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The first part of the thesis deals with aspects of Loewner theory in several complex

variables. First we show that a Loewner chain with minimal regularity assumptions

(Df (0, ·) of local bounded variation) satisfies an associated Loewner equation. Next we

give a way of renormalizing a general Loewner chain so that it corresponds to the same

increasing family of domains. To do this we will prove a generalization of the converse

of Carathéodory’s kernel convergence theorem. Next we address the problem of finding

a Loewner chain solution to a given Loewner chain equation. The main result is a com-

plete solution in the case when the infinitesimal generator satisfies Dh (0, t) = A where

inf {Re 〈Az, z〉 : ‖z‖ = 1} > 0. We will see that the existence of a bounded solution

depends on the real resonances of A, but there always exists a polynomially bounded

solution. Finally we discuss some properties of classes of biholomorphic mappings asso-

ciated to A-normalized Loewner chains. In particular we give a characterization of the

compactness of the class of spirallike mappings in terms of the resonance of A.

The second part of the thesis deals with the problem of finding examples of extreme

points for some classes of mappings. We see that straightforward generalizations of one

dimensional extreme functions give examples of extreme Carathéodory mappings and

extreme starlike mappings on the polydisc, but not on the ball. We also find examples of

extreme Carathéodory mappings on the ball starting from a known example of extreme

Carathéodory function in higher dimensions.

ii



Acknowledgements

I am grateful to my supervisor, Ian Graham, for his patience, support and encour-

agement throughout my graduate education. I would also like to thank Gabriela Kohr

for comments and suggestions that helped improve the content of the thesis.

iii



Contents

1 Loewner Theory 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Loewner chains without normalization . . . . . . . . . . . . . . . . . . . 8

1.4 Loewner chains with positive definite normalization . . . . . . . . . . . . 14

1.5 Solutions of the Loewner chain equation when Dh (0, t) = A(t) . . . . . . 18

1.6 Solutions of the Loewner chain equation when Dh(0, t) = A . . . . . . . 24

1.7 Spirallikeness, parametric representation, asymptotical spirallikeness . . . 38

2 Extreme Points 51

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Extreme points on P n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Extreme points on Bn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 72

iv



Chapter 1

Loewner Theory

1.1 Introduction

Loewner’s theory of infinitesimal methods for univalent functions, as originally introduced

by C. Loewner and later developed by P. P. Kufarev and C. Pommerenke, is one of

the main tools in geometric function theory. For a detailed history of the evolution of

Loewner’s theory and its applications see [ABCDM10]. The study of Loewner’s theory in

several complex variables, originated by J. Pfaltzgraff [Pfa74], is naturally motivated by

its success in one variable. For an account of the development of the higher dimensional

theory from 1974 to 2003 see [GK03] and [GKP04].

To discuss the more recent developments let us first recall the basic objects of Loewner

theory. Let Bn be the Euclidean unit ball in C
n. If f and g are two mappings defined

on Bn with values in C
n we say that f is subordinated to g, denoted by f ≺ g, if

f (0) = g (0) = 0 and f (Bn) ⊆ g (Bn). We say that a mapping f : Bn × [0,∞) → C
n is

a subordination chain if f(0, t) = 0, t ≥ 0, and f(·, s) ≺ f(·, t), whenever 0 ≤ s ≤ t < ∞.

A subordination chain is called a Loewner chain if in addition f(·, t) is biholomorphic on

Bn for all t ≥ 0. We will sometimes use the notation ft (z) := f (z, t). If f is a Loewner

chain then the mapping defined by v (z, s, t) = f−1
t (fs (z)) is called the transition mapping
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Chapter 1. Loewner Theory 2

associated to the Loewner chain. The main property of a Loewner chain is that it satisfies

a partial differential equation, called the Loewner chain equation,

∂f

∂t
(z, t) = Df (z, t)h (z, t) , z ∈ Bn, a.e. t ∈ [0,∞), (1.1.1)

where D denotes Fréchet differentiation with respect to the complex variable. The map-

ping h is called the infinitesimal generator of the Loewner chain. The transition mapping

associated to the chain satisfies an ordinary differential equation (with an initial value),

called the Loewner equation,

∂v

∂t
= −h(v, t) a.e. t ≥ s, v(z, s, s) = z, s ≥ 0. (1.1.2)

In order to obtain these equations and other results about Loewner chains we need

to impose a regularity condition on the chain. It turns out that it is enough to impose a

regularity condition on Df (0, t). In analogy with the one dimensional theory, Loewner

chains in higher dimensions were initially studied using the normalization Df (0, t) = etI

(or Df(0, t) = φ (t) I where φ is such that it can be reparametrized to et). Unlike the

one variable situation, in higher dimensions it is not true that the case of non-normalized

Loewner chains can be reduced, through a reparametrization of t, to the Df (0, t) = etI

case (see [DGHK10, p 413]). This justifies the study of Loewner chains with more general

normalization or, even better, with no normalization at all. In particular, in [GHKK08a]

Loewner chains are studied assuming that Df (0, t) = etA and in [GHKK08b] Loewner

chains are studied assuming that Df (0, t) = e
´ t

0 A(τ)dτ (with certain restrictions on A

and A (·)). Very recently Loewner chains have also been studied on abstract complex

manifolds without any normalization in [ABHK10] (see also [BCDM09]).

The purpose of this chapter is to add to the study of Loewner chains in [GHKK08b]

and [GHKK08a]. We will discuss aspects that are not covered by the more general work

from [ABHK10] and [BCDM09]. In Section 1.2 we collect some basic facts that will be

needed throughout the first part of the chapter. In Section 1.3 we show that a Loewner
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chain with minimal regularity assumptions (Df (0, ·) is of local bounded variation) satis-

fies an associated Loewner equation. This requires a discussion of the connection between

the regularities of Df (0, ·), f and v. In Section 1.4 we give a way of renormalizing a

general Loewner chain so that it corresponds to the same increasing family of domains.

To do this we will prove a generalization of the converse of Carathéodory’s kernel conver-

gence theorem. We then concentrate on the problem of finding a Loewner chain solution

to a given Loewner chain equation. This also includes giving conditions that determine a

solution uniquely. We start with the general case in Section 1.5, where we prove results

that are very similar to those in [GHKK08b] but using less assumptions. The main result

of the chapter is a complete solution, in Section 1.6, for the case when the infinitesimal

generator satisfies Dh (0, t) = A where A ∈ L (Cn,Cn) is such that m (A) > 0. Finally, in

Section 1.7, we discuss some properties of classes of biholomorphic mappings associated

to Loewner chains that satisfy Df (0, t) = etA. The last two sections of this chapter are

based on the results published in [Vod11].

1.2 Preliminaries

We start with a short review of some useful facts about the nonstationary (homogeneous)

abstract Cauchy problem in Banach spaces following [DK74, Chapter III]. Consider the

equation

dx

dt
= A(t)x (1.2.1)

satisfied at almost all points of an interval J (finite or infinite), where x takes values in

a Banach space B and A(t) takes values in L(B,B) (which is also a Banach space). We

will be assuming that A(t) is strongly measurable and Bochner integrable on the finite

subintervals of J (in the finite dimensional case this condition on A(t) amounts to its

being measurable and locally integrable in the Lebesgue sense). Under these assumptions,

the equation (1.2.1) has a unique locally absolutely continuous solution on J satisfying
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the initial condition x(t0) = x0. Furthermore we have

max
s∈[a,b]

‖x(s)‖ ≤ ‖x(t0)‖ e
´ b

a
‖A(τ)‖dτ , t0 ∈ [a, b] ⊆ J. (1.2.2)

In particular this applies to the equation

dU

dt
= A(t)U, U(t0) = I (1.2.3)

where U takes values in X := L(B,B). Note that in this situation the operator A(t) from

equation (1.2.1) is in fact Al(t) taking values in L(X,X), defined by Al(t)(U) = A(t)U

for all U ∈ X. It is not hard to see that ‖A(t)‖ = ‖Al(t)‖ and that measurability and

integrability are equivalent for A(t) and Al(t). The same goes for Ar(t) = UA(t). The

estimate (1.2.2) and the above discussion yields that

‖U(t)‖ ≤ e
´ t

t0
‖A(τ)‖dτ

, t ≥ t0. (1.2.4)

One can also consider the so called adjoint associate equation to (1.2.3):

dV

dt
= −V A(t), V (t0) = I.

It is not difficult to verify that U(t)−1 exists and V (t) = U(t)−1. Since ‖−A(τ)‖ = ‖A(τ)‖

we also get that

‖V (t)‖ ≤ e
´ t

t0
‖A(τ)‖dτ

, t ≥ t0. (1.2.5)

Using the uniqueness of solutions for (1.2.1), one can see that the linear evolution family

associated to A(t), i.e. the family of linear operators U(s, t) satisfying

∂U(s, t)

∂t
= A(t)U(s, t) a.e. t ≥ s, U(s, s) = I (1.2.6)

is given by U(s, t) = U(t)U(s)−1 where U solves (1.2.3). Note that estimates (1.2.4) and

(1.2.5) give us

‖U(s, t)‖ ≤ e
´ t

s
‖A(τ)‖dτ (s ≤ t) (1.2.7)

and

‖U(s, t)−1‖ ≤ e
´ t

s
‖A(τ)‖dτ (s ≤ t). (1.2.8)
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Next we specialize some of the above estimates to the case of C
n with Euclidean

norm. For a given operator A ∈ L(Cn,Cn) let m(A) := inf{Re 〈A(z), z〉 : ‖z‖ = 1},

k(A) := sup{Re 〈A(z), z〉 : ‖z‖ = 1} and |V (A)| := sup{| 〈A(z), z〉 | : ‖z‖ = 1}. If we

let A : [0,∞) → L(Cn,Cn) be measurable and locally integrable and U the solution to

dU/dt = A(t)U , with U(0) = I then estimates (1.5) and (1.6) from [GHKK08b] become:

Proposition 1.2.1.

e
´ t

0 m(A(τ))dτ ≤ ‖U(t)‖ ≤ e
´ t

0 k(A(τ))dτ , t ∈ [0,∞)

and

e−
´ t

0 k(A(τ))dτ ≤ ‖U(t)−1‖ ≤ e−
´ t

0 m(A(τ))dτ , t ∈ [0,∞).

Proof. The first claim follows exactly as (1.5) in [GHKK08b]. For the second claim, let

V (t) = U(t)−1. From the discussion above we know that we have dV/dt = −V A(t). We

cannot apply the same idea as for the first claim to V (unless we assume that V commutes

with A(t)), but if we consider the adjoint V ∗ of V we have that dV ∗/dt = −A∗(t)V ∗. Now

the result follows from the first claim because ‖V ∗‖ = ‖V ‖, m(−A∗(t)) = −k(A∗(t)) =

−k(A(t)) and k(−A∗(t)) = −m(A∗(t)) = −m(A(t)) by properties of the adjoint.

Remark 1.2.2. It can be easily deduced that we also have the more general estimate

e
´ t

s
m(A(τ))dτ ≤ ‖U(s, t)‖ ≤ e

´ t

s
k(A(τ))dτ , t ∈ [s,∞). (1.2.9)

Also, the same result holds if dU/dt = UA (t) (rather than A (t)U).

We will see that general Loewner chains have infinitesimal generators whose values

are in the class

N0 = {h ∈ H(Bn) : h(0) = 0,Re 〈h(z), z〉 ≥ 0, z ∈ Bn\{0}}.

rather than in the class

N = {h ∈ H(Bn) : h(0) = 0,Re 〈h(z), z〉 > 0, z ∈ Bn\{0}}.

We record some basic properties of N0.
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Proposition 1.2.3. (i) N0 = N

(ii) If h ∈ N0 then m(Dh(0)) ≥ 0 and if h ∈ N then m(Dh(0)) > 0.

(iii) If h ∈ N0 and A = Dh(0) then

Re 〈A(z), z〉
1 − ‖z‖

1 + ‖z‖
≤ Re 〈h(z), z〉 ≤ Re 〈A(z), z〉

1 + ‖z‖

1 − ‖z‖
, z ∈ Bn (1.2.10)

and

‖h(z)‖ ≤
4 ‖z‖

(1 − ‖z‖)2
|V (A)| ≤

4 ‖z‖

(1 − ‖z‖)2
‖A‖ , z ∈ Bn. (1.2.11)

Proof. (i) is clear because of the simple remark that given h ∈ N0 we have that h+ǫI ∈ N

for all ǫ > 0.

For (ii) suppose that h ∈ N0 and m(Dh(0)) < 0. So there exists z0, ‖z0‖ = 1 such

that Re 〈A(z0), z0〉 < 0. Using Taylor series we see that near 0 we have that

1

|ζ|2
Re 〈h(ζz0), ζz0〉 =

1

|ζ|2
Re

〈

ζ

[

A(z0) +
o(‖ζz0‖)

ζ

]

, ζz0

〉

= Re 〈A(z0), z0〉 + Re

〈

o(‖ζz0‖)

ζ
, z0

〉

.

So, for small enough ζ we get that Re 〈h(ζz0), ζz0〉 < 0 contradicting h ∈ N0.

The result for h ∈ N follows immediately from the result above and [GK03, Lemma

6.1.30]

The estimates from (iii) are known for the class N . For (1.2.10) see the proof of

[Gur75, Lemma 1] and for (1.2.11) see [GHKK08a, Lemma 1.2]. The results for N0

follow from the results for N by using (i) and the continuity of the terms involving

A.

A family of holomorphic mappings that is locally uniformly bounded is also locally

uniformly Lipschitz. This simple fact will be used throughout this chapter and we provide

a proof bellow.

Lemma 1.2.4. Let f be a holomorphic mapping on Bn such that ‖f(z)‖ ≤ Mr, ‖z‖ ≤ r.

Then there exists a constant Cr (depending on M but not on f) such that

‖f(z) − f(w)‖ ≤ Cr ‖z − w‖ , ‖z‖ , ‖w‖ ≤ r.



Chapter 1. Loewner Theory 7

Proof. If ‖z‖ ≤ r < R < 1 and ‖h‖ ≤ 1 then from Cauchy’s integral formula we have

Df (z)h =
1

2πi

ˆ

|ζ|=R−r

f (z + ζh)

ζ
dζ

and hence

‖Df(z)‖ ≤
MR

R − r
, ‖z‖ ≤ r, 1 > R > r.

Using the integral formula for the remainder of the Taylor series and the above inequality

we get

‖f(z) − f(w)‖ =

∥

∥

∥

∥

∥

ˆ 1

0

Df(w + t(z − w))(z − w)dt

∥

∥

∥

∥

∥

≤
MR

R − r
‖z − w‖ , ‖z‖ , ‖w‖ ≤ r, 1 > R > r.

The conclusion follows by letting R = (1 + r) /2.

We will also need some results related to positive definite matrices. For convenience

we quote them from [HJ90]. Mn will denote the space of n× n complex matrices.

Proposition 1.2.5. ([HJ90] Theorem 7.2.1) A Hermitian matrix A ∈ Mn is positive

semidefinite if and only if all of its eigenvalues are nonnegative. It is positive definite if

and only if all of its eigenvalues are positive.

Let A,B ∈ Mn be Hermitian matrices. We write A ≥ B (A > B) if the matrix A−B

is positive semidefinite (positive definite).

For a matrix A ∈ Mn, ρ(A) denotes its spectral radius.

Theorem 1.2.6. ([HJ90] Theorem 7.7.3) Let A,B ∈ Mn be Hermitian matrices, and

suppose A is positive definite and B is positive semidefinite. Then A ≥ B if and only if

ρ(BA−1) ≤ 1, and A > B if and only if ρ(BA−1) < 1.

Corollary 1.2.7. ([HJ90] Corollary 7.7.4) If A,B ∈ Mn are positive definite, then:

1. A ≥ B if and only if B−1 ≥ A−1;
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2. If A ≥ B, then detA ≥ detB and trA ≥ trB;

3. More generally, λk(A) ≥ λk(B) for all k = 1, 2, . . . , n if the respective eigenvalues

of A and B are arranged in the same (increasing or decreasing) order.

Theorem 1.2.8. ([HJ90] Corollary 7.3.3) If A ∈ Mn, then it may be written in the

form A = PU where P is positive semidefinite and U is unitary. The matrix P is always

uniquely determined as P = (AA∗)1/2; if A is nonsingular , then U is uniquely determined

as U = P−1A. If A is real, then P and U may be taken to be real.

1.3 Loewner chains without normalization

If f (z, t) is a Loewner chain and v (z, s, t) is its transition mapping then from the defi-

nitions it immediately follows that v (·, s, t) is a Schwarz mapping (i.e. a self-map of Bn

fixing the origin) such that Dv (0, s, t) = Df (0, t)−1 Df (0, s). Furthermore it is easy to

check that the transition mapping satisfies the following semigroup property

v (v (z, s, t1) , t1, t2) = v (z, s, t2) , z ∈ Bn, 0 ≤ s ≤ t1 ≤ t2. (1.3.1)

First we want to prove Proposition 1.3.4 that collects some useful estimates relating

a Loewner chain and its transition mapping (these are inspired by the proof of [GK03,

Theorem 8.1.8]). For this we will need a consequence of the following result.

Proposition 1.3.1. Let f and g be holomorphic mappings on Bn such that f(0) =

g(0) = 0 and Dg (0) is invertible. If f ≺ g then Pf ≤ Pg, where Pf and Pg are the unique

positive semidefinite matrices from the polar decomposition of f and respectively g.

Proof. From f ≺ g we know that there exists a Schwarz mapping w such that f =

g ◦ w. Hence Dg(0)−1Df(0) = Dw(0). Let Df (0) = PfUf and Dg (0) = PgUg be

polar decompositions. Since Dg (0) is invertible, Pg is in fact positive definite. We have

that U∗
gP

−1
g PfUf = Dw (0) and hence P−1

g Pf = UgDw (0)U∗
f . From the Carathéodory-

Cartan-Kaup-Wu theorem (see [Kra01, Theorem 11.3.1]) applied to Ug ◦w ◦U∗
f it follows
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that ρ
(

P−1
g Pf

)

≤ 1. Now the result follows from Theorem 1.2.6 (we are using the known

fact that AB and BA have the same eigenvalues and hence the same spectral radius).

Corollary 1.3.2. If f (z, t) is a Loewner chain then Df (0, ·)−1 is bounded and there

exists a constant C such that

∥

∥

∥Df (0, t1)
−1 −Df (0, t2)

−1
∥

∥

∥ ≤ C ‖Df (0, t1) −Df (0, t2)‖ .

Proof. Let Df (0, t) = PtUt be the polar decomposition of Df (0, t). From the previous

proposition we have that Pt1 ≤ Pt2 whenever t1 ≤ t2. In particular we have that P0 ≤

Pt and hence P−1
t ≤ P−1

0 . This implies that
∥

∥

∥P−1
t

∥

∥

∥ ≤
∥

∥

∥P−1
0

∥

∥

∥. Since
∥

∥

∥Df (0, t)−1
∥

∥

∥ =
∥

∥

∥U∗
t P

−1
t

∥

∥

∥ =
∥

∥

∥P−1
t

∥

∥

∥ we have proved the first claim. The second claim follows from the

first one and the identity

Df (0, t1)
−1 −Df (0, t2)

−1 = Df (0, t1)
−1 (Df (0, t2) −Df (0, t1))Df (0, t2)

−1 .

Remark 1.3.3. The proof of the above result relied on the particular choice of matrix

norm (we used the unitary invariance of the norm), but clearly the results also hold for

any other norm (since all norms on Mn are equivalent).

Proposition 1.3.4. Let f(z, t) be a Loewner chain and let v(z, s, t) be its transition

mapping. Then the following estimates hold:

(i) For all ‖z‖ ≤ r, 0 ≤ s ≤ t1, t2 we have that

‖v(z, s, t1) − v(z, s, t2)‖ ≤ Cr ‖Df(0, t1) −Df(0, t2)‖ .

(ii) For all ‖z‖ ≤ r, 0 ≤ s1 ≤ s2 ≤ t we have that

‖v(z, s1, t) − v(z, s2, t)‖ ≤ Cr ‖v(z, s1, s1) − v(z, s1, s2)‖

≤ Cr ‖Df(0, s1) −Df(0, s2)‖ .
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(iii) For all ‖z‖ ≤ r, 0 ≤ t1, t2 ≤ T we have that

‖f(z, t1) − f(z, t2)‖ ≤ Cr,T ‖v(z, t1, T ) − v(z, t2, T )‖

≤ Cr,T ‖Df(0, t1) −Df(0, t2)‖ .

Proof. Suppose 0 ≤ t1 ≤ t2. Since v (·, t1, t2) is a Schwarz mapping we have that

Re 〈z − v (z, t1, t2) , z〉 = ‖z‖2 − Re 〈v (z, t1, t2) , z〉 ≥ ‖z‖2 − ‖v (z, t1, t2)‖ ‖z‖ ≥ 0.

Hence z − v(z, t1, t2) is a mapping in N0 and using the estimate (1.2.11) we get that

‖z − v(z, t1, t2)‖ ≤ Cr ‖I −Dv(0, t1, t2)‖ = Cr
∥

∥

∥I −Df(0, t2)
−1Df(0, t1)

∥

∥

∥

≤ Cr
∥

∥

∥Df(0, t2)
−1
∥

∥

∥ ‖Df(0, t2) −Df(0, t1)‖

≤ Cr ‖Df(0, t1) −Df(0, t2)‖ , ‖z‖ ≤ r.

For the last inequality we used Proposition 1.3.1. Since v(·, s, t1) is a Schwarz mapping

we can replace z by v(z, s, t1) in the above inequality and we get the estimate (i) (by

using the semigroup property of the transition mapping).

Using the fact that the mappings v(·, s, t), 0 ≤ s ≤ t are Schwarz mappings, hence

locally uniformly bounded, we get that (see Lemma 1.2.4)

‖v(z, s, t) − v(w, s, t)‖ ≤ Cr ‖z − w‖ , ‖z‖ , ‖w‖ ≤ r, 0 ≤ s ≤ t.

Replace s by s2 and w by v(z, s1, s2) in the above inequality and use the semigroup

property for the transition mapping and the estimate from (i) to get that

‖v(z, s2, t) − v(z, s1, t)‖ ≤ Cr ‖v(z, s1, s1) − v(z, s1, s2)‖

≤ Cr ‖Df(0, s1) −Df(0, s2)‖ , ‖z‖ ≤ r.

Using the fact that f (·, T ) is locally Lipschitz we easily get the last estimate

‖f(z, t1) − f(z, t2)‖ = ‖f(v(z, t1, T ), T ) − f(v(z, t2, T ), T )‖

≤ Cr,T ‖v(z, t1, T ) − v(z, t2, T )‖ , ‖z‖ ≤ r.
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Now we can see how imposing regularity conditions on Df (0, ·) yields the regularity

of the entire Loewner chain.

Corollary 1.3.5. Let f(z, t) be a Loewner chain and v(z, s, t) be its transition mapping.

Then the following statements are equivalent:

(i) Df (0, ·) is continuous (of local bounded variation, locally absolutely continuous,

locally Lipschitz) on [0,∞).

(ii) f(z, ·) is continuous (of local bounded variation, locally absolutely continuous, lo-

cally Lipschitz) on [0,∞), locally uniformly with respect to z.

(iii) For all s ≥ 0, v(z, s, ·) is continuous (of local bounded variation, locally absolutely

continuous, locally Lipschitz) on [s,∞), locally uniformly with respect to z, uni-

formly with respect to s.

(iv) For all t > 0, v(z, ·, t) is continuous (of bounded variation, absolutely continuous,

Lipschitz) on [0, t], locally uniformly with respect to z.

Proof. By the estimates from Proposition 1.3.4 it is clear that (i) implies all the other

statements. Using Cauchy’s formula it immediately follows that (ii) implies (i) . So it

is also true that (ii) implies (iii). (iii) implies (iv) and (iv) implies (i) are immediate

consequences of the estimates (ii) and respectively (iii) from Proposition 1.3.4.

Now we are able to check that a Loewner chain with minimal regularity assumptions

satisfies an associated Loewner chain equation. Let H0 be the class of mappings h :

Bn×[0,∞) → C
n such that h (z, ·) is measurable on [0,∞) for all z ∈ Bn and h(·, t) ∈ N0

for all t ∈ [0,∞). Let H be the class of mappings h ∈ H0 such that h (·, t) ∈ N for all

t ∈ [0,∞).

Proposition 1.3.6. Let f(z, t) be a Loewner chain such that Df (0, ·) is of local bounded

variation. Then ∂tf(·, t) exists and is holomorphic on Bn for a.e. t ≥ 0 and
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∂f

∂t
(z, t) = Df(z, t)h(z, t), z ∈ Bn, a.e. t ≥ 0 (1.3.2)

where h is a mapping in H0.

Proof. Let v(z, s, t) be the transition mapping associated to f(z, t). We have that

f(z, t+ ǫ) − f(z, t)

ǫ
=
f (z, t+ ǫ) − f (v (z, t, t+ ǫ) , t+ ǫ)

ǫ
= A(z, t, ǫ)

(

z − v(z, t, t+ ǫ)

ǫ

)

where by Taylor’s formula

A(z, t, ǫ) =

ˆ 1

0

Df (z + τ(v (z, t, t+ ǫ) − z), t+ ǫ) dτ.

We claim that as ǫ → 0+ we have that A (z, t, ǫ) → Df (z, t) for all z ∈ Bn and for

a.e. t ≥ 0 (in fact the exceptional set is countable). Indeed, we have that

‖A (z, t, ǫ) −Df (z, t)‖ ≤

ˆ 1

0

‖Df (z + τ(v (z, t, t+ ǫ) − z), t+ ǫ) −Df (z, t+ ǫ)‖ dτ

+ ‖Df (z, t+ ǫ) −Df (z, t)‖ .

Fix T > t. Then from Cauchy’s integral formula and Proposition 1.3.4 it follows that

‖Df (z, t+ ǫ) −Df (z, t)‖ ≤ Cr,T ‖Df (0, t+ ǫ) −Df (0, t)‖ , ‖z‖ ≤ r, ǫ ≤ T − t.

It is easy to see that the family {f (·, t)}t∈[0,T ] is locally uniformly bounded. Indeed, if

Mr is such that ‖f (z, T )‖ ≤ Mr for ‖z‖ ≤ r, then using the fact that the v (·, t, T ) are

Schwarz mappings we also have that

‖f (z, t)‖ = ‖f (v (z, t, T ) , T )‖ ≤ Mr, ‖z‖ ≤ r.

Now Cauchy’s integral formula and Lemma 1.2.4 imply that

‖Df (w, t) −Df (z, t)‖ ≤ Cr,T ‖z − w‖ , ‖z‖ , ‖w‖ ≤ r, t ∈ [0, T ] .

Using Proposition 1.3.4 again we can conclude that

‖A (z, t, ǫ) −Df (z, t)‖ ≤ Cr,T ‖Df (0, t+ ǫ) −Df (0, t)‖ , ‖z‖ ≤ r, ǫ ≤ T − t.
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This shows that A (z, t, ǫ) → Df (z, t) for all z ∈ Bn whenever t is a point of continuity

for Df (0, ·). This proves the claim, since it is known that functions of bounded variation

are continuous except for a countable set.

From the estimates in Proposition 1.3.4 we see that the quotients (f (z, t+ ǫ) − f (z, t)) /ǫ

and (z − v (z, t, t+ ǫ)) /ǫ are locally uniformly bounded in z in neighborhoods of points

t where Df(0, ·) is differentiable. But Df(0, ·) is of bounded variation and so it has a

derivative almost everywhere. By the same arguments as in [GK03, Theorem 8.1.9] we

get that, due to the fact that f(z, ·) and v(z, s, ·) are of local bounded variation and

hence have derivatives in t a.e., the limits

h(z, t) := lim
ǫ→0

z − v(z, t, t+ ǫ)

ǫ
(1.3.3)

∂f

∂t
(z, t) := lim

ǫ→0

f(z, t+ ǫ) − f(z, t)

ǫ
(1.3.4)

exist for almost all t ∈ [0,∞) locally uniformly in z (to apply Vitali’s theorem as in

[GK03, Theorem 8.1.9] we need first to restrict attention to points t where Df(0, ·)

is differentiable). Now we have that equation (1.3.2) is satisfied at all points where

A (z, t, ǫ) → Df (z, t) and where the limits (1.3.3) and (1.3.4) exist, hence it holds almost

everywhere. We just need to check that h(z, t) has the claimed properties. By defining

h(·, t) to be some arbitrary mapping from N0 at points where the limit doesn’t exist,

we get that for each z ∈ B, h(z, ·) is a measurable mapping on [0,∞) (because it is the

pointwise a.e. limit of a sequence of measurable mappings). Since v(·, s, t) is a Schwarz

mapping we get that Re 〈z − v(z, t, t+ ǫ), z〉 ≥ 0 and hence h(·, t) ∈ N0.

Let F (z, t) = (f(z1, t), z2) where f(z1, t) is a normalized Loewner chain (f ′(0, t) = et).

It is easy to see that the transition mapping is defined by V (z, s, t) = (v(z1, s, t), z2) and

the infinitesimal generator is H(z, t) = (h(z1, t), 0) where v(z1, s, t) and h(z1, t) are the

transition mapping and respectively the infinitesimal generator for f(z1, t). This example

shows that for Loewner chains in general we need to allow for the infinitesimal generators

to be in H0 rather than in H (as considered in [GHKK08b]).
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1.4 Loewner chains with positive definite normaliza-

tion

The goal of this section is to provide an analogue in higher dimensions of the fact that

in one variable we can renormalize a Loewner chain so that it satisfies Df (0, t) = et.

We will be able to do so after we generalize one of the implications of the Carathéodory

kernel convergence theorem. We will need the following lemma.

Lemma 1.4.1. Let G be a domain biholomorphic to the unit ball Bn and let w ∈ G. Then

there exists a unique biholomorphism f : Bn → G such that f(0) = w and Df(0) > 0.

Proof. Let g be a biholomorphism between Bn and G and φ an automorphism of Bn such

that φ (0) = g−1 (w). If U is a unitary matrix then f := g ◦ φ ◦ U is a biholomorphism

between Bn and G such that f (0) = w and furthermore by Theorem 1.2.8 U can be

chosen so that Df (0) > 0.

Suppose that f and g are two biholomorphisms between Bn and G such that f (0) =

g (0) = w and Df (0) , Dg (0) > 0. Then g−1 ◦ f is an automorphism of Bn that fixes 0,

hence g−1 ◦ f = U where U is a unitary mapping. This yields that Df (0) = Dg (0)U .

By the uniqueness part of Theorem 1.2.8 it follows that U = I and hence f = g.

Let {Gk} be a sequence of open subsets of Cn. We say that G is the kernel of {Gk} if

G is the largest open set such that for any compact set K ⊂ G there exists k0 = k0 (K)

such that K ⊂ Gk for all k ≥ k0. We say that {Gk} converges in kernel to G, denoted

Gk → G, if every subsequence of {Gk} has the same kernel G. It is known that if we

have a sequence of biholomorphic mappings {fk} on Bn that converge locally uniformly

to a biholomorphism f on Bn then fk (Bn) → f (Bn) (this is the direct implication of

Carathéodory’s kernel convergence theorem). See [ABHK10, Theorem 3.5] for the most

general version of this result. We will prove a converse of this result.
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Proposition 1.4.2. Let {Gk} be a sequence of domains containing 0 and which are

biholomorphic to Bn. Furthermore, assume that Gk → G where G is also biholomorphic

to Bn. Let {fk} be the sequence of biholomorphisms fk : Bn → Gk such that fk(0) = 0

and Dfk(0) > 0 and let f be the biholomorphism f : Bn → G such that f(0) = 0 and

Df(0) > 0. If {Dfk(0)−1fk} is locally uniformly bounded on Bn then fk → f locally

uniformly on Bn.

Proof. Let 0 < λk,1 ≤ · · · ≤ λk,i ≤ · · · ≤ λk,n denote the eigenvalues of Dfk(0). We claim

that λ1 := inf {λk,1} > 0 and λn := sup {λk,n} < ∞. First we show that the conclusion

follows if the claim is true and then we will check the claim.

We will denote by Bn
r the ball centered at the origin and of radius r and by B

n

r its

closure. From the assumption that
{

Dfk (0)−1 fk
}

is locally uniformly bounded it follows

that given r ∈ (0, 1) there exists R = R (r) such that Dfk(0)−1fk(B
n
r ) ⊆ Bn

R. Then

fk(B
n
r ) = Dfk (0)Dfk (0)−1 fk (Bn

r ) ⊆ Dfk(0)(Bn
R) ⊆ λk,nB

n
R ⊆ λnB

n
R.

This shows that {fk} is locally uniformly bounded.

Let {fkl
} be a convergent subsequence. We want to show that its limit is f . Let

g = liml→∞ fkl
. We know that

〈Dfk(0)z, z〉 ≥ λk,1 ≥ λ1 > 0, ‖z‖ = 1.

Hence 〈Dg(0)z, z〉 ≥ λ1 > 0, ‖z‖ = 1, and so Dg(0) > 0. In particular Dg(0) is

nonsingular and using Hurwitz’s Theorem we get that g is a biholomorphism. By the

direct implication of Carathéodory’s kernel convergence theorem and the definition of

kernel convergence we have that g(Bn) = G. Now, Lemma 1.4.1 implies that g = f .

In conclusion, since {fk} is locally uniformly bounded we get that every subsequence

has a converging subsequence, and by the above argument the limit of each such subse-

quence is f . Hence we must have that fk → f .

Now we just have to check that λ1 > 0 and λn < ∞. Suppose that λ1 = 0. Let

r > 0 be such that B
n
r ⊂ G. From the definition of kernel convergence we know that
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there exists k0 such that B
n
r ⊂ fk(B

n) for all k ≥ k0. This means we can consider the

restrictions f−1
k |Bn

r
: Bn

r → Bn, k ≥ k0. Since f−1
k (0) = 0 we get (by Schwarz’s lemma)

that f−1
k (B

n

r/2) ⊂ B
n

1/2, k ≥ k0. Equivalently, B
n

r/2 ⊂ fk(B
n

1/2) for all k ≥ k0. Let zk with

‖zk‖ = r/2 be an eigenvector of Dfk(0)−1 associated to the eigenvalue 1/λk,1. Then

1

λk,1
zk = Dfk(0)−1 (zk) ∈ Dfk(0)−1fk(B

n
1
2
), k ≥ k0.

But λ1 = 0 implies that sup {1/λk,1} = ∞ and so the above contradicts the uniform

boundedness of
{

fk(B
n

1/2)
}

. So, we must have that λ1 > 0.

Now suppose that λn = ∞. Up to a subsequence we may assume that λk,n ր ∞.

From the local uniform boundedness of {Dfk(0)−1fk} we get that there exists r > 0 such

that Bn
r ⊂ Dfk(0)−1fk(B

n) for all k. Indeed, let S (Bn) be the class of biholomorphic

mappings f on Bn such that f (0) = 0 and Df (0) = I. Then it is easy to check that

the covering radius functional C : S (Bn) → R is continuous with respect to the locally

uniform convergence topology (C (f) is the radius of the largest ball centered at the origin

contained in f (Bn)). It is enough to choose r to be the minimum of C on the closure

of the set
{

Dfk (0)−1 fk
}

, which is a compact subset of S (Bn) (by Montel’s theorem).

Now we have that Dfk(0)(Bn
r ) ⊂ fk(B

n) for all k. Since Dfk(0) is Hermitian it is

unitarily diagonalizable, so there exists a unitary matrix Uk such that Dfk(0) = UkDkU
∗
k ,

where Dk = diag(λk,1, . . . , λk,n). Since unitary matrices form a compact subset of Mn

it follows that up to a subsequence there is a unitary matrix U such that Uk → U .

Thinking of the sets diag(λ1, . . . , λ1, λk0,n)(Bn
r ) geometrically as ellipsoids and of the sets

Ukdiag(λ1, . . . , λ1, λk0,n)(Bn
r ) as rotations of said ellipsoids it is easy to see that if we fix

k0 there exists k1 such that

Ukdiag(λ1, . . . , λ1, λk0,n)(Bn
r ) ⊃

1

2
Udiag(λ1, . . . , λ1, λk0,n)(Bn

r ), k ≥ k1.

Alternatively one can use the direct implication of Carathéodory’s kernel convergence

theorem to reach the same conclusion. Note that for the above inclusion it was essential
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that λ1 > 0. At the same time we have

fk (Bn) ⊃ Dfk(0)(Bn
r ) = UkDkU

∗
k (Bn

r ) = Ukdiag (λk,1, . . . , λk,n) (Bn
r )

⊇ Ukdiag(λ1, . . . , λ1, λk0,n)(Bn
r ), k ≥ k0

(remember that we are assuming λk,n is an increasing sequence). We can now conclude

that for sufficiently large k we have that

1

2
Udiag(λ1, . . . , λ1, λk0,n)(Bn

r ) ⊂ fk(B
n)

and from the definition of kernel convergence and the fact that k0 is arbitrary, we get

that

1

2
Udiag(λ1, . . . , λ1, λk,n)(Bn

r ) ⊂ G

for all k. Since λk,n ր ∞ we got that G contains the complex line passing through 0

and Uen (en = (0, . . . , 0, 1)) and hence G cannot be biholomorphic to Bn (or any other

bounded domain). We arrived at a contradiction so it means we must have that λn < ∞.

This concludes the proof.

Now we are able to provide a way of renormalizing a general Loewner chain. If

Df (0, ·) is continuous it is not hard to see, using the direct implication of Carathéodory’s

kernel convergence theorem, that the family {f (Bn, t)} is an increasing family of domains

such that f (Bn, t) → f (Bn, t0) whenever t → t0. The goal is to preserve the geometric

picture, hence the family of domains {f (Bn, t)}. Also, geometrically it makes sense to

restrict ourselves to families of domains such that each domain appears only once.

Proposition 1.4.3. Let {Gt}t≥0 be a family of domains containing 0 which are biholo-

morphic to Bn and such that Gs ⊂ Gt for every 0 ≤ s ≤ t and Gt → Gt0 as t → t0

for every t ≥ t0. Let f(z, t) be such that ft are biholomorphisms of Bn onto Gt and fur-

ther satisfying f(0, t) = 0 and Df(0, t) > 0 for all t ≥ t0. Then f(z, t) is a Loewner

chain such that Df (0, ·) is continuous and of local bounded variation. Furthermore
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α (t) := trDf(0, t) is increasing and g(z, t) = f(z, α−1(ettrDf (0, 0))) is a Loewner chain

such that trDg(0, t) = ettrDf (0, 0).

Proof. The fact that f(z, t) is a Loewner chain is immediate and the continuity ofDf (0, ·)

follows easily from Proposition 1.4.2. We know from Proposition 1.3.1 that Df(0, t2) −

Df(0, t1) ≥ 0 whenever t2 > t1, hence

‖Df(0, t2) −Df(0, t1)‖ = λn ≤ tr(Df(0, t2) −Df(0, t1)), t2 > t1

where λn is the largest eigenvalue of Df(0, t2) − Df(0, t1) (for the inequality we are

using the fact that all the eigenvalues are nonnegative). From Corollary 1.2.7 we know

that trDf(0, ·) is a nondecreasing function on [0,∞). This and the above inequality are

enough to conclude that Df (0, ·) is of local bounded variation.

Furthermore if for t2 ≥ t1 we have that trDf(0, t2) = trDf(0, t1) then Df(0, t1) and

Df(0, t2) have the same eigenvalues (we are using Corollary 1.2.7) and hence detDf(0, t1) =

detDf(0, t2) which implies that detDv(0, t1, t2) = 1. From the Carathéodory-Cartan-

Kaup-Wu theorem we get that v(·, t1, t2) ∈ Aut(Bn) (in fact one can show that v(·, t1, t2) =

idBn) and hence Gt1 = f(Bn, t1) = f(Bn, t2) = Gt2 . This means trDf(0, t2) = trDf(0, t1)

if and only if t1 = t2. We can conclude that trDf(0, t) is increasing on [0,∞). This insures

that α−1 is well defined and the last assertion is tautological.

The above proposition shows that if we are interested in the geometrical aspect of

Loewner chains then it is enough to consider Loewner chains for which Df (0, ·) is locally

Lipschitz.

1.5 Solutions of the Loewner chain equation when

Dh (0, t) = A(t)

In this section we start addressing the problem of finding a Loewner chain corresponding

to a given infinitesimal generator h ∈ H0. Note that in order to be able to solve (1.1.1) and
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(1.1.2) we need to impose some integrability condition on h. Without loss of generality

we will assume from now on that Df (0, 0) = I.

It will be convenient to have the following notations. If A : [0,∞) → L(Cn,Cn) is

locally Lebesgue integrable on [0,∞) we will denote by V (t) and U(t) the unique locally

absolutely continuous solutions to the equations

dV

dt
= −A(t)V a.e. t ≥ 0, V (0) = I (1.5.1)

and respectively

dU

dt
= UA(t) a.e. t ≥ 0, U(0) = I. (1.5.2)

As noted in the preliminaries, we have that U(t) = V (t)−1 and V (s, t) := V (t)V (s)−1 =

U (t)−1 U (s) solves

∂V (s, t)

∂t
= −A(t)V (s, t) a.e. t ≥ s, V (s, s) = I. (1.5.3)

Solutions to the Loewner chain equation will be constructed from solutions to the

Loewner equation. We will use the notation A (t) := Dh (0, t). We have the following

result about solutions to the Loewner equation.

Proposition 1.5.1. Let h ∈ H0 be such that A (t) is locally Lebesgue integrable (locally

Lipschitz). Then the initial value problem (1.1.2) has a unique solution v(z, s, t) such

that v(·, s, t) is a univalent Schwarz mapping, v(z, s, ·) is locally absolutely continuous

(locally Lipschitz) on [s,∞) locally uniformly with respect to z ∈ Bn and the following

relations hold:

‖v(z, s, t)‖

(1 − ‖v(z, s, t)‖)2
≤ e−

´ t

s
m(A(τ))dτ ‖z‖

(1 − ‖z‖)2
, z ∈ Bn, t ≥ s ≥ 0; (1.5.4)

‖v(z, s, t)‖

(1 + ‖v(z, s, t)‖)2
≥ e−

´ t

s
k(A(τ))dτ ‖z‖

(1 + ‖z‖)2
, z ∈ Bn, t ≥ s ≥ 0. (1.5.5)

Proof. The first part is just a particular case of [BCDM09, Proposition 3.1]. The esti-

mates (1.5.4) and (1.5.5) follow exactly as in [GHKK08b, Theorem 2.1] (using part (iii)

of Proposition 1.2.3).
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We can now find a solution to the Loewner chain equation provided that A (t) satisfies

a certain condition. We will say that a solution f (z, t) of (1.1.2) is polynomially bounded

(bounded) if
{

Df (0, ·)−1 f (·, t)
}

t≥0
is locally polynomially bounded (locally uniformly

bounded), i.e. for any compact set K ⊂ Bn there exists a constant CK and a polynomial

(constant polynomial) P such that

∥

∥

∥Df (0, t)−1 f (z, t)
∥

∥

∥ ≤ CKP (t) , z ∈ K, t ∈ [0,∞).

Proposition 1.5.2. Let h ∈ H0 be such that A (t) is locally Lebesgue integrable and let

v(z, s, t) be the unique locally absolutely continuous solution of the initial value problem

(1.1.2). Assume that

sup
s≥0

ˆ ∞

s

‖A(t)‖‖V (s, t)−1‖e−2
´ t

s
m(A(τ))dτdt < ∞. (1.5.6)

Then the limit

lim
t→∞

V (t)−1v(z, s, t) = f(z, s) (1.5.7)

exists locally uniformly in z for each s ≥ 0. Moreover, f(z, t) is a bounded Loewner chain

solution of (1.1.1).

Proof. The proof is just an adjustment of the proof for [GHKK08b, Theorem 2.3].

Fix s ≥ 0 and let u(z, s, t) = V (t)−1v(z, s, t) for z ∈ Bn and t ≥ s. Let g(z, t) =

h(z, t) − A(t)(z) for z ∈ Bn and t ≥ 0.

We know that U(t) = V (t)−1 satisfies the initial value problem (1.5.2) , so at points

where both equations (1.5.2) and (1.1.2) are satisfied we have

∂u

∂t
=
dU

dt
v + U

∂v

∂t
= UA(t)v + U(−h(v, t)) = −Ug(v, t). (1.5.8)

To use the fundamental theorem of calculus on u we will prove that it is locally absolutely

continuous with respect to t.Fix s ≥ 0, T > s and t1, t2 ∈ [s, T ]. Then

‖u(z, s, t1) − u(z, s, t2)‖ ≤ ‖U(t1)‖ ‖v(z, s, t1) − v(z, s, t2)‖+‖v(z, s, t2)‖ ‖U(t1) − U(t2)‖ .
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We know that U(·) is locally absolutely continuous and hence also locally bounded on

[0,∞). Also, from Proposition 1.5.1 we know that v(z, s, ·) is locally bounded and locally

absolutely continuous on [s,∞) locally uniformly with respect to z. All these and the

above inequality show that u(z, s, ·) is locally absolutely continuous on [s,∞) locally

uniformly with respect to z.

Now we can write

‖u(z, s, t1) − u(z, s, t2)‖ =

∥

∥

∥

∥

∥

ˆ t2

t1

−U(t)g(v(z, s, t), t)dt

∥

∥

∥

∥

∥

≤

ˆ t2

t1

‖U(t)‖ ‖g(v(z, s, t), t)‖ dt (1.5.9)

=

ˆ t2

t1

∥

∥

∥V (0, t)−1
∥

∥

∥ ‖g(v(z, s, t), t)‖ dt.

Using the integral formula for the remainder of the Taylor series, Cauchy’s integral for-

mula and the estimate (1.2.11) it is not hard to check that

‖g(z, t)‖ ≤ Cr ‖z‖2 ‖A(t)‖ , z ∈ B
n
r , t ≥ 0. (1.5.10)

Using estimates (1.5.9), (1.5.10) and (1.5.4) we get that

‖u(z, s, t1) − u(z, s, t2)‖ ≤

ˆ t2

t1

∥

∥

∥V (0, t)−1
∥

∥

∥Cr ‖v(z, s, t)‖2 ‖A(t)‖ dt

≤ Cre
2
´ s

0 m(A(τ))dτ

ˆ t2

t1

‖A(t)‖
∥

∥

∥V (0, t)−1
∥

∥

∥ e−2
´ t

0 m(A(τ))dτdt.

From the assumptions we have that
´∞

0
‖A (t)‖

∥

∥

∥V (0, t)−1
∥

∥

∥ e−2
´ t

0 m(A(τ))dτdt < ∞ and

now it is easy to conclude that the limit (1.5.7) exists locally uniformly. In view of

the uniqueness of solutions to the initial value problem (1.1.2) it is easy to see that

v satisfies the semigroup property (1.3.1). This and (1.5.7) imply that f is a subor-

dination chain with v as transition mapping. Since Dv(0, s, t) = V (s, t) we get that

Df(0, s) = limt→∞ V (t)−1Dv(0, s, t) = V (s)−1 and hence f(·, s) is biholomorphic (by

Hurwitz’s theorem).

Now we have that f(z, t) is a Loewner chain and we just want to prove that {V (t)f(·, t)}

is a locally uniformly bounded family. To this end, we consider the mapping V (s)u(z, s, t)
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and notice that it is locally absolutely continuous in t and satisfies (see (1.5.8))

∂

∂t
(V (s)u(z, s, t)) = −V (s)V (t)−1g(v(z, s, t), t) = −V (s, t)−1g(v(z, s, t), t).

Let s ≤ t1 ≤ t2 and z ∈ Bn
r , r ∈ (0, 1). Then using the estimates (1.5.10) and (1.5.4) we

have that

‖V (s)u(z, s, t1) − V (s)u(z, s, t2)‖ = ‖

ˆ t2

t1

−V (s, t)−1g(v(z, s, t), t)dt‖

≤ Cr

ˆ t2

t1

‖A(t)‖
∥

∥

∥V (s, t)−1
∥

∥

∥ e−2
´ t

s
m(A(τ))dτdt

≤ Cr sup
s≥0

ˆ ∞

s

‖A(t)‖
∥

∥

∥V (s, t)−1
∥

∥

∥ e−2
´ t

s
m(A(τ))dτdt.

The locally uniform boundedness of {V (t)f(·, t)} now follows by letting t1 = s and

t2 → ∞ in the above inequality.

Remark. Using the estimate (1.2.9) and the condition (1.5.6) we get the more restrictive,

but “nicer looking” condition

sup
s≥0

ˆ ∞

s

‖A(t)‖e
´ t

s
[k(A(τ))−2m(A(τ))]dτdt < ∞.

Remark. Note that in the case when A(·) is bounded (rather than just locally bounded),

similarly to [GHKK08b], we can replace the condition (1.5.6) by

sup
s≥0

ˆ ∞

s

∥

∥

∥V (s, t)−1
∥

∥

∥ e−2
´ t

s
m(A(τ))dτdt < ∞. (1.5.11)

Also, note that if A(t) → 0 as t → ∞ then the ‖A(t)‖ factor contributes to the con-

vergence of condition (1.5.6). Hence, even though in the case when A(·) is bounded the

factor ‖A(t)‖ can be dropped, in general we get in fact a better condition.

Next we see that the requirement that the solution to the Loewner chain equation is

bounded determines it uniquely when A satisfies certain conditions.

Proposition 1.5.3. Assume A(·) is bounded and satisfies the condition (1.5.11). Let f :

Bn×[0,∞) → C
n be such that f(·, t) ∈ H(Bn), f(0, t) = 0 and f(z, ·) is locally absolutely
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continuous locally uniformly with respect to z. Let h(z, t) satisfy the assumptions of

Proposition 1.5.1. Assume that f (z, t) is a bounded solution of (1.1.2). Then f(z, t) is

a Loewner chain with transition mapping v(z, s, t) and

f(z, s) = lim
t→∞

V (t)−1v(z, s, t)

locally uniformly on Bn for s ≥ 0, where v(z, s, t) is as in Proposition 1.5.1.

Proof. We just follow the same steps as in the proof of [GHKK08b, Theorem 2.5].

First, one lets f(z, s, t) := f(v(z, s, t), t) and proves that f(z, s, t) = f(z, s, s), i.e.

f(z, t) is a subordination chain with transition mapping v (z, s, t). This follows from

the absolute continuity of f and the fact that it follows from (1.1.1) and (1.1.2) that

∂tf (z, s, t) = 0 for almost every t ≥ s. Next, one wants to show the mappings f(·, t) are

univalent. For this it suffices to prove that there exists a sequence {tk}, tk → ∞ such

that

lim
k→∞

V (tk)
−1v(z, s, tk) = f(z, s)

locally uniformly on Bn. Indeed, since {V (t)f(·, t)} is a normal family, we have that

‖V (t)f(z, t)‖ ≤ Cr, ‖z‖ ≤ r, t ≥ 0.

From the integral formula for the remainder of the Taylor series and Cauchy’s integral

formula we get

‖V (t)f(z, t) − z‖ ≤ Cr ‖z‖2 , ‖z‖ ≤ r, t ≥ 0.

Replacing z by v(z, s, t) in the above inequality and using (1.5.4) we obtain that

‖f(z, s) − V (t)−1v(z, s, t)‖ = ‖V (0, t)−1[V (t)f(v(z, s, t), t) − v(z, s, t)]‖

≤ ‖V (0, t)−1‖Cr‖v(z, s, t)‖2

≤ Cre
2
´ s

0 m(A(τ))dτ
∥

∥

∥V (0, t)−1
∥

∥

∥ e−2
´ t

0 m(A(τ))dτ .

Since
´∞

0
‖V (0, t)−1‖ e−2

´ t

0 m(A(τ))dτdt < ∞, there exists a sequence {tk} such that tk → ∞

and ‖V (0, tk)
−1‖ e−2

´ tk
0 m(A(τ))dτ → 0 as m → ∞. From the above inequality we see that
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{tk} is the sequence we were looking for. All the other claims follow immediately using

the fact that we can apply Proposition 1.5.2.

The next result shows that all the solutions of the Loewner chain equation can be

obtained from one particular solution.

Proposition 1.5.4. Let f(z, t) be a Loewner chain that is locally absolutely continuous in

t, locally uniformly in z and let g(z, t) be a subordination chain that is locally absolutely

continuous in t, locally uniformly with respect to z. Suppose that both chains satisfy

the same Loewner chain equation. Then g(z, t) = φ(f(z, t)) where φ is a holomorphic

mapping on ∪ft(B
n). Furthermore, g(z, t) is a Loewner chain if and only if φ is a

biholomorphism.

Proof. From the fact that f and g satisfy (1.1.1) it follows easily that f and g have the

same transition mapping (see the first part of the proof of Proposition 1.5.3). The rest

can be proved the same way as in [ABHK10, Theorem 4.9]

1.6 Solutions of the Loewner chain equation when

Dh(0, t) = A

Let A ∈ L (Cn,Cn) be a linear operator such that m (A) > 0. Let HA be the class

of mappings h ∈ H such that Dh (0, t) = A (note that m (A) > 0 is necessary for

h (·, t) ∈ N ). We will study the solutions of the Loewner chain equation when the

infinitesimal generator is from HA.

Let k+ (A) := max {Reλ : λ ∈ σ (A)} = limt→∞ ln
∥

∥

∥etA
∥

∥

∥ /t be the upper exponential

(Lyapunov) index of A (σ (A) denotes the spectrum of A). Throughout this and the next

section we let n0 := [k+ (A) /m (A)]. The situation when n0 = 1 has been studied in

[GHKK08a]. We will deal with the case when n0 ≥ 2, but our approach also applies to

the case n0 = 1.
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From Proposition 1.5.1 (see also [GHKK08a, Theorem 2.1]) we know that the Loewner

equation for the transition mapping has a solution regardless of the value of n0. Further-

more we know that

‖v (z, s, t)‖

(1 − ‖v (z, s, t)‖)2 ≤ em(A)(s−t) ‖z‖

(1 − ‖z‖)2 , z ∈ Bn, t ≥ s ≥ 0. (1.6.1)

If f (z, t) is a Loewner chain satisfying (1.1.1) with h ∈ HA then Df (0, t) = etA.

Loewner chains with such a normalization will be called A-normalized. Let

f (z, t) = etA
(

z +
∞
∑

k=2

Fk
(

zk, t
)

)

h (z, t) = Az +
∞
∑

k=2

Hk

(

zk, t
)

where Fk (·, t) and Hk (·, t) are homogeneous polynomial mappings of degree k. We will

denote the Banach space of homogeneous polynomial mappings of degree k from C
n to

C
n by Pk (Cn).

Equating coefficients on both sides of (1.1.1) we get

dFk
dt

(zk, t) = Bk

(

Fk
(

zk, t
))

+Nk

(

zk, t
)

, a.e. t ∈ [0,∞) (1.6.2)

where Bk is a linear operator on Pk (Cn) defined by

Bk

(

Qk

(

zk
))

= kQk

(

Az, zk−1
)

− AQk

(

zk
)

and Nk (·, t) ∈ Pk (Cn) is defined by

Nk

(

zk, t
)

= Hk

(

zk, t
)

+
k−1
∑

j=2

jFj
(

Hk−j+1

(

zk−j+1, t
)

, zj−1, t
)

.

The solutions of (1.6.2) will be regarded as functions Fk : [0,∞) → Pk (Cn). Conse-

quently we will say that such Fk are polynomially bounded (bounded) if there exists a

polynomial (constant polynomial) P such that ‖Fk (t)‖ ≤ P (t), t ≥ 0.

Proposition 1.6.1 will show that an A-normalized polynomially bounded solution of

(1.1.1) can be recovered from its first n0 coefficients and the solution of (1.1.2). Con-

versely, Theorem 1.6.8 will show that by finding polynomially bounded solutions to the
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first n0 coefficient equations (1.6.2) we can find an A-normalized solution of (1.1.1).

These results generalize Poreda [Por91, Theorem 4.1 and Theorem 4.4]. Finally, after a

discussion about the existence of polynomially bounded solutions to the coefficient equa-

tions we will obtain the main result, Theorem 1.6.11, that guarantees the existence of

a Loewner chain solution for (1.1.1). This result has also been independently obtained

through a different method in [Aro10].

Note that the solutions of (1.1.1), (1.1.2), (1.6.2) and (1.7.2) will be assumed to be

locally absolutely continuous in t, locally uniformly with respect to z.

We will repeatedly use the fact that given ǫ > 0 there exists a constant Cǫ such that

∥

∥

∥etA
∥

∥

∥ ≤ Cǫe
t(k+(A)+ǫ), t ≥ 0 (1.6.3)

(this follows immediately from the definition of k+ (A)). In fact we can find a polynomial

PA such that
∥

∥

∥etA
∥

∥

∥ ≤ PA (t) etk+(A), t ≥ 0 (1.6.4)

(see for example [DK74, p 61, Exercise 16]). Furthermore, if A is normal then

∥

∥

∥etA
∥

∥

∥ = etk+(A), t ≥ 0.

Indeed, if we write A = UDU∗ where D is a diagonal matrix and U is a unitary matrix

then
∥

∥

∥etA
∥

∥

∥ =
∥

∥

∥UetDU∗
∥

∥

∥ =
∥

∥

∥etD
∥

∥

∥ = etk+(D) = etk+(A)

(for non-Euclidean norms we just get
∥

∥

∥etA
∥

∥

∥ ≤ CAe
tk+(A)).

The following is a generalization of [Por91, Theorem 4.1].

Proposition 1.6.1. If f (z, t) is a polynomially bounded solution of (1.1.1) such that

f (z, t) = etA
(

z +
∞
∑

k=2

Fk
(

zk, t
)

)

then

f (z, s) = lim
t→∞

etA
(

v (z, s, t) +
n0
∑

k=2

Fk
(

v (z, s, t)k , t
)

)

and the limit is locally uniform in z.
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Proof. It is not hard to check that if f (z, t) is a solution of (1.1.1) and v is the solution

of the initial value problem (1.1.2) then f (z, t) is a subordination chain with transition

mapping v (see [GHKK08a, Theorem 2.6]). Hence

f (z, s) = f (v (z, s, t) , t)

= etA
(

v (z, s, t) +
n0
∑

k=2

Fk
(

v (z, s, t)k , t
)

)

+ etAR (v (z, s, t) , t)

where R (z, t) =
∑∞
k=n0+1 Fk

(

zk, t
)

. From the assumption on f , the formula for the

remainder of the Taylor series and Cauchy’s formula, we easily get that {R (·, t)}t≥0 is

locally polynomially bounded and in fact

‖R (z, t)‖ ≤ CrP (t) ‖z‖n0+1 , ‖z‖ ≤ r.

From the above, (1.6.1) and (1.6.3) we get

∥

∥

∥etAR (v (z, s, t) , t)
∥

∥

∥ ≤ Cǫ,re
t(k+(A)+ǫ)P (t) ‖v (z, s, t)‖n0+1

≤ Cǫ,r,se
t(k+(A)+ǫ−(n0+1)m(A))P (t) , ‖z‖ ≤ r.

Hence, taking ǫ small enough we can conclude that etAR (v (z, s, t) , t) → 0 locally uni-

formly.

In order to prove Theorem 1.6.8 we will need the following lemmas.

Lemma 1.6.2. If Qk ∈ Pk (Cn) then the following identities hold for t ∈ R

etAetBkQk

(

(

e−tAz
)k
)

= Qk

(

zk
)

(1.6.5)

etAQk

(

(

e−tAz
)k
)

= e−tBkQ
(

zk
)

(1.6.6)

etAetBkQk

(

zk
)

= Qk

(

(

etAz
)k
)

(1.6.7)

.
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Proof. DefineAk on Pk (Cn) byAk
(

Qk

(

zk
))

= AQk

(

zk
)

. One easily sees that etAk

(

Qk

(

zk
))

=

etAQk

(

zk
)

, AkBk = BkAk and

(Ak +Bk)
(

Qk

(

zk
))

= kQk

(

Az, zk−1
)

.

For (1.6.5) it is enough to check that φ (t) = et(Ak+Bk)Qk

(

(

e−tAz
)k
)

satisfies φ′ (t) =

0. Indeed

φ′ (t) = et(Ak+Bk)
[

(Ak +Bk)
(

Qk

(

(

e−tAz
)k
))

− kQk

(

e−tAAz,
(

e−tAz
)k−1

)]

= 0.

The last two identities follow immediately from the first one.

Lemma 1.6.3. If Fk, Gk : [0,∞) → Pk (Cn), k = 2, . . . ,m are solutions of (1.6.2) and

the limits

f (z, s) := lim
t→∞

etA
(

v (z, s, t) +
m
∑

k=2

Fk
(

v (z, s, t)k , t
)

)

g (z, s) := lim
t→∞

etA
(

v (z, s, t) +
m
∑

k=2

Gk

(

v (z, s, t)k , t
)

)

exist locally uniformly in z ∈ Bn for some s ≥ 0, then f (·, s) = g (·, s) if and only if

Fk = Gk, k = 2, . . . ,m.

Proof. Assume that f (·, s) = g (·, s) and that there exists k ∈ {2, . . . ,m} such that

Fk 6= Gk. Let k0 be the minimal such k.

Equating the k0-th coefficients of f (·, s) and g (·, s) and taking into account the

minimality of k0 we get

lim
t→∞

etA
(

Fk0

(

(

e(s−t)Az
)k0

, t
)

−Gk0

(

(

e(s−t)Az
)k0

, t
))

= 0. (1.6.8)

Using (1.6.6) and the fact that Fk0 is a solution of (1.6.2) we get

etAFk0

(

(

e(s−t)Az
)k0

, t
)

= esAe(s−t)BkFk0

(

zk0 , t
)

= esAesBk

(

Fk0

(

zk0 , 0
)

+

ˆ t

0

e−sBk0Nk0

(

zk0 , s
)

ds

)

.
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We can get an analogous identity for Gk0 and then (1.6.8) becomes

esAesBk

(

Fk0

(

zk0 , 0
)

−Gk0

(

zk0 , 0
))

= 0.

Since Fk0 and Gk0 satisfy the same differential equation with the same initial condition

we have Fk0 = Gk0 , thus reaching a contradiction.

Lemma 1.6.4. If P is a polynomial such that P (t) ≥ 0 for t ≥ s then

ˆ ∞

s

P (t)
∥

∥

∥e(t−s)A
∥

∥

∥

‖v (z, s, t)‖n0+1

(1 − ‖v (z, s, t)‖)2dt ≤
Qǫ,A,P (s)

(1 − ‖z‖)2
k+(A)

m(A)
+ǫ
, ǫ > 0

where Qǫ,A,P is a polynomial of the same degree as P .

Proof. Let

α =
k+ (A)

m (A)
+
ǫ

2
.

We can restrict to the case when ǫ is small enough so that α < n0 + 1. Using (1.6.1) we

see that

‖v (z, s, t)‖n0+1

(1 − ‖v (z, s, t)‖)2 ≤
‖v (z, s, t)‖α

(1 − ‖v (z, s, t)‖)2 ≤
e(s−t)αm(A)

(1 − ‖z‖)2α .

Let ǫ′ be small enough so that

∥

∥

∥e(t−s)A
∥

∥

∥ ≤ Cǫ′e
(t−s)(k+(A)+ǫ′)

and δ := αm (A) − k+ (A) − ǫ′ > 0. Then

ˆ ∞

s

P (t)
∥

∥

∥e(t−s)A
∥

∥

∥

‖v (z, s, t)‖n0+1

(1 − ‖v (z, s, t)‖)2dt ≤
Cǫ′

(1 − ‖z‖)2α

ˆ ∞

s

P (t) e−δ(t−s)dt

and it is not hard to see that

Qǫ,A,P (s) := Cǫ′

ˆ ∞

s

P (t) e−δ(t−s)dt

satisfies our requirements.

Remark 1.6.5. When A is normal, P is constant and k+ (A) /m (A) > 1 we can sharpen

the above bound by letting ǫ = 0.
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Let β = n0 + 1 − α, then using (1.6.1) we get

‖v (z, s, t)‖n0+1

(1 − ‖v (z, s, t)‖)2 ≤
e(s−t)αm(A)

(1 − ‖z‖)2α ‖v (z, s, t)‖β (1 − ‖v (z, s, t)‖)2(α−1) .

If A is normal we know that
∥

∥

∥e(t−s)A
∥

∥

∥ = e(t−s)k+(A)

and hence we get

ˆ ∞

s

∥

∥

∥e(t−s)A
∥

∥

∥

‖v (z, s, t)‖n0+1

(1 − ‖v (z, s, t)‖)2dt

≤
1

(1 − ‖z‖)2α

ˆ ∞

s

‖v (z, s, t)‖β (1 − ‖v (z, s, t)‖)2(α−1) dt.

From the proof of [GHKK08a, Theorem 2.1] we know that

−
1 + ‖v (z, s, t)‖

1 − ‖v (z, s, t)‖

1

‖v (z, s, t)‖

d ‖v (z, s, t)‖

dt
≥ m (A) .

Using the above inequality it is easy to conclude that

ˆ ∞

s

‖v (z, s, t)‖β (1 − ‖v (z, s, t)‖)2(α−1) dt

≤ −
2

m (A)

ˆ ∞

s

‖v (z, s, t)‖β−1 (1 − ‖v (z, s, t)‖)2α−3 d ‖v (z, s, t)‖

dt
dt

=
2

m (A)

ˆ ‖z‖

0

uβ−1 (1 − u)2α−3 du

≤
2

m (A)

ˆ 1

0

uβ−1 (1 − u)2α−3 du.

The last integral converges because by our assumptions β − 1 > −1 and 2α − 3 > −1.

This completes the proof of our claim.

Lemma 1.6.6. If Fk : [0,∞) → Pk (Cn), k = 2, . . . ,m are polynomially bounded and

the limit

f (z, s) = lim
t→∞

etA
(

v (z, s, t) +
m
∑

k=2

Fk
(

v (z, s, t)k , t
)

)

exists locally uniformly in z ∈ Bn for some s ≥ 0 then f (·, s) is univalent.
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Proof. First note that if Q ∈ Pk (Cn) then

∥

∥

∥Q
(

zk
)

−Q
(

wk
)∥

∥

∥ =

∥

∥

∥

∥

∥

∥

k−1
∑

j=0

Q
(

z − w, zj, wk−1−j
)

∥

∥

∥

∥

∥

∥

≤ ‖Q‖ ‖z − w‖
k−1
∑

j=0

‖z‖j ‖w‖k−1−j . (1.6.9)

Using the above and (1.6.1) we see that

∥

∥

∥

∥

∥

m
∑

k=2

Fk
(

v (z1, s, t)
k , t

)

−
m
∑

k=2

Fk
(

v (z2, s, t)
k , t

)

∥

∥

∥

∥

∥

≤ CrP (t) e(s−t)m(A) ‖v (z1, s, t) − v (z2, s, t)‖ , ‖z1‖ , ‖z2‖ ≤ r

where P is a polynomial bound on Fk, k = 2, . . . ,m. For sufficiently large t we get

∥

∥

∥

∥

∥

m
∑

k=2

Fk
(

v (z1, s, t)
k , t

)

−
m
∑

k=2

Fk
(

v (z2, s, t)
k , t

)

∥

∥

∥

∥

∥

< ‖v (z1, s, t) − v (z2, s, t)‖ , ‖z1‖ , ‖z2‖ ≤ r

which implies that for sufficiently large t

v (z, s, t) +
m
∑

k=2

Fk
(

v (z, s, t)k , t
)

is univalent on the ball ‖z‖ ≤ r. Now the conclusion follows easily.

The following consequence together with Theorem 1.6.8 generalizes [GHKK08a, The-

orem 2.6].

Corollary 1.6.7. All A-normalized polynomially bounded solutions of (1.1.1) are Loewner

chains.

Proof. This follows from Proposition 1.6.1 and Lemma 1.6.6.

Theorem 1.6.8. If Fk, k = 2, . . . , n0 are polynomially bounded solutions of (1.6.2) then

g (z, s) := lim
t→∞

etA
(

v (z, s, t) +
n0
∑

k=2

Fk
(

v (z, s, t)k , t
)

)
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exists locally uniformly with respect to z and is a polynomially bounded Loewner chain

solution of (1.1.1). If F (t) is a polynomial bound for Fk, k = 2, . . . , n0 then, given ǫ > 0,

there exists a polynomial Qǫ,A,F of the same degree as F such that

∥

∥

∥e−tAg (z, t)
∥

∥

∥ ≤
Qǫ,A,F (t)

(1 − ‖z‖)2
k+(A)

m(A)
+ǫ
, z ∈ Bn, t ≥ 0.

Furthermore, if

g (z, t) = etA
(

z +
∞
∑

k=2

Gk

(

zk, t
)

)

then Gk = Fk, k = 2, . . . , n0.

Proof. Let

u (z, s, t) = etA
(

v (z, s, t) +
n0
∑

k=2

Fk
(

v (z, s, t)k , t
)

)

.

We begin by showing that limt→∞ u (z, s, t) exists locally uniformly.

It is easy to see that u (z, s, t) is locally absolutely continuous in t, so

‖u (z, s, t1) − u (z, s, t2)‖ =

∥

∥

∥

∥

∥

ˆ t2

t1

∂u

∂t
(z, s, t) dt

∥

∥

∥

∥

∥

≤

ˆ t2

t1

∥

∥

∥

∥

∥

∂u

∂t
(z, s, t)

∥

∥

∥

∥

∥

dt, s ≤ t1 ≤ t2.

(1.6.10)

Now

∂u

∂t
(z, s, t) = etAA

(

v (z, s, t) +
n0
∑

k=2

Fk
(

v (z, s, t)k , t
)

)

− etA



h (v (z, s, t) , t) +

n0
∑

k=2

kFk
(

v (z, s, t)k−1 , h (v (z, s, t) , t) , t
)

−
n0
∑

k=2

dFk
dt

(

v (z, s, t)k , t
)



.

Let

R (z, t) = h (z, t) − Az −
n0
∑

k=2

Hk

(

zk, t
)

.

Similarly to the proof of [Por91, Theorem 4.4], a straightforward computation using the

assumption that Fk, k = 2, . . . , n0 satisfy (1.6.2), leads to

∂u

∂t
(z, s, t) = −etA

(

R (v (z, s, t) , t) +
n0
∑

k=2

kFk
(

v (z, s, t)k−1 , R (v (z, s, t) , t)
)

)

−etA





n0
∑

k=2

n0
∑

l=n0−k+2

kFk
(

v (z, s, t)k−1 , Hl

(

v (z, s, t)l , t
)

, t
)



 . (1.6.11)
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Using the ideas from the proof of [GHK02, Theorem 1.2] (cf. [GHKK08a, Lemma 1.2])

we get

‖R (z, t)‖ ≤ CA
‖z‖n0+1

(1 − ‖z‖)2 (1.6.12)

From (1.6.11), (1.6.12) and (1.6.1) we get

∥

∥

∥

∥

∥

∂u

∂t
(z, s, t)

∥

∥

∥

∥

∥

≤ P (t)
∥

∥

∥etA
∥

∥

∥

‖v (z, s, t)‖n0+1

(1 − ‖v (z, s, t)‖)2

where P is a polynomial depending only on F and A (because the bounds on Hk can be

chosen to depend only on A). Substituting this estimate into (1.6.10) we get

‖u (z, s, t1) − u (z, s, t2)‖ ≤
∥

∥

∥esA
∥

∥

∥

ˆ t2

t1

P (t)
∥

∥

∥e(t−s)A
∥

∥

∥

‖v (z, s, t)‖n0+1

(1 − ‖v (z, s, t)‖)2dt.

Using Lemma 1.6.4 we can now conclude that limt→∞ u (z, s, t) exists uniformly on com-

pact subsets.

From the semigroup property for v we immediately get that

g (v (z, s, t) , t) = g (z, s) , 0 ≤ s ≤ t (1.6.13)

and by Lemma 1.6.6 we can conclude that g (z, t) is a Loewner chain. Differentiating

(1.6.13) with respect to t and then letting s ր t we see that g is a solution of (1.1.1).

By the same considerations as above we get

∥

∥

∥e−sA (u (z, s, t1) − u (z, s, t2))
∥

∥

∥ ≤

ˆ t2

t1

P (t)
∥

∥

∥e(t−s)A
∥

∥

∥

‖v (z, s, t)‖n0+1

(1 − ‖v (z, s, t)‖)2dt.

Letting t1 = s and t2 → ∞ and using Lemma 1.6.4 we get

∥

∥

∥e−sAg (z, s)
∥

∥

∥ ≤ ‖z‖ +
n0
∑

k=2

∥

∥

∥Fk
(

zk, s
)∥

∥

∥+

ˆ ∞

s

P (t)
∥

∥

∥e(t−s)A
∥

∥

∥

‖v (z, s, t)‖n0+1

(1 − ‖v (z, s, t)‖)2dt

≤
Qǫ,A,F (s)

(1 − ‖z‖)2
k+(A)

m(A)
+ǫ
, ǫ > 0 (1.6.14)

(P depends on A and F ). The above guarantees that the solution is polynomially

bounded.

The last statement follows from Proposition 1.6.1 and Lemma 1.6.3.
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For the proof of Theorem 1.6.11 we will need some basic facts about ordinary dif-

ferential equations. We will use [DK74] for this, but we are interested only in the finite

dimensional case.

Let X be a finite dimensional Banach space and L be a bounded linear operator on

X. We consider the equation

dx

dt
= Lx+ f (t) , a.e. t ≥ 0 (1.6.15)

where f : [0,∞) → X is a locally Lebesgue integrable function. We know that any

(locally absolutely continuous) solution of (1.6.15) is of the form

x (t) = etLx (0) +

ˆ t

0

e(t−s)Lf (s) ds.

Note that the local Lebesgue integrability of f is needed to ensure the differentiability of

the solution above, which follows from the Lebesgue differentiation theorem (see [Fol99,

Theorem 3.21]).

We will use the following notations

σ+ (L) = {λ ∈ σ (L) : Reλ > 0}

σ≤ (L) = {λ ∈ σ (L) : Reλ ≤ 0}

σ0 (L) = {λ ∈ σ (L) : Reλ = 0} .

P+, P≤ and P 0 will denote the spectral projections corresponding to σ+ (L), σ≤ (L) and

σ0 (L) respectively (see e.g. [DK74, p 19] ).

We say that f is polynomially bounded if there exists a polynomial P such that

‖f (t)‖ ≤ P (t), t ≥ 0

Following the proof of [DK74, Chapter II, Theorem 4.2] it is straightforward to check

that if f is polynomially bounded then to each element x≤
0 ∈ P≤ (X) there corresponds

a unique polynomially bounded solution of (1.6.15) that satisfies P≤x (0) = x≤
0 . This

solution is given by the formula

x (t) = e(t−t0)Lx≤
0 +

ˆ ∞

0

GL (t− s) f (s) ds (1.6.16)
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where

GL (t) =



















etLP≤ , t ≥ 0

−etLP+ , t < 0

. (1.6.17)

Furthermore if f is bounded and σ0 (L) = ∅ then the solution (1.6.16) is bounded. Note

that in order to obtain a polynomial bound on the solution one needs to use (1.6.4) rather

than (1.6.3).

Remark 1.6.9. We are only interested in the case when X = Pk (Cn), but the above

considerations also apply to the case when X is not finite dimensional if we replace

polynomially bounded by subexponential. We say that f is subexponential if for any

ǫ > 0 there exists Cǫ such that ‖f (t)‖ ≤ Cǫe
ǫt, t ≥ 0. To be able to define the spectral

projections we would also need to require that σ+ (L), σ≤ (L) lie in different connected

components of σ (L).

We will apply the above results to the coefficient equations (1.6.2) (X = Pk (Cn)

and we regard the coefficients as functions Fk : [0,∞) → Pk (Cn)), hence we need

information about the spectra of the operators Bk. It is known (e.g. [Arn88, pp. 182-

183]) that if λ = (λ1, . . . , λn) is a vector whose components are the (not necessarily

distinct) eigenvalues of A then the eigenvalues of Bk are

{〈m,λ〉 − λs : |m| = k, s ∈ {1, . . . , n}}

where m = (m1, . . . ,mn) ∈ N
n and |m| = m1 + . . .+mn. Furthermore, if A is a diagonal

matrix then Bk is also diagonal and zmes is an eigenvector corresponding to 〈m,λ〉 − λs

(ei, i = 1, . . . , n denote the elements of the standard basis of Cn).

Following the terminology from [Arn88] we will say that A is nonresonant if 0 /∈ σ (Bk)

for all k (i.e. if the eigenvalues of A are nonresonant; see [Arn88, p 180]). Otherwise we

say that A is resonant.

Remark 1.6.10. 0 /∈ σ (Bk) for all k > n0 (i.e. there are no resonances of order greater
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than n0). Indeed, if m ∈ N
n, |m| = k and λ is as above then

Re (〈m,λ〉 − λs) ≥ (n0 + 1) k− (A) − k+ (A) > 0

where k− (A) = min {Reλ : λ ∈ σ (A)}. For the last inequality we used the fact that

k− (A) ≥ m (A) and the definition of n0 (which implies that k+ (A) < (n0 + 1)m (A)).

In particular note that if n0 = 1 then A is nonresonant.

We will use P+
k , P≤

k , P 0
k to denote the projections associated withBk. ForQ ∈ Pk (Cn)

we will let Q+ := P+
k Q, Q≤ := P≤

k Q and Q0 := P 0
kQ.

Theorem 1.6.11. The equation (1.1.1) always has an A-normalized polynomially bounded

Loewner chain solution that is uniquely determined by the values of F≤
k

(

zk, 0
)

, k =

2, . . . , n0, which can be prescribed arbitrarily. Furthermore, if A+ Ā is nonresonant then

the solution can be chosen to be bounded.

Proof. This is an immediate consequence of Theorem 1.6.8 and of the considerations on

solutions of ordinary differential equations from above. Note that A+ Ā is nonresonant

if and only if σ0 (Bk) = ∅, k ≥ 2 .

Remark 1.6.12. It is not hard to see that if A + Ā is resonant, in general, one cannot

find a bounded solution (though it will be possible to do this for particular choices of the

infinitesimal generator h). For example, one can choose A such that σ0 (B2) = {0} and 0

is a simple eigenvalue for B2. In this case we would have eB2 |P 0
2 (P2(Cn)) = IP 0

2 (P2(Cn)) and

so

F 0
2

(

z2, t
)

= F 0
2

(

z2, 0
)

+

ˆ t

0

H0
2

(

z2, s
)

ds.

In order to get a solution that is not bounded it is enough to choose h such that φ (t) :=
´ t

0
H0

2 (z2, s) ds is not bounded on [0,∞).

Definition 1.6.13. Let F ⊂
∏n0
k=2 P

≤
k

(

Pk (Cn)
)

. We define SF
A (Bn) to be the family of

mappings f (z) = z +
∑∞
k=2 Fk

(

zk
)

∈ S (Bn) that can be embedded as the first element

of a polynomially bounded Loewner chain and such that
(

F≤
k

)

k=2,...,n0

∈ F .
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We want to study the compactness of the class SF
A (Bn). For this we need the following

lemma that can be proved using similar arguments to those in the proof of [GKK03,

Lemma 2.8] (cf. [GHKK08a, Lemma 2.14])

Lemma 1.6.14. Every sequence of Loewner chains {fk (z, t)} such that Dfk (0, t) = etA

and
∥

∥

∥e−tAfk (z, t)
∥

∥

∥ ≤ CrP (t) , ‖z‖ ≤ r < 1, t ≥ 0,

where P (t) is a polynomial, has a subsequence that converges locally uniformly on Bn to

a polynomially bounded Loewner chain f (z, t) for t ≥ 0.

Theorem 1.6.15. If F ⊂
∏n0
k=2 P

≤
k

(

Pk (Cn)
)

is bounded (compact) then SF
A (Bn) is

normal (compact). Furthermore, given ǫ > 0 there exists a constant Cǫ,A,F such that

‖f (z)‖ ≤
Cǫ,A,F

(1 − ‖z‖)2
k+(A)

m(A)
+ǫ
, f ∈ SF

A (Bn) .

Proof. Let f ∈ SF
A (Bn) and f (z, t) be a polynomially bounded Loewner chain such that

f (z, 0) = f (z). Suppose that

f (z, t) = etA
(

z +
∞
∑

k=2

Fk
(

zk, t
)

)

.

We know that (see (1.6.2) and (1.6.16))

Fk
(

zk, t
)

= etBkF≤
k

(

zk, 0
)

+

ˆ ∞

0

GBk
(t− s)Nk

(

zk, s
)

ds.

Now it is straightforward to check that if F is bounded then Fk, k = 2, . . . , n0 can be

bounded by a polynomial F that doesn’t depend on f (it depends only on F and A). By

Theorem 1.6.8 we have

∥

∥

∥e−tAf (z, t)
∥

∥

∥ ≤
Qǫ,A,F (t)

(1 − ‖z‖)2
k+(A)

m(A)
+ǫ
.

When t = 0 the above inequality proves the fact that SF
A (Bn) is normal. Furthermore,

if F is also closed we can now argue by contradiction using the previous Lemma to see

that SF
A (Bn) is also closed.
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Remark 1.6.16. It is not hard to see that the results of this section (except for 1.6.5)

remain true for any norm on C
n. Furthermore, with appropriate modifications (see

Remark 1.6.9 and [HK04]) the results can be extended to reflexive complex Banach

spaces.

1.7 Spirallikeness, parametric representation, asymp-

totical spirallikeness

We now consider what happens to the various classes of univalent mappings that are

related to Loewner chains. For convenience we recall the definitions of the classes that

we are considering, as given in [GHKK08a], where the case n0 = 1 is treated.

Let Ω ⊂ C
n be a domain containing the origin.

Definition 1.7.1. We say that Ω is spirallike with respect to A if e−tAw ∈ Ω for any

w ∈ Ω and t ≥ 0.

Definition 1.7.2. We say that Ω is A-asymptotically spirallike if there exists a mapping

Q = Q (z, t) : Ω × [0,∞) → C
n that satisfies the following conditions:

(i) Q (·, t) is a holomorphic mapping on Ω, Q (0, t) = 0, DQ (0, t) = A, t ≥ 0, and the

family {Q (·, t)}t≥0 is locally uniformly bounded on Ω;

(ii) Q (z, ·) is measurable on [0,∞) for all z ∈ Ω;

(iii) the initial value problem

∂w

∂t
= −Q (w, t) a.e. t ≥ s, w (z, s, s) = z (1.7.1)

has a unique solution w = w (z, s, t) for each z ∈ Ω and s ≥ 0, such that w (·, s, t)

is a holomorphic mapping of Ω into Ω for t ≥ s, w (z, s, ·) is locally absolutely

continuous on [s,∞) locally uniformly with respect to z ∈ Ω for s ≥ 0, and

limt→∞ etAw (z, 0, t) = z locally uniformly on Ω.
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Let f : Bn → C
n be a normalized univalent mapping, i.e. such that f (0) = 0 and

Df (0) = I. S (Bn) will denote the class of all such mappings.

Definition 1.7.3. We say that f is spirallike with respect to A if f (Bn) is spirallike.

We will use ŜA (Bn) to denote the class of mappings that are spirallike with respect to

A.

Definition 1.7.4. We say that f isA-asymptotically spirallike if f (Bn) isA-asymptotically

spirallike. SaA (Bn) will denote the class of A-asymptotically spirallike mappings.

Definition 1.7.5. We say that f has A-parametric representation if there exists a map-

ping h ∈ HA (Bn) such that f (z) = limt→∞ etAv (z, t) locally uniformly on Bn, where v

is the unique locally absolutely continuous solution of the initial value problem

∂v

∂t
= −h (v, t) a.e. t ≥ 0, v (z, 0) = z, z ∈ Bn. (1.7.2)

S0
A (Bn) will denote the class of mappings with A-parametric representation.

We start by answering [GK03, Open Problem 6.4.13].

Theorem 1.7.6. ŜA (Bn) is compact if and only if A is nonresonant.

Proof. If f ∈ ŜA (Bn) we know that

f (z, t) := etAf (z) = etA
(

z +
∞
∑

k=2

Fk
(

zk
)

)

(1.7.3)

is a Loewner chain (this follows easily from the definitions). It is clear that ŜA (Bn) ⊂

SF
A (Bn), where

F :=

{

(

F≤
k

)

k=2,...,n0

: f (z) = z +
∞
∑

k=2

Fk
(

zk
)

∈ ŜA (Bn)

}

.

It is easy to see that ŜA (Bn) is closed by using the analytic characterization (1.7.4) and

the fact that NA is compact. Now, by Theorem 1.6.15, if the coefficients Fk, k = 2, . . . , n0

can be bounded independently of f then ŜA (Bn) is compact. For our particular Loewner

chain (1.7.3) the coefficient equations (1.6.2) take the simple form 0 = BkFk +Nk.
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If A is nonresonant then the operators Bk are invertible and hence Fk = −B−1
k Nk.

Now it is straightforward to see that we can choose bounds for Fk, k = 2, . . . , n0 that

don’t depend on f , thus yielding compactness of ŜA (Bn).

If A is resonant then let k0 ≤ n0 be the largest k such that Bk is singular (by 1.6.10

Bk is not singular for k > n0). Let h (z) = Az + Hk0

(

zk0

)

∈ NA, where Hk0 is chosen

such that Bk0Fk0 +Hk0 = 0 has a solution. Note that for our particular h we have Nk = 0,

k = 2, . . . , k0 − 1 and Nk0 = Hk0 . Since Bk, k > k0 are nonsingular there is no problem

in solving for Fk, k > k0 and then, using Theorem 1.6.8, we get that

f (z, s) = lim
t→∞

etA
(

v (z, s, t) +
n0
∑

k=2

Fk
(

v (z, s, t)k
)

)

is a Loewner chain solution of (1.1.1) with h (z, t) = h (z). Since h doesn’t depend on

t we have v (z, s, t) = v (z, 0, t− s) and this yields that f (z, s) = esAf (z, 0). Hence

f (·, 0) ∈ ŜA (Bn) and by Theorem 1.6.8 its k0-th coefficient is Fk0 .

This construction works with any Fk0 that is a solution of Bk0Fk0 +Hk0 = 0. Since Bk0

is singular, the solutions of the equation form a non-trivial affine subspace of Pk0 (Cn),

so in particular there exist solutions of arbitrarily large norm. Now we can conclude that

there exist spirallike mappings with arbitrarily large k0-th coefficient. This proves that

ŜA (Bn) is not compact when A is resonant.

Remark 1.7.7. Let h ∈ NA. By the same ideas as in the proof of the previous theorem

we can conclude that if A is nonresonant then the equation

Df (z)h (z) = Af (z) (1.7.4)

has a unique holomorphic solution, which is in fact biholomorphic (because of Corollary

1.6.7). By 1.6.10 this generalizes [DGHK10, Corollary 4.8]. On the other hand, if A is

resonant, there either is no holomorphic solution (for example if H2 /∈ B2 (P2 (Cn))) or

the holomorphic solutions (in fact, biholomorphic) are not unique.
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Remark 1.7.8. As a consequence of the proof of Theorem 1.7.6 and of Theorem 1.6.15

we have the following bound for mappings in ŜA (Bn) :

‖f (z)‖ ≤
Cǫ,A

(1 − ‖z‖)2
k+(A)

m(A)
+ǫ
, z ∈ Bn, ǫ > 0, f ∈ ŜA (Bn)

(cf. [HK01, Theorem 3.1] and [CKK10, Theorem 12]). Furthermore, if A is normal the

above estimate holds with ǫ = 0 (the case k+ (A) /m (A) > 1 follows using 1.6.5, while

the case k+ (A) /m (A) = 1 is covered by [HK01, Corollary 3.1])

Remark 1.7.9. Let A = diag (λ1, . . . , λn) (Reλi > 0) and m ∈ N
n with mi = 0, i =

1, . . . , s, where 1 ≤ s < n. Then it is easy to compute that for f (z) = z+ azmes we have

h (z) = [Df (z)]−1 Af (z) = Az + a (λs − 〈m,λ〉) zmes.

If λs − 〈m,λ〉 = 0 we get that f ∈ ŜA (Bn) for any a ∈ C
n generalizing an example from

[HK01, p 57]. If λs − 〈m,λ〉 6= 0 then f ∈ ŜA (Bn) for any a such that

|a| ≤
m (A)

|λs − 〈m,λ〉|
.

This example suggests that in the case when A is nonresonant a sharp upper growth

bound on ŜA (Bn) would have to depend on the entire spectrum of A.

Next we extend [GHKS02, Corollary 2.2]. For simplicity we only treat the 2-dimensional

case. S∗ (Bn) = ŜI (Bn) denotes the class of normalized starlike mappings. For a more

general result obtained by a different approach see [Eli10, Theorem 5.1].

Proposition 1.7.10. Let A = diag (1, λ), Reλ ≥ 1. Define Φα,β : S (B1) → S (B2) by

Φα,β (f) (z) =

(

f (z1) ,

(

f (z1)

z1

)α

(f ′ (z1))
β
z2

)

.

If α ∈ [0,Reλ] and β ∈ [0, 1/2] such that α+ β ≤ Reλ then Φα,β (S∗ (B1)) ⊂ ŜA (B2).

Proof. We follow the proof of [GHKS02, Theorem 2.1]. Let f ∈ S∗ (B1) and define

F (z, t) = etAΦα,β (f) (z) =

(

etf (z1) , e
λt

(

f (z1)

z1

)α

(f ′ (z1))
β
z2

)

.
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It is sufficient to check that F (z, t) is a Loewner chain. Because of the particular form of

F and by Corollary 1.6.7 it is enough to check that F satisfies a Loewner chain equation,

i.e. that

h (·, t) := [DF (·, t)]−1 ∂F

∂t
(·, t) ∈ HA

(

B2
)

, a.e. t ≥ 0.

Let p (z1) = f (z1) / (z1f
′ (z1)). Straightforward computations yield that

h (z, t) = (z1p (z1) , z2 (λ− α− β + (α+ β) p (z1) + βz1p
′ (z1))) .

The same arguments as in the proof of [GHKS02, Theorem 2.1] (we are using the fact

that f ∈ S∗ (B1) implies that Rep > 0) show that it is sufficient to check that

q (x) = (Reλ− α− β)x2 − 2βx+ α+ β

is non-negative on [0, 1]. This follows by elementary analysis.

Remark 1.7.11. Let A be as in the above proposition. For α = Reλ − 1/2, β = 1/2 and

f (z) = z/ (1 − z)2 we can see that Φα,β (f) ∈ ŜA (B2) attains the asymptotic growth

bound from 1.7.8.

Next we consider the class of mappings with A-parametric representation. Unlike the

class of spirallike mappings, the class S0
A (Bn) is not compact when n0 > 1, as we can see

from the following example.

Example 1.7.12. Let A = diag (λ, 1), Reλ ≥ 2 and define

h (z, t) =
(

λz1 + a (t) z2
2 , z2

)

, z = (z1, z2) ∈ B2.

If for example |a (t)| ≤ 1, t ≥ 0 it is easy to check that h (·, t) ∈ NA, t ≥ 0. Then

v (z, t) =

(

e−λt

(

z1 −

(

ˆ t

0

a (s) e(λ−2)sds

)

z2
2

)

, e−tz2

)

is the solution of (1.7.2). When limt→∞ etAv (z, t) exists locally uniformly on Bn we get

that f (z) =
(

z1 −
(

´∞

0
a (s) e(λ−2)sds

)

z2
2 , z2

)

∈ S0
A (B2). Since the second coefficient of



Chapter 1. Loewner Theory 43

the Taylor series expansion can be made arbitrarily large by an appropriate choice of

a (·) we conclude that S0
A (B2) is not compact.

This example can be generalized for any A by considering h (z, t) = Az+a (t)H2 (z2) ∈

HA (Bn) such that H≤
2 6= 0.

Next we consider the class SaA (Bn). The following characterization ofA-asymptotically

spirallike mappings is derived from the proofs of [GHKK08a, Theorem 3.1 and Theorem

3.5].

Proposition 1.7.13. Let f : Bn → C
n be a holomorphic mapping and

f (z) = z +
∞
∑

k=2

Fk
(

zk
)

.

Then f is A-asymptotically spirallike if and only if there exists h ∈ HA (Bn) such that

f (z) = lim
t→∞

etA
(

v (z, t) +
n0
∑

k=2

Fk
(

v (z, t)k
)

)

(1.7.5)

locally uniformly on Bn, where v is the solution of (1.7.2).

Proof. First assume that f is A-asymptotically spirallike. Hence there exists a mapping

Q : f (Bn) × [0,∞) → C
n satisfying the assumptions from Definition 1.7.2. Let ν be the

solution of the initial value problem (1.7.1). By definition it will satisfy

lim
t→∞

etAν (f (z) , 0, t) = f (z)

locally uniformly on Bn.

Let v be defined by v (z, s, t) = f−1 (ν (f (z) , s, t)), z ∈ Bn, t ≥ s. Also, let h (z, t) =

[Df (z)]−1 Q (f (z) , t), z ∈ Bn, t ≥ 0. With the same proof as in [GHKK08a, Theorem

3.5] one sees that h ∈ HA (Bn) and that v is the solution of (1.1.2).

We have

f (z) = lim
t→∞

etAν (f (z) , 0, t) = lim
t→∞

etAf (v (z, 0, t))

locally uniformly on Bn. Like in the proof of Proposition 1.6.1 we also see that

lim
t→∞

etAf (v (z, 0, t)) = lim
t→∞

etA
(

v (z, 0, t) +
n0
∑

k=2

Fk
(

v (z, 0, t)k
)

)
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yielding the desired conclusion (the fact that f is univalent follows from Lemma 1.6.6).

Now assume that (1.7.5) holds. The conclusion follows exactly as in the proof of

[GHKK08a, Theorem 3.1].

Remark 1.7.14. From the above characterization of SaA (Bn) it is easy to see that SaA (Bn) 6=

S0
A (Bn) when n0 > 1.

In Proposition 1.7.17 we obtain a partial result about the normality of the class

SaA (Bn), but first we need the following lemmas.

Lemma 1.7.15. Let A = diag (λ1, . . . , λn) and h ∈ HA (Bn). If v = (v1, . . . , vn) is the

solution of (1.7.2) then

‖vi (z, t)‖ ≤ C







































e−Reλit , Reλi < 2m (A)

(1 + t)e−Reλit , Reλi = 2m (A)

e−2m(A)t , Reλi > 2m (A)

where C is a constant that depends on A, λi and ‖z‖.

Proof. Writing h = (h1, . . . , hn) and h̃i = hi − λizi, (1.7.2) yields

dvi
dt

= −λivi − h̃i (v, t) .

Integrating we get

etλivi = zi −

ˆ t

0

esλih̃i (v, s) ds.
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Hence

∥

∥

∥etλivi (z, t)
∥

∥

∥ ≤ |zi| +

ˆ t

0

esReλi ‖h (v (z, s) , s) − Av (z, s)‖ ds

≤ |zi| + CA,‖z‖

ˆ t

0

esReλi ‖v (z, s)‖2 ds

≤ |zi| + CA,‖z‖

ˆ t

0

es(Reλi−2m(A))ds

≤







































CA,‖z‖,λi
, Reλi < 2m (A)

CA,‖z‖(1 + t) , Reλi = 2m (A)

CA,‖z‖,λi
e(Reλi−2m(A))t , Reλi > 2m (A)

(the second inequality follows from (1.6.12) and the third estimate follows from (1.6.1)).

Lemma 1.7.16. Let λ ∈ C such that Reλ ≥ 0, a ∈ C and h : [0,∞) → C such that

|h (t)| ≤ C, t ≥ 0. If

lim
t→∞

ˆ t

0

esλ (h (s) + a) ds = 0 (1.7.6)

then |a| ≤ C.

Proof. We argue by contradiction. Assume that |a| > C. Then

Re ((h (s) + a) ā) ≥ |a|2 − |a| |h (s)| ≥ |a| (|a| − C) =: δ > 0.

If Imλ = 0 we get

Re

((

ˆ t

0

esλ (h (s) + a) ds

)

ā

)

≥ tδ

contradicting (1.7.6).

If Imλ 6= 0 we can find τ > 0 such that

Re
(

esλ (h (s) + a) ā
)

≥
δ

2
, s ∈

[

2kπ

Imλ
,

2kπ

Imλ
+ τ

]

, k ≥ 0, k ∈ Z.

From (1.7.6) we get that

lim
t→∞

ˆ t+τ

t

esλ (h (s) + a) ds = 0.
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This is contradicted by

Re

((

ˆ tk+τ

tk

esλ (h (s) + a) ds

)

ā

)

≥
δτ

2
,

where tk = 2kπ/Imλ. Thus we must have that |a| ≤ C.

Proposition 1.7.17. Suppose that A is normal, nonresonant and n0 = 2. Then SaA (Bn)

is a normal family. Furthermore, if f ∈ SaA (Bn) has h ∈ HA (Bn) as an infinitesi-

mal generator (see Proposition 1.7.13) then f can be embedded as the first element of a

bounded Loewner chain with infinitesimal generator h.

Proof. If U is a unitary matrix, f ∈ SaA (Bn) and h ∈ HA (Bn) is an infinitesimal generator

for f then it is straightforward to check that U∗fU ∈ SaU∗AU (Bn) and that U∗hU ∈

HU∗AU (Bn) is an infinitesimal generator for U∗fU . This allows us to assume without

loss of generality that A = diag (λ1, . . . , λn) and Reλ1 ≥ . . . ≥ Reλn > 0 (note that

m (A) = Reλn).

Let f be an A-asymptotically spirallike mapping and h ∈ HA (Bn) be an infinitesimal

generator for f . Let v be the solution of (1.7.2). Also, assume that f , h (·, t) and v (·, t)

have the following Taylor series expansions:

f (z) = z + F2

(

z2
)

+ . . .

h (z, t) = Az +H2

(

z2, t
)

+ . . .

v (z, t) = e−tAz + V2

(

z2, t
)

+ . . . .

From (1.7.2) and then (1.6.6) one easily gets that

etAV2

(

z2, t
)

= −

ˆ t

0

esAH2

(

(

e−sAz
)2
, s
)

ds

= −

ˆ t

0

e−sB2H2

(

z2, s
)

ds.

As a consequence of Proposition 1.7.13 , the above equality and (1.6.6) we have

F2

(

z2
)

= lim
t→∞

(

etAV2

(

z2, t
)

+ etAF2

(

(

e−tAz
)2
))

= lim
t→∞

(

−

ˆ t

0

e−sB2H2

(

z2, s
)

ds+ e−tB2F2

(

z2
)

)

. (1.7.7)
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We want to show that F≤
2 can be bounded independently of f ∈ SaA (Bn). For this

we will show that each of the coefficients fkij of the monomials zizjek from F≤
2 can be

bounded independently of f ∈ SaA (Bn).

We know that

B2 (zizjek) = (λi + λj − λk)zizjek

and so

etB2 (zizjek) = et(λi+λj−λk)zizjek.

Projecting (1.7.7) on the subspace generated by zizjek we get

fkij = lim
t→∞

(

−

ˆ t

0

e−s(λi+λj−λk)hkij (s) ds+ e−t(λi+λj−λk)fkij

)

= lim
t→∞

(

−

ˆ t

0

e−s(λi+λj−λk)
(

hkij (s) + (λi + λj − λk) f
k
ij

)

ds+ fkij

)

(hkij(s) are the coefficients of the monomials zizjek from H2 (z2, s)). Hence

lim
t→∞

ˆ t

0

e−s(λi+λj−λk)
(

hkij (s) + (λi + λj − λk) f
k
ij

)

ds = 0. (1.7.8)

For the coefficients of the monomials of F≤
2 we have that Re (λi + λj − λk) ≤ 0, hence

we can use Lemma 1.7.16 and the fact that λi + λj − λk 6= 0 (since A is nonresonant)

to conclude that the coefficients of F≤
2 are bounded independently of f (hkij are bounded

because NA is compact).

Let f (z, t) denote the polynomially bounded Loewner chain with infinitesimal gen-

erator h and such that F≤
2 (z2, 0) = F≤

2 (z2) (see Theorem 1.6.11). We will see that

f = f (·, 0). This will show that SaA (Bn) ⊂ SF
A (Bn) where

F =
{

F≤
2 : f (z) = z + F2

(

z2
)

+ . . . ∈ SaA (Bn)
}

.

By Theorem 1.6.15 this yields the normality of SaA (Bn).

It is enough to check that

0 = f (z) − f (z, 0) = lim
t→∞

etA
(

F2

(

v (z, t)2
)

− F2

(

v (z, t)2 , t
))

. (1.7.9)
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We know that (see (1.6.2), (1.6.16), (1.6.17))

F2

(

z2, t
)

= etB2F≤
2

(

z2
)

+

ˆ ∞

0

GB2 (t− s)N2

(

z2, s
)

ds

= etB2F≤
2

(

z2
)

+

ˆ t

0

e(t−s)B2H≤
2

(

z2, s
)

ds−

ˆ ∞

t

e(t−s)B2H+
2

(

z2, s
)

ds

= F≤
2

(

z2
)

+ etB2

ˆ t

0

e−sB2

(

H≤
2

(

z2, s
)

+B2F
≤
2

(

z2
))

ds

−

ˆ ∞

0

e−sB2H+
2

(

z2, s+ t
)

ds.

Substituting the above in (1.7.9) we need to verify that

lim
t→∞

etAetB2

ˆ t

0

e−sB2

(

H≤
2

(

v (z, t)2 , s
)

+B2F
≤
2

(

v (z, t)2
))

ds = 0 (1.7.10)

and

lim
t→∞

etA
ˆ ∞

0

e−sB2

(

H+
2

(

v (z, t)2 , s
)

−H+
2

(

v (z, t)2 , s+ t
))

ds = 0. (1.7.11)

Using (1.6.7), (1.7.10) becomes

lim
t→∞

ˆ t

0

e−sB2

(

H≤
2

(

(

etAv (z, t)
)2
, s
)

+B2F
≤
2

(

(

etAv (z, t)
)2
))

ds = 0. (1.7.12)

Let v = (v1, . . . , vn). Separating the monomials in (1.7.12) it is enough to prove that

lim
t→∞

etλivi (z, t) e
tλjvj (z, t)

ˆ t

0

e−s(λi+λj−λk)ckij (s) ds = 0

(ckij (s) are the coefficients of the monomials in the polynomial H≤
2 (·, s)+B2F

≤
2 ) provided

that Re (λi + λj − λk) ≤ 0 and (because of (1.7.8))

lim
t→∞

ˆ t

0

e−s(λi+λj−λk)ckij (s) ds = 0.

It is now enough to check that etλivi (z, t) and etλjvj (z, t) are bounded on {z}×[0,∞),

assuming that Re (λi + λj − λk) ≤ 0. This follows from Lemma 1.7.15 provided that

Reλi,Reλj < 2Reλn. Assume that this is not the case, so for example Reλi ≥ 2Reλn.

This implies that

Re (λi + λj − λk) ≥ Re (3λn − λ1) > 0
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which contradicts Re (λi + λj − λk) ≤ 0. For the last inequality we used the hypothesis

n0 = 2 which implies that 2 ≤ Reλ1/Reλn < 3.

Separating the monomials in (1.7.11) it is enough to prove that

lim
t→∞

etλkvi (z, t) vj (z, t)

ˆ ∞

0

e−s(λi+λj−λk)dkij (s, t) ds = 0

provided that Re (λi + λj − λk) > 0 (dkij (s, t) are the coefficients of the monomials in

the polynomial H+
2 (·, s) − H+

2 (·, s+ t)). Since H+
2 (·, s) − H+

2 (·, s+ t) can be bounded

independently of s and t we see that
´∞

0
e−s(λi+λj−λk)dkij (s, t) ds can be bounded inde-

pendently of t. Hence it is enough to check that

lim
t→∞

etλkvi (z, t) vj (z, t) = 0.

If Reλi,Reλj ≤ 2Reλn then using Lemma 1.7.15 we have

∥

∥

∥etλkvi (z, t) vj (z, t)
∥

∥

∥ ≤ C (1 + t)2 e−tRe(λi+λj−λk).

If Reλi > 2Reλn or Reλj > 2Reλn then using Lemma 1.7.15 again we get

∥

∥

∥etλkvi (z, t) vj (z, t)
∥

∥

∥ ≤ Ce−tRe(3λn−λk).

Since Re (λi + λj − λk) > 0 and Re (3λn − λk) ≥ Re (3λn − λ1) > 0 the above inequali-

ties prove the desired limit. This completes the proof.

Remark 1.7.18. It is not clear whether SaA (Bn) is closed under the assumptions of the

above theorem. Suppose that {fk} is a sequence in SaA (Bn) converging to some f ∈

S (Bn). Let {fk (z, t)} be polynomially bounded Loewner chains such that fk (z, 0) =

fk (z). Then by Lemma 1.6.14 we have that up to a subsequence {fk (z, t)} converges

to a polynomially bounded Loewner chain f (z, t) such that f (z, 0) = f (z). In order

to conclude that f ∈ SaA (Bn) it would be natural to have that f satisfies (1.7.5) with v

satisfying f (v (z, t) , t) = f (z). Unfortunately one can find examples when this doesn’t

happen.
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Remark 1.7.19. (1.7.8) gives a necessary condition for a mapping h ∈ HA to be the

infinitesimal generator associated to some f ∈ SaA (Bn). It is possible to choose h such

that (1.7.8) is not satisfied for any f ∈ SaA (Bn). This means that unlike the n0 = 1

case, there exist polynomially bounded Loewner chains for which the first element is not

from SaA (Bn). We will give an example of such h in the case when A = diag (λ1, . . . , λn),

Reλ1 ≥ . . . ≥ Reλn > 0, Re (2λn − λ1) ≤ 0. Let

h (z, t) = Az + (aet(2λn−λ1))z2
ne1, t ≥ 0

where a ∈ C \ {0} is sufficiently small so that h ∈ HA (Bn) (it is easy to see that such

a’s exist since we are assuming that Re (2λn − λ1) ≤ 0). Using the notation of the above

proposition it is straightforward to check that for our choice of h,

lim
t→∞

ˆ t

0

e−s(λn+λn−λ1)
(

h1
nn (s) + (λn + λn − λ1) f

1
nn

)

ds 6= 0

for any f 1
nn ∈ C.



Chapter 2

Extreme Points

2.1 Introduction

Solving extremal problems for compact classes of biholomorphic functions has been one

of the main goals of geometric function theory in one variable. Starting in the 1970s

the application of linear methods to study the extreme points and support points of the

various classes began playing an important role. See [MW02] for a detailed account and

references.

In higher dimensions very little is known about the extreme points and support points

of the various classes of mappings. More specifically, in [MS06] examples are given of

extreme points for the class of convex mappings on Bn and in [GKP07] a relation between

extreme/support points and Loewner chains is studied. The goal of this chapter is to

provide further examples of extreme points.

Consider the class P = {f ∈ H (Bn,C) : Ref (z) > 0, f (0) = 1} of Carathéodory

functions. In one variable this class plays a pivotal role due to its ubiquity in the analytic

characterizations of various subclasses and due to its relation to Loewner chains. The

main result on Carathéodory functions is the integral representation formula due to Her-

glotz. This formula is very important for solving various extremal problems for the class

51
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P , which in turn contributes to solving extremal problems for classes of biholomorphic

functions. In particular, this integral representation easily yields that the extreme points

of the class P are the functions of the form
(

1 + eiθζ
)

/
(

1 − eiθζ
)

.

The class P has also been studied in higher dimensions, but with very limited success.

Of importance to us is the work of F. Forelli [For75, For79], who found examples of

extreme points for the class P . Based on this we will be able to give a class of examples

of extreme points for the class M on Bn.

For geometric function theory in higher dimensions the role of the class P is played by

the class M. Thus, it is natural to study extremal problems and extreme points for this

class. It is known that in one dimension functions h from the class M can be written

as h (ζ) = ζp (ζ) where p is a function in the class P . This justifies asking whether

mappings of the form (z1p1 (z1) , . . . , znpn (zn)), where pi are extreme points for the class

P , are extreme points for the class M. We will see that this is indeed the case on the

polydisc but not on Bn.

2.2 Extreme points on P n

We will be using the fact that for a convex set (such as the Carathéodory class) in order

to prove that a point h is extreme it is enough to show that there is no nonzero point

g such that h ± g is in the set. Indeed, suppose that there exist α ∈ (0, 1) and f1, f2

points in the set such that h = αf1 + (1 − α) f2. Suppose that α ≥ 1/2. Then it is easy

to see that we can replace f2 by another point on the segment between f1 and f2 (we are

using the convexity of the set), which we also denote by f2, such that h = (f1 + f2) /2.

Choosing g = (f1 − f2) /2 we have that h+ g = f1 and h− g = f2 are points in the set.

By the assumption it follows that g = 0, which implies that f1 = f2, thus proving that h

is an extreme point.

On the polydisc P n = {z ∈ C
n : ‖z‖∞ < 1, i = 1, . . . , n} the class of Carathéodory
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mappings is defined by

M (P n) =

{

h ∈ H (P n) : Re

[

hj (z)

zj

]

> 0, ‖z‖∞ = |zj| > 0, j = 1, . . . , n; h (0) = 0, Dh (0) = I

}

.

The distinguished boundary of P n is ∂P n = {z ∈ C
n : ‖z‖∞ = 1, i = 1, . . . , n}.

Proposition 2.2.1. Let h (z) = (z1p1 (zi1) , . . . , znpn (zin)) where i1, . . . , in ∈ {1, . . . , n}

and pi, i = 1, . . . , n are extreme points for the class P. Then h is an extreme point for

the class M (P n).

Proof. Suppose that g ∈ H (P n) is such that h ± g ∈ M (P n). We just need to show

that g = 0. Note that we necessarily have g (0) = 0 and Dg (0) = 0.

Let z ∈ ∂P n and j ∈ {1, . . . , n}. From the definition of the class M (P n) we have

that

Re

[

hj (ζz) ± gj (ζz)

ζzj

]

= Re

[

pj
(

ζzij
)

±
gj (ζz)

ζzj

]

> 0, ζ ∈ B1 \ {0} .

Since pj
(

·zij
)

is an extreme point of the class P and gj (·z) / (·zj) is analytic on B1

(because g (0) = 0 and Dg (0) = 0) we can conclude that gj (·z) / (·zj) = 0. Since z

and j were arbitrarily chosen we have in fact that g = 0. Note that we used the fact

that an analytic function which is zero on the distinguished boundary of the polydisc is

identically zero on the polydisc. This concludes the proof

Let X be either P n or Bn. We will denote by S∗ (X) the class of normalized starlike

mappings on X, which can be defined as mappings which are spirallike with respect to I.

It is known that any starlike mapping f ∈ S∗ (X) satisfies Df (z)h (z) = f (z) for some

h ∈ M (X) called the infinitesimal generator. Conversely, given h ∈ M (X) there is a

unique f ∈ S∗ (X) satisfying Df (z)h (z) = f (z). Note that the class of Carathéodory

mappings on Bn is defined by

M (Bn) = {h ∈ H (Bn) : Re 〈h (z) , z〉 > 0, z ∈ Bn \ {0} ; h (0) = 0, Dh (0) = I} .

We will use the notation M := M (Bn).
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Next we show that the starlike mappings that have as infinitesimal generators the

mappings from the previous proposition are also extreme points.

Proposition 2.2.2. Let f ∈ S∗ (P n) such that its infinitesimal generator is one of the

extreme points from Proposition 2.2.1. Then f is an extreme point for the class S∗ (P n).

Proof. Suppose that there exist α ∈ (0, 1) and f 1, f2 ∈ S∗ (P n) such that f = αf 1 +

(1 − α) f 2. We need to show that f 1 = f 2. Let hi ∈ M (P n) , i = 1, 2 be such that

Df i (z)hi (z) = f i (z). Also let h ∈ M (P n) be such that Df (z)h (z) = f (z). Equating

the degree two coefficients on both sides of the analytical characterizations for f , f 1 and

f 2 yields H2 = −F2, H
1
2 = −F 1

2 and H2
2 = −F 2

2 . Hence

H2 = αH1
2 + (1 − α)H2

2 . (2.2.1)

Let z ∈ ∂P n and j ∈ {1, . . . , n}. From the definition of the class M (P n) it follows

that pi (ζ) = hij (ζz) /ζzj, i = 1, 2 are functions in the class P . If the j-th component of

H i
2 is denoted by H i

2,j then pi (ζ) = 1 +
(

H i
2,j (z) /zj

)

ζ + . . . . By the coefficient bounds

for the class P we get that
∣

∣

∣H i
2,j (z) /zj

∣

∣

∣ ≤ 2. (2.2.2)

By the assumptions we have that hj (ζz) /ζzj =
(

1 + zije
iθjζ

)

/
(

1 − zije
iθjζ

)

for some

θj ∈ [0, 2π]. Then the j-th component of H2, denoted H2,j, is of the form 2zjzije
iθj . On

the other hand, from (2.2.1), we have that H2,j = αH1
2,j+(1 − α)H2

2,j. Since |H2,j (z)| = 2

we can now conclude (based on (2.2.2)) that H2,j (z) = H1
2,j (z) = H2

2,j (z). Since z and

j are arbitrary we get H2 = H1
2 = H2

2 . Now we have that pi (ζ) = 1 + 2zije
iθjζ + . . .

which implies (see [Pom75, Corollary 2.3]) that pi (ζ) =
(

1 + zije
iθjζ

)

/
(

1 − zije
iθjζ

)

=

hj (ζz) /ζzj. Since z and j are arbitrary we can deduce that hi = h, i = 1, 2 and hence

f 1 = f 2 = f . This concludes the proof.

In general it is not clear what the expression of the extreme starlike mappings from

the above proposition is. Nonetheless, in the particular case when the infinitesimal
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generator is h (z) = (z1p1 (z1) , . . . , znpn(zn)) we have that the associated starlike mapping

is f (z) = (k1 (z1) , . . . , kn (zn)), where ki are the Koebe maps associated to pi.

The extreme points we obtained in Proposition 2.2.1 are not all the possible extreme

points. If this were the case then Choquet’s theorem (see [Lax02, Theorem 13.4.5]) would

imply that all the mappings in M (P n) are of the form h (z) = (z1p1 (z) , . . . , znpn (z))

where pi are some holomorphic functions. But this is clearly not the case. For example

(z1 + az2
2 , z2) is not of this form but for small enough a it belongs to M (P n).

2.3 Extreme points on Bn

We start by showing that the mappings from the previous section are not extreme on

Bn. For simplicity we will only consider some particular mappings on C
2.

Proposition 2.3.1. Let h (z) = (z1 (1 + z1) / (1 − z1) , z2 (1 + z2) / (1 − z2)) and g (z) =

(az1z
2
2 , 0) where a ∈ C. If a is small enough then h± g ∈ M.

Proof. Straightforward computations yield

Re 〈h (z) ± g (z) , z〉 = |z1|
2
(

Re
1 + z1

1 − z1

± aRez2
2

)

+ |z2|
2 Re

1 + z2

1 − z2

.

To have that h± g ∈ M it is sufficient to have that

Re
1 + z1

1 − z1

=
1 − |z1|

2

|1 − z1|
2 > |a| |z2|

2 , z ∈ B2.

This is equivalent to

|z1|
2 + |a| |1 − z1|

2 |z2|
2 < 1, z ∈ B2.

The above inequality clearly holds if |a| ≤ 1/4. This concludes the proof.

Proposition 2.3.2. Let f (z) =
(

z1/ (1 − z1)
2 , z2/ (1 − z2)

2
)

and g (z) =
(

az1z
2
2 (1 + z2)

2 , 0
)

where a ∈ C. If a is small enough then f ± g ∈ S∗.
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Proof. Let h (z) = [D (f + g) (z)]−1 (f + g) (z). Straightforward computations yield

[D(f + g) (z)]−1 =
1

(

1+z1

(1−z1)3 + az2
2 (1 + z2)

2
)

1+z2

(1−z2)3









1+z2

(1−z2)3 −2az1z2 (1 + z2) (1 + 2z2)

0 1+z1

(1−z1)3 + az2
2 (1 + z2)

2









h (z) =





z1

(1−z1)2 + az1z
2
2 (1 + z2)

2 − 2az1z
2
2 (1 − z2) (1 + 2z2)

1+z1

(1−z1)3 + az2
2 (1 + z2)

2 , z2
1 − z2

1 + z2



 .

For h to be in M it is sufficient that Re [h1 (z) z1] ≥ 0 on B2. This is equivalent to

showing that

Re





(

1

(1 − z1)
2 + az2

2 (1 + z2)
2 − 2az2

2 (1 − z2) (1 + 2z2)

)

(

1 + z1

(1 − z1)
3 + az2

2 (1 + z2)
2

)



 ≥ 0. (2.3.1)

Note that

Re





1

(1 − z1)
2

(

1 + z1

(1 − z1)
3

)



 =
|1 + z1|

2

|1 − z1|
6 Re

1
(1−z1)2

1+z1

(1−z1)3

=
|1 + z1|

2

|1 − z1|
6 Re

1 − z1

1 + z1

=
1 − |z1|

2

|1 − z1|
6 .

Now it can be seen (by separating the above term in (2.3.1)) that to have (2.3.1) it

suffices to have

1 − |z1|
2

|1 − z1|
6 ≥

(

∣

∣

∣az2
2 (1 + z2)

2 − 2az2
2 (1 − z2) (1 + 2z2)

∣

∣

∣

∣

∣

∣

∣

∣

1 + z1

(1 − z1)
3

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

(1 − z1)
2 + az2

2 (1 + z2)
2 − 2az2

2 (1 − z2) (1 + 2z2)

∣

∣

∣

∣

∣

∣

∣

∣az2
2 (1 + z2)

2
∣

∣

∣

)

.

The left hand side can be bounded below by |z2|
2 / |1 − z1|

6, whereas the right hand side

can be bounded above by Ca |z2|
2 / |1 − z1|

3. Hence we can choose small enough a for

(2.3.1) to hold. Thus we proved that for small enough a we have that f + g ∈ S∗. This

also holds if we replace a by −a and so we also have that f − g ∈ S∗, thus concluding

the proof.

Next we will find examples of extreme points for the class M on Bn. Let f (z) =

z2
1 + z2

2 . F. Forelli [For75] showed that φ = (1 + f)/(1 − f) is an extreme point for
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P . One of the key ingredients in the proof is the use of the particular form of the slice

functions φ (ζz) for certain z ∈ S2. It is natural to consider the mapping h (z) = φ (z) z

as a possible extreme point for M. This is justified by the fact that the slice functions

associated to h are related to the slices of φ by

〈h (ζz) , z〉

ζ
= φ (ζz) , z ∈ S2,

which allows us to use some of Forelli’s work.

Let g ∈ H (Bn,Cn) be such that h ± g ∈ M. We will show that such g needs to be

of a certain restricted form, though not necessarily identically zero (Proposition 2.3.3).

Thus, we will see that h is not an extreme point for M (Corollary 2.3.4), but we will be

able to take advantage of the restricted form of g to produce a family of extreme points

of M (Proposition 2.3.5).

Let c = (c1, c2) be a point in C
2 and let

gc (z) :=
1

1 − f (z)

(

2 (Rec1) z
2
1 + c2z1z2 + c1z

2
2 , c2z

2
1 + c1z1z2 + 2 (Rec2) z

2
2

)

.

Note that the dependence on c is real linear. Let

Ω =

{

c ∈ C
2 : max

θ∈[0,π/2]
|sin θRec1 + cos θRec2| ≤ 1/2

}

.

Note that the maximum from the definition of Ω can be explicitly computed (the answer

depends on the sign of Rec1Rec2). The mappings gc and the set Ω will appear naturally

in the proof of the following proposition.

Proposition 2.3.3. If a holomorphic mapping g satisfies h ± g ∈ M then g = gc for

some c ∈ B
2

∩ Ω. Furthermore h+ gc is a mapping in M if and only if c ∈ B
2

∩ Ω.

In particular this proposition shows that h is not an extreme point of M. In fact now

we can completely characterize the extremality in M of mappings of the form h+ gc.

Corollary 2.3.4. If c ∈ B2 ∩ Ω then h+ gc is not an extreme point of M.
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Proof. Since c ∈ B2 we can choose a 6= 0 such that ‖c± a‖ < 1. Furthermore we can

choose such a that also satisfies Rea1 = Rea2 = 0. This guarantees that c± a ∈ B2 ∩ Ω.

By the second part of Proposition 2.3.3 we have that h + gc±a = (h+ gc) ± ga ∈ M.

Hence h+ gc is not an extreme point.

Proposition 2.3.5. If c ∈ S2 ∩ Ω then h+ gc is an extreme point for M.

Proof. Assume there exists a holomorphic mapping g such that h + gc ± g ∈ M. Since

−c ∈ S2 ∩ Ω we know from the second part of Proposition 2.3.3 that h− gc ∈ M. From

this we can easily deduce that

Re 〈2h (z) ± g (z) , z〉 > Re 〈h (z) + gc (z) ± g (z) , z〉 > 0, z ∈ B2 \ {0} .

Hence h ± g/2 ∈ M. Using Proposition 2.3.3 we get that there exists a ∈ B
2

∩ Ω such

that g = g2a. Now we have that h + gc±2a ∈ M. The second part of Proposition 2.3.3

implies in particular that we must have ‖c± 2a‖ ≤ 1 which can only happen if a = 0

(since ‖c‖ = 1). This concludes the proof.

Now we just have to prove Proposition 2.3.3. We start by discussing the basic tools

we need for the proof. The main idea is to notice restrictions on slice functions and use

them to get restrictions on the related mapping.

The slice functions that we are considering will be analytic with positive real part.

Suppose that φ (ζ) =
∑∞
k=0 ckζ

k is an analytic function on B1 that has positive real part.

Then, necessarily, Rec0 > 0 and as a consequence of the coefficient inequalities for the

class P we have that |ck| ≤ 2Rec0 for k ≥ 1. We will also need the fact that if c0 = 1

and c2 = 2 then c2k = 2 and c2k−1 = const for k ≥ 1. Indeed, we know that there exists

a positive Radon measure σ on the unit circle such that

φ (ζ) =

ˆ

|ξ|=1

ξ + ζ

ξ − ζ
dσ (ξ) .

Then having c0 = 1 and c2 = 2 is equivalent to σ̂ (0) = σ̂ (2) = 1, where σ̂ (n) =
´

|ξ|=1
ξndσ (ξ). Now it is known that the measure σ is supported on the points −1
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and 1 (see [For79, Proposition 2.2]) hence c2k = σ ({1}) + σ ({−1}) = 1 and c2k−1 =

σ ({1}) − σ ({−1}) for k ≥ 1.

The following two results will be used to get restrictions on the mapping based on the

restrictions obtained for the slice functions. Let Sn+ = {z ∈ Sn : zi ≥ 0, i = 1, . . . , n}.

Let Pk (Cn,Cm) denote the space of homogeneous polynomials of degree k on C
n with

values in C
m. Then from [For75, Corollary 3.2] we get the following proposition.

Proposition 2.3.6. If P ∈ ∪∞
k=1P

k (Cn,C) and if P = 0 on Sn+ then P ≡ 0.

We will need the following consequence of the above result.

Corollary 2.3.7. If P ∈ Pk (C2,C2) is such that 〈P (z) , z〉 = 0 for z ∈ S2
+ then there

exists Q ∈ Pk−1 (C2,C) such that 〈P (z) , z〉 = Im (z1z2)Q (z) for all z.

Proof. Let P = (P1, P2) and Pi (z) =
∑

|α|=k c
i
αz

α.

Since z = z on S2
+ we have that 〈P (z) , z〉 = 0 on S2

+. Applying Proposition 2.3.6 to

〈P (z) , z〉 ∈ Pk (C2,C) yields 〈P (z) , z〉 ≡ 0, hence c1
(2,0) = 0, c2

(0,2) = 0 and if α + e1 =

β+ e2 then c1
α + c2

β = 0. Now it is easy to check that 〈P (z) , z〉 = (z1z2 − z1z2)
∑

c1
α+e2

zα

and the conclusion follows immediately.

One important feature of f with respect to the above results is that f = 1 on S2
+. For

example, suppose that P1 ∈ Pk (C2,C2) and P2 ∈ Pk+2 (C2,C2) are such that P1 = P2

on S+
2 . We cannot apply Proposition 2.3.6 directly because P1 −P2 is not a homogeneous

polynomial. We need to first notice that we also have that P1f = P2 on S2
+ and then we

can apply Proposition 2.3.6 to get that P1f ≡ P2.

We now begin the proof of Proposition 2.3.3 by showing that we must have

〈g (z) , z〉 =
〈G (z) , z〉 + Im (z1z2)ψ (z)

1 − f (z)
, z ∈ B2,

where G ∈ P2 (C2,C2) is the degree two term in the Taylor series expansion of g and

ψ ∈ H (B2,C) is such that ψ (0) = 0 and Dψ (0) = 0.
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The proof is a straightforward adjustment of the ideas from [For75, Proposition 3.12]

and [For79, Proposition 2.3] based on Corollary 2.3.7.

Let p±
z (ζ) = 〈h (ζz) ± g (ζz) , z〉 /ζ for all ζ ∈ B1 and all z ∈ S2. If g (z) =

∑∞
k=2 Gk (z) is the Taylor series expansion of g, then

p±
z (ζ) = ζ +

∞
∑

k=1

(

± 〈G2k (z) , z〉 ζ2k−1 +
(

2f (z)k ± 〈G2k+1 (z) , z〉
)

ζ2k
)

.

Since p±
z ∈ P we have that |2f (z) ± 〈G2k+1 (z) , z〉| ≤ 2 for all k ≥ 1. But f (z) = 1

on S2
+ so we can conclude that 〈G2k+1 (z) , z〉 = 0 on S+

2 for all k ≥ 1. Corollary 2.3.7

implies that

〈G2k+1 (z) , z〉 = Im (z1z2)Q2k (z) , k ≥ 1.

If we let p+
z (ζ) =

∑∞
k=0 cz,kζ

k then we have that cz,0 = 1 and cz,2 = 2 for z ∈ S2
+. Hence,

for z ∈ S2
+ and k ≥ 1 it follows that cz,2k+1 = cz,1, that is 〈G2k+2 (z) , z〉 = 〈G2 (z) , z〉.

This implies that for z ∈ S2
+ we have

〈

G2k+2 (z) − f (z)kG2 (z) , z
〉

= 0.

Now we can apply Corollary 2.3.7 to get

〈G2k+2 (z) , z〉 = 〈G2 (z) , z〉 f (z)k + Im (z1z2)Q2k+1 (z) , k ≥ 1.

The conclusion follows immediately by setting ψ = (1 − f)
∑∞
k=2 Qk.

Next we will obtain some further restrictions using the same idea as [For79, Proposi-

tion 2.4]. We have that

Re 〈h (z) ± g (z) , z〉 = Re
(1 + f (z)) ‖z‖2 ± (〈G (z) , z〉 + Im (z1z2)ψ (z))

1 − f (z)

=

(

1 − |f (z)|2
)

‖z‖2 ± Re
[(

1 − f (z)
)

(〈G (z) , z〉 + Im (z1z2)ψ (z))
]

|1 − f (z)|2
.

Let q± (z) =
(

1 − |f (z)|2
)

‖z‖2 ± Re
[(

1 − f (z)
)

(〈G (z) , z〉 + Im (z1z2)ψ (z))
]

. Then

for z ∈ B2 \ {0} we have that q± (z) > 0. The slice functions q± (ζz) are not harmonic
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(we want to use properties of positive harmonic functions). We want to find harmonic

functions r±
z such that r±

z (ζ) = q± (ζz) when |ζ| = 1. If |ζ| = 1 then

q± (ζz) =
(

1 − |f (z)|2
)

‖z‖2±Re

[

(

1 − f (z) ζ
2
)

(

〈G (z) , z〉 ζ + Im (z1z2)
∞
∑

k=2

Ψk (z) ζk
)]

= ∓Re
[

f (z) 〈G (z) , z〉 ζ
]

+
(

1 − |f (z)|2
)

‖z‖2 ∓ Re
[

f (z) Im (z1z2) Ψ2 (z)
]

± Re
[(

〈G (z) , z〉 − f (z) Im (z1z2) Ψ3 (z)
)

ζ
]

± Re

[

∞
∑

k=2

Im (z1z2)
(

Ψk (z) − f (z) Ψk+2 (z)
)

ζk
]

.

So

r±
z (ζ) =

(

1 − |f (z)|2
)

‖z‖2 ∓ Re
[

f (z) Im (z1z2) Ψ2 (z)
]

± Re
[(

〈G (z) , z〉 − f (z) 〈G (z) , z〉 − f (z) Im (z1z2) Ψ3 (z)
)

ζ
]

± Re

[

∞
∑

k=2

Im (z1z2)
(

Ψk (z) − f (z) Ψk+2 (z)
)

ζk
]

are the functions we are looking for. Since r±
z (ζ) > 0 when |ζ| = 1 it follows that

r±
z (ζ) > 0 when |ζ| ≤ 1. For this it is necessary that

(

1 − |f (z)|2
)

‖z‖2 ∓ Re
[

f (z) Im (z1z2) Ψ2 (z)
]

> 0

and therefore we have

(

1 − |f (z)|2
)

‖z‖2 ∓ Re
[

f (z) Im (z1z2) Ψ2 (z)
]

< 2
(

1 − |f (z)|2
)

‖z‖2 . (2.3.2)

Using the above and coefficient inequalities we get that for z ∈ B2 \ {0} and k ≥ 2 we

have

∣

∣

∣〈G (z) , z〉 − f (z) 〈G (z) , z〉 − f (z) Im (z1z2) Ψ3 (z)
∣

∣

∣ < 4
(

1 − |f (z)|2
)

‖z‖2

∣

∣

∣Im (z1z2)
(

Ψk (z) − f (z) Ψk+2 (z)
)∣

∣

∣ < 4
(

1 − |f (z)|2
)

‖z‖2 .

Letting z converge to points from S2 in the above inequalities yields

∣

∣

∣〈G (z) , z〉 − f (z) 〈G (z) , z〉 − f (z) Im (z1z2) Ψ3 (z)
∣

∣

∣ ≤ 4
(

1 − |f (z)|2
)

, z ∈ S2 (2.3.3)

∣

∣

∣Im (z1z2)
(

Ψk (z) − f (z) Ψk+2 (z)
)∣

∣

∣ ≤ 4
(

1 − |f (z)|2
)

, z ∈ S2, k ≥ 2. (2.3.4)
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Let z =
(

r1e
iθ1 , r2e

iθ2

)

be a point from S2. Then a straightforward computation using

the fact that r4
1 + r4

2 + 2r2
1r

2
2 = 1 yields 1 − |f (z)|2 = 4r2

1r
2
2 sin2 (θ1 − θ2). Indeed

1 − |f (z)|2 = 1 −
(

r4
1 + r4

2 + 2r2
1r

2
2 cos 2 (θ1 − θ2)

)

= 1 −
(

r4
1 + r4

2 + 2r2
1r

2
2 + 2r2

1r
2
2 (cos 2 (θ1 − θ2) − 1)

)

= 4r2
1r

2
2 sin2 (θ1 − θ2) .

Also note that Im (z1z2) = r1r2 sin (θ2 − θ1). After we simplify by |sin (θ1 − θ2)| the

inequality (2.3.4) becomes

∣

∣

∣Ψk (z) − f (z)Ψk+2 (z)
∣

∣

∣ ≤ 16r1r2 |sin (θ1 − θ2)| , k ≥ 2.

Since f (z) = 1 on S2
+ the above inequality implies that Ψkf = Ψk+2 on S2

+ and hence

Ψkf ≡ Ψk+2, k ≥ 2 (2.3.5)

The next step is to show that the even coefficients of ψ are zero. Note that

q± (z)+q± (−z) = 2
(

1 − |f (z)|2
)

‖z‖2±2Re

[

(

1 − f (z)
)

Im (z1z2)
∞
∑

k=1

Ψ2k (z)

]

> 0, z ∈ B2\{0} .

Let Sf = {z ∈ S2 : f (z) = 1}. Using (2.3.5) and letting z converge to points from S2 \Sf

yields
∣

∣

∣

∣

∣

Re

[

Im (z1z2) Ψ2 (z)
1 − f (z)

1 − f (z)

]∣

∣

∣

∣

∣

≤ 1 − |f (z)|2 , z ∈ S2 \ Sf . (2.3.6)

Let Ψ2 (z) = az2
1 +bz1z2+cz2

2 . Also let U (z) := (z1,−z2). Note that f ◦U = f . Replacing

z by U (z) in (2.3.6) gives
∣

∣

∣

∣

∣

Re

[

−Im (z1z2)
(

az2
1 − bz1z2 + cz2

2

) 1 − f (z)

1 − f (z)

]∣

∣

∣

∣

∣

≤ 1 − |f (z)|2 , z ∈ S2 \ Sf . (2.3.7)

Using (2.3.6), (2.3.7) and the triangle inequality we get
∣

∣

∣

∣

∣

Re

[

Im (z1z2) bz1z2
1 − f (z)

1 − f (z)

]∣

∣

∣

∣

∣

≤ 1 − |f (z)|2 , z ∈ S2 \ Sf .

If z =
(

r1e
iθ1 , r2e

iθ2

)

then the above becomes

∣

∣

∣

∣

∣

Re

[

bei(θ1+θ2) 1 − f (z)

1 − f (z)

]∣

∣

∣

∣

∣

≤ 4 |sin (θ1 − θ2)| . (2.3.8)
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If we choose θ1 = θ2 = θ then (2.3.8) yields

0 = Re

[

bei2θ
1 − e−i2θ

1 − ei2θ

]

= −Reb.

Hence (2.3.8) becomes

|b|

∣

∣

∣

∣

∣

Im

[

ei(θ1+θ2) 1 − f (z)

1 − f (z)

]∣

∣

∣

∣

∣

≤ 4 |sin (θ1 − θ2)| .

The above inequality and the following lemma imply that b = 0.

Lemma 2.3.8. Let z =
(

r1e
iθ1 , r2e

iθ2

)

and r2
1 + r2

2 = 1. If θ1, θ2 → 0 such that θ2/θ1 → l

and l 6= −r2
1/r

2
2 then

1

sin (θ1 − θ2)
Im

(

ei(θ1+θ2) 1 − f (z)

1 − f (z)

)

→
r2

1 − lr2
2

r2
1 + lr2

2

.

Proof. First note that

Im

(

ei(θ1+θ2) 1 − f (z)

1 − f (z)

)

=
Im

(

ei(θ1+θ2)
(

1 − f (z)
)2
)

|1 − f (z)|2
.

We want to factor sin (θ1 − θ2) from the top of the right hand side. For this we expand

and explicitly compute the top and then eliminate r1 (using r2
1 = 1 − r2

2). After this the

top becomes

Im
(

ei(θ1+θ2)
(

1 − f (z)
)2
)

= sin (θ1 + θ2) + sin (θ2 − 3θ1) + 2 sin (θ1 − θ2)

− 2r2
2 (sin (θ2 − 3θ1) + 2 sin (θ1 − θ2) + sin (θ1 + θ2))

+ r4
2 (sin (θ2 − 3θ1) + sin (θ1 − 3θ2) + 2 sin (θ1 + θ2)) .

Applying the fact that

sin x+ sin y = 2 sin
x+ y

2
cos

x− y

2
(2.3.9)

repeatedly, yields

Im
(

ei(θ1+θ2)
(

1 − f (z)
)2
)

= 2 sin (θ1 − θ2)
(

1 − cos 2θ1 − 2r2
2 (1 − cos 2θ1) + r4

2 (cos 2θ2 − cos 2θ1)
)

= 4 sin (θ1 − θ2) sin2 θ1

(

1 − 2r2
2 + r4

2

(

1 −
sin2 θ2

sin2 θ1

))

.
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Next we explicitly compute the bottom and eliminate r1. This yields

|1 − f (z)|2 = 2
(

1 − cos 2θ1 − r2
2 (1 − cos 2θ1 + cos 2θ2 − cos 2 (θ1 − θ2))

+ r4
2 (1 − cos 2 (θ1 − θ2))

)

= 4 sin2 θ1

(

1 − r2
2

(

1 +
sin2 (θ1 − θ2)

sin2 θ1

−
sin2 θ2

sin2 θ1

)

+ r4
2

sin2 (θ1 − θ2)

sin2 θ1

)

.

Now it is straightforward to get that

1

sin (θ1 − θ2)
Im

(

ei(θ1+θ2) 1 − f (z)

1 − f (z)

)

→
1 − 2r2

2 + r4
2 (1 − l2)

1 − r2
2

(

1 + (1 − l)2 − l2
)

+ r4
2 (1 − l)2

=
(1 − (1 + l) r2

2) (1 − (1 − l) r2
2)

(1 − (1 − l) r2
2)

2 =
r2

1 − lr2
2

r2
1 + lr2

2

.

It will be convenient to use the following notation

E (z) = ei(θ1+θ2) 1 − f (z)

1 − f (z)
.

Note that |E (z)| ≤ 1 and E (z) = −1 when θ1 = θ2.

If z =
(

r1e
iθ1 , r2e

iθ2

)

then (2.3.6) becomes

∣

∣

∣Re
[(

ar2
1e
i2θ1 + cr2

2e
i2θ2

)

e−i(θ1+θ2)E (z)
]∣

∣

∣ ≤ 4r1r2 |sin (θ1 − θ2)| . (2.3.10)

If we choose θ1 = θ2 in the above inequality we get that Re (ar2
1 + cr2

2) = 0 whenever

r2
1 + r2

2 = 1 and hence Rea = Rec = 0. Now we can write

Re
[(

ar2
1e
i2θ1 + cr2

2e
i2θ2

)

e−i(θ1+θ2)E (z)
]

= −r2
1ImaIm

[

ei(θ1−θ2)E (z)
]

− r2
2ImcIm

[

ei(θ2−θ1)E (z)
]

= −
(

r2
1Ima+ r2

2Imc
)

cos (θ1 − θ2) ImE (z) −
(

r2
1Ima− r2

2Imc
)

sin (θ1 − θ2) ReE (z) .

From the above equality, (2.3.10) and Lemma 2.3.8 we get that r2
1Ima + r2

2Imc = 0 for

any r1 and r2 such that r2
1 + r2

2 = 1. Hence Ima = Imc = 0. Since we already have that



Chapter 2. Extreme Points 65

Rea = Rec = 0 we can conclude that a = c = 0. This ends the proof of the fact that the

even coefficients of ψ are zero.

Next we will show that the odd coefficients of ψ are zero and obtain the restrictions

on the coefficients of G. Let

〈G (z) , z〉 =
(

a1z
2
1 + b1z1z2 + c1z

2
2

)

z1 +
(

a2z
2
1 + b2z1z2 + c2z

2
2

)

z2. (2.3.11)

Replacing z by U (z) = (z1,−z2) in (2.3.3) yields

∣

∣

∣〈G (U (z)) , U (z)〉 − f (z) 〈G (U (z)) , U (z)〉 + f (z) Im (z1z2) Ψ3 (U (z))
∣

∣

∣

≤ 4
(

1 − |f (z)|2
)

, z ∈ S2.

Using the triangle inequality, the above inequality and (2.3.3) we get

∣

∣

∣GU (z) − f (z)GU (z) − f (z) Im (z1z2) Ψ̃3 (z)
∣

∣

∣ ≤ 4
(

1 − |f (z)|2
)

, z ∈ S2, (2.3.12)

where

GU (z) =
1

2
(〈G (z) , z〉 + 〈G (U (z)) , U (z)〉) = a1z

2
1z1 + c1z

2
2z1 + b2z1z2z2

and

Ψ̃3 (z) =
1

2
(Ψ3 (z) − Ψ3 (U (z))) = jz2

1z2 + kz3
2 .

We will show that Ψ̃3 ≡ 0, which shows that two of Ψ3’s coefficients are zero. The

same reasoning, but using V (z) = (−z1, z2) instead of U will show that the other two

coefficients are also zero. From (2.3.5) we have that ψ = Ψ3/ (1 − f). So, by showing

that Ψ̃3 ≡ 0 we can conclude that ψ ≡ 0.

First note that (2.3.12) implies that for z ∈ S2
+ we have GU (z) = GU (z). Hence

(a1 − a1) z
3
1 +

(

c1 + b2 − c1 − b2

)

z1z
2
2 = 0, z ∈ S2

+

and by Proposition 2.3.6 we can conclude that a1 and c1 + b2 are real. To simplify

notation, let a := a1, c := 2ic1 and d := c1 + b2. With this notation we have

GU (z) = a1z
2
1z1 + (b2 + c1)z1z2z2 + c1

(

z2
2z1 − z1z2z2

)

.

= az2
1z1 + dz1z2z2 + cz2Im (z1z2) . (2.3.13)
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Let G̃U (z) = az2
1z1 + dz1z2z2. With this notation (2.3.12) becomes

∣

∣

∣G̃U (z) − f (z) G̃U (z) + Im (z1z2)
(

cz2 − f (z) cz2 − f (z) Ψ̃3 (z)
)∣

∣

∣ ≤ 4
(

1 − |f (z)|2
)

, z ∈ S2.

(2.3.14)

If z ∈ S2 is such that z =
(

r1, r2e
iθ
)

then

G̃U (z) − f (z) G̃U (z) =
(

ar3
1 + dr1r

2
2

)

−
(

r2
1 + r2

2e
i2θ
) (

ar3
1 + dr1r

2
2

)

= r2
2

(

1 − ei2θ
) (

ar3
1 + dr1r

2
2

)

= 2r2
2 sin θ (sin θ − i cos θ)

(

ar3
1 + dr1r

2
2

)

.

Let z =
(

r1, r2e
iθ
)

in (2.3.14), simplify sin θ on both sides, set θ = 0 and use the fact

that 1 = r2
1 + r2

2 to get

−2i
(

ar3
1 + dr1r

2
2

)

r2
2 + r1r2

(

(c− c) r2

(

r2
1 + r2

2

)

− jr2
1r2 − kr3

2

)

= 0.

Using Proposition 2.3.6 we can conclude that

2ia+ j = 2id+ k = c− c. (2.3.15)

In particular we see that j and k are imaginary numbers.

Next note that

q (z) + q (U (z))

= 2
(

1 − |f (z)|2
)

‖z‖2±2Re

[

(

1 − f (z)
)

(

GU (z) + Im (z1z2)
Ψ̃3 (z)

1 − f (z)

)]

> 0, z ∈ B2\{0}

(we used (2.3.5)). Letting z converge to points in S2 \ Sf yields
∣

∣

∣

∣

∣

Re

[

(

1 − f (z)
)

(

GU (z) + Im (z1z2)
Ψ̃3 (z)

1 − f (z)

)]∣

∣

∣

∣

∣

≤
(

1 − |f (z)|2
)

, z ∈ S2 \ Sf .

(2.3.16)

Let z ∈ S2 be such that z =
(

r1e
iθ1 , r2e

iθ2

)

. Note that

Re

[

(

1 − f (z)
)

Im (z1z2)
Ψ̃3 (z)

1 − f (z)

]

= r1r2 sin (θ2 − θ1) Re
[

Ψ̃3 (z) e−i(θ1+θ2)E (z)
]

= r1r2 sin (θ2 − θ1)
(

Re
[

Ψ̃3 (z) e−i(θ1+θ2)
]

ReE (z) − Im
[

Ψ̃3 (z) e−i(θ1+θ2)
]

ImE (z)
)

.
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Now we can deduce from (2.3.16) that

∣

∣

∣

∣

∣

∣

Re
[

GU (z)
(

1 − f (z)
)]

r1r2 sin2 (θ1 − θ2)
+

Re
[

Ψ̃3 (z) e−i(θ1+θ2)
]

ReE (z)

sin (θ2 − θ1)
−

Im
[

Ψ̃3 (z) e−i(θ1+θ2)
]

ImE (z)

sin (θ2 − θ1)

∣

∣

∣

∣

∣

∣

≤ 4r1r2.

Let l ≤ 0 be a real number. We claim that if θ1, θ2 → 0 so that θ2/θ1 → l then the first

two terms on the left-hand side of the previous inequality can be bounded independently

of l. Once we prove the claim we can use Lemma 2.3.8 for l close enough to −r2
1/r

2
2

(r2 6= 0) to conclude that we must have

0 = ImΨ̃3 (z) = r2

(

r2
1Imj + r2

2Imk
)

(we used the fact that j and k are imaginary numbers). Since the above must hold for

any r1 and r2 such that r2
1 + r2

2 = 1 we can conclude that j = k = 0 (we already saw that

j and k are imaginary numbers) and hence Ψ̃3 ≡ 0.

Now we just have to check the claim. First note that from (2.3.13) we get

Re
[

GU (z)
(

1 − f (z)
)]

=
(

ar2
1 + dr2

2

)

Re
[

z1

(

1 − f (z)
)]

+ r1r2 sin (θ2 − θ1)
(

RecRe
[

z2

(

1 − f (z)
)]

− Imc Im
[

z2

(

1 − f (z)
)])

. (2.3.17)

Elementary computations using (2.3.9), r2
1 + r2

2 = 1 and

cosx− cos y = 2 sin
x+ y

2
sin

y − x

2

yield

Re
[

z1

(

1 − f (z)
)]

= 2r1r
2
2 sin (θ2 − θ1) sin θ2 (2.3.18)

Re
[

z2

(

1 − f (z)
)]

= 2r2r
2
1 sin (θ1 − θ2) sin θ1 (2.3.19)

Im
[

z2

(

1 − f (z)
)]

= 2r2

(

sin θ2 − r2
1 sin (θ2 − θ1) cos θ1

)

(2.3.20)

Re
[

Ψ̃3 (z) e−i(θ1+θ2)
]

= −r2

(

r2
1 sin θ1Imj + r2

2 sin (2θ2 − θ1) Imk
)

.

Note that when θ1, θ2 → 0 so that θ2/θ1 → l we have

sin (sθ1 + tθ2)

sin (θ1 − θ2)
→

s+ tl

1 − l
.
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Now the conclusion of the claim follows easily.

We proved that j = k = 0 and by (2.3.15) this implies that 2ia = 2id = c−c = 2iImc.

Remembering that a = a1, c = 2ic1, d = c1 + b2 we can deduce that a1 = 2Rec1 and

b2 = c1. At this point we have that ψ ≡ 0 and using the notation of (2.3.11) we also

have that

G (z) =
(

2 (Rec1) z
2
1 + b1z1z2 + c1z

2
2 , a2z

2
1 + c1z1z2 + c2z

2
2

)

.

Repeating the reasoning that lead to this form of G , but using V (z) = (−z1, z2) instead

of U , gives us that

G (z) =
(

2 (Rec1) z
2
1 + a2z1z2 + c1z

2
2 , a2z

2
1 + c1z1z2 + 2(Rea2)z

2
2

)

.

So we proved that g = g(c1,a2).

To complete the proof we just have to prove that given c = (c1, c2) we have that

h+ gc ∈ M if and only if c ∈ B
2

∩ Ω. Let

φz(ζ) := 〈(h+ gc) (ζz) , z〉 /ζ, ζ ∈ B1, ‖z‖ = 1.

We have that h+gc ∈ M if and only φz ∈ P for all ‖z‖ = 1. Let Z = {z ∈ S2 : |f (z)| = 1} =
{

z ∈ S2 : z =
(

r1e
iθ, r2e

iθ
)

, θ ∈ [0, 2π)
}

. We will show that φz ∈ P for all z ∈ S2 \ Z if

and only if c ∈ B
2

and that φz ∈ P for all z ∈ Z if and only if c ∈ Ω. This yields the

desired conclusion.

Let

G (z) =
(

2 (Rec1) z
2
1 + c2z1z2 + c1z

2
2 , c2z

2
1 + c1z1z2 + 2(Rec2)z

2
2

)

.

Then a short computation yields (provided that ‖z‖ = 1)

Reφz (ζ) =
1 − |f (ζz)|2 + Re

[

1
ζ

〈G (ζz) , z〉
(

1 − f (ζz)
)]

|1 − f (ζz)|2
. (2.3.21)

For z ∈ S2 \ Z we have that φz extends continuously to the boundary and hence it is

enough to have Reφz (ζ) ≥ 0 for |ζ| = 1. By (2.3.21) it is enough to have

1 − |f (ζz)|2 + Re
[

〈G (ζz) , ζz〉
(

1 − f (ζz)
)]

≥ 0, |ζ| = 1.
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From the definition of Z we can conclude that φz ∈ P for all z ∈ S2 \ Z if and only if

1 − |f (z)|2 + Re
[

〈G (z) , z〉
(

1 − f (z)
)]

≥ 0, z ∈ S2 \ Z. (2.3.22)

Let

GU (z) =
1

2
[〈G (z) , z〉 + 〈G (U (z)) , U (z)〉]

GV (z) =
1

2
[〈G (z) , z〉 + 〈G (V (z)) , V (z)〉]

where U and V are as previously defined. It is easy to see that 〈G (z) , z〉 = GU (z) +

GV (z). Let z =
(

r1e
iθ1 , r2e

iθ2

)

∈ S2. Then by using (2.3.17) (with a = d = Imc and

c = 2ic1), (2.3.18), (2.3.19) and (2.3.20) a straightforward computation yields

Re
[

GU

(

1 − f (z)
)]

= 4r2
1r

2
2 sin2 (θ2 − θ1) Re

(

c1r1e
−iθ1

)

.

Analogously one gets

Re
[

GV

(

1 − f (z)
)]

= 4r2
1r

2
2 sin2 (θ1 − θ2) Re

(

c2r2e
−iθ2

)

.

Now (2.3.22) becomes

4r2
1r

2
2 sin2 (θ2 − θ1) (1 + Re 〈c, z〉) ≥ 0, z ∈ S2 \ Z.

We can conclude that for (2.3.22) to hold it is necessary and sufficient that 1+Re 〈c, z〉 ≥ 0

for all z ∈ S2 (we are using continuity to get that this holds on S2 rather than a dense

subset). But this is easily seen to be equivalent to ‖c‖ ≤ 1. Thus we proved that φz ∈ P

for all z ∈ S2 \ Z if and only if ‖c‖ ≤ 1.

When z ∈ Z, φz doesn’t extend continuously to all boundary points and we cannot

use the same approach. Instead we will take advantage of the special form of points in

Z. To have that φz ∈ P for all z ∈ Z it is necessary and sufficient that

1 − |ζ|2 + Re
[

ζ 〈G (z) , z〉
(

1 − ζ
2
f (z)

)]

> 0, ζ ∈ B1, z ∈ Z (2.3.23)
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(we used (2.3.21), the fact that f and G are homogeneous polynomials of degree two and

the definition of Z). Let z =
(

r1e
iθ, r2e

iθ
)

∈ Z and ζ = reiψ ∈ B1. A straightforward

computation (using r2
1 + r2

2 = 1) yields

〈G (z, z)〉 = 2 (r1Rec1 + r2Rec2) e
iθ.

Hence

Re
[

ζ 〈G (z) , z〉
(

1 − ζ
2
f (z)

)]

= 2r (r1Rec1 + r2Rec2) Re
[

ei(ψ+θ)
(

1 − r2e−i2(ψ+θ)
)]

= 2r (r1Rec1 + r2Rec2)
(

1 − r2
)

cos (ψ + θ) .

Using the above equality (2.3.23) becomes

(

1 − r2
)

(1 + 2r (r1Rec1 + r2Rec2) cos (ψ + θ)) > 0.

Now we can easily argue that (2.3.23) holds if and only if 2 |r1Rec1 + r2Rec2| ≤ 1 for

all r1, r2 ≥ 0 such that r2
1 + r2

2 = 1. The desired conclusion follows immediately. This

finishes the proof of Proposition 2.3.3.

We get further examples of extreme points by noticing that if h ∈ M is an extreme

point and U is a unitary operator then U∗ ◦ h ◦ U ∈ M is also an extreme point. Note

that for these extreme points we can choose a constant C so that ‖h (z)‖ ≤ C/ (1 − ‖z‖).

However there are mappings in M that have larger growth near the boundary of Bn.

One such example is

H (z) =

(

z1
1 − z1

1 + z1

, z2
1 − z1 − z2

1

(1 + z1)
2

)

as it can be easily seen that as z → −1, ‖H(z)‖ = Θ
(

(1 − ‖z‖)−3/2
)

. This shows that

there are also other types of extreme points and that, unlike the one dimensional case,

not all extreme points optimize growth.

The mapping H appears in connection with a starlike mapping F which is interesting

in its own right because it doesn’t satisfy the expected distortion bound for starlike

mappings. The mapping F is defined by

F (z) =



k (z1) ,

(

k (z1)

z1

)
1
2

(k′ (z1))
1
2 z2



 , z ∈ B2
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where k (z1) = z1/ (1 − z1)
2. Note that by properties of extension operators F is indeed

starlike and since H satisfies DF (z)H (z) = F (z) it automatically follows that H is a

Carathéodory mapping. We will check that F doesn’t satisfy the upper distortion bound

‖DF (z)‖ ≤ (1 + ‖z‖) / (1 − ‖z‖)3. Let e = (1, 0) and z1 = x ∈ [0, 1). Then

‖DF (z)e‖2 =
(1 + x)2

(1 − x)6 +
(3 + 2x)2

(1 − x)6 (1 − x2)
|z2|

2 .

Let y = ‖z‖. Hence |z2|
2 = y2 − x2. Also let φ (x) = (1 + x)2 / (1 − x)6. If the upper

distortion bound would hold for F , we must have that

φ(x) +
(3 + 2x)2

(1 − x)6 (1 − x2)

(

y2 − x2
)

≤ φ (y) .

Hence

(3 + 2x)2

(1 − x)6 (1 − x2)
(y + x) ≤

φ (y) − φ (x)

y − x

for all x, y such that 0 ≤ x < y < 1. Letting y → x we get

(3 + 2x)2

(1 − x)6 (1 − x2)
2x ≤ φ′ (x) = 4

(1 + x) (2 + x)

(1 − x)7 , x ∈ [0, 1).

After simplifications we have

(3 + 2x)2 2x

1 + x
≤ 4 (1 + x) (2 + x) , x ∈ [0, 1).

Letting x → 1 we get that 25 ≤ 24. This is absurd, so F cannot satisfy the distortion

upper bound for all z ∈ Bn.
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