found out that, when only visual input was supplied, people could 

successfully estimate the amount of change in the direction but not the path they followed 

[38]. This makes it possible to manipulate the visual cues to keep the users in the tracking 

area without being noticed. Various experiments have been performed to analyze the 

user’s perception on virtual and real worlds. It was found that the perceived egocentric 

distances were often underestimated in VR as compared to actual distances [39], unless 

the virtual environment started as a replica of the real environment [40]. Similarly, 

travelled distances in virtual worlds were underestimated [41]. Likewise, virtual walking 

speeds were often underestimated by the users as compared to the real walking speeds 

[42]. 

Redirection is a way of manipulating the user’s visual cues to keep them in the 

tracking area [19]. With this technique, larger virtual environments can be explored 

within a smaller tracking area. There are some variations of redirected walking 

techniques, and different taxonomies have been proposed in the literature. Steinicke et 
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al. proposed a classification based on the types of gains applied; translation, rotation or 

curvature [43]. On the other hand, Suma et al. proposed a different classification based 

on the geometric flexibility, the detectability of the technique and the continuity [44]. In 

this taxonomy, the repositioning and reorientation techniques can either be overt or 

subtle according to the detectability, and either continuous or discrete according to the 

gain application time. 

In their study, Steinicke et al. reported the positive and negative limits of the gains 

that could be applied without getting noticed by the users [43], [45], [46]. Reported limits 

were listed as -14% and 26% for translation, -20% and 49% for rotation, and 22 meters for 

curvature radius. For the rotational gains, limits were also examined in detail for the body 

rotations [47]. For small body rotations like 10 degrees, the limits became -14% and 102%. 

The sensitivity for scene motion was further examined for head yaws [48]. The scene 

could be rotated 5% against the head rotation and 11% with the head rotation. Using gain 

values outside these limit values were suggested by the researchers to increase the 

cognitive load and decrease the task performance [49]. 

Some sophisticated redirected walking techniques use dynamic curvature gains 

according to the speed of the user [50]. However, no significant difference was found 

between changing the rotational gain gradually and instantaneously during a full 

rotation [51]. Another technique called “Seven League Boots” predicted the aimed travel 

direction by combining eye direction and former displacement data, and applied 

translational gains on that direction [52]. The displacements in the perpendicular 

directions were not scaled so that unintentional vertical and sideways head movements 



19 
 

were not exaggerated. For traveling in long and straight hallways, this method was 

preferred by the users. Another recent study suggested calculating the redirection 

parameters based on the architectural layout of the virtual environment [53]. If the users 

were asked to focus on a cognitive task, these limits could be expanded and no negative 

impact was noted in spatial memory [54]. Bruder et al. examined the limits of the gains 

for individuals using an electric wheelchair controlled by joystick [55]. The possible range 

for the gain values was found to be larger for such redirected driving. 

Even if redirection techniques are used, in some cases, users may still reach the 

edge of the tracked area. For those situations, some additional methods were developed 

and used alongside the redirection technique. Williams at al. proposed “Freeze-Backup”, 

“Freeze-Turn”, and “2:1-Turn” methods as alternatives [56]. In the Freeze-Backup 

method, when the user approaches to the border of the actual area, the virtual 

environment positions stay frozen, and the user can take a few steps backwards. In the 

Freeze-Turn method, again the virtual environment stays frozen and the user can make 

a 180 degree turn to continue, walking back toward the center of the tracked area. Finally, 

in the 2:1 Turn method, the user makes a 180 degree turn and the virtual world makes a 

simultaneous 360 degree turn. The 360 degree turn better masks the unusual 180 degree 

turn the user is taking. 

These methods can be effective but they also inject interruptions into the user 

experience that have a negative effect on the presence and the quality of the experience 

[57]. As an alternative, Kohli et al. [58] and Peck et al. [59] integrated virtual distracters 

into the experience to make the users rotate and face towards the center of the tracked 
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area without explicitly interrupting the experience to prompt the user to turn. The aim 

was to avoid the explicit interruptions that caused breaks in the presence. Using 

distracters was found to be more natural as compared to mentioned explicit breaks. With 

the distracter based methods, the redirection was also less noticeable. Furthermore, 

addition of these distracters did not degrade wayfinding and navigation as compared to 

basic redirected walking [59]. A recent study suggested using a context-sensitive 

approach by spawning some events in the virtual world that are related to the narrative, 

so that the user’s orientation is changed with the help of redirection gains without being 

noticed [60]. 

Redirection algorithms can also be altered to involve passive haptic feedback 

objects as well [45], [61]. A proxy object in the real environment representing virtual 

objects with similar size, shape and surface structure can support passive haptic feedback 

to the users. Although more difficult to utilize, these passive haptic feedbacks was 

reported to improve the virtual reality experience significantly [62]. Another redirection 

technique for exploring architectural 3D models scales the virtual room to fit into the real 

room, so that users can feel the real walls when they reach to the virtual walls [63]. In this 

study, to let the users go through a virtual door in a virtual wall, an intense redirection 

was used so that they did not hit the real walls. 

2.2.1.2 Environment Change 

Since real walking is the most intuitive locomotion technique, the researchers also 

looked for other alternatives to utilize redirected walking in virtual reality experiences. 

A few creative solutions have been suggested and tested. Some of them proposed 
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changing the architecture of the virtual environment; others proposed teleporting the 

users in the virtual world via portal like doors to let the users walk in a larger virtual 

environment without going out of the physical tracked area. 

Usually the techniques involving change of the architecture of the virtual 

environment are only suitable for interior environments. Suma et al. proposed changing 

the orientation of the doors in an indoor environment while the user was looking 

elsewhere, so that users stayed in the tracking area [64]. Although it seems to be an 

obvious change, only one out of 77 users were reported to notice the change in the study. 

Despite the changes in the environment during exploration, the users drew consistent 

sketches of the environment structure and they maintained their spatial orientation in the 

virtual world. Although this technique was effective, it is limited to indoor environments 

where the architecture can be manipulated. 

Another study showed promising results in maximizing the virtual environment 

space to be explored [65]. In this technique called “Impossible Spaces”, the architecture 

layout was self-overlapping so that it fitted a large virtual environment into a smaller 

physical tracked area. It was found out that until 56% overlap, users could not detect 

these overlapping spaces. The perceived distances to the objects in different overlapping 

rooms were not affected by the impossible space approach and remained as if it was not 

overlapped. Even if the users identified the impossibility of the space, their judgement of 

distance was not affected. Using this technique alone is again suitable for only interior 

environments and the success of the technique is highly dependent on the design of the 

architecture, which imposes a limitation on the application design. A similar study 
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expanded this idea with a technique that was called “Flexible Spaces” [66]. With this 

technique, the environment layouts were generated dynamically to enable infinite real 

walking in virtual environments. The technique generated many corridors and turns 

between the rooms to keep the users inside the tracked area, but unfortunately this 

technique also led to user discomfort. The “Flexible Spaces” approach seemed most 

suitable for applications in which content is more important than spatial layout, such as 

virtual museums and virtual sightseeing experiences. 

Some researchers used doors that are similar to portals to make larger virtual 

environments more suitable for exploration. In a study called “Arch-Explore”, a virtual 

down sized architectural model was placed inside a virtual world and the user chose the 

rooms to explore with a handheld controller [63]. Then a portal like virtual door appeared 

and the user could walk through that door to walk into the selected room. After a few 

seconds, the portal vanished. To be able to return to the previous room, the user must 

have pushed a button on the controller and the portal appeared again. With this method, 

users can experience a large number of places in a limited tracked area, however it comes 

with the cost of the reduced realism and presence. Another study used portals to reorient 

the users in a CAVE-like projection based environment [67]. As individuals reached the 

border of the actual area, a barrier tape visual feedback appeared. In that case, the user 

selected a destination point in the virtual environment with a handheld controller by 

pointing. After the destination was selected, a portal appeared in the center of the actual 

tracking area. The individual walked near the portal to be teleported to the destination, 

effectively moving to the center of the tracked area. This technique introduced no 
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additional simulator sickness, likely because the viewpoint movement was not displayed 

to the users. 

2.2.2 Gesture Based Techniques 

Another main technique that is used for locomotion in immersive virtual 

environments is utilizing body gestures. The most natural gesture was found to be the 

walking in place gesture, since it was the closest gesture to real walking [68]. Still, other 

gestures such as leaning or bending could effectively be used in immersive virtual 

environments. Another commonly used technique is flying. Although it was not reported 

to be the best technique in terms of reality and presence [33], it was stated to be easy to 

implement and easy to use. 

2.2.2.1 Walking in Place 

In this technique, users make body gestures similar to the real world walking, 

without actually moving in the actual area. This way, users can walk virtually and 

explore a larger virtual world. Important advantages of the walking in place technique 

can be listed as cost effectiveness [20], naturalness, stronger feeling of presence and being 

easy to learn as compared to other approaches [69], and proprioceptive feedback similar 

to real walking [70]. 

One of the first scientific implementations of the walking in place technique was 

published in 1995 [71], [69]. In the implementation, the head movements were analyzed 

while performing walk-in-place gesture, and the virtual walking was triggered by the 

movement of the head. The latencies were large; the system required four steps in place 

to start the virtual walking, since false-positive steps (moving viewpoint when the user 
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was not walking in place) were considered more confusing than a late start. Similarly, the 

system looked for no steps for two cycles to stop the virtual walking. 

Since then, different aspects of the walking in place technique have been 

examined, such as step detections, start and stop latency [20]; and smooth speed control 

[72]. Smooth speed control was important because of the phenomenon of visual cues 

making the users feel like they are running with a slower speed than the actual treadmill 

speed [73], [74]. A detailed study showed that the recommended range for the visual gain 

was between 1.65 and 2.44 for the walking in place technique [75]. The same study 

showed that the gain values varied across different field of views; gain values increasing 

as the field of view decreasing. 

One of the lowest latency walking in place technique was proposed by Feasel et 

al. [20]. In their study, they used a series of filters and numeric differentiations to obtain 

heel speed, and then they calculated the virtual locomotion speed after some signal 

processing operations. Their technique not only had low latency for both start and stop, 

but also had smooth movement, speed control during stepping and high turning 

responsiveness. They used magnetic sensors on the feet and the knees for tracking, but 

the same technique could work with more common optical motion tracking systems as 

well. A similar study was performed by Wendt et al. [76]. The proposed system used a 

biomechanical state machine to control the virtual walking, and found more consistent 

output speeds as compared to the study of Feasel et al. A similar recent study used two 

smart phones that were attached to the ankles of the user to track leg movement using 

the inertial sensors that were built into the phones. It triggered the walking in place 
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technique after analyzing the acceleration data collected by the smart phones in real time 

[77]. 

Usually, the walking in place gesture looks like alternately pulling one’s knees up, 

similar to soldiers marching in place. A recent study proposed two different gestures as 

alternatives to the original walking in place gesture [78]. The first one was called the 

“Wiping Gesture” in which the user alternately bended each leg backwards whereas kept 

the upper leg almost still, instead of pulling the knees up as in the original walk-in-place 

gesture. The second one was called the “Tapping Gesture”, where individuals alternately 

lifted their heels without lifting their toes. The study showed that the Tapping Gesture 

was perceived as the most natural gesture as compared to the other two gestures. 

Furthermore, the perceived required physical effort for the Tapping Gesture was closer 

to real walking. In another study, some of the same authors examined two more input 

gestures; hip movement and arm swinging [79]. The user study results showed that arm 

swinging was perceived by the users as natural as the original walk-in-place technique, 

in terms of the perceived energy required, arm swinging was perceived as closest to real 

walking. 

Different tracking techniques have been proposed for the locomotion techniques 

in this category. Some applications used knee positions to detect the walking in place 

gesture [80], and some techniques tracked shins for lower latency [20], [76]. Other 

techniques tracked the contact points of the feet with the ground. One study used an 

inexpensive commercial product, the Nintendo Wii Fit Balance Board, for this purpose 

[81]. They could successfully detect the walking gesture and found similar results in 
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turning errors and mean latency, as compared to real walking. Another study used a 

camera under the ground plane of a six-sided CAVE-like projection system for processing 

the feet shadows when they were in contact with the ground [82]. The technique was 

called “Shadow Walking,” and could identify different feet gestures to be used for a 

broader range of movements, such as sidesteps. Shadow Walking was easy to install and 

suggested as an inexpensive solution to detect walking in place in six-sided CAVE 

systems. It also did not require an attachment on the body of the user. 

For applications that require walking in three-sided CAVE-like systems, the user 

is likely to walk into the missing fourth wall. For this purpose, a technique called 

“Redirected Walking in Place” [83] combines the previously discussed redirected 

walking and walking in place techniques to reduce the frequency with which the user 

sees the missing wall. In a study, this technique did not lower the mean value of the 

fraction of time the users saw the missing wall, but it reduced the variance value. 

Lastly, Terziman et al. studied a variation of the walking in place technique which 

required explicit head gestures [84]. For different actions, different head gestures were 

defined and a simple web camera checked these gestures in real time. These gestures 

were; lateral head motion for walking, head roll motion for turning, and vertical head 

motion for jumping and crawling. This technique worked in both sitting and standing 

configurations. While easy to implement and inexpensive, head gestures for walking was 

unintuitive and required training and practice before comfortable use. 
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2.2.2.2 Flying/Leaning 

Flying is a simple locomotion technique alternative for immersive virtual 

environments [85], [86]. The technique uses some form of input from the user to move 

the viewpoint automatically in the virtual environment. Inputs can be taken from the user 

in different ways. It can be a simple joystick input, or a leaning body gesture input. The 

input may require continuous action to keep walking such as pushing the joystick 

forward or a single action to start and stop the movement such as pushing a button. 

Although locomotion by pushing the joystick forward continuously can also be 

considered flying, in this dissertation, the flying technique was defined as the automatic 

movement of the user by triggering the start and stop of the locomotion. 

The difference of flying by leaning as compared to using a joystick is that in 

leaning, the movement direction is defined by the direction of a tracked body part; head, 

hand or torso. The travel direction is usually chosen to be the gaze direction since it was 

stated to be more natural, easier to learn and provide easier traveling in a straight line 

[87]. On the other hand, using an additional pointing gesture may also provide 

comfortable travel since the users could then look around while moving in a constant 

direction. 

Although it is straightforward to implement and use, the flying technique was 

reported to be less realistic and the sense of presence was reported to be lower compared 

to other techniques like redirected walking and walking in place [33]. The lack of speed 

control, which is usually done via a separate controller or a hand/body gesture, reduced 

the naturalness of the technique. 
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A more complicated locomotion technique is leaning. With the leaning technique, 

users can control both the speed and the rotation at the same time. By using the center of 

gravity on the 2D ground plane as a directional vector, users can accelerate or decelerate, 

and rotate the viewpoint clockwise or counter-clockwise. One study used a Nintendo Wii 

Balance Board to detect the shifts in the body weight [88]. They proposed a human 

transporter (i.e. Segway PT) metaphor to control the speed and steering. A similar study 

called “Human Joystick” compared the leaning gesture with joystick and walking in 

place methods [89]. According to the study, leaning techniques had lower latency and 

turning error as compared to the joystick. Performance on spatial orientation was similar 

to the walking in place technique, but in overall the users preferred the leaning technique. 

The leaning technique in general is easy to use and implement. It gives the user more 

control as compared to flying by using only one gesture to trigger start and stop of the 

locomotion. It must also be noted that this technique demands more balance and body 

control skills compared to the other ones. 

A hybrid technique called “Magic Barrier Tape” [90] was suggested. This 

technique also enabled the users to explore infinite virtual environments with a 

combination of real walking and flying. The users walked freely in a limited tracked area. 

When they reached the edge of the tracked area, a virtual barrier tape appeared to show 

that they could not walk in that direction anymore. In that case, a hand gesture such as 

pushing the tape triggered flying in the gesture direction. Instead of the gesture, a 

triggering device such as joystick can also be used to trigger flying. This technique was 

claimed to be intuitive and easy to use. 
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To control flying in virtual environments, any triggering method can be used. Due 

to the increased availability of skeleton tracking, using body gestures for this purpose has 

been becoming more popular. One recent study proposed a navigation model called 

“LazyNav”, which explored ways to control the locomotion without any inputs from 

hands, arms, eyes and local head orientation [91]. The purpose was to let the user do other 

required actions with their hands and head, and control the locomotion with other 

possible tracked body parts. The study examined different body motions based on the 

ease of control, accuracy, required effort and social acceptance. The shoulder rotation and 

the bust rotation turned out to be the favorite gestures to control the rotation and speed 

respectively in the pilot study. 

Instant locomotion techniques can also be considered under this classification. One 

of the most important examples of this approach is teleportation. Although teleportation 

is a simple yet powerful possible alternative to the previous locomotion techniques, it has 

not quite been explored yet. One example developed for CAVE-like environments used 

teleportation in the virtual world thorough portals [67]. This technique utilized redirected 

walking and when a user created a portal by using a controller, a conjugate portal gate 

appeared in the center of tracked space, so that users were kept inside. Another study 

used teleportation approach to help the users walk long distances in the virtual 

environment [92]. The locomotion was done by real walking, and when the user made a 

jumping gesture, teleportation was triggered in the head direction. No other studies that 

we are aware of studied teleportation for locomotion in virtual reality. 



30 
 

2.3 Tool Based Locomotion Techniques 

Many locomotion techniques are often built on top of optical or magnetic tracking 

devices. These devices can give the position and rotation of rigid bodies in real-time at a 

reasonable latency. However, they have some weaknesses as well, such as including 

occlusion, and high dependency on the environmental conditions (such as poor lighting 

or nearby metal materials). The techniques described in this subsection avoid these 

limitations by relying on mechanical hardware designed and developed specifically for 

tracking the locomotion. 

2.3.1 Stationary Tools 

Stationary systems are usually heavy tools that are attached to the ground. These 

systems help users walk in virtual environments while wearing a head mounted display 

(HMD) or standing on an area within projected surfaces such as CAVE-like 

environments. Stationary systems either work with physical effort as in real walking, or 

with a triggering mechanism such as a joystick or mouse. The main purpose of these 

systems is to keep the user in the very same physical space while allowing virtual 

walking, which allows for more safety. The main groups of stationary tools are walker 

machines and standard joystick-like controllers. 

2.3.1.1 Walkers 

Treadmills, bicycle machines, and similar exercise equipment are also well-suited 

to enabling virtual reality locomotion. For example, in a previous study, a traditional 

treadmill was used for locomotion [93]. The treadmill supported one directional 
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movement, and the user could rotate by using a steering bar similar to a bicycle. The one-

directional imposition was limiting but allowed for locomotion via natural walking. 

The U.S. Army’s Dismounted Infantry Training Program performed an extensive 

research on locomoation devices [94]. Three generations of locomotion devices were 

developed and tested. The first generation used a unicycle as a locomotion interface. 

Using the unicycle did not feel natural and it did not allow for making sidesteps. The 

second generation system was a standard unidirectional treadmill with a constraining 

mechanism that was attached to the user’s waist. This was better than the first generation 

in that it allowed realistic walking, but was still limited to one direction of movement. 

The third generation system was an “Omni-Directional Treadmill” which enabled users 

to walk freely towards any direction. The system was composed of two dimensional 

rotary motors that moved the treadmill belts in order to keep the user in the same place. 

The study showed that accurate user tracking and precise control over the speed of the 

belts were critical for the usability of the system. Otherwise, the users experienced 

uncomfortable sudden movements. A similar system was developed in later studies and 

compared to a three degrees of freedom motion platform with controller based 

locomotion [95], [96]. The mean error distance for real walking on the motion platform 

was statistically significantly lower than that was with the controller. In the more recent 

studies, an improved Omni-directional treadmill was compared with real walking [97], 

[98]. The new treadmill, which was called “CyberWalk”, was based on a torus design. 

The system applied imperceptible accelerations on the motion platform to keep the user 

at the center. They system allowed for a more continuous walking surface, with lower 
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vibration and noise, and was compatible with other virtual reality devices. Although the 

system was found to be effective in locomotion, it was expensive and may not be suitable 

for daily use. 

Another approach for developing a locomotion device was using a low friction 

surface. The user could walk naturally on the surface but stayed at the same place since 

the surface was low friction. This could either be achieved by using ball bearings or by 

covering the surface with low friction material and using suitable shoes. But keeping the 

surface low friction was not sufficient. Another complimentary technique also needed to 

keep the user at the center of the system. This could be achieved by using a curved surface 

to utilize gravity, using a stationary belt to physically keep the user at the center, or using 

motor systems. The “Omni-directional Ball-bearing Disc Platform” used a custom made 

disc with ball-bearing sensors to track the walking of the user [99]. No skeletal tracking 

was required other than the head tracking for rendering. The user was kept at the center 

by the concave shape of the surface. Another system used a similar surface with ball 

bearings [100], but the bearings were standard bearings without sensors. A camera 

system was used for capturing the walking of the user real-time. Another approach was 

called “CyberCarpet” [101]. The proposed approach combined the bearing system with 

a belt system. The user walked on a series of ball bearings under which there was a belt 

system. The belt system was rotated according to the user’s direction of walking via a 

turntable. The belt rotated the bearings which kept the user at the center. This system did 

not restrict the user with a stationary belt, and the surface was not concave which made 

the walking more natural. 
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Some similar works in this area have recently been emerging as commercial 

products to be released in the near future [102], [103]. Both works use low friction surfaces 

and special shoes to reduce surface friction and keep the user at the center of the device. 

Once these products will be available commercially, everyday users will be able to use 

these devices in their homes and experience intuitive walking in immersive virtual 

environments. 

So far, the mentioned locomotion devices were designed to allow for real walking 

movement. There have been also some devices that were designed to work with some 

gestures such as leaning and walking in place. For example, “Joyman” [104] was similar 

to a human sized joystick. Users leaned on a board to control the locomotion. A spring 

system introduced a repelling force to balance the user. Inertial sensors measured the 

inclination of the board with which the virtual locomotion speed was calculated. Sideway 

leans were used to rotate the viewpoint in the virtual environment. Another device, called 

“Walking-Pad,” was designed to track the walking in place gesture [105]. The system was 

a platform with a grid of switch sensors which could detect pressure (a predecessor of 

Wii Balance Board). The platform could detect walking speed and direction as well as 

jumping. 

Some other studies employed everyday objects as locomotion devices. A recent 

study used a “Swopper Chair” with an orientation sensor to get input from the user and 

could also provide vibration feedback [106]. Users could lean forward in the chair with 

the help of chair’s unique design to control the navigation. The head rotation was tracked 

by internal sensors of the head mounted display. Another study used a stepper machine 
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for locomotion in virtual environments [107]. The authors used an Arduino 

microcontroller with wind and vibration sensors to translate movement on the stepper 

machine into steps for virtual locomotion. In a user study, the stepper machine received 

the highest scores for joy and immersion compared to a Wii Balance Board and joystick. 

However, within the same research, users also reported that the stepper machine was 

difficult to use. On a similar note, Nilsson et al. compared the stepper machine, Wii 

Balance Board, keyboard and mouse for movement in a virtual skiing game [108]. The 

stepper machine was found out to be the best in terms of enjoyment and the second best 

in terms of ease of use. 

Finally, there are some atypical approaches to locomotion in this category. One of 

these studies was called “Cybersphere”. The authors used a large sphere in which the 

user could walk, run, jump or crawl freely in any direction to explore an infinite virtual 

environment. Another similar product, which was commercialized, is called 

“VirtuSphere” [109]. The VirtuSphere was designed to work with head mounted 

displays. It was reported to be difficult to start and stop walking in the sphere due to its 

size and large mass. Once the user started to run, the momentum of the ball made it hard 

to stop or make fine adjustments. The system was suggested to be more useful for low 

velocity applications. Another atypical device was called “String Walker” [110]. In this 

system, each foot was attached to four motor pulleys with strings. Once a forward motion 

was detected, the strings pulled the user to the center. The tension was only applied when 

the foot was on the ground. This information was gathered with a touch sensor that was 

placed on each foot. The turning motion was performed with a turntable that was placed 
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under the pulley-motor mechanism. Walking with this device seemed to be neither easy 

nor natural for beginners. 

2.3.1.2 Standard Controllers 

Standard controllers such as joysticks, joypads, touchpads and keyboards are the 

most commonly used locomotion devices [111], [112]. These controllers are usually low 

priced, easy to install, familiar to users and easy to use. There have been many studies 

that compared different locomotion techniques with standard controllers. Keyboards are 

binary controllers and joypads may have limited sensitivity compared to joysticks. Thus, 

a previous study found that joysticks were slightly better than joypads and keyboards in 

maintaining longer continuous control of velocity [113]. Locomotion trajectory with 

joysticks also had a higher conformity to real world trajectories. In another recent study, 

a joystick controller was compared with real walking using both a CAVE-like 

environment and head mounted display [114]. In the study, users performed perceptual-

motor coordination tasks with different locomotion techniques. The results showed that 

the different velocity controls of each locomotion technique affected the timing and 

success rate of actions. In real walking, the speed could be controlled easily whereas with 

a joystick an almost constant speed was provided. Another study by Peck et al. compared 

joysticks with other locomotion techniques in a virtual maze environment [115, 116]. 

Participants who used joystick-based navigation performed significantly worse than the 

participants who used redirected walking; in terms of navigating, pathfinding, 

unnecessary walking distances, wrong turns, and recalling and pointing targets. In the 

same study, joystick and walking in place techniques performed similarly on the above 



36 
 

metrics. In another study, joystick locomotion did not perform well as compared to 

natural human walking [37]. 

On the other hand, one study found that joystick performed better than natural 

and semi-natural locomotion interfaces [117]. In this study, joystick was compared to a 

natural technique (real walking) and a semi-natural technique (VirtuSphere). Despite 

being a non-natural locomotion technique, joystick got better results than VirtuSphere in 

terms of fatigue, ease of learning and walking, and accuracy. The authors concluded that 

well designed locomotion techniques of lower fidelity levels such as joysticks tended to 

yield improved results as compared to moderate interaction fidelity like VirtuSphere. 

Another study compared real walking and joystick locomotion with an additional 

alternative of real rotation with joystick walking [118]. The task was to visit different 

positions in a virtual environment to find target objects. Combining real rotation with 

joystick-based walking produced similar task performance scores as real walking. Both 

techniques outperformed joystick locomotion. The results showed that large tracked 

areas were not required for reasonable navigation performance in virtual reality. Finally, 

joystick and keyboard like devices were inferior for controlling spatial orientation as 

compared to the physical locomotion techniques such as redirected walking [119]. 

In light of these previous works, we can summarize that most users are familiar 

with standard controllers and do not need any prior training to use them, on a positive 

note. However, applications using these standard controllers may lack some degree of 

realism in terms of interaction and sense of presence. 
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2.3.2 Mobile Tools 

Some locomotion devices are designed to be mobile and are usually worn on the 

body of the users. The main problem they try to solve is similar to the tool based systems. 

These tracking area independent tools can sense gestures, transmit them to the system to 

make the necessary updates on the viewport, and keep the user in a safe physical place, 

if required. So far, mobile tools were primarily examined in experimental studies and 

they are not usually utilized in virtual reality applications. In this sub-subsection, these 

systems are discussed under two categories: wearables and robots. 

2.3.2.1 Wearables 

For spatial tasks with low accuracy requirements, the foot can be used for 

interaction [120]. One of the first examples of wearable virtual reality locomotion devices 

was called “Cyber Boots” [121]. It had four pressure sensors for each foot: one under the 

heel, one under the toes and two in the middle of the foot. The proposed system could 

identify walking and leaning gestures. Another wearable locomotion device was called 

“Waraji” [122], [123]. Waraji had three rotary sensors attached to a sandal, from which 

the ankle motion was detected and used for locomotion in virtual environments. 

However, the system needed separate calibration for each different user. Recently, the 

researchers have developed another shoe prototype with six different sensors placed on 

the highest pressure points of the feet [124]. It could track walking in place to trigger the 

locomotion. Furthermore, it could track some other gestures such as shifting pressure or 

jumping. One of the strongest properties of this system is its ability to give feedback to 

the users. The system gives tactile feedback as well as temperature feedback. Besides 
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these, there are some other applications that can track the feet and understand the feet 

gestures, but these systems were not primarily developed for virtual reality applications 

[125], [126]. 

Another wearable locomotion device was called “Powered Shoes” [127]. It was a 

pair of roller skates that were driven by flexible shaft motors. It had a lightweight design 

that could be worn comfortably by the users. The motion of the user was tracked by 

optical sensors and the motors rotated the roller skates to keep the user at the same place. 

It was a good system to explore large virtual spaces without a need to have a large real 

tracked space. The walking was similar to real walking so it did not involve learning and 

is natural. The drawback of this system was that it needed accurate low-latency tracking 

to stop the movement of the user. Otherwise, sudden movements and disturbances in the 

user’s presence were observed. Furthermore, the Powered Shoes system required 

powerful motors to be able to move the weight of the user. The motor and the batteries 

were carried separately in a backpack that was worn by the user. The system relied on 

the motor abilities of the user. 

2.3.2.2 Robots 

An interesting approach to locomotion in virtual reality was proposed with the 

name “CirculaFloor” [128], a set of robotic, movable tiles that the user could freely walk 

on. The tiles kept the user at the same physical place even though they kept walking in 

the same direction in virtual world. The system tracked knees and assumed the midpoint 

of the knees showed the center of the body on the ground. Once the midpoint left the 

dead zone, which was placed at the center of the physical area, the tiles started moving 
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to keep the user in the dead zone. There were four tiles in the system. In every cycle, two 

of the tiles pulled the walking user to the center, and the rest positioned themselves. The 

tile rotation did not change so it did not give a sense of rotation to the user while 

providing a sense of walking with proprioceptive feedback. Each tile had 568mm width 

and depth and they supported a maximum walking velocity of 330mm/s. A further 

improvement made to the system was to give a feeling of walking on staircases by 

controlling the height of the tiles. The prototype was not stable and the users needed to 

walk slowly in small steps on them. This system also relied on motor abilities and 

balancing of the user. 

2.4 Cognitive Comparison Studies 

Some studies compared various locomotion techniques based on cognitive criteria. 

A study investigated real walking and flying locomotion techniques in terms of 

information gathering and cognition [129]. The authors used joystick for triggering the 

flying technique. In their first experiment, the authors found that real walking and flying 

in the gaze direction could maintain higher immersion as compared to flying in the 

pointed direction. Furthermore, no significant difference was found for recalling the 

objects and drawing the map of the environment. In their second experiment, the authors 

compared virtual maze results with real maze results. Virtual locomotion techniques 

turned out to be an acceptable alternative for real walking in complex virtual mazes for 

learning and reasoning tasks. On the other hand, for tasks that required speed and 

navigation efficiency, real walking was found to be better than flying locomotion with 

joystick. Another study compared different locomotion techniques based on cognition in 
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three categories: knowledge, understanding, and mental processing [130], [131]. In the 

study, three techniques of real walking, flying with joystick and joystick controlled 

locomotion were compared. The results showed that real walking technique was 

significantly better than flying and joystick techniques in terms of understanding and 

mental processing. The same study also looked at the map sketching scores for these three 

techniques. Real walking results were significantly better compared to the joystick 

controlled locomotion. Finally, for presence, real walking and flying techniques which 

were implemented with a head mounted display got significantly higher scores than 

when viewed on a monitor and used the joystick controlled locomotion. A few other 

studies likewise showed that real walking provided more presence than other techniques 

such as walking in place or flying [69], [33], [130].  

A more recent study performed experiments to investigate the cognitive costs of 

various locomotion interfaces [36]. It was shown that locomotion techniques required 

spatial working memory resources. Unnatural locomotion techniques were stated to 

affect performance in cognitive tasks negatively. Furthermore, virtual reality applications 

with low visual feedback such as low field of view displays required more general 

attention resources. 

As mentioned, there are several approaches to locomotion in virtual 

environments. A summary of the key studies that have been discussed in this literature 

review is given in Appendix A, with their generalized properties. Each technique has its 

own strengths and drawbacks. All studies considered, real walking seems to be the best 

choice for virtual reality applications in which realism and presence are desired. If there 
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is a limitation in the size of the tracked area and real walking cannot be utilized, walk-in-

place technique can also be used without much sacrifice in these aspects. Standard 

controllers seem to be the poorest choice in terms of realism, presence and enjoyment. On 

the other hand, these controllers may provide ease of use and less cognitive effort. 

However, it should be considered that these studies targeted neurotypical individuals. 

These suggestions may not apply to individuals with autism. We believe that 

characteristics of the targeted population is among the most important factors in selecting 

or designing a locomotion technique for a virtual reality application. Hence, locomotion 

techniques should be evaluated according to the characteristics of the targeted audience 

as well. 

2.5 Virtual Reality Locomotion in Applications for Autism 

Although locomotion techniques have not been evaluated for virtual reality 

applications for individuals with autism, many previous virtual reality studies used 

simple forms of locomotion, such as keyboard and joystick. Movement was performed 

with pressing keyboard buttons or maneuvering the joystick. Some studies taking place 

in CAVE projection environments allowed for limited real walking within a small area. 

This subsection presents previous virtual reality studies for individuals with autism with 

respect to their locomotion techniques. Brief descriptions of the studies are also presented 

to give a better understanding of the contexts in which the locomotion techniques were 

used. These previous works usually used one of the following locomotion approaches: 

real walking or standard controller. 
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2.5.1 Real Walking 

Virtual reality applications for individuals with autism did not utilize real walking 

with the aim of navigation in larger virtual environments. However, some studies 

utilized real walking to allow for movement of the users in a small tracked real world 

area. 

Finkelstein et al. studied implications of an exercise game on motivation of 

individuals with ASD [132]. The system tracked the body motion of users. The users 

could control the game with their physical movements. The tasks did not require 

navigation but the users were free to walk within the small CAVE-like environment. In a 

follow-up research, the authors found out that the system provided high levels of 

enjoyment and motivation for exercise [8]. Cai et al. designed and developed a virtual 

dolphin lagoon for the therapy of children with autism [133]. The system used 

electromagnetic markers for the position and orientation tracking. The users were free to 

move in the CAVE-like environment. They needed to perform different hand gestures 

such as raising hands and waving, to play the role of a dolphin trainer. Pilot user study 

results indicated the engagement of the participants with autism with the system. 

However, some participants had trouble in understanding and performing the hand 

gestures. Bartoli et al. looked into the potential benefits of the motion based games for 

children with autism [25]. The researchers utilized Microsoft Kinect for motion tracking. 

The children experimented with a set of commercial Microsoft Kinect games, and the user 

study results showed improvement in their attention skills. Although no usability data 

was shared, the researchers reported that the users interacted with the games without 
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any difficulties. Garzotto et al. also explored the use of motion games for children with 

autism [26]. The authors developed a motion based touchless game that mainly 

encouraged the social interactions and imaginative thinking. Children were required to 

match the postures that were shown on the screen with their own bodies. User study 

results demonstrated development in the self-awareness and imitation skills of children 

with autism. 

Pares et al. developed a full body interaction application that included several 

virtual reality games [27]. The primary goal of this study was developing a fun tool 

targeting users with autism. The users controlled the games with several body 

movements. The games did not have concrete goals but provided the users with 

environments that responded to their actions with visual stimuli such as flying leaves 

and traces. User studies revealed that children with autism were able to use body 

movement based interaction. Users engaged with the games, showed positive reactions 

and no signs of discomfort. Lorenzo et al. investigated the use of virtual reality as an 

educational intervention for children with autism [9]. The users fulfilled several tasks in 

virtual environments, including a classroom, home and playground. Some example tasks 

included talking with virtual characters and collecting the books that were needed for the 

next school day. The results favored the use of this virtual reality based tool as an 

intervention for children with ASD. Social skills of the children were improved after 

using the system. 
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2.5.2 Standard Controller 

Controller based locomotion does not utilize full body movements of the users. 

Users mainly use their hands to control an input controller such as keyboard, joystick or 

gamepad. Controller based interaction have been utilized by some previous studies with 

the aim of navigation in the virtual world. 

In their study, Bernardes et al. examined whether virtual reality could be used as 

an assistive tool to improve the capabilities of individuals with autism [10]. The tasks 

were centered on travelling. The users were required to move to the predefined 

destinations such as a bus stop. A gamepad was used for walking in the virtual world. 

Preliminary user study results indicated the acceptance of the system by users with 

autism. Self et al. studied the benefits of virtual reality as compared to traditional teaching 

of safety skills to children with autism [134]. The users had to navigate inside a building 

to find the exit during an emergency situation. Results showed that virtual reality offered 

faster learning of the emergency strategies. Strickland et al. developed a similar safety 

training system for street crossing [135] that was controlled with a joystick. Some 

problems with using the joystick were reported for children with autism. In a later study 

on teaching fire safety with a non-immersive computer based application, the authors 

observed difficulties in using the joystick again, and restricted the degrees of freedom to 

moving forward, backward and turning left and right. This simplification resulted in 

better acceptance of the joystick-based locomotion by the children with autism, although 

some children kept running into corners of objects in the virtual world. As a second 

simplification, the authors tried mouse and keyboard alternatives. The mouse was found 
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to be confusing. Children had difficulty understanding that they needed to bring the 

mouse back to the center to keep moving in the virtual world. The authors observed that 

the keyboard interaction appeared to be the most comfortable option among the other 

alternatives, although no alternative locomotion methods were evaluated in the study. 

Along similar lines, Josman et al. examined VR for training children with autism on street 

crossing [28]. The users crossed a virtual street using three keyboard keys. Children with 

autism learned using the VR tool and their real life street crossing skills were also 

improved. 

Mitchell et al. used a virtual café environment for providing training on social 

skills to children with ASD [136]. The users were required to move in the virtual world 

and also have interaction with some virtual objects. User study results showed 

improvement in the real life social skills of children with autism who used the system. 

Participants learned using the VR system and got more comfortable with training. 

Kandalaft et al. investigated the feasibility of a VR tool for social skills training of 

individuals with ASD [11]. The tasks were mainly communicating with virtual 

characters. Keyboard arrow keys were used for walking in the virtual environment. User 

study results indicated improvement in the real life social skills of the participants with 

autism. Participants were reported to learn how to navigate in the virtual world easily. 

Fornasari et al. studied the behavioral differences between children with autism 

and neurotypically developed children in navigation [137]. For this purpose, the authors 

utilized a computer based virtual environment in which the users navigated using 

mouse. There were no differences between children with autism and neurotypically 
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developed children for the exploration with a goal task. On the other hand, it was found 

out that children with autism spent less time in the virtual environment for the free 

exploration task. 

A summary of the studies for training individuals with autism using virtual reality 

can be seen in Appendix B with a focus on the locomotion techniques. The mentioned 

studies were limited to basic locomotion techniques. Intuitive locomotion techniques like 

redirected walking and walking in place were not employed or evaluated in virtual 

reality systems that aimed for effective training of individuals with autism. Findings on 

the understanding and use of locomotion techniques by individuals with autism were 

not explored and shared in these studies. For desktop virtual systems that use computers 

instead of motion tracking areas, only a few studies shared their observations on users 

with autism having no difficulties in using keyboard. However, these observations were 

limited to the alternative locomotion methods that were available in the study and were 

not based on statistical comparisons. Thus, we believe that more comparative studies are 

needed to understand the user experience of individuals with autism with virtual reality 

locomotion methods. This dissertation aims to contribute to remedying this deficiency. 
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Autism spectrum disorder (ASD) is a lifelong development related disability 

which may impact people’s understanding of their environment. It can result in 

difficulties in social relationships and behavior [138]. The latest data from the U.S. 

Department of Health and Human Services [139] shows that today, about 1 in 68 children 

is identified with ASD. Attention to this specific group and applications for them has 

increased recently because of an increase in the awareness of prevalence of ASD. 

According to the Centers for Disease Control and Prevention, National Center for Health 

Statistics, prevalence of autism has increased by 289.5% from 1997 to 2008 [140]. The three 

most significant impairments that are associated with autism are listed as; social 

interaction, communication and behavior [141]. Because of these impairments, 

individuals with autism often have difficulty in their daily lives, especially while 

interacting with other individuals. Because of the limiting properties of ASD, it is usually 

harder for individuals with autism to find jobs and succeed in them without proper 

training. 

There are several advantages of using virtual reality over traditional training 

methods, such as active participation in accurately represented real-life like situations, 

CHAPTER 3:  VIRTUAL REALITY FOR VOCATIONAL REHABILITATION OF 

INDIVIDUALS WITH SEVERE DISABILITIES SYSTEM: LOCOMOTION, 

INTERACTION AND DISPLAYS 
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opportunities for repetitive practice on simulators, unique training experiences with 

suitable and customizable difficulty levels, consistent and real time feedback, and 

opportunity for users to train and correct errors without severe consequences [142]. Due 

to these positive properties, virtual reality has been used in many different training 

applications for neurotypical individuals, such as training law enforcement agents on 

interrogation [143] and physicians  on intervention [144]. Virtual reality is found to be 

especially useful for populations with ASD, since virtual reality training offers several 

aspects that resonate with their characteristics, such as the predictability and the ability 

to repeat the exercises with adjusted difficulty levels until the user feels ready for the task 

to be performed [145]. 

There have been many scientific studies for training of individuals with ASD using 

virtual reality. These studies showed that virtual reality is an effective tool in training 

individuals with ASD. However, there is little work to understand which virtual reality 

locomotion and interaction techniques are useful for individuals with ASD. This 

dissertation aims to contribute to this area. This chapter presents an advanced virtual 

reality system for vocational training of individuals with severe disabilities, with a focus 

on locomotion, interaction and display preferences. First, system properties are 

presented, them locomotion techniques, interaction techniques and the display methods 

are discussed. Following, user study design and results are reported. Finally, results are 

discussed and conclusions are drawn. 
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3.1 Note to Reader 

Portions of this chapter were published in HCI International 2016 (Bozgeyikli, E., et 

al. Virtual Reality Interaction Techniques for Individuals with Autism Spectrum Disorder: 

Design Considerations and Preliminary Results. International Conference on Human-

Computer Interaction, Springer International Publishing, 2016.). Permission is included in 

Appendix C. 

3.2 System Properties 

The training applications for individuals with ASD that were implemented with 

virtual reality were reported to usually have positive effects [28, 29] but the systems 

showed different results in terms of the effectiveness and the acceptance by the users. 

Among the main reasons for these differences could be the locomotion and interaction 

techniques that were used in these systems. The literature has not yet extensively 

examined different virtual reality locomotion and interaction techniques for individuals 

with ASD. Although there are many possible advantages of using virtual reality systems 

for job training, the effective locomotion and interaction techniques must be implemented 

for the users to truly benefit from the advantages of virtual reality. Since the perception 

and behaviors of the individuals with ASD are different from neurotypical individuals, 

using the same interaction techniques that work well for neurotypical individuals may 

not be a good practice for individuals with ASD. In this study, we examined and 

evaluated different virtual reality interaction techniques for individuals with ASD. For 

this purpose, several different interaction techniques for object selection and 

manipulation (tangible object manipulation, haptic device interaction, touch and snap 
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technique and touchscreen interaction) and locomotion (real walking and walk-in-place 

technique) were implemented in different modules of the virtual reality for vocational 

rehabilitation of individuals with severe disabilities (VR4VR) System. The VR4VR system 

is a highly immersive virtual reality system that aims to train individuals with severe 

disabilities on transferrable job skills. This dissertation focuses on the autism population 

and the locomotion, interaction and display components of the VR4VR system. The 

locomotion and interaction techniques along with two different display methods (head 

mounted display and curtain screen) were evaluated based on different aspects such as 

the ease of interaction, level of enjoyment, frustration, dizziness, nauseousness, tiredness, 

and user statements. 

In VR4VR, there are six modules that are developed for the training of six different 

transferrable vocational skills: shelving, cleaning, environmental awareness, loading the 

back of a truck, money management, and social skills. In each different skill, the most 

convenient interaction technique to be tested was decided by research and discussions 

with the professional job trainers of the individuals with ASD. These job trainers have 

been training the individuals with ASD professionally for vocational rehabilitation for a 

long time and are highly experienced in this area. In this user study, the real walking and 

walk-in-place locomotion techniques, the selection and manipulation interaction 

techniques, and the head mounted display and curtain display methods were explored. 

To implement these locomotion and interaction techniques, the Unity game engine 

[146] and MiddleVR software [147] were used. The implemented software was run on a 

desktop computer with the following specifications: AMD FX-8150 3.61Ghz Eight-Core 
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CPU, AMD FirePro W600 GPU and 16GB RAM. For motion tracking, the OptiTrack [148] 

V100R2 FLEX optical motion tracking system with 12 cameras was used in a 2m x 2m 

tracked area (Figure 3-1). 

 

Figure 3-1: VR4VR system’s sketch. 

3.3 Locomotion Techniques in the VR4VR System 

Locomotion techniques are used to move the viewpoint (and the avatar, if used) 

of the user in the virtual world. There are many different techniques of locomotion in 

virtual reality. In this user study, two locomotion techniques were implemented and 

evaluated: real walking and walk-in-place. This subsection presents information about 

these two locomotion techniques in the VR4VR system. 
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3.3.1 Real Walking 

To move the avatar in the virtual world, the user really walks in the tracked area 

as they would do in real life. Although this is a very intuitive method, there is a significant 

restriction of the limited tracked area. The user was equipped with reflective markers on 

their hands and head so that the real position of the user was approximated by these 

tracked position values and transferred into the virtual world. The virtual world was 

viewed inside from a virtual camera that was attached to the position of the virtual head 

and this view was rendered to the HMD. The movement and the rotation of the real head 

affected the virtual camera’s position and rotation so that a realistic view of the virtual 

world could be displayed in the HMD. 

In this project, real walking interaction technique was evaluated in a virtual 

warehouse environment with the shelving skills. Since this technique is restricted by a 

limited tracking area, the user was surrounded by two physical shelves and one desk. All 

the tasks were designed so that they could be performed inside that limited tracked area 

(see Figure 3-2). The design of the application allowed for the use of a limited tracking 

area and real walking as the locomotion method. 

3.3.2 Walk-in-Place 

If the real tracked area is smaller than the virtual world, then real walking 

technique becomes hard to use due to the restriction. To overcome this limitation, walk-

in-place technique is commonly used in VR implementations. In this technique, the user 

marches in the same place while the virtual avatar walks in the virtual environment in 

the direction the user faces. This way, the limitation of the physical tracking area can 
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easily be overcome. But this comes with the additional gesture of walking in place instead 

of real walking. In the VR4VR system, the implementation of this technique included 

different walking speeds, depending on the speed of walking in place gesture, so that the 

user could adjust the virtual speed of the avatar by modifying their real marching speed. 

The walking direction of the virtual avatar was controlled by the head direction of the 

user. We assumed that the head of the user was aligned with the user’s body orientation 

and the neck of the user was not rotated. If the user turned their head to the left while 

their body was front facing and marched in place, they would have moved towards the 

left in the virtual world, where their head was facing. 

 

Figure 3-2: Picture of the real walking locomotion technique in the VR4VR system. The 
user walks inside the tracked area in the shelving module. 
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To be able to detect the walk-in-place gesture, a marker set was attached to the 

same position on user’s both feet. The difference of the heights (h0) of the left and the 

right foot markers (h0 = hr – hl) was calculated in each cycle of the program. If the 

difference of the heights of the foot markers became higher than a threshold (ht), the 

system got ready for a possible walking action. In a specific time interval (∆t), if the 

difference of the heights of the foot markers (h1) became higher than a threshold again 

but this time in the opposite direction, this triggered the walking action. The walking 

speed was calculated by collecting the time between the two triggers, and dividing the 

average one step length to the collected time. After each trigger, system looked for 

another trigger in a specific time interval. If another trigger happened, the walking speed 

got updated and walking proceeded. If no trigger was initiated in that time interval, the 

walking ended (see Figure 3-3 for a flowchart of the walk-in-place algorithm). 

 

Figure 3-3: Walk-in-place algorithm’s flowchart. 

To evaluate this technique, two skill modules of the VR4VR system were used. The 

first one was the cleaning module in which the user was required to go near the dirty 
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areas to clean them or go near the litter to collect them (see Figure 3-4). The locomotion 

was performed by the walk-in-place technique. The other module that was used to 

evaluate this interaction technique was the environmental awareness module. In this 

module, the users were required to walk to the specified check points in the parking lot 

of a virtual shopping mall environment. This module also used only the walk-in-place 

technique for locomotion. 

 

Figure 3-4: Pictures of the walk-in-place locomotion technique in the VR4VR system. 
The user navigates in the virtual environment by walking in place in the actual world. 

Cleaning module (left), environmental awareness module (right). 

3.4 Object Selection and Manipulation Interaction 

In the VR4VR system, different object selection and manipulation techniques were 

implemented and used in different skill modules. The selection of the interaction 

techniques was performed according to the requirements of the task and inputs received 

from the job trainers. 
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For object selection and manipulation, four different interaction techniques were 

implemented and tested: tangible object manipulation, haptic device, touch and snap, 

and touchscreen. These were used in different skill modules in order to interact with the 

virtual world. These four interaction techniques are presented in the following sub-

subsections. 

3.4.1 Tangible Object Manipulation 

In this interaction technique, two types of real tangible objects were tracked and 

represented in the virtual world: (1) identical looking real boxes that were shown in the 

virtual world with different textures or labels, and (2) a broomstick handle that was 

represented as a vacuum cleaner or a mop that the user used for cleaning the virtual 

environments. 

For the evaluation of these interaction techniques, some tasks were assigned to the 

user to be performed in a virtual warehouse environment. In the shelving skill module, 

there were two physical shelves and one physical table in the real world environment. 

The virtual conjugates of those objects were created and placed at the same positions in 

the virtual world. Furthermore, there were four real boxes that were identical in 

appearance with reflective markers placed on top of each (for infrared camera tracking). 

The virtual conjugates of the boxes were created and placed at the same positions in the 

virtual world with different virtual textures projected on them. The first task was to rotate 

the boxes on the shelves such that the front sides faced the user. In the second task, the 

user was asked to put the required boxes on the table and then place the boxes on the 

correct levels of the correct shelves according to their projected label textures. In the third 
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task, instead of the label textures, labels with different code numbers were projected on 

the boxes. These code numbers indicated the shelf/level the boxes belonged to. The user 

was again asked to put the required boxes on the table and then place the boxes on the 

correct levels of the correct shelves according to the code numbers. 

An immersive tangible object manipulation technique was implemented and 

tested. With this technique, the users could move and rotate the real tangible boxes in the 

tracked area (Figure 3-5). This enabled a tactile feedback during the interaction, which 

was expected to increase the presence for the users. Head mounted display (HMD) was 

used along with hand bands with reflective markers on them. This enabled real time head 

and hand tracking. The user was able to see two virtual hands in the virtual world 

approximately at the same position and orientation with their real hands. We used virtual 

hand models representing the real hands of the users since it was reported to increase the 

realism and the immersiveness in virtual reality applications [149] and help the users to 

better understand the virtual distances. The required actions to be performed in this 

module were to rotate the real boxes and to move the boxes from the shelves to the table 

and vice versa. 

The tangible object manipulation interaction was also used in the cleaning skill 

module. In this module, there were two tasks that involved vacuuming and mopping in 

which the user used a tangible broomstick handle to interact with the virtual world. The 

real broomstick handle was replaced with a virtual vacuum cleaner or a virtual mop in 

different tasks (see Figure 3-6). To be able to track the real stick by the optical cameras in 

real-time, three pieces of reflector marker tape were attached around the cylinder. Since 
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the cylinder was symmetric along its longitudinal axis, we used software calculations to 

visualize the cleaning head (nozzle or mop) according to the angle between the cylinder 

and the ground. This time, in addition to HMD and hand bands, feet bands with reflective 

markers were also worn by the user. This enabled real time head, hand and feet tracking. 

The user was able to see two virtual hands and feet in the virtual world. Required actions 

included moving and carrying the broomstick and pointing it to the required areas. The 

objectives of these tasks were to clean the virtual warehouse by using the real broomstick 

handle to vacuum clean the dry dirt piles and to mop the wet dirt piles. 

 

Figure 3-5: Tangible box manipulation in the VR4VR system. The user is rotating a real 
box. The curtain screen displays the user’s view through the HMD. 
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Figure 3-6: Tangible stick manipulation in the VR4VR system. Real broomstick handle 
with virtual representations of a vacuum cleaner (left) and a mop (right). 

3.4.2 Haptic Device 

Haptic device interaction was evaluated in the loading the back of a truck module. 

Haptic devices utilize force feedback to create a tactile sense of touch. In this module, 

Phantom Omni® haptic device by SensAble Technologies [150] was utilized for 

interacting with virtual world. Phantom Omni® haptic device created a sense of weight 

for the users so that they could feel if they were interacting with a light or heavy object. 

This was expected to help in increasing the immersion. 

In the module that was utilized to evaluate this interaction technique, the user was 

expected to fill up an empty truck’s back with different sized 2D boxes in a virtual 

environment. The boxes were presented to the user one by one instead of making all of 

the boxes visible at the beginning. The boxes had different properties such as weight, 

fragility and directional arrows. The working area of the haptic device was restricted to 

a planar surface that was parallel to the display area. This helped the users to relate the 
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haptic device input to the visual output easily and also removed the ambiguity coming 

from the extra degree of freedom for the sake of this task. 

The buttons on the haptic device handle were assigned for specific commands (see 

Figure 3-7). One of the buttons was used to hold the boxes similar to the vastly used 

mouse gesture for drag and drop. The other button was used to rotate the boxes by 90 

degrees counterclockwise. The aim of this module was to fit all of the boxes into a limited 

area by moving and rotating the boxes. 

 

Figure 3-7: The haptic device interaction in the VR4VR system. The user controls the 
curser in the virtual world by using the haptic device (left). Haptic device with two 

buttons on the handle (right). 

3.4.3 Touch and Snap 

Touch and snap interaction technique is often used in the existing virtual reality 

applications. In this technique, a virtual object is snapped to a moving object which 

usually is selected to be the virtual hand of the user. To trigger the release of the snapped 
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object, different techniques can be used such as time triggering, position triggering or 

gesture triggering. 

 

Figure 3-8: The touch and snap interaction in the VR4VR system. The user is grabbing a 
virtual litter (left) and releasing their hand to throw the litter into a green virtual trash 

bin (right). 

To evaluate this interaction technique, the litter collection task that took place in a 

virtual grocery store was used. In this task, the users were asked to collect randomly 

distributed litter objects from the ground and throw them into the trash bins that were 

located around. User’s hands were equipped with passive reflective markers that were 

tracked real time via the optical tracking cameras. Those positions were used to place the 

virtual hands into the virtual world. Virtual litter object was snapped to the user’s virtual 

hands when the user bended and their hands came close to the litter. Users carried the 

litter objects in the virtual world and once the litter arrived in the vicinity of a trash bin, 
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it disengaged from the hand and fell into the trash bin. Required actions in this task were 

moving the hands close to the litter in the virtual world by bending and reaching out in 

the real word and then bringing the held litter close to a virtual trash bin to release it by 

extending the arm in the real world (see Figure 3-8). 

3.4.4 Touchscreen 

With the increasing number of mobile devices such as cell phones and tablet 

computers, touch interaction became one of the most popular and prevalent interaction 

techniques in daily lives of the users. Even some personal computers, televisions and 

projectors are currently using this technique for interaction. Since the visual output and 

the touch input are aligned perfectly, this interaction method is very intuitive and easy 

to use for the users. 

In the VR4VR project, a touchscreen ASUS T100 10 inch display tablet computer 

was used as another interaction method. Touchscreen interaction was utilized in a 

module that was related to the cash register skills. Three modules were utilized for this 

interaction: (1) recognizing money, (2) counting money, and (3) giving change. Currently, 

most of the digital cash registers are using touchscreens to get the input from the cashier, 

so this technique was decided to be implemented in the money management skill module 

to increase the immersiveness of the system (see Figure 3-9). 

In this module, only the single touch static touching technique was used instead 

of the more complicated dynamic or multi touch interactions. The tasks required the user: 

(1) to identify the given bill or coin amounts by touching on the corresponding value 

among the given options, (2) to type the sum of the presented bill and coin amounts by 
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touching the numbers on the touchscreen keypad, and (3) touching the bill and coin 

visuals on the cash register to fetch the required change to be given to a customer based 

on the shopping simulation. A touchscreen keypad similar to the real cash register 

keypads was presented to the user. The only possible interaction technique in this module 

was the touch interaction. 

 

Figure 3-9: The touchscreen interaction in the VR4VR system. The digital cash register 
interface implemented on a touchscreen tablet computer. 

3.5 Display Methods in the VR4VR System 

Different locomotion and interaction techniques were implemented in different 

modules of the VR4VR system. Each implemented locomotion and interaction technique 

was more suitable for a specific display method. In this project, head mounted display 

and a 180 degree curved screen were used as the available display methods. In the study, 
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the most suitable display method was selected for each locomotion interaction technique 

and the user preference on the display methods were evaluated. 

3.5.1 Head Mounted Display 

Using head mounted display is an immersive way of displaying the virtual world 

to the user. A pair of digital displays is placed near the eyes so that the user sees the 

virtual world through them (see Figure 3-10). VR2200 head mounted display with high 

resolution XGA (1024x768) was used. The main reason for selecting this HMD was to 

provide individuals with ASD with empty space around their heads since the 

professional job trainers for ASD stated that covering all of their view with the HMD 

could create a sense of feeling trapped and disconnected from the real world in 

individuals with ASD. The job trainers also stated that having open space in the HMD 

will make sure that they still have some connection with the real world and provide a 

more comfortable training experience for individuals with ASD. Hence, instead of using 

a highly immersive HMD that surrounds all of the user’s vision, we preferred to use a 

more open spaced HMD that could be flipped up when not in use. 

The modules of the VR4VR system in which the HMD was used were: shelving, 

cleaning and environmental awareness. The locomotion of real walking and walk-in-

place were implemented for the head mounted display since those techniques required 

the tracking of the rotation of the user’s head, to which a virtual camera was aligned. Real 

rotation of the head was used for rotating the virtual camera in the virtual world instead 

of using an additional rotating gesture. This approach decreased the gesture learning 

burden for the users by applying a more intuitive interaction technique. In these modules 
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the “tangible object manipulation” and the “touch and snap interactions” were tested as 

well. 

3.5.2 Curved Screen 

For the interaction techniques that were implemented from a stationary point of 

view –money management, loading the back of a truck and social skills– a 180 degree 

large curved curtain screen with two projectors were employed (see Figure 3-11). The 

curved screen had 3.5m diameter and 2.4m height and its surface was white fabric so that 

the projections of the virtual world would be easily visible. This way, the discomfort of 

the users while using HMDs was eliminated and the two different display methods could 

be evaluated. 

 

Figure 3-10: Head mounted display in the VR4VR system. The user is wearing the head 
mounted display with reflective markers on top. 
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The modules of the VR4VR system in which the curtain screen was used were: 

loading, cash register skills and social skills. Interaction techniques that were tested with 

the curtain screen display method were haptic device and touchscreen. Curtain screen 

was also used for the social skills in which the user was expected to talk with virtual 

people. All of the interaction techniques with the skill modules they were tested in the 

VR4VR system and the relevant interaction tasks are presented in Table 3-1. 

 

Figure 3-11: Curtain display in the VR4VR system. The virtual grocery store was 
projected onto the 180 degrees curtain display. 
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Table 3-1: The interaction and locomotion techniques and the displays in the VR4VR 
system. The skill modules they were implemented in and the tasks that were used 

within these skill modules. 

 Category Interaction Technique Skill Module Interaction Tasks 

Object Selection 
and 
Manipulation 

Tangible Object 
Manipulation (Real Boxes) 

Shelving 
 Rotating the Boxes 
 Placing the Boxes 

Tangible Object 
Manipulation 
(Real Broomstick) 

Cleaning 
 Vacuuming 
 Mopping 

Haptic Device Loading 
 Moving the Boxes Inside the 

Back of a Truck 

Touch and Snap Cleaning  Litter Collection 

Touchscreen Cash Register 
 Selection on a Touchscreen 

Tablet Computer 

Locomotion 

Real Walking Shelving 
 Rotating the Boxes 
 Placing the Boxes 

Walk-in-place Cleaning 
 Vacuuming 
 Mopping 
 Litter collection 

Walk-in-place 
Environmental 
Awareness 

 Walking to Destination 
Points 

Display 
Methods 

Head Mounted Display Shelving 
 Rotating the Boxes 
 Placing the Boxes 

Head Mounted Display Cleaning 
 Vacuuming 
 Mopping 
 Litter Collection 

Head Mounted Display 
Environmental 
Awareness 

 Walking to Destination 
Points 

Curtain Screen Loading 
 Moving the Boxes Inside the 

Back of a Truck 

Curtain Screen Cash Register 
 Selection on a Touchscreen 

Tablet Computer 

Curtain Screen Social  Talking with Virtual People 
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3.6 User Study 

A user study was performed to evaluate the experience of neurotypical 

individuals and individuals with autism with the mentioned locomotion and interaction 

techniques and the display methods. In this section, demographics, procedure and results 

of the user study are reported. 

3.6.1 Demographics and Procedure 

Ten neurotypical individuals (10 males, aged between 21 and 50) and nine 

individuals with high functioning ASD (7 males and 2 females, aged between 20 and 41) 

participated in the user study. The participants came to our research facility to try all six 

modules of the VR4VR system with their accompanying professional job trainers. Three 

different professional job trainers accompanied the nine users with autism throughout 

the user study. The users completed the skill modules in two different sessions that were 

scheduled on two different days. Each session was approximately two hours long and 

there were at least three days between the consecutive sessions. After each skill module, 

participants filled out a survey about their experience using the VR4VR system. After 

completing the final skill module of the system, the users filled out a general survey 

including questions about preferences on the different components of the system. The job 

trainers were also presented with questionnaires asking for their opinions about the 

VR4VR system. Other than these methods of data collection, we also asked the users’ and 

the job trainers’ opinions about the interaction techniques during the breaks between the 

consecutive sessions in the form of interviews. The user study was performed under the 
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IRB with the number Ame7_Pro00013008, the IRB approval letter can be seen in 

Appendix D. 

The questions that were asked after each skill module were about the users’ 

experience on the locomotion and interaction techniques and the display methods. The 

questions were about how easy it was to interact with the system, how much they 

enjoyed, got frustrated or tired while interacting with the system. We used the answers 

to these questions to evaluate the used locomotion and interaction techniques since they 

were one of the major differences between the six modules besides the tasks. The users 

were asked to choose from five available answer choices based on a five-level Likert scale 

[151]. The users were also asked if they felt dizzy or nauseous, during and/or after the 

virtual reality training. In addition, the users were asked to select their preferred 

interaction technique and their preferred display method after completing all of the 

modules. The users and the job trainers were also asked to state their own opinions about 

these evaluated aspects. 

Other than the surveys, the system also has collected automated data about the 

performance of the users. Those performance variables were, success counts, fail counts, 

and the count of additional pictograph helps that were displayed for the user. An overall 

score was calculated after the session was ended and was stored for all users. For every 

failure during the session, 30 points were deducted from a total 100 points. For every 

pictograph help, additional 20 points were deducted from the score. The overall score 

could not go below 0. 
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3.7 Results 

The results obtained from the participants and the job trainers are presented in this 

subsection to provide a general idea on the preference of a cohort of users with autism 

on several virtual reality locomotion and interaction techniques. However, since the 

system was not designed with the aim of comparing virtual reality locomotion and 

interaction techniques, these results are only expected to give a general understanding 

instead of generalizable powerful conclusions. 

The user study results are presented in three categories; locomotion techniques, 

selection and manipulation techniques, and display methods. 

3.7.1 Locomotion Techniques 

The results for the two locomotion techniques (real walking and walk-in-place) are 

shown in Figure 3-12 and Figure 3-13 for neurotypical individuals and individuals with 

high functioning ASD respectively. Real walking received higher scores for ease of 

interaction, enjoyment and immersion when compared to walk-in-place technique for 

both populations. The results of the two locomotion techniques were quite similar for 

tiredness. The users found the walk-in-place locomotion technique more frustrating as 

compared to the real walking. Detailed data analysis showed that walk-in-place 

locomotion method was significantly harder and introduced significantly more 

frustration on the neurotypical users as compared to the real walking. Average scores for 

each locomotion technique is shown in Figure 3-14. Analysis did not indicate significant 

difference between the scores of the locomotion techniques for both groups of 

individuals. Detailed statistical analysis results can be seen in Appendix E. 
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During the breaks, some of the users with ASD complained about the difficulty of 

trying to walk-in-place while trying to concentrate on tasks to do and they said that they 

liked the real walking much better. The job trainers stated that they found real walking 

very intuitive and easy to use for the users with autism. In contrast, they said that they 

found the walk-in-place locomotion technique difficult to learn and perform for 

individuals with ASD. They observed that most of the users walked forward 

unintentionally while marching and stepped outside the tracking area, hence got 

frustrated. They stated that the users with ASD were too focused on performing the 

walking gesture so that they had difficulty in concentrating practicing the tasks. Thus, 

the job trainers advised us to look for alternatives for the walk-in-place technique since 

they did not find it very reasonable to use for individuals with ASD, after their 

observations during the user study sessions. 

  

Figure 3-12: Survey results for the locomotion techniques in the VR4VR system for 
neurotypical individuals. 
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Figure 3-13: Survey results for the locomotion techniques in the VR4VR system for 
individuals with ASD. 

 

Figure 3-14: Performance scores for different locomotion techniques in the VR4VR 
system for both population groups. 
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3.7.2 Object Selection and Manipulation Techniques 

The results obtained from the users for the four different selection and 

manipulation techniques –tangible object manipulation, haptic device, touch and snap, 

and touchscreen– are presented in this sub-subsection. Figure 3-15 shows the average 

scores for the neurotypical users, whereas Figure 3-16 shows the average scores for 

individuals with ASD. A score of 1 represents very little while a score of 5 represents very 

much of the related aspect. Users in general, felt little tired and frustrated with all 

interaction techniques. The averages were between “Not tired at all” and “Not tired” for 

tiredness and between “Not frustrated at all” and “Neutral” for frustration. On the other 

hand, for ease of interaction, enjoyment and immersion; the averages were above 3.0. The 

users with ASD found the haptic device hard to interact as compared to the other 

interaction techniques. Touchscreen interaction received the best results for the ease of 

interaction, enjoyment, and immersion aspects as compared to the other three interaction 

techniques.  

 

Figure 3-15: Survey results for the selection and manipulation techniques in the VR4VR 
system for neurotypical individuals. 
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Figure 3-16: Survey results for the selection and manipulation techniques in the VR4VR 
system for individuals with ASD. 

A detailed data analysis was performed on the collected data. The results showed 

that there were significant differences for the ease of interaction for both population 

groups. For the neurotypical users, there were also significant difference for frustration 
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ASD, the haptic device was found to be significantly hard to interact as compared with 

the touchscreen.  

A chart of the scores are also shown in Figure 3-17 for both neurotypical users and 

individuals with ASD. Detailed statistical analysis showed that the scores were 

significantly different for both population groups. The neurotypical users received 

significantly lower scores with the haptic interaction as compared to all the other 

interaction techniques. On the other hand, individuals with ASD scored significantly 

higher with the touch and snap interaction as compared to the other interaction 

techniques. Detailed analysis results for individuals with ASD can also be seen in 

Appendix E. 

 

Figure 3-17: Performance scores for different selection and manipulation techniques in 
the VR4VR system for both population groups. 
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the users with ASD stated preference for the touchscreen interaction and some users with 

ASD stated preference for the tangible object manipulation. On the other hand, most of 

the neurotypical users preferred tangible interaction. None of the users stated preference 

over haptic device or touch and snap interaction. A chart of the results is presented in 

Figure 3-18. 

 

Figure 3-18: Preference of the users on the selection and manipulation techniques in the 
VR4VR system. 
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ASD. They found the tangible interaction very useful for the transition of the training to 

real life jobs and creating a sense of presence in the users via the tactile feedback. They 

also said that the touchscreen was very intuitive since it was just like using a smart phone, 

with which all of our participants with ASD were already familiar. The job trainers finally 

said that they observed some confusion in some of the users with ASD while using the 

haptic device but still they did not find it not reasonable for the use of individuals with 

ASD. They stated that they found the sense of weight applied by the haptic device while 

carrying objects in the virtual world very useful for contributing to the users’ sense of 

presence. As we offered to switch to the commonly used mouse interaction instead of the 

haptic device due to the relative low scores in ease of interaction, the job coaches stated 

that they preferred that we continued using the haptic device for a more effective training 

for individuals with ASD. 

3.7.3 Display Methods 

The average survey results for the modules with different display methods are 

presented in this sub-subsection. Figure 3-19 shows the average scores for the 

neurotypical users and Figure 3-20 shows the average scores for individuals with ASD. 

Curtain display had higher scores for the ease of interaction for both population groups. 

The tiredness values were lower for the curtain display for neurotypical individuals as 

well as individuals with ASD. This was a predicted result since the tasks performed with 

curtain display required low or no effort. The detailed statistical analysis revealed that 

for neurotypical users there were significant differences for the ease of interaction, 

enjoyment, frustrating and tiredness aspects. The performance scores for both population 
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groups can be seen in Figure 3-21. Although there was no significant difference between 

these scores, individuals from both population groups received higher scores in the 

modules with the HMD as compared to the modules with the curtain display. For the 

details of the statistical analysis, please see Appendix E. 

 

Figure 3-19: Survey results for the display methods in the VR4VR system for 
neurotypical individuals. 
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Figure 3-20: Survey results for the display methods in the VR4VR system for 
individuals with ASD. 

 

Figure 3-21: Performance scores for the different display methods in the VR4VR system 
for both populations 
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Three out of the nine participants with ASD declared that they felt dizzy and 

nauseous during and/or after the testing while using the head mounted display. 

Similarly, four of the ten neurotypical individuals declared that they felt dizzy and 

nauseous during and/or after the testing while using the head mounted display. Only 

one participant from each population stated feeling dizzy and/or nauseous while using 

the curtain screen. 

 

Figure 3-22: Preference of the users on the display methods in the VR4VR system. 
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Although they were a little bit anxious about the HMD acceptance of individuals 

with autism, the job trainers did not observe any negative effects of the HMD on users as 

well. They stated that it was reasonable to continue using HMD as a display for 

individuals with autism in the VR4VR system, since the users were very quick to adapt 

to using the HMD although none of them had any prior experience of using it. The job 

trainers stated positive comments about the curtain display as well. 

Below, the user comments stated in the surveys for the locomotion, interaction and 

display aspects of the VR4VR system are shared for the neurotypical users. Individuals 

with ASD did not fill out these sections of the surveys and thus were interviewed about 

these aspects afterwards. 

Question: “Have you ever felt limited/restricted while using any of the 

display/interaction methods? If so, please describe the situation and what made you feel 

limited.” 

 UserID 4: “The walk steps made me feel limited and tired.” 

 UserID 6: “I can’t walk very well.” 

 UserID 8: “Head mounted display, there was some kind of inconvenience 

not able to move quickly and properly and confidently as well.” 

 UserID 10: “I felt limited while I was trying to walk in the parking lot.” 

 UserID 11: “Field of view on head mounted device too narrow. 3D mouse 

felt strange for 2D application.” 

 UserID 12: “Yes, walking was a little slow, maybe make more adjustable 

speeds.” 
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 UserID 13: “When loading the back of the truck, some of the finer motions 

were difficult to perform.” 

Question: “Please describe the most positive experience you had while using the 

VR4VR system.” 

 UserID 6: “The tangible boxes were pretty nice. I felt this will help people a 

lot. I really enjoyed it.” 

 UserID 10: “The most positive experience was the interaction between the 

real world and the virtual world.” 

 UserID 12: “The interactions with the head mounted display.” 

 UserID 13: “Tangible boxes, the tracking is very good.” 

Question: “Please describe the most negative experience you had while using the 

VR4VR system.” 

 UserID 12: “Walking.” 

3.8 Discussion 

For the locomotion techniques, the most significant difference between real 

walking and walk-in-place techniques were observed on the frustration scores of the 

users. Users got more frustrated while they were walking-in-place than real walking. It 

was hard for the users with ASD to comprehend the walk-in-place gesture and keep 

doing that locomotion technique without really walking forward in the real world. They 

gave better scores to real walking for the ease of interaction, enjoyment, and immersion 

aspects. The users preferred the real walking technique and did not like the walk-in-place 

technique. These results aligned with [33, 69, 130]. The job trainers found the walk-in-
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place technique difficult to learn and perform for individuals with ASD. Hence, we 

interpret these results and views of the users and the job trainers as walk-in-place being 

a questionable locomotion technique to be used for individuals with ASD in virtual 

reality applications. On the other hand, the real walking locomotion technique was found 

very comfortable by the job coaches for the use of individuals with ASD as well. We 

interpret this as real walking being a very suitable method for virtual reality 

implementations for individuals with autism. Of course this is not easy to achieve due to 

the limitation imposed by the motion tracking cameras but as a solution, the tasks in the 

virtual world would be designed such that the users do not need to go outside the 

physical tracking area in the application.  

Among the selection and manipulation techniques, touchscreen received the best 

result from the users with autism for the ease of interaction and haptic device received 

the worst score. This may be caused by the users’ previous experiences. None of the users 

with ASD were familiar with the haptic device whereas all of them stated that they used 

touch enabled devices regularly on a daily basis. We observed that most of our 

participants with ASD were interacting with their touchscreen phones during the breaks. 

The same fact may also be the reason why touchscreen also received the best results for 

the enjoyment, frustration, and presence aspects. Since we were not expecting the 

touchscreen to get high presence scores, we asked the users with ASD why they gave 

better results for the presence of touchscreen. The participants expressed the reason as 

the touchscreen did not require any extra thinking or effort for them to use it. Tangible 

object manipulation and touch and snap interaction techniques were found to be the most 
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tiring interaction techniques. Those results were expected, since they required more 

physical activities such as carrying the boxes and bending. The users stated positive 

comments about the tangible object manipulation technique. Some of the users stated that 

it was much easier for them to interact with the tangible objects in virtual reality than the 

virtual ones. Some users also stated that the tangible boxes gave them physical cues and 

it made the tasks easier to perform for them. 

None of the users stated preference over the haptic device or touch and snap 

interaction. We did not observe any difficulties in using the touch and snap interaction. 

The users with ASD found the haptic device difficult to interact as compared to the other 

interaction techniques. We observed some difficulty in some users with ASD in using the 

haptic device. It took longer for the individuals with ASD to get comfortable with using 

this interaction technique as compared to the other interaction techniques. The job 

trainers also found the haptic device a bit challenging for the use of individuals with ASD 

but still thought that the challenging aspect was a positive contribution for their training 

and the haptic device was a suitable interaction method for them. The job trainers 

especially liked the sense of weight provided by the haptic device as they saw it as a 

significant positive contribution to the training of individuals with ASD. 

Finally, further data analysis was performed to compare the performance scores 

between neurotypical individuals and individuals with ASD. The results of this analysis 

was only shared as supplementary information since the main purpose of this study was 

not to show the differences between those populations. The results showed significant 

differences on the performance scores between these populations for the tangible object 
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selection and manipulation, touch screen interaction and real walking locomotion 

techniques. The detailed analysis results can be seen in Appendix E.  

In overall, most of the users with ASD preferred the touchscreen over all of the 

other interaction techniques tested. Although the job trainers stated that they found all of 

the selection and manipulation techniques suitable for use for individuals with autism, 

they stated that they found the tangible interaction the most suitable due to the tactile 

feedback and the similarity to real world interactions. They also found touchscreen 

interaction familiar and easy to use for individuals with ASD. 

We interpret these results as it is better to implement selection and manipulation 

techniques that utilize commonly used real life interactions such as tangible and 

touchscreen interaction as much as possible for the effective use of individuals with 

autism in virtual reality applications. 

As the display methods were evaluated, most of the users with ASD preferred the 

curtain screen over the head mounted display. But as they were interviewed, only one 

user with ASD stated negative comments about the view through the HMD, mostly about 

the tired eyes. The job trainers also stated that they found both the curtain display and 

the HMD suitable to use for individuals with autism. There weren’t any acceptance or 

adjustment time problems, thus we interpret that both the curtain display and the HMD 

might be used for virtual reality viewing tools for users with ASD. The neurotypical users 

stated preference for the HMD over the curtain screen. The results were in alignment 

with [130, 131]. 
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3.9 Limitations 

The user study was performed with nine individuals with high functioning 

autism. Thus, it should be avoided to generalize these results. The study aimed at 

providing general understanding in the use of locomotion, interaction and display 

methods in virtual reality by individuals with ASD. Another factor to keep in mind is 

that these interaction techniques were not examined in isolation, but within a larger scope 

tasks, hence might have been affected by other factors such as the task design and 

different virtual environments. Even still, the long hours of testing sessions with the 

participants gave us and the job trainers the opportunity to observe, discuss and have an 

initial idea on the suitability of the several virtual reality locomotion, interaction and 

display methods for the use of individuals with autism. 

3.10 Summary and Conclusion 

Locomotion and interaction techniques constitute a crucial part of the user 

experience in virtual reality applications. While a good design of locomotion and 

interaction techniques may enhance the experience and make it seamless for the users, a 

bad design may have serious negative effects on the user experience. Individuals with 

autism have their own characteristics and preferences that are related to their information 

processing. This makes the effectiveness of the previously proven virtual reality 

interaction techniques for neurotypical individuals speculative when it comes to 

individuals with autism. 

This study aims at evaluating different virtual reality interaction techniques for 

individuals with autism within the VR4VR system. Several techniques of locomotion, 
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object selection and manipulation interaction, and display methods were implemented 

and tested in different contexts. User experience with these interaction techniques were 

explored with a user study of nine individuals with high functioning ASD with 

accompanying professional job trainers. For the object selection and manipulation, 

touchscreen and tangible interaction methods were preferred by the individuals with 

ASD. The walk-in-place locomotion technique were found frustrating and difficult to 

perform by the individuals with ASD. Curtain display method received higher 

preference scored from individuals with ASD although they accepted the HMD as well. 

The results and the opinions of the users and the job trainers contributed to the inference 

that users with autism prefer the most realistic and real life linkable locomotion and 

interaction techniques in virtual reality while having some difficulties with the gesture 

based and more abstract ones. 
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This chapter presents the implementation of the locomotion techniques that were 

evaluated with user studies in this dissertation. The technical implementation details are 

included with code excerpts and descriptive visualizations. The following topics are 

discussed: system hardware and software, general implementation information, 

redirected walking, walk-in-place, stepper machine, point & teleport, joystick, trackball, 

hand flapping and flying. 

4.1 System Hardware and Software 

The tracking system that was used for the experiments was an optical motion 

tracking system with 12 cameras (see Figure 4-1) and passive reflective markers for head, 

hands and feet tracking (see Figure 4-3). A head mounted display (Figure 4-2) was used 

for display purposes. The tracking area was a 2m by 2m square area where the user could 

freely move. 

Specifications of the motion tracking cameras were as follows: 

 OptiTrack V100R2:FLEX 

 640x480 resolution 

 100FPS 

 Sub-millimeter accuracy 

 Latency: 10ms 

CHAPTER 4:  IMPLEMENTATION OF THE LOCOMOTION TECHNIQUES 
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Figure 4-1: An infrared camera used in the motion tracking system. 

Specifications of the head mounted display (HMD) were as follows: 

 Virtual Realities LLC. VR2200 

 Resolution: 1024x768 XGA 

 Field of View: 45 Degrees Diagonal 

 Input Signal: VGA, DVI and RCA Composite - NTSC/PAL 

The main program was implemented with the Unity game engine. All of the 

locomotion techniques and the virtual world was developed using C# in Visual Studio 

with the Unity game engine integration. For the tracking software, Motive was used 

which triangulated the marker positions and sent the 3D world coordinates of the marker 

positions. The calibration process was done by a standard marker set which was captured 

by the surrounding infrared cameras. The relative positions of the cameras with respect 

to each other was calculated. After the calculation, another standard marker set was used 
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to mark the origin position. The origin position was marked as the ground at the center 

of the tracking area. 

 

Figure 4-2: Head mounted display that was used in the user studies. 

 

Figure 4-3: Hand and foot markers that were used in the user studies. 
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4.2 General Implementation 

In the game engine, the virtual and real character positions of the user were placed 

in different areas. The reason was, in some techniques, the displacement of the virtual 

character was different than the real user. It was also helpful for the virtual environments 

with physical objects around. With this technique the virtual character could be kept 

away from penetrating into the solid objects. The white circle with 1m radius was the 

fictional area for the real user and the square area (16m x 16m) was the total virtual 

environment for the virtual character to explore (see Figure 4-4). 

 

Figure 4-4: Fictional area for the real user and the total virtual environment. 

The obvious size difference between the real tracked area and the virtual world 

could be overcome by utilizing different locomotion techniques. Without special 

locomotion techniques, the users could only explore a small portion of the large virtual 
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world. The implementation of these locomotion techniques will be explained in the 

following subsections. 

The required position and rotation data was captured by optical motion tracking 

system. Due to the limitations imposed by the tracking system, we could not track all the 

joints of the user. Instead, five important points were equipped with markers and 

captured by the system. These five points were: 

 Head 

 Right Hand 

 Left Hand 

 Right Foot 

 Left Foot 

The variables that were related to the user’s tracked position and virtual position 

are listed in Table 4-1. 

Table 4-1: Real and virtual position and forward direction variables. 

PO 
Origin position of the tracking system (0, 0, 0) and the origin of the fictional 

area for the real user. 

PH-O Real position of the head with respect to the PO. 

PRH-O Real position of the right hand with respect to the PO. 

PLH-O Real position of the left hand with respect to the PO. 

PRF-O Real position of the right foot with respect to the PO. 

PLF-O Real position of the left foot with respect to the PO. 

PR Reference position of the real user with respect to the PO. 
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Table 4-1 (Continued) 

PH Real position of the head with respect to the PR. 

PRH Real position of the right hand with respect to the PR. 

PLH Real position of the left hand with respect to the PR. 

PRF Real position of the right foot with respect to the PR. 

PLF Real position of the left foot with respect to the PR. 

pO Origin position of the virtual environment. 

pR Reference position of the virtual character with respect to the pO. 

pH Virtual position of the head with respect to the pR. 

pRH Virtual position of the right hand with respect to the pR. 

pLH Virtual position of the left hand with respect to the pR. 

pRF Virtual position of the right foot with respect to the pR. 

pLF Virtual position of the left foot with respect to the pR. 

DH-O Real forward direction of the head with respect to the PO. 

DRH-O Real forward direction of the right hand with respect to the PO. 

DLH-O Real forward direction of the left hand with respect to the PO. 

DRF-O Real forward direction of the right foot with respect to the PO. 

DLF-O Real forward direction of the left foot with respect to the PO. 

DR Reference forward direction of the real user with respect to the PO. 

DH Real forward direction of the head with respect to the PR. 

DRH Real forward direction of the right hand with respect to the PR. 

DLH Real forward direction of the left hand with respect to the PR. 

DRF Real forward direction of the right foot with respect to the PR. 
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Table 4-1 (Continued) 

DLF Real forward direction of the left foot with respect to the PR. 

dH Virtual forward direction of the head with respect to the pR. 

dRH Virtual forward direction of the right hand with respect to the pR. 

dLH Virtual forward direction of the left hand with respect to the pR. 

dRF Virtual forward direction of the right foot with respect to the pR. 

dLF Virtual forward direction of the left foot with respect to the pR. 

The real position data was captured with respect to the origin point of the motion 

tracking system. The origin point was set to the ground at the center of the tracking area 

during the calibration process. The center of the tracking area was also assumed to be the 

center of the fictional area for the real user. Since the ground had the same height for both 

cases (0m), the height of the real positions (y-axis) of the points were the same with the 

height of the virtual objects. But the other axes (x- axis and z- axis) were changed for the 

virtual character. Similarly, all the rotations were changed according the technique 

implementation. 

4.2.1 Real User 

The real user was a fictional character which was composed of five position data. 

The reference position of the real user was estimated by using the five position readings. 

These readings were relative to the origin point (see Figure 4-5 for an explanative 

illustration). 
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Figure 4-5: Real user position readings and the estimated reference positions and 
direction. 

The reference position and the reference direction of the real user was calculated 

by taking the average of the five positions with different weights for different points. 

𝑃𝑅 = ∑ 𝑃𝑖−𝑂 ∗ 𝑊𝑖∑ 𝑊𝑖 = 𝑃𝐻−𝑂 ∗ 𝑊𝐻 + 𝑃𝑅𝐻−𝑂 ∗ 𝑊𝑅𝐻 + 𝑃𝐿𝐻−𝑂 ∗ 𝑊𝐿𝐻 + 𝑃𝑅𝐹−𝑂 ∗ 𝑊𝑅𝐹 + 𝑃𝐿𝐹−𝑂 ∗ 𝑊𝐿𝐹𝑊𝐻 + 𝑊𝑅𝐻 + 𝑊𝐿𝐻 + 𝑊𝑅𝐹 + 𝑊𝐿𝐹  
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𝐷𝑅 = ∑ 𝐷𝑖−𝑂 ∗ 𝑊𝑅𝑖∑ 𝑊𝑅𝑖= 𝑃𝐻−𝑂 ∗ 𝑊𝑅𝐻 + 𝑃𝑅𝐻−𝑂 ∗ 𝑊𝑅𝑅𝐻−𝑂 + 𝑃𝐿𝐻 ∗ 𝑊𝑅𝐿𝐻−𝑂 + 𝑃𝑅𝐹 ∗ 𝑊𝑅𝑅𝐹−𝑂 + 𝑃𝐿𝐹 ∗ 𝑊𝑅𝐿𝐹−𝑂𝑊𝑅𝐻 + 𝑊𝑅𝑅𝐻 + 𝑊𝑅𝐿𝐻 + 𝑊𝑅𝑅𝐹 + 𝑊𝑅𝐿𝐹  

 

The weights that were used were as follows: WH = 5.0, WRF = WLF 1.0, WRH = WLH 

= 0.0, WRH = 1.0, WRRF = WRLF 0.0, and WRRH = WRLH = 0.0. 

These weights were decided after in-house testing sessions. For the position 

weights, the head position was chosen to be larger than the foot weights, so that the 

reference position of the user could be largely determined by the position of the head 

instead of the feet. This approach made the reference position more stable while the user 

was moving in the system. Similarly, no weights were given to the hands. This also 

helped with the stability when the user reached somewhere or while walking with their 

hands swinging. 

For the rotation weights, only the head weight was used after in-house testing 

sessions. The forward direction was used for moving direction in most of the locomotion 

techniques. In those cases, the head direction was more intuitive for the users to feel the 

walking direction. Although they could not move in a different direction than their 

looking direction, with this approach, they could see anything on their ways. The 

direction was projected to the x-z plane and normalized. The code excerpt can be seen in 

Figure 4-6. 
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transform.position = ((vrS.HeadCenter.position*PositionHeadWeight + 
vrS.FootRight.position*PositionFootWeight + 
vrS.FootLeft.position*PositionFootWeight + 
vrS.VRHandRight.position*PositionHandWeight + 
vrS.VRHandLeft.position*PositionHandWeight)/ 
(PositionHeadWeight + PositionFootWeight + PositionFootWeight 
PositionHandWeight +PositionHandWeight) 
AreaCenter.position).ClearY(); 

 
Quaternion temp = Quaternion.LookRotation(((vrS.HeadCenter.forward*RotationHeadWeight + 

 vrS.FootRight.forward*RotationFootWeight + 
 vrS.FootLeft.forward*RotationFootWeight + 
 vrS.VRHandRight.forward*RotationHandWeight + 
 vrS.VRHandLeft.forward*RotationHandWeight)/ 

(RotationHeadWeight + RotationFootWeight + RotationFootWeight +RotationHandWeight + 
RotationHandWeight)).ClearY().normalized); 

  
transform.rotation = temp; 
LookDirection = vrS.HeadCenter.forward.normalized; 

 

Figure 4-6: Code excerpt from the real user implementation. 

After calculating the reference points and the reference direction of the real user, 

each position of the tracked points was recalculated with respect to the reference point. 𝑃𝐻 = 𝑃𝐻−𝑂 − 𝑃𝑅 𝑃𝑅𝐻 = 𝑃𝑅𝐻−𝑂 − 𝑃𝑅 𝑃𝐿𝐻 = 𝑃𝐿𝐻−𝑂 − 𝑃𝑅 𝑃𝑅𝐹 = 𝑃𝑅𝐹−𝑂 − 𝑃𝑅 𝑃𝐿𝐹 = 𝑃𝐿𝐹−𝑂 − 𝑃𝑅 

Similarly, the forward directions were recalculated with respect to the reference 

forward direction. 𝐷𝐻 = 𝐷𝐻−𝑂 − 𝐷𝑅 𝐷𝑅𝐻 = 𝐷𝑅𝐻−𝑂 − 𝐷𝑅 𝐷𝐿𝐻 = 𝐷𝐿𝐻−𝑂 − 𝐷𝑅 
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𝐷𝑅𝐹 = 𝐷𝑅𝐹−𝑂 − 𝐷𝑅 𝐷𝐿𝐹 = 𝐷𝐿𝐹−𝑂 − 𝐷𝑅 

4.2.2 Virtual Character 

For the virtual position of the user and the five tracked objects, the following 

position and rotation values were used. 𝑝𝐻 = 𝑃𝐻 𝑝𝑅𝐻 = 𝑃𝑅𝐻 𝑝𝐿𝐻 = 𝑃𝐿𝐻 𝑝𝑅𝐹 = 𝑃𝑅𝐹 𝑝𝐿𝐹 = 𝑃𝐿𝐹 𝑑𝐻 = 𝐷𝐻 𝑑𝑅𝐻 = 𝐷𝑅𝐻 𝑑𝐿𝐻 = 𝐷𝐿𝐻 𝑑𝑅𝐹 = 𝐷𝑅𝐹  𝑑𝐿𝐹 = 𝐷𝐿𝐹  

The virtual position and the rotation of objects with respect to virtual reference 

point were kept equal to the real position and rotation of the objects with respect to the 

real reference point. 

3D models of the hands and the feet were placed to the corresponding virtual 

positions to provide the users with a view of their virtual hands and feet at any time for 

a more realistic and immersive experience (see Figure 4-7). 
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Figure 4-7: Virtual hands and feet in the virtual world. 

The code excerpt for the virtual character parameter calculations can be seen in 

Figure 4-8. The real and calculated vectors for the virtual character positions can be seen 

in Figure 4-9. 

With this approach, the position of the virtual character was simplified from the 

combination of five positions and rotations to a single position and rotation while 

keeping the distances between each tracked object unchanged. Another advantage of this 
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approach was that it helped resolving the collisions with the virtual character and the 

virtual objects in the virtual world. If there was a virtual object in front of the virtual 

character, even if the real user walked forward, the virtual character was blocked by the 

virtual object. This phenomenon is illustrated in the Figure 4-10. 

Head.transform.localPosition = 
User.transform.InverseTransformPoint(vrS.HeadCenter.position); 

HandRight.transform.localPosition = 
User.transform.InverseTransformPoint(vrS.VRHandRight.position); 

HandLeft.transform.localPosition = 
User.transform.InverseTransformPoint(vrS.VRHandLeft.position); 

FootRight.transform.localPosition = 
User.transform.InverseTransformPoint(vrS.FootRight.position); 

FootLeft.transform.localPosition = 
User.transform.InverseTransformPoint(vrS.FootLeft.position); 

 
Head.localRotation = Quaternion.LookRotation( User.transform.InverseTransformDirection 

(vrS.HeadCenter.forward) , User.transform.InverseTransformDirection 
(vrS.HeadCenter.up) ); 

HandRight.localRotation = Quaternion.LookRotation( 
User.transform.InverseTransformDirection (vrS.VRHandRight.forward) , 
User.transform.InverseTransformDirection (vrS.VRHandRight.up) ); 

HandLeft.localRotation = Quaternion.LookRotation( 
User.transform.InverseTransformDirection (vrS.VRHandLeft.forward) , 
User.transform.InverseTransformDirection (vrS.VRHandLeft.up) ); 

FootRight.localRotation = Quaternion.LookRotation( 
User.transform.InverseTransformDirection (vrS.FootRight.forward) , 
User.transform.InverseTransformDirection (vrS.FootRight.up) ); 

FootLeft.localRotation = Quaternion.LookRotation( 

User.transform.InverseTransformDirection (vrS.FootLeft.forward) , 
User.transform.InverseTransformDirection (vrS.FootLeft.up) ); 

 

Figure 4-8: Code excerpt from the virtual character implementation. 

The virtual character was equipped with a character collider. The required 

displacements and the rotations were performed on this character collider. Furthermore, 

the virtual collisions were checked between the virtual colliders on the virtual objects and 

the character collider. 
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Figure 4-9: Real and calculated virtual character positions. 

 

Figure 4-10: Real vs. virtual character movements. 
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4.2.3 Position Warnings 

The reference position of the real user (PR) was used for estimating real position of 

user on actual tracking area. In every frame, the magnitude of the PR was calculated and 

if it was greater than 0.8m, a warning sign was displayed on the HMD to warn the user 

and encourage them to move to the center of the tracking area (see Figure 4-11). The 

warning sign was kept on the display until the value of the PR was smaller than 0.3m. 

 

Figure 4-11: The virtual position warning. 

4.2.4 Data Recording 

The real and the virtual reference positions were recorded during all testing 

sessions. Each time a new session with a new locomotion technique was started, a new 

text document with a time stamp was created. The positions were written in every 0.1 sec 

and were saved after the session. These data were used to sketch the walking paths in the 

real tracked area and virtual environment. 
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A sample output of the program can be seen in Figure 4-12 . The presented portion 

was taken from a redirected walking locomotion technique session. First, the file name, 

which was the date and time combination, and the positions of all the destination points 

were listed. Then, the real time timestamps and the actions were listed. The actions that 

were included in the output file were as follows: 

 Destination point appearance 

 Destination point disappearance  

 Users entering the destination area 

 Users exiting the destination area 

 Hit with border walls 

 Hit with static obstacles 

 Hit with dynamic obstacle (Available in redirected walking) 

 Hit with maze walls (Available in maze experiment) 

 Position warning 

 Start of a session 

 End of a session 

In addition to these collected data, in a separate file, the position data for the real 

user and virtual avatar was stored (for a sample portion of these files, see Figure 4-13). 

For each technique session, a separate file was created. The file contained the x and y 

coordinates of both real and virtual character in the real and virtual environment. The 

position data was collected roughly in every 0.1sec, and the timestamps were saved as 
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well. This data was combined with the overall data and the walking paths of the users 

were generated. 

 

Figure 4-12: A sample output of the program. 
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Figure 4-13: A sample position data. 

4.2.5 Virtual Cameras 

The perspective cameras were positioned at the head node of the virtual character 

where the eyes should be placed. The positions of these cameras were updated every 
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frame and were kept at the head node. All cameras were rendered and a stereoscopic 

view of the virtual world was displayed for the user through the head mounted display. 

4.3 Redirected Walking 

Redirected walking is a locomotion technique which tries to manipulate the 

perception of the users in order to keep them in the physical tracking area. This 

manipulation can be done on either the virtual environment or the virtual character. With 

the first alternative, it is easier to implement, but this technique translates and rotates all 

the virtual elements other than the user, which makes it unusable for most of the cases. 

For example, if there are physical objects in the environment that can interact with each 

other in the virtual world, moving them with high velocities (rotations at the far places 

induce high velocity) disturbs the physics calculations and unexpected results become 

likely to occur. 

The second alternative changes the linear and angular displacement of the user. 

Some factors (gains) are introduced to the displacement of the virtual character to help 

them to stay in the tracked area. These gains can increase or decrease the displacement of 

the user to keep them in the tracking area. In this dissertation, the second technique was 

implemented. 

The reflective motion tracking markers were placed at their regular places on the 

user; head, right hand, left hand, right foot and left foot (see Figure 4-14 for a descriptive 

sketch). 
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Figure 4-14: Marker positions for the redirected walking locomotion technique. 

Three distinctive gains were used in the implementation. These gains were as 

follows: 

 Translational gain 

 Rotational gain 

 Curvature gain 

Translational gain increased the linear displacement depending on the direction 

of the displacement. First, the displacement of the real user was found for each frame.  𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑃𝑅(𝑛) − 𝑃𝑅(𝑛 − 1) 

To calculate the dynamic gain value, a dot product was taken with normalized 

PR(n) and normalized Displacement vector. The dot product was actually the projection 

of the Displacement vector onto the PR(n) (see Figure 4-15). 𝑀𝑇(𝑛) = 𝑃𝑅(𝑛) ∙ ( 𝑃𝑅(𝑛) − 𝑃𝑅(𝑛 − 1)) 
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Figure 4-15: Vectors to calculate the translational gain. 

The value of the dot product is between -1 and 1. If two vectors are parallel it gives 

1, if they are opposite it gives -1. This value shows if the user is walking towards the 

center of the tracking area or walking away from it. The gain values were kept low if the 

user was walking towards the center, which makes the user walk relatively more towards 

the center. On the other hand, if the user was walking away from the center, the larger 

gain value made the user walk relatively less, trying to prevent the user from going 

outside of the tracking area. 

The dot product result was modified so that it was from minimum translational 

gain (GTmin) to the maximum translational gain (GTmax) value. Those values were decided 

to be 2 and 4 respectively, after in-house testing sessions. 

𝐺𝑇 = (𝑀𝑇 + 1)(𝐺𝑇𝑚𝑎𝑥 − 𝐺𝑇𝑚𝑖𝑛)2 + 𝐺𝑇𝑚𝑖𝑛 
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To apply the final result to the virtual character, the resulting displacement vector 

was transformed to the local coordinates and applied to the virtual character in its own 

local coordinates. 

For the rotational gain, this time, the change of the forward vector was examined. 

The angle forming between the two consecutive forward vectors was calculated by taking 

the cross product of those two vectors. The sinus inverse gives the angle in radians (see 

Figure 4-16). 𝛽 = sin−1(𝐷𝑅(𝑛 − 1) × 𝐷𝑅(𝑛)) 

The multiplier was found by taking a dot product with the normalized DR(n) and 

minus normalized PR(n). The dot product is actually the projection of DR(n) onto the -

PR(n). 𝑀𝑅(𝑛) = 𝐷𝑅(𝑛) ∙ −𝑃𝑅(𝑛) 𝑀2𝑅(𝑛) = 𝐷𝑅(𝑛) ∙ −𝑃𝑅(𝑛)  ∗ 𝜑(𝑛 − 1) 

where φ is a constant either 1 or -1 depending on the change of forward vector. 

𝜑(𝑛) = {1         𝑖𝑓 𝑀𝑅(𝑛 − 1) > 𝑀𝑅(𝑛)−1                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

The final value is between -1 and 1. This value shows if the individual is turning 

towards the center of tracked space or turning away from it. The gain values were kept 

low if the user was turning towards the center, which makes the user turn relatively more 

though the center. On the other hand, if the user was turning away from the center, the 

larger gain value made the user turn relatively less, trying to prevent the user turn 

through the outside of the tracking area. 
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Figure 4-16: Vectors to calculate the rotational gain. 

The dot product result was modified so that it was from the minimum rotational 

gain (GRmin) to the maximum translational gain (GRmax) value. Those values were decided 

to be 0.2 and 2.5 respectively, after in-house testing sessions. 

𝐺𝑅 = (𝑀2𝑅 + 1)(𝐺𝑅𝑚𝑎𝑥 − 𝐺𝑅𝑚𝑖𝑛)2 + 𝐺𝑅𝑚𝑖𝑛 

Only the modified rotation was applied to the virtual character. Note that it can be 

higher or lower than the real rotation. 

Finally, the curvature gain was also implemented and applied to the virtual 

character. It takes values of 1 or -1 depending on the displacement vector. This gain makes 

the users walk in circles while they think they are walking straight. To calculate the 

curvature gain, first the rotation direction was found by the cross product of was taken 
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with normalized PR(n) and normalized Displacement vector. And depending on the 

result of the product in the y-axis, the curvature gain is determined. 

𝐺𝑅 = {1        𝑖𝑓  (𝑃𝑅(𝑛) × ( 𝑃𝑅(𝑛) − 𝑃𝑅(𝑛 − 1))) . 𝑦 < 0−1                                                                   𝑜𝑡ℎ𝑒𝑟𝑣𝑖𝑠𝑒 

 

/* Translational Gain */ 
Vector3 displacement = _user.transform.position - _user.PrevPos; 

Vector3 translation = _user.transform.InverseTransformVector (_user.transform.position - 
_user.PrevPos); 

float translationMultiplier = Vector3.Dot(displacement.normalized, 
_user.transform.position.normalized); 

 
/* Rotational Gain */ 
float rotation = Mathf.Asin(Vector3.Cross(_user.PrevDir, _user.transform.forward).y) * 

Mathf.Rad2Deg; 

float rotationMultiplier = (Vector3.Dot(_user.PrevDir, -_user.PrevPos.normalized) * -0.5f 
+ 0.5f); 

if (Vector3.Dot(_user.PrevDir, -_user.PrevPos.normalized) < 
Vector3.Dot(_user.transform.forward, -
_user.transform.position.normalized))rotationMultiplier *= -1.0f; 

 
/* Curvature Gain */   

float curvatureMultiplier = 1.0f; 

if (Vector3.Cross(displacement, _user.transform.position.normalized).y < 
0.0f)curvatureMultiplier = -1.0f; 

 
/* Adjusting Boundaries */ 

float finalTranslationMultiplier = TransGainOn 

? (translationMultiplier + 1.0f)/2.0f*(TransGainMax - TransGainMin) + 
TransGainMin: 1.0f; 

float finalRotationAddition = RotGainOn? (rotationMultiplier + 1.0f)/2.0f*(RotGainMax - 
RotGainMin) + RotGainMin: 1.0f; 

float finalCurvatureAddition = CurvatureGainOn 

? curvatureMultiplier * 
Mathf.Asin(translation.magnitude/CurvatureRadius)*Mathf.Rad2Deg: 0.0f; 

  
/* Appling Gains */ 

if(TrackPosition) 
_user.Avatar.CharacterMove(_user.Avatar.transform.TransformVector(translation 
*finalTranslationMultiplier)); 

if(TrackRotation)  
_user.Avatar.CharacterRotate(rotation * finalRotationAddition); 
_user.Avatar.CharacterRotate(finalCurvatureAddition);  

Figure 4-17: Code excerpt from the redirected walking locomotion technique 
implementation. 
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This time an additional rotation was introduced to the virtual character to keep 

the user inside the tracking area. Since our tracking area was 2m by 2m, the curvature 

radius was chosen as 0.9m. The code excerpt can be seen in Figure 4-17. 

During the sessions even if the gains were applied successfully, there could be 

times that the user came to the edge of the tracked area. In these cases, a separate 

redirection was needed to be applied to keep the user inside the tracking area. For this 

purpose, a dynamic obstacle in the form of a concave wall was introduced if the user 

approached to the border of the tracked space (Figure 4-18). This was checked by looking 

the magnitude of the position of the real user (PR). If it exceeded a threshold value (0.8m), 

the wall popped up from the ground. The position of the wall was placed in the virtual 

world, in the direction of the approached edge, concave face looking through the user. 

 

Figure 4-18: Virtual obstacle for redirecting the user. 
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Figure 4-19: Photo of a testing session with the redirected walking locomotion 
technique. 

 

Figure 4-20: Redirected walking locomotion technique descriptive reference icon. 
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A photo taken during a testing session with the redirected walking locomotion 

technique can be seen in Figure 4-19. The descriptive icon that was used to refer to the 

redirected walking locomotion technique can be seen in Figure 4-20. 

4.4 Walk-in-Place 

In the walk-in-place locomotion technique implementation, the foot positions 

were tracked to trigger the locomotion. The markers were placed at their regular places 

on the user; the head, right hand, left hand, right foot and left foot (see Figure 4-21). 

 

Figure 4-21: Marker positions for the walk-in-place locomotion technique. 

At each frame, the position data of the feet markers (PRF and PLF) were examined. 

The height of each foot was assumed to be the difference of the readings in the y-axis. 

This assumption was made because the foot markers were attached on top of the shoes 

of the users, and different types and different sizes of shoes had different heights. To 

overcome this problem without the need of calibration, the differences were used. 
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ℎ𝑅𝐹 = 𝑃𝑅𝐹 . 𝑦 − 𝑃𝐿𝐹 . 𝑦 ℎ𝐿𝐹 = −ℎ𝑅𝐹 = 𝑃𝐿𝐹 . 𝑦 − 𝑃𝑅𝐹 . 𝑦 

A simple two stage walking cycle was implemented. The flowchart of the walk-in-

place locomotion technique implementation is presented in Figure 4-22. 

 

Figure 4-22: Walk-in-place locomotion technique implementation flowchart. 
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After the program started, it immediately went into the state 0. State 0 set the 

maximum velocity to zero and incremented the state variable. 

At state 1, the program started looking for marching. Once one foot was sensed to 

be active (the height difference was larger than the threshold (0.1m)), the activation time 

and the side of the active foot (right or left) was stored and the state was incremented.  

At state 2, the program waited for a specific time (0.7sec) and looked for the other 

foot to be activated. If the other foot was not activated within that timeframe, the state 

was set to 0 to stop. If the other foot was activated in that specific time, the activation time 

and the side of the active foot was updated.  

The virtual walking speed was determined by the speed of walking-in-place. The 

length of one step was assumed to be 0.5m. With each step, the maximum velocity was 

updated. 

𝑉𝑚𝑎𝑥 = 0.5𝑚∆𝑡  

Until the next step, the Vmax value was kept constant, whilst the instantaneous 

velocity might have been different. During the velocity change, a constant acceleration 

was used. It was chosen to be 5m/s2 after the in-house testing sessions. This caused a 

smooth transition between different velocities that could be obtained by walking-in-place 

faster or slower. The state machine code excerpt for the walk-in-place implementation is 

presented in Figure 4-23. 
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switch (_walkingState) 
{ 
 case 0: 
  _maxVel = 0.0f; 
  if(!_footUp)_walkingState = 1; 
  break; 
 case 1: 
  if (_footUp) 
  { 
   _maxVel = StepLenght / CheckTime; 
   _lastFootWasRight = _footUpIsRight; 
   _lastFootTime = Time.timeSinceLevelLoad; 
   _walkingState = 2; 
  } 
  break; 
 case 2: 
  if (Time.timeSinceLevelLoad < _lastFootTime + CheckTime) 
  { 
   if (_footUp && _footUpIsRight != _lastFootWasRight) 
   { 

_maxVel = StepLenght / (Time.timeSinceLevelLoad - 
_lastFootTime); 

    _lastFootWasRight = _footUpIsRight; 
    _lastFootTime = Time.timeSinceLevelLoad; 
   } 
  } 
  else 
  { 
   _walkingState = 0; 
  } 
  break; 
} 

 

Figure 4-23: Code excerpt from the walk-in-place locomotion technique 
implementation. 

The walking direction was chosen to be the head forward direction. This data was 

coming from the real head position and transformed into the virtual space. With this 

approach, the users could change the walking direction by rotating their heads. A photo 

taken during a testing session with the walk-in-place locomotion technique can be seen 

in Figure 4-24. The descriptive icon that was used to refer to the walk-in-place locomotion 

technique is presented in Figure 4-25. 
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Figure 4-24: Photo of a testing session with the walk-in-place locomotion technique. 

 

Figure 4-25: Walk-in-place locomotion technique descriptive reference icon. 
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4.5 Stepper Machine 

In this locomotion technique, a simple commercial stepper machine was used. It 

was placed at the center of the tracking area with a marker attached on the right pedal of 

it. The marker set that were used in this technique was shown in the descriptive sketch 

in Figure 4-26. 

 

Figure 4-26: Marker positions for the stepper machine locomotion technique. 

The right hand marker was attached to the right pedal of the stepper machine. The 

reason behind using this technique was, due to the nature of the stepper motion, the tip 

of the feet which we attached the markers did not move enough to have accurate position 

and orientation readings. The right hand marker was attached to a specially added 

protrusion on the side of the right pedal of the stepper (see Figure 4-27). 
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Figure 4-27: The stepper machine, the marker attachment and the holding stage. 

We wanted to keep the feet markers on the feet of the users, in order to help the 

users about their exact place in the virtual environment. 

During the in-house testing sessions, it was found out that locomotion with 

stepper machine and HMD could be quite dangerous due to the balance issues. That’s 

why we introduced a holding stage in front of the stepper machine. The users held the 

bars while using the stepper machine locomotion technique. With this addition, no more 

issues on the balance have been observed. 
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In this technique, the users were on the stepper machine and they could not rotate 

their bodies during the sessions due to the nature of the stepper machine. That’s why an 

alternative rotation technique was implemented. The rotation was performed by the head 

rotation in the y-axis. But frequently the users had to rotate their heads back, which could 

be difficult or even impossible for large angles. In this technique, if the rotation of the 

head was more than a threshold value (±35 degrees), the virtual viewpoint was started to 

rotate automatically until the rotation of the head became lower than the threshold. The 

automatic rotation speed was implemented to be proportional to the amount of the head 

rotation. A maximum head rotation threshold (±90 degrees) was also introduced to limit 

the head rotation of the users. Once the users understood that the rotation does not speed 

up after that threshold, they did not rotate their heads more. 𝐻𝑒𝑎𝑑𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = sin−1(𝐷𝐻(𝑛) × {0,0,1}) 

A linear correlation was used to determine the resulting rotation speed (see Figure 

4-28). 

To control the translation in the virtual world, the positon changes of the right 

hand marker was observed. The amount of change was multiplied by a constant and it 

gave the linear locomotion distance in the head direction. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  |𝑃𝑅𝐻(𝑛) − 𝑃𝑅𝐻(𝑛 − 1)| ∗ 𝑐 

The constant c was chosen to have a natural walking speed which was comparable 

with the other techniques. After our in-house testing sessions, the constant was decided 

to be 400. The code excerpt for the stepper machine locomotion implementation can be 

seen in Figure 4-29. 
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Figure 4-28: Head rotation vs. auto virtual rotation speed chart. 

float walkingDistance = (vrS.VRHandRight.position - _lastFootPos).magnitude* 
WalkingSpeed; 

_lastFootPos = vrS.VRHandRight.position; 
   
Vector3 headDirection = _user.LookDirection.ClearY().normalized; 
float headDegree = Vector3.Angle (headDirection, Vector3.forward); 
 
float rotation = Mathf.Clamp01((Mathf.Abs(headDegree)-MinAngle) / MaxAngle); 
if (Vector3.Cross (headDirection, Vector3.forward).y > 0.0f) rotation *= -1.0f; 
 
_user.Avatar.CharacterMove(_user.Avatar.transform.forward * walkingDistance * 

Time.deltaTime); 
_user.Avatar.CharacterRotate (rotation * CameraSpeed * Time.deltaTime);  

 

Figure 4-29: Code excerpt from the stepper machine locomotion technique 
implementation. 

A photo taken during a testing session with the stepper machine locomotion 

technique can be seen in Figure 4-30. The descriptive icon that was used to refer to the 

technique is presented in Figure 4-31. 
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Figure 4-30: Photo of a testing session with the stepper machine locomotion technique. 

 

Figure 4-31: Stepper machine locomotion technique descriptive reference icon. 
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4.6 Point & Teleport 

For the point & teleport technique, the following marker positions were used 

depending on the user’s dominant hand. The algorithm worked the same using different 

marker positions for different dominant hand configurations. The non-dominant hand 

marker was used on the shoulder of the user’s dominant side (see Figure 4-32). 

 

Figure 4-32: Marker positions for the point & teleport technique. 

To use the point & teleport technique, the users should point to wherever they 

wanted to be in the virtual world and the virtual viewpoint would be teleported to that 

position. In our design, to trigger the teleportation, the users should point to the same 

place or a close vicinity for two seconds. After that, the teleportation was triggered and 

the virtual avatar was instantaneously moved to that position. An illustration of the point 

& teleport technique can be seen in Figure 4-33. 
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Figure 4-33: Illustration of the (a) point & teleport and (b) point & teleport with 
direction specification locomotion techniques. 

The pointing direction was determined as the vector from the virtual shoulder 

position data to the virtual hand position data. In this approach, the wrist was assumed 

to be straight. Another alternative approach to determine the pointing direction could 

have been using only the hand position and the orientation data. According to our in-

house testing sessions, with the latter approach it was harder to track the user’s pointing 

direction accurately. Small unintentional hand movements or errors in the motion 

tracking of the hand orientation could cause large displacements at the pointed position. 

This made the technique harder to control, which might introduce frustration. When both 

the hand and the shoulder were tracked as in the first approach, the aiming was more 

accurate and easier to control. Furthermore, the virtual viewpoint was usually close to 

the vector formed from the shoulder to the hand, which made the aiming easier for the 

users. 
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The pointed position in the virtual world was calculated with ray casting 

approach. The ray origin was the virtual hand position and the ray direction was the 

pointing direction calculated by subtracting the virtual position of shoulder from virtual 

position of user’s hand. The collision detection was performed between the ray and the 

possible teleportation surfaces. In our case, the only possible surface was the ground of 

the virtual environment. Once a collision was detected, the position of the collision point 

was stored. In the upcoming frames, if the distance between new collision position value 

and stored value was smaller than a threshold, it was assumed that the user was pointing 

to the same point constantly, and the timer was increased by the frame length. If the 

distance was larger than the threshold, the stored collision position was updated with the 

new collision position and the timer was reset. If no collision was detected, the stored 

collision position was cleared until another collision was detected. Balancing the 

threshold value was important since the larger the threshold was, the larger the tolerance 

was to the unintentional hand movements. But this came with the cost of lowered 

precision when the vicinity of the target was pointed. After in-house testing sessions, we 

found out that a threshold value similar to the virtual character’s bounding capsule 

diameter worked well, since it would occupy the same virtual space after the 

teleportation. 

In our design, to exclude interfering effects of any additional components, we did 

not include any controllers to trigger the teleportation. The users needed to point to the 

same place or a close vicinity for two seconds. Two seconds was decided by in-house 
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testing sessions to be just long enough to eliminate the unintentional teleportation 

instances, yet to be short enough not to cause tiredness in the users.  

The technique was always active unless the tracked arm was lowered by the user’s 

sides. Since we did not use any handheld controller in our implementation to activate or 

deactivate the teleportation, we utilized the lowered arm posture to make the 

teleportation inactive. With this implementation, the users could wait at a constant 

position in a relaxed posture with their arms lowered. Before checking for collision, the 

angle between the pointing vector and the down vector was calculated and if the angle 

was smaller than a threshold, the teleportation was deactivated. This was important for 

the users to be able to stay in the same position without getting constantly teleported 

unintentionally. 

To make the locomotion more user-friendly, in our implementation, an orange 

ring overlay was placed on the pointed position in the virtual world if the pointed 

position was on a possible teleportation surface. This way, the users could easily see 

where they were pointing at and where they were going to be teleported. The color of 

this ring was gradually turned into green as long as the user pointed at the vicinity of the 

initial position. The color feedback was helpful for the users in understanding if they 

were pointing the same position and how much longer they needed to point. 

Furthermore, a virtual laser beam was displayed that originated from the user’s virtual 

hand and extended towards the ring, parallel to the pointing direction. In our in-house 

testing sessions, this laser beam helped with the sense of being in control and the distance 

estimation. Without the laser beam, it was difficult to see the ring if the user pointed to a 
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position that was far away from their viewpoint. The color of the laser beam was kept the 

same with the ring color if the ring was active; otherwise the laser beam’s color was kept 

red, indicating that no possible teleportation surface was pointed currently. 

Once the teleportation was triggered by the user, the virtual character and the 

virtual viewpoint was moved to the pointed position in the virtual world 

instantaneously. The orientation of the user was kept the same during the teleportation. 

In our implementation, the user rotated in virtual environment via rotating their bodies 

in actual world. So users were able to adjust their orientations after the teleportation. 

Different approaches were tested in-house before designing the experiment. One 

approach was to move the virtual character in the virtual world until it reached to the 

destination point. The speed could be adjusted as an average walking speed or a faster 

speed. In both these conditions, the approach has introduced motion sickness to the 

testers. Motion sickness with this approach was not unexpected since the users saw 

themselves moving in the virtual world while they were standing still in the real world. 

Another approach was to make the teleportation with a fade-out and fade-in effect in 

order to help the users cope with the instantly changing virtual world. This approach was 

found to break the presence and turned out to be unnecessary since the users did not get 

overwhelmed by the changing virtual world during the teleportations. In addition, the 

fading introduced wasted time for each teleportation which caused impatience in the 

testers. The users could expect what to see once they were teleported because they 

already saw where they were going to be teleported. The code excerpt for the 

implementation of the point & teleport locomotion technique can be seen in Figure 4-34. 
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Ray handRay = new Ray (); 
if(Manager.isRightHand)  
{ 
 _pointDirection = (_user.Avatar.HandRight.position - 

_user.Avatar.HandLeft.position).normalized; 
 handRay = new Ray(_user.Avatar.HandRight.position, _pointDirection); 
} 
else 
{ 
 _pointDirection = (_user.Avatar.HandLeft.position - 

_user.Avatar.HandRight.position).normalized; 
 handRay = new Ray(_user.Avatar.HandLeft.position, _pointDirection); 
} 
 
float verticalAngle = Vector3.Angle(Vector3.down, _pointDirection); 
 
RaycastHit hit; 
int layerMask = (1 << 10) | (1 << 12); 
if (verticalAngle > MinVerticalAngle && Physics.Raycast(handRay, out hit, 

Mathf.Infinity,layerMask) && !(hit.collider.name=="Static Obstacle" || 
hit.collider.name=="Maze wall")) 

{ 
 ChangeMaterialColor(Color.Lerp(new Color(1.0f, 0.27059f, 0.0f), new Color(0.0f, 

0.35294f, 0.0f), _pointTime / CheckTime)); 
 Point.gameObject.SetActive(true); 
 
 if (hit.collider.name == "LaserSphere") 
 { 
  _pointTime += Time.deltaTime; 
  if (_pointTime > CheckTime) 
  { 

_user.Avatar.CharacterMove(hit.point.ClearY() - 
_user.Avatar.transform.position.ClearY()); 

   _pointTime = 0.0f; 
  } 
 } 
 else 
 { 
  Point.position = hit.point; 
  _pointTime = 0.0f; 
 } 
} 
else 
{ 
 ChangeMaterialColor(Color.red); 
 Point.gameObject.SetActive(false); 
 _pointTime = 0.0f; 
} 

 

Figure 4-34: Code excerpt from the point & teleport locomotion technique 
implementation. 
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Figure 4-35: Photo of a testing session with the point & teleport locomotion technique. 

 

Figure 4-36: Point & teleport locomotion technique descriptive reference icon. 
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A photo taken during a testing session with the point & teleport locomotion 

technique can be seen in Figure 4-35. The descriptive icon that was used to refer to the 

technique is presented in Figure 4-36. 

4.6.1 Point & Teleport with Direction Specification 

In the explained implementation of the point & teleport locomotion technique so 

far, the teleportation was performed without any change in the orientation before and 

after the teleportation. To be able to turn in the virtual world, the users were required to 

make a real turn after the teleportation. We wondered if we could improve the point & 

teleport technique by adding a direction feature. Hence, a variation of this technique was 

implemented with a direction specification. With this modified technique, while the users 

pointed to a position in the virtual world, they could also specify which direction they 

wanted to be facing after the teleportation. For this purpose, in our implementation, a 3D 

arrow was placed above the ring. The arrow was restricted to x-z plane and the rotation 

in the y-axis was determined by the rolling axis of the pointing hand (see Figure 4-33). 

This way, the users could both point to the destination position and specify the direction 

they would be facing when they were teleported, by only using their one arm. After our 

initial in-house testing sessions, the rolling axis was found to be the easiest for the rotation 

of the hand to specify the direction among other alternatives in terms of understanding 

and operating the gesture. 

The virtual arm vector was formed between the virtual shoulder position (pRS(n)) 

and the virtual hand position (pH(n)). The right handed configuration is assumed in the 

descriptions in this sub-subsection. The right shoulder position was actually taken from 
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the left hand marker set, which was attached on the right shoulder of the user for this 

technique.  

The angle between the virtual right hand’s normal direction and the normal 

direction for the arm vector gave the rolling angle (β). The user could control the angle 

between the forward vector for the user and the direction of the arrow on the ground (α) 

by changing the angle β (see Figure 4-37). 

 

Figure 4-37: Vectors to control the direction of the arrow in the point & teleport with 
direction specification. 

There was a linear relation between β and α. Since the markers were attached to 

the top of the hands and the cameras were located on the top of the tracked area, rotating 

the hand more than 90 degrees could cause self-blocking of the markers. That’s why a 

constant multiplier (3.0) was introduced to keep the maximum hand rotation as 60 

degrees. The explanatory chart can be seen in Figure 4-38. The additional codes that were 

required for the direction specification and the details of the implementation can be seen 

in the code excerpt presented in Figure 4-39. 
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Figure 4-38: Hand roll vs. virtual arrow rotation graph for point & teleport with 
direction specification. 

Vector3 handUpDir = Vector3.zero; 
if(Manager.isRightHand) handUpDir = _user.Avatar.HandRight.up.normalized; 
else handUpDir = _user.Avatar.HandLeft.up.normalized; 
 
Vector3 handDirPerpToArm = (handUpDir - Vector3.Dot(handUpDir, _pointDirection) * 

_pointDirection).normalized; 
Vector3 armSideDir = Vector3.Cross(_pointDirection, Vector3.up).normalized; 
Vector3 armUpDir = Vector3.Cross(armSideDir, _pointDirection).normalized; 
 
float ang = Vector3.Angle(handDirPerpToArm, armUpDir); 
ang = Mathf.Clamp(ang, 0.0f, 60.0f) * 3.0f; 
if( Vector3.Dot ( Vector3.Cross(handDirPerpToArm, armUpDir) , _pointDirection ) < 0.0f) 
 ang *= -1.0f; 

Vector3 pointLookDir = Vector3.zero; 
if(Manager.isRightHand)  
{ 
 pointLookDir = hit.point.ClearY() - _user.Avatar.HandRight.position.ClearY(); 
} 
else 
{ 
 pointLookDir = hit.point.ClearY() - _user.Avatar.HandLeft.position.ClearY(); 
} 
 
 
pointLookDir.Normalize(); 
    
Point.rotation = Quaternion.LookRotation(pointLookDir, Vector3.up); 
Point.Rotate(Vector3.up, ang, Space.World); 

 

Figure 4-39: Additional code excerpt from the point & teleport with direction 
specification locomotion technique implementation. 
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4.7 Joystick 

This technique was used as a reference for the other locomotion techniques. The 

marker positions were as shown in Figure 4-40. The users were standing in front of a high 

table with a joystick (Logitech Extreme 3D Pro Joystick [152]). The joystick was used by 

the dominant hand of the user. To go forward in the looking direction, the user should 

push the joystick forward. To turn, the user could either push the joystick in the turning 

direction, or rotate their head accordingly. 

 

 

Figure 4-40: Marker positions for the joystick locomotion technique. 

A photo taken during a testing session with the joystick technique can be seen in 

Figure 4-41. The descriptive icon that was used to refer to the technique is presented in 

Figure 4-42. 
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Figure 4-41: Photo of a testing session with the joystick locomotion technique. 

 

Figure 4-42: Joystick locomotion technique descriptive reference icon. 
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4.8 Trackball 

Individuals with autism are commonly characterized to be fascinated by or 

obsessed with spinning objects, such as wheels of toys or washing machines [153]. For 

that reason, a new locomotion alternative was designed in this dissertation with a 

trackball (Kensington Expert Trackball [154]). This technique implementation was quite 

similar to the joystick locomotion technique. The marker positions were as shown in 

Figure 4-43.  

 

Figure 4-43: Marker positions for the trackball locomotion technique. 

The users were standing in front of a high table with a trackball controller on it. 

The trackball was used by the dominant hand of the user and was placed accordingly on 

the table. This controller had a smooth surfaced large ball that could be span in any 

direction. The spinning of the ball controlled the locomotion in the virtual environment. 
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Forward spinning resulted in forward movement and side spinning controlled the 

rotation. 

The users needed to keep spinning the ball to move the virtual world viewpoint. 

One rotation of the ball provided a movement of one step in the virtual world. The user 

could spin the ball fast or slow, resulting in more or less rotation, and more or less 

movement in the virtual world respectively. A photo taken during a testing session with 

the trackball locomotion technique can be seen in Figure 4-44. The descriptive icon that 

was used to refer to the technique can be seen in Figure 4-45. 

 

Figure 4-44: Photo of a testing session with the trackball locomotion technique. 
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Figure 4-45: Trackball locomotion technique descriptive reference icon. 

4.9 Hand Flapping 

Individuals with autism commonly engage in self-stimulating (stimming) 

behaviors such as flapping arms and hands or rocking [153]. These movements are 

observed to provide soothing for them. Hence, the hand flapping technique was designed 

in this dissertation, in which the hand flapping movement was used for the locomotion. 

This technique could be described as the hand equivalent of the walk-in-place locomotion 

technique. The flapping motion was kept independent from the position of the user’s 

hand. It could be performed wherever was more comfortable for the user such as near 

the hips, near the shoulder or in front of the torso. As long as the user flipped their hand, 

the viewpoint in the virtual environment was moved continuously. This technique was 

thought to provide the users with ASD soothing and help in practicing controlling the 

unintentional stimming behaviors since the user needed to stop the stimming to stop 
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moving in the virtual world. For the hand flapping technique, the marker set positions 

that is shown in Figure 4-46 were used. 

 

Figure 4-46: Marker positions for the hand flapping locomotion technique. 

For the implementation of this locomotion technique, a structure called ‘flap’ was 

defined with two world coordinates. First one represented the starting point of a flap and 

the second one represented the end point. 

The controlling hand was assumed to be making a flapping motion all the time. 

Each flap must have a specific property: all the displacements in a single flap must point 

to a similar direction. Once this property was rejected, the flap was assumed to be ended, 

and the next flap was started. 

To check this property, the displacement vector was taken from the controlling 

hand. In the formulas in this sub-subsection, the controlling hand was assumed to be the 

right hand. 
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𝐷(𝑛) = 𝑃𝑅𝐻(𝑛) − 𝑃𝑅𝐻(𝑛 − 1) 

After calculating the displacement, consecutive vectors were checked for the 

similar direction. For this purpose, a dot product operation was used and compared a 

threshold value (t) which was set to 0.98. This threshold value corresponded to a 

maximum 11.4-degree difference between two consecutive displacement vectors. 𝐷(𝑛 − 1) ∙ 𝐷(𝑛) > 𝑡 

If this equation was violated, the flap was assumed to be finished and the new one 

began (see Figure 4-47). 

 

Figure 4-47: Vectors forming a single flap for the hand flapping locomotion technique. 

After two flaps were completed, we compared the properties with respect to the 

threshold values and decided if the user was flapping or not (see Figure 4-48 for a 

descriptive illustration). A successful flapping action composed of two flaps must have 

the following properties: 
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 Each flap should have a minimum total length of Lmin = 0.05m. 

 The distance between the start position of the first flap and the end position 

of the second flap should be smaller than Δr = 0.02m. 

 Each flap must be completed in a certain time period Δt = 0.5sec. 

 

Figure 4-48: Consecutive flaps forming a flapping motion. 

These conditions were checked for all consecutive flaps, and if all were met, the 

locomotion was started. The code excerpt for the hand flapping locomotion technique can 

be seen in Figure 4-49. A photo taken during a testing session with the hand flapping 

locomotion technique is presented in Figure 4-50. The descriptive icon that was used to 

refer to the technique can be seen in Figure 4-51. 
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_prevPos = _currentPos; 
 
if(Manager.isRightHand) _currentPos = vrS.VRHandRight.position; 
else _currentPos = vrS.VRHandLeft.position; 
 
_prevMovingDir = _movingDir; 
_movingDir = (_currentPos - _prevPos).normalized; 
 
if (_isMoving) 
{ 
 if (Vector3.Dot(_movingDir, _prevMovingDir) < MinDotProduct) 
 { 

if (Time.timeSinceLevelLoad < _startTime + MaxTime && (_currentPos - 
_startPos).magnitude > MinDistance) 

  { 
   flaps[activeFlap].StartPoint = _startPos; 
   flaps[activeFlap].EndPoint = _currentPos; 
      
   activeFlap =(activeFlap+1)%2; 
   _flappingTime = Time.timeSinceLevelLoad; 
 

if((flaps[0].StartPoint - flaps[1].EndPoint).magnitude < 
FlapDistanceThreshold && (flaps[1].StartPoint - 
flaps[0].EndPoint).magnitude < FlapDistanceThreshold) 

   { 
    _isFlappingActive = true; 
   } 
  } 
  _isMoving = false; 
 } 
} 
 
if (_isFlappingActive && Time.timeSinceLevelLoad > _flappingTime + MaxTime) 
{ 
 _isMoving = false; 
 _isFlappingActive = false; 
} 
 
if (!_isMoving) 
{ 
 if(Manager.isRightHand) _startPos = vrS.VRHandRight.position; 
 else  _startPos = vrS.VRHandLeft.position; 
 _isMoving = true; 
 _startTime = Time.timeSinceLevelLoad; 
} 
 
if(_isFlappingActive) _user.Avatar.CharacterMove(_user.Avatar.transform.forward * 

WalkingSpeed * Time.deltaTime); 

 

Figure 4-49: Code excerpt from the hand flapping locomotion technique 
implementation. 
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Figure 4-50: Photo of a testing session with the hand flapping locomotion technique. 

 

Figure 4-51: Hand flapping locomotion technique descriptive reference icon. 
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4.10 Flying 

Individuals with ASD may not handle extensive cognitive load well, especially 

when paired with other tasks to perform. Hence, flying was selected as a locomotion 

technique to be suitable for individuals with autism in this dissertation. Flying is usually 

characterized to be one of the simplest locomotion techniques. It gets an input from the 

user to move viewpoint of virtual world [86]. Input can be either continuous to keep 

moving or instantaneous to start or stop the movement. For the input, a controller button 

or a body gesture can be used. 

In our study, in order to avoid the cognitive load of an additional controller, a 

hand raising gesture was selected for triggering the automatic locomotion in the virtual 

environment. The same gesture was used to stop the locomotion as well. To reduce the 

physical load on the users, raising the hand up to the shoulder level was defined as the 

trigger threshold. Hand raising gesture was selected because of its common use for 

showing that an action is needed to be done. The controlling hand was chosen as the 

dominant hand of the user. This gesture was selected because it does not introduce 

constant strain on the arm, either during the locomotion or standing still. The marker set 

positions for this technique was as shown in Figure 4-52. 

This time the height value of the dominant hand was checked at every cycle. In the 

formulas in this sub-subsection, the dominant hand was assumed to be the right hand of 

the user. (𝑃𝑅𝐻(𝑛)). 𝑦 > (𝑃𝐻(𝑛)). 𝑦 − 𝑐 
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If this equation was approved, it meant that the user has triggered the locomotion. 

The constant c is the difference between the required hand raising height and the head 

marker height. It was chosen to be 0.4m, which is about the average distance between the 

top of the head and the shoulders. 

This approach gave a different required height for the users with different heights 

without initial calibration of the system for each user. The code excerpt for the 

implementation of the flying locomotion technique can be seen in Figure 4-53. 

 

 

Figure 4-52: Marker positions for the flying technique. 

The walking speed was chosen to be constant (0.8m/s), a reasonable walking 

speed in the virtual environment. A photo taken during a testing session with the flying 

locomotion technique can be seen in Figure 4-54. The descriptive icon that was used to 

refer to the technique is presented in Figure 4-55. 



146 
 

float handHeight = 0.0f; 
if(Manager.isRightHand) handHeight = vrS.VRHandRight.position.y; 
else handHeight = vrS.VRHandLeft.position.y; 
 
if (!_isHandRaised && handHeight > vrS.VRHead.position.y-RequiredHeightMinusHead) 
{ 
 _isMoving = !_isMoving; 
 _isHandRaised = true; 
} 
if (_isHandRaised && handHeight < vrS.VRHead.position.y-RequiredHeightMinusHead) 
{ 
 _isHandRaised = false; 
} 
 
if (_isMoving) 
{ 
 _user.Avatar.CharacterMove(_user.Avatar.transform.forward * WalkingSpeed * 

Time.deltaTime); 
} 

 

Figure 4-53: Code excerpt from the flying locomotion technique  implementation. 

 

Figure 4-54: Photo of a testing session with the flying locomotion technique. 



147 
 

 

Figure 4-55: Flying locomotion technique descriptive reference icon. 
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This chapter presents the evaluation of eight locomotion techniques in room scale 

tracked virtual reality. An immersive virtual reality experiment was designed and 

implemented to evaluate the eight different locomotion techniques with both 

neurotypical individuals and individuals with high functioning ASD. The eight 

locomotion techniques that were evaluated are: redirected walking, walk-in-place, 

stepper machine, point & teleport, joystick, trackball, hand flapping and flying. In this 

chapter, the experiment design, results for neurotypical users, results for high 

functioning individuals with autism, and comparison of results of these two populations 

were discussed. 

5.1 Note to Reader 

Portions of this chapter were published in CHI PLAY 2016 (Bozgeyikli, E., Raij, A., 

Katkoori, S., and Dubey, R. Point & Teleport Locomotion Technique for Virtual Reality. 

In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play 

(CHI PLAY '16). ACM, New York, NY, USA.) and in ACM Symposium on Spatial User 

Interaction 2016 (Bozgeyikli, E., Raij, A., Katkoori, S., and Dubey, R. Locomotion in 

Virtual Reality for Individuals with Autism Spectrum Disorder. In Proceedings of the 4th 

CHAPTER 5:  COMPARISON OF EIGHT LOCOMOTION TECHNIQUES IN ROOM 

SCALE TRACKED VIRTUAL REALITY 
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ACM Symposium on Spatial User Interaction (SUI'16). ACM, New York, NY, USA.) 

Permissions are included in Appendix C. 

5.2 Experiment Design 

A within-subjects experiment was designed with the independent variable of the 

locomotion technique having eight levels: redirected walking, walk-in-place, stepper 

machine, point & teleport, joystick, trackball, hand flapping and flying. All of these eight 

locomotion techniques were tried by all users with a randomly assigned order. 

Counterbalancing was applied to have a distribution close to equal for all combinations 

of ordering. For each technique, the locomotion direction was defined as the head 

direction and the head rotation could be used for rotating the virtual viewpoint. For the 

controller based techniques, the virtual rotation could be controlled via the controller 

and/or the head rotation. All applicable techniques (point & teleport, hand flapping and 

flying) were implemented to work with either left hand or right hand to cater for both 

right handed and left handed users. A different set of destination points were used for 

each technique, to eliminate any learning effect and possible memorization. 

5.2.1 Virtual Avatar 

The user was represented with two hand and two feet models in the virtual 

environment. The users were able to see these virtual hands and feet in the virtual 

environment, which were moved according to their real hand and foot movement. The 

reason for this was to give feedback on their position and orientation. For an accurate 

representation, marker sets were attached to the hands and the feet of the user. The 

physical space that user’s body occupied in the virtual environment was defined as a 
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vertical capsule with a 0.5m diameter that was placed at the weighted center of the user’s 

two feet and the head. 

5.2.2 Virtual Environment 

To evaluate the eight locomotion techniques, a simple yet realistic looking outdoor 

virtual environment with 16m by 16m dimensions was designed. The reason behind the 

virtual environment’s being produced as realistic looking was the previous studies 

stating that locomotion was more efficient when the virtual environment looked visually 

more realistic [36, 155]. The virtual environment was restricted on all sides with virtual 

walls of 2.2m height. The users initially appeared in the center of the virtual environment. 

They were free to move inside the virtual environment but they could not go beyond the 

virtual walls. The virtual environment was designed plain to avoid exerting additional 

cognitive load to the users, overwhelming or distracting them. A basic ambient light was 

used along with low intensity directional lights to create a good visibility from all sides 

of the virtual environment. A simple, relaxing outdoor sound was played in low volume 

to increase the immersion. 

5.2.3 Objective 

The users were asked to go to ten destination points with each locomotion 

technique. Once arrived to a destination point, the users needed to wait inside until the 

marking objects around them disappeared. The disappearance of the marking objects was 

done after three continuous seconds that was started when the user stepped inside the 

destination point area. The clearance of the destination points was not designed to be 

instantaneous since the users’ control on stopping the locomotion technique was also 
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desired to be observed and evaluated. The objective of the experiment was kept as simple 

as possible to be able to evaluate the user experience on the locomotion techniques 

without the additional effects that may come from different factors. 

After the sixth destination point, 21 obstacles in the form of cylindrical roman 

pillars appeared in the virtual world (see Figure 5-1). Each obstacle was of 0.4m diameter 

and 2.4m height and was 1.77m away from the neighboring obstacle, which gave enough 

space to the user to move around them. 

 

Figure 5-1: Cylindrical roman pillars as static obstacles. 

The reason behind these obstacles was to observe and evaluate the users’ control 

on making turns with the locomotion techniques. The users were supposed to go to the 

destination points without colliding with the obstacles. Without the obstacles, the users 
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could reach to the destination points with movements that were close to straight lines. 

The placement of the obstacles and the destination points were designed so that the users 

required to make turns to avoid collision with the obstacles. 

5.2.4 Destination Points 

The destination points were marked with three objects to ensure a clear visibility; 

a circle on the ground having 1.2m diameter, a semi-transparent cylinder with 2m height 

and 1.2m diameter, and a 3D arrow above the cylinder oscillating in the y-axis to point to 

the destination point (see Figure 5-2). All these objects were designed to be easily seen 

and identified even from the longest distance in the virtual environment. The marker 

objects were designed in orange to be easily visible. 

 

Figure 5-2: Destination point in virtual environment. 
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Once the user stepped inside the destination point area, the color of the objects 

immediately turned to green to give real time feedback to the users. As the user stayed 

inside these marker objects, the color gradually turned to blue in 3 seconds. If the user 

stepped outside of the destination point before 3 seconds, the cycle was reset and the 

color of the marker objects was turned back to orange. For each technique, a different set 

of destination points were used to eliminate any possible learning effect that might be 

caused by memorization. The first destination point appeared 2 meters away from the 

user. After the first one, each new destination point appeared 4 meters away from the 

previous one. Furthermore, each destination point required 180° ± 30° turns to be reached 

after the previous one. 

5.2.5 Procedure 

The participants arrived at the research laboratory. They first read then signed the 

IRB consent form and filled out a demographics related survey. Then, the research staff 

explained the VR system and their objective in the experiment to the participants. The 

destination points, color changing dynamics of the marker objects and the obstacles that 

appear after the sixth destination point were explained to the participants. They were 

requested to try not hitting the obstacles. Then, the research staff helped the participants 

to wear the HMD, and hand and feet marker bands for motion tracking. After answering 

any possible questions of the participants, the experiment began. The participants tried 

one of the randomly assigned eight locomotion techniques. When they completed all 10 

destination points with the assigned locomotion technique, a user experience survey was 

given to the participants for evaluation of the tried locomotion technique. After all of the 
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locomotion techniques were tried, an overall survey was given to the participants that 

requested them to rank the techniques according to their preference. The surveys can be 

seen in Appendix F. Block diagram for the experiment can be seen in Figure 5-3. 

 

Figure 5-3: Block diagram for the experiment of the comparison of the eight locomotion 
techniques. 

For the participants with ASD, a specially designed sorting table was used to rank 

the locomotion techniques. The techniques were represented by the descriptive icons that 

were mentioned in the previous chapter. The table was printed out on a large paper and 

photos were taken after the participant finished sorting to keep record. One example of a 

sorted preference of the locomotion techniques list can be seen in Figure 5-4. This ranking 
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technique was utilized to decrease the cognitive effort required to rank the eight 

locomotion techniques, with the recommendation of the professional job trainers of 

individuals with ASD. 

 

Figure 5-4: Sorting chart for the participants with ASD. 

The eight locomotion techniques in the experiment were assigned to the users in 

random order. Counterbalancing was utilized to ensure an equal distribution among the 

possible ordering combinations. The experiment lasted around one hour per participant, 

with 3 minutes of VR exposure followed by 5 minute breaks to fill out the surveys for 

each locomotion technique. All sessions were video and audio recorded. The user study 

was performed under the IRB with the number Ame7_Pro00013008, the IRB approval 

letter can be seen in Appendix D. 

5.2.6 Data Collection 

During the user study sessions, timestamps for clearing each destination point and 

collision with obstacles, and virtual and real locomotion paths of each user was stored for 

each locomotion technique. After the completion of each technique trial, the users filled 
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out a survey about the experience they had with that locomotion technique. The 

questions included the following aspects: ease of understanding, ease of operating, 

required effort, tiredness, being in control, enjoyment, being overwhelmed and 

frustrated; questions about motion sickness and presence. The survey was constructed as 

modified a version of Loewenthal’s core elements of the gaming experience questionnaire 

[156], Pensacola Diagnostic Criteria survey on motion sickness [157] and Witmer and 

Singer’s questionnaire on presence [158]. After completing the testing of all eight 

locomotion techniques, the users were asked to rank the eight techniques according to 

their preferences. 

5.3 Neurotypical Users 

This subsection presents neurotypical user demographics and the results for this 

population. Discussions, conclusions and future work directions were also included. The 

research question for this user study was: ‘Which of the eight virtual locomotion 

techniques would provide the best user experience for neurotypical individuals in room 

scale tracked areas?’ Based on this research question, the following null hypotheses were 

constructed: Hypothesis1,0: All locomotion techniques will result in similar performance 

in terms of average time to reach to the destination points, Hypothesis2,0: All locomotion 

techniques will result in similar ranking scores. 

5.3.1 Participants 

16 neurotypical individuals participated in the study. The gender distribution was 

11 males and 5 females. The participants were aged between 21 and 33 (µ = 25.8, σ = 3.05). 

All participants were undergraduate or graduate university students from different 
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majors. All participants’ dominant side was right. All participants had none to minimal 

previous virtual reality experience. A $50 gift card was given to the participants as an 

incentive. Due to a hardware malfunction during the testing session of one participant, 

their data was discarded and data analysis was performed for 15 neurotypical 

participants (N = 15). 

5.3.2 Results 

This sub-subsection presents the user study results for neurotypical individuals 

under these categories: data results, survey results, participant comments, discussion, 

summary, conclusion and future work. 

5.3.2.1 Data Results 

The data of the time it took for the users to reach to the destination points was 

analyzed in two groups based on the presence of obstacles in the form of pillars: no-

obstacles and obstacles. The bar charts for the average times to reach the destination 

points can be seen in Figure 5-5. Error bars in all of the charts represent standard error of 

the mean. 

One-way ANOVA with repeated measures with α = 0.05 resulted in significant 

difference for both the no-obstacles case (F(7, 7) = 17.220, p = 0.000) and for the obstacles 

case (F(7, 7) = 7.970, p = 0.000). Mauchly’s sphericity test failed and Greenhouse-Geisser 

correction was performed for both cases. Paired t-test analysis results that yielded the 

largest and the smallest statistically significant mean differences between two techniques 

are reported in Table 5-1. 
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Figure 5-5: Average time to reach to the destination points without and with obstacles 
for the neurotypical users with the eight locomotion techniques. 

Table 5-1: Paired t-test results for the largest and the smallest significant mean 
differences for average destination clearance times for the neurotypical users. 

No-Obstacles  µ Diff. Std. E p 

Redirected Walking Trackball 7.798 0.878 0.000 

Joystick Trackball 0.839 0.346 0.029 

Obstacles 

Hand Flapping Trackball 6.655 1.946 0.004 

Walk-in-Place Flying 2.887 1.148 0.025 

For the obstacles case, data for the number of collisions that were made with the 

static obstacles in the virtual environment were also analyzed. The bar charts for the 
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average number of collisions can be seen in Figure 5-6. Collisions that were made with 

the dynamic objects (the pop-up walls in the redirected walking) were excluded from this 

analysis for comparable results among the locomotion techniques. One-way ANOVA 

with repeated measures with α = 0.05 resulted in significant difference F(7, 7) = 8.099, p 

= 0.000. Mauchly’s sphericity test was failed and Greenhouse-Geisser correction was 

performed. In the paired t-tests, the largest significant mean difference was between 

redirected walking and point & teleport (µ difference = 3.800, p = 0.001), and the smallest 

significant mean difference was between walk-in-place and point & teleport (µ difference 

= 0.867, p = 0.010). Detailed statistical analysis can be seen in Appendix G. 

   

Figure 5-6: Average number of collisions with static obstacles for the neurotypical users. 

5.3.2.2 Survey Results 

The user experience survey included questions on eight categories: difficulty in 

understanding the locomotion method, difficulty in operating the locomotion method, 
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feeling of being in control while using the locomotion method, required effort to use the 

locomotion method, feeling of tiredness the locomotion method caused, feeling of 

enjoyment the locomotion method caused, feeling of being overwhelmed the locomotion 

method caused and feeling of frustration the locomotion method caused. The answers 

were based on a 5 point Likert scale (1: not at all, 5: very much). Bar charts for these eight 

categories are presented in Figure 5-7. Results for one-way ANOVA with repeated 

measures with α = 0.05 are reported in Table 5-2. Results for the paired t-tests which 

resulted in the largest and the smallest statistically significant mean differences are 

reported in Table 5-3. 

Table 5-2: One-way ANOVA results for the user experience survey for the neurotypical 
users. 

 Correction df df  Err. F p 

Difficulty in 
Understanding 

Greenhouse-
Geisser 

3.383 47.369 7.850 0.000 

Difficulty in Operating 
Greenhouse-
Geisser 

3.663 51.286 10.243 0.000 

In Control 
Sphericity 
Assumed 

7 98 8.569 0.000 

Enjoyment 
Sphericity 
Assumed 

7 98 5.651 0.000 

Required Effort 
Sphericity 
Assumed 

7 98 8.660 0.000 

Tiredness 
Sphericity 
Assumed 

7 98 5.941 0.000 

Overwhelmedness 
Greenhouse-
Geisser 

3.345 46.829 2.330 0.080 

Frustration 
Greenhouse-
Geisser 

3.928 54.987 6.492 0.000 



161 
 

Motion sickness and presence questions were based on a 4 point Likert answer 

scale (0: none, 3: major). The bar charts for the results of the motion sickness and presence 

are presented in Figure 5-8. One-way ANOVA with repeated measures with α = 0.05 

resulted in no significant difference between the eight locomotion techniques for motion 

sickness (F(7, 7) = 1.680, p = 0.199) but resulted in significant difference for presence (F(7, 

7) = 1.329, p = 0.020). Mauchly’s sphericity test was failed and Greenhouse-Geisser 

correction was performed for both motion sickness and presence data (Table 5-4). 

 

 

Figure 5-7: Survey results for the eight locomotion techniques for the neurotypical 
users. 
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Table 5-3: Paired t-test results for the largest and the smallest significant mean 
differences for the user experience survey for the neurotypical users. 

Difficulty in Understanding µ Diff. Std. E p 

Hand Flapping Joystick 1.533 0.307 0.000 

Walk in Place Trackball 0.400 0.163 0.028 

Difficulty in Operating 

Hand Flapping Joystick 1.867 0.291 0.000 

Walk in Place Trackball 0.533 0.215 0.027 

In Control 

Joystick Hand Flapping 1.667 0.252 0.000 

Joystick Stepper 0.533 0.236 0.041 

Enjoyment 

Point & Teleport Hand Flapping 1.600 0.273 0.000 

Redirected Walking Stepper 0.467 0.215 0.048 

Required Effort 

Hand Flapping Joystick 1.600 0.289 0.000 

Flying Trackball 0.733 0.316 0.036 

Tiredness 

Walk in Place Joystick 0.933 0.284 0.005 

Hand Flapping Joystick 0.933 0.284 0.005 

Stepper Flying 0.400 0.163 0.028 

Frustration 

Hand Flapping Joystick 1.333 0.232 0.000 

Flying Joystick 0.733 0.267 0.016 
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Table 5-4: Paired t-test results for the largest and the smallest significant mean 
differences for the presence results for the neurotypical users. 

Presence µ Diff. Std. E p 

Redirected Walking Hand Flapping 0.644 0.229 0.014 

Flying Hand Flapping 0.244 0.100 0.028 

 

  

Figure 5-8: Average motion sickness and presence scores for the neurotypical users. 

After they finished testing all of the eight techniques, the participants were 

requested to rank the eight locomotion techniques according to their preference. Results 

for the preference ranking were then transformed such that a score of 1 meant the least 

preferred and a score of 8 meant the most preferred. The bar charts for the average 

preference results are presented in Figure 5-9. One-way ANOVA with repeated measures 

with α = 0.05 resulted in significant difference for the preference results (F(7, 7) = 5.606, 
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p = 0.000). Mauchly’s sphericity test was succeeded. As paired t-tests were performed, 

the largest significant mean difference was between the point & teleport and hand 

flapping (µ difference = 4.133, p = 0.000), and the smallest significant mean difference was 

between the joystick and flying (µ difference = 1.667, p = 0.047). 

  

Figure 5-9: Weighted averages of the preference ranking scores for the neurotypical 
users. 

Trajectories for the movements of the users in the virtual world are presented in 

the following figures: redirected walking (Figure 5-10), walk-in-place (Figure 5-11), 

stepper machine (Figure 5-12), point & teleport (Figure 5-13), joystick (Figure 5-14), 

trackball (Figure 5-15), hand flapping (Figure 5-16), and flying (Figure 5-17). The virtual 
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and real path trajectories for the locomotion techniques with and without obstacles can 

be seen in the figures. 

 

Figure 5-10: Redirected walking locomotion technique projected paths for the 
neurotypical users. Left top: Virtual projected paths in virtual environment between 

destination points 2 and 6. Left bottom: Real projected paths in real tracking area 
between destination points 2 and 6. Right top: Virtual projected paths in virtual 

environment between destination points 9 and 10 with obstacles. Right bottom: Real 
projected paths in real tracking area between destination points 6 and 10.  
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Figure 5-11: Walk-in-place locomotion technique projected paths for the neurotypical 
users. Left top: Virtual projected paths in virtual environment between destination 

points 2 and 6. Left bottom: Real projected paths in real tracking area between 
destination points 2 and 6. Right top: Virtual projected paths in virtual environment 

between destination points 9 and 10 with obstacles. Right bottom: Real projected paths 
in real tracking area between destination points 6 and 10. 
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Figure 5-12: Stepper machine locomotion technique projected paths for the neurotypical 
users. Left top: Virtual projected paths in virtual environment between destination 

points 2 and 6. Left bottom: Real projected paths in real tracking area between 
destination points 2 and 6. Right top: Virtual projected paths in virtual environment 

between destination points 9 and 10 with obstacles. Right bottom: Real projected paths 
in real tracking area between destination points 6 and 10. 
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Figure 5-13: Point & teleport locomotion technique projected paths for the neurotypical 
users. Left top: Virtual projected paths in virtual environment between destination 

points 2 and 6. Left bottom: Real projected paths in real tracking area between 
destination points 2 and 6. Right top: Virtual projected paths in virtual environment 

between destination points 9 and 10 with obstacles. Right bottom: Real projected paths 
in real tracking area between destination points 6 and 10. 
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Figure 5-14: Joystick locomotion technique projected paths for the neurotypical users. 
Left top: Virtual projected paths in virtual environment between destination points 2 

and 6. Left bottom: Real projected paths in real tracking area between destination points 
2 and 6. Right top: Virtual projected paths in virtual environment between destination 
points 9 and 10 with obstacles. Right bottom: Real projected paths in real tracking area 

between destination points 6 and 10. 
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Figure 5-15: Trackball locomotion technique projected paths for the neurotypical users. 
Left top: Virtual projected paths in virtual environment between destination points 2 

and 6. Left bottom: Real projected paths in real tracking area between destination points 
2 and 6. Right top: Virtual projected paths in virtual environment between destination 
points 9 and 10 with obstacles. Right bottom: Real projected paths in real tracking area 

between destination points 6 and 10. 
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Figure 5-16: Hand flapping locomotion technique projected paths for the neurotypical 
users. Left top: Virtual projected paths in virtual environment between destination 

points 2 and 6. Left bottom: Real projected paths in real tracking area between 
destination points 2 and 6. Right top: Virtual projected paths in virtual environment 

between destination points 9 and 10 with obstacles. Right bottom: Real projected paths 
in real tracking area between destination points 6 and 10. 
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Figure 5-17: Flying locomotion technique projected paths for the neurotypical users. 
Left top: Virtual projected paths in virtual environment between destination points 2 

and 6. Left bottom: Real projected paths in real tracking area between destination points 
2 and 6. Right top: Virtual projected paths in virtual environment between destination 
points 9 and 10 with obstacles. Right bottom: Real projected paths in real tracking area 

between destination points 6 and 10. 
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5.3.2.3 Participant Comments 

The comments that were made by the participants in the surveys were presented 

below under the relevant locomotion technique categories. 

 Redirected Walking: (User 1) “Pretty straightforward method as long as 

you walked slowly.” (User 9) “Real walking was very simple. I think it is a 

good method.” (User 11) “I felt like at times when it would appear that I 

would just need to walk in a straight line, I found myself going off to the 

side rather than straight forward.” (User 12) “Much like real world and 

easier to navigate.” (User 13) “Controlling the speed was challenging but 

after a few walks easy.” (User 17) “Nice. Close to reality.” (User 18) “Felt 

really real, actually walking.” (User 20) “While I did feel limited in motion 

and mildly frustrated, this was the most realistic method.” 

 Walk-in-Place: (User 6) “Actually it is intuitive but I cannot walk sideways.” 

(User 9) “I think it is simple and also have real walk. I think it is good.” 

(User 12) “Needs more effort than normal walking.” (User 13) “I really liked 

this method.” (User 17) “Good walking technique.” (User 20) “While not as 

easy as joystick, it did feel more immersive.” 

 Stepper: (User 11) “I like how there was no guesswork in the walking, when 

you stopped on the pedals, you stopped in the virtual world.” (User 13) “It 

was fun stepping without walking.” (User 15) “This method was the most 

difficult of all in terms of physical exertion.” (User 18) “It didn’t feel as real 

as walk in place using the stepper machine.” (User 20) “This method was 
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far more restrictive in turning and required more effort than walking in 

place.” 

 Point & Teleport: (User 4) “Getting around obstacles was a lot of time. But 

good for longer, unobstructed distances.” (User 5) “Easy to move and avoid 

obstacles.” (User 6) “Pointing is very easy and interesting.” (User 9) “It is a 

very simple method, very easy to apply.” (User 11) “I enjoyed the accuracy 

in the whole ‘point and you will teleport to that spot’ because it took the 

guesswork out.” (User 15) “This felt more like a video game because I 

wasn’t actually walking to move in VR.” (User 18) “Really cool method. 

Would be fun for video games.” (User 20) “This method was very easy to 

use.” 

 Joystick: (User 6) “Love this method. No thinking, no effort. Know for sure. 

Accurate and safe.” (User 9) “This method is very easy to apply.” (User 11) 

“I really like how smooth it was moving in the virtual world. Movement 

was continuous, not stop and go like some other methods.” (User 13) “It 

was easier to control the walking but completely conscious that I was 

controlling from outside.” (User 17) “Complete control of motion. Perfect 

stoppage parts.” 

 Trackball: (User 1) “I liked this method. Easy to use.” (User 4) “Slow, jerky 

motion. Difficult to get from place to place efficiently.” (User 9) “It is simple, 

but about the operating feeling, I think the joystick is much better.” (User 
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13) “It was easy to control but completely aware of surroundings.” (User 

18) “Didn’t feel real using the walking device.” 

 Hand Flapping: (User 1) “This method was a little difficult. Once I figured 

it out, it was better. Particularly difficult to navigate the pillars.” (User 9) 

“It is not very easy to avoid the obstacles.” (User 13) “The walking with the 

hand is not that easy to control.” (User 18) “Not a big fan of this method. 

Think it’s a little hard to get the hang at first.” 

 Flying: (User 1) “Difficult. Sometimes I forgot to put my hand down.” (User 

3) “Felt like I was on a skateboard but there was no momentum.” (User 4) 

“Hard to signal on then off for short distances.” (User 9) “Sometimes, it is 

easy to walk over the position.” (User 11) “I wasn’t able to tell how close I 

was to the columns (i.e. if my shoulder would’ve brushed against the 

column).” (User 18) “Annoying to operate this way.” 

5.3.3 Discussion 

The following implications were compiled for virtual reality applications for room 

scale tracked areas in the light of the analysis results and the comments from the 

participants. We recommend using point & teleport, joystick like controllers and 

redirected walking depending on the scope of intended VR application. On the other 

hand, we recommend avoiding from using hand flapping and flying. 

5.3.3.1 Point & Teleport 

As this technique was explained to the participants, many of them immediately 

made positive verbal comments stating that the technique seemed fun to try. They stated 
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that the technique reminded them immediately of video games and made the experiment 

seem more like a video game as compared to the other locomotion techniques. Point & 

teleport received good scores for many aspects and was ranked as the first preference of 

the neurotypical users among the eight locomotion techniques. Hence, evidence suggests 

that point & teleport is a good candidate for locomotion in room scale VR. However, in 

VR applications that contain a lot of obstacles which the user needs to move around, point 

& teleport might not be suitable. Such environments may need many teleportations 

which may be annoying for the users. The technique is suitable for vast virtual 

environments in which the user needs to travel long distances such as exploration games 

and applications. 

5.3.3.2 Joystick 

The joystick provided high level of control and simplicity in usage. The familiarity 

from video games might be a contributing factor for the preference for the joystick 

locomotion technique. The scores for many aspects were good for joystick, especially for 

the feeling of being in control, and it was the third choice in the preference ranking. These 

were in alignment with [115, 116] and contradiction with [117]. As a drawback, we 

observed some drifting in the turning around motions made with the joystick method. 

The reason behind this was that the users turned around by pushing the joystick 

diagonally (both forward and sideways), instead of stopping and turning back. Although 

it is a sign of a continuous movement that can be considered as positive, it may cause 

more time to reach to the desired position. This effect should be taken into account for 

applications requiring large instances of turning around. We suggest using joystick like 
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controllers in VR applications that are fast paced and that needs accurate controlling of 

the user such as making fast moves to all sides in small increments or dodging. 

5.3.3.3 Redirected Walking 

Although redirected walking was implemented with limits that were beyond the 

recommended range in the literature and in a tracked area that was smaller than the 

recommended size, it received good scores in many aspects. This aligned with [33, 119, 

130] but contradicted with [117]. Redirected walking was the second choice of the 

participants in the preference ranking among the eight techniques. It did not induce 

motion sickness and it provided the highest level of presence. Many users mentioned 

how natural and realistic using this technique felt. We recommend using redirected 

walking in room scale VR applications that aims for high levels of presence. However, it 

should be noted that the exaggeration of the movements resulted in loss of control. This 

effect was observed in the survey results and the collision results for this technique. 

Hence, in room scale VR applications in which precision is important, we recommend 

avoiding redirected walking. 

5.3.3.4 Walk-in-Place 

Walk-in-place received middle range scores for many aspects. However, the users 

stated that locomotion with walk-in-place gave them proprioceptive feedback and felt 

realistic. It helped the users to stay in the same place and it had an aspect of physical 

effort as well. As an advantage over redirected walking, walk-in-place provided more 

control since the movements were transformed into the virtual world without alteration. 

On the other hand, it provided less presence than redirected walking and it was the fifth 



178 
 

in the preference ranking. Hence, we suggest using walk-in-place as a second resort to 

redirected walking in room scale VR applications that require accurate locomotion and 

have the aim of making the users exert some physical effort. 

5.3.3.5 The Other Techniques 

Although stepper machine also gave the users proprioceptive feedback, it received 

poorer scores than the walk-in-place in several aspects. The users stated that they found 

the walk-in-place and stepper machine similar in general. However, some users stated 

that the stepper machine was not as natural as the walk-in-place and it gave them the 

feeling of controlling from the outside instead of being in the virtual world. We did not 

find any advantages of using stepper machine over walk-in-place. Hence, we recommend 

utilizing walk-in-place instead of stepper machine. 

Trackball also did not provide any advantages over joystick. Some users stated 

that it was annoying to spin the ball many times for locomotion. The trajectories show 

that the strides were abrupt with the trackball locomotion technique instead of indicating 

a continuous movement. The trackball was behind the joystick in the preference ranking. 

Hence, we could not find any advantage of the trackball over the joystick and recommend 

choosing the joystick over trackball. 

Flying received poor scores for many aspects and was the second least in the 

preference ranking among the eight techniques. The automatic movement created a loss 

of control and the users mentioned that it was difficult for them to estimate their distance 

in the virtual environment with this method. They stated that it was difficult for them to 

decide when to stop and most of the users made early stops. We interpret that the users 
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might have expected some form of decelerated stop with this technique (such as stopping 

a moving car in the real life) and thus triggered the stopping a bit earlier than their desired 

point of destination. However, the flying technique was implemented such that it started 

and stopped moving immediately when the user made the triggering gesture. 

Hand flapping received the poorest scores in many aspects and it was the last 

ranked technique among the eight, in terms of user preference. The users stated that it 

was awkward and tiring to continuously flap the hand for locomotion and they 

mentioned a loss of control with this technique, in alignment with the survey results. We 

interpret that the unintentional movements of the hand may have resulted in 

unintentional movements in the virtual world. The translation of the foot motion to the 

hand with the hand flapping was not found comfortable by the users. In lights of the 

negative results and user comments, we recommend avoiding hand flapping for 

locomotion in VR. 

5.3.3.6 Time to Reach the Destination Points and Number of Collisions 

For the no-obstacles case, the least time to reach to the destination points was with 

the trackball, joystick and point & teleport locomotion techniques, rejecting Hypothesis1,0. 

These results are in alignment with [114] for joystick-like controllers. For the obstacles 

case, trackball and joystick still resulted in the least times whereas the point & teleport 

became the technique with the third most time to reach to the destination points. We 

interpret that the multiple teleportations that were needed in the presence of the obstacles 

was the reason behind this. The most time to reach the to the destination points was with 

the redirected walking for both the no-obstacles and the obstacles cases. The reason 
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behind this should be the altered movement of the users and the pop-up walls that 

appeared at times to redirect the users towards the center of the tracked area as they 

approached to the edges. 

Point & teleport resulted in significantly lower number of collisions with the 

pillars. It was followed by the walk-in-place and stepper machine. On the contrary, 

redirected walking resulted in the most number of collisions with the pillars. We interpret 

that the gains that were applied in redirected walking should have caused exaggerated 

movements in the virtual world, contributing to the more number of collisions with 

pillars. 

5.3.3.7 Survey Metrics 

Hand flapping resulted in the most difficulty in understanding whereas joystick, 

trackball and point & teleport resulting in the least difficulty. These results are in 

alignment with [130]. Hand flapping and flying resulted in the most difficulty in 

operating whereas joystick and trackball were the least. Joystick and trackball provided 

the feeling of most being in control whereas hand flapping and flying provided the least. 

Hand flapping, redirected walking, stepper machine and walk-in-place were the 

techniques that required the most effort to operate respectively. On the contrary, joystick, 

trackball and point & teleport required the least effort to operate. Similarly, hand 

flapping, walk-in-place, redirected walking and stepper machine caused the most 

tiredness in the users whereas joystick, trackball and point & teleport caused the least. 

Point & teleport provided the highest level of enjoyment followed by joystick and 

trackball. Hand flapping, stepper machine and flying provided the least level of 
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enjoyment. There wasn’t any significant difference in overwhelmedness for the eight 

techniques. Hand flapping caused the most level of frustration followed by flying. The 

least level of frustration was caused by joystick, trackball and point & teleport. The poor 

results for the flying technique were in alignment with [33].  There wasn’t any significant 

difference between the eight locomotion techniques in terms of motion sickness, aligning 

with the results in [33, 129]. The highest level of presence was offered by redirected 

walking followed by walk-in-place. The lowest level of presence was with hand flapping 

and trackball. 

For the user preference ranking scores, the point & teleport was the highest, 

followed by the redirected walking and the joystick. The lowest scores were for the hand 

flapping and flying, respectively. Thus, Hypothesis1,0 was rejected. 

5.3.4 Summary, Conclusion and Future Work 

This user study aimed at investigating eight VR locomotion techniques in room 

scale tracked areas. An immersive VR experiment was implemented and 16 neurotypical 

participants took part in the evaluation of the following locomotion techniques: 

redirected walking, walk-in-place, stepper machine, point & teleport, joystick, trackball, 

hand flapping and flying. In light of the study results, point & teleport, joystick and 

redirected walking was found to be suitable locomotion techniques for VR applications 

in room scale tracked areas whereas hand flapping and flying were not found to be 

suitable. 

In summary, for locomotion in VR applications in room scale tracked areas 

targeting neurotypical individuals, we recommend using the point & teleport for virtual 
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environments that do not contain a lot of obstacles to be overcome; using joystick-like 

controllers for fast paced virtual environments in which accuracy of the movement is 

important; using the redirected walking for applications that aim for high levels of 

presence and physical motion; and using the walk-in-place as a second resort to 

redirected walking. We recommend avoiding using the hand flapping and flying 

locomotion techniques. 

Future research areas may consist of evaluating modifications of the locomotion 

techniques that were found to be suitable for room scale VR in this user study, such as 

point & teleport with controller triggering, and wireless hand held joystick or game pad 

controller. Evaluating the locomotion techniques in virtual environments with different 

levels of complexity would be another area for exploration. 

5.4 Individuals with ASD 

This subsection presents the demographics information of individuals with ASD 

and the user study results for this population. Discussions, summary, conclusions and 

future work directions were also included in the subsection. The research question for 

this user study was: ‘Which of the eight virtual locomotion techniques would provide the 

best user experience for individuals with ASD in room scale tracked areas?’ In the light 

of this research question, the following null hypotheses were constructed: Hypothesis1,0: 

All locomotion techniques will result in similar performance in terms of average time to 

reach to the destination points, Hypothesis2,0: All locomotion techniques will result in 

similar ranking scores. 
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5.4.1 Participants 

15 high functioning individuals with ASD (11 male, 4 female) participated in the 

user study. All participants were older than 18 years old, ages ranging from 18 to 41, 

mean age 23.73 (SD = 5.37). 11 participants’ dominant side was right and 4 participants’ 

dominant side was left. Most of the participants (14 out of 15) had no prior VR experience 

while only 1 participant had minimal prior VR experience. A $50 gift card was given to 

the participants as an incentive to participate in the user study. 

5.4.2 Results 

This sub-subsection presents the user study results for individuals with ASD 

under the following categories: data results, survey results, and the participant 

comments. One participant with ASD state that they felt nauseous during trying their 

first assigned locomotion technique, hence did not want to continue taking part in the 

experiment. Thus, the data of the 14 participants with ASD were used in the analysis in 

this sub-subsection. Two participants with ASD did not complete the flying technique 

trial due to feeling nauseous and being overwhelmed. 

5.4.2.1 Data Results 

We analyzed the time data to reach to the destination points based on two groups 

according to the presence of obstacles in the virtual world. The results are presented in 

Figure 5-18. 

As one-way ANOVA with repeated measures analysis was performed, significant 

difference was found in the time to reach to the destination points for both of these cases: 

F(7, 6) = 8.894, p = 0.001 for without obstacles case, and F(7, 6) = 8.493, p = 0.000 for with 
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obstacles case. Mauchly’s sphericity test failed and Greenhouse-Geisser correction was 

done for both cases. As paired t-tests were performed, for without obstacles case, the 

largest significant mean difference was between the redirected walking and point & 

teleport (µ difference = 9.549, p = 0.001), and the smallest significant mean difference was 

between the walk-in-place and joystick (µ difference = 1.198, p = 0.036). For with obstacles 

case, the largest significant mean difference was between the redirected walking and 

joystick (µ difference = 12.774, p = 0.000), and the smallest significant mean difference 

was between the walk-in-place and flying (µ difference = 3.106, p = 0.015).  

  

Figure 5-18: Average time to reach to the destination points without and with obstacles 
for the users with ASD with the eight locomotion techniques. 

Number of collisions made with the static obstacles in the virtual environment 

were also analyzed (see Figure 5-19). Additional dynamic obstacles of the redirected 

walking technique in the form of pop-up walls aiming to keep the users inside the tracked 
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area were not included in this analysis to obtain comparable results between the different 

locomotion techniques. One-way ANOVA with repeated measures yielded statistically 

significant difference between the techniques: F(7, 6) = 11.296, p = 0.000, Mauchly’s 

sphericity test failed and Greenhouse-Geisser correction was done. The largest significant 

mean difference in the paired t-tests was between the redirected walking and point & 

teleport (µ difference = 5.833, p = 0.000), and the smallest significant mean difference was 

between the walk-in-place and point & teleport (µ difference = 1.083, p = 0.02). Detailed 

statistical analysis can be seen in Appendix G. 

 

Figure 5-19: Average number of collisions with static obstacles for the users with ASD. 

5.4.2.2 Survey Results 
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method, feeling of tiredness the method caused, feeling of enjoyment the method caused, 

feeling of being overwhelmed the method caused and feeling of frustration the method 

caused. The questions had answers on a 5 point Likert scale (1: not at all, 5: very much). 

Average results of these categories are presented in Figure 5-20. One-way ANOVA with 

repeated measures analysis was performed for each category yielding results reported in 

Table 5-5. All eight categories resulted in statistically significant difference. Results of the 

paired t-tests that yielded the largest and the smallest significant mean differences are 

presented in Table 5-6. 

Table 5-5: One-way ANOVA results the user experience survey for the users with ASD. 

 Correction df df Err. F Sig. 

Difficulty in 
Understanding 

Greenhouse-Geisser 3.667 47.676 3.633 0.014 

Difficulty in 
Operating 

Sphericity Assumed 7.000 91.000 7.519 0.000 

In Control Greenhouse-Geisser 3.277 42.602 6.479 0.001 

Enjoyment Sphericity Assumed 7.000 91.000 5.984 0.000 

Required Effort Sphericity Assumed 7.000 91.000 6.249 0.000 

Tiredness Greenhouse-Geisser 3.142 40.840 2.945 0.042 

Overwhelmedness Greenhouse-Geisser 2.890 37.574 3.314 0.032 

Frustration Greenhouse-Geisser 3.655 47.520 4.453 0.005 
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There were also questions in the survey on motion sickness and presence. These 

questions had answers on a 4 point Likert scale (0: none, 3: major). Results for the motion 

sickness and presence are presented in Figure 5-21. One-way ANOVA with repeated 

measures analysis indicated no significant difference between the locomotion techniques 

for motion sickness (F(7, 6) = 1.175, p = 0.332) and presence (F(7, 6) = 1.156, p = 0.341). 

Mauchly’s sphericity test failed and Greenhouse-Geisser correction was done for both the 

motion sickness and presence data. 

 

 

Figure 5-20: Survey results for the eight locomotion techniques for the users with ASD. 
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Table 5-6: Paired t-test results for the largest and the smallest significant mean 
differences for the user experience survey for the users with ASD. 

  µ Diff. Std. Err. Sig. 

Difficulty in Understanding 

Flying Point & Teleport 1.214 0.447 0.018 

Flying Joystick 1.214 0.422 0.013 

Hand Flapping Point & Teleport 0.929 0.286 0.006 

Hand Flapping Joystick 0.929 0.305 0.009 

Difficulty in Operating 

Hand Flapping Point & Teleport 1.714 0.304 0.000 

Hand Flapping Trackball 1.714 0.398 0.001 

Flying Point & Teleport 1.714 0.425 0.001 

Flying Trackball 1.714 0.474 0.003 

Stepper Joystick 0.643 0.269 0.033 

In Control 

Joystick Hand Flapping 1.429 0.291 0.000 

Trackball Hand Flapping 1.429 0.291 0.000 

Walk in Place Hand Flapping 0.786 0.155 0.000 

Enjoyment 

Joystick Flying 1.571 0.416 0.002 

Trackball Stepper 0.643 0.269 0.033 

Required Effort 

Stepper Point & Teleport 1.714 0.304 0.000 

Walk in Place Joystick 0.714 0.244 0.012 

Tiredness 

Stepper Trackball 0.929 0.339 0.017 

Stepper Walk in Place 0.500 0.228 0.047 
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Table 5-6 (Continued) 

     

Overwhelmedness  µ Diff. Std. Err. Sig. 

Flying Point & Teleport 1.000 0.348 0.013 

Flying Trackball 1.000 0.378 0.020 

Stepper Point & Teleport 0.429 0.173 0.028 

Stepper Trackball 0.429 0.173 0.028 

Frustration 

Flying Joystick 1.357 0.357 0.002 

Flying Trackball 1.357 0.387 0.004 

Stepper Joystick 0.500 0.203 0.029 

 

Figure 5-21: Average motion sickness and presence scores for the users with ASD. 

After the testing, the participants were requested to rank the locomotion 

techniques according to their preference. Results for the preference ranking are presented 
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succeeded and sphericity assumed). Then, paired t-tests were conducted for finding out 

any differences in combinations of technique pairs. The largest significant mean 

difference was found to be between point & teleport and flying (µ difference = 3.667, p = 

0.000) and joystick and flying (µ difference = 3.667, p = 0.000) and the smallest significant 

mean difference was found to be between joystick and trackball (µ difference = 1.133, p = 

0.021). 

  

Figure 5-22: Weighted averages of the preference ranking data for all locomotion 
techniques. 
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obstacles can be seen in the figures. Users’ movements between all eight destination 

points were plotted. 

 

Figure 5-23: Redirected walking locomotion technique projected paths for the users 
with ASD. Left top: Virtual projected paths in virtual environment between destination 

points 2 and 6. Left bottom: Real projected paths in real tracking area between 
destination points 2 and 6. Right top: Virtual projected paths in virtual environment 

between destination points 9 and 10 with obstacles. Right bottom: Real projected paths 
in real tracking area between destination points 6 and 10. 
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Figure 5-24: Walk-in-place locomotion technique projected paths for the users with 
ASD. Left top: Virtual projected paths in virtual environment between destination 

points 2 and 6. Left bottom: Real projected paths in real tracking area between 
destination points 2 and 6. Right top: Virtual projected paths in virtual environment 

between destination points 9 and 10 with obstacles. Right bottom: Real projected paths 
in real tracking area between destination points 6 and 10. 
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Figure 5-25: Stepper machine locomotion technique projected paths for the users with 
ASD. Left top: Virtual projected paths in virtual environment between destination 

points 2 and 6. Left bottom: Real projected paths in real tracking area between 
destination points 2 and 6. Right top: Virtual projected paths in virtual environment 

between destination points 9 and 10 with obstacles. Right bottom: Real projected paths 
in real tracking area between destination points 6 and 10. 
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Figure 5-26: Point & teleport locomotion technique projected paths for the users with 
ASD. Left top: Virtual projected paths in virtual environment between destination 

points 2 and 6. Left bottom: Real projected paths in real tracking area between 
destination points 2 and 6. Right top: Virtual projected paths in virtual environment 

between destination points 9 and 10 with obstacles. Right bottom: Real projected paths 
in real tracking area between destination points 6 and 10. 
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Figure 5-27: Joystick locomotion technique projected paths for the users with ASD. Left 
top: Virtual projected paths in virtual environment between destination points 2 and 6. 
Left bottom: Real projected paths in real tracking area between destination points 2 and 
6. Right top: Virtual projected paths in virtual environment between destination points 

9 and 10 with obstacles. Right bottom: Real projected paths in real tracking area 
between destination points 6 and 10. 



196 
 

 

Figure 5-28: Trackball locomotion technique projected paths for the users with ASD. 
Left top: Virtual projected paths in virtual environment between destination points 2 

and 6. Left bottom: Real projected paths in real tracking area between destination points 
2 and 6. Right top: Virtual projected paths in virtual environment between destination 
points 9 and 10 with obstacles. Right bottom: Real projected paths in real tracking area 

between destination points 6 and 10. 
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Figure 5-29: Hand flapping locomotion technique projected paths for the users with 
ASD. Left top: Virtual projected paths in virtual environment between destination 

points 2 and 6. Left bottom: Real projected paths in real tracking area between 
destination points 2 and 6. Right top: Virtual projected paths in virtual environment 

between destination points 9 and 10 with obstacles. Right bottom: Real projected paths 
in real tracking area between destination points 6 and 10. 
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Figure 5-30: Flying locomotion technique projected paths for the users with ASD. Left 
top: Virtual projected paths in virtual environment between destination points 2 and 6. 
Left bottom: Real projected paths in real tracking area between destination points 2 and 
6. Right top: Virtual projected paths in virtual environment between destination points 

9 and 10 with obstacles. Right bottom: Real projected paths in real tracking area 
between destination points 6 and 10. 
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5.4.2.3 Participant Comments 

Participants were encouraged to share their comments, suggestions, likes and 

dislikes about any aspect of the experiment on the surveys. Some of these comments are 

shared following, under the categories based on the locomotion techniques. 

Joystick received many positive comments from the participants with ASD: User 

22: “Joystick is what my favorite tech is and it’s perfect for walking in virtual world.” 

User 25: “Awesome!” Many participants made positive comments for point & teleport as 

well: User 7: “I do enjoy the technology used.” User 22: “Teleport is really the way to 

walk.” User 25: “I wanna buy this game.” User 26: “It’s teleporting! It was really cool!” 

Trackball received mostly positive comments: User 7: “I liked that it was super easy. I 

want to play this one again.” User 8: “It was very fun. Rolling it was like moving around 

on an office chair.” User 22: “Very interesting indeed.” User 26: “I liked that when you’re 

trying to walk and turn all you had to do is use your hand.” One user on the other hand, 

made a negative statement about trackball: User 24: “It was a bit difficult to move the ball 

to keep walking all the time.” 

Redirected walking received mixed comments from the users with ASD: User 8: “I 

liked it a lot. It was fast changing and challenging in a positive way.” User 22: “I liked 

walking in virtual world, it was so interesting.” User 23: “It was good to really walk.” 

User 26: “I liked it since it felt like I was really in the game. User 22: “I walk fast in real 

world yet I can’t control my speed in virtual world.” User 25: “It was close to the edge 

and a bit confusing.” Stepper machine also received mixed comments from the 

participants: User 16: “I liked it the most because it made me to exert the most effort.” 
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User 25: “I wanna do it again!” User 22: “It wasn’t so easy to do stepping machine in 

virtual world.” User 26: “I liked that one but it felt a bit tiring at the back of my legs.” 

Walk-in-place also got mixed comments from the users: User 24: “It was realistic.” User 

25: It helped to keep me in the center and I liked it.” User 28: “Really interesting concept.” 

User 26: “I didn’t like this method because it was like real walking but not so.” 

Hand flapping received mostly negative comments from the users with ASD: User 

22: “Hand flapping for walking is harder than I thought.” User 23: “It was a bit hard to 

use flapping.” User 24: It was a little hard to control.” User 26: “It was not so realistic to 

use hand flapping for walking.” User 25: It was comfortable.” Flying also received mostly 

negative comments from the participants: User 14: “It was completely frustrating.” User 

22: “It’s hard to control it.” User 25: “I didn’t like this one.” 

5.4.3 Discussion 

Analysis of the results, the observations that were made throughout the user study 

sessions and the comments from the participants with ASD shaped our interpretation on 

the implication of the user study results. For virtual reality applications targeting high 

functioning individuals with ASD, we recommend using the joystick, point & teleport, 

redirected walking or walk-in-place as the locomotion techniques under different 

circumstances. 

5.4.3.1 Joystick 

The joystick shared the first ranking in the user preference along with the point & 

teleport. We interpret that the users liked the feeling of being in control, the simplicity of 

use and the translation of movement into the virtual world with the joystick technique 
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(pushing forward to go forward). Its reminding of video games and the familiarity may 

be other positive factors for the joystick, considering that individuals with ASD feel more 

comfortable using familiar objects. Although most of our participants with ASD didn’t 

have any prior VR experience, more than half of them mentioned that they frequently 

played video games in real life. We recommend that in VR applications where the 

accuracy of the control is important and instant movements in small increments would 

be useful, the joystick can be used for locomotion. 

5.4.3.2 Point & Teleport 

This technique created excitement in our participants with ASD. Many users made 

positive statements such as ‘Wow’ and ‘Cool’ when they only heard its name or when we 

explained them how the technique worked. The uses stated that the technique resembled 

science fiction. We interpret that affinity of individuals with ASD to technology may have 

contributed to the preference for this locomotion technique. Since teleportation is a term 

reminding of technology, users may have felt sympathy for this technique. Beyond this, 

we observed that the users were comfortable in using this technique and embraced it very 

quickly as well. Pointing to where they wanted to be in the virtual world provided a 

simple form of representation. However, point & teleport may not be applicable in virtual 

environments that contain many elements that the user needs to move around. In virtual 

reality applications with vast environments that require long travel distances, we 

recommend using point & teleport locomotion technique for high functioning 

individuals with ASD. 



202 
 

5.4.3.3 Redirected Walking 

It may result in long times to reach to the destination points for individuals with 

ASD when redirected walking is implemented on smaller tracked areas. The reason 

behind this may be that in smaller tracked areas, there will be more frequent appearances 

of the dynamic obstacles that are used for directing users towards the center of the 

tracked area. These additional obstacles will yield longer travel times since the users need 

to overcome them by walking around. In addition, the alteration of the virtual view 

would create instant changes to which individuals with ASD may have difficulties in 

adjusting. Redirected walking resulted in low preference scores. Hence, in small tracked 

areas, we do not recommend using redirected walking as a virtual reality locomotion 

technique for individuals with ASD. 

5.4.3.4 Walk-in-Place 

For individuals with ASD the walk-in-place technique turned out to be a good 

alternative to redirected walking. Since it urged the users to stay in the same place, the 

size of the tracked area did not impose a limitation. The users were quick to grasp the 

concept. Hence, we recommend using walk-in-place in applications that encourage 

exercising for high functioning individuals with ASD in small tracked areas. The stepper 

machine gave the users a similar experience with walk-in-place. However, it did not 

provide additional comfort or ease of use. Hence, we recommend selecting walk-in-place 

over the stepper machine for high functioning individuals with ASD. 
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5.4.3.5 The Other Techniques 

In this user study, locomotion that required continuous input from the hands or 

feet did not provide convenient use for the participants with ASD. For flying, which 

required the users to release their hands after triggering the movement by raising it up, 

it was difficult for users with ASD to put their hands down in the idle pose. They tended 

to keep their hands close to their chests while waiting, which resulted in unintentional 

movements and problems in deactivation of the technique. Hence, we suggest that 

incorporating relaxed hand pose into gesture controlling for individuals with ASD may 

not work well. With the flying technique, two participants wanted to stop taking part in 

the experiment. They stated that they felt overwhelmed and nauseous. The main reason 

was stated to be the feeling of not being in control of the starting and stopping the 

locomotion technique. The participants did not wish to completely stop taking part in the 

user study and wished to try the remaining locomotion techniques. This emphasizes the 

importance of giving the control of the locomotion technique to the individuals with ASD 

with an easy to use interface for them in virtual reality experiences. 

Another hand gesture controlled locomotion, hand flapping also didn’t provide 

comfortable use. We observed that some users had difficulty in keeping their hands still 

while waiting for the destination points to disappear, which caused unintentional 

movements. Some users with ASD did the hand flapping motion with their hands around 

their chest level but tried to touch their bodies with their hands after stopping doing the 

flapping motion. This made the virtual viewpoint move more since moving the hand 

back to touch the body for the idle pose elongated the flapping motion, causing 
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overshoots. Thus, we recommend that the gesture design for locomotion should give 

individuals with ASD concrete poses (such as putting their hands on their body or 

making a specific gesture). More abstract concepts such as releasing the hands and 

stopping making the flapping motion did not work well in our study for this population 

group. 

5.4.3.6 Time to Reach the Destination Points and Number of Collisions 

It took less time to reach to the destination points with the joystick and trackball 

independent of the presence of obstacles in the virtual world, in alignment with the 

results in [113]. The point & teleport provided short times without the presence of 

obstacles whereas providing long times with the presence of obstacles, hence 

Hypothesis1,0 was rejected. We interpret the reason behind this as the multiple 

teleportations needed to move around the obstacles requiring waiting times for the 

activation of the teleportation. Redirected walking yielded the longest times to reach to 

the destination points for both with obstacles and without obstacles cases. We interpret 

the reason behind this as the additional time it took for the participants to overcome the 

dynamic obstacles that appeared when the users got close to the edges of the tracked area 

and the time it took for the adjustment to the altered view. 

Point & teleport, trackball and joystick resulted in the least amount of collisions 

with the static obstacles whereas redirected walking resulting in the most. We interpret 

this as the point & teleport, trackball and joystick providing more control to the users 

whereas redirected walking providing the least. Gains that were applied in redirected 
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walking may have caused exaggerated movements resulting in unintentional hits to 

obstacles. 

5.4.3.7 Survey Metrics 

Flying resulted in the most difficulty in understanding whereas joystick, point & 

teleport and trackball provided the least difficulty, in alignment with the results in [129]. 

Hand flapping and flying were the most difficult to operate whereas trackball, point & 

teleport and joystick were the least difficult to operate. Joystick and trackball shared the 

feeling of most being in control whereas flying and hand flapping provided the least 

feeling of being in control. Joystick, point & teleport and trackball provided high level of 

enjoyment whereas flying and hand flapping provided significantly lower levels of 

enjoyment. Stepper machine resulted in the most required effort whereas point & teleport 

and trackball resulted in the least. Tiredness and overwhelmedness wasn’t significantly 

different for all of the techniques. Flying, hand flapping and redirected walking caused 

the most frustration whereas joystick and trackball and causing the least. Low results for 

flying was in alignment with [33]. There wasn’t any significant difference between the 

locomotion techniques in terms of motion sickness and presence, in alignment with the 

results in [33, 128]. 

The participants with ASD preferred joystick and point & teleport the most, that 

was followed by walk-in-place and trackball. Flying and hand flapping were preferred 

the least. The Hypothesis2,0 was also rejected. 
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5.4.4 Summary, Conclusion and Future Work 

In this study, eight VR locomotion techniques were implemented and evaluated 

with high functioning individuals with ASD. These techniques were: redirected walking, 

walk-in-place, joystick, stepper machine, point & teleport, flying, hand flapping, and 

trackball controller. The locomotion techniques were implemented in an immersive VR 

environment and a user study was performed with 15 high functioning individuals with 

ASD. Results showed that for individuals with high functioning autism; joystick, point & 

teleport and walk-in-place are suitable VR locomotion alternatives for small tracked areas 

whereas continuous hand gesture based (such as hand flapping) and automatic 

movement based locomotion techniques (such as flying) are not convenient for them. 

Possible future work areas consist of evaluating different versions of the 

locomotion techniques that resulted in high preference scores in this user study, such as 

point & teleport with controller, wireless hand held joystick and alterations of the walk-

in-place. The aim of these evaluations will be providing more comfortable VR experiences 

for individuals with ASD. Evaluating these VR locomotion techniques with low and 

medium functioning individuals with ASD would also be important areas for future 

work. 

5.5 Comparison of Neurotypical Individuals and Individuals with ASD 

This subsection presents the comparison of neurotypical individuals and 

individuals with high functioning ASD in virtual reality locomotion. Although this 

comparison was not the main focus of the study, it is still added with the motivation of 

providing insight into the developers for this specific population by clarifying the 
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similarities and differences in these two populations regarding virtual reality locomotion. 

This subsection includes general differences in the scores, preferences and behavior of 

neurotypical individuals and individuals with ASD. Detailed statistical analysis outputs 

from the IBM SPSS Statistics Software for the comparison between the two population 

groups are presented in Appendix H. 

As the completion time was considered, independent samples t-tests resulted in 

statistical significance only for the following: t(27) = -1.015, p = 0.023 for joystick without 

obstacles; t(27) = -7.898, p = 0.002 for redirected walking with obstacles (equal variances 

assumed by the Levene’s test for equality of variances). The average time to clear the 

destination points was significantly higher for individuals with ASD (12.50) than 

neurotypical individuals (11.49) for the joystick technique when there were no obstacles 

in the scene. The average time to clear the destination points was again significantly 

higher for individuals with ASD (28.65) than neurotypical individuals (20.75) for the 

redirected walking technique when there were obstacles in the scene. 

There wasn’t any statistically significant difference for the number of collisions, 

difficulty in operation, difficulty in understanding, enjoyment, frustration, feeling of 

being in control, required effort, presence, motion sickness, and tiredness scores between 

neurotypical individuals and individuals with ASD. 

For the feeling of being overwhelmed, there was significant difference: t(27) = -

0.824, p = 0.038 for redirected walking (equal variances not assumed by the Levene’s test 

for equality of variances). For individuals with ASD, the score for the feeling of being 

overwhelmed was significantly higher (2.36) than the neurotypical individuals (1.53) 
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with the redirected walking. Although not statistically significant, required effort 

resulted in a small p value for the flying technique: t(27) = -0.957, p = 0.052 (equal 

variances not assumed by the Levene’s test for equality of variances). For individuals 

with ASD, the score for the required effort was significantly higher (3.36) than 

neurotypical individuals (2.4) for flying. 

For the preference ranking scores, point & teleport was the first choice in both 

populations (shared the first ranking with the joystick for individuals with ASD). 

Redirected walking was the second choice of neurotypical individuals whereas the fifth 

choice of individuals with ASD. Joystick was the third choice of neurotypical individuals 

whereas the trackball was the third choice of individuals with ASD. 

We can interpret that the redirected walking was more overwhelming for the users 

with ASD, most probably because of the alteration of the virtual world based on the user’s 

movement. Addition of the static obstacles in the scene made it more difficult for 

individuals with ASD to use the redirected walking method, whereas no similar effect 

was observed with the neurotypical users. We interpret the underlying reason as the 

additional rotations imposed by the static obstacles. 

Another major difference was in the use of the flying technique. Individuals with 

ASD had more difficulties in using this technique than the neurotypical individuals. We 

interpret the underlying reason as the selected neutral pose gesture. Individuals with 

ASD tended to keep their hands at their chest level, which made it difficult for them to 

start and stop the locomotion with this technique. Two individuals with ASD wanted to 

stop trying the flying technique due to being overwhelmed and nauseous whereas all 
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neurotypical participants completed testing the flying technique without reporting 

similar complaints.  

The final behavioral difference that was observed while using the locomotion 

techniques was for the hand flapping. Users with ASD tended to keep their hands pressed 

to their bodies as they wanted to stop the flapping gesture. Neurotypical individuals did 

not make such an addition to the gesture. This addition made it more difficult for the 

users with ASD to use this technique. We interpret that individuals with ASD need more 

concrete starting and stopping poses that do not involve neutral or relaxed postures for 

triggering the locomotion in virtual reality. 

Table 5-7: Locomotion technique recommendations for neurotypical individuals and 
individuals with ASD. 

Virtual Environment 
Property/Aim 

Neurotypical Individuals Individuals with ASD 

Cognitively demanding Point and teleport/Joystick Joystick 

Fast paced Joystick Joystick 

A few virtual obstacles Point and teleport Point and teleport 

High levels of presence Redirected walking Joystick 

Physical motion Redirected walking Walk-in-place 

 

Based on the results of all user studies that were performed in scope of this 

dissertation, we compiled a table that includes the implications for virtual environments 
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of different properties and aims, regarding neurotypical individuals and high 

functioning individuals with ASD (Table 5-7). 

5.6 Limitations 

This study was performed in a tracked area of 2m by 2m. The findings of the study 

may not be transferrable to larger tracked areas. The task in the experiment was 

intentionally designed as simple and there were no distractions in the virtual 

environment for letting the users focus on their experience with the locomotion 

techniques. It remains questionable that the findings would transfer to more challenging 

virtual environments and more complex task designs. Finally, we would like to note that 

the gesture design of the locomotion techniques (such as triggering point & teleport by 

hand pointing and triggering flying by hand raising) is expected to have a direct effect 

on the results. Hence, the findings may not be transferrable to the same locomotion 

techniques that are implemented with different gestures or control mechanisms. 

It should also be noted that this study focused on the high functioning individuals 

with ASD. Since Autism is a spectrum based disorder, individuals on the different sides 

of the spectrum may have different needs and characteristics. Hence, the results may not 

be generalizable to the medium and low functioning populations with ASD. Redirected 

walking locomotion technique was implemented on a 2m x 2m tracked area in this study, 

which is considered smaller as compared to the large tracked areas recommended in the 

previous studies on redirected walking [19]. The main concern of the previous studies 

while recommending large tracked areas was the motion sickness that would be induced 
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by the large gains that are needed to be applied in smaller areas. In our study, although 

there wasn’t any significant difference between the locomotion techniques in terms of 

motion sickness, in overall redirected walking did not provide a comfortable locomotion 

experience for the users with ASD. We would like to emphasize that the results for the 

redirected walking should not be generalized to all sizes of tracked areas. 
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In this chapter, a modification of the point & teleport locomotion technique with 

direction specification was evaluated. Although teleportation is a simple yet powerful 

possible alternative to the commonly used locomotion techniques, which has been 

recently started to be used in commercial virtual reality video games, it has not been quite 

explored in the literature yet. This chapter presents an experiment that aims to compare 

point & teleport with a modified version of itself: point & teleport with direction 

specification. In this modified version, the users could specify the direction they would 

be facing when teleported by rotating their hands in the rolling axis before the 

teleportation. In this chapter, the experiment design, results of the user study and 

limitations are discussed. 

6.1 Note to Reader 

Portions of this chapter were published in CHI PLAY 2016 (Bozgeyikli, E., Raij, A., 

Katkoori, S., and Dubey, R. Point & Teleport Locomotion Technique for Virtual Reality. 

In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play 

(CHI PLAY '16). ACM, New York, NY, USA.) Permission is included in Appendix C. 

CHAPTER 6:  DIRECTION SPECIFICATION MODIFICATION OF THE POINT & 

TELEPORT LOCOMOTION TECHNIQUE 
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6.2 Experiment Design 

A within subject experiment was designed. Each participant tried both the point 

& teleport (P&T) and the point & teleport with direction specification (P&T w/DS) 

techniques with a random order. Similar to the experiment in Chapter 5, the first two 

destination points for each technique were considered as training and discarded, and the 

remaining four destination points were taken into consideration for evaluation. After 

each technique, the participants filled out a survey about the technique they tried. After 

completing both trials, the participants were asked to state their preferences between the 

two techniques on an additional survey question. 

The research question for this user study was: ‘Would there be an improvement in 

the point & teleport locomotion technique with the addition of the direction specification 

feature?’ In the light of this research question, the following hypotheses were built for 

this experiment: Hypothesis1: The P&T w/DS will give lower average time to reach the 

destination points than the P&T. Hypothesis2: The P&T w/DS will result in better ranking 

scores than the P&T. The same 16 neurotypical participants who attended the experiment 

in Chapter 5 attended this experiment. Due to the hardware malfunction in the testing 

session of one user, their data was not included in the analysis (N = 15). 

6.2.1 Virtual Environment 

In this experiment, the virtual world was designed as a simple maze (Figure 6-1) 

to measure effects of the additional direction specification component more effectively. 

The maze was designed not to be challenging, with 14m length and 14m width. No gaps 

were placed on the exterior walls so the user could not go outside the virtual maze. The 
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corridors had 2m length for easy navigation. The longest dead-end corridor was 2m long, 

so the users did not waste too much time with the wayfinding if they made wrong path 

choices. The height of the maze walls was 1.5m, which made it possible for the users to 

see the destination points from anywhere in the maze. Since the environment was 

designed as a maze and the maze walls inherently were obstacles, no additional obstacles 

in the form of pillars were used in this experiment. That’s why this experiment had 6 

destination points in total. 

 

Figure 6-1: The virtual maze environment. 

6.2.2 Objective 

This experiment’s objective was similar to the experiment in Chapter 5. The 

participants were asked to go to the destination points and wait inside until another 



215 
 

destination point appeared somewhere else in the virtual maze. The same destination 

point marker objects as in the experiment in Chapter 5 were used to designate the target 

positions. Users completed two trials, each with 6 destination points. One trial included 

P&T and the other trial included P&T w/DS. The order of the trials was decided 

randomly with counterbalancing. The destination points in the two trials were different 

to eliminate any possible learning effect. The users started the testing at the center of the 

virtual maze. Each destination point was 8m away from the previous destination point. 

The experiment block design can be seen in Figure 6-2. 

 

Figure 6-2: Block design of the direction specification modification of the point & 
teleport experiment. 

Photos taken during testing sessions with the point & teleport and point & teleport 

with direction specification can be seen in Figure 6-3 and Figure 6-4  respectively. 
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Figure 6-3: Photo of a testing session with the point & teleport locomotion technique in 
the virtual maze. 

 

Figure 6-4: Photo of a testing session with the point & teleport with direction 
specification locomotion technique in the virtual maze. 
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6.3 Results 

This subsection presents the results of the user study under the sub-subsections of 

data results, survey results and user comments. 

6.3.1 Data Results 

The average time to reach the destination points are presented in Figure 6-5. Two 

sample t-tests resulted in no significant difference (t(14) = -1.289, p = 0.200, Cohen's d = 

0.235) in the time it took to reach the destination points with the point & teleport and the 

point & teleport with direction specification. 

 

Figure 6-5: Average time to reach the destination points in the direction specification 
modification of the point & teleport experiment. 

In terms of the number of collisions made by the users with the maze walls, two 

sample t-tests resulted in no significant difference between the two locomotion 

techniques (t(14) = -1.339, p = 0.191, Cohen's d = 0.489). Data can be seen in Figure 6-6. 

Detailed statistical analysis can be seen in Appendix I. 
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Figure 6-6: Average number of collisions with maze walls in the direction specification 
modification of the point & teleport experiment. 

 

 

Figure 6-7: Survey results for point & teleport and point & teleport with direction 
specification locomotion techniques. 
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Table 6-1: T-test results for the survey data of the direction specification modification of 
the point & teleport experiment. 

 
t df p Cohen's d 

Diff. Understand -0.819 14 0.420 0.299 

Diff. Operate -0.983 14 0.334 0.359 

In Control 2.049 14 0.050 0.748 

Required Effort -0.387 14 0.701 0.141 

Tiredness -0.456 14 0.652 0.167 

Enjoyment 0.924 14 0.363 0.337 

Overwhelm 0.000 14 1.000 0.000 

Frustration 0.159 14 0.875 0.058 

Motion Sickness -0.638 14 0.529 0.233 

Presence 0.838 14 0.409 0.306 

6.3.2 Survey Results 

To analyze the usability aspects of the two versions of the point & teleport, we 

used the same eight sub categories with the experiment in Chapter 5: difficulty in 

understanding, difficulty in operating, feeling of being in control, required effort to move, 

feeling of tiredness, enjoyment, being overwhelmed and frustration. Each question had 

answers on a 5 point Likert scale (1: not at all, 5: very much). Results of these eight 

categories are presented in Figure 6-7. 

As two sample t-tests were conducted, the only significant difference between the 

two locomotion techniques was in the feeling of being in control. The two sample t-tests 

results are reported in Table 6-1. No statistically significant difference was evident in 
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terms of motion sickness although P&T w/DS got higher scores (M = 0.47, SD = 1.06) 

than P&T (M = 0.27, SD = 0.59). The presence results weren’t significantly different as 

well although P&T got slightly higher scores (M = 3.04, SD = 0.52) than P&T w/DS (M = 

2.89, SD = 0.50). 

To analyze the user preference data (see Figure 6-8), the Friedman test was 

conducted and no statistically significant difference was found (χ² (1, N = 15) = 0.067, p = 

0.796). 

 

Figure 6-8: Average user preference score results for point & teleport and point & 
teleport with direction specification locomotion techniques. 

 The trajectories for the movements of the participants in the virtual maze and the 

real tracking area for the point & teleport and the point & teleport with direction 

specification locomotion techniques are presented in Figure 6-9 and Figure 6-10 

respectively. 
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Figure 6-9: Point & teleport technique’s projected virtual (left) and real (right) user 
paths for the direction specification modification of the point & teleport experiment. 

 

Figure 6-10: Point & teleport with direction specification technique projected virtual 
(left) and real (right) user paths for the direction specification modification of the point 

& teleport experiment. 
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6.3.3 Participant Comments 

Many participants stated preference for P&T over P&T w/DS in their comments 

“I liked this method [P&T]. It made navigating the maze relatively easy.” “I think it is 

[P&T] better than the first one [P&T w/DS]. I am not very dizzy.” “I like pointing and 

then I look for directions. I think I do it faster this way.” “It was easier overall to reach 

my destination in this method [P&T].” Only a few users made comments stating 

preference over P&T w/DS such as “I liked the added control of choosing the direction. 

It made the method feel more efficient.” A lot of users complained about feeling dizzy or 

disoriented with P&T w/DS “Might be [P&T w/DS] more confusing than before [P&T]. 

Difficult to fully realize own orientation after teleporting.” “A little bit dizziness for me 

[with P&T w/DS].” “While I really liked this method [P&T w/DS] over regular 

teleporting [P&T], the directional controls were a bit touchy. Accordingly, I sometimes 

felt a little disoriented.” 

6.4 Discussion 

Average time to reach the destination points was similar for the two techniques, 

rejecting Hypothesis1. In fact, it took more time to reach the destination points with the 

P&T w/DS as opposed to what we expected. No difference was observed in the required 

effort to use the two techniques, although the P&T w/DS required slightly more effort 

than the P&T. The P&T w/DS resulted in slightly higher motion sickness results. User 

preference results were similar between the two techniques, rejecting Hypothesis2. The 

P&T w/DS was more difficult to operate and understand. We interpret this as the effect 

caused from merging the two components of moving and rotating into one in this 
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modified version. In the original P&T, users controlled the locomotion sequentially; first 

they moved to the desired location, then they turned to face wherever they wanted. The 

P&T w/DS merged these components and induced more cognitive load in users. 

There were a lot of complaints about the feeling of being disoriented and dizziness 

that the P&T w/DS caused whereas there was none for the P&T. Since the P&T w/DS 

changed the environment’s orientation instantly, this may have caused disorientation in 

the users. Hence, we do not recommend using the additional direction specification 

feature and we recommend keeping the P&T in its simple form. As possible solutions to 

disorientation that would be caused by the instant change of the direction of the users, 

we recommend using in-game mini maps or making the user’s previous position marked 

for a while after they teleported to somewhere else to help them maintain their sense of 

orientation. To sum up, although the additional direction specification feature was 

expected to enhance the P&T locomotion technique, the experiment results indicated the 

opposite. 

6.5 Limitations 

The gesture design for the direction specification and the teleportation can be 

considered as a limitation for this user study. Since the users performed the direction 

specification by the rolling gesture and performed the teleportation by pointing with their 

hands, this may have affected the results. Other controlling mechanisms such as 

gamepads might have led to different results. 



224 
 

6.6 Summary, Conclusion and Future Work 

In this chapter, a modification of the point & teleport locomotion technique was 

described and evaluated. This modification included the direction specification. A virtual 

reality experiment that took place in a maze environment was designed. A user study 

was performed with 16 neurotypical individuals to compare the point & teleport with its 

modified version of point & teleport with direction specification. The results of the user 

study indicated that the additional direction specification component degraded the user 

experience. Thus, point & teleport is recommended to be kept in its simple form in which 

the teleported orientation of the users would match what they saw before the 

teleportation. 

Areas for future work may include evaluating the different versions of the point 

and teleport locomotion technique such as triggering with controller or other gestures. 

Evaluating the usability of the point & teleport for multiplayer virtual reality experiences 

would be another area for exploration. 
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In this dissertation, we presented an extensive evaluation of locomotion 

techniques for room scale tracked virtual reality. Three immersive virtual reality 

experiments were developed and user studies were performed with neurotypical 

individuals and individuals with high functioning ASD. Results of these user studies 

were reported and discussed with the motivation of providing insight into the future 

virtual reality studies targeting neurotypical individuals and individuals with ASD. 

The first experiment consisted of the evaluation of an advanced VR system for 

vocational rehabilitation of individuals with disabilities by 10 neurotypical individuals 

and 9 individuals with high functioning ASD in terms of locomotion, interaction, and 

display methods. For neurotypical individuals, results indicated that the real walking 

was better than the walk-in-place; the tangible interaction was better than the haptic 

device, touch & snap and touch screen; and the head mounted display was better than 

the curtain screen. For individuals with high functioning ASD, the real walking was 

found out to be better than the walk-in-place; the touch screen was found out to be better 

than the haptic device, tangible interaction and touch & snap; and the curtain screen was 

found to be better than the head mounted display. 

In the second experiment eight locomotion techniques were evaluated in an 

immersive virtual reality experiment for a room scale tracked area (2m by 2m): redirected 

CHAPTER 7:  CONCLUSIONS AND FUTURE WORK 
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walking, walk-in-place, stepper machine, point & teleport, joystick, trackball, hand 

flapping and flying. A user study was performed with 16 neurotypical participants and 

15 participants with high functioning ASD. For the neurotypical users, the results of the 

user study indicated that the point & teleport, joystick and redirected walking were 

suitable virtual reality locomotion techniques for room scale tracked areas whereas the 

hand flapping and flying were not found to be suitable locomotion techniques. For 

individuals with high functioning ASD the results of the user study indicated that the 

point & teleport, joystick and walk-in-place turned out to be suitable virtual reality 

locomotion techniques for room scale tracked areas. On the contrary, the hand flapping 

and flying turned out to be not suitable locomotion techniques for individuals with high 

functioning ASD. 

The third experiment included the evaluation of the point & teleport technique’s 

direction specification modification. A user study was performed with 16 neurotypical 

individuals. The results indicated that the additional direction specification feature did 

not improve the user experience, thus found to be unnecessary. 

Future work directions consist of evaluating the modifications of the virtual reality 

locomotion techniques that were found to be working well for room scale tracked areas 

in this dissertation, such as the modifications of the point & teleport, the controllers, and 

the redirected walking. Evaluating the virtual reality locomotion techniques with task 

designs of different complexities may be another area for exploration. Finally, the 

locomotion techniques may be evaluated with more population groups, i.e. children, 
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elderly, individuals with low functioning ASD and individuals with medium functioning 

ASD. 
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Table A-1: A summary of the key studies with generalized properties. 

Taxonomy  
Group 

Specific 
Tool 

Motion 
Tracking 

Part of  
Body 

Motion 
Type 

Posture 
Rotation 

Technique 
Locomotion 

Direction 
Speed 

Backward 
Walking 

Proprio- 
ceptive 

Limitations 
Learning 
Require-

ment 

Key 
Works 

Redirected 
Walking 

No Yes 
Full 

body 
Real  

walking 
Standing Body Walking 

User 
defined 

Yes Yes Tracking area Low 
[19], [56], 

[59]  

Environment 
Change 

No Yes 
Full 

body 
Real  

walking 
Standing Body Walking 

User 
defined 

Yes Yes 
Tracking area, 
usually indoor 

Low 
[63], [64], 

[65] 

Walking 
in Place 

No Yes 
Full 

body 
Walking  
in place 

Standing Body Gaze/Torso 
User 

defined 
No Limited 

Latency, 
computational 

cost 
Medium 

[20], [71], 
[78] 

Flying Optional 
Optional 

(Head 
tracking) 

Hand/ 
Finger 

Triggering 
Standing/ 

Sitting 
Head/ 
Body 

Gaze/Point Constant No No 
Lack of realism 
and presence 

Low  [85] 

Leaning No No 
Full 

body 
Leaning Standing 

Head/ 
Body 

Torso 
User 

defined 
(limited) 

No No 
Lack of realism 
and presence 

Medium [89] 

Walker Yes Partial 
Full 

body 
Walking Standing Body Walking 

User 
defined 

Optional Yes 
Difficult to build, 
expensive, speed 

Low 
[94], [99], 

[108]  

APPENDIX A: SUMMARY OF THE STATE-OF-THE-ART PREVIOUS STUDIES 
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 Table A-1 (Continued) 

Taxonomy  
Group 

Specific 
Tool 

Motion 
Tracking 

Part of  
Body 

Motion 
Type 

Posture 
Rotation 

Technique 
Locomotion 

Direction 
Speed 

Backward 
Walking 

Proprio- 
ceptive 

Limitations 
Learning 
Require-

ment 

Key 
Works 

Standard 
Controller 

Yes No 
Hand/ 
Finger 

Triggering 
Pushing/ 

Pulling 

Standing/ 
Sitting 

Controller Controller Constant Yes No 
Lack of realism 
and presence 

Low  [114], [116] 

Wearable Yes Partial 
Full 

body 
Real  

walking 
Standing Body Walking 

User 
defined 

Optional Yes Speed, weight Medium 
 [120], [123], 

[126] 

Robot Yes Partial 
Full 

body 
Real  

walking 
Standing Body Walking 

User 
defined 
(limited) 

Optional Yes Speed High  [127] 
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Table B-1: A summary of virtual reality applications for individuals with autism, with properties regarding locomotion. 

Reference Locomotion Related Task 
Navigation 

Requirement 
Locomotion 
Technique 

Locomotion 
Tool 

Display  
Device 

Number of Participants 

[131], [8] Avoiding  moving objects Low Limited real walking 
Motion tracking 

(electromagnetic markers) 
CAVE 10 ASD (8-20 years old) 

[132] 

Performing hand gestures to 

communicate with dolphins Low Limited real walking 
Motion tracking 

(electromagnetic markers) 
CAVE 15 ASD (6-17 years old) 

[25] 

Avoiding moving balls, hitting 
balls, swinging arms and legs to 
throw virtual balls, creating body 
postures 

Low Limited real walking 
Motion tracking  

(Kinect) 
TV 5 ASD (10-12 years old) 

[26] Creating body postures Low Limited real walking 
Motion tracking 

(Kinect) 
TV 5 ASD (6-8 years old) 

[27] 
Interacting with particles using 
body movements 

Low Limited real walking Motion tracking  Projection 90 ASD 

[9] 
Fulfilling several tasks such as 
picking up items and conversation 

Low Limited real walking 
Motion tracking 

(Optical cameras & Kinect) 
CAVE 20 ASD (children) 

[10] Moving to reach destination points Middle Standard controller Gamepad 
Head 

Mounted 
Display 

5 ASD (32.2 years old mean),  
5 typical (30.7 years old 

mean) 

[133] 
Navigating through a virtual 
building to find the exit 

High Standard controller Mouse Monitor 8 ASD (6-12 years old) 

[134] Crossing a street Middle Standard controller Joystick 
Head 

Mounted 
Display 

2 ASD (children) 

APPENDIX B: SUMMARY OF THE VIRTUAL REALITY APPLICATIONS FOR INDIVIDUALS WITH AUTISM 
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Table B-1 (Continued) 
 

Reference Locomotion Related Task 
Navigation 

Requirement 
Locomotion 
Technique 

Locomotion 
Tool 

Display  
Device 

Number of Participants 

[134] 
Navigating through a virtual 
building to find the exit 

High Standard controller Mouse and keyboard Monitor 14 ASD (children) 

[28] Crossing a street Middle Standard controller Keyboard Monitor 
6 ASD (children), 

6 typical (children) 

[135] Moving in the virtual environment 
and interacting with virtual objects 

Middle Standard controller Joystick Monitor 7 ASD (14-15 years old) 

[11] 
Moving in the virtual environment 
and interacting with virtual 
characters 

Middle Standard controller Keyboard Monitor 8 ASD (18-26 years old) 
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Below is the permission for use of material in Chapter 3. 
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Below is the permission for use of material in Chapter 5. 
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Below is the permission for use of material in Chapter 6. 
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IRB approval document for the user studies that were performed in this 

dissertation is below. 

 

APPENDIX D: IRB APPROVAL DOCUMENT 
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Figure E-1: Paired samples t-test results of VR4VR locomotion techniques for 
neurotypical individuals. 

 

Figure E-2: Paired samples t-test results of VR4VR locomotion techniques for 
individuals with ASD. 

 

Figure E-3: Pairwise comparison factors for the data analysis of selection and 
manipulation techniques. 

 

APPENDIX E: DATA ANALYSIS OF THE VR4VR EXPERIMENT 
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Figure E-4: Ease of interaction detailed data analysis for VR4VR’s object selection and 
manipulation techniques for neurotypical individuals. 
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Figure E-5: Ease of interaction detailed data analysis for VR4VR’s object selection and 
manipulation techniques for individuals with ASD. 
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Figure E-6: Enjoyment detailed data analysis for VR4VR’s object selection and 
manipulation techniques for neurotypical individuals. 
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Figure E-7: Enjoyment detailed data analysis for VR4VR’s object selection and 
manipulation techniques for individuals with ASD. 
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Figure E-8: Frustration detailed data analysis for VR4VR’s object selection and 
manipulation techniques for neurotypical individuals. 
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Figure E-9: Frustration detailed data analysis for VR4VR’s object selection and 
manipulation techniques for individuals with ASD. 
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Figure E-10: Tiredness detailed data analysis for VR4VR’s object selection and 
manipulation techniques for neurotypical individuals. 
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Figure E-11: Tiredness detailed data analysis for VR4VR’s object selection and 
manipulation techniques for individuals with ASD. 
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Figure E-12: Score detailed data analysis for VR4VR’s object selection and manipulation 
techniques for neurotypical individuals. 
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Figure E-13: Score detailed data analysis for VR4VR’s object selection and manipulation 
techniques for individuals with ASD. 
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Figure E-14: Presence detailed data analysis for VR4VR’s object selection and 
manipulation techniques for neurotypical individuals. 
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Figure E-15: Presence detailed data analysis for VR4VR’s object selection and 
manipulation techniques for individuals with ASD. 
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Figure E-16: Detailed data analysis of VR4VR’s display methods for neurotypical 
individuals. 

 

 

Figure E-17: Detailed data analysis of VR4VR’s display methods for individuals with 
ASD.
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Figure E-18: Detailed score analysis between neurotypical individuals and individuals with ASD
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Figure F-1: A sample survey that was used in the user studies about a locomotion 
technique for neurotypical individuals. 

APPENDIX F: SURVEYS THAT WERE USED IN THE USER STUDIES 
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Figure F-1 (Continued) 
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Figure F-2: A sample survey that was used in the user studies about the stepper 
machine locomotion technique for individuals with ASD. 
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Figure F-2 (Continued) 
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Figure F-2 (Continued) 
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Figure F-2 (Continued) 
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Figure G-1: Pairwise comparison factors for the data analysis of the eight virtual reality 
locomotion techniques. 

APPENDIX G: DATA ANALYSIS OF THE LOCOMOTION TECHNIQUES 

EXPERIMENT FOR NEUROTYPICAL INDIVIDUALS AND INDIVIDUALS WITH 

ASD 
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Figure G-2: Detailed data analysis for the completion time without obstacles for 
neurotypical individuals. 
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Figure G-2 (Continued) 
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Figure G-3: Detailed data analysis for the completion time without obstacles for 
individuals with ASD. 
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Figure G-3 (Continued) 

 



284 
 

 

Figure G-4: Detailed data analysis for the completion time with obstacles for 
neurotypical individuals. 
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Figure G-4 (Continued) 
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Figure G-5: Detailed data analysis for the completion time with obstacles for individuals 
with ASD. 
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Figure G-5 (Continued) 
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Figure G-6: Detailed data analysis for the number of collisions for neurotypical 
individuals. 
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Figure G-6 (Continued) 
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Figure G-7: Detailed data analysis for the number of collisions for individuals with 
ASD. 
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Figure G-7 (Continued) 
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Figure G-8: Detailed data analysis for the difficulty in understanding for neurotypical 
individuals. 
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Figure G-8 (Continued) 
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Figure G-9: Detailed data analysis for the difficulty in understanding for individuals 
with ASD. 
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Figure G-9 (Continued) 
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Figure G-10: Detailed data analysis for the difficulty in operating for neurotypical 
individuals. 
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Figure G-10 (Continued) 
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Figure G-11: Detailed data analysis for the difficulty in operating for individuals with 
ASD. 
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Figure G-11 (Continued) 
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Figure G-12: Detailed data analysis for the feeling of being in control for neurotypical 
individuals. 
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Figure G-12 (Continued) 
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Figure G-13: Detailed data analysis for the feeling of being in control for individuals 
with ASD. 
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Figure G-13 (Continued) 
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Figure G-14: Detailed data analysis for the enjoyment for neurotypical individuals. 
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Figure G-14 (Continued) 

 



306 
 

 

Figure G-15: Detailed data analysis for the enjoyment for individuals with ASD. 
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Figure G-15 (Continued) 
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Figure G-16: Detailed data analysis for the required effort for neurotypical individuals. 
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Figure G-16 (Continued) 
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Figure G-17: Detailed data analysis for the required effort for individuals with ASD. 
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Figure G-17 (Continued) 
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Figure G-18: Detailed data analysis for the tiredness for neurotypical individuals. 
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Figure G-18 (Continued) 
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Figure G-19: Detailed data analysis for the tiredness for individuals with ASD. 
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Figure G-19 (Continued) 
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Figure G-20: Detailed data analysis for the overwhelmedness for neurotypical 
individuals. 
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Figure G-20 (Continued) 
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Figure G-21: Detailed data analysis for the overwhelmedness for individuals with ASD. 
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Figure G-21 (Continued) 

 



320 
 

 

Figure G-22: Detailed data analysis for the frustration for neurotypical individuals. 
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Figure G-22 (Continued) 
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Figure G-23: Detailed data analysis for the frustration for individuals with ASD. 
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Figure G-23 (Continued) 
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Figure G-24: Detailed data analysis for the motion sickness for neurotypical individuals. 
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Figure G-24 (Continued) 
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Figure G-25: Detailed data analysis for the motion sickness for individuals with ASD. 
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Figure G-25 (Continued) 
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Figure G-26: Detailed data analysis for the presence for neurotypical individuals. 
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Figure G-26 (Continued) 
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Figure G-27: Detailed data analysis for the presence for individuals with ASD. 
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Figure G-27 (Continued) 
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Figure G-28: Detailed data analysis for the preference ranking scores for neurotypical 
individuals. 
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Figure G-28 (Continued) 
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Figure G-29: Detailed data analysis for the preference ranking scores for individuals 
with ASD. 
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Figure G-29 (Continued) 
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APPENDIX H: DETAILED COMPARISON ANALYSIS BETWEEN 

NEUROTYPICAL INDIVIDUALS AND INDIVIDUALS WITH ASD FOR THE 

LOCOMOTION TECHNIQUES EXPERIMENT 
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Figure H-1: Detailed comparison analysis for the completion time without obstacles for neurotypical individuals and 
individuals with ASD. 
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Figure H-2: Detailed comparison analysis for the completion time with obstacles for neurotypical individuals and 
individuals with ASD. 
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Figure H-3: Detailed comparison analysis for the number of collisions for neurotypical individuals and individuals with 
ASD. 
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Figure H-4: Detailed comparison analysis for the difficulty in understanding for neurotypical individuals and individuals 
with ASD. 
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Figure H-5: Detailed comparison analysis for the difficulty in operating for neurotypical individuals and individuals with 
ASD. 
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Figure H-6: Detailed comparison analysis for the feeling of being in control for neurotypical individuals and individuals 
with ASD. 
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Figure H-7: Detailed comparison analysis for the enjoyment for neurotypical individuals and individuals with ASD. 
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Figure H-8: Detailed comparison analysis for the required effort for neurotypical individuals and individuals with ASD. 
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Figure H-9: Detailed comparison analysis for the tiredness for neurotypical individuals and individuals with ASD. 
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Figure H-10: Detailed comparison analysis for the overwhelmedness for neurotypical individuals and individuals with 
ASD. 
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Figure H-11: Detailed comparison analysis for the frustration for neurotypical individuals and individuals with ASD. 
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Figure H-12: Detailed comparison analysis for the motion sickness for neurotypical individuals and individuals with 
ASD. 
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Figure H-13: Detailed comparison analysis for the presence for neurotypical individuals and individuals with ASD. 
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Figure H-14: Detailed comparison analysis for the preference ranking scores for neurotypical individuals and individuals 
with ASD.
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Figure I-1: Paired samples t-test for the completion time for neurotypical individuals for 
the point & teleport direction specification experiment. 

 

 

Figure I-2: Paired samples t-test for the number of collision with maze walls for 
neurotypical individuals for the point & teleport direction specification experiment. 

 

 

Figure I-3: Paired samples t-test for the difficulty in understanding for neurotypical 
individuals for the point & teleport direction specification experiment. 

APPENDIX I: DATA ANALYSIS OF THE POINT & TELEPORT DIRECTION 

SPECIFICATION EXPERIMENT 
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Figure I-4: Paired samples t-test for the difficulty in operating for neurotypical 
individuals for the point & teleport direction specification experiment. 

 

 

Figure I-5: Paired samples t-test for the feeling of being in control for neurotypical 
individuals for the point & teleport direction specification experiment. 

 

 

Figure I-6: Paired samples t-test for the enjoyment for neurotypical individuals for the 
point & teleport direction specification experiment. 

 

 

Figure I-7: Paired samples t-test for the required effort for neurotypical individuals for 
the point & teleport direction specification experiment. 
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Figure I-8: Paired samples t-test for the tiredness for neurotypical individuals for the 
point & teleport direction specification experiment. 

 

 

Figure I-9: Paired samples t-test for the overwhelmedness for neurotypical individuals 
for the point & teleport direction specification experiment. 

 

 

Figure I-10: Paired samples t-test for the frustration for neurotypical individuals for the 
point & teleport direction specification experiment. 

 

 

Figure I-11: Paired samples t-test for the motion sickness for neurotypical individuals 
for the point & teleport direction specification experiment. 
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Figure I-12: Paired samples t-test for the presence for neurotypical individuals for the 
point & teleport direction specification experiment. 

 

 

Figure I-13: Paired samples t-test for the preference ranking scores for neurotypical 
individuals for the point & teleport direction specification experiment. 
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