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ABSTRACT

We present a simultaneous analysis of galaxy cluster scaling relations between weak-lensing

mass and multiple cluster observables, across a wide range of wavelengths, that probe both

gas and stellar content. Our new hierarchical Bayesian model simultaneously considers the

selection variable alongside all other observables in order to explicitly model intrinsic property

covariance and account for selection effects. We apply this method to a sample of 41 clusters

at 0.15 < z < 0.30, with a well-defined selection criteria based on RASS X-ray luminosity,

and observations from Chandra/XMM, SZA, Planck, UKIRT, SDSS, and Subaru. These

clusters have well-constrained weak-lensing mass measurements based on Subaru/Suprime-

Cam observations, which serve as the reference masses in our model. We present 30 scaling

relation parameters for 10 properties. All relations probing the intracluster gas are slightly

shallower than self-similar predictions, in moderate tension with prior measurements, and

the stellar fraction decreases with mass. K-band luminosity has the lowest intrinsic scatter

with a 95th percentile of 0.16, while the lowest scatter gas probe is gas mass with a fractional

intrinsic scatter of 0.16 ± 0.03. We find no distinction between the core-excised X-ray or high-

resolution Sunyaev–Zel’dovich relations of clusters of different central entropy, but find with

modest significance that higher entropy clusters have higher stellar fractions than their lower

entropy counterparts. We also report posterior mass estimates from our likelihood model.

Key words: gravitational lensing: weak – galaxies: clusters: general – galaxies: clusters: intr-

acluster medium – galaxies: stellar content – cosmology: observations.
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1 IN T RO D U C T I O N

Galaxy clusters form at rare peaks in the Universe’s density

distribution, and as such are rich laboratories for both cosmology

and astrophysics (e.g. Allen, Evrard & Mantz 2011; Kravtsov &

Borgani 2012). For cosmological purposes, counts and clustering of

galaxy clusters are direct results of the late-time growth of structure,

and their measurement provides tests of cosmological parameters

complementary to those of the cosmic microwave background

(CMB) or supernovae (e.g. Weinberg et al. 2013). The spatial

abundance of galaxy clusters is a strong function of system mass,

so such tests require accurate calibration of the absolute mass scale

of haloes as well as the statistical relationship between mass and

observable properties. This requirement has motivated a significant

effort to find and calibrate observable quantities that correlate

with halo mass, so-called cluster scaling relations (e.g. Giodini

et al. 2013).

On the astrophysics side, galaxy clusters are a unique environ-

ment within which the majority of the baryon content is observable,

either in stellar material or in hot intracluster gas (e.g. Gonzalez

et al. 2013; Chiu et al. 2016). The properties of the stellar and gas

content of clusters is the result of a wide range of physical effects,

including cooling, star formation, feedback, and accretion-driven

processes such as shocks, tidal stripping, and turbulence. Thus, the

observable properties of gas and stellar material and their scaling

with respect to the total cluster mass can give direct insight into the

physics of these processes.

Ideally, we would constrain the scaling relation of an observable

with the ‘true’ mass of the cluster, however, in practise this is not

measurable. A popular method of mass measurement uses X-ray

properties together with the simplifying assumption of hydrostatic

equilibrium (e.g. Mathews 1978; Sarazin 1988; Vikhlinin et al.

2006; Martino et al. 2014). More recently, significant progress has

been made in using the weak-lensing signal to probe the mass of

galaxy clusters. When carefully accounting for systematic effects,

these masses are thought to be, on average, close to unbiased with

respect to the true mass (e.g. Becker & Kravtsov 2011; Oguri &

Hamana 2011; Bahé, McCarthy & King 2012), although Henson

et al. (2017) report a 10 per cent mean bias that declines at very

high masses. Crucially, these measurements do not rely on the

assumption of hydrostatic equilibrium.

An often overlooked requirement for calibrating robust scaling

relations is a clear understanding of the cluster sample selection

and inclusion of the selection in the subsequent statistical analysis.

As each observable has a non-zero scatter in its relation with mass,

selection based on anything but true mass can bias the derived

relations relative to those of the underlying halo population. The

latter are often characterized by cosmological simulations (e.g. Le

Brun et al. 2017). Cluster samples are commonly selected from

optical, X-ray, or Sunyaev–Zel’dovich (SZ) surveys (e.g. Böhringer

et al. 2004; Rozo et al. 2009; Bleem et al. 2015), and constraints

on population model parameters are ultimately limited by both

understanding of the selection function and sample size.

The 41 clusters in this work are particularly well studied over

a wide range of wavelengths (e.g. Marrone et al. 2012; Martino

et al. 2014; Mulroy et al. 2014; Haines et al. 2015; Okabe &

Smith 2016). Combined with a well-defined selection function, they

provide the first cluster sample with which to simultaneously con-

strain scaling relations for X-ray, SZ, and optical observables. We

report here the mean behaviours – slopes, intercepts, and intrinsic

scatter – as well as correlations with the LX,RASS selection variable

for 10 properties. The full covariance matrix is presented in a

companion paper (Farahi et al., in preparation).

In Section 2, we describe our cluster sample, its selection,

and the wide range of multiwavelength data that we use in this

paper. In Section 3, we derive the expected scaling relations for a

self-similar model, and in Section 4 we describe our hierarchical

Bayesian method to fit the scaling relations. We present our results

in Section 5, discuss these results and compare to the literature in

Section 6, and conclude in Section 7. We assume �M = 0.3, �� =

0.7, and H0 = 70 km s−1 Mpc−1. In this cosmology, at the average

cluster redshift of 〈z〉 = 0.22, 1 arcsec corresponds to a projected

physical scale of 3.55 kpc. We employ a spherical mass and radius

convention, M500 and r500, based on a mean enclosed density of

500 times the critical density evaluated in the above cosmology.

2 DATA

2.1 Sample

We study a sample of 41 X-ray luminous clusters from the ‘High-

LX’ sample of the Local Cluster Substructure Survey (LoCuSS1),

which was selected from the ROSAT All Sky Survey catalogues

(RASS; Ebeling et al. 1998, 2000; Böhringer et al. 2004). These

are all the clusters satisfying clearly defined selection criteria:

nH < 7 × 1020 cm−2; −25◦ < δ < +65◦; and an X-ray luminosity

threshold of LX,RASSE(z)−1 > 4.4 × 1044 erg s−1 for clusters be-

tween 0.15 < z ≤ 0.24, and LX,RASSE(z)−1 > 7.0 × 1044 erg s−1

for clusters between 0.24 < z < 0.30 (Table 1 and Fig. 1), where

E(z) ≡ H (z)/H0 =
√

�M(1 + z)3 + �� is the evolution of the

Hubble parameter. Therefore, the only physical selection variable

for this sample of galaxy clusters is the RASS X-ray luminosity,

LX,RASS.

The LX,RASS measurements cover the soft-band X-ray

[0.1−2.4] keV, and are taken from the ROSAT Brightest Cluster

Sample and its low-flux extension for objects in the Northern

hemisphere (BCS, Ebeling et al. 1998; eBCS, Ebeling et al. 2000),

and the ROSAT−ESO Flux Limited X-ray galaxy cluster survey for

objects mostly in the Southern hemisphere (δ < 2.5◦; REFLEX;

Böhringer et al. 2004). For the clusters in the overlap between sur-

veys (Abell0267: BCS, REFLEX and Abell2631: eBCS, REFLEX)

we average the luminosities and errors. RASS luminosities are not

core-excised due to the angular resolution of the instrument, and so

are sensitive to the presence, or absence, of a cool core. We explore

the effects of core treatment in Section 5.3.

We observed this sample of clusters at X-ray, optical, near-

infrared, and millimetre wavelengths over the period 2005∓2014,

building up a unique and comprehensive data set. The main facilities

that we used are Chandra, XMM–Newton, Suprime-Cam on the Sub-

aru telescope, Hectospec on the Multiple Mirror Telescope (MMT),

WFCAM on the United Kingdom Infrared Telescope (UKIRT),

and the Sunyaev–Zel’dovich Array (SZA). The total investment of

telescope time amounts to several million seconds. The following

wavelength-specific sections describe the measurements of galaxy

cluster weak-lensing masses and observable properties used in this

article, with citations providing more complete details of their

respective observations. The measurements are listed in Tables 1

and 2, and summarized in Table 3.

1http://www.sr.bham.ac.uk/locuss
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Table 1. Cluster sample.

Name RA Dec. Redshift LX,RASS MWL Mpost

α [J2000] δ [J2000] z 1044 erg s−1 1014 M⊙ 1014 M⊙

Abell2697 0.7990 − 6.0860 0.2320 6.88+0.85
−0.85 6.61+1.20

−1.21 5.98+0.57
−0.53

Abell0068 9.2785 9.1566 0.2546 9.47+2.61
−2.61 6.82+1.11

−1.01 6.38+0.52
−0.50

Abell0115 14.0012 26.3424 0.1971 8.90+2.13
−2.13 5.39+1.62

−1.49 6.13+0.90
−0.82

Abell0141 16.3864 − 24.6466 0.2300 5.76+0.90
−0.90 4.56+0.92

−0.86 5.01+0.68
−0.59

Abell0209 22.9689 − 13.6112 0.2060 6.29+0.65
−0.65 12.34+1.64

−1.50 10.67+0.96
−0.86

Abell0267 28.1748 1.0072 0.2300 6.74+1.42
−1.42 5.60+0.91

−0.85 5.48+0.55
−0.52

Abell0291 30.4296 − 2.1966 0.1960 4.88+0.56
−0.56 4.46+1.02

−0.95 2.99+0.37
−0.33

Abell0521 73.5287 − 10.2235 0.2475 8.18+1.36
−1.36 5.39+0.99

−0.93 5.62+0.63
−0.56

Abell0586 113.0845 31.6335 0.1710 6.64+1.30
−1.30 7.21+1.60

−1.40 6.62+0.75
−0.68

Abell0611 120.2367 36.0566 0.2880 8.86+2.53
−2.53 9.11+1.67

−1.56 6.42+0.70
−0.63

Abell0697 130.7398 36.3666 0.2820 10.57+3.28
−3.28 7.71+1.54

−1.43 9.61+1.06
−1.02

ZwCl0857.9+2107 135.1536 20.8946 0.2347 6.79+1.76
−1.76 2.07+0.99

−1.08 1.40+0.34
−0.29

Abell0750 137.3024 10.9745 0.1630 6.59+1.40
−1.40 6.15+1.71

−1.35 6.19+1.10
−0.98

Abell0773 139.4726 51.7271 0.2170 8.10+1.35
−1.35 10.07+1.07

−1.00 9.69+0.66
−0.61

Abell0781 140.1075 30.4941 0.2984 11.29+2.82
−2.82 4.75+1.72

−1.89 7.07+1.45
−1.25

ZwCl0949.6+5207 148.2048 51.8849 0.2140 6.60+1.15
−1.15 4.97+1.13

−1.04 3.06+0.40
−0.36

Abell0907 149.5917 − 11.0640 0.1669 5.95+0.49
−0.49 11.52+1.95

−1.67 7.86+0.96
−0.84

Abell0963 154.2652 39.0471 0.2050 6.39+1.19
−1.19 6.96+1.11

−1.03 5.77+0.63
−0.55

ZwCl1021.0+0426 155.9152 4.1863 0.2906 17.26+2.93
−2.93 5.32+0.87

−0.82 5.57+0.64
−0.57

Abell1423 179.3223 33.6110 0.2130 6.19+1.34
−1.34 4.44+0.89

−0.81 3.97+0.47
−0.42

Abell1451 180.8199 − 21.5484 0.1992 7.63+1.63
−1.63 8.17+1.04

−0.96 7.87+0.75
−0.67

ZwCl1231.4+1007 188.5728 9.7662 0.2290 6.32+1.58
−1.58 4.61+1.44

−1.47 5.02+0.77
−0.72

Abell1682 196.7083 46.5593 0.2260 7.02+1.37
−1.37 8.52+1.06

−0.99 7.84+0.75
−0.68

Abell1689 197.8730 − 1.3410 0.1832 14.07+1.13
−1.13 12.57+1.53

−1.40 12.00+0.97
−0.90

Abell1763 203.8337 41.0012 0.2279 9.32+1.33
−1.33 15.80+2.16

−1.94 13.70+1.40
−1.23

Abell1835 210.2588 2.8786 0.2528 24.48+3.35
−3.35 10.97+1.56

−1.44 11.03+0.93
−0.84

Abell1914 216.4860 37.8165 0.1712 10.98+1.11
−1.11 7.83+1.35

−1.24 8.30+0.86
−0.81

ZwCl1454.8+2233 224.3131 22.3428 0.2578 8.41+2.10
−2.10 3.74+1.46

−1.44 2.98+0.46
−0.42

Abell2009 225.0813 21.3694 0.1530 5.37+0.99
−0.99 6.39+1.45

−1.25 4.73+0.54
−0.48

RXCJ1504.1-0248 226.0313 − 2.8047 0.2153 28.07+1.49
−1.49 6.54+1.48

−1.32 6.19+0.95
−0.79

Abell2111 234.9188 34.4243 0.2290 6.83+1.65
−1.65 5.09+1.39

−1.21 5.84+0.76
−0.67

Abell2204 248.1956 5.5758 0.1524 12.50+1.34
−1.34 9.92+1.82

−1.59 10.11+1.01
−0.94

Abell2219 250.0827 46.7114 0.2281 12.73+1.37
−1.37 8.65+1.34

−1.29 10.76+1.02
−0.93

RXJ1720.1+2638 260.0420 26.6257 0.1640 9.57+1.07
−1.07 4.94+1.38

−1.17 4.55+0.65
−0.58

Abell2261 260.6133 32.1326 0.2240 11.31+1.55
−1.55 10.75+1.30

−1.20 10.41+0.92
−0.83

RXCJ2102.1-2431 315.5411 − 24.5335 0.1880 5.07+0.55
−0.55 3.71+0.87

−0.79 3.03+0.41
−0.37

RXJ2129.6+0005 322.4165 0.0894 0.2350 11.66+2.92
−2.92 3.46+1.14

−1.22 4.02+0.57
−0.53

Abell2390 328.4034 17.6955 0.2329 13.43+3.14
−3.14 10.53+1.52

−1.41 10.36+1.08
−0.96

Abell2537 347.0926 − 2.1921 0.2966 10.17+1.45
−1.45 8.57+2.03

−1.82 7.77+0.99
−0.89

Abell2552 347.8887 3.6349 0.2998 9.94+2.84
−2.84 7.16+1.88

−1.69 7.36+0.88
−0.78

Abell2631 354.4155 0.2714 0.2779 8.07+2.11
−2.11 5.61+1.58

−1.78 5.66+0.72
−0.66

2.2 Gravitational weak-lensing masses

We use weak-lensing masses from Okabe & Smith (2016; as

tabulated in their table 2), who calculate masses by fitting an

NFW (Navarro, Frenk & White 1997) mass profile to the shear

profile obtained from Subaru/Suprime-Cam observations. We use

M500 values, defined as the mass within radius r500, the radius

within which the average density is 500 × ρcrit(z), the critical

density of the Universe. We adopt these weak-lensing determined

radii, r500,WL, as the radii within which we measure the other

aperture-integrated properties in this work (except YX and λ). The

systematic biases in the ensemble calibration of the weak-lensing

mass calculations are controlled at ∼4 per cent level, based on

careful selection of red background galaxies, extensive tests of

both faint galaxy shape measurement methods and mass profile

fitting methods (Okabe & Smith 2016). The measurement errors on

M500 include contributions from shape noise, photometric redshift

MNRAS 484, 60–80 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
4
/1

/6
0
/5

2
7
4
1
4
3
 b

y
 U

n
iv

e
rs

ity
 o

f B
irm

in
g
h
a
m

 u
s
e
r o

n
 2

6
 S

e
p
te

m
b
e
r 2

0
1
9



LoCuSS: galaxy cluster scaling relations 63

Figure 1. The LX,RASSE(z)−1− redshift distribution of the LoCuSS

clusters. The large points show the 41 clusters passing the selection criteria

and therefore used in this work, while the circles show the LoCuSS ‘High-

LX’ clusters. The straight lines show the selection criteria, and the curves

show the completeness limits for (e)BCS (Ebeling et al. 1998, 2000) and

REFLEX (Böhringer et al. 2004).

uncertainties, and uncorrelated large-scale structure. In our analysis

below, we assume these weak-lensing masses to be unbiased in the

mean with respect to true halo mass.

2.3 X-ray observables

We use X-ray measurements of the intracluster medium (ICM) de-

scribed in Martino et al. (2014), where most clusters were observed

with the XMM–Newton EPIC or Chandra ACIS-I detectors, except

for Abell0611 and ZwCl0949.6 + 5207 that were observed with

the Chandra ACIS-S detectors. We note that emission measure

profiles were robust to X-ray telescope cross-calibration issues for

the selected energy band, as shown in Martino et al. (2014).

We consider bolometric [0.7−10] keV core-excised luminosity

LX,ce and the average gas temperature TX,ce within an annulus of

[0.15−1]r500,WL to avoid the measurements being contaminated by

potentially stochastic cool-core emission. The error bars in LX,ce

include marginalization over TX. The gas mass Mgas is measured

within r500,WL. We also measure the integrated pressure proxy YX

(Kravtsov, Vikhlinin & Nagai 2006) for all but the two clusters

with ACIS-S observations. Defined as the product of gas mass and

average temperature, it is the X-ray analogue of the SZ parameter

described in Section 2.4.

Both the luminosity and the YX parameter derive from spherically

symmetric templates of the X-ray emission measure per unit

volume, [npne](r), which were projected along the line of sight,

radially averaged, and fitted to radial profiles of the soft [0.5−2] keV

X-ray surface brightness. The bolometric estimate of LX,ce derives

from an extrapolation of the soft surface brightness assuming the

spectral energy distribution of the ICM to correspond to a redshifted

isothermal plasma with average temperature, T.

We estimate the YX parameter following the established methods

based on its original definition (Kravtsov et al. 2006) to ensure

comparability with the literature. For each cluster, we iterate about

an existing YX−M500 scaling relation, yielding a characteristic

radius r500, different from the weak-lensing r500,WL radius within

which the other X-ray observables are measured. For clusters

observed with XMM–Newton, we use the relation of Arnaud et al.

(2010), and for those observed with Chandra we use the relation

of Vikhlinin et al. (2009). Both relations are calibrated using

hydrostatic mass estimates in a nearby cluster sample. The gas

masses were computed from spherical integrals of the gas density

profiles np(r), and the gas temperatures correspond to spectroscopic

measurements within projected [0.15−0.75]r500 and [0.15−1]r500,

following the prescription of the relevant scaling relation study. We

note that any bias in the assumed scaling relations would be a source

of error for our YX measurements.

2.4 Millimetre observables – Sunyaev–Zel’dovich effect

The SZ effect is caused by the inverse Compton scattering of CMB

photons by hot electrons, in this case in the ICM. These interactions

boost the photon energy by ∼kBT/mec2, leading to a characteristic

distortion of the CMB spectrum in the direction of galaxy clusters.

The CMB intensity is decreased below ∼220 GHz and increased

above, in proportion to the ‘Comptonization’ parameter, Y, which

is an integral of the product of the electron density and temperature

through the cluster. This integral of thermal pressure in the ICM,

which is roughly in hydrostatic equilibrium with the gravitational

potential well, should therefore be closely related to cluster mass

(Carlstrom, Holder & Reese 2002; Arnaud et al. 2010; Marrone

et al. 2012).

2.4.1 Sunyaev–Zel’dovich array

One of the SZ measurement data sets employed in this paper is

based on observations with the SZA, an interferometer comprising

eight 3.5-m antennas observing at 27−35 GHz. During the period

of these observations, 2006∓2014, the SZA initially observed from

the floor of the Owens Valley, near Big Pine, CA, and later was

relocated to the nearby Cedar Flat site of the Combined Array

for Research in Millimeter-wave Astronomy (CARMA). For all

observations presented here, the SZA antennas observed as an 8-

element array, rather than in concert with other CARMA antennas

as in, e.g. Plagge et al. (2013). The SZA was configured with six

antennas in a compact configuration to maximize sensitivity to the

large-scale cluster signal, with the remaining two antennas placed

as ‘outriggers’ to discriminate the emission from point-like radio

sources from the SZ signature of clusters. The resolution of the

compact array was approximately 2 arcmin, while baselines to the

outrigger antennas yield a resolution closer to 20 arcsec.

Observations with the SZA consist of roughly 6-h observing

segments in which the antennas alternated between point-like cali-

brator sources and the cluster targets on ∼20-min cycles. The data

were reduced using a MATLAB pipeline described in Muchovej

et al. (2007) to flag for weather and technical issues and to calibrate

the data. Absolute calibration was established from observations of

Mars and sometimes Jupiter.

A Markov Chain Monte Carlo (MCMC) code was used to

simultaneously fit galaxy cluster and point source models to the data.

Point sources were identified from peaks in the flux density in long-

baseline observations. Many of these sources were coincident with

1.4-GHz sources identified in the NRAO VLA Sky Survey (NVSS;

Condon et al. 1998) and/or the VLA Faint Images of the Radio Sky at

Twenty Centimeters (FIRST; Becker, White & Helfand 1995), and

any sources in these catalogues that lie within 2 arcmin of the cluster

centre were automatically included as model components even if

they were not obviously detected to prevent them from biasing
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Table 2. Cluster observables.

Name LX,ce kBTX,ce Mgas YX YSZAD2
A YPlD

2
A LK,BCG LK,tot λ

1044 erg s−1 keV 1014 M⊙ 1014 M⊙ keV 10−5 Mpc2 10−5 Mpc2 1012 L⊙ 1012 L⊙

Abell2697 11.68+0.44
−0.44 6.99+0.48

−0.38 0.90+0.07
−0.07 5.42+0.40

−0.40 7.61+0.78
−0.80 9.18+0.48

−0.48 – – 91.44+4.37
−4.37

Abell0068 9.91+0.59
−0.59 7.66+0.77

−0.62 0.80+0.04
−0.04 5.59+2.24

−2.24 9.38+1.21
−1.16 10.34+0.59

−0.59 1.01+0.01
−0.01 12.46+1.92

−2.26 93.04+4.60
−4.60

Abell0115 10.68+0.40
−0.40 5.93+0.39

−0.32 0.87+0.15
−0.15 5.88+0.57

−0.57 – 12.44+0.48
−0.48 0.74+0.00

−0.00 14.77+1.72
−2.13 –

Abell0141 5.10+0.88
−0.88 4.78+1.34

−0.83 0.60+0.05
−0.05 2.95+0.95

−0.95 – 8.42+0.38
−0.38 0.64+0.00

−0.00 15.02+1.22
−1.48 –

Abell0209 13.59+1.02
−1.02 6.39+1.05

−0.77 1.44+0.08
−0.08 8.80+1.68

−1.68 10.79+0.96
−0.96 19.33+0.53

−0.53 0.90+0.00
−0.00 20.51+2.01

−1.98 –

Abell0267 6.34+2.88
−2.88 8.03+2.83

−1.81 0.70+0.05
−0.05 7.21+2.91

−2.91 6.47+0.61
−0.62 6.47+0.61

−0.61 1.44+0.01
−0.01 12.71+1.76

−2.79 96.38+4.03
−4.03

Abell0291 3.37+0.08
−0.08 4.03+0.32

−0.29 0.47+0.04
−0.04 1.44+0.09

−0.09 2.57+0.57
−0.49 3.04+0.47

−0.47 0.55+0.00
−0.00 7.79+0.98

−0.96 53.86+2.75
−2.75

Abell0521 15.33+1.09
−1.09 6.72+0.33

−0.29 1.08+0.09
−0.09 7.27+0.39

−0.39 5.34+0.60
−0.62 12.72+0.58

−0.58 0.95+0.01
−0.01 14.17+2.14

−2.69 –

Abell0586 6.20+0.54
−0.54 5.56+1.10

−0.79 0.73+0.06
−0.06 3.63+0.69

−0.69 10.29+1.34
−1.27 5.30+0.44

−0.44 0.81+0.00
−0.00 18.30+1.96

−2.36 105.96+4.38
−4.38

Abell0611 12.00+0.94
−0.94 11.96+2.50

−2.40 0.69+0.05
−0.05 – 8.47+0.78

−0.84 11.67+0.67
−0.67 1.33+0.01

−0.01 13.61+2.66
−2.82 100.90+4.64

−4.64

Abell0697 22.55+2.29
−2.29 11.06+2.16

−1.83 1.22+0.10
−0.10 16.21+3.55

−3.55 16.35+1.51
−1.50 26.41+0.62

−0.62 1.50+0.01
−0.01 13.15+2.61

−2.62 147.28+5.13
−5.13

ZwCl0857.9 + 2107 4.50+0.19
−0.19 3.97+0.15

−0.46 0.34+0.07
−0.07 1.40+0.11

−0.11 – 0.66+0.44
−0.44 0.44+0.01

−0.01 2.79+0.92
−1.09 26.85+2.58

−2.58

Abell0750 2.89+0.20
−0.20 3.95+0.49

−0.39 0.55+0.06
−0.06 2.08+0.30

−0.30 5.27+0.77
−0.76 7.85+0.38

−0.38 0.75+0.00
−0.00 19.73+1.92

−2.26 139.58+4.40
−4.40

Abell0773 11.11+1.14
−1.14 7.50+1.58

−1.12 1.10+0.05
−0.05 7.46+1.39

−1.39 13.08+0.92
−0.91 12.33+0.46

−0.46 0.82+0.00
−0.00 22.02+2.04

−1.79 141.43+4.58
−4.58

Abell0781 4.16+1.92
−1.92 5.92+2.40

−1.36 0.74+0.12
−0.12 4.45+1.69

−1.69 – 9.58+0.71
−0.71 0.83+0.01

−0.01 16.58+3.43
−4.16 180.62+6.08

−6.08

ZwCl0949.6 + 5207 4.52+0.99
−0.99 7.31+0.94

−0.89 0.40+0.04
−0.04 – 3.22+0.69

−0.65 2.71+0.40
−0.40 0.80+0.00

−0.00 7.91+1.47
−1.51 44.37+3.38

−3.38

Abell0907 5.91+0.22
−0.22 5.66+0.51

−0.41 0.93+0.06
−0.06 4.01+0.33

−0.33 – 9.26+0.41
−0.41 0.60+0.00

−0.00 13.83+1.56
−1.71 –

Abell0963 7.89+0.29
−0.29 6.53+0.62

−0.50 0.80+0.05
−0.05 4.13+0.29

−0.29 – 8.22+0.46
−0.46 1.29+0.00

−0.00 14.84+1.66
−1.78 65.01+3.66

−3.66

ZwCl1021.0 + 0426 19.66+1.47
−1.47 9.04+1.51

−1.13 0.95+0.05
−0.05 10.80+2.50

−2.50 10.42+0.83
−0.82 9.81+0.60

−0.60 0.89+0.01
−0.01 9.27+1.87

−1.82 83.11+4.12
−4.12

Abell1423 7.35+0.68
−0.68 8.20+1.54

−1.16 0.62+0.06
−0.06 6.42+1.46

−1.46 3.15+0.46
−0.47 7.61+0.40

−0.40 1.02+0.01
−0.01 9.90+1.22

−1.47 59.00+3.77
−3.77

Abell1451 6.13+1.31
−1.31 8.87+1.45

−1.10 1.02+0.05
−0.05 7.57+1.07

−1.07 6.02+0.98
−1.01 11.52+0.49

−0.49 0.55+0.00
−0.00 18.77+2.11

−1.92 –

ZwCl1231.4 + 1007 7.87+0.66
−0.66 6.56+1.20

−0.89 0.69+0.11
−0.11 5.67+1.25

−1.25 – 8.62+0.42
−0.42 0.99+0.00

−0.00 9.43+2.83
−1.82 93.13+4.41

−4.41

Abell1682 4.99+2.00
−2.00 6.46+2.98

−1.49 0.84+0.04
−0.04 5.18+2.36

−2.36 – 8.71+0.41
−0.41 1.04+0.00

−0.00 19.56+1.83
−2.15 118.56+4.51

−4.51

Abell1689 15.81+0.55
−0.55 9.71+0.64

−0.51 1.31+0.05
−0.05 12.81+0.95

−0.95 27.55+2.27
−2.21 17.72+0.47

−0.47 0.74+0.00
−0.00 23.07+2.31

−2.51 163.62+4.13
−4.13

Abell1763 15.20+1.56
−1.56 7.67+1.64

−1.32 1.61+0.09
−0.09 11.08+2.56

−2.56 – 20.23+0.43
−0.43 1.17+0.01

−0.01 21.86+3.70
−3.18 172.16+5.30

−5.30

Abell1835 22.22+0.79
−0.79 10.16+0.68

−0.55 1.43+0.07
−0.07 13.84+1.03

−1.03 22.26+1.60
−1.67 19.51+0.71

−0.71 1.29+0.00
−0.00 21.42+3.15

−2.75 134.55+4.89
−4.89

Abell1914 17.08+1.36
−1.36 10.06+1.47

−1.22 1.11+0.07
−0.07 12.54+2.17

−2.17 21.10+2.71
−2.48 12.06+0.30

−0.30 0.96+0.00
−0.00 13.37+1.43

−1.71 110.67+3.61
−3.61

ZwCl1454.8 + 2233 6.66+0.27
−0.27 4.74+0.42

−0.34 0.54+0.08
−0.08 3.10+0.36

−0.36 2.39+0.49
−0.52 6.21+0.60

−0.60 1.25+0.01
−0.01 6.64+1.71

−2.15 48.09+3.23
−3.23

Abell2009 6.05+0.63
−0.63 7.44+1.56

−1.16 0.69+0.05
−0.05 4.72+1.03

−1.03 5.02+0.78
−0.80 4.44+0.38

−0.38 0.74+0.00
−0.00 9.51+1.78

−1.91 73.70+3.21
−3.21

RXCJ1504.1-0248 16.65+1.86
−1.86 9.55+2.23

−1.52 1.06+0.08
−0.08 11.26+3.49

−3.49 12.17+1.26
−1.22 11.35+0.65

−0.65 0.97+0.00
−0.00 10.31+1.40

−1.56 61.06+3.79
−3.79

Abell2111 5.93+2.76
−2.76 7.21+2.28

−1.52 0.68+0.08
−0.08 5.49+2.12

−2.12 5.58+0.76
−0.71 8.98+0.52

−0.52 0.64+0.00
−0.00 15.31+1.53

−1.80 138.66+4.96
−4.96

Abell2204 15.84+0.66
−0.66 13.38+1.15

−0.76 1.23+0.08
−0.08 11.79+1.02

−1.02 17.71+1.77
−1.72 17.15+0.39

−0.39 0.65+0.00
−0.00 19.69+1.50

−1.27 –

Abell2219 32.91+2.60
−2.60 10.13+0.83

−0.70 1.68+0.11
−0.11 17.90+1.67

−1.67 18.42+1.37
−1.37 30.27+0.46

−0.46 1.04+0.01
−0.01 21.72+2.07

−1.83 169.10+5.10
−5.10

RXJ1720.1 + 2638 9.63+0.57
−0.57 7.14+0.91

−0.73 0.71+0.07
−0.07 6.60+1.00

−1.00 – 8.60+0.31
−0.31 1.01+0.00

−0.00 9.77+2.11
−1.36 63.89+2.97

−2.97

Abell2261 13.04+1.12
−1.12 7.50+1.30

−1.09 1.23+0.06
−0.06 8.12+1.19

−1.19 12.36+1.52
−1.60 13.56+0.48

−0.48 1.78+0.01
−0.01 26.60+2.38

−3.64 142.94+4.89
−4.89

RXCJ2102.1-2431 4.62+0.12
−0.12 5.32+0.46

−0.37 0.46+0.05
−0.05 2.29+0.18

−0.18 – 4.00+0.36
−0.36 1.04+0.01

−0.01 7.77+0.87
−0.87 –

RXJ2129.6 + 0005 10.65+0.65
−0.65 5.94+0.75

−0.61 0.67+0.10
−0.10 5.47+0.95

−0.95 5.73+0.69
−0.89 5.76+0.48

−0.48 1.28+0.01
−0.01 7.53+1.60

−1.81 71.30+3.97
−3.97

Abell2390 25.43+1.16
−1.16 10.79+0.95

−0.84 1.66+0.09
−0.09 16.91+1.57

−1.57 16.36+3.15
−3.07 24.07+0.52

−0.52 0.75+0.00
−0.00 17.44+2.02

−1.98 121.10+4.89
−4.89

Abell2537 6.63+0.72
−0.72 9.93+3.73

−2.44 0.83+0.08
−0.08 6.30+2.30

−2.30 8.00+0.88
−0.86 9.77+0.63

−0.63 1.02+0.01
−0.01 19.48+2.65

−2.80 146.22+5.08
−5.08

Abell2552 13.46+1.77
−1.77 9.69+2.75

−1.94 1.00+0.10
−0.10 9.22+2.89

−2.89 9.09+1.19
−1.19 11.66+0.63

−0.63 0.63+0.00
−0.00 19.51+4.15

−4.55 148.78+6.27
−6.27

Abell2631 14.41+1.02
−1.02 6.91+1.18

−0.87 0.97+0.12
−0.12 6.69+1.21

−1.21 5.22+0.70
−0.83 11.95+0.57

−0.57 0.85+0.01
−0.01 13.75+2.31

−2.58 114.80+4.79
−4.79

the SZ signal. The SZ signal for each cluster was modelled as a

generalized NFW pressure profile (Nagai, Kravtsov & Vikhlinin

2007) using the parameters determined by Planck Collaboration

V (2013) from a joint fit to SZ and X-ray profiles of 62 massive

clusters. These parameters include a concentration parameter, c500 =

1.81, the ratio of r500 to the scale radius (rs) of the pressure profile.

The weak-lensing values of r500 and their uncertainties were used

to define a Gaussian prior for the value of the scale radius, rs =

r500/c500.

We are able to measure YSZA for 30 of the 41 clusters, finding

that the fields for nine are contaminated and that two clusters

(RXCJ2102.1-2431 and ZwCl0857.9 + 2107) are non-detections.

The two non-detections are near the low end of the sample

weak-lensing mass distribution. The contaminated clusters contain

30 GHz sources that are not point-like at the 20 arcsec resolution

of the SZA long baselines. In such cases, the interferometric

measurement cannot cleanly distinguish between emission from

spatially extended radio sources and the spatially extended SZ

MNRAS 484, 60–80 (2019)
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LoCuSS: galaxy cluster scaling relations 65

Table 3. Elements of the galaxy cluster observable vector.

Element, Sa Unit Description

LX,RASSE(z)−1 1044 erg s−1 Selection variable: RASS soft-band X-ray luminosity

LX,ceE(z)−1 1044 erg s−1 Core-excised bolometric X-ray luminosity within [0.15–1]r500,WL

TX,ce keV Core-excised ICM temperature within [0.15–1]r500,WL

MgasE(z) 1014 M⊙ ICM gas mass within r500,WL

YXE(z) 1014 M⊙ keV Spherical ICM X-ray thermal energy

YSZAE(z) 10−5 Mpc2 Spherical ICM SZ thermal energy within r500,WL

YPlE(z) 10−5 Mpc2 Cylindrical ICM SZ thermal energy within r500,WL

LK,BCGE(z) 1012 L⊙ BCG K-band luminosity

LK,totE(z) 1012 L⊙ Total K-band luminosity within r500,WL

λE(z) none redMaPPer richness (count of galaxies)

MWLE(z) 1014 M⊙ Weak-lensing M500 mass

effect signal, which appears as ‘negative’ emission. The degeneracy

between extended radio source emission and cluster SZ signal

makes the SZ measurements unreliable.

2.4.2 Planck

We also calculate the Y parameter from the six Planck High

Frequency maps (Planck Collaboration VIII 2016a) using a template

fitting program similar to the method described in section 2.3 of

Bourdin et al. (2017). The maps are high-pass filtered to remove

large-scale (1 deg) signals from the cosmic infrared background, SZ

background, and instrumental offsets. On cluster scales, we subtract

a spatially and spectrally variable model of the CMB and galactic

thermal dust anisotropies.

An Arnaud et al. (2010) pressure profile template was fit to

the residual flux within 5r500,WL using χ2 minimization, from

which we calculate the cylindrical signal within r500,WL. While we

use the brightest cluster galaxy (BCG) coordinates as the cluster

centres, the Planck team identify clusters as peaks in the signal

map with a signal-to-noise above 4, and as such identify 38 of

the 41 clusters in our sample, while we measure all 41. For the

38, our flux measurements are on average 10 per cent higher than

those measured by the Matched Multi-Filter 3 algorithm (Planck

Collaboration XXVII 2016b), which we attribute to the offsets of

1−2 arcmin in the cluster positions.

2.4.3 Difference between Y measurements

The SZA and Planck estimates of cluster Y parameters can be

expected to be tightly correlated, but for several reasons they

should not be perfectly so. Of principal importance in explaining

differences in Y is the difference in the angular scales probed by

the two measurements. The SZA interferometric observations are

absolutely insensitive to scales larger than 2−3 arcmin, set by the

closest antenna pairs in the array, while the Planck measurements

are unable to capture details finer than ∼5−10 arcmin owing to the

intrinsic resolution of the Planck High Frequency maps.

The Planck data necessarily infer the SZ signal within r500,WL

from a resolution element that is several times larger by assuming

that a fixed pressure profile applies to all clusters and explains the

observed, profile-integrated SZ signal detected in its large beam.

The SZA interferometer, on the other hand, measures a range of

spatial frequencies (the Fourier transform of the signal) with the

greatest sensitivity to scales finer than r500,WL, and must use an

assumed profile to fill in the missing spatial frequencies and estimate

the signal that would be detected in an aperture of this larger size.

Even when assuming the same profile, the two methods are sensitive

to different deviations from the profile, from large scales for Planck

and fine scales for SZA, and are unlikely to agree perfectly. The

SZA measurements suggest some significant deviations from the

assumed inner shape of the profile for many clusters, manifesting as

very different core radii for the pressure profile, but for consistency

with the Planck data we place a prior probability on the core radius

based on the weak-lensing r500,WL that reduces these differences. An

additional difference, though one that would be a constant factor

of ∼1.2 (Arnaud et al. 2010) between Planck and SZA for all

clusters if they all had the same pressure profile, is the use of a

cylindrical integration for the Planck Y and a spherical one for

SZA. These integration choices are made to be consistent with the

literature and to better accommodate the systematics of the two

measurements.

2.5 Optical and infrared observables

We also use optical and near-infrared observations of the member

galaxies, calculating the K-band luminosity of the BCG, the total

cluster K-band luminosity, and the optical richness.

2.5.1 Near-infrared luminosity

To investigate the stellar content of the clusters, we use near-infrared

data from WFCAM on UKIRT, where we observed in J and K band

to depths of K ∼ 19 and J ∼ 21 (Haines et al. 2009). We lack these

data for Abell2697. From these data, we calculate both the K-band

luminosity of the BCG, LK,BCG, and the total K-band luminosity of

the cluster members, LK,tot.

We analyse the data similar to Mulroy et al. (2014). We convert

from apparent K-band magnitude to rest-frame luminosity using a

k-correction consistent with Mannucci et al. (2001) and the absolute

K-band Vega magnitude of the sun, MK, ⊙ = 3.39 (Johnson 1966).

For the total luminosity, we select cluster members as galaxies lying

along a ridge line in (J − K)/K space. We select those within r500,WL

of the cluster centre down to a magnitude of K ≤ K∗(z) + 2.5,

basing K∗(z) on Lin et al. (2006) and choosing this limit because 2 <

K − K∗ < 2.5 is the faintest 0.5-mag width bin for which the average

K-band magnitude error is <0.1 for all clusters. To account for the

background, we perform this same calculation on a control field (the

UKIDSS-DXS Lockman Hole and XMM−LSS fields; Lawrence

et al. 2007) within 40 apertures of radius r500,WL, subtracting

the average from LK,tot and adding the standard deviation to the

measurement error. The other component of the measurement error

MNRAS 484, 60–80 (2019)
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66 S. L. Mulroy et al.

is calculated by propagating the error on the weak-lensing radius.

Note that the uncertainties in Mulroy et al. (2014) include a term

calculated using bootstrap resampling of the members that we do

not include here because we are interested in the individual cluster

measurement error and not the statistical properties of an ensemble

of galaxies.

We note that the consistency found in Mulroy et al. (2014) be-

tween colour−magnitude selected luminosity and spectroscopically

confirmed luminosity indicates the accuracy of colour−magnitude

member selection in (J − K)/K space, due to the sensitivity of near-

infrared data to old stars and its relative insensitivity to recent star

formation.

2.5.2 Richness

We calculate the richness, λ, defined in Rozo et al. (2009) and

improved in Rykoff et al. (2012), for the 33 cluster overlap between

our sample and the Sloan Digital Sky Survey (SDSS, Gunn et al.

1998; Doi et al. 2010; Alam et al. 2015). This matched filter richness

estimator is defined as the sum of the membership probabilities

of all the galaxies, and was constructed as a low scatter optical

mass proxy through extensive tests on the maxBCG cluster catalog

(Koester et al. 2007).

For all potential cluster members, their membership probability

is calculated considering their clustercentric radius, g − r colour

and i-band magnitude. The richness estimator is the sum of these

probabilities integrated down to M∗ + 1.75, while the measurement

error is derived from the variance. The corresponding radius is not

equivalent to an overdensity radius such as r500, but rather scales

deterministically as λ0.2. The mean radius for our sample is 1.4 Mpc.

While the scale misalignment with respect to the other measures

may add some additional variance, we retain the algorithm’s choice

so as to preserve consistency with other redMaPPer applications

(Rykoff et al. 2012, 2016). We find good agreement between our

values and redMaPPer values: 〈λLoCuSS/λredMaPPer〉 = 0.99 ± 0.26.

From a purely statistical point of view, λ is simply another label

tagged to each cluster. We leave it to future work to identify physi-

cally meaningful, minimum variance estimators of these labels.

3 SELF-SIMILAR SCALING

It is useful to review what might be expected for the outcome

of our scaling relation constraints, and in this section we review

predictions from self-similarity (Kaiser 1986). The dominant force

on the scale of galaxy clusters is gravity, which is scale invariant.

This means that galaxy clusters, under the influence of gravity and

shock heating only, are expected to be simply scaled versions of

each other, with their properties determined only by their mass and

redshift. Redshift determines the critical density

ρc(z) = E2(z)ρc,0, (1)

where the subscript 0 refers to the present epoch.

It is convention to define halo mass as that, centred on a

local potential minimum, contained within a sphere of radius r


encompassing an overdensity 
 relative to the critical density, thus

M
 =
4

3
πr3



ρc(z) ∝ E2(z)r3

. (2)

Matter in self-similar, hydrostatic galaxy clusters satisfies the

virial theorem between gravitational potential energy U and kinetic

energy K (〈U〉 = −2〈K〉), leading to the expression for the circular

velocity of the halo: v2
circ = M
/r
. Combined with equation (2),

we see that the combination of mass and redshift sets the strength

of the local gravitational potential:

v3
circ ∝ M
E(z). (3)

This relation, which been precisely calibrated by N-body simula-

tions (Evrard et al. 2008), motivates our use of the effective potential

well depth, M
E(z), as the independent degree of freedom in the

scaling relations we fit below. Note that we use the value 
 = 500

in this work because this is the radius that can be probed without

extrapolation by all our measurements.

Applying the virial theorem to the ICM, the total kinetic energy

can be written in terms of the average kinetic energy of the ICM

particles, i.e. the cluster X-ray temperature TX, leading to

TX ∝ [M
E(z)]2/3 . (4)

The X-ray emission from the ICM is dominated by thermal

bremsstrahlung emission, for which the resulting luminosity scales

as LX ∝ ρ2
gasr

3�(TX), where there are two factors of the gas

density ρgas because the radiation is produced by a two-body

interaction, and �(TX) is the cooling function. In the soft-band

range ∼[0.1−2.4] keV, the integral of the cooling function is nearly

independent of TX, while across the full energy range used for

bolometric X-ray luminosity it scales with T
1/2

X . This leads to

LX,soft

E(z)
∝ M
E(z),

LX,bol

E(z)
∝ [M
E(z)]4/3 . (5)

As probes of the same thermal energy, YX and YSZ have the same

self-similar scaling, which can be derived from the product of Mgas

and TX:

YE(z) ∝ [M
E(z)]5/3 , (6)

under the simple assumption of a constant gas fraction, fgas. We make

the similar assumption of a constant stellar fraction, f⋆, giving

Mgas = fgasM
 ∝ M
, LK ∝ M⋆ = f⋆M
 ∝ M
, (7)

under the assumption that LK is a good indicator of the total stellar

mass.

Finally, if we assume each cluster has a galaxy population drawn

from a single luminosity function with some effective mean stellar

mass, m⋆,gal, we can also derive a relation between richness and

mass:

λ =
M⋆

m⋆,gal

∝ M
. (8)

4 LI NEAR R EGRESSI ON

We assume that scaling relations between observable properties and

mass are described by power-law relations with constant slopes.2

We linearize the problem using the natural log of the values and

perform a Bayesian analysis to infer scaling parameters. To do

so correctly, we have to take into account measurement errors,

the halo mass function, and the selection criteria. Most commonly

used regression methods (e.g. BCES, Akritas & Bershady 1996;

and FITEXY, Press et al. 1992; Tremaine et al. 2002) can handle

measurement errors, while methods from Kelly (2007) and Mantz

(2016a) also take into account the independent variable distribution

by modelling it as a Gaussian mixture model inferred from the data.

2While simulations suggest mass-dependent slope behaviour (Farahi et al.

2018), a constant slope is a good approximation for the narrow mass range

probed by our sample.
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However, the selection function can still introduce significant

biases, either directly when the selection variable is considered

directly in the regression, or indirectly due to covariance between

this selection variable and the observable of interest. We quantify

this bias for the scaling relations presented in this paper by

performing linear regression without correcting for selection effects.

Results are presented in Table A1 of Appendix A. It is possible, in

principle, to use the methods of Kelly (2007) and Mantz (2016a)

to correct for selection effects when the selection variable is on

the dependent axis, using upper limits and generating ‘censored’

or missing data below the selection limit in an iterative process

(Gelman et al. 2003). However, it is more complicated to correct

for the bias caused by covariance with the selection variable, i.e.

when considering a dependent variable that is not the selection

variable, and this approach can be computationally challenging for

a larger data set.

We therefore develop a hierarchical Bayesian model similar to the

methods of Kelly (2007) and Mantz (2016a), which simultaneously

considers the selection variable alongside all other observables

in order to explicitly model the property covariance, i.e. the

intrinsic covariance between two observables at fixed halo mass,

and correctly propagate selection effects.

4.1 Hierarchical Bayesian model

We define log-space variables, μ ≡ ln (M) and s ≡ ln (S), where

M is the total halo mass and S the vector of observables given in

Table 3. In practice, we normalize mass using the median weak-

lensing mass of the sample. At a fixed redshift, the joint probability

that there exists a cluster with given observables and mass can be

written as the product

P (s, μ | θ , ψ) = P (s | μ, θ )P (μ | ψ), (9)

where θ is the set of parameters that characterize the scaling relation

of observable properties with mass, and ψ characterizes the distribu-

tion of the independent variable, in this case the cosmological mass

function of haloes. For the analysis presented here, we simplify the

latter term by assuming a fixed cosmology and use the second-order

mass function model of Evrard et al. (2014) at redshift 0.22. Since

the mass function shape has only a modest effect on the posterior

scaling parameter constraints, we do not attempt to marginalize over

cosmology and so drop ψ from the equations below.

We note that the mass discussed above is the true unobserved halo

mass, which we marginalize over. The small sample size and limited

set of observables force us to make the simplifying assumption that

weak-lensing mass is an unbiased measure of true halo mass, albeit

with non-zero scatter of ∼20 per cent (e.g. Becker & Kravtsov 2011;

Oguri & Hamana 2011; Bahé et al. 2012). We retain weak-lensing

mass, MWL, in the vector of observables s, and treat it in a special

way to avoid severe parameter degeneracies of the type discussed

in Penna-Lima et al. (2017).

We model P (s | μ, θ ), the first term in the joint probability

distribution in equation (9), as a log-normal distribution:

P (s | μ, θ ) ∝ det(�)−
1
2 exp

{

−
1

2
(s − 〈s〉)T �−1(s − 〈s〉)

}

, (10)

where 〈s〉 = αμ + π and the model parameters, θ = {π, α, �},

include the intercepts π and slopes α of the log-mean behaviour,

as well as the property covariance matrix � of Gaussian deviations

about the log-mean. Each diagonal element of the covariance matrix

specifies the variance of a property, while the off-diagonal elements

are the property covariance, all at fixed true halo mass. Except for

Table 4. Prior distributions of the scaling relation parameters for any

property, a, other than weak-lensing mass. The same priors are used for

all properties and pairwise combinations, a, b.

Parameter Description Prior

πa Intercept N(0, 100)

αa Slope N(0, 100)

σa | μ Scatter U(0, 5)

ra,b | μ Correlation coefficient U(−1, 1)

the parameters connected to weak-lensing mass, which are fixed

as explained below, the remainder are unknown parameters to be

constrained. Parameter priors are uninformative, as specified in

Table 4.

We impose a strict prior on the scaling of MWL that assumes unit

slope and intercept with true mass, and a fixed log-normal scatter

of 0.2. We tested values for the scatter of 0.1 and 0.3, finding that

our results and inferred parameters are insensitive to this choice.

We assume zero intrinsic correlation between weak-lensing mass

and all other observable properties (rMWL,Sa
= 0 for all properties,

Sa). We include the correlation of weak-lensing mass measurement

uncertainty with the other observables defined within the weak-

lensing radius (so-called ‘aperture bias’, e.g. Okabe et al. 2010).

In the likelihood below, true masses of all clusters are treated

as extra degrees of freedom, or hyperparameters, with posteriors

shaped primarily by the input weak-lensing mass measurements and

secondarily by collective distance from the mean property scaling

relations. Because of the relatively narrow mass range probed by the

LoCuSS sample, the assumed form of the mass function is not very

important. As our focus is on scaling relation model parameters, the

likelihood does not contain explicit terms relating to the size of the

selected sample. In other words, the sample volume is not a factor

in our model.

In practice, we do not measure the true values of s; our measure-

ments, so, include observational uncertainties. We again assume a

log-normal form for the measurement errors:

P (so|s) ∝ det(�err)
− 1

2 exp

{

−
1

2
(so − s)T �−1

err (so − s)

}

, (11)

where �err is the measurement error covariance. This matrix

includes both diagonal elements given by the square of the fractional

errors in each cluster’s measured properties, and off-diagonal

‘aperture bias’ terms for Mgas, LK,tot, and YSZA properties measured

within the characteristic radius inferred from weak-lensing mass.

The aperture bias contributions are the fraction of an observable’s

uncertainty that is due to the radial error, calculated by remeasuring

the observable within r500,WL ± δr to propagate the radial uncer-

tainty, where δr is ∼50–130 kpc, or ∼4−15 per cent of r500,WL.

The propagated aperture uncertainties are added in quadrature with

the observable’s other statistical uncertainty. While most other

observables are measured within the weak-lensing radius, they are

largely unaffected by small radial changes and so do not require

these off-diagonal terms.

The probability of measuring the observable properties, so,i, of a

specific cluster, i, is found by marginalizing over the true quantities,

s, resulting in

P (so,i |μi, θ ) ∝ det(�tot,i)
− 1

2 (12)

× exp

{

−
1

2
(so,i − 〈so〉i)

T �−1
tot,i(so,i − 〈so〉i)

}

,

MNRAS 484, 60–80 (2019)
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68 S. L. Mulroy et al.

where 〈so〉i = αμi + π, with μi the unobserved true halo mass of

the ith cluster, and �tot,i = � + �err,i. We make a similar log-

normal assumption about the weak-lensing mass measurements –

which is an element in so – and include the measurement error

and its aperture-driven covariance with other measured property

uncertainties in the regression analysis.

Finally, we are able to account for the effect of sample selection,

as the vector of observables includes the selection variable (Gelman

et al. 2003; Kelly 2007). Our selection function is simply a

redshift-dependent LX,RASS threshold (see Fig. 1), which is taken

into account using a redshift-dependent step function. Letting

y ≡ ln LX,RASS and denoting the z-dependent threshold luminosity

as yt(z), the odds of selection given a true mass, μi, and model

parameters, θ , are

�i(μi, θ) =

∫

dy �(y − yt (zi)) P (y |μi , θ ), (13)

where �(z) is the Heaviside function. With the assumed log-normal

form, the integral yields a complementary error function that is

evaluated for each cluster at each step in the MCMC analysis.

The expression in equation (13) is used to renormalize the

contribution of each cluster to the likelihood. The likelihood of

the observed sample properties is then

L =
∏

i∈C

�−1
i (μi, θ ) P (so,i | μi , θ ), (14)

where C is the cluster sample. Compared to a selection-unweighted

likelihood (see Appendix A), the odds factor adds support in regions

where the LX,RASS–M relation has a lower mean amplitude, steeper

slope, and larger variance.

We consider the set of 41 true halo masses as additional degrees of

freedom and perform the MCMC analysis in this space joined with

75 model degrees of freedom consisting of slope, normalization,

and variance for 10 properties, and 45 correlation coefficients.

Uninformative priors, P (θ), on the latter parameters are specified

in Table 4, and the halo mass function, P(μi), is used as a prior

on cluster true masses. At every iteration of the MCMC analysis,

the likelihood is renormalized according to equation (13), and

the resulting posterior probability distribution in the full model

parameter space is

P (θ , μi | so,i) ∝

[

∏

i∈C

�−1
i (μi, θ ) P (so,i | μi , θ )

]

P (μi , θ ), (15)

where P (μi , θ ) = P (μi)P (θ ) is the prior distribution.

We then determine the model parameter constraints, P (θ | so,i),

by marginalizing over the posterior distributions of the 41 halo

masses. In Section 5.4, we perform the complementary marginaliza-

tion and present posterior estimates of true mass for the 41 LoCuSS

clusters.

The MCMC algorithm is based on the PyMC library (Patil,

Huard & Fonnesbeck 2010) and proceeds as follows. For each

iteration, a mass is assigned to each cluster drawn randomly from

the halo mass function, i.e. the prior distribution. Then, a new set of

model parameters, θ , is drawn randomly from the prior distribution

specified in Table 4. With the assigned cluster masses and chosen set

of parameters, the selection function is evaluated and the likelihood

evaluated. The initial seeds are adapted in a way to minimize

the number of steps needed to reach equilibrium. We choose the

central value of the weak-lensing masses as the initial seed for each

unobserved halo mass, μi, and the scaling parameters are initialized

with the estimates from the uncorrected fit in Appendix A. This

choice of initial seeds allows us to reach equilibrium faster and does

Table 5. Scaling relation parameters constrained by our heirarchical

Bayesian method. See Table 3 for intercept units.

Observable Intercept Slope Scatter Self-Similar

Sa exp (πa) αa σ a|μ Slope

LX,RASS 4.70+1.65
−1.28 1.15+0.37

−0.42 0.54+0.11
−0.17 1.00

LX,ce 8.01+0.85
−0.81 0.94+0.19

−0.21 0.38+0.04
−0.05 1.33

TX,ce 6.98+0.46
−0.43 0.47+0.10

−0.11 0.20+0.03
−0.04 0.66

Mgas 0.97+0.05
−0.05 0.77+0.10

−0.10 0.16+0.03
−0.03 1.00

YX 6.18+0.65
−0.65 1.23+0.19

−0.20 0.34+0.05
−0.05 1.66

YSZA 7.93+1.06
−0.96 1.53+0.20

−0.22 0.31+0.07
−0.08 1.66

YPl 11.10+0.92
−0.93 1.14+0.15

−0.16 0.29+0.04
−0.04 1.66

LK,BCG 0.98+0.09
−0.09 0.21+0.15

−0.16 0.34+0.04
−0.05 –

LK,tot 16.85+0.73
−0.79 0.75+0.10

−0.10 <0.16∗ 1.00

λ 124.49+8.49
−11.25 0.74+0.14

−0.13 0.24+0.04
−0.05 1.00

Note. ∗The LK,tot scatter is not bounded from below (see Fig. 3), so the

value quoted is the 95th percentile.

not have an effect on the posterior distribution. The performance of

this method is demonstrated and compared with other methods in

Appendix B.

Our method is able to handle missing data, meaning systems

for which not all elements of the data vector are available. We

marginalize over these missing quantities by setting the missing

values to the median of that observable quantity and assuming a

large error, 999 in the natural log, on the missing value.

5 R ESULTS

In this section, we apply the hierarchical Bayesian method described

in Section 4.1 to the LoCuSS data described in Section 2. We discuss

the resulting scaling relation parameters below, focusing on the

individual properties in turn. Constraints on property covariances

are presented in a companion paper (Farahi et al., in preparation).

In order to characterize the scaling relations between cluster

observables and mass, we use a fixed mass pivot defined by the

sample average, Mp = 7.41 × 1014 M⊙, and fit the log-mean

behaviour of property a to the form

sa = αa(μ + e(z)) + πa, (16)

where μ = ln (Mhalo/Mp), e(z) = ln E(z), and the normalization is in

the natural log using units given in Table 3. We remind the reader

that one of the elements of the observable vector, so, is the weak-

lensing mass, which is assumed to be an unbiased estimator of true

mass with fixed slope αln MWL
= 1 and normalization πln MWL

= 0.

Since our method constrains the covariance between observables at

fixed mass, we use the same independent variable, μ + e(z), for

all properties. Where this is not the natural independent variable

derived in Section 3 (i.e. for Mgas, LK, and λ), we include an

additional factor of e(z) on the dependent axis, as listed in Table 3.

As a check, we also perform the fits with μ as the independent

variable and appropriately modified e(z) factors on the dependent

axes. As expected within such a narrow redshift range, the results

are consistent.

5.1 Scaling relation parameters

The resulting posterior estimates of the scaling relation parameters

are summarized in Table 5, shown in Fig. 2, and discussed below. In

ensuing subsections, we begin by presenting results for the selection

MNRAS 484, 60–80 (2019)
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LoCuSS: galaxy cluster scaling relations 69

Figure 2. Scaling relations between cluster observable properties and potential well depth, MWLE(z). Individual cluster points with error bars are shown,

while the hierarchical Bayesian fits and 68 per cent confidence regions of the mean behaviours are given by the solid lines and the grey scales, respectively. The

colour scale indicates the central entropy K(<20 kpc), with red being lower entropy, cool-core clusters and blue being higher entropy, non-cool-core clusters.

MNRAS 484, 60–80 (2019)
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70 S. L. Mulroy et al.

variable, LX,RASS, and proceed to examine hot gas and stellar scaling

behaviours. Subsequent sections discuss intrinsic property variance

and the physical origins of deviations about the mean relations.

5.1.1 Selection variable

The posterior parameter constraints on the scaling of LX,RASS with

mass, listed in the first row of Table 5, entail large uncertainties that

are driven by significant sample incompleteness as a function of

mass. The upper left-hand panel of Fig. 2 shows that all but 4 of the

41 clusters lie above the best-fitting underlying scaling relation; the

selection skims off only the brightest systems as a function of mass.

This behaviour is a textbook example of Malmquist bias (Allen et al.

2011; Mantz 2016a; Giles et al. 2017).

While the inferred slope of 1.15+0.37
−0.42 agrees with the self-similar

expectation, the 35 per cent uncertainty in slope dilutes the impact

of this statement. The intrinsic scatter (in natural log) of 0.54+0.11
−0.17

is higher than the 0.38+0.04
−0.05 seen for the core-excised counterpart

LX,ce, which we interpret as the consequence of including the core.

We have also performed analysis using Chandra/XMM–Newton

luminosities that include the core, finding an intrinsic scatter of

0.51+0.08
−0.08, consistent with the LX,RASS value.

The relatively large uncertainty in the LX,RASS scaling parameters

allows only weak estimates of the correlation coefficients between

LX,RASS luminosity and other cluster properties. The largest coeffi-

cients, with values between 0.4 and 0.6 and uncertainties of roughly

0.2, are with follow-up X-ray measures and YSZA. The full set of

coefficients, provided in Table A2 of Appendix A, includes hint of

an anticorrelation between hot gas mass and stellar mass discussed

further in the companion paper (Farahi et al., in preparation).

5.1.2 X-ray observables

For the X-ray properties (rows 2 through 5 of Table 5), posterior

constraints on the slopes of the scaling relations are consistently

shallower than self-similar model expectations at the ∼1−2σ level,

with uncertainties ranging from 0.1 (Mgas and TX,ce) to 0.2 (LX,ce

and YX). The shallow behaviour for Mgas is unexpected, as previous

studies covering a wider dynamic range in cluster mass have found

that mean gas mass increases with halo mass in a superlinear fashion,

Mgas ∝ M1.2 (e.g. Pratt et al. 2009). However, as discussed below,

the slope we find is only in ∼1.5σ tension with the Weighing

the Giants study of Mantz et al. (2016b), who find a slope of

1.004 ± 0.014 for a high-mass sample of clusters. A trend towards

self-similar behaviour in the highest halo masses is seen in recent

hydrodynamical simulations that include AGN heating (Farahi et al.

2018).

We highlight that there is a degeneracy between the posterior

slope of a property and the covariance between that property and

the selection variable, LX,RASS. Physically, we expect a positive cor-

relation between Mgas and LX,RASS residuals, but find the correlation

coefficient to be only 0.24+0.21
−0.24. If this value were constrained higher,

the slope of the Mgas relation would also increase. To demonstrate

this, we perform the analysis with a uniform prior between 0.7 and 1

on this correlation coefficient, finding the slope of the Mgas relation

increases ∼1.5σ , from 0.77+0.10
−0.10 to 0.90+0.11

−0.11, consistent with both

the self-similar prediction and the Weighing the Giants result.

5.1.3 SZ observables

We find that the slopes of the two SZ-derived Y relations are

consistent with each other, with YSZA being steeper than YPl at

the level of 1.5σ . YSZA is within 1σ of the self-similar slope of 5/3,

and the two SZ values bracket the YX slope of 1.23+0.19
−0.20.

Regarding normalization, the cylindrical measurement of YPl

can be converted to a spherical estimate by dividing by a factor

Ycyl/Ysph = 1.2 (Arnaud et al. 2010). When we apply this conversion

factor to the YPl intercept, the resulting value of 9.25+0.77
−0.78 is

consistent with the YSZA value of 7.93+1.06
−0.96. To compare to the

X-ray normalization, we follow Arnaud et al. (2010) and apply a

conversion factor:

CXSZ =
σT

mec2

1

μemp

= 1.416 × 10−19 Mpc2

M⊙keV
, (17)

giving a YX intercept of 8.75+0.92
−0.92. To summarize, we find good

agreement between the normalizations of all three relations that

measure the electron thermal energy content.

While the YSZA slope is in agreement with the self-similar relation,

the YPl slope is shallower. The YPl measurement errors for the low-

mass clusters are large, so they do not have a strong influence on the

fit. The fit parameters are largely constrained by the intermediate

and high-mass clusters, and an increase in the YPl measurement of

intermediate-mass clusters would act to shallow the fitted slope.

Indeed, we find the highest ratios of YPl to YSZA in low and

intermediate-mass clusters.

We note that the YSZA relation is constrained using a subsample of

33 clusters, due mostly to contamination as detailed in Section 2.4.1.

If there was correlation between cluster mass and the extended

sources that lead to contamination, this could lead to a bias in

the constrained relation. We refit all scaling relations using only

this subsample of 33 systems, finding the results largely consistent

within errors.

5.1.4 Stellar observables

The measures of galactic stellar content, LK,BCG, LK,tot, and λ,

provide complementary insights into the star formation history of

high-mass haloes. Both LK,tot and λ attempt to measure the total

stellar content of a cluster, but they differ in detail. The total K-

band luminosity, LK,tot, is a background-corrected estimate that

uses all member galaxies within the weak-lensing estimate of r500,

whereas λ is a red-sequence weighted estimate determined within an

aperture scaling as λ0.2. The former is luminosity-weighted, while

the latter is number-weighted. We highlight that any interpretation

of the stellar content derived from these galaxy observable scaling

relations relies on the assumption that they are reliable tracers

of the stellar mass. This is likely sensitive to the details of the

measurement, and determining the best stellar mass estimate would

require further study.

Despite their differences, the slopes of the LK,tot and λ scaling

relations are consistent, and in both cases shallower than the self-

similar prediction. As both measures scale with total stellar mass,

this is consistent with a stellar fraction that decreases with increasing

halo mass, implying that star-forming efficiency is a decreasing

function of halo mass (Gonzalez, Zaritsky & Zabludoff 2007;

Laganá et al. 2011). This result is supported by abundance-matching

arguments (Behroozi, Wechsler & Conroy 2013; Kravtsov 2013),

and AGN-based feedback scenarios in cosmological hydrodynam-

ics models are tuned to produce this feature (Croton et al. 2006;

De Lucia & Blaizot 2007; Planelles et al. 2013; Farahi et al. 2018;

Pillepich et al. 2018). Both weak-lensing (Simet et al. 2017) and

ensemble spectroscopic (Farahi et al. 2016) mass estimate methods

find mean mass scaling behaviour, M ∝ λ1.3, consistent with our

findings.
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The close agreement in the LK,tot and λ slope values may be

somewhat fortuitous. The radius within which λ is measured scales

more slowly (λ0.20) than the halo radius implied from its scaling with

weak-lensing mass (λ0.45), within which LK,tot is measured. While

this could potentially lead to proportionally smaller increases in

λ compared to LK,tot as halo mass increases, a secondary factor

such as a decreasing star-forming fraction in higher mass haloes

may compensate for the scale mismatch effect. We note that the

correlation coefficient between LK,tot and λ at fixed MWL, presented

in Farahi et al. (in preparation), is near unity: 0.77+0.16
−0.27.

The LK,BCG scaling relation is very shallow, almost consistent

with zero, demonstrating that the luminosity of the BCG is not a

strong function of mass for clusters in this mass range. As halo mass

increases, so does the galaxy velocity dispersion, and accretion on

to the BCG slows relative to the total mass growth of the cluster. As

these two processes are largely uncoupled, it leads to large scatter

in the relation, consistent with our finding that the LK,BCG relation

has a larger intrinsic scatter than the LK,tot relation.

The normalizations of the BCG and total LK relations provide a

simple estimate of the fraction of stellar mass associated with the

BCG. We find a value of 5.8 ± 0.5 per cent, with the uncertainty

dominated by the error in the BCG normalization. A comparison

to the literature is difficult to do homogeneously as the precise

values will rely on the method used for BCG and intracluster light

separation, as well as background subtraction.

Ziparo et al. (2016) applied very similar methods to ours to a

sample of clusters from the XXL survey with weak-lensing masses

between 1014 and 1015, finding LK,BCG/LK,500 between 3.5 and

20 per cent. Using slightly different methodology but again finding

consistent results, Lin & Mohr (2004) found LK,BCG/LK,200 ranged

from 3 to ∼18 per cent, again for clusters with masses similar to

our sample. These values, calculated using LK, 200, provide a lower

limit on LK,BCG/LK,500.

Halo occupation distribution models also enable calculation

of the BCG/total stellar fraction. For instance, Leauthaud et al.

(2012) use lensing, clustering, and stellar masses to parametrize the

occupation of haloes. Although these models are often driven by

galaxies haloes with masses less than clusters, the parametrization

do allow calculations at all masses. In the lowest redshift bin (z ∼

0.3), Leauthaud et al. (2012) found that haloes with masses greater

than 1014 had BCG/total stellar fraction below 10 per cent.

5.2 Intrinsic variance

Knowledge of the intrinsic variance in cluster properties is important

for precise cosmological studies with the population, but empirical

estimates of the full covariance matrix, including both on-diagonal

scatter and off-diagonal pair correlations, have only recently begun

to emerge (Okabe et al. 2010; Maughan 2014; Mantz 2016a).

Caution is required when estimating the covariance of sample

properties, as the statistical (measurement) errors must be accurately

determined and the selection model must be correctly described.

Considerable interest lies in the intrinsic scatter of an individual

property, σ a|μ, and its related scatter in halo mass.

The effect of including sample selection has a significant effect

on the posterior intrinsic scatter estimates. The ‘naive’ regression

model (see Appendix A) produces scatter estimates that differ

significantly from Table 5 for several X-ray properties, including the

LX,RASS selection variable. Note, however, that the intrinsic scatter

constraints on Mgas and TX,ce as well as all of the SZ and optical

properties are consistent between the two treatments.

Figure 3. Posterior PDF of the scatter in total K-band luminosity, σln LK
,

with the 68th and 95th percentiles indicated.

Since the model that includes selection effects should be closer

to unbiased, we employ the values in Table 5 as our primary results,

with a note of caution that posterior scatter constraints for LX,ce and

YX appear to be most sensitive to the selection model.

Reviewing the intrinsic scatter values, we note that Mgas and

LK,tot have the lowest values, while the LX,RASS selection variable

is highest. The posterior in LK,tot scatter has no finite lower bound.

As shown in Fig. 3, the posterior probability distribution function

(PDF) of the intrinsic scatter in the LK,tot relation is not well fitted

by a Gaussian, so we quote 68th and 95th percentiles of 0.08 and

0.16, respectively. The 95th percentile is below the central value

of the intrinsic scatter in the λ relation, 0.24+0.04
−0.05. We note that the

definition of membership for the two observables is different and

therefore recalculate LK,tot using membership as determined in the

λ calculation, finding the result unchanged. We interpret this as an

indication that LK,tot, as a tracer of the stellar mass, is a slightly

better proxy for cluster mass than the richness.

We find good agreement between the intrinsic scatter of ∼0.3 for

all three Y relations.

From Table 5, we can estimate the mass proxy power using the

inferred scatter in mass σμ|a = σ a|μ/αa. BCG K-band luminosity is

by far the least effective, with a wide scatter of 1.6 in logarithmic

mass. Total K-band light, on the other hand, is much more tightly

correlated, with an upper limit of ∼20 per cent. Gas mass provides

∼0.20 ± 0.05 fractional accuracy in mass, similar to all measures of

Y. We find no evidence that Y is the lowest scatter mass proxy. We

stress that these estimates are with respect to the weak-lensing mass

values, and the inference with respect to true mass is dependent

on our simplifying assumptions discussed in Section 4. Larger

homogeneous samples of the type used here are needed to provide

more accurate estimates of the intrinsic property covariance.

5.3 Origin of scatter

To motivate exploration of potential physical origins of the scatter

in the scaling relations, in Fig. 4 we compare the residuals in each

property with the central entropies of the clusters. The central

entropy, K(<20 kpc), measured in the inner 20 kpc (Sanderson,

Edge & Smith 2009b) is an indicator of the formation history of

the cluster, with a lower entropy suggesting a less disturbed cluster

with a cool core, and thus earlier formation epoch and/or less rich

recent merger history (Rasia et al. 2015; Hahn et al. 2017).

MNRAS 484, 60–80 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
4
/1

/6
0
/5

2
7
4
1
4
3
 b

y
 U

n
iv

e
rs

ity
 o

f B
irm

in
g
h
a
m

 u
s
e
r o

n
 2

6
 S

e
p
te

m
b
e
r 2

0
1
9



72 S. L. Mulroy et al.

Figure 4. Normalized residuals from each scaling relation, defined in equation (18), as a function of entropy in the central 20 kpc of the cluster. Colours

indicate K(< 20 kpc), as in Fig. 2.

MNRAS 484, 60–80 (2019)
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In Appendix C, we consider multiple other indicators of the level

of disturbance in the cluster – central surface brightness, centroid

shift, BCG/centroid separation, and magnitude gap – finding results

consistent with those of the central entropy described below.

We define the residual, δai, in property a as the vertical distance in

log-space between the ith cluster’s measurement and the posterior

mean scaling relation, normalized by the intrinsic scatter of that

relation:

δai =
sa,i − (π̂a + α̂aμi)

σ̂a

, (18)

where the hatted quantities are the posterior central estimates of

the scaling relation parameters for property a, and μi is the weak-

lensing mass of the ith cluster. We use the 95th percentile of 0.16 for

σLK
. We highlight that the residuals from a given scaling relation do

not necessarily average to zero, due to sampling biases introduced

by the selection model. This effect is strongest in the LX,RASS

selection variable, but translates to other observables through non-

zero covariance.

The LX,RASS measurement contains the core, which will con-

tribute more to the signal for clusters with cool cores than those

without. We therefore expect large positive residuals in the low-

entropy clusters, as we see clearly in the top left-hand panel of

Fig. 4. In the Chandra/XMM–Newton X-ray observables, we see no

clear trend in the residuals with cluster entropy.

While we find no trend in YSZA (or YX) residuals, we do find a

trend in YPl of more positive (negative) residuals in higher (lower)

entropy clusters. This could suggest that a fixed Arnaud et al. (2010)

pressure profile performs less well in non-cool-core clusters, as a

boosted signal in the outskirts would increase the YPl measurement

and produce a positive residual. This interpretation is supported by

the results in Appendix C, where we find the same trend in indicators

sensitive to the gas morphology.

The clearest trends we find in Fig. 4 are in the lower two

panels, showing residuals of the total cluster optical observables

– LK,tot and λ – with more positive (negative) deviations in higher

(lower) entropy clusters. This trend is reproduced in most structural

indicators in Appendix C. The trend is also seen clearly in the two

lower panels of Fig. 2 and discussed further in Section 6.2.

5.4 Posterior distribution on true halo mass

Our model fits for the cluster halo mass, and so generates a posterior

distribution for the true mass of each cluster. We report these

posterior constraints in the final column of Table 1, and display them

next to our weak-lensing mass estimates in Fig. 5. Any differences

are due to a combination of two effects – the mass function

favouring low-mass systems, and the scaling relations favouring

systems that lie near the expectation value. The latter effect can

be seen by considering Fig. 5 alongside Fig. D1. Clusters with

negative residuals from the scaling relations tend to have posterior

masses smaller than their weak-lensing masses (e.g. Abell0907 and

Abell0291), while those with positive residuals have the opposite

(e.g. Abell2219 and Abell0697).

6 D ISCUSSION

6.1 Scaling relations in the literature

To obtain robust scaling relations requires an unbiased measurement

of the true mass, an understanding of and correction for the selection

of the sample, and a method that allows for the covariance between

the selection variable and the observable property. Mainly due to the

paucity of high-signal-to-noise, uniform, multiwavelength data for

well-defined cluster samples, the number of studies in the literature

that meet all of these criteria is small. We will largely restrict

ourselves to these studies for comparison.

The most similar study to our own is that of Mantz et al. (2016b),

who use weak-lensing measurements and gas mass as estimators of

the true mass, and attempt to model the selection of their clusters.

For the ICM properties, they also allow for the covariance of those

properties with the selection variable. Their sample includes 27

clusters with weak-lensing masses and a larger sample with gas

mass measurements, and spans a slightly wider redshift range than

ours. In mild conflict with our results, Mantz et al. (2016b) report

that the core-excised gas temperature and the gas mass agree with

the self-similar predictions. They find a TX,ce relation slope of

0.62 ± 0.04, consistent with the self-similar expectation of 2/3 but

only ∼1σ discrepant with our estimate of 0.47+0.10
−0.11. Their estimate

of the Mgas relation slope is 1.007 ± 0.012, in agreement with unity

and again marginally consistent with our estimate of 0.77+0.10
−0.10.

It is unclear what causes the differences in our results, however,

given our method, selection and data analysis are all different

from Mantz et al. (2016b), a difference of this magnitude is not

unexpected.

Similar to our results, Mantz et al. (2016b) also find that the soft-

band X-ray luminosity is steeper than the self-similar expectation,

and suggest that this is due to non-gravitational heating and cooling

processes in cluster cores.

Our study is the first to look at the simultaneous scaling of X-ray,

SZ, and optical properties, and so there are few results to compare

to the SZ and optical properties. Mantz et al. (2016b) provide an

empirical scaling (without modelling the covariance and correcting

for sample selection) and find a shallower YSZ slope than self-

similarity would predict (1.31 ± 0.03). Note that this measurement

is using Mgas as the mass parameter, but Mantz et al. (2016b) find a

one-to-one relation between Mgas and MWL. This result is bracketed

by our YPl and YSZA slopes.

Although not corrected for selection effects, studies have placed

constraints on the optical scaling relations of LK,tot (e.g. Lin,

Mohr & Stanford 2003, 2004; Mulroy et al. 2014, 2017) and λ (e.g.

Rykoff et al. 2012; Mantz et al. 2016b; Melchior et al. 2017; Simet

et al. 2017), finding the slopes to be shallower than the self-similar

predictions, consistent with our results.

Results from recent numerical simulations indicate that AGN

heating produces departures from self-similar scaling relations.

Several independent groups find that galactic physics with AGN

feedback steepens the ICM scaling relations (Planelles et al. 2013;

Hahn et al. 2017; Le Brun et al. 2017; Pillepich et al. 2018), in

moderate tension with our X-ray findings. The overall star formation

efficiency declines with increasing halo mass in these simulations,

producing stellar mass scaling relations that are sublinear with M, in

agreement with the LoCuSS behaviour. We caution that a concern

when making sample comparisons is the possibility that the scaling

relation slopes run with halo mass and, to a lesser extent, redshift

(Farahi et al. 2018).

6.2 Cluster residuals

In this section, we consider the trends observed in Section 5.3 in

more detail.

In Fig. 6, we split the clusters into low- (K < 80) and high-

(K > 80) entropy subsamples using central entropy K(< 20 kpc)

(Sanderson et al. 2009a), and show combined residuals from each

MNRAS 484, 60–80 (2019)
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74 S. L. Mulroy et al.

Figure 5. The posterior constraints on true halo mass from the hierarchical Bayesian fit in grey, alongside the measured weak-lensing cluster masses in red.

The grey box plots and whiskers show the [25−75] and [0.3−99.7] percentile ranges, respectively, while the errors on the red points show the 25th and 75th

percentiles according to the measurement errors on the weak-lensing measurements. The data points are ordered by weak-lensing mass.

scaling relation for clusters within each subsample. Ensemble aver-

age values are inversely weighted by the square of the uncertainty in

that measurement. The x-axis order starts with X-ray measurements

before progressing to SZ and optical. Lines are coloured by central

entropy as in Fig. 2. For completeness and additional clarity, we

show the data for individual clusters in Appendix D.

Except for the LX,RASS selection variable, residuals of the re-

maining gas observables average to near zero for both subsamples,

indicating that both high- and low-entropy clusters follow similar

mean scaling relations between these gas observables and mass.

Surprisingly, the residuals in the total cluster optical content,

LK,tot and λ, show a clear difference between the two subsamples.

Interpreting them as a measure of stellar content, this suggests

that at fixed mass, lower entropy clusters contain a smaller stel-

lar mass and a smaller number of galaxies than higher entropy

clusters.

MNRAS 484, 60–80 (2019)
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LoCuSS: galaxy cluster scaling relations 75

Figure 6. Normalized residuals from the scaling relations, defined in equation (18), for low-entropy (K < 80, left) and high-entropy (K > 80, right) subsamples,

with K(<20 kpc) determined by Sanderson, O’Sullivan & Ponman (2009a) in units of keV-cm2. Colours indicate K(<20 kpc), as in Fig. 2. Ensemble average

values are shown in black, inversely weighted by the square of the measurement uncertainty, with error bars displaying the standard deviation in the mean.

This finding may be a signal of bias connected to halo formation

epoch, if high central entropy is an indicator of a later formation

epoch. The majority of star formation in the Universe took place at

high redshift (z ∼ 1−3), and it is well known that galaxies in the

field are more star forming than their cluster satellite counterparts

(Wetzel, Tinker & Conroy 2012; Haines et al. 2015). Galaxies in

later-forming clusters may be able to form more stellar mass because

the progenitor haloes spend more time in the field during this epoch

of cosmic star formation before being quenched in the cluster

environment. Conversely, early-forming clusters would quench

their galaxies earlier, and the massive galaxies would undergo more

merging than their field counterparts. The net result would be both

a lower stellar mass and a lower richness in older, lower entropy

clusters.

It is important to note, however, that the LX,RASS selection criteria

may contribute to the trend we see. This selection favours detection

of brighter, cool-core clusters, with lower central entropy. The low-

mass end of our sample is certainly incomplete, and potentially

the absent systems are preferentially non-cool-core clusters. Rather

than the non-cool-core clusters containing a systematically higher

stellar fraction than the cool-core clusters, it is consistent with Fig. 2

that these non-cool-core clusters are simply missing from the lower

mass end of our sample. Inclusion of these missing clusters could

possibly drive up the intrinsic scatter constraints in LK,tot and λ.

Studies based on optically selected samples will shed light on this

issue (Rykoff et al. 2014, 2016).

7 SU M M A RY

The task of constraining scaling relations is complicated by the

effects of the selection function and covariance. In this paper we

have presented a new multivariate approach to correct for these

effects, and applied it to a multiwavelength observational data set

for which the selection function is well defined. For the first time,

we have provided well-constrained scaling relation parameters with

mass for a range of galaxy cluster observables, and our main results

are as follows:

(i) We find that the ICM scaling relations are shallower than the

self-similar expectations at the 1−2σ level.

(ii) The results of the integrated optical observables, LK,tot and

λ, are in good agreement, with slopes of ∼0.75 suggesting that star-

forming efficiency is a decreasing function of cluster halo mass.

(iii) We find no distinction between the core-excised X-ray or

high-resolution SZ relations of clusters of different central entropy.

(iv) Clusters with low central entropy have negative residuals

from the integrated optical scaling relations, suggesting that early-

forming clusters have a lower stellar fraction than their younger

counterparts.

Following conclusion (iii), selection based on core-excised X-

ray or high-resolution SZ may lead to a more dynamically diverse

sample of clusters since neither property’s scaling relation is

impacted by the presence of a cool core. Further investigation with

samples including lower mass clusters is needed to fully understand

any dependence of the cluster stellar fraction on its dynamical state.

While our results in this work are limited by the low number of

observed clusters, our method will be applicable to future surveys

and will lead to excellent constraints on the physics of clusters and

the cosmological parameters.
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APPENDI X A : SELECTI ON BI AS

Table A1 shows the scaling relation parameters inferred from

the Kelly (2007) method, without correcting for selection effects.

Comparison with the constraints from our hierarchical Bayesian

method, shown in Table 5, quantifies the bias from the selection

function and the importance of accounting for it. The bias in the

LX,RASS parameters is largest, as expected for the selection variable.

Table A1. Scalingrelation parameters inferred from the Kelly (2007)

method without correcting for selection effects.

Observable Intercept Slope Scatter

Sa exp (πa) αa σ a|μ

LX,RASS 7.61+0.52
−0.56 0.47+0.23

−0.23 0.37+0.05
−0.06

LX,ce 8.08+0.68
−0.75 1.02+0.29

−0.30 0.48+0.06
−0.08

TX,ce 7.03+0.33
−0.33 0.55+0.14

−0.15 0.22+0.04
−0.04

Mgas 0.90+0.04
−0.04 0.99+0.13

−0.14 0.17+0.04
−0.05

YX 6.43+0.60
−0.65 1.31+0.30

−0.30 0.47+0.08
−0.09

YSZA 8.01+0.81
−0.83 1.91+0.33

−0.36 0.30+0.09
−0.09

YPl 10.00+0.76
−0.77 1.37+0.23

−0.25 0.35+0.06
−0.07

LK,BCG 1.00+0.05
−0.05 0.18+0.18

−0.18 0.32+0.04
−0.04

LK,tot 14.99+0.70
−0.70 0.97+0.13

−0.14 0.12+0.05
−0.06

λ 100.82+6.16
−6.44 1.17+0.18

−0.19 0.20+0.07
−0.07
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Table A2. The covariance between LX,RASS and the observables, con-

strained by our hierarchical Bayesian method.

Observable Correlation coefficient

Sa ra,LX,RASS

LX,ce 0.43+0.15
−0.19

TX,ce 0.33+0.21
−0.25

Mgas 0.24+0.21
−0.24

YX 0.44+0.16
−0.21

YSZA 0.57+0.17
−0.24

YPl 0.18+0.20
−0.23

LK,BCG 0.12+0.21
−0.23

LK,tot −0.07+0.58
−0.47

λ −0.30+0.24
−0.21

The magnitude of the bias in other observables is consistent with

the magnitude of that observables covariance with LX,RASS, shown

in Table A2.

A P P E N D I X B: PE R F O R M A N C E O F

H I E R A R C H I C A L BAY E S I A N M E T H O D

We test the performance of the hierarchical Bayesian method on

1000 mock data sets, generated using the following steps:

(i) Generate X values assuming a mass function using the hmf

code (Murray, Power & Robotham 2013).

(ii) Generate Y values assuming a Y–X scaling relation.

(iii) Generate Z values assuming a Z–X scaling relation and a

correlation coefficient of −0.7 between Y and Z at fixed X.

(iv) Apply correlated measurement errors with variance 0.01

to X, Y, and Z values with a correlation coefficient of 0.7 at

fixed X.

(v) Select those above a Y limit.

After applying the Y selection, each data set contains ∼50

objects, similar to our LoCuSS sample. We calculate the best-

fitting parameters for each data set, and show the distribution of

these parameters in Fig. B1, finding all parameters to be well

constrained.

We compare the best-fitting parameters calculated using different

methods:

(i) LS: Ordinary Least Squares.

(ii) Kelly: the method of Kelly (2007), without correcting for

selection effects.

(iii) H-Bayesian: the hierarchical Bayesian model presented in

Section 4.1.

(iv) H-Bayesian (diag err cov): the same model, without mod-

elling the non-diagonal component of error covariance.

As expected, the methods that do not consider the selection

function (LS and Kelly) constrain a shallower slope (and higher

intercept) for selection variable Y and a steeper slope (and lower

intercept) for Z due to its negative covariance with Y. This leads the

Kelly method to underestimate the intrinsic scatter in both relations,

while a simple LS method is more accurate. We note that while

both H-Bayesian methods are accurate in the Y relation, where

modelling full error covariance is unimportant, the H-Bayesian

method that does not model full error covariance is less accurate in

the Z relation. This figure illustrates the importance of modelling

both the selection function and the error covariance on the inferred

parameter, particularly for the scatter parameter of the non-selection

variables.

Figure B1. Distribution of the best-fittingparameters for 1000 mock data sets, constrained by four different methods: LS – Ordinary Least Squares (cyan);

Kelly – the method of Kelly (2007), without correcting for selection effects (red); H-Bayesian – the hierarchical Bayesian model presented in Section 4.1

(blue); H-Bayesian (diag err cov) – the same model, without modelling the non-diagonal elements of the error covariance (green). The dashed lines show the

input values.
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APPEN D IX C : OTHER STRUCTURAL

I N D I C ATO R S

In this section, we compare residuals from the scaling relations

against several structural indicators of the cluster, and display the

results in Fig. C1.

The surface brightness concentration, cSB, is defined as the ratio of

the central surface brightness within 40 kpc and the ambient surface

brightness within 400 kpc. A large cSB suggests the presence of a

cool core, and therefore a less dynamically disturbed cluster. The

centroid shift, 〈w〉, taken from Martino et al. (2014), is the standard

Figure C1. Normalizedresiduals from scaling relations, defined in equation (18), as a function of (clockwise) surface brightness concentration, centroid shift,

BCG/centroid separation, and magnitude gap. Colours indicate central entropy K(<20 kpc), as in Fig. 2.
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deviation of the projected separation between the X-ray peak and

the X-ray centroid calculated in circular apertures in the range

[0.05−1]r500. We also consider the projected separation between

the X-ray centroid and the BCG, 
BCG
centroid. Both projected separation

parameters (〈w〉 and 
BCG
centroid) are sensitive to the dynamical state

of the cluster, with a large value suggesting a more disturbed

cluster. Finally, we include the magnitude gap, 
M1,2, between the

two brightest galaxies within 0.5rvir. A larger magnitude gap sug-

gests that bright galaxies have had time since the last major merger

to accrete on to the BCG, therefore suggesting a less-disturbed

cluster.

The trends seen in Section 5.3 in residuals from the integrated

optical observables (LK,tot and λ) as a function of central entropy

K(< 20 kpc) are reproduced strongly in the structural indicators

sensitive to gas morphology. They are less clear in the indicators

sensitive to the galaxies. The K(<20 kpc) trend in YPl is also

reproduced by indicators sensitive to the gas morphology, consistent

with the explanation that measurements of more disturbed non-cool-

core clusters are overestimated by the assumption of an Arnaud et

al. (2010) profile.

We find positive correlation between 
M1,2 and residuals from

LK,BCG, as expected, with a larger 
M1,2 suggesting a brighter

BCG.

APPENDI X D : INDI VI DUAL CLUSTER

RESI DUALS

In Fig. D1, we present the unstacked cluster residuals as discussed in

Section 6.2. The panels are ordered by increasing MWL, and colours

indicate K(< 20 kpc), as in Fig. 2.
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Figure D1. Normalized residuals from the scaling relations, defined in equation (18), for all clusters. The panels are ordered by increasing MWL, and colours

indicate the cluster central entropy K(<20 kpc), as in Fig. 2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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