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LoDoPaB-CT, a benchmark 
dataset for low-dose computed 
tomography reconstruction
Johannes Leuschner  1,2 ✉, Maximilian Schmidt  1,2 ✉, Daniel Otero Baguer  1 & 

Peter Maass1

Deep learning approaches for tomographic image reconstruction have become very effective and have 
been demonstrated to be competitive in the field. Comparing these approaches is a challenging task as 
they rely to a great extent on the data and setup used for training. With the Low-Dose Parallel Beam 
(LoDoPaB)-CT dataset, we provide a comprehensive, open-access database of computed tomography 

images and simulated low photon count measurements. It is suitable for training and comparing deep 
learning methods as well as classical reconstruction approaches. The dataset contains over 40000 
scan slices from around 800 patients selected from the LIDC/IDRI database. The data selection and 
simulation setup are described in detail, and the generating script is publicly accessible. In addition, 
we provide a Python library for simplified access to the dataset and an online reconstruction challenge. 
Furthermore, the dataset can also be used for transfer learning as well as sparse and limited-angle 

reconstruction scenarios.

Background & Summary
Tomographic image reconstruction is an extensively studied �eld. One popular imaging modality in clinical and 
industrial applications is computed tomography (CT). It allows for the non-invasive acquisition of the inside of an 
object or the human body. �e measurements are based on the attenuation of X-ray beams. To obtain the internal 
distribution of the body from these measurements, an inverse problem must be solved. Traditionally, analytical 
methods, like �ltered back-projection (FBP) or iterative reconstruction (IR) techniques, are used for this task. 
�ese methods are the gold standard in the presence of enough high-dose/low-noise measurements. However, 
as high doses of applied radiation are potentially harmful to the patients, modern scanners aim at reducing the 
radiation dose. �ere exist several strategies, but all introduce speci�c challenges for the reconstruction algo-
rithm, e.g. undersampling or increased noise levels, which require more sophisticated reconstruction methods. 
�e higher the noise or undersampling, the more prior knowledge about the target reconstructions is needed to 
improve the �nal quality1. Analytical methods are only able to use very limited prior information. Alternatively, 
machine learning approaches are able to learn underlying distributions and typical image features, which con-
stitute a much larger and �exible prior. Recent image reconstruction approaches involving machine learning, in 
particular deep learning (DL), have been developed and demonstrated to be very competitive2–8.

DL-based approaches bene�t strongly from the availability of comprehensive datasets. In the last years, a 
wide variety of CT data has been published, covering di�erent body parts and scan scenarios. For the training of 
reconstruction models, the projections (measured data) are crucial but are rarely made available. Recently, Low 
Dose CT Image and Projection Data (LDCT-and-Projection-data)9 was published by investigators from the Mayo 
Clinic, which include measured normal-dose projection data of 299 patients in the new open DICOM-CT-PD 
format. �e AAPM Low Dose CT Grand Challenge data10 includes simulated measurements, featuring 30 dif-
ferent patients. �e Finish Inverse Problems Society (FIPS) provides multiple measurements of a walnut11 and a 
lotus root12 aimed at sparse data tomography. Recently, Der Sarkissian et al.13 published cone-beam CT projection 
data and reconstructions of 42 walnuts. �eir dataset is directly aimed at the training and comparison of machine 
learning methods. In magnetic resonance imaging, fastMRI14 with 1600 scans of humans knees is another prom-
inent example.
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Other CT datasets focus on the detection and segmentation of special structures like lesions in the recon-
structions for the development of computer-aided diagnostic (CAD) methods15–20. �erefore, they do not include 
the projection data. �e LIDC/IDRI database15, which we use for the ground truth of our dataset (cf. section 
“Methods”), targets lung nodule detection. FUMPE16 contains CT angiography images of 35 subjects for the 
detection of pulmonary embolisms. KiTS201917 is built around the segmentation of kidney tumours in CT 
images. �e Japanese Society of Radiology Technology (JSRT) database18 and the National Lung Screening Trial 
(NLST) in cooperation with the CT Image Library (CTIL)19,20 each contain scans of the lung. �ese datasets can 
also be used for the investigation of reconstruction methods by simulating the missing measurements.

Di�erent learned methods have been successfully applied to the task of low-dose reconstruction7. However, 
comparing these approaches is a challenging task since they highly rely on the data and the setup that is used 
for training. �e main goal of this work is to provide a standard dataset that can be used to train and bench-
mark learned low-dose CT reconstruction methods. To this end, we introduce the Low-Dose Parallel Beam 
(LoDoPaB)-CT dataset, which uses the public LIDC/IDRI database15,21,22 of human chest CT reconstructions. 
We consider these, in the form of 2D images, to be the so-called ground truth. �e projections are created by 
simulating low photon count CT measurements with a parallel beam scan geometry. Due to the slice-based 2D 
setup, each of the generated measurements corresponds directly to a ground truth slice. �us, the reconstruction 
process can be carried out slice-wise without rebinning23, which would have to be applied to the measurements 
for 3D helical cone-beam geometries commonly used in modern scanners9 to allow for the slice-wise use of a 
2D reconstruction algorithm. In order to generalise from our dataset to the clinical 3D setup, the e�ect of rebin-
ning needs to be evaluated. Also, learned algorithms directly targeted at 3D reconstruction should be considered 
in this case, which at the moment are barely computationally feasible24, but presumably outperform 2D recon-
struction algorithms applied to rebinned measurements. Despite the generalisation to the 3D case not being 
straight-forward, our dataset allows to train and compare a large number of approaches applicable to the 2D 
scenario, which we expect to yield insights for the design of 3D algorithms as well.

Paired samples constitute the most complete training data and could be used for all kinds of learning. In par-
ticular, methods that require independent samples from the distributions of images and measurements, or only 
from one of these distributions, can still make use of the dataset. In total, the dataset features more than 40000 
sample pairs from over 800 di�erent patients. �is amount of data and variability can be necessary to successfully 
train deep neural networks25. It also quali�es the dataset for transfer learning. In addition, the included measure-
ments can be easily modi�ed for sparse and limited angle scan scenarios.

Methods
In this section, the considered mathematical model of CT is stated �rst, followed by a detailed description of the 
dataset generation. �is starts with the LIDC/IDRI database15, from which we extract the ground truth recon-
structions. Finally, the data processing steps are described, which are also summarised in a semi-formal manner 
at the end of the section. As a technical reference, the script26 used for generation is available online (https://
github.com/jleuschn/lodopab_tech_ref).

Parallel beam CT model. We consider the inverse problem of computed tomography given by

x x y( ) (1)ε+ = δ
A A

with:
• A the linear ray transform de�ned by the scan geometry,
• x the unknown interior distribution of the X-ray attenuation coe�cient in the body, also called image,
• ε a sample from a noise distribution that may depend on the ideal measurement Ax,
• yδ the noisy CT measurement, also called projections or sinogram.
More speci�cally, we choose a two-dimensional parallel beam geometry, for which the ray transform A is the 

Radon transform27. It integrates the values of x:2→ ful�lling some regularity conditions (cf. Radon27) along the 
X-ray lines

ω ϕ ω ϕ ω ϕ
ϕ

ϕ
ω ϕ

ϕ

ϕ
= + =















=







− 




ϕ

⊥ ⊥
L t s t( ) : ( ) ( ) , ( ) :

cos( )

sin( )
, ( ) :

sin( )

cos( )
,

(2)
s ,

for all parameters s ∈  and ϕ ∈ [0, π), which denote the distance from the origin and the angle, respectively (cf. 
Figure 1). In mathematical terms, the image is transformed into a function of (s, ϕ),
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which is called projection, since for each �xed angle ϕ the 2D image x is projected onto a line parameterised by 
s, namely the detector. Visualisations of projections as images themselves are called sinograms (cf. Figure 2). �e 
projection relates to the ideal intensity measurements I1(s, ϕ) at the detector according to Beer-Lambert’s law by
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where I0 is the intensity of an unattenuated beam.
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In practice, the measured intensities are noisy. �e noise can be classi�ed into quantum noise and detector 
noise. Quantum noise stems from the process of photon generation, attenuation and detection, which as a whole 
can be modelled by a Poisson distribution28. �e detector noise stems from the electronic data acquisition system 
and is usually assumed to be Gaussian. It would play an important role in ultra-low-dose CT with very small 
numbers of detected photons29 but is neglected in our case. �us we model the number of detected photons and, 
by this, the measured intensity ratio with
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where N0 is the mean photon count without attenuation and Pois(λ) denotes the probability distribution de�ned by
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For practical application, the model needs to be discretised. �e forward operator is then a �nite-dimensional 
linear map A : n → m, where n is the number of image pixels and m is the product of the number of detector 
pixels and the number of angles for which measurements are obtained. �e discrete model reads

~Ax Ax y Ax Ax N N N N Ax( ) , ( ) ln( / ), Pois( exp( )) (7)1 0 1 0ε ε+ = = − − − .
∼ ∼δ

Here, Pois(λ) denotes the joint distribution of m Poisson distributed observations with parameters λ1, …, λm, 
respectively. Note that since the negative logarithm is applied to the observations, the noisy post-log values yδ do 
not follow a Poisson distribution but the distribution resulting from this log-transformation. However, taking the 
negative logarithm is required to obtain the linear model and therefore is most commonly applied as a preproc-
essing step. For our dataset, we consider post-log values by default.

�e Radon transform is a linear and compact operator. �erefore, the continuous inverse problem of CT is 
mildly ill-posed in the sense of Nashed30,31. �is means that small variations in the measurements can lead to 
signi�cant di�erences in the reconstruction (unstable inversion). While the discretised inverse problem is not 
ill-posed, it is typically ill-conditioned28, which leads to artefacts in reconstructions obtained by direct inversion 
from noisy measurements.

Fig. 1 Visualisation25 of the parallel beam geometry.

Fig. 2 �e Shepp-Logan phantom (le�) and its corresponding sinogram (right).
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For our discrete simulation setting, we use the described model with following dimensions and parameters:

• Image resolution of 362 px × 362 px on a domain of size 26 cm × 26 cm.
• 513 equidistant detector bins s spanning the image diameter.
• 1000 equidistant angles ϕ between 0 and π.
• Mean photon count per detector bin without attenuation N0 = 4096.

LIDC/IDRI database and data selection. �e Lung Image Database Consortium (LIDC) and Image 
Database Resource Initiative (IDRI) published the LIDC/IDRI database15,21,22 to support the development of CAD 
methods for the detection of lung nodules. �e dataset consists of 1018 helical thoracic CT scans of 1010 individ-
uals. Seven academic centres and eight medical imaging companies collaborated for the creation of the database. 
As a result, the data is heterogeneous with respect to the technical parameters and scanner models.

Both standard-dose and lower-dose scans are part of the dataset. Tube peak voltages range from 120 kV to 140 
kV and tube current from 40 mA to 627 mA with a mean of 222.1 mA. Labels for the lung nodules were created 
by a group of 12 radiologists in a two-phase process. �e image reconstruction was performed with di�erent 
�lters, depending on the manufacturer of the scanner. Figure 3 shows examples of the provided reconstructions. 
�e LIDC/IDRI database is freely available from �e Cancer Imaging Archive (TCIA)22. It is published under the 
Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).

�e LoDoPaB-CT dataset is based on the LIDC/IDRI scans. Our dataset is intended for the evaluation of 
reconstruction methods in a low-dose setting. �erefore, we simulate the projection data, which is not included 
in the LIDC/IDRI database. In order to enable a fair comparison with good ground truth, scans that are too noisy 
were removed in a manual selection process (cf. section “Technical Validation”). Additional scans were excluded 
due to their geometric properties, namely an image size di�erent from 512 px × 512 px, a too small area of valid 
pixel values (cf. subsection “Ground truth image extraction” below), or a di�erent patient orientation. �e com-
plete lists of excluded scan series are given in �le series_list.json in the technical reference repository26. In the end, 
812 patients remain in the LoDoPaB-CT dataset.

�e dataset is split into four parts: three parts for training, validation and testing, respectively, and a “chal-
lenge” part reserved for the LoDoPaB-CT Challenge (https://lodopab.grand-challenge.org/). Each part contains 
scans from a distinct set of patients, as we want to study the case of learned reconstructors being applied to 
patients that are not known from training. �e training set features scans from 632 patients, while the other parts 
contain scans from 60 patients each. Every scan contains multiple slices (2D images) for di�erent z-positions, of 
which only a subset is included. �e amount of extracted slices depends on the slice thickness obtained from the 
metadata. As slices with small distances are similar, they may not provide much additional information while 
increasing the chances to over�t. �e distances of the extracted slices are larger than 5.0 mm for >45% and larger 
than 2.5 mm for >75% of the slices. In total, the dataset contains 35820 training images, 3522 validation images, 
3553 test images and 3678 challenge images.

Remark. We propose to use our default dataset split, as it allows for a fair comparison with other methods that 
use the same split. However, users are free to remix or re-split the dataset parts. For this purpose, randomised 
patient IDs are provided, i.e., the same random ID is given for all slices obtained from one patient. �us, when 
creating custom splits it can be regulated whether—and to what extent—data from the same patients are con-
tained in di�erent splits.

Ground truth image extraction. First, each image is cropped to the central rectangle of 362 px × 362 px. 
�is is done because most of the images contain (approximately) circle-shaped reconstructions with a diameter 
of 512 px (cf. Figure 3). A�er the crop, the image only contains pixels that lie inside this circle, which avoids value 
jumps occurring at the border of the circle. While this yields natural ground truth images, we need to point out 
that the cropped images, in general, do not show the full subject but some interior part. Hence, it is unlikely for 
methods trained with this dataset to perform well on full-subject measurements.

Fig. 3 Scans from the LIDC/IDRI database15 with poor quality, good quality and an artefact. �e shown HU 
window is [−1024, 1023].
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For some scan series, the circle is subject to a geometric transformation either shrinking or expanding the 
circle in some directions. In particular, for a few scan series, the circle is shrunk such that it is smaller than the 
cropped rectangle. We exclude these series, i.e. those with patient IDs 0004, 0032, 0102, 0116, 0120, 0289, 0368, 
0418, 0541, 0798, 0926, 0972 and 1000, from our dataset, which allows to crop all included images consistently 
to 362 px × 362 px.

�e integer Houns�eld unit (HU) values obtained from the DICOM �les are dequantised by adding uniform 
noise from the interval [0, 1). By adding this noise, the discrete distribution of stored values is transformed into 
a continuous distribution (up to the �oating-point precision), which is a common assumption of image models. 
For example, the meaningful evaluation of densities learned by generative networks requires dequantization32, 
which in some works33 is more re�ned than the uniform dequantization applied to the HU values in our dataset.

In the next step, the linear attenuations µ are computed from the dequantised HU values using the de�nition 
of the HU,
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by dividing by
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which corresponds to the largest HU value that can be represented with the standard 12-bit encoding, i.e. (212–1–
1024)HU = 3071 HU, followed by the clipping of all values into the range [0, 1],
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�e Eqs. (8) and (11) are applied pixel-wise to the images.

Projection data generation. To simulate the measurements based on the virtual ground truth images, the 
main step is to apply the forward operator, which is the ray transform (Radon transform in 2D) for CT. For this 
task we utilise the Operator Discretization Library35 (ODL) with the ‘astra_cpu’ backend36.

Remark. We choose ‘astra_cpu’ over the usually favoured ‘astra_cuda’ because of small inaccuracies 
observed in the sinograms when using ‘astra_cuda’, speci�cally at angles 0, 

2

π  and π and detector positions 

−1/ 2 l

2
 and 1/ 2 l

2
 with l being the length of the detector. �e used version is astra-toolbox==1.8.3 on 

Python 3.6. �e tested CUDA version is 9.1 combined with cudatoolkit==8.0.
In order to avoid “committing the inverse crime”37, which, in our scenario, would be to use the same discrete 

model both for simulation and reconstruction, we use a higher resolution for the simulation. Otherwise, good 
performance of reconstructors for the speci�c resolution of this dataset (362 px × 362 px) could also stem from 
the properties of the speci�c discretised problem, rather than from good inversion of the analytical model. We 
use bilinear interpolation for the upscaling of the virtual ground truth from 362 px × 362 px to 1000 px × 1000 px.

Fig. 4 Data generation algorithm.
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�e non-normalised, upscaled image is projected by the ray transform. Based on this projection, Ax, the meas-
ured photon counts 

∼
N 1 are sampled according to Eq. (7). �e sampling in some cases yields photon counts of 

zero, which we then replace by photon counts of 0.1. Hereby strictly positive values are ensured, which is a pre-
requisite for the log-transform in the next step (cf. Wang et al.38). �e negative logarithm of the photon counts 
quotient max(0, 1, 

∼
N 1)N0 is taken, resulting in the post-log measurements yδ according to Eq. (7) (up to the 0.1 

photon count approximation). Finally, yδ is divided by µmax to match the normalised ground truth images. A 
summary of all steps can be found in Fig. 4 (Data generation algorithm).

Remark. Although the linear model obtained by the log-transform is easier to study, in some cases pre-log mod-
els are more accurate. See Fu et al.29 for a detailed comparison. For applying a pre-log method, the stored obser-
vation data µ= δ

ɵy y /
max

 must be back-transformed by ɵµ− ⋅ yexp( )
max

. To create physically consistent data pairs, 
the ground truth images should then be multiplied with µmax, too.

Remark. Note that the minimum photon count of 0.1 can be adapted subsequently. �is is most easily done 
by �ltering out the highest observation values and replacing them with −log(ε0/4096)/µmax, where ε0 is the new 
minimum photon count.

Data Records
�e LoDoPaB-CT dataset is published as open access on Zenodo (https://zenodo.org) in two repositories. �e 
main data repository39 (https://doi.org/10.5281/zenodo.3384092) has a size of around 55GB and contains obser-
vations and ground truth data of the train, validation and test set. For each subset, represented by *, the following 
�les are included:

•	 CSV �les patient_ids_rand_*.csv include randomised patient IDs of the samples. �e patient IDs of 
the train, validation and test parts are integers in the range of 0–631, 632–691 and 692–751, respectively. �e 
ID of each sample is stored in a single row.

•	 Zip archives ground_truth_*.zip contain HDF540 �les of the ground truth reconstructions.
•	 Zip archives observation_*.zip contain HDF5 �les of the simulated low-dose measurements.
•	 Each HDF5 �le contains one HDF5 dataset named data, that provides several samples (128 except for the last 

�le in each ZIP �le). For example, the n-th training sample pair is stored in the HDF5 files observa-
tion_train_%03d.hdf5 and ground_truth_train_%03d.hdf5 where the placeholder %03d 
is �oor (n/128). Within these HDF5 �les, the observation or ground truth is stored at entry (n mod 128) of 
the HDF5 dataset data.

�e second repository41 for the challenge data (https://doi.org/10.5281/zenodo.3874937) consists of a single zip 
archive:
•	 observation_challenge.zip contains HDF5 �les of the simulated low-dose measurements.

�e structure inside the HDF5 �les is the same as in the main repository.

Technical Validation
Ground truth & data selection. Creating high-quality ground truth images for tomographic image recon-
struction is a challenging and time-consuming task. In computed tomography, one option is to cut open the 
object a�er the scan or use 3D printing42, whereby the digital template of the object is the reference. In general, 
this also involves high radiation doses and many scanning angles. �is combination makes it even harder to gen-
erate ground truth images for medical applications.

For low-dose CT reconstruction models, the primary goal is to match the normal-dose reconstruction qual-
ity of methods currently in use. �erefore, normal-dose reconstructions from classical methods, e.g. �ltered 
back-projection, are an adequate choice as ground truth. �is simpli�es the process considerably.

�e ground truth CT reconstructions of LoDoPaB-CT are taken from the established and well-documented 
LIDC/IDRI database. An independent visual inspection of one 2D slice per scan was performed by three of the 
authors. Figure 3 shows three examples of such slices. A �ve-star rating system was used to evaluate the image 
quality and remove noisy ground truth data, like the �rst slice in Fig. 3. Scans with artefacts, e.g. from photon 
starvation due to dense material (cf. Figure 3 (right)), were in general not removed, as the artefacts only a�ect 
a few slices of the whole scan. �e slice in the middle of Fig. 3 represents an ideal ground truth. �e following 
procedure was then used to exclude scans based on their rating:

 1. Centring of the ratings from each evaluator around the value 3.
 2. Calculation of the mean rating and the variance for each looked at 2D slice.
 3. For a variance <1, the mean was used as the rating score. Otherwise, the scan is evaluated by all three 

authors together.
 4. All scans with a rating ≤2 are excluded from the dataset.

�ese excluded scans are listed at key “series_excluded_manual_low_q_filter” in �le series_list.json  
in the technical reference repository26.

Reference reconstructions & quantitative results. To validate the usability of the proposed dataset 
for machine learning approaches, we provide reference reconstructions and quantitative results for the standard 
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�ltered back-projection (FBP) and a learned post-processing method (FBP + U-Net). FBP is a widely used ana-
lytical reconstruction technique (cf. Buzug28 for an introduction). If the measurements are noisy (due to the low 
dose), FBP reconstructions tend to include streaking artefacts. A typical approach to overcome this problem is 
to apply some post-processing such as denoising. Recent works3,4,8 have successfully used convolutional neural 
networks, such as the U-Net43. �e idea is to train a neural network to create clean reconstructions out of the 
noisy FBP results.

In this initial study, for the FBP, we used the Hann �lter with a frequency scaling of 0.641. We selected these 
parameters based on the performance over the �rst 100 samples of the validation dataset. For the post-processing 
approach (FBP + U-Net), we used a U-Net-like architecture with 5 scales. We trained it using the proposed 

Fig. 5 Di�erent baseline reconstructions from the FBP and FBP + U-Net methods. �e ground truth images 
are part of the LoDoPaB-CT test set. �e window [0, 0.45] corresponds to a HU range of ≈[−1001, 831].

https://doi.org/10.1038/s41597-021-00893-z
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dataset by minimising the mean squared error loss with the Adam algorithm44 for a maximum of 250 epochs with 
batch size 32. Additionally, we used an initial learning rate of 10−3, decayed using cosine annealing until 10−4. 
�e model with the highest mean peak signal-to-noise ratio (PSNR) on the validation set was selected from the 
models obtained during training. Sample reconstructions are shown in Fig. 5.

Table 1 depicts the obtained results in terms of the peak signal-to-noise ratio (PSNR) and structural sim-
ilarity45 (SSIM) metrics (cf. “Evaluation practice” in the next section for a detailed explanation). As it can be 
observed, the post-processing approach, which was trained using the proposed dataset, outperforms the classical 
FBP reconstructions by a margin of 5 dB. �is demonstrates that the dataset indeed contains valuable data ready 
to be used for training machine learning methods to obtain CT reconstructions with higher quality than the 
standard methods.

Usage Notes
Download & easy access. The whole LoDoPaB-CT dataset39,41 can be downloaded directly from the 
Zenodo website. However, we recommend the Python library DIVαℓ46 (https://github.com/jleuschn/dival) for 
easy access of the dataset. �e library includes speci�c functionalities for the interaction with the provided 
dataset.

Remark. Access to the dataset on Zenodo might be restricted or slow in some regions of the world. In this case 
please contact one of the corresponding authors to get an alternative download option.

DIVαℓ is also available through the package index PyPI (https://pypi.org/project/dival). With the library, the 
dataset is automatically downloaded, checked for corruption and ready for use within two lines of Python code:

from dival import get_standard_dataset
dataset = get_standard_dataset(‘lodopab’).

Remark. When loading the dataset using DIVαℓ, an ODL35 RayTransform implementing the forward oper-
ator is created. �is requires a backend, the default being ‘astra_cuda’, which requires both the astra toolbox36 
and CUDA to be available. If either is unavailable, a di�erent backend (‘astra_cpu’ or ‘skimage’) must be 
selected by keyword argument impl.

In addition, DIVαℓ o�ers multiple options to work with the LoDoPaB-CT dataset:

•	 Access the train, validation and test subset and draw a speci�c number of samples.
•	 Sort the data by the patient ids.
•	 Use the pre-log or post-log data (cf. projection data generation in the “Methods” section).
•	 Evaluate the reconstruction performance.
•	 Compare with pre-trained standard reconstruction models.

evaluation practice. Since ground truth data is provided in the dataset, we recommend using so-called 
full-reference methods for the evaluation. �e peak signal-to-noise ratio (PSNR) and the structural similarity45 
(SSIM) are two standard image quality metrics o�en used in CT applications42,47. While the PSNR calculates 
pixel-wise intensity comparisons between ground truth and reconstruction, SSIM captures structural distortions.

Peak signal-to-noise ratio. �e PSNR expresses the ratio between the maximum possible image intensity and the 
distorting noise, measured by the mean squared error (MSE),

x x
x x

x x
n

x xPSNR( , ) : 10log
max

MSE( , )
, MSE( , ) :

1

(12)

x

i

n

i i10

2

1

2∑=










= − .
=

�
�

� �∣ ∣

Here x is the ground truth image and �x  the reconstruction. Higher PSNR values are an indication of a better 
reconstruction. We recommend choosing maxx = max(x) − min(x), i.e. the di�erence between the highest and 
lowest entry in x, instead of the maximum possible intensity, since the reference value of 3071HU is far from the 
most common values. Otherwise, the results can o�en be too optimistic.

Structural similarity. Based on assumptions about the human visual perception, SSIM compares the overall 
image structure of ground truth and reconstruction. Results lie in the range [0, 1], with higher values being better. 
�e SSIM is computed through a sliding window at M locations
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training set validation set test set

PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

FBP 30.45 ± 2.65 0.7415 ± 0.1314 30.75 ± 2.52 0.7577 ± 0.1231 30.52 ± 3.10 0.7372 ± 0.1467

FBP + U-Net 36.17 ± 3.75 0.8623 ± 0.1228 36.74 ± 3.28 0.8819 ± 0.1017 35.84 ± 4.59 0.8443 ± 0.1501

Table 1. Baseline performance. Values are the mean and standard deviation over all samples.
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where µ
j
�  and 

j
µ  are the average pixel intensities, �jσ  and σj the variances and Σj the covariance of �x  and x at the j-th 

local window. Constants =C K L( )1 1
2 and =C K L( )2 2

2 stabilise the division. Following Wang et al.45 we choose 
K1 = 0.01 and K2 = 0.03 for the technical validation in this paper. The window size is 7 × 7 and 
L = max(x) − min(x).

Test & challenge set. �e test data is the advised subset for o�ine model evaluation. To guarantee a fair compar-
ison, the data should be in no way involved in the training process or hyperparameter selection of the model. We 
recommend using the whole test set and select the above-mentioned parameters for PSNR and SSIM. Deviations 
from this setting should be mentioned.

In addition, a challenge set without ground truth images is provided. We encourage users to submit their chal-
lenge reconstructions to the evaluation website (https://lodopab.grand-challenge.org/). All methods are assessed 
under the same conditions and with the same metrics. �e performance can be directly compared with other 
methods on a public leaderboard. �erefore, we recommend to report performance measures on the challenge 
set for publications that use the LoDoPaB-CT dataset without modi�cations, in addition to any evaluations on 
the test set. In accordance with the Biomedical Image Analysis (BIAS) guidelines48, more information about the 
challenge can be found on the aforementioned website.

Further usage. Scan scenarios. �e provided measurements and simulation scripts can easily be modi�ed 
to cover di�erent scan scenarios:

•	 Limited and sparse-angle problems can be created by loading a subset of the projection data, e.g. a sparser 
setup with 200 angles was already used by Baguer et al.25.

•	 Super-resolution experiments can be mimicked, by arti�cially binning the projection data into larger pixels.
•	 To study lower or higher photon counts, the dataset can be re-simulated with a di�erent value of N0 (e.g. using 

resimulate_observations.py26 by changing the value of PHOTONS_PER_PIXEL).

�e provided reconstructions can still be used as ground truth for all listed scenarios.

Transfer learning. Transfer learning is a popular approach to boost the performance of machine learning models 
on smaller datasets. �e idea is to �rst train the model on a di�erent, comprehensive data collection. A�erwards, 
the determined parameters are used as an initial guess for �ne-tuning the model on the smaller one. In gen-
eral, the goal is to learn to process low-level features, e.g. edges in images, from the comprehensive dataset. �e 
adaption to speci�c high-level features is then performed on the smaller dataset. For imaging applications, the 
ImageNet database49, with over 14 million natural images, is frequently used in this role. �e applications range 
from image classi�cation50 to other domains like audio data51.

Transfer learning has also been successfully applied to CT reconstruction tasks. �is includes training on 
di�erent scan scenarios52,53, e.g. a di�erent number of angles, as well as �rst training on 2D data and continuing 
on 3D data54. He et al.55 simulated parallel beam measurements on some of the natural images contained in 
ImageNet. Subsequently, the training was continued on CT images from the Mayo Clinic10. LoDoPaB-CT, or 
parts of the dataset, can be used in similar roles for transfer learning. Additionally, the ground truth data from 
real thoracic CT scans may be advantageous for similar CT reconstruction tasks compared to random natural 
images from ImageNet56.

Nonetheless, we advise the user to check the applicability for their speci�c use case and reconstruction model. 
Re-simulation or other changes to the LoDoPaB-CT dataset might be needed, especially for datasets with di�er-
ent scan geometries. Additionally, simulated data can not capture all aspects of real-world measurements and 
therefore cause reconstruction errors. For a comprehensive study on the bene�ts and challenges of transfer learn-
ing for medical imaging, we refer the reader to the publication by Raghu et al.56.

Remark. An example for a simulation script with a fan beam geometry on the ground truth data can be found 
in the DIVαℓ46 library: dival/examples/ct_simulate_fan_beam_from_lodopab_ground_
truth.py.

Limits of the dataset. The LoDoPaB-CT dataset is designed for a methodological comparison of CT 
reconstruction methods on a simulated low-dose parallel beam setting. �e focus is on how a model deals with 
the challenges that arise from low photon count measurements to match the quality of normal-dose images. Of 
course, this represents only one aspect of many for the application in real-world scenarios. �erefore, results 
achieved on LoDoPaB-CT might not completely re�ect the performance on real medical data. �e following 
limits of the dataset should be considered when evaluating and comparing results:

•	 �e simulation uses the Radon transform and Poisson noise. Real measurements can be in�uenced by addi-
tional physical e�ects, like scattering.

•	 Modern CT machines use advanced scanning geometries, like helical fan beam or cone beam. Speci�c chal-
lenges for the reconstruction can arise compared to parallel beam measurements (cf. Buzug28).

•	 In general, the goal is to reconstruct a whole 3D subject and not just a single 2D slice. Reconstruction meth-
ods might bene�t from additional spacial information. On the other hand, requirements on memory and 
compute power can be higher for methods that reconstruct 3D volumes directly.

https://doi.org/10.1038/s41597-021-00893-z
https://lodopab.grand-challenge.org/


1 0SCIENTIFIC DATA |           (2021) 8:109  | https://doi.org/10.1038/s41597-021-00893-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

•	 Image metrics, e.g. PSNR and SSIM, cannot express and cover all aspects of high-quality CT reconstruction. 
An additional assessment by experts in the �eld can be bene�cial.

•	 �e ground truth images are based on reconstructions from normal-dose medical scans. As such, they can 
contain noise and artefacts. �e measurements are created from this “noisy” ground truth. �erefore, a per-
fect reconstruction model would re-create the imperfections. Approaches that are designed to remove them 
can score lower PSNR and SSIM values, although their reconstruction quality might be higher.

•	 A crop to a region of interest is used for the ground truth images (cf. “Ground truth image extraction”). 
Hence, the results for full-subject measurements can be di�erent.

Code availability
Python scripts26 for the simulation setup and the creation of the dataset are publicly available on Github (https://
github.com/jleuschn/lodopab_tech_ref). They make use of the ASTRA Toolbox36 (version 1.8.3) and the 
Operator Discretization Library35 (ODL, version ≥0.7.0). In addition, the ground truth reconstructions from 
the LIDC/IDRI database21 are needed for the simulation process. A sample data split into training, validation, 
test and challenge part is also provided. It di�ers from the one used for the creation of this dataset in order to 
keep the ground truth data of the challenge set undisclosed. �e random seeds used in the scripts are modi�ed 
for the same reason. �e authors acknowledge the National Cancer Institute and the Foundation for the National 
Institutes of Health, and their critical role in the creation of the free publicly available LIDC/IDRI database used 
in this study.
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