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Abstract

A major feature of Alzheimer’s disease (AD) is the loss of noradrenergic locus coeruleus (LC) projection neurons that

mediate attention, memory, and arousal. However, the extent to which the LC projection system degenerates

during the initial stages of AD is still under investigation. To address this question, we performed tyrosine

hydroxylase (TH) immunohistochemistry and unbiased stereology of noradrenergic LC neurons in tissue harvested

postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), amnestic mild

cognitive impairment (aMCI, a putative prodromal AD stage), or mild/moderate AD. Stereologic estimates of total

LC neuron number revealed a 30% loss during the transition from NCI to aMCI, with an additional 25% loss of LC

neurons in AD. Decreases in noradrenergic LC neuron number were significantly associated with worsening

antemortem global cognitive function as well as poorer performance on neuropsychological tests of episodic

memory, semantic memory, working memory, perceptual speed, and visuospatial ability. Reduced LC neuron

numbers were also associated with increased postmortem neuropathology. To examine the cellular and molecular

pathogenic processes underlying LC neurodegeneration in aMCI, we performed single population microarray

analysis. These studies revealed significant reductions in select functional classes of mRNAs regulating mitochondrial

respiration, redox homeostasis, and neuritic structural plasticity in neurons accessed from both aMCI and AD

subjects compared to NCI. Specific gene expression levels within these functional classes were also associated with

global cognitive deterioration and neuropathological burden. Taken together, these observations suggest that

noradrenergic LC cellular and molecular pathology is a prominent feature of prodromal disease that contributes to

cognitive dysfunction. Moreover, they lend support to a rational basis for targeting LC neuroprotection as a disease

modifying strategy.
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Introduction

Sporadic Alzheimer’s disease (AD) is believed to have an

extensive preclinical stage since neuropathological exami-

nations of older people with a clinical diagnosis of no or

mild cognitive impairment (MCI; a putative prodromal

stage of AD) consistently reveal similar pathological signa-

tures to those with frank AD [2, 77]. Thus, identifying

events that occur in the preclinical stages of AD will be

essential for therapeutic target identification within a

disease-modifying window. In this regard, noradrenergic

neurons of the nucleus locus coeruleus (LC) projection

system, which provide the primary source of norepineph-

rine (NE) to the forebrain, mediate memory and attention

[16, 105] and degenerate in advanced AD [19, 24, 36, 75,

86, 119], yet there is evidence for the involvement of this

system earlier in the disease process. For instance, neuro-

fibrillary tangle (NFT) deposition in the LC has been

noted in aged control and cognitively impaired subjects

and LC NFTs correlate with global cognition [55], in line

with reduced NE levels in the hippocampus and cortex in

AD [1, 75, 94]. Moreover, it has been suggested that the
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LC is an initial site of NFT formation in young adults and

during aging, thus serving as a potential nidus for NFT

propagation during disease progression [21, 55].

Reductions in LC neuron number are also associated

with increased cortical amyloid plaque and NFT loads

[18, 108] and correlate better with onset and duration

of AD than cholinergic nucleus basalis degeneration

[48, 76, 124]. More recently, morphometric studies

have shown that 1) the volume and number of total

neurons in the LC undergo a step-wise reduction with

successive Braak stage [110], and 2) there is a signifi-

cant loss of neuromelanin-containing LC neurons in in-

dividuals meeting the clinical pathologic criteria for

MCI [e.g., clinical dementia rating (CDR) = 0.5 with low

to intermediate AD pathology] [7]. In the present study,

we expanded on these observations by using tyrosine

hydroxylase (TH) immunohistochemistry and unbiased

stereology to investigate the extent of noradrenergic LC

neuron loss in postmortem samples obtained from

subjects who received an antemortem clinical diagno-

sis of no cognitive impairment (NCI), amnestic MCI

(aMCI; the MCI subtype most likely to convert to

frank AD [96, 121, 122]), or mild/moderate AD. TH-

immunoreactive (-ir) LC neuron numbers were evalu-

ated with respect to both antemortem neuropsycho-

logical test scores and postmortem pathological

diagnostic criteria.

While morphometric studies of LC cell loss help to de-

lineate its relative status within the spatiotemporal pat-

tern of selective neuronal vulnerability in AD [7, 108,

124], the molecular mechanisms underlying LC neuro-

degeneration during disease progression have yet to be

fully understood. To gain a better understanding of po-

tential molecular mechanisms driving LC neuronal dys-

function during the onset of AD, we combined single

neuron RNA amplification strategies with custom-

designed microarrays to analyze differential gene expres-

sion patterns of individual TH-ir LC neurons accrued

from the same NCI, aMCI, and AD cases.

Materials and methods

Subjects and clinical neuropathologic assessments

Brainstems from de-identified subjects who died with an

antemortem clinical diagnosis of NCI (n = 11), aMCI (n =

10) or mild/moderate AD (n = 8) representing both genders

were obtained from participants in the Rush Religious Or-

ders Study (RROS), a longitudinal clinical pathologic study

of aging and AD in elderly Catholic clergy [14, 87]. The

study was determined to be exempt from IRB review by the

participating institutions. Although RROS participants are

not representative of a community-based sample, the basic

neurobiological process underlying cognitive impairment in

this cohort is likely the same as in others. For instance,

neuropathological studies of MCI show similar results in

the RROS [13, 67, 88], Washington University [100], and

University of Kentucky [77] cohorts.

Table 1 summarizes the demographic, clinical, and

neuropathological characteristics of the subjects exam-

ined. Details of cognitive evaluations and diagnostic cri-

teria have been extensively published [14, 34, 87, 95].

Briefly, a team of investigators performed annual neuro-

psychological performance testing including the Mini

Mental State Exam (MMSE) and 17 additional neuro-

psychological tests referable to five cognitive domains: epi-

sodic memory (immediate and delayed recall of the East

Boston Story and Story A from Logical Memory, Word

List Memory, Word List Recall, Word List Recognition),

semantic memory (15-item Boston Naming Test, Verbal

Fluency, 15-item word reading test), working memory

(Digit Span Forward, Digit Span Backward, Digit Order-

ing), perceptual speed (Symbol Digit Modalities, Number

Comparison), and visuospatial abililty (Judgment of Line

Orientation, Standard Progressive Matrices). A Global

Cognitive Score (GCS), consisting of a composite z-score

calculated from this test battery, was determined for each

participant. A board-certified neurologist with expertise in

the evaluation of the elderly made the clinical diagnosis

based on impairments in each of the five cognitive do-

mains and a clinical examination. The diagnosis of de-

mentia or AD met recommendations by the joint working

group of the National Institute of Neurologic and Com-

municative Disorders and Stroke/AD and Related Disor-

ders Association (NINCDS/ADRDA) [79]. The aMCI

subjects exhibited impairment in episodic memory on

neuropsychological testing but did not meet the criteria

for AD or dementia. These criteria for aMCI are consist-

ent with those used by others in the field [97].

At autopsy, tissue from one hemisphere and brainstem

was immersion-fixed in a solution consisting of 4% parafor-

maldehyde in 0.1 M phosphate buffer (pH 7.2) for 24–72 h

at 4 °C followed by cryoprotection, whereas tissue from the

opposite hemisphere was frozen at −80 °C [34, 53, 88].

Series of fixed paraffin embedded tissue were prepared for

neuropathological evaluation including visualization and

quantitation of neocortical and hippocampal amyloid pla-

ques and NFTs using antibodies directed against Aβ pep-

tide (Aβ; 4G8, Covance), tau (PHF1, a gift from Dr. Peter

Davies, Hofstra Northwell School of Medicine) [14, 88], as

well as thioflavine-S histochemistry and a modified

Bielschowsky silver stain. Lewy bodies were revealed using

antibodies directed against ubiquitin and α-synuclein. Ex-

clusion criteria for cases selected for this study included

evidence of argyrophilic grain disease, frontotemporal de-

mentia, Lewy body disease, mixed dementia, Parkinson’s

disease, and stroke. A board certified neuropathologist

blinded to the clinical diagnosis performed the

neuropathological evaluation. Neuropathological cri-

teria were based on NIA-Reagan, CERAD, and
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Braak staging [20, 61, 82]. Amyloid burden and

apolipoprotein E (ApoE) genotype were determined

for each case as described previously [14, 88].

Immunohistochemistry

Fixed brainstem samples containing the dorsal pons were

cut at 40 μm-thickness on a freezing, sliding microtome

into 18 adjacent series and stored in a cryoprotectant so-

lution until processed. Sections containing the LC were

immunostained for TH to visualize noradrenergic neurons

[35, 65]. A full 1:18 series of sections was blocked in TBS/

0.25% Triton X-100/10% goat serum and incubated over-

night with rabbit TH antiserum (1:500; Millipore, Billerica,

MA). The sections were then sequentially incubated with

biotinylated goat anti-rabbit IgG and avidin-biotin com-

plex (ABC; Vector Labs, Burlingame, CA) and developed

using 3,3′-diaminobenzidine (DAB) enhanced with nickel

II sulfate to yield a blue-black reaction product (Fig. 1).

Stereological analysis of LC number

The optical disector method was used to determine the

number of TH-ir neurons in the left hemisphere of the

Table 1 Clinical, demographic, and neuropathological characteristics by diagnosis category

Clinical Diagnosis

NCI
(N = 11)

aMCI
(N = 10)

AD
(N = 8)

P-value Pair-wise comparison

Age (years) at death:

Mean ± SD 82.3 ± 2.9 85.4 ± 7.2 84.8 ± 2.6 0.3a –

(Range) (77–86) (74–96) (80–88)

Number (%) of males: 6 (54%) 4 (40%) 4 (50%) 0.5b –

Years of education:

Mean ± SD 19.1 ± 2.1 17.9 ± 5.2 19.0 ± 2.7 0.9a –

(Range) (15–22) (8–23) (14–22)

Number (%) with ApoE ε4 allele: 3 (27%) 2 (20%) 3 (38%) 0.2b –

MMSE:

Mean ± SD 27.9 ± 1.5 26.3 ± 2.3 20.0 ± 4.9 0.0008a NCI > AD

(Range) (26–30) (22–30) (14–27)

Global Cognitive Score:

Mean ± SD 0.59 ± 0.3 0.02 ± 0.3 −1.0 ± 0.6 0.0002a NCI > (MCI, AD)

(Range) (−0.08–0.9) (−0.53–0.3) (−1.5– −0.2)

Post-mortem interval (hours):

Mean ± SD 4.9 ± 2.0 6.2 ± 5.2 4.0 ± 1.1 0.8a –

(Range) (2.2–8.5) (2.0–15.0) (2.7–5.8)

Distribution of Braak scores:

0 0 0 0

I/II 4 1 0 0.02a NCI < AD

III/IV 6 7 3

V/VI 1 2 5

NIA Reagan diagnosis (likelihood of AD):

No AD 0 0 0

Low 5 4 0 0.03a (NCI, MCI) < AD

Intermediate 5 4 4

High 1 2 4

CERAD diagnosis:

No AD 3 4 0

Possible 2 2 0 0.02a (NCI, MCI) < AD

Probable 4 2 3

Definite 2 2 5

aKruskal-Wallis test, with Bonferroni correction for multiple comparisons. bFisher’s exact test, with Bonferroni correction for multiple comparisons
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LC (StereoInvestigator, MicroBrightField; Williston, VT)

using an Olympus BX-60 microscope coupled to a Prior

H128 computer-controlled x-y-z motorized stage and a

high-sensitivity Hitachi 3CCD video camera system [90,

91]. Previous studies have demonstrated equivalent

neuron numbers between the left and right hemispheres

of the LC [25, 50, 93]. The region containing the LC and

subcoeruleus was outlined at 5x and disectors were

placed at 1000 μm steps along the x- and y-axis from a

random start within this reference space. The sampling

strategy was optimized using the StereoInvestigator

oversample-resample probe, such that TH-ir neurons

were counted under a 60x planar oil-immersion object-

ive (1.4 numerical aperture) in a 120 μm2 counting

frame with a 10 μm dissector height. Once the top of

the section was in focus, the z-plane was lowered 1–

2 μm. Care was taken to ensure that the top forbidden

plane was never included in the analysis. Using these pa-

rameters, at least 200 TH-ir neurons were sampled from

each series, achieving coefficients of error [56] values of

<0.10 [118]. In the present study, lightly and darkly

stained TH-ir neurons containing either a well-defined

nucleus or nucleolus were counted by a stereologist

blinded to the age, sex, cause of death, and clinical clas-

sification. Antibody penetration analysis through the full

depth of the section was performed to ensure that all

objects were counted.

LC neuronal accession and gene expression profiling

TH-labeled tissue sections processed for custom-

designed microarray analysis were prepared without

cover-slipping and maintained in RNase-free conditions

as described previously for cholinergic nucleus basalis

neurons and CA1 pyramidal neurons [27, 53, 54, 111].

Approximately 50 TH-ir LC neurons were captured per

sample and a total of 3–4 samples of LC neurons/case

were accessed by laser capture microdissection (LCM;

ArcturusXT; Applied Biosystems, Foster City, CA) and

subjected to custom-designed microarray analysis (5150

total neurons, 103 arrays total) [27, 53, 54, 111].

RNA amplification from LC neurons was performed

using terminal continuation (TC) RNA amplification

[3, 26, 52]. Briefly, microaspirated LC neurons were

homogenized in 500 μL Trizol reagent (Invitrogen,

Carlsbad, CA). RNAs were reverse transcribed in the

presence of the poly d(T) primer (100 ng/μl) and TC

primer (100 ng/μl) in 1x first strand buffer (Life Tech-

nologies, Carlsbad, CA), 2 μg of linear acrylamide (Ap-

plied Biosystems), 10 mM dNTPs, 100 μM DTT, 20 U

of SuperRNase Inhibitor (Life Technologies), and 200

U of reverse transcriptase (Superscript III, Life Tech-

nologies). Single-stranded cDNAs were digested with

RNase H and re-annealed with the primers in a ther-

mal cycler: RNase H digestion step at 37 °C, 30 min;

denaturation step 95 °C, 3 min; primer re-annealing

step 60 °C, 5 min. This step generated cDNAs with

double-stranded regions at the primer interface. Sam-

ples were purified by column filtration (Montage PCR

filters; Millipore). Hybridization probes were synthe-

sized by in vitro transcription using 33P incorporation

in 40 mM Tris (pH 7.5), 6 mM MgCl2, 10 mM NaCl,

2 mM spermidine, 10 mM DTT, 2.5 mM ATP, GTP

and CTP, 100 μM of cold UTP, 20 U of SuperRNase

Inhibitor, 2 KU of T7 RNA polymerase (Epicentre,

Madison, WI), and 120 μCi of 33P-UTP (Perkin-

Elmer, Boston, MA) [3, 27, 53] at 37 °C for 4 h. Radi-

olabeled TC RNA probes were hybridized to custom-

designed microarrays without further purification.

Arrays were hybridized overnight at 42 °C in a

rotisserie oven and washed sequentially in 2X SSC/

0.1% SDS, 1X SSC/0.1% SDS, and 0.5X SSC/0.1%

SDS for 20 min each at 42 °C. The arrays were

placed in a phosphor screen for 24 h and developed

on a Storm phosphor imager (GE Healthcare, Pis-

cataway, NJ).

Custom-designed microarray platforms and data

collection

Array platforms consisted of 1 μg linearized cDNA puri-

fied from plasmid preparations adhered to high-density

Fig. 1 LC cell loss in aMCI. a Representative TH-ir neuron and fiber staining in dorsal pontine tissue harvested from NCI, aMCI, and mild/moderate

AD subjects. b Unbiased stereological cell counts revealed a significant ~30% decrease in the number of LC neurons in aMCI compared to NCI

cases. There was a ~50% loss of LC neurons in the AD group compared to NCI. **, p < 0.01, ***, p < 0.001 compared to NCI, via one-way ANOVA

with Bonferroni post hoc testing. There was also a significant ~25% difference in neuronal cell counts between the aMCI and AD groups

(p < 0.05). me5 = mesencephalic tract of 5. Scale Bar = 100 μm
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nitrocellulose (Hybond WL, GE Healthcare) [3, 26, 52].

The array platform consisted of approximately 576

cDNAs selected to provide a broad spectrum of markers

related to pathways of interest in neurobiology (see

[111] for a list of array targets). Hybridization signal in-

tensity was determined using Image Quant software (GE

Healthcare) and quantified by subtracting background

using an empty vector (pBluescript). Expression of TC

amplified RNA bound to each linearized cDNA minus

background was expressed as a ratio of the total

hybridization signal intensity of the array (i.e., global

normalization) [27, 52]. The data analysis generated ex-

pression profiles of relative changes in mRNA levels

among the noradrenergic LC neurons dissected from

each case within the clinical diagnostic groups.

Data analysis and statistics

Demographic variables (Table 1) were compared among

clinical diagnostic groups by Kruskal-Wallis or Fisher’s

Exact tests with Bonferroni correction for pairwise com-

parisons. LC neuron number was compared across

groups by one-way ANOVA with Bonferroni post hoc

testing. Associations between LC neuron number and

clinical pathological variables were tested using Spear-

man rank correlations. Relationships found to be signifi-

cant by correlation were investigated further using linear

regression analysis. The level of statistical significance

was set at p < 0.05.

A one-way ANOVA with post hoc Newman-Keuls ana-

lysis was used to evaluate relative changes in total

hybridization signal intensity for individual mRNAs. The

level of statistical significance was set at p < 0.01. A false

discovery rate controlling procedure was used to reduce

type I errors due to the large number of genes analyzed

simultaneously [4, 26, 31, 103]. Expression levels of se-

lect mRNAs were clustered and displayed using a bio-

informatics and graphics software package (GeneLinker

Gold, Improved Outcomes, Kingston, ON). Associations

between the expression levels of select transcripts and

clinical pathological variables were tested using Spear-

man rank correlations. The level of statistical signifi-

cance was set at p < 0.05.

Results

Case demographics

Table 1 summarizes the clinical, neuropathological, and

demographic characteristics of the 29 cases examined.

Statistical analysis revealed no significant differences in

age, gender, education level, ApoE4 status, or postmor-

tem interval (PMI) across the groups examined. Cogni-

tive testing scores were available within the last year of

life. The average interval from last evaluation to time of

death was 7.2 ± 2.8 months with no significant differ-

ences among the 3 diagnostic groups (p = 0.63). The AD

subjects performed significantly worse on the MMSE

compared to the NCI cases (p = 0.0008), and GCS z-

scores were significantly decreased in aMCI and AD

compared to NCI (p = 0.0002). Braak scores were also

significantly different across the clinical groups. The

NCI cases displayed significantly lower Braak scores

than the AD group (p = 0.02). NCI cases were classified

as Braak stages I/II (36%), III/IV (54%), or V/VI (10%).

The aMCI cases met the criteria for Braak stages I/II

(10%), III/IV (70%), and V/VI (20%), and the AD cohort

was classified as either Braak stages III/IV (38%) or V/VI

(62%). The NIA-Reagan diagnosis for likelihood of AD

significantly differentiated NCI and aMCI from AD sub-

jects (p = 0.03). CERAD scores were significantly higher

in AD compared to NCI and aMCI (p = 0.02).

LC neuronal cell loss during the progression of AD

TH immunohistochemistry was used to estimate

changes in the number of noradrenergic LC neurons

across the clinical diagnostic groups (Fig. 1). Qualita-

tively, we observed a step-wise decrement in TH-ir neu-

rons within the LC from NCI to aMCI to mild/moderate

AD (Fig. 1a). Unbiased stereological cell counts validated

these observations. The estimated number of TH-ir LC

neurons in the NCI group was 19,495 ± 2,891(mean ±

SD; range = 25,867–14,758), whereas neuron number

was progressively decreased in the aMCI (14,283 ± 2,757;

range = 19,874–10,645) and AD ( 10,628 ± 2,946; range

= 15,834–6,453) groups. Statistical comparisons revealed

a significant ~30% decrease in the number of LC neu-

rons in aMCI compared to NCI cases (p < 0.01) (Fig. 1b).

An additional ~25% decrease in LC neuron number was

quantified in AD compared to aMCI (p < 0.05), resulting

in a ~45–50% loss of LC neurons in the AD group com-

pared to NCI (p < 0.001) (Fig. 1b). Total LC neuron

number was similar between males and females in each

diagnostic group (data not shown).

Clinical pathologic correlations

Estimated TH-ir LC neuronal counts were correlated

with demographic data, antemortem cognitive test per-

formance, and postmortem neuropathologic variables.

Neuron number was not associated with age (r = −0.18,

p = 0.3) or PMI (r = 0.07, p = 0.5). There were no associa-

tions between neuron number and gender or ApoE sta-

tus (data not shown). However, there was a strong

association between reduction in LC neuron number

and decline in cognitive status. For instance, lower LC

neuron numbers and MMSE scores displayed a signifi-

cant positive association (r = 0.61, p < 0.001). Moreover,

TH-ir LC neuron number was significantly associated

with individual GCS, the composite z-score of the 17

neuropsychological tests administered prior to death (r

= 0.7, p < 0.0001) (Fig. 2), as well as with the final
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composite scores referable to episodic memory (r = 0.71,

p < 0.0001), sematic memory (r = 0.58, p = 0.0008), work-

ing memory (r = 0.6, p = 0.0006), perceptual speed (r =

0.66, p < 0.0001), and visuospatial ability (r = 0.53, p =

0.003; Fig. 2) [14]. Notably, most of these positive associ-

ations between LC neuron numbers and cognitive test

scores remained significant even when the NCI and

aMCI groups alone were analyzed (Table 2). With re-

spect to neuropathological diagnostic criteria, reductions

in TH-ir LC neuron numbers were negatively correlated

with increasing measures of neuropathology as charac-

terized by Braak (r = −0.46, p = 0.01), NIA-Reagan (r =

−0.45, p = 0.01), and CERAD (r = −0.41, p = 0.03) staging

(Fig. 2). Finally, regression modeling revealed that only

GCS (p = 0.004), but not Braak (p = 0.49), NIA-Reagan

(p = 0.81), or CERAD (p = 0.28) score, served as a pre-

dictor for the number of TH-ir LC neurons.

Dysregulation of LC neuronal gene expression in MCI and

AD

To identify potential molecular pathogenic alterations

underlying LC cell loss observed during AD progression,

we performed custom-designed microarray analysis using

mRNA extracted from individual TH-ir LC neurons

accessed from the NCI, aMCI and mild/moderate AD

cases. LC neurons displayed a significant downregulation

of transcripts regulating mitochondrial function in aMCI

and AD compared to NCI subjects (Fig. 3a, b). Significant

downregulation was observed for select genes regulating

respiration, including cytochrome C1 (Cytc1; 50%; p <

0.01) and nuclear respiratory factor 1(Nrf1; 45%; p < 0.01),

as well as redox gene expression, including superoxide

dismutase 2 (Sod2; 50%; p < 0.01) and glutathione peroxid-

ase 1 (Gpx1; 55%; p < 0.001). By contrast, significant up-

regulation in the expression of the phosphofructokinase-

liver (Pfkl; 50%; p < 0.01) and phosphofructokinase-platelet

(Pfkp; 50%; p < 0.01) isozymes were detected in LC

Fig. 2 TH-ir LC neuron number correlates with multiple measures of antemortem cognition and postmortem neuropathology during the

progression of AD. Scatterplots show significant relationships between reductions in LC neurons and a the GCS for each individual (r = 0.7, p <

0.0001), as well as poorer performance on composite scores of b episodic memory (r = 0.71, p < 0.0001), c semantic memory (r = 0.598, p =

0.0008), d working memory (r = 0.6, p = 0.0006), e perceptual speed (r = 0.66, p < 0.0001), and f visuospatial ability (r = 0.53, p = 0.003). There were

also significant negative correlations between TH+ neuron number and increasing neuropathology as defined by g Braak (r = −0.46, p = 0.01), h

CERAD (r = −0.41, p = 0.03), and i NIA-Reagan (r = −0.45, p = 0.01) diagnostic criteria. All associations were tested using Spearman rank correlation

analysis. Abbreviations: TH+ (TH-positive), POSS. (possible), PROB. (probable), DEF. (definite), INT. (intermediate). Symbols: NCI (blue-filled circle),

aMCI (green-filled circle), AD (red-filled circle)

Table 2 Correlations between neuron number and cognitive

test scores: NCI and aMCI subjects only

MMSE r = 0.46 (p = 0.03)

GCS r = 0.58 (p = 0.006)

episodic memory r = 0.55 (p = 0.01)

semantic memory r = 0.29 (p = 0.2)

working memory r = 0.6 (p = 0.004)

perceptual speed r = 0.51 (p = 0.02)

visuospatial ability r = 0.55 (p = 0.009)
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neurons from AD subjects relative to NCI and aMCI

(Fig. 3a, b).

Gene expression analysis also revealed a significant

downregulation of transcripts related to neuritic/structural

plasticity in cases with an antemortem clinical diagnosis of

aMCI and AD compared to NCI, including mRNAs encod-

ing microtubule associated binding protein 1b (Map1b;

50%; p < 0.01), neurofilament heavy chain (Nfh; 65%; p <

0.001), cell surface adhesion molecule integrin alpha 3 sub-

unit (Itga3; 55%; p < 0.001), axon guidance protein netrin

(Ntn1; 40%; p < 0.01), postsynaptic clustering protein utro-

phin (Utrn; 45%; p < 0.01), and the dendritic spine plasticity

protein synaptopodin (Synpo; 60%; p < 0.01) (Fig. 3a, c).

Moreover, an analysis of transcripts encoding the six tau

isoforms (Mapt1-Mapt6) [54] revealed a significant ~25–

30% decrease in the ratio of 3-repeat tau (3Rtau) to 4-

repeat tau (4Rtau) isoform expression within single LC neu-

rons in aMCI and AD compared to NCI cases (Table 3). In

contrast, an upregulation of the cytoskeletal proteases

calpain 1 (Capn1; 45%; p < 0.01) and calpain 2 (Capn2;

55%; p < 0.01) was found in AD (Fig. 3c).

Several transcripts encoding other functional classes of

genes relevant to AD pathogenesis were unaffected. For

example, levels of amyloid-β precursor protein (App) and

several genes related to APP metabolism, such as beta-site

APP-cleaving enzyme 1 (Bace1), presenilin 1 (Psen1), and

APP family member genes amyloid precursor-like protein

1 (Aplp1) and amyloid precursor-like protein 2 (Aplp2)

were not differentially regulated in LC neurons across the

clinical groups (Additional file 1: Figure S1).

Correlations with clinical pathologic variables

Although there were no associations between transcript

levels and age or PMI, there was a strong relationship

Fig. 3 Single LC neuron expression profiling reveals alterations in mRNAs regulating mitochondrial and neuritic function during AD progression. a

Primary custom microarray data showing hybridization signal intensities of select mRNA transcripts within TH-ir LC neurons in NCI and aMCI.

Abbreviations: cytochrome C1 (Cytc1), glutathione peroxidase (Gpx1), glucose transporter 3 (Glut3), phosphofructokinase-liver isozyme (Pfkl),

microtubule associated binding protein 1a (Map1a), and neurofilament heavy (Nfh), medium (Nfm), or light (Nfl) chain subunits. b Heatmap

shows significant decreases in transcripts regulating mitochondrial fucntion in LC neurons in aMCI and AD cases compared to NCI, including Cytc1,

nuclear respiratory factor 1 (Nrf1), superoxide dismutase 2 (Sod2) and Gpx1, whereas Pfkl and platelet (Pfkp) isozymes were up-regulated in mild AD (red

to green = decreasing expression levels). Additional abbreviations: superoxide dismutase 1 (Sod1), glutathione transferase (Gst), cytochrome p450 11a

(Cyp11a), and pfk-muscle (Pfkm). c Heatmap shows significant decreases in transcripts regulating cytoskeletal/structural plasticity in LC neurons in aMCI

and AD cases compared to NCI, including Map1b, Nfh, integrin 3 (Itga3), netrin 1 (Ntn1), utrophin (Utrn), and synaptopodin (Synpo), whereas calpain 1

(Capn1, m-calpain) and calpain 2 (Capn2, μ-calpain) were up-regulated in mild AD (red to green = decreasing expression levels). Additional mRNAs:

mitochondrial associated protein 2 (Map2), and synaptojanin (Synj). a, NCI > aMCI, AD, p < 0.01; b, NCI > aMCI, AD, p < 0.001; c, AD > NCI,

aMCI, p < 0.01

Table 3 3Rtau/4Rtau mRNA ratios in single LC neurons

Clinical diagnosis 3R/4R ratio
0 insert

3R/4R ratio
1 insert

3R/4R ratio
2 inserts

NCI 1.36 ± 0.11 1.12 ± 0.14 1.25 ± 0.07

aMCI 1.02 ± 0.09* 0.81 ± 0.08* 0.92 ± 0.12*

AD 0.98 ± 0.1* 0.83 ± 0.05* 0.89 ± 0.13*

* p < 0.05 via one-way ANOVA with Bonferroni correction
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between downregulation of LC metabolic and structural

plasticity gene expression and decreased GCS perform-

ance (Fig. 4) [14]. The four strongest associations were

between GCS and Cytc1 (p < 0.0001, Fig. 4a), Nrf1 (p =

0.0003, Fig. 4b), Map1b (p = 0.0006, Fig. 4c) and Synpo

(p < 0.0001, Fig. 4d) transcripts. There were also signifi-

cant associations between metabolic and structural plas-

ticity gene expression and MMSE scores (Table 4). By

comparison, stable levels of superoxide dismutase 1

(Sod1; Fig. 3b) were not associated with GCS or MMSE

scores across diagnostic groups. Virtually all of these se-

lect transcript reductions correlated negatively with in-

creasing measures of neuropathology (Braak, NIA-

Reagan, and CERAD diagnostic criteria; Table 4).

Microarray validation

Since all brainstem tissue containing the LC from the

RROS cohort is immersion-fixed [106, 120], qPCR and

immunoblot validation analyses of frozen tissue samples

were not conducted as previously described [4, 27, 53].

However, changes associated with the noradrenergic

phenotype at the single neuron level would likely be

masked by regional expression patterns from admixed

neuronal and non-neuronal cell types included in the

frozen samples required for these analyses, similar to

our observations in cholinergic neurons in the nucleus

basalis/substantia innominata [28, 30, 54]. On the other

hand, studies using regional gene expression analysis or

neuronal immunohistochemical analysis in vulnerable

brain regions have reported findings that support our

LCM-based custom microarray approach. For instance,

Map1b gene expression was downregulated in AD tem-

poral cortex [123], whereas downregulation of Synpo

protein in dendritic spines occurred in frontal cortex

neurons in AD [9] similar to that found in our LC gene

array experiments. Future studies employing single

population RNA-sequencing, Fluidigm, and/or Nano-

string nCounter analyses are warranted when transcrip-

tomic technologies become more standardized and

economical [22, 66, 73].

Discussion

We demonstrate in this report that TH-ir, presumably

noradrenergic LC neurons are vulnerable during the

onset of dementia as evidenced by their loss in aMCI

and AD and the association of this loss with multiple

measures of cognitive deterioration and neuropatho-

logical accumulation. We further characterized the

molecular underpinnings of LC neuronal vulnerability

by single population microarray analysis. Results indi-

cated selective changes in genes regulating mitochon-

drial function and neuritic/structural plasticity, which

also correlated with antemortem cognitive status and

postmortem plaque and tangle burden. Hence, the

Fig. 4 Alterations in select transcripts isolated from noradrenergic LC neurons correlate with global cognition during the progression of AD.

Scatterplots show significant relationships between decreasing levels of a Cytc1 (r = 0.64, p < 0.0001), b Nrf1 (r = 0.57, p = 0.0003), c Map1b (r = 0.59,

p = 0.0006), and d Synpo (r = 0.65, p < 0.0001) and worsening GCS score, via Spearman rank correlation analysis. Symbols: NCI (blue-filled circle),

aMCI (green-filled circle), AD (red-filled circle)
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early loss of forebrain monoaminergic signaling medi-

ated by the LC appears to be central to AD

pathophysiology.

Rodent and non-human primate investigations have

revealed the importance of the ascending noradrenergic

LC projection system for cognitive function [11, 16, 85].

Based on a series of seminal experiments, Aston-Jones

and Cohen proposed a theory of ‘adaptive gain’ whereby

NE integrates sensory, attentional and memory process-

ing by positively modulating signal gain in neurons to fa-

cilitate the processing of salient events by driving LC

phasic activity in response to relevant stimuli [11]. LC

bursts and pulsatile NE efflux in coeruleus target fields

(e.g., hippocampus and prefrontal cortex) increases the

activity of excitatory inputs and decreases the action of

inhibitory inputs, which optimizes task performance [11,

16]. Despite the more caudal location of the LC deep

within the brainstem it might be envisioned as the

brain’s “watchtower,” scanning incoming sensory infor-

mation for important events that require immediate at-

tention [33]. Moreover, NE-dependent modulation of

long-term alterations in synaptic strength and gene tran-

scription, particularly within the hippocampus and pre-

frontal cortex, influences memory formation and

experience-dependent alterations in neural function and

behavior and plays a critical role in the ability of the LC

to optimize performance [105]. Finally, evidence from

transgenic mouse models of AD and neuronal cell cul-

ture studies show that NE exerts a wide array of neuro-

protective effects including anti-inflammatory and pro-

neurotrophic mechanisms [32, 43, 44, 58, 64, 72, 74,

117]. Taken together, these data suggest that the central

NE projection system is essential for cognitive function

and, in turn, that LC neuronal degeneration contributes

to cognitive dysfunction.

Recently, two reports have shown that LC neurode-

generation coincides with both mounting Braak stage

pathology [110] and cognitive impairment [7]. Theofilas

and colleagues reported that LC volume decreases

~8.4% with each successive Braak stage, resulting in a

significant ~25% loss of LC volume between control

cases neuropathologically diagnosed postmortem as

Braak stage III compared to stage 0 [110]. This volume

loss mirrored a similar rate of change in total pigmented

and non-pigmented LC neuron numbers, as measured

by unbiased stereology [110]. The authors also noted

that the topography of LC volume and cell loss appears

to follow a rostrocaudal gradient similar to that reported

in frank AD cases [49, 110]. Here, we report that the loss

of TH-ir, presumably noradrenergic LC neurons also

correlates with Braak stage. In addition, we found that

TH-ir neuron loss correlated with increasing neuropath-

ologic burden based on NIA-Reagan and CERAD diag-

nostic criteria. As reductions in LC neuron number have

been associated with increased cortical amyloid plaque

and NFT loads in cases of frank AD [18, 108], these ob-

servations in early stage cases indicate a strong relation-

ship between LC projection system degeneration and the

pathologic sequela of AD.

Arendt and colleagues used unbiased stereology to

demonstrate a significant ~13% loss of neuromelanin-

positive LC neurons in subjects classified as MCI/pro-

dromal AD (CDR 0.5 who also displayed “low” to “inter-

mediate” amyloid-Braak-CERAD (ABC) diagnostic

scores [61]) compared to those classified as controls

(CDR 0 and “not” ABC score) [7]. Subjects classified as

mild/moderate AD exhibited ~30–45% LC cell loss com-

pared to controls. This study revealed that LC cell loss,

which is prominent in cases of frank AD [19, 24, 36, 75,

86, 119], appears to occur early in the clinical progres-

sion of AD, concurrent with cell loss in the nucleus

basalis and entorhinal cortex [7].

The present morphometric analysis revealed a ~30%

loss of TH-ir LC number during the transition from

NCI to aMCI in cases classified independent of

neuropathological diagnosis. Notably, our estimate of

total TH-ir LC cell number in NCI/healthy controls

(19,495 ± 2,891) was similar to other studies [23, 50,

93, 112] and, more specifically, to Arendt and col-

leagues’ unbiased estimate of total neuromelanin-

positive neurons (17, 487 ± 2,736) for this group. The

discrepancy in the observed loss of LC neurons

Table 4 Clinical pathologic correlations of select LC neuronal transcripts dysregulated in aMCI and AD

transcript GCS MMSE Braak NIA-Reagan CERAD

cytc1 r = 0.64 (p < 0.0001) r = 0.48 (p = 0.003) r = −0.50 (p = 0.003) r = −0.41 (p = 0.02) r = −0.48 (p = 0.01)

nrf1 r = 0.57 (p = 0.0003) r = 0.37 (p = 0.04) r = −0.43 (p = 0.08) r = −0.39 (p = 0.06) r = −0.50 (p = 0.003)

gpx1 r = 0.54 (p = 0.008) r = 0.44 (p = 0.008) r = −0.42 (p = 0.02) r = −0.42 (p = 0.01) r = −0.39 (p = 0.02)

map1b r = 0.59 (p = 0.0006) r = 0.35 (p = 0.03) r = −0.43 (p = 0.01) r = −0.33 (p = 0.2) r = −0.32 (p = 0.09)

nf-h r = 0.54 (p = 0.0007) r = 0.51 (p = 0.001) r = −0.55 (p < 0.001) r = −0.49 (p = 0.005) r = −0.45 (p = 0.006)

ntn1 r = 0.52 (p = 0.0008) r = 0.44 (p = 0.007) r = −0.41 (p < 0.01) r = −0.40 (p = 0.02) r = −0.47 (p = 0.006)

synpo r = 0.65 (p < 0.0001) r = 0.52 (p < 0.001) r = −0.58 (p < 0.001) r = −0.47 (p = 0.008) r = −0.45 (p = 0.005)

sod1 r = 0.22 (p = 0.1) r = −0.11 (p = 0.5) r = −0.18 (p = 0.6) r = −0.09 (p = 0.6) r = −0.28 (p = 0.1)
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between control and MCI/prodromal AD between

these two studies (~30% compared to ~13%) could be

related to cohort group classifications or possibly to a

relatively greater loss of TH-expressing neurons com-

pared to neuromelanin-positive neurons early in the

disease process. In this regard, it would be interesting

to determine whether a subset of neuromelanin-

positive LC neurons undergoes a phenotypic down-

regulation of TH during the disease. Regardless, the

present findings suggest that a disconnection of

transmitter-identified LC projections to the forebrain

contributes to the presentation of clinical disease.

With respect to the relationship between LC degener-

ation and cognitive status across the diagnostic groups,

we found that reduced numbers of TH-ir LC neurons

were associated not only with episodic memory deficits

that define aMCI subtypes [63], but also with semantic

memory, working memory, perceptual speed, and visuo-

spatial ability. Since the LC innervates components of

the dorsal memory network (e.g., dorsolateral and dor-

somedial prefrontal cortex) [10, 84] and the amygdala

[46, 99, 115], which are both dysfunctional early in the

onset of AD [89], disruption of NE afferents to these

structures may play a role in the deficits seen in these

various cognitive domains [14]. In fact, we found that

quantitative decreases in LC neuron number were asso-

ciated with poorer performance on measures of global

cognitive function, as well. Hence, we demonstrate a link

between loss of noradrenergic tone, neuropathological

criteria, and cognitive decline. However, regression ana-

lysis revealed that global cognitive decline, but not

neuropathological status, was a predictor for LC cell

number. These findings lend support to a previous aut-

opsy study, which showed that higher LC neuronal dens-

ity was associated with slower rates of antemortem

cognitive decline, suggesting a role for the LC in cogni-

tive reserve [120]. Altogether, our data supports an

emerging theory that LC neuron degeneration is an early

pathological event that contributes to cognitive dysfunc-

tion and the onset of AD, and is likely a site for thera-

peutic intervention.

The cellular and molecular mechanisms underlying

LC selective vulnerability in the early stages of AD are

unclear. To begin to address this question, we profiled

gene expression patterns of transmitter-identified LC

neurons microdissected from NCI, aMCI, and AD

cases. We noted two major patterns of expression

changes related to functional classes of genes regulating

mitochondrial function and neuritic plasticity. With re-

spect to the transcripts involved in mitochondrial dys-

function, Nrf1 and Cytc1 mRNA levels were both

significantly downregulated in LC neurons in aMCI and

mild AD relative to NCI. Nrf1 is a transcription factor

that directs the expression of several functional classes

of genes involved in mitochondrial function, including

those regulating redox homeostasis, mitochondrial bio-

genesis, calcium homeostasis, and cytochrome oxidase

activity [17, 40, 41]. Interestingly, Cytc1 is the heme-

containing component in the cytochrome b-c1 complex

III of the respiratory chain, accepting electrons from

Rieske protein and transferring it to cytochrome c,

which couples to cytochrome oxidase [47, 113]. By con-

trast, transcript levels of Pfkl and Pfkp isozymes were

significantly upregulated in LC neurons in AD. These

enzyme subunits catalyze the conversion of D-fructose

6-phosphate to D-fructose 1,6-bisphosphate, resulting

in the first committing step of glycolysis [60]. Taken to-

gether, these results indicate that LC neurons are under

considerable respiratory stress during the transition

from NCI to prodromal and frank AD. In addition,

these neurons displayed significant decreases in tran-

scripts encoding the antioxidant enzymes mitochon-

drial Sod2 and Gpx1 in aMCI. Given the role of these

two enzymes in detoxifying superoxide and hydrogen

peroxide, respectively, LC neurons are also likely under

considerable oxidative stress prior to the onset of aMCI

[109]. These observations support tissue-based assess-

ments demonstrating regional mitochondrial deficits

during the progression of AD [12, 15, 59, 71, 101, 102,

116, 125], but importantly, identify these changes in

neurons, as opposed to glial cells or admixed popula-

tions of cells, thus attributing these markers for mito-

chondrial dysfunction to LC neurons.

A second common thread of transcript dysregulation

in aMCI centered on genes encoding proteins involved

in axonal function and neuronal morphological plasti-

city. For instance, Map1b is critical for microtubule

stabilization during axonal growth [114] and Ntn1 plays

a role in axonal guidance [81], whereas Nfh is essential

in maintaining axonal caliber and is dysregulated in hu-

man AD and animal models of the disease [42, 83]. Sig-

nificant downregulation of these genes suggest that LC

neurons may be undergoing an axonal degenerative

process during prodromal stages, which progress to

frank AD as evidenced by a significant increase in the

cytoskeletal proteases Capn1 and Capn2 expression in

AD neurons [92, 104]. Moreover, we found a global de-

crease in the ratio of 3R/4R tau isoforms in LC neurons

in aMCI and AD, consistent with previous single cell

gene expression studies of cholinergic nucleus basalis

and CA1 pyramidal neurons isolated from MCI and AD

cases [54]. The alteration in 3R tau gene dosage relative

to 4R tau suggests a shift toward tau isoforms associated

with slower axonal transport kinetics as well as NFT for-

mation [37, 69, 107].

Finally, we observed a concomitant downregulation of

genes encoding the postsynaptic receptor clustering protein

Utrn and the dendritic spine marker Synpo in aMCI and
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AD neurons compared to NCI. In particular, Synpo is an

actin-associated protein that may play a role in modulating

actin-based shape and motility of dendritic spines and

seems to be essential for the formation of spine apparatuses

involved in synaptic plasticity [39, 68]. Dysregulation of

postsynaptic gene expression in vulnerable LC neurons

may signal perturbations prior to the onset of aMCI that

are indicative of a failure in neuroplastic and/or remodeling

programs [38, 39, 68, 89]. While we cannot rule out the

possibility that these molecular changes are epiphenomenal

to AD pathogenesis, the timing of these changes to stages

prior to the onset of aMCI suggest that they represent path-

ways critical to disease progression.

Perhaps the most striking feature of the LC is the im-

mensity and divergence of its noradrenergic forebrain

efferents [45], extensive complex dendritic arborization

pattern, and the long distance these perikarya project

to reach their forebrain innervation sites [6, 8, 85]. In

this regard, LC neurons are similar to other selectively

vulnerable long forebrain projection neuron systems

(e.g., cholinergic basal forebrain neurons, substantia

nigra pars compacta neurons, and dorsal raphe neu-

rons, among others [5, 16, 78, 80, 105]), that are heavily

reliant on energy metabolism and cytoskeletal integrity

to modulate synaptic input. These long projection sys-

tems are likely more prone to cellular stress given their

position in the brain’s organization. Taken together, our

findings present evidence for the molecular dysregula-

tion of mitochondrial function and neuritic/structural

plasticity coinciding with the loss of LC neurons prior

to the transition from NCI to prodromal AD. Moreover,

our observation that the dysregulation of these genes

correlates with poorer global cognition and greater

neuropathological burden suggests that these molecular

pathways represent pathogenic mechanisms underlying

the selective vulnerability of LC neurons which may be

common to other vulnerable neurons. Notably, there is

evidence from similar single neuron expression analysis

studies showing alterations in mitochondrial and struc-

tural plasticity pathways in AD. For instance, we have

demonstrated that cholinergic nucleus basalis neurons

exhibit alterations in Sod2, Pfkl, and Capn1 in AD [29].

Other studies have also demonstrated an AD-related

dysregulation of specific respiratory chain genes (e.g.,

cytochrome oxidase 5b) in medial temporal and poster-

ior cingulate pyramidal neurons [70, 71]. However, the

extent to which dysregulation of these pathways are

evident in other selectively vulnerable cell groups during

the onset of cognitive decline warrants further compara-

tive assessments of these neuron groups as well as rela-

tively unaffected populations in postmortem brain tissues.

Moreover, whether dysregulation of these pathways is re-

lated to NFT or Lewy body pathology in these neurons is

an additional question to be addressed in future studies

[51, 55, 62, 111, 112]. The current findings also suggest

the need for additional quantitative biochemical and im-

munohistochemical assessments of these mitochondrial

and structural markers in LC neurons in aMCI.

Conclusions

The present findings point to the continuing need to

consider noradrenergic system pathophysiology as a key

and early component associated with the progression of

AD. We posit that strategies aimed at LC neuroprotec-

tion or NE replacement are viable therapeutic options

[98]. Moreover, as prominent LC degeneration is also evi-

dent in cases of Parkinson’s disease with dementia and de-

mentia with Lewy bodies [57], maintaining LC projection

system integrity may provide a common therapeutic

mechanism for combating cognitive decline in multiple

late-onset dementia subtypes. Here, we present several

candidate molecular pathways that are dysregulated in LC

neurons early in the cascade of pathogenic events prior to

the onset of AD, which may form the basis for novel neu-

roprotective approaches for dementia.

Additional file

Additional file 1: Figure S1. No change in AD-related gene expression in

LC neurons during disease progression. Bar graph shows changes in App, Bace1,

Psen1, Aplp1, and Aplp2 transcripts in aMCI and AD relative to NCI. No significant

differences were calculated across the diagnostic groups. (TIF 998 kb)
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