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Department of Computational Linguistics, Universität Heidelberg, DE
Institute AIFB, Karlsruhe Institute of Technology, DE

{augenste,pado}@cl.uni-heidelberg.de, rudolph@kit.edu

Abstract. The automated extraction of information from text and its transforma-
tion into a formal description is an important goal in both Semantic Web research
and computational linguistics. The extracted information can be used for a va-
riety of tasks such as ontology generation, question answering and information
retrieval. LODifier is an approach that combines deep semantic analysis with
named entity recognition, word sense disambiguation and controlled Semantic
Web vocabularies in order to extract named entities and relations between them
from text and to convert them into an RDF representation which is linked to DB-
pedia and WordNet. We present the architecture of our tool and discuss design
decisions made. An evaluation of the tool on a story link detection task gives
clear evidence of its practical potential.

1 Introduction

The term Linked Data (LD) stands for a new paradigm of representing information
on the Web in a way that enables the global integration of data and information in
order to achieve unprecedented search and querying capabilities. This represents an
important step towards the realization of the Semantic Web vision. At the core of the
LD methodology is a set of principles and best practices describing how to publish
structured information on the Web. In recent years these recommendations have been
adopted by an increasing number of data providers ranging from public institutions to
commercial entities, thereby creating a distributed yet interlinked global information
repository.

The formalism underlying this “Web of Linked Data” is the Resource Description
Framework (RDF) which encodes structured information as a directed labelled graph.
Hence, in order to publish information as Linked Data, an appropriate graph-based
representation of it has to be defined and created. While this task is of minor difficulty
and can be easily automatized if the original information is already structured (as, e.g.,
in databases), the creation of an adequate RDF representation for unstructured sources,
particularly textual input, constitutes a challenging task and has not yet been solved to
a satisfactory degree.

Most current approaches [7,19,16,6] that deal with the creation of RDF from plain
text fall into the categories of relation extraction or ontology learning. Typically, these
approaches process textual input very selectively, that is, they scan the text for linguistic
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Fig. 1. The architecture of LODifier

patterns that realize a small number of pre-specified types of information (e.g., is-CEO-
of relations). This strategy is oriented toward a high precision of the extracted structured
information and certainly adequate if the result of the extraction process is meant to be
used for accumulation of large sets of factual knowledge of a predefined form.

In contrast to these approaches, we propose a strategy which aims at translating the
textual input in its entirety into a structural RDF representation. We aim at open-domain
scenarios in which no a-priori schema for the information to be extracted is available.
Applying our method to a document similarity task we demonstrate that it is indeed
both practical and beneficial to retain the richness of the full text as long as possible.

Our system, LODifier, employs robust techniques from natural language processing
(NLP) including named entity recognition (NER), word sense disambiguation (WSD)
and deep semantic analysis. The RDF output is embedded in the Linked Open Data
(LOD) cloud by using vocabulary from DBpedia and WordNet 3.0.

Plan of the Paper. Section 2 begins by sketching the architecture of the system. Sec-
tion 3 presents an evaluation of LODifier on a document similarity task. After dis-
cussing related work in Section 4, we conclude in Section 5.

2 The System

This section describes the resources and algorithms used to build LODifier. Figure 1
shows the architecture of the system. After tokenization, mentions of entities in the
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input text are recognized using the NER system Wikifier [18] and mapped onto DBpedia
URIs. Relations between these entities are detected using the statistical parser C&C and
the semantics construction toolkit Boxer [8], which generates discourse representation
structures (DRSs) [14]. Thereafter, the text is lemmatized and words are disambiguated
with the WSD tool UKB [1] to get WordNet mappings. The RDF graph is then created
by further processing the Boxer DRS output, transforming it into triples. Finally, it is
enriched with the DBpedia URIs (to link its entities to the LOD cloud) and the WordNet
sense URIs (to do the same for the relations). The following subsections provide details
on the individual processing steps.

2.1 Recognizing Named Entities

The first step is to identify mentioned individuals. They are recognized using the NER
system Wikifier [18] that enriches English plain text with Wikipedia links. If Wiki-
fier finds a named entity, it is substituted by the name of the corresponding English
Wikipedia page. Applied to the test sentence

The New York Times reported that John McCarthy died. He invented the pro-
gramming language LISP.

Wikifier recognizes the named entities and generates the output

[[The New York Times]] reported that [[John McCarthy (computer scientist)|

John McCarthy]] died. He invented the [[Programming language|programming

language]] [[Lisp (programming language)|Lisp]].

To disambiguate the Wikipedia links, Wikifier employs a machine learning approach
that uses the links between Wikipedia articles as training data. Since the links between
Wikipedia articles are manually created by Wikipedia editors, the training data consists
of highly reliable disambiguation choices.

Note that the Boxer system itself also performs a NER. We employ Wikifier to in-
crease NER coverage and, most notably, to obtain links to the LOD cloud via DBpedia
URIs.

2.2 Linking DBpedia URIs to Recognized Named Entities

The next step is to generate DBpedia URIs out of the Wikifier output and link those
DBpedia URIs to previously introduced Boxer classes.

DBpedia [4] is a large, freely available domain-independent multilingual ontology
extracted from Wikipedia, comprising Wikipedia page names, infobox templates, cate-
gorization information, images, geo-coordinates and links to external webpages. DBpe-
dia contains links to various data sets including FOAF, Geonames and WordNet.

We exploit the fact that every Wikipedia page has a corresponding DBpedia page,
which allows for a straightforward conversion of Wikipedia URLs to DBpedia URIs.
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2.3 Recognizing Relations

Next, relations between the entities are determined. This is done by the parser C&C and
the Boxer system developed by Curran, Clark and Bos [8].

The C&C parser first tags input words with parts of speech from the Penn Treebank
tagset. It then constructs parse trees in the combinatorial categorial grammar (CCG)
paradigm. In addition, C&C contains a named entity recognizer that distinguishes be-
tween ten different named entity types: organization (org), person (per), title (ttl), quo-
tation (quo), location (loc), first name (fst), surname (sur), URL (url), e-mail (ema) and
unknown name (nam). The parser is rather robust for a “deep” natural language pro-
cessing tool, with precision and recall scores well above 80%. The C&C output for our
example is displayed in Fig. 2. It forms a derivation tree in which each non-terminal is
labelled with the CCG rule that was used to construct it (e.g., fa for ’forward applica-
tion’) as well as its CCG category. The terminals, labelled t, provide information about
the words’ CCG categories, forms and lemmas and parts of speech (in this order). The
two last elements of each terminal specify information on shallow chunks and Named
Entities, using IOB (inside-outside-begin) notation, a common format for representing
non-hierarchical chunks. An IOB label starting with I-, like I-NP, indicates that a given
word is inside an NP chunk. The label O means that the word is not part of any chunk.
For example, the only Named Entity recognized in the first sentence in John McCarthy
(a PER).1

Boxer builds on the output of the statistical parser C&C and produces discourse
representation structures (DRSs, cf. [14]). DRSs model the meaning of texts in terms of
the relevant entities (discourse referents) and the relations between them (conditions).
Figure 3 shows the DRSs for our example. Discourse referents are shown above the
dotted lines and conditions below.

Discourse referents are introduced by new noun phrases or events and are, from a
logical standpoint, essentially variables. For previously introduced discourse referents,
Boxer attempts to resolve anaphora by either binding them to previously introduced dis-
course referents or accommodating them. A condition, which is described by a unary or
binary predicate, is created for every relation found between discourse referents. Unary
relations (also referred to as classes) are introduced by nouns, verbs, adverbs and adjec-
tives, these are e.g., person, event or topic. Binary relations are introduced by preposi-
tions and verb roles, e.g., agent, patient or theme. As the example shows, conditions can
embed DRSs themselves. Such conditions are called complex conditions and are used
to specify logical dependencies between partial propositions: disjunction, implication,
negation, necessity, possibility.

Note that the DRS conditions only use unary and binary relations. Therefore, DRSs
are structurally very similar to RDF, and can hence serve as a convenient intermediate
data structure for converting text into RDF.

2.4 Assigning RDF WordNet URIs to Boxer Relations

Our first candidate for a target vocabulary for linking Boxer relations onto Linked Open
Data entities was DBPedia. DBpedia contains about 44.000 different property types

1 IOB supports labels of type B- to mark the first word in a chunk, but this is not used by Boxer.
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ccg(1,

rp(s:dcl,

ba(s:dcl,

lx(np, n,

t(n, ’The_New_York_Times’, ’The_New_York_Times’, ’NNS’, ’I-NP’, ’O’)),

fa(s:dcl\np,

t((s:dcl\np)/s:em, ’reported’, ’report’, ’VBD’, ’I-VP’, ’O’),

fa(s:em,

t(s:em/s:dcl, ’that’, ’that’, ’IN’, ’I-SBAR’, ’O’),

ba(s:dcl,

lx(np, n,

t(n, ’John_McCarthy’, ’John_McCarthy’, ’NNP’, ’I-NP’, ’I-PER’)),

t(s:dcl\np, ’died’, ’die’, ’VBD’, ’I-VP’, ’O’))))),

t(period, ’.’, ’.’, ’.’, ’O’, ’O’))).

ccg(2,

rp(s:dcl,

ba(s:dcl,

t(np, ’He’, ’he’, ’PRP’, ’I-NP’, ’O’),

fa(s:dcl\np,

t((s:dcl\np)/np, ’invented’, ’invent’, ’VBD’, ’I-VP’, ’O’),

fa(np:nb,

t(np:nb/n, ’the’, ’the’, ’DT’, ’I-NP’, ’O’),

fa(n,

t(n/n, ’programming_language’, ’programming_language’, ’NN’, ’I-NP’, ’O’),

t(n, ’LISP’, ’LISP’, ’NNP’, ’I-NP’, ’O’))))),

t(period, ’.’, ’.’, ’.’, ’O’, ’O’))).

Fig. 2. C&C output for the example sentences

created by extracting properties from infoboxes and templates within Wikipedia articles.
The Raw Infobox Property Definition Set consists of a URI definition for each property
as well as a label. However, this property set turned out to be much too restricted to
cover all the relations identified by Boxer.

Therefore, we decided to map Boxer relations onto RDF WordNet class types in-
stead.

WordNet [10] is a large-scale lexical database for English. Its current version contains
more than 155.000 words (nouns, verbs, adjectives and adverbs), grouped into sets of
synonyms, which are called synsets. Ambiguous word belong to several synsets (one per
word sense). The synsets are linked to other synsets by conceptual relations. Synsets
contain glosses (short definitions) and short example sentences. RDF WordNet [3] is
a Linked Data version of WordNet. For each word it provides one URI for each word
sense. To map instances of words onto URIs the words have to be disambiguated.

For word sense disambiguation (WSD), we apply UKB [1], an unsupervised graph-
based WSD tool, to all our input words, but focus on the results for words which have
given rise to relations in the Boxer output. We use the disambiguated RDF WordNet
URIs as the Linked Data hooks for these relations.
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______________________________ _______________________

| x0 x1 x2 x3 | | x4 x5 x6 |

|..............................| |.......................|

(| male(x0) |+| event(x4) |)

| named(x0,john_mccarthy,per) | | invent(x4) |

| programming_language(x1) | | agent(x4,x0) |

| nn(x1,x2) | | patient(x4,x2) |

| named(x2,lisp,nam) | | event(x5) |

| named(x3,new_york_times,org) | | report(x5) |

|______________________________| | agent(x5,x3) |

| theme(x5,x6) |

| proposition(x6) |

| ______________ |

| | x7 | |

| x6:|..............| |

| | event(x7) | |

| | die(x7) | |

| | agent(x7,x0) | |

| |______________| |

|_______________________|

Fig. 3. Discourse representation structure generated for the example sentences

2.5 Generating an RDF Graph

Finally, we construct an RDF graph. Our first step is to define URIs for the predicate
and relation types provided by Boxer. In this manner, we distinguish between predicate
and relation types which come from a closed class (event, agent, etc.), and the open
classes of predicate and relation types that represent words (programming language,
die, etc.). The second step is a translation of discourse referents and DRS conditions
(unary and binary relations) into RDF triples according to the following strategy:

– For each discourse referent, a blank node (bnode) is introduced. If it has been rec-
ognized as a NE by Boxer, we assign an URI from the ne: namespace to it via the
property drsclass:named. If an according DBpedia URI could be identified via
Wikifier, we link the blank node to the according DBpedia URI via owl:sameAs.

– The assignment of a Boxer class (that is, a unary predicate) to a discourse referent is
expressed by an RDF typing statement which associates a class URI to the discourse
referent’s bnode. For closed-class relations (like event), the class URI comes from
the predefined vocabulary (using the namespace drsclass:), for relations from
the open class we use the appropriate word sense URI extracted from WordNet via
UKB (in the namespace wn30:) or create a URL (in the namespace class:).

– A closed-class binary relation between two discourse referents (e.g., agent) is
expressed by an “ordinary” RDF triple with the referents’ bnodes as subject and
object, and using the corresponding URI from the closed-class Boxer vocabulary
namespace drsrel:. For open-class relations, the namespace rel: is used instead.

– Finally, we may encounter embedded DRSs, possibly related by complex con-
ditions expressing logical (disjunction,implication, negation) or modal (necessity,
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@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix reify: <http://www.aifb.kit.edu/web/LODifier/reify#> .

@prefix ne: <http://www.aifb.kit.edu/web/LODifier/ne#> .

@prefix drsclass: <http://www.aifb.kit.edu/web/LODifier/drsclass#> .

@prefix class: <http://www.aifb.kit.edu/web/LODifier/class#> .

@prefix drsrel: <http://www.aifb.kit.edu/web/LODifier/drsrel#> .

@prefix dbpedia: <http://dbpedia.org/resource/> .

@prefix wn30: <http://purl.org/vocabularies/princeton/wn30/> .

_:var0x0 drsclass:named ne:john_mccarthy ;

rdf:type drsclass:male , foaf:Person ;

owl:sameAs dbpedia:John_McCarthy_(computer_scientist) .

_:var0x1 rdf:type class:programming_language ;

owl:sameAs dbpedia:Programming_language .

_:var0x2 drsrel:nn _:var0x1 .

_:var0x2 drsclass:named ne:lisp ;

owl:sameAs dbpedia:Lisp_(programming_language) .

_:var0x3 drsclass:named ne:the_new_york_times ;

owl:sameAs dbpedia:The_New_York_Times .

_:var0x4 rdf:type drsclass:event , wn30:wordsense-invent-verb-2 .

drsrel:agent _:var0x0 ; drsrel:patient _:var0x2 .

_:var0x5 rdf:type drsclass:event , wn30:wordsense-report-verb-3 ;

drsrel:agent _:var0x3 ; drsrel:theme _:var0x6 .

_:var0x6 rdf:type drsclass:proposition , reify:proposition , reify:conjunction ;

reify:conjunct [ rdf:subject _:var0x7 ;

rdf:predicate rdf:type ;

rdf:object drsclass:event . ]

reify:conjunct [ rdf:subject _:var0x7 ;

rdf:predicate rdf:type ;

rdf:object wn30:wordsense-die-verb-1 . ]

reify:conjunct [ rdf:subject _:var0x7 ;

rdf:predicate drsrel:agent ;

rdf:object _:var0x0 . ]

Fig. 4. LODifier output for the test sentences

possibility) operators. We recursively reify the RDF representations of these sub-
ordinate DRSs by using the predefined RDF reification vocabulary (consisting of
the property URIs rdf:subject, rdf:predicate, and rdf:object, for an intro-
duction to reification in RDF see e.g. [13], Section 2.5.2).2 The logical or modal
dependencies between these sub-DRSs are then expressed by means of additional
fixed vocabulary in the namespace reify:. This results in flat RDF output for
nested DRSs.

The result of applying this strategy to our example text is shown in Figure 4.

2 To obtain output that adheres to the current W3C RDF specification and is entirely supported
by standard-compliant tools, we refrain from using named graphs or quads to encode nested
DRS.
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3 Automatic Evaluation: Story Link Detection

3.1 Task and Setup

In our evaluation we use LODifier to assess document similarity. More specifically,
we consider a story link detection task, part of the topic detection and tracking (TDT)
family of tasks. It is defined as “[...] the problem of deciding whether two randomly
selected stories discuss the same news topic” [2].

We use a subset of the TDT-2 benchmark dataset. TDT-2 consists of a total of almost
84.000 documents from the year 1998, drawn from newspapers, radio news, and tele-
vision news in English, Arabic and Mandarin. Each document is manually assigned to
one of a set of 100 topics. Each topic also comes with one “seed” story that is presumed
to be representative for the topic.

We follow the general lead of the original TDT-2 benchmark evaluation schema.
We focus on English as a language and newspapers as the source since LODifier can
currently only deal with English text and presumably degrades on potentially noisy au-
tomatic radio and TV transcripts. We therefore restrict our attention to the 19 topics
whose seed story was an English newspaper article. For each topic, we pair the seed
story with all other articles of this topic that met our constraints. However, since the
distribution of topics over documents is very skewed and we want to avoid undue in-
fluence of very large topics, we restrict the number of document pairs for each topic to
50. This results in a total of 183 positive document pairs, an average of 11.2 document
pairs per topic. We then sample the same number of negative document pairs from the
dataset by pairing each document with the seed document from a different topic. The
total number of document pairs is 366 with an equal positive/negative distribution.

We approach the task by defining various document similarity measures sim. We
assume that this similarity is a direct indicator of relatedness, which leads to a very
simple classification procedure for document pairs dp, given a threshold θ:

class(dp, θ) =

⎧
⎪⎪⎨
⎪⎪⎩

positive if sim(dp) ≥ θ
negative if sim(dp) < θ

Thus, document pairs are predicted to describe the same topic exactly if they have a
similarity of θ or more.

The parameter θ is usually determined with supervised learning. We randomly split
our dataset k times (we use k=1000) into equally-sized training and testing sets. For
each split, we compute an optimal decision boundary θ̂ as the threshold which predicts
the training set as well as possible. More precisely, we choose θ̂ so that its distance
to wrongly classified training document pairs is minimized. Formally, θ̂ is defined as
follows: Let postrain and negtrain be the positive and negative partitions of the training
set respectively. Then:

θ̂ = arg min
θ

⎡
⎢⎢⎢⎢⎢⎢⎣

∑

dp∈postrain

min(0, sim(dp) − θ)2 +
∑

dp∈negtrain

min(0, θ − sim(dp))2

⎤
⎥⎥⎥⎥⎥⎥⎦
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We can then compute the accuracy of θ̂ on the current split’s test set, consisting of the
positive and negative partitions postest and negtest, as follows:

accθ̂ =
||{dp ∈ postest | sim(dp) ≥ θ̂}|| + ||{dp ∈ negtest | sim(dp) < θ̂}||

||postest|| + ||negtest||
After repeating this procedure for all k splits, the final accuracy is computed by averag-
ing the k accuracies.

3.2 Similarity Computation without Structure

As baselines, we consider a number of measures that do not take structural information
into account. The first one is a random baseline, which performs at 50% in our setup,
since the two classes (positive and negative) are balanced. Second, we consider a simple
bag-of-words baseline which measures the word overlap of two documents in a docu-
ment pair without any preprocessing. Third, we experiment with a family of bag-of-URI
baselines that measure the URI overlap of two RDF documents. We experiment with
three variants which correspond to different assumptions about the relative importance
of various URI classes:

Variant 1 considers all NEs identified by Wikifier and all words successfully disam-
biguated by UKB (namespaces dbpedia: or wn30:).

Variant 2 adds all NEs recognized by Boxer (namespace ne:).
Variant 3 further adds the URIs all words that were not recognized by either Wikifier,

UKB or Boxer (namespace class:).
Extended setting. For each of the variants we also construct an extended setting,

where the generated RDF graph was enriched by information from DBpedia and
WordNet, namely DBpedia categories, WordNet synsets and WordNet senses re-
lated to the respective URIs in the generated graph. This setting aims at drawing
more information from Linked Open Data into the similarity computation.

3.3 Structurally Informed Similarity Computation

Recall our motivation for using LODifier, namely the intuition that structural RDF infor-
mation can provide an improvement over the simple comparison of words or URIs. This
requires the formulation of structure-aware similarity measures between documents
(i.e., RDF graphs). First attempts showed that full-fledged graph similarity measures
based on homomorphic or isomorphic subgraphs of arbitrary size or common cliques
[21], which are generally NP-complete, are infeasible due to the size of the RDF graphs
we consider (up to 19.000 nodes).

We decided to perform a more relaxed structural comparison based on the shortest
paths between relevant nodes. This mirrors our intuition that a short path in a RDF graph
between two URIs denotes a salient semantic relation between those entities. For such
URI pairs, we would expect that they are related by a short path in other documents
(graphs) on the same topic as well.

Formally, let G1 and G2 be two RDF graphs. We write �(a, b) to denote the length of
the shortest path between two nodes a and b in a graph G, and let Ck(G) denote the set
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of all paths of length ≤ k in G, that is, the set of salient relations in G.3 Furthermore,
we write Rel(G) for the set of relevant nodes in an RDF graph G. As motivated in Sec-
tion 3.2, not all URIs are equally relevant and we experiment with different choices. We
can now define a family of similarity measures called path relevance overlap similarity
(proSim):

proSimk,Rel, f (G1,G2) =

∑

a,b∈Rel(G1 )
〈a,b〉∈Ck (G1 )∩Ck (G2)

f (�(a, b))

∑

a,b∈Rel(G1 )
〈a,b〉∈Ck (G1)

f (�(a, b))

In words, the denominator of proSim determines the set of relevant semantic relations
Rel in G1 – modelled as the set of pairs of relevant URIs that are linked by a path of
length ≤ k – and quantifies them as the sum over a function applied to their path lengths.
The numerator does the same for the intersection of the relevant nodes from G1 and G2.

We experiment with three instantiations for the function f . The first one, proSimcnt,
uses f (�) = 1, that is, just counts the number of paths irrespective of their length. The
second one, proSimlen, uses f (�) = 1/�, giving less weight to longer paths. The third one,
proSimsqlen, uses f (�) = 1/

√
�, discounting long paths less aggressively than proSimlen.

All measures of the proSim family have the range [0;1], where 0 indicates no overlap
and 1 perfect overlap. It is deliberately asymmetric: the overlap is determined relative to
the paths of G1. This reflects our intuitions about the task at hand. For a document to be
similar to a seed story, it needs to subsume the seed story but can provide additional, new
information on the topic. Thus, the similarity should be maximal whenever G1 ⊆ G2,
which holds for proSim.

3.4 Results

As described in Section 3.2, we experiment with several variants for defining the set of
relevant URIs (Variants 1 to 3, both normal and extended). These conditions apply to
all bag-of-URI and proSim models.

The results of our evaluation are shown in Table 1. The upper half shows results for
similarity measures without structural knowledge. At 63%, the bag-of-words baseline
clearly outperforms the random baseline (50%). It is in turn outperformed by almost
all bag-of-URI baselines, which yield accuracies of up to 76.4%. Regarding parameter
choice, we see the best results for Variant 3, the most inclusive definition of relevant
URIs (cf. Section 3.2). The URI baseline also gains substantially from the extended
setting, which takes further Linked Open Data relations into account.

Moving over to the structural measures, proSim, we see that all parametrizations of
proSim perform consistently above the baselines. Regarding parameters, we again see a
consistent improvement for Variant 3 over Variants 1 and 2. In contrast, the performance
is relatively robust with respect to the path length cutoff k or the inclusion of further
Linked Open Data (extended setting).

3 Shortest paths can be computed efficiently using Dijkstra’s algorithm [9]. We exclude paths
across “typing” relations such as event which would establish short paths between every pair
of event nodes (cf. Figure 3) and drown out meaningful paths.
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Table 1. Accuracy on Story Link Detection Task

Model normal extended

Similarity measures without structural knowledge

Random Baseline 50.0 –
Bag of Words 63.0 –
Bag of URIs (Variant 1) 61.6 75.1
Bag of URIs (Variant 2) 70.6 76.0
Bag of URIs (Variant 3) 73.4 76.4

Similarity measures with structural knowledge
proSimcnt (k=6, Variant 1) 79.0 78.9
proSimcnt (k=6, Variant 2) 80.3 80.3
proSimcnt (k=6, Variant 3) 81.6 81.6
proSimcnt (k=8, Variant 1) 77.7 77.6
proSimcnt (k=8, Variant 2) 79.2 79.0
proSimcnt (k=8, Variant 3) 82.1 81.9

proSimlen (k=6, Variant 3) 81.5 81.4
proSimlen (k=8, Variant 3) 80.3 80.1
proSimlen (k=10, Variant 3) 80.0 79.8

proSimsqlen (k=6, Variant 3) 80.4 80.4
proSimsqlen (k=8, Variant 3) 81.1 80.9
proSimsqlen (k=10, Variant 3) 80.5 80.4
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Fig. 5. Precision-Recall-plot for best Story Link Detection models
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Moving from proSimcnt to more involved similarity functions, we decided to con-
centrate on Variant 3 which showed the best results. However, neither proSimlen nor
proSimsqlen yielded considerably different results: On this dataset, performance plateaued
between 80% and 82% accuracy. The numerically best result was 82.1%, obtained for
proSimcnt, Variant 3, with k=8 in the normal setting. The difference to the best bag-of-
URI model is more than 5% (absolute) accuracy. We tested the difference for statistical
significance with bootstrap resampling [15] and obtained a negative result. We believe,
however, that this outcome is mainly due to the small size of our current test set.

To illustrate the behavior of proSim family in more detail, Figure 5 shows a precision-
recall evaluation for the most promising models for each class. This mode of evaluation
still assumes the same decision rule (cf. Section 3.1) but does not optimize the threshold
on training data: Rather, it varies the threshold between 0 and 1 and computes at each
point the precision and recall for the positive (“same topic”) class. At θ=0, the recall is
1, but the precision only 0.5, due to the design of the dataset. At θ=1, the precision is
(close to) 1, but the recall (close to) 0. The closer the curve to the top right corner (high
precision and recall) the better. This evaluation provides more detail on the performance
of the similarity measures across the range of document similarities.

Figure 5 demonstrates that the precision-recall evaluation corresponds well to the
accuracy-based results reported above. The bag-of-word model is outperformed by the
bag-of-URI model for almost all values of θ, which is in turn outperformed by proSimcnt.
The plot shows that the particular benefit provided by the structural models is the ability
to retain a high precision for much higher recall rates compared to the other models.
For example, they show an almost perfect precision for a recall of up to 0.6, where the
shallower models have dropped to a precision below 0.90; for recall values between 0.6
and 0.8, the difference in precision remains at about 10% (absolute) before all curves
converge for very high recall values.

In sum, we found a consistent numerical improvement for the structural measures
compared to the URI measures. More generally, our results indicate that structurally
informed measures of graph similarity can deliver practical benefits for applications,
even for document-level tasks. Currently, however, our proSim measures do not profit
either from more involved weighting schemes or from the inclusion of further Linked
Open Data. Progress in this direction will require more research on possible weighting
schemes and strategies to select informative features from the range of information
present in LOD.

The raw data of all evaluations performed here including the generated RDF graphs
is available via http://www.aifb.kit.edu/web/LODifier

4 Related Work

There are various approaches to extracting relationships from text. These approaches
usually include the annotation of text with named entities and relations and the extrac-
tion of those relations. Two approaches that are very similar to LODifier are of [5] and
[19]. They both use NER, POS-tagging and parsing to discover named entities and rela-
tions between them. The resulting relations are converted to RDF. The disadvantage of
these methods is however that they use labelled data as a base for extracting relations,
which is not flexible, as labelled data requires manual annotation.

http://www.aifb.kit.edu/web/LODifier
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In terms of the pursued goal, that is, processing natural language, converting the
result into RDF and possibly exhibiting it as linked (open) data, LODifier shares the
underlying motivation with the NLP2RDF framework.4 The latter provides a generic
and flexible framework of how to represent any kind of NLP processing result in RDF.
While the current version of LODifier is a stand-alone tool not resting on this frame-
work, a future integration might improve its interoperability and reusability further.

The Pythia system [20] which is targeted at natural language question answering in
information systems also employs deep semantic analysis on posed questions in order
to come up with a translation into SPARQL queries which are then posed against RDF
stores. Pythia does, however, presume the existence of a lexicon specifying how lexi-
cal expressions are to be mapped to RDF entities of the queried data source. Thereby,
the approach is inherently domain-specific, whereas we aim at an open domain setting
where no a-priori lexical mappings or specific schematic information is available.

The AsKNet system [12] is aimed at automatically creating a semantic network.
Thereby, the processing strategy is similar to ours: the system uses C&C and Boxer
to extract semantic relations. To decide which nodes refer to the same entities, simi-
larity scores are computed based on spreading activation and nodes are then mapped
together. An approach building on AsKNet comes from [22]. They use AsKNet to build
a semantic network based on relations between concepts instead of relations between
named entities as already present in AsKNet. The resulting graph is then converted to
RDF. AsKNet and LODifier differ in the way they disambiguate named entities. LOD-
ifier uses NER and WSD methods before generating RDF triples and describes the
entities and relations using DBpedia and WordNet URIs whereas AsKNet first gener-
ates semantic structures from text and then tries to map nodes and edges together based
on similarity. Moreover, the graph output of the latter is not interlinked with other data
sources. This is one of the key features of LODifier, and we feel that we have only
scratched the surface regarding the benefit of interlinking.

5 Conclusion and Outlook

Much current work in text processing makes exclusive use of shallow methods, either
statistical or pattern-based, and makes up for their limitations by the redundancy in
large data collections. Their main criticism towards deeper processing are the lack of
robustness and efficiency.

In this paper, we have argued that (lack of) robustness is not a knock-out argu-
ment. We have presented LODifier, a proof-of-concept implementation which converts
open-domain unstructured natural language into Linked Data. The system incorporates
several well-established NLP methods: named entities are recognized using NER; nor-
malized relations are extracted by parsing the text and performing deep semantic
analysis; WSD helps identifying the proper senses for event types. The meaning of
a document is finally consolidated into an RDF graph whose nodes are connected to the
broad-coverage Linked Data vocabularies DBpedia and WordNet.

The central benefits that LODifier provides are (a) abstracting away from linguis-
tic surface variation such as lexical or syntactic choice; (b) making explicit structural

4 http://nlp2rdf.org/about

http://nlp2rdf.org/about
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information as a semantic graph; and (c) linking up the concepts and relations in the
input to the LOD cloud. These benefits provide types of additional information for sub-
sequent processing steps, which are generally not provided by “shallow” approaches.
Concretely, we have demonstrated that the LODifier representations improve topic de-
tection over competitive shallow models by using a document similarity measure that
takes semantic structure into account. More generally, we believe that methods like ours
are suitable whenever there is little data, for example, in domain-specific settings.

A few of the design decisions made for the RDF output may not be adequate for all
conceivable applications of LODifier. The use of blank nodes is known to bring about
computational complications, and in certain cases it is beneficial to Skolemize them
by URIs e.g. using MD5 hashes. Employing owl:sameAs to link discourse referents
to their DBpedia counterparts might lead to unwanted logical ramifications in case the
RDF output is flawed. Hence, we will provide a way to configure LODifier to produce
RDF in an encoding that meets the specific requirements of the use case.

A current shortcoming of LODifier is its pipeline architecture which treats the mod-
ules as independent so that errors cannot be recovered. We will consider joint inference
methods to find a globally most coherent analysis [11]. Regarding structural similarity
measures, we have only scratched the surface of the possibilities. More involved graph
matching procedures remain a challenge due to efficiency reasons; however, this is an
area of active research [17].

Possible applications of LODifier are manifold. It could be used to extract DBpedia
relation instances from textual resources, provided a mapping from WordNet entities
to DBpedia relations is given. Moreover, our system could also be applied for hybrid
search, that is, integrated search over structured and non-structured sources. In such a
setting, the role of LODifier would be to “pre-process” unstructured information source
(off-line) into a representation that matches the structured information sources. This
would reduce on-line search to the application of structured query processing techniques
to a unified dataset. Presuming that a good accuracy at the semantic micro-level can be
achieved, our method could also prove valuable in the domain of question answering.
In that case, LODifier could be used to transform structured resources into RDF against
which structured (SPARQL) queries generated by question answering systems such as
Pythia [20] could be posed.
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