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LOG CANONICAL SINGULARITIES ARE DU BOIS

JÁNOS KOLLÁR AND SÁNDOR J KOVÁCS

1. Introduction

A recurring difficulty in the Minimal Model Program (MMP) is that while log
terminal singularities are quite well behaved (for instance, they are rational), log
canonical singularities are much more complicated; they need not even be Cohen-
Macaulay. The aim of this paper is to prove that, as conjectured in [Kol92, 1.13],
log canonical singularities are Du Bois. The concept of Du Bois singularities, abbre-
viated as DB, was introduced by Steenbrink in [Ste83] as a weakening of rationality.
It is not clear how to define Du Bois singularities in positive characteristic, so we
work over a field of characteristic 0 throughout the paper. The precise definition
is rather involved, see (1.10), but our main applications rely only on the following
consequence:

Corollary 1.1. Let X be a proper scheme of finite type over C. If (X,Δ) is log
canonical for some Q-divisor Δ, then the natural map

Hi(Xan,C) → Hi(Xan,OXan) ∼= Hi(X,OX)

is surjective for all i.

Using [DJ74, Lemme 1], this implies the following:

Corollary 1.2. Let φ : X → B be a proper, flat morphism of complex varieties
with B connected. Assume that for all b ∈ B there exists a Q-divisor Db on Xb

such that (Xb, Db) is log canonical. Then hi(Xb,OXb
) is independent of b ∈ B for

all i.

Notice that we do not require that the divisors Db form a family.
We also prove flatness of the cohomology sheaves of the relative dualizing com-

plex of a projective family of log canonical varieties (1.8). Combining this result
with a Serre duality type criterion (7.11) gives another invariance property:

Corollary 1.3. Let φ : X → B be a flat, projective morphism, with B connected.
Assume that for all b ∈ B there exists a Q-divisor Db on Xb such that (Xb, Db) is
log canonical.

Then, if one fiber of φ is Cohen-Macaulay (resp. Sk for some k), then all fibers
are Cohen-Macaulay (resp. Sk).
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792 JÁNOS KOLLÁR AND SÁNDOR J KOVÁCS

Remark 1.3.1. The Sk case of this result answers a question posed to us by Valery
Alexeev and Christopher Hacon.

For arbitrary flat, proper morphisms, the set of fibers that are Cohen-Macaulay
(resp. Sk) is open, but not necessarily closed. Thus the key point of (1.3) is to show
that this set is also closed.

The generalization of these results to the semi-log canonical case turns out to be
not hard, but it needs some foundational work which will be presented elsewhere.
The general case then implies that each connected component of the moduli space
of stable log varieties parametrizes either only Cohen-Macaulay or only non-Cohen-
Macaulay objects.

Let us first state a simplified version of our main theorem:

Theorem 1.4. Let (X,Δ) be an lc pair. Then X is DB. More generally, let W ⊂ X
be a reduced, closed subscheme that is a union of log canonical centers of (X,Δ).
Then W is DB.

This settles the above mentioned conjecture [Kol92, 1.13]. For earlier results
related to this conjecture, see [Kol95, §12], [Kov99, Kov00b, Ish85, Ish87a, Ish87,
Sch07, KSS08, Sch08].

Actually, we prove a more general statement, which is better suited to working
with log canonical centers and allows for more general applications, but it might
seem a little technical for the first reading:

Theorem 1.5. Let f : Y → X be a proper surjective morphism with connected
fibers between normal varieties. Assume that there exists an effective Q-divisor on
Y such that (Y,Δ) is lc and KY +Δ ∼Q,f 0. Then X is DB.

More generally, let W ⊂ Y be a reduced, closed subscheme that is a union of log
canonical centers of (Y,Δ). Then f(W ) ⊂ X is DB.

There are three, more technical results that should be of independent interest.
The first is a quite flexible criterion for Du Bois singularities.

Theorem 1.6. Let f : Y → X be a proper morphism between reduced schemes of
finite type over C. Let W ⊆ X and F := f−1(W ) ⊂ Y be closed reduced subschemes
with ideal sheaves IW⊆X and IF⊆Y . Assume that the natural map �,

IW⊆X �
�� Rf∗IF⊆Y

�′

��
��

�

admits a left inverse �′; that is, �′ ◦� = idIW⊆X
. Then if Y, F , and W all have DB

singularities, then so does X.

Remark 1.6.1. Notice that we do not require f to be birational. On the other
hand the assumptions of the theorem and [Kov00a, Thm 1] imply that if Y \F has
rational singularities, e.g., if Y is smooth, then X \W has rational singularities as
well.

The second is a variant of the connectedness theorem [Kol92, 17.4] for not nec-
essarily birational morphisms.

Theorem 1.7. Let f : Y → X be a proper morphism with connected fibers between
normal varieties. Assume that (Y,Δ) is lc and KY + Δ ∼Q,f 0. Let Z1, Z2 ⊂ Y
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be lc centers of (Y,Δ). Then, for every irreducible component T ⊂ f(Z1) ∩ f(Z2)
there is an lc center ZT of (Y,Δ) such that ZT ⊆ Z1 and f(ZT ) = T .

More precisely, let g : Z1 ∩ f−1(T ) → S and π : S → T be the Stein factorization
of Z1 ∩ f−1(T ) → T . Then, for every irreducible component Si ⊂ S there is an lc
center ZSi

of (Y,Δ) such that g(ZSi
) = Si.

The third is the flatness of the cohomology sheaves of the relative dualizing
complex of a DB morphism:

Theorem 1.8. Let φ : X → B be a flat projective morphism such that all fibers are
Du Bois. Then the cohomology sheaves hi(ω

�

φ ) are flat over B, where ω
�

φ denotes
the relative dualizing complex of φ.

Definitions and Notation 1.9. Let K be an algebraically closed field of char-
acteristic 0. Unless otherwise stated, all objects are assumed to be defined over
K, all schemes are assumed to be of finite type over K and a morphism means a
morphism between schemes of finite type over K.

If φ : Y → Z is a birational morphism, then Ex(φ) will denote the exceptional
set of φ. For a closed subscheme W ⊆ X, the ideal sheaf of W is denoted by
IW⊆X or, if no confusion is likely, then simply by IW . For a point x ∈ X, κ(x)
denotes the residue field of OX,x.

A pair (X,Δ) consists of a variety X and an effective Q-divisor Δ on X. If
(X,Δ) is a pair, then Δ is called a boundary if 	(1− ε)Δ
 = 0 for all 0 < ε < 1,
i.e., the coefficients of all irreducible components of Δ are in the interval [0, 1].
For the definition of klt, dlt, and lc pairs, see [KM98], and for the definition of
the different, Diff, see [Kol92, 16.5]. Let (X,Δ) be a pair and fm : Xm → X a
proper birational morphism such that Ex(fm) is a divisor. Let E =

∑
aiEi be the

discrepancy divisor, i.e., a linear combination of exceptional divisors such that

KXm + (fm)−1
∗ Δ ∼Q (fm)∗(KM +Δ) + E

and let Δm : = (fm)−1
∗ Δ +

∑
ai≤−1 Ei. Then (Xm,Δm) is a minimal dlt model of

(X,Δ) if it is a dlt pair, and the discrepancy of every fm-exceptional divisor is
at most −1. Note that if (X,Δ) is lc with a minimal dlt model (Xm,Δm), then
KXm +Δm ∼Q (fm)∗(KX +Δ).

For morphisms φ : X → B and ϑ : T → B, the symbol XT will denote X ×B T
and φT : XT → T the induced morphism. In particular, for b ∈ B we write Xb =
φ−1(b). Of course, by symmetry, we also have the notation ϑX : TX � XT → X,
and if F is an OX-module, then FT will denote the OXT

-module ϑ∗
XF .

For a morphism φ : X → B, the relative dualizing complex of φ (if it exists) will
be denoted by ω

�

φ . Recall that if φ is a projective morphism, then ω
�

φ = φ!OB. In

particular, for a (quasi-projective) scheme X, the dualizing complex of X will be
denoted by ω

�

X .
The symbol � will mean isomorphism in the appropriate category. In particular,

between complexes considered as objects in a derived category, it stands for a quasi-
isomorphism.

We will use the following notation: For a functor Φ, RΦ denotes its derived
functor on the (appropriate) derived category and RiΦ := hi ◦ RΦ, where hi(C

�

)
is the cohomology of the complex C

�

at the ith term. Similarly, Hi
Z := hi ◦ RΓZ ,

where ΓZ is the functor of cohomology with supports along a subscheme Z. Finally,
Hom stands for the sheaf-Hom functor, and Ext i := hi ◦ RHom .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



794 JÁNOS KOLLÁR AND SÁNDOR J KOVÁCS

1.10. DB singularities. Consider a complex algebraic variety X. If X is smooth
and projective, its De Rham complex plays a fundamental role in understanding
the geometry of X. When X is singular, an analog of the De Rham complex,
introduced by Du Bois, plays a similar role.

Let X be a complex scheme of finite type. Based on Deligne’s theory of mixed
Hodge structures, Du Bois defined a filtered complex of OX -modules, denoted by
Ω
�

X , that agrees with the algebraic De Rham complex in a neighborhood of each
smooth point, and, like the De Rham complex on smooth varieties, its analytization
provides a resolution of the sheaf of locally constant functions on X [Du81]. Fol-
lowing Hélène Esnault’s suggestion we will call Ω

�

X the Deligne-Du Bois complex.
Du Bois observed that an important class of singularities are those for which

Ω0
X , the zeroth graded piece of the filtered complex Ω

�

X , takes a particularly simple
form. He pointed out that singularities satisfying this condition enjoy some of the
nice Hodge-theoretic properties of smooth varieties; cf. (7.8). These singularities
were christened Du Bois singularities by Steenbrink [Ste83]. We will refer to them
as DB singularities, and a variety with only DB singularities will be called DB.

The construction of the Deligne-Du Bois complex Ω
�

X is highly non-trivial, so
we will not include it here. For a thorough treatment the interested reader should
consult [PS08, II.7.3]. For alternative definitions, sufficient and equivalent criteria
for DB singularities, see [Ish85, Ish87, Kov99, Kov00b, Sch07, KSS08].

Remark 1.11. Recall that the seminormalization of OX is h0(Ω0
X), the 0th cohomol-

ogy sheaf of the complex Ω0
X , and so X is seminormal if and only if OX � h0(Ω0

X)
by [Sai00, 5.2] (cf. [Sch06, 5.4.17], [Sch07, 4.8], and [Sch09, 5.6]). In particular, this
implies that DB singularities are seminormal.

2. A criterion for Du Bois singularities

In order to prove (1.6) we first need the following abstract derived category
statement.

Lemma 2.1. Let A,B,C,A′,B′,C′ be objects in a derived category and assume that
there exists a commutative diagram in which the rows form exact triangles:

(2.1.1) A
φ ��

α

��

B
ψ ��

β

��

C
ζ ��

γ

��

A[1]

α[1]

��
A′

φ′
�� B′

ψ′
�� C′

ζ′
�� A′[1]

Then there exist an object D, an exact triangle,

(2.1.2) D �� B′ ⊕ C �� C′ +1 �� ,

and a map δ : B → D, such that if λ denotes the composition

λ : D �� B′ ⊕ C
0⊕idC �� C ,

then λ ◦ δ = ψ and

(2.1.3) α admits a left inverse if and only if δ admits one, δ′ : D → B such that
ψ ◦ δ′ = λ, and

(2.1.4) α is an isomorphism if and only if δ is an isomorphism.
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Proof. Let η : B′ ⊕ C → C′ be the natural map induced by −ψ′ on B′ and γ on C,
and let D be the object that completes η to an exact triangle as in (2.1.2).

Next consider the following diagram:

A′[1]

+1

����
��

��
��

��
��

��
��

��
��

��
�� ∃

���������

C

+1

��

∃ϑ

���������
D[1]

+1

∃
� � � �� � � � � ���� � � � �

+1

��
��

��

��
��

��
��

����
��

��
��

B′
ψ′

��

(− idB′ ,0) ��������������� C′

ζ′

																										





B′ ⊕ C

0B′⊕idC

							

								

									

η

��















The bottom triangle (B′, C ′, B′⊕C) is commutative with the maps indicated. The
triangles with one edge common with the bottom triangle are exact triangles with
the obvious maps. Then by the octahedral axiom, the maps in the top triangle,
denoted by the broken arrows, exist and form an exact triangle.

Observe that it follows that the induced map ϑ : C → A′[1] agrees with ζ ′◦(η
∣∣
C
) =

ζ ′ ◦ γ, which in turn equals α[1] ◦ ζ by (2.1.1).
Therefore, one has the following commutative diagram where the rows form exact

triangles:

A ��

α

��

B
ψ ��

∃δ

���
�
� C

ζ ��

idC

��

A[1]

α[1]

��
A′ ��

α′

��

D
λ

��
∃δ′

��

�

�


C

idC

��

ϑ
�� A′[1]

α′[1]

		

and as ϑ = α[1] ◦ ζ it follows that a δ exists that makes the diagram commutative.
Now, if α admits a left inverse α′ : A′ → A, then α′[1]◦ϑ = α′[1]◦α[1]◦ζ = ζ = ζ◦idC,
and hence δ admits a left inverse, δ′ : D → B and clearly ψ ◦ δ′ = λ. The converse
is even simpler: If ψ ◦ δ′ = λ, then α′ exists and it must be a left inverse. Finally,
it is obvious from the diagram that α is an isomorphism if and only if δ is an
isomorphism. �

We are now ready to prove our DB criterion.

2.2. Proof of (1.6). Consider the following commutative diagram with exact rows:

IW⊆X
��

�

��

OX
��

��

OW
+1 ��

��
Rf∗IF⊆Y

��

�′

		

�

�


Rf∗OY
�� Rf∗OF

+1 ��
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It follows by Lemma 2.1 that there exists an object Q, an exact triangle in the
derived category of OX -modules,

(2.2.1) Q �� Rf∗OY ⊕ OW
�� Rf∗OF

+1 �� ,

and a map ϑ : OX → Q that admits a left inverse, ϑ′ : Q → OX .
Now consider a similar commutative diagram with exact rows:

J ��

ψ

���
�
� Ω0

X
��

μ

��

Ω0
W

+1 ��

ν

��
Rf∗K �� Rf∗Ω

0
Y

�� Rf∗Ω
0
F

+1 ��

Here J and K represent the appropriate objects in the appropriate derived categories
that make the rows exact triangles. The vertical maps μ and ν exist and form a
commutative square because of the basic properties of the Deligne-Du Bois complex,
and their existence and compatibility imply the existence of the map ψ by the basic
properties of derived categories.

It follows, again by Lemma 2.1, that there exists an object D, an exact triangle
in the derived category of OX -modules,

(2.2.2) D �� Rf∗Ω
0
Y ⊕ Ω0

W
�� Rf∗Ω

0
F

+1 �� ,

and a map δ : Ω0
X → D.

By the basic properties of exact triangles, the natural transformation Ξ : O → Ω0

induces compatible maps between the exact triangles of (2.2.1) and (2.2.2). We
would also like to show that these maps are compatible with the maps ϑ, and δ
obtained from Lemma 2.1:

OX

ϑ
�

��
��

��
�

λ

��
Ω0

X

δ
�

��
��

��
�

Q ��

ϑ′
��

ξ

���
�
� Rπ∗OY ⊕ OW

��

η

��

Rπ∗OF
+1 ��

ζ

��
D �� Rπ∗Ω

0
Y ⊕ Ω0

W
�� Rπ∗Ω

0
F

+1 ��

Claim 2.2.3. Under the assumptions of the theorem the above diagram is commu-
tative.

Proof. First observe that if Y, F , and W are all DB, then η and ζ are isomorphisms.
Then it follows that ξ is an isomorphism as well. Next consider the 0th cohomology
sheaves of all the complexes in the diagram. From the long exact sequence of
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cohomology induced by exact triangles we obtain the following diagram:

OX

h0(ϑ) �����������

h0(λ)

��
h0(Ω0

X)

h0(δ) �����������
h0(Q)

� � ν ��

h0(ϑ′)
��

h0(ξ)�
��

h0(Rπ∗OY ⊕ OW ) � π∗OY ⊕ OW

h0(η)�
��

h0(D)
� �

μ
�� h0(Rπ∗Ω

0
Y ⊕ Ω0

W ) � π∗OY ⊕ OW

From the commutativity of the exact triangles we obtain that

h0(η) ◦ ν = μ ◦ h0(ξ).

Furthermore, the functoriality of the maps h0(λ) and h0(η) (they are induced by
Ξ) implies that we also have

h0(η) ◦ ν ◦ h0(ϑ) = μ ◦ h0(δ) ◦ h0(λ).

Then it follows that

μ ◦ h0(ξ) ◦ h0(ϑ) = μ ◦ h0(δ) ◦ h0(λ).

Observe that μ is injective since h−1(Rπ∗Ω
0
F ) = 0, and hence

h0(ξ) ◦ h0(ϑ) = h0(δ) ◦ h0(λ).

Finally observe that h0(λ) determines the entire map λ : OX → Ω0
X by (2.2.4), and

so we obtain that ξ ◦ ϑ = δ ◦ λ, as desired. �

Claim 2.2.4. Let A,B be objects in a derived category such that hi(A) = 0 for i = 0
and hj(B) = 0 for j < 0. Then any morphism α : A → B is uniquely determined by
h0(α).

Proof. By the assumption, the morphism α : A → B can be represented by a

morphism of complexes α̃ : Ã → B̃, where A � Ã such that Ã0 = h0(A) and Ãi = 0

for all i = 0, and B � B̃ such that h0(B̃) ⊆ B̃0. However, α̃ has only one non-zero
term, h0(α). This proves the claim. �

As ξ is an isomorphism, we obtain a map,

λ′ = ϑ′ ◦ ξ−1 ◦ δ : Ω0
X → OX .

By (2.2.3) ξ ◦ ϑ = δ ◦ λ, so it follows that

λ′ ◦ λ = ϑ′ ◦ ξ−1 ◦ δ ◦ λ = ϑ′ ◦ ξ−1 ◦ ξ ◦ ϑ = ϑ′ ◦ ϑ = idOX
.

The last equality follows from the choice of ϑ′. Therefore λ′ is a left inverse to λ,
and so the statement follows from [Kov99, Thm. 2.3]. �

We have a similar statement for seminormality. The proof is, however, much
more elementary.

Proposition 2.3. Let f : Y → X be a proper morphism between reduced schemes
of finite type over C, W ⊆ X a closed reduced subscheme, and F : = f−1(W ),
equipped with the induced reduced subscheme structure. Assume that the natural
map IW⊆X → f∗IF⊆Y is an isomorphism. Then if Y and W are seminormal, X
is as well.
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798 JÁNOS KOLLÁR AND SÁNDOR J KOVÁCS

Proof. First, not yet assuming that W or Y are seminormal, let Osn
W be the semi-

normalization of OW in f∗OF and let Osn
X be the seminormalization of OX in f∗OY .

It follows from the assumption IW⊆X � f∗IF⊆Y that Osn
W � Osn

X

/
IW⊆X . Now

if W is seminormal (in fact it is enough if OW is seminormal in f∗OF ), then this

implies that OX
/
IW⊆X � OW � Osn

W � Osn
X

/
IW⊆X , and hence OX � Osn

X .

Finally, if Y is seminormal, then this implies that X is as well. �

Corollary 2.4. Let g : X ′ → X be a finite surjective morphism between normal
varieties. Let Z ⊆ X be a reduced (not necessarily normal) subscheme and assume
that Z ′ := g−1(Z)red is DB. Then Z is as well.

Remark 2.5. The special case of this statement when Z = X was proved in [Kol95,
12.8.2] for X projective and in [Kov99, 2.5] in general.

Proof of (2.4). Let τ : g∗OX′ → OX denote the normalized trace map of X ′ → X
and let J =

√
IZ⊆X · g∗OX′ . Then it follows from [AM69, 5.14, 5.15] and the

fact that Z is reduced, that

τ (J ) ⊆
√

IZ⊆X = IZ⊆X .

Therefore, τ gives a splitting of OZ → f∗OZ′ . The rest follows from (1.6) applied
to Z with W = ∅ or directly by [Kov99, 2.4]. �

3. Dlt models and twisted higher direct images

of dualizing sheaves

We will frequently use the following statement in order to pass from an lc pair
to its dlt model. Please recall the definition of a boundary and a minimal dlt model
from (1.9).

Theorem 3.1 (Hacon). Let (X,Δ) be a pair such that X is quasi-projective, Δ is
a boundary, and KX +Δ is a Q-Cartier divisor. Then (X,Δ) admits a Q-factorial
minimal dlt model fm : (Xm,Δm) → (X,Δ).

Proof. Let f : X ′ → (X,Δ) be a log resolution that is a composite of blow-ups
of centers of codimension at least 2. Note that then there exists an effective f -
exceptional divisor C such that −C is f -ample. Let Δ′ be a divisor such that
Δ′ − f−1

∗ Δ is f -exceptional and that

KX′ +Δ′ ∼Q f∗(KX +Δ).

Let Δ<1 = Δ− 	Δ
 denote the part of Δ with coefficients strictly less than 1, and
write

Δ′ = f−1
∗ Δ<1 + E+ + F − B,

where E+ denotes the sum of all (not necessarily exceptional) divisors with discrep-
ancy ≤ −1, F the sum of all f -exceptional divisors with discrepancy > −1 and ≤ 0,
and B the sum of all f -exceptional divisors with discrepancy > 0. Let E := redE+,
and notice that all of E,F , and B are effective and that all of E+ − E,F , and B
are f -exceptional, while f−1

∗ Δ<1 + E + F contains f−1
∗ Δ.

Let H be sufficiently ample on X. Then for all ε, μ, ν ∈ Q,

(3.1.1) E+(1+ ν)F +μ(−C + f∗H) = (1− εμ)E+(1+ ν)F +μ(εE−C + f∗H).
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If 0 < ε � 1, then both −C + f∗H and εE −C + f∗H are ample, hence Q-linearly
equivalent to divisors H1 and H2 such that Δ′ + H1 + H2 has snc support. If
0 < μ < 1 and 0 < ν � 1, then, by the definition of E and F ,

(X ′, f−1
∗ Δ<1 + (1− εμ)E + (1 + ν)F + μH2)

is klt, and hence by [BCHM06] it has a (Q-factorial) minimal model fm : (Xm,Δm
ε,μ,ν)

→ X. By (3.1.1) this is also a minimal model of the pair (X ′, f−1
∗ Δ<1 + E +

(1 + ν)F + μH1), which is therefore dlt. Let Δm denote the birational transform
of f−1

∗ Δ<1 + E + F on Xm. Then we obtain that (Xm,Δm) is dlt.
For a divisor G ⊂ X ′ (e.g., E,F,C,Hi) appearing above (other than Δ), let Gm

denote its birational transform on Xm. By construction

N := KXm +Δm + νFm + μHm
1 ∼Q KXm +Δm

ε,μ,ν

is fm-nef and

T := KXm +Δm + (E+ − E)m −Bm ∼Q (fm)∗(KX +Δ)

is Q-linearly fm-trivial. Let

Dm := μCm + (E+ − E)m − νFm −Bm.

Then −Dm is Q-linearly fm-equivalent to the difference N − T , hence it is fm-
nef. Since Dm is f -exceptional, fm

∗
(
Dm

)
= 0, so Dm is effective by [KM98, 3.39].

Choosing 0 < μ � ν � 1 shows that both F and B disappear on Xm, so every fm-
exceptional divisor has discrepancy ≤ −1 and hence (Xm,Δm) is indeed a minimal
dlt model of (X,Δ) as defined in (1.9). �

Theorem 3.2. Let X be a smooth variety over C and D =
∑

aiDi be an effective,
integral snc divisor. Let L be a line bundle on X such that L m � OX(D) for
some m > max{ai}. Let f : X → S be a projective morphism. Then the sheaves
Rif∗

(
ωX ⊗ L

)
are torsion-free for all i and

Rf∗
(
ωX ⊗ L

)
�

∑
i

Rif∗
(
ωX ⊗ L

)
[−i].

Proof. If D = 0, this is [Kol86a, 2.1] and [Kol86b, 3.1]. The general case can be
reduced to this as follows. The isomorphism L m � OX(D) determines a degree
m-cyclic cover π : Y → X with a μm-action, and ωX ⊗L is a μm-eigensubsheaf of
π∗ωY . In general Y has rational singularities. Let h : Y ′ → Y be a μm-equivariant
resolution and g : Y ′ → S, the composition f ◦ π ◦ h. Then Rh∗ωY ′ � ωY ; thus

Rf∗(π∗ωY )� Rf∗Rπ∗ωY � Rf∗Rπ∗Rh∗ωY ′

� Rg∗ωY ′ �
∑
i

Rig∗ωY ′ [−i]�
∑
i

Rif∗π∗h∗ωY ′ [−i] �
∑
i

Rif∗ (π∗ωY ) [−i]

by [Kol86b, 3.1] and because π is finite. As all of these isomorphisms are μm-
equivariant, taking μm-eigensubsheaves on both sides, we obtain the desired state-
ment. Notice that in particular we have proven that Rif∗

(
ωX ⊗ L

)
is a subsheaf

of Rig∗ωY ′ which is torsion-free by [Kol86a, 2.1]. �
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4. Splitting over the non-klt locus

In the following theorem we show that the DB criterion (1.6) holds in an impor-
tant situation.

Theorem 4.1. Let f : Y → X be a proper morphism with connected fibers be-
tween normal varieties. Assume that (Y,Δ) is lc and KY + Δ ∼Q,f 0. Set

W := f(nklt(Y,Δ)) and assume that W = X. Let π : Ỹ → Y be a proper bi-

rational morphism and F := f̃−1(W )red, where f̃ := f ◦ π. Then the natural map

� : IW � f̃∗OỸ (−F ) → Rf̃∗OỸ (−F )

has a left inverse.

Proof. First, observe that if τ : Ŷ → Ỹ is a log resolution of (Ỹ , F ) that factors
through π, then it is enough to prove the statement for σ = π ◦ τ instead of π.

Indeed, let F̂ = τ−1F , an snc divisor, and f̂ = f ◦σ. Suppose that the natural map

�̂ : IW � f̂∗OŶ (−F̂ ) → Rf̂∗OŶ (−F̂ )

has a left inverse, δ̂ : Rf̂∗OŶ (−F̂ ) → f̂∗OŶ (−F̂ ) such that δ̂ ◦ �̂ = idIW
. Then, as

f̂ = f̃ ◦ τ , one has that Rf̂∗OŶ (−F̂ ) � Rf̃∗Rτ∗OŶ (−F̂ ), and applying the functor

Rf̃∗ to the natural map � : OỸ (−F ) � τ∗OŶ (−F̂ ) → Rτ∗OŶ (−F̂ ) shows that

�̂ = Rf̃∗(�) ◦ � :

�̂ : IW � f̃∗OỸ (−F )
� �� Rf̃∗OỸ (−F )

Rf̃∗(�) �� Rf̂∗OŶ (−F̂ ).

Therefore, δ = δ̂ ◦ Rf̃∗(�) is a left inverse to �, showing that it is indeed enough
to prove the statement for σ. In particular, we may replace π with its composition
with any further blow up. We will use this observation throughout the proof.

Next write

π∗(KY +Δ) ∼Q KỸ + E + Δ̃−B,

where E is the sum of all (not necessarily exceptional) divisors with discrepancy

−1, B is an effective exceptional integral divisor, and 	Δ̃
 = 0. We may assume

that f̃−1f̃(E) is an snc divisor. Since B − E ≥ −F , we have natural maps

f̃∗OỸ (−F ) → Rf̃∗OỸ (−F ) → Rf̃∗OỸ (B − E).

Note that B − E ∼
Q,f̃ KỸ + Δ̃; hence by (3.2)

Rf̃∗OỸ (B − E) ∼=
∑
i

Rif̃∗OỸ (B − E)[−i].

Thus we get a morphism

f̃∗OỸ (−F ) → Rf̃∗OỸ (−F ) → Rf̃∗OỸ (B − E) → f̃∗OỸ (B − E).

Note that π∗OỸ (B − E) = Inklt(Y,Δ). Furthermore, for any U ⊆ X open subset

with preimage UY := f−1(U), a global section of OUY
vanishes along a fiber of f if

and only if it vanishes at one point of that fiber. Thus

f̃∗OỸ (−F ) = f∗Inklt(Y,Δ) = f̃∗OỸ (B − E). �
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5. Log canonical centers

We need the following higher dimensional version of a result of Shokurov [Kol92,
12.3.1]; cf. [Fuj00].

Proposition 5.1. Let f : Y → X be a proper morphism with connected fibers
between normal varieties. Assume that (Y,Δ) is dlt and KY + Δ ∼Q,f 0. For
an arbitrary x ∈ X let U denote an étale local neighbourhood of x ∈ X. Then
f−1(U) ∩ nklt(Y,Δ) is either

(5.1.1) connected, or

(5.1.2) has 2 connected components, both of which dominate U , and (Y,Δ) is plt
near f−1(x).

Proof. We may assume that X = U and then we may also assume that nklt(Y,Δ)
and f−1(x) ∩ nklt(Y,Δ) have the same number of connected components.

Write Δ = E+Δ′, where E = nklt(Y,Δ) = 	Δ
 and (Y,Δ′) is klt. Let E =
∑

Ei

be the decomposition to a sum of the connected components. Pushing forward

0 → OY (−E) → OY → OE → 0,

we obtain

0 → f∗OY (−E) → OX →
∑
i

f∗OEi
→ R1f∗OY (−E).

Note that −E ∼Q,f KY +Δ′. Hence R1f∗OY (−E) is torsion free by (3.2) and by
applying [Fuj08, 2.54] (cf. [Amb03, 3.2]) to a resolution of the dlt pair (Y,Δ).

Suppose E1 does not dominate X. Then f∗OE1
is a non-zero torsion sheaf; hence

the induced map f∗OE1
→ R1f∗OY (−E) must be zero. This implies that

f∗OE1
⊆ im

[
OX →

∑
i

f∗OEi

]
.

Since we are working locally near x ∈ X, we may assume that (f∗OE1
)x = 0. Ob-

serve that the natural projection map
∑

i f∗OEi
→ f∗OE1

gives a splitting of the
above embedding. Further observe that im[OX →

∑
i f∗OEi

] has only one gener-
ator near x. This implies that we must have that f∗OE1

= im[OX →
∑

i f∗OEi
]

locally near x. In particular, there is at most one Ei that does not dominate X.
Furthermore, if Ej does dominate X, then OX → f∗OEj

is non-zero. This again

would contradict f∗OE1
= im

[
OX →

∑
i f∗OEi

]
. Therefore, if E has more than

one component, then they all dominate X.
Until now the statement and the proof could have been done birationally, but

for the rest we use the MMP repeatedly. Note that the proof is a bit messier than
[Kol92, 12.3.1], since we do not have the full termination of MMP.

First we run the (Y, (1 − ε)E + Δ′)-MMP; cf. [BCHM06, 1.3.2]. Every step is
numerically KY + Δ-trivial; hence, by the usual connectedness (cf. [KM98, 5.48])
the Ei stay disjoint. At some point, we must encounter a Fano-contraction γ :
(Y ∗, (1−ε)E∗+Δ∗) → S, where E∗ is ample on the general fiber. As we established
above, every connected component of E∗ dominates S. We may assume that E∗ is
disconnected, as otherwise we are done.

Since the relative Picard number of Y is 1, every connected component of E∗

is relatively ample. As E∗ is disconnected, all fibers are 1 dimensional. As γ is a
Fano-contraction, the generic fiber is P1, and so E∗ can have at most, and hence
exactly, two connected components, E∗

1 and E∗
2 . Since the fibration is numerically
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KY ∗ + Δ∗-trivial, it follows that the intersection product of either E∗
i with any

fiber is 1. In other words, the E∗
i are sections of γ. Since they are also relatively

ample, it follows that every fiber is irreducible, and so outside a codimension 2 set
on the base, γ : Y ∗ → S is a P1-bundle with two disjoint sections. It also follows
that Δ∗ does not intersect the general fiber; hence Δ∗ = γ∗ΔS for some ΔS ⊂ S.
Then since the E∗

i are sections, we have that (E∗
i ,Δ

∗∣∣
E∗

i
) � (S,ΔS).

We need to prove that (Y ∗, E∗
1 + E∗

2 + Δ∗) is plt, and for that it is enough
to show that (E∗

i ,Δ
∗∣∣

E∗
i
) is klt for i = 1, 2. By the above observation, all we

need to prove then is that (S,ΔS) is klt. Since γ is a P1-bundle (in codimension
1) with 2 disjoint sections, we have that KY ∗ + E∗

1 + E∗
2 ∼ γ∗KS and then that

KY ∗ + E∗
1 + E∗

2 + Δ∗ ∼Q γ∗(KS + ΔS). Now we may apply [Kol92, 20.3.3] to a
general section of Y ∗ mapping to S to get that (S,ΔS) is klt. �

We are now ready to prove our main connectivity theorem.

5.2. Proof of (1.7). We may assume that f is surjective, and we replace (Y,Δ)
by a Q-factorial dlt model by (3.1). If Z1 = Y , then Z2 ⊆ Z1, and if f(Z2) = X,
then Z1 ⊆ Z1 satisfies the requirement. Hence we may assume that (Y,Δ) is
dlt, Z1, Z2 ⊂ 	Δ
 are divisors, and Z2 is disjoint from the generic fiber of f .
Then, by localizing at a generic point of f(Z1)∩ f(Z2) we reduce to the case when
x := f(Z1) ∩ f(Z2) is a closed point.

By working in a suitable étale neighborhood of x, we may also assume that
Z1∩f−1(x) is geometrically connected. Thus it is sufficient to prove that Z1∩f−1(x)
contains an lc center.

Since we are now assuming that Z2 does not dominate X, it follows from (5.1)
that f−1(x) ∩ 	Δ
 is connected, and hence there are irreducible divisors

V1 := Z2, V2, . . . , Vm−1, Vm := Z1 with Vi ⊂ 	Δ


such that f−1(x) ∩ Vi ∩ Vi+1 = ∅ for i = 1, . . . ,m − 1. By working in the étale
topology on X, we may also assume that each f−1(x) ∩ Vi is connected.

Next, we prove by induction on i that

(5.2.1) Wi := Vi ∩
⋂
j<i

f−1
(
f(Vj)

)
contains an lc center of (Y,Δ).

For i = 1 the statement of (5.2.1) follows from the fact that V1 = Z2 is an lc
center of (Y,Δ). Next we go from i to i + 1. Consider

(
Vi,DiffVi

(Δ − Vi)
)
. Note

that every irreducible component of Vi ∩ Vi+1 is an lc center of
(
Vi,DiffVi

(Δ− Vi)
)

and by induction and adjunction Wi contains an lc center of (Vi,DiffVi
(Δ − Vi)).

Thus, by induction on the dimension, replacing Y by Vi, Z1 by Vi ∩ Vi+1, and Z2

by the lc center contained in Wi, we conclude that f−1(f(Wi))∩Vi ∩Vi+1 contains
an lc center Ui of (Vi,DiffVi

(Δ− Vi)). By inversion of adjunction, Ui is also an lc
center of (Y,Δ), and it is contained in Wi+1.

At the end we obtain that

(5.2.2) Wm = Z1 ∩ f−1
(
f(Z2)

)
∩ f−1

(
f(V2)

)
∩ · · · ∩ f−1

(
f(Vm−1)

)
contains an lc center of (Y,Δ). Observe that Wm contains Z1 ∩ f−1(x) and is
contained in Z1 ∩ f−1

(
f(Z2)

)
. These two are the same; hence we are done.
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Remark 5.2.3. The statement of (1.7) is stronger than that which has been previ-
ously known [Kaw97, 1.5], [Amb03, 4.8], [Fuj08, 3.45]. The usual claim in a similar
situation has been that every irreducible component of f(Z1)∩ f(Z2) is dominated
by an lc center, whose precise location was not known.

It would also be interesting to find a proof of (1.7) without using the MMP.

Definition 5.3. Let X be a normal scheme. A minimal quasi-log canonical struc-
ture, or simply a minimal qlc structure, on X is a proper surjective morphism
f : (Y,Δ) → X where

(5.3.1) (Y,Δ) is a log canonical pair,

(5.3.2) Δ is effective,

(5.3.3) OX � f∗OY , and

(5.3.4) KY +Δ ∼f,Q 0.

Remark 5.3.5. This definition is similar to Ambro’s definition of a quasi-log variety
[Amb03, 4.1], [Fuj08, 3.29]. The main difference here, underscored by the word
“minimal” in the definition, is the additional assumption (5.3.4).

One should also note that what Fujino calls a quasi-log variety is essentially X
together with a qlc stratification which we define next.

Definition 5.4. Let X be a normal scheme and assume that it admits a minimal
qlc structure f : (Y,Δ) → X. We define the qlc stratification of X with respect
to f or simply the f -qlc stratification in the following way: Let HY denote the set
containing all the lc centers of (Y,Δ), including the components of Δ and Y itself.
For each Z ∈ HY let

WZ := f(Z) \
⋃

Z ′ ∈ HY

f(Z) ⊆ f(Z ′)

f(Z ′).

Further, let

HX,f = {WZ |Z ∈ HY }.
Notice that it is possible that WZ = WZ′ for some Z = Z ′, but in HX,f they are
only counted once. Then

X =
∐

W∈HX,f

W

will be called the qlc stratification of X with respect to f , and the strata will be
called the f -qlc strata. Note that by construction each f -qlc stratum is reduced.

Definition 5.5. Let Xi be varieties that admit minimal qlc structures, fi : (Yi,Δi)
→ Xi, and let Wi =

⋃ri
j=1 Wi,j be unions of some f -qlc strata on Xi for i = 1, 2.

Assume that there exists a morphism α : W1 → W2. Then we will say that α is
a qlc stratified morphism if for every f -qlc stratum W2,j , its preimage α−1W2,j is
equal to a disjoint union of f -qlc strata

⋃
α W1,jα for an appropriate set of α’s.

Using our new terminology we have the following important consequence of (1.7).

Corollary 5.6. Let X be a normal variety with a minimal qlc structure, f :
(Y,Δ) → X. Then the closure of any union of some f -qlc strata is also a union of
some f -qlc strata.
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Proof. It is enough to prove this for the closure of a single f -qlc stratum. By
definition, the difference between the closure and the f -qlc stratum is a union of
intersections of that single stratum with the images of lc centers. By (1.7) this is
covered by a union of f -qlc strata. �

In (1.11) we observed that DB singularities are seminormal, so it follows from
Theorem 6.2 that the closure of any union of f -qlc strata is seminormal. On the
other hand it also follows from the somewhat simpler (5.6) and similar results from
[Fuj08].

Proposition 5.7 ([Amb03], [Fuj08, §3]). Let X be a normal variety that admits
a minimal qlc structure, f : (Y,Δ) → X. Then each f -qlc stratum is normal, and
the closure of any union of f -qlc strata is seminormal.

Proof. Let T be the closure of a union of some f -qlc strata. Then by Corollary 5.6
and [Fuj08, 3.39(i)] (cf. [Amb03, 4.4]) the qlc centers of T are exactly the f -qlc
strata (of X) that lie inside T . It follows by [Fuj08, 3.33] that T is seminormal and
by [Fuj08, 3.44] (cf. [Amb03, 4.7]) that each f -qlc stratum is normal. �

Corollary 5.8. Let X be a normal variety with a minimal qlc structure, f :
(Y,Δ) → X. Then the support of the conductor subscheme of the closure of any
union of f -qlc strata is contained in a smaller dimensional union of f -qlc strata.

Proof. As individual f -qlc strata are normal, it follows that the conductor sub-
scheme is contained in the part of the closure that was subtracted in (5.4). By
(1.7) this is a union of f -qlc strata, and as it does not contain any (maximal) com-
ponent of the original union, the dimension of each contributing strata has to be
strictly smaller. �

6. Log canonical singularities are Du Bois

Lemma 6.1. Let X be a normal variety and f : (Y,Δ) → X a minimal qlc structure
on X. Let W ∈ HX,f be a qlc stratum of X and W its closure in X. Then there

exist a normal variety Ŵ with a minimal qlc structure g : (Z,Σ) → Ŵ such that

g(nklt(Z,Σ)) = Ŵ and a finite surjective qlc stratified morphism Ŵ → W .

Proof. We will repeat the following procedure until all the desired conditions are
satisfied.

Iteration: Note that we may replace (Y,Δ) by a Q-factorial dlt model by (3.1).
Recall that in that case W is the union of some f -qlc strata by (5.6). If W = X and

f(nklt(Y,Δ)) = X = W , then by choosing (Z,Σ) = (Y,Δ), g = f , and Ŵ = X, the
desired conditions are satisfied. Otherwise, there exists an irreducible component
E ⊆ 	Δ
 such that W ⊆ f(E). Consider the Stein factorization of f

∣∣
E

:

f
∣∣
E
: E

fE �� G
σ �� f(E) .

Observe that then fE : (E,DiffE Δ) → G is a minimal qlc structure, G is normal,
and σ is finite. Let W1 = σ−1(W ) denote the preimage of W , and W 1 its closure
in G. By (1.7) the fE-qlc stratification of G is just the preimage of the restriction
of the f -qlc stratification of X to f(E), so the induced morphism W 1 → W is a qlc
stratified morphism. As long as W = f(E) or f(nklt(E,DiffE Δ)) = f(E), we may
go back to the beginning and repeat our procedure with X replaced with G and
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W replaced with σ−1(W ) without changing the induced qlc structure on W . By
noetherian induction this process must end, and then we will have W = f(E) and

f(nklt(E,DiffE Δ)) = f(E). Then fE : (E,DiffE Δ) → G and σ : Ŵ := G → W
satisfy the desired conditions. �

Theorem 1.5 is implied by the following.

Theorem 6.2. If X admits a minimal qlc structure, f : (Y,Δ) → X, then the
closure of any union of f -qlc strata is DB.

Proof. Let T ⊆ X be a union of f -qlc strata. By (5.6) we know that T , the closure
of T in X, is also a union of f -qlc strata, so by replacing T with T we may assume

that T is closed. Let T̃ denote the normalization of T . We have that T =
⋃
W∈J

W

for some J ⊆ HX,f , so T is seminormal by (5.7). For W ∈ J , we will denote the

closure of W in X by W . Note that by definition W is contained in T . In order to
prove that T is DB, we will apply a double induction the following manner:

• induction on dimX: Assume that the statement holds if X is replaced
with a smaller dimensional variety admitting a minimal qlc structure.

• induction on dimT : Assume that the statement holds if X is fixed
and T is replaced with a smaller dimensional subvariety of X which is
also a union of f -qlc strata.

First assume that X = T . Then W must also be a proper subvariety of X for

any W ∈ J . Then by (6.1) for each W ∈ J there exists a normal variety Ŵ with a

minimal qlc structure and a finite surjective qlc stratified morphism σ : Ŵ → W .

By induction on dimX we obtain that Ŵ is DB. Then by (2.4) it follows that the

normalization of W is DB as well. Note that Ŵ is normal, but may not be the
normalization of W , however σ factors through the normalization morphism.

Let J ′ ⊆ J be a subset such that T =
⋃

W∈J ′

W and W ⊆ W ′ for any W,W ′ ∈ J ′.

Then let T̂ : =
∐

W∈J ′

Ŵ and let τ̂ : T̂ → T be the natural morphism. Observe that

as the Ŵ have DB singularities, so does T̂ , and then by (2.4) it follows that for the

normalization of T , τ : T̃ → T , T̃ is DB as well. Next let Z ⊂ T be the conductor

subscheme of T and let Z̃ be its preimage in T̃ . Then since T is seminormal, both

Z and Z̃ are reduced and

(6.2.1) IZ⊆T = τ∗IZ̃⊆T̃ .

Claim 6.2.2. Let Γ ⊆ T be a reduced subscheme that contains the conductor Z
and let Γ̃ be its preimage in T̃ . Then IΓ⊆T ⊆ OT ⊆ τ∗OT̃ is also a τ∗OT̃ ideal, i.e.,
IΓ⊆T = IΓ⊆T · τ∗OT̃ . In particular,

(6.2.3) IΓ⊆T = τ∗IΓ̃⊆T̃ .

Proof. If J = IΓ⊆T is a τ∗OT̃ ideal, then (6.2.3) follows, so it is enough to prove
the first statement. Let I = IZ⊆T . Clearly, J · τ∗OT̃ ⊆ I · τ∗OT̃ = I ⊆ OT .

Then J · τ∗OT̃ ⊆ OT ∩
√

J · τ∗OT̃ , which is equal to
√

J by [AM69, 5.14]. In

turn,
√

J = J by assumption, so we have that J · τ∗OT̃ ⊆ J . �
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By (5.8) Z is contained in a union of f -qlc strata whose dimension is smaller

then dimT . Replace Z by this union and Z̃ by its reduced preimage on T̃ . Then Z
is DB by induction on dimT . In the sequel we are only going to use one property of
Z that followed from being the conductor, namely the equality in (6.2.1). However,

by (6.2.2) this remains true for the new choice of Z. Next let Ẑ = (τ̂−1Z)red ⊂ T̂

be the reduced preimage of Z (as well as of Z̃) in T̂ . The following diagram shows
the connections between the various objects we have defined so far:

normal, admits
minimal qlc structure ��

∐
Ŵ = T̂ ⊃ Ẑ

τ̂

��

�������������
preimage of Z��

finite �� T̃
τ

�������������� ⊃ Z̃ preimage of Z��

X ⊇
⋃
W = T ⊃ Z

the smaller dimensional union of f-qlc
strata containing the conductor of T

��

normalization of T��

As we replaced the conductor with a union of f -qlc strata it was contained in

and as each Ŵ admits a minimal qlc structure compatible with the part of the

minimal qlc structureof X that lies in T , it follows that Ẑ is also a union of qlc

strata on T̂ and the morphism Ẑ → Z̃ is a qlc stratified morphism. Then since

dim T̂ < dimX, by replacing X with T̂ shows that Ẑ is DB by induction on dimX.

In turn this implies that Z̃ is DB by (2.4).

Therefore, by now we have proved that T̃ , Z, and Z̃ all have DB singularities,
so by using (6.2.2) and (1.6) we conclude that T is DB as well.

Now assume that X = T and hence X = T = T̃ . Let f : (Y,Δ) → X be
a minimal qlc structure and W = f(nklt(Y,Δ)). By (6.1) we may assume that
W = X by replacing X by a finite cover. Note that by (2.4) it is enough to prove
that this finite cover is DB.

Then let π : Ỹ → Y be a log resolution and F := (f ◦ π)−1(W ), an snc divisor.
By (4.1) the natural map � : IW = f∗OỸ (−F ) → Rf∗OỸ (−F ) has a left inverse.
Finally, (1.6) implies that T = X is DB. �

Definition 6.3. Let φ : X → B be a flat morphism. We say that φ is a DB family
if Xb is DB for all b ∈ B.

Definition 6.4. Let φ : X → B be a flat morphism. We say that φ is a family with
potentially lc fibers if for all closed points b ∈ B there exists an effective Q-divisor
Db ⊂ Xb such that (Xb, Db) is log canonical.

Definition 6.5 ([KM98, 7.1]). Let X be a normal variety, D ⊂ X an effective Q-
divisor such that KX+D is Q-Cartier, and φ : X → B a non-constant morphism to
a smooth curve B. We say that φ is a log canonical morphism, or an lc morphism,
if (X,D +Xb) is lc for all closed points b ∈ B.

Remark 6.6. Notice that for a family with potentially lc fibers it is not required
that the divisors Db also form a family over B. On the other hand, if φ : X → B is
a family with potentially lc fibers, B is a smooth curve and there exists an effective
Q-divisor such that KX +D is Q-Cartier and D

∣∣
Xb

= Db, then φ is an lc morphism

by inversion of adjunction [Kaw07].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LOG CANONICAL SINGULARITIES ARE DU BOIS 807

Further, observe that if φ : (X,D) → B is an lc morphism, then for any b ∈ B,
choosing (Y,Δ) = (X,D+Xb) and f : (Y,Δ) → X, the identity of X gives an f -qlc
stratification of X such that Xb is a union of f -qlc strata. In particular, it follows
by (6.2) that Xb is DB. Note that if Xb is reducible, then (1.5) would not suffice
here.

Corollary 6.7. Let φ : X → B be either a family with potentially lc fibers or an
lc morphism. Then φ is a DB family.

Proof. Follows directly from (6.2). �

7. Invariance of cohomology for DB morphisms

The following notation will be used throughout this section.

Notation 7.1. Let π : PN
B → B be a projective N -space over B, ι : X ↪→ PN

B a closed
embedding, and φ : = π ◦ ι. Further, let Oπ(1) be a relatively ample line bundle
on PN

B , and denote by ω
�

φ the relative dualizing complex φ!OB and by h−i(ω
�

φ )

its −ith cohomology sheaf. We will also use the notation ωφ : = h−n(ω
�

φ ), where

n = dim(X/B). Naturally, these definitions automatically apply for π in place of
φ by choosing ι = idPN

B
.

Lemma 7.2. Let b ∈ B. Then

h−i(ω
�

φ ) � ExtN−i
PN
B

(OX , ωπ) and h−i(ω
�

Xb
) � ExtN−i

PN
b

(OXb
, ωPN

b
).

In particular, h−i(ω
�

φ ) = 0 and h−i(ω
�

Xb
) = 0 if i < 0 or i > N .

Proof. By Grothendieck duality ([Har66, VII.3.3]; cf. [Har77, III.7.5]),

h−i(ω
�

φ )�h−i(RHomPN
B
(OX , ω

�

π ))�h−i(RHomPN
B
(OX , ωπ)[N ])�ExtN−i

PN
B

(OX , ωπ).

The same argument obviously implies the equivalent statement for h−i(ω
�

Xb
).

Furthermore, clearly Ext j
PN
B
(OX , ωπ) = 0 and Ext j

PN
b
(OXb

, ωPN
b
) = 0 if j < 0 and

hence h−i(ω
�

φ ) = 0 and h−i(ω
�

Xb
) = 0 if i > N . Since PN

b is smooth and thus all

the local rings are regular, it also follows that Ext j
PN
b
(OXb

, ωPN
b
) = 0 if j > N and

hence h−i(ω
�

Xb
) = 0 if i < 0.

Next, consider the restriction map [AK80, 1.8],

�−i
b : ExtN−i

PN
B

(OX , ωπ)
∣∣
Xb

→ ExtN−i
PN
b

(OXb
, ωPN

b
).

We have just observed that the target of the map is 0 if i < 0. In particular, �−i
b is

surjective in that range. Then by [AK80, 1.9] �−i
b is an isomorphism, and therefore

h−i(ω
�

φ ) = 0 if i < 0. �

Lemma 7.3. Let F be a coherent sheaf on X, i ∈ N, and assume that Riπ∗(F (−q))
is locally free for q � 0. Then

π∗ExtN−i
PN
B

(F , ωπ(q)) � HomB(Riπ∗(F (−q)),OB) for q � 0.

Proof. Let q � 0 and U ⊆ B be an affine open set such that Riπ∗(F (−q))
∣∣
U

is
free. Then by [Har77, III.6.7] and [Har66, III.5.2],

H0(π−1(U),ExtN−i
PN
B

(F , ωπ(q))) � ExtN−i
PN
U

(FU (−q), ωπU
)

� HomU (Riπ∗F (−q)
∣∣
U
,OU ) � H0(U,HomB(Riπ∗F (−q),OB)). �
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The following statement and its consequences will be needed in the proof of (7.9).
It is likely known to experts, but we could not find an appropriate reference.

Lemma 7.4. Let Z be a complex scheme of finite type and φ � : Z � → Z be a
hyperresolution. Let π : W → Z be a morphism such that ψ � : W � := W ×Z Z � →
W is also a hyperresolution. Let πi : Wi → Zi be the morphisms induced by π,
and assume that the natural transformation Lπ∗Rφ � ∗ → Rψ � ∗Lπ∗

� induces an
isomorphism

Lπ∗Rφ � ∗OZ � � Rψ � ∗Lπ∗
� OZ � .

Then

Lπ∗Ω0
Z � Ω0

W .

In particular, if Z has only DB singularities, then W has only DB singularities.

Remark 7.4.1. See [Du81, GNPP88, PS08, KS09] for details on hyperresolutions.

Corollary 7.5. Let Z be a complex scheme of finite type with only DB singularities

and let Z̃ → Z be a smooth morphism. Then Z̃ has DB singularities. �

Corollary 7.6. Let Z be a complex scheme of finite type with only DB singularities
and let H ⊆ Z be a general member of a basepoint free linear system. Then H has
DB singularities. �

Corollary 7.7. Let Z be a complex scheme of finite type with only DB singularities
and M be a semi-ample line bundle on Z. Let π : W → Z be the cyclic cover
associated to a general section of Mm for some m � 0; cf. [KM98, 2.50]. Then W
has only DB singularities.

Proof. One can easily prove that π satisfies the conditions of (7.4) or argue as
follows: By (7.5) the total space M of M has DB singularities, and then the
statement follows by (7.4) applied to the embedding W ⊆ M [Kol95, 9.4]. �

Proof of (7.4). The hyperresolutions φ � and ψ � fit into the commutative diagram

Z �

φ �

��

W �

ψ �

��

π ���

Z Wπ
��

We also obtain the following representations of the Deligne-Du Bois complexes of
Z and W :

Ω0
Z � Rφ � ∗OZ � and Ω0

W � Rψ � ∗OW � .

Then by assumption

Lπ∗Ω0
Z � Lπ∗Rφ � ∗OZ � � Rψ � ∗Lπ∗

�OZ � � Rψ � ∗OW � � Ω0
W .

�

We will also need the base-change theorem of Du Bois and Jarraud [DJ74,
Théorème] (cf. [Du81, 4.6]):

Theorem 7.8. Let φ : X → B be a projective DB family. Then Riφ∗OX is locally
free of finite rank and compatible with arbitrary base change for all i. �

The next theorem is our main flatness and base change result.
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Theorem 7.9. Let φ : X → B be a projective DB family and L be a relatively
ample line bundle on X. Then

(7.9.1) the sheaves h−i(ω
�

φ ) are flat over B for all i,

(7.9.2) the sheaves φ∗(h
−i(ω

�

φ )⊗L q) are locally free and compatible with arbitrary
base change for all i and for all q � 0, and

(7.9.3) for any base change morphism ϑ : T → B and for all i,(
h−i(ω

�

φ )
)
T
� h−i(ω

�

φT
).

Remark 7.9.4. For a coherent sheaf F on X, the pushforward φ∗F being compat-
ible with arbitrary base change means that for any morphism ϑ : T → B,(

φ∗F
)
T
�

(
φT

)
∗FT .

In particular, (7.9.2) implies that for any ϑ : T → B,

(
φ∗(h

−i(ω
�

φ )⊗ L q)
)
T
�

(
φT

)
∗

((
h−i(ω

�

φ )
)
T
⊗ L q

T

)
.

Combined with (7.9.3), this means that for any ϑ : T → B,

(7.9.5)
(
φ∗(h

−i(ω
�

φ )⊗ L q)
)
T
�

(
φT

)
∗(h

−i(ω
�

φT
)⊗ L q

T ).

Proof of (7.9). We may asssume that B = SpecR is affine. By definition, L m is
relatively generated by global sections for all m � 0. For a given m ∈ N, choose a
general section ϑ ∈ H0(X,L m) and consider the OX -algebra

Am =

m−1⊕
j=0

L −j �
∞⊕
j=0

L −jtj
/(

tm − ϑ
)

as in [KM98, 2.50]. Let Y m : = SpecX Am and let σ : Y m → X be the induced
finite morphism. Then

Ri(φ ◦ σ)∗OY m � Riφ∗(σ∗OY m) � Riφ∗Am �
m−1⊕
j=0

Riφ∗L
−j

for all i and all b ∈ B. Note that by construction, this direct sum decomposition
is compatible with arbitrary base change. By (7.7), φ ◦ σ is again a DB family and
hence Ri(φ ◦ σ)∗OY m is locally free and compatible with arbitrary base change by
(7.8). Since φ is flat and L is locally free, it follows that then Riφ∗L −j is locally
free and compatible with arbitrary base change for all i and for all j > 0. Then
taking F = OX and applying [Har77, III.6.7], (7.2), and (7.3), we obtain that

(7.9.6) φ∗(h
−i(ω

�

φ )⊗ L q) � HomB(Riφ∗L
−q,OB) for q � 0.

This proves (7.9.2), and then (7.9.1) follows easily by an argument similar to the
one used to prove the equivalence of (i) and (ii) in the proof of [Har77, III.9.9].

To prove (7.9.3) we will use induction on i. Notice that it follows trivially for
i < 0 (and i > N , but we will not use that fact) by (7.2), so the start of the
induction is covered. Consider the pull back map,

�−i
T :

(
ExtN−i

PN
B

(OX , ωπ)
)
T︸ ︷︷ ︸(

h−i(ω
�

φ )
)
T

→ ExtN−i
PN
T

(OXT
, ωPN

T
)︸ ︷︷ ︸

h−i(ω
�

φT
)

.
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By the inductive hypothesis �−j
T is an isomorphism, and ExtN−j

PN
B

(OX , ωπ) � h−j(ω
�

φ )

is flat over B by (7.9.1). Then by [AK80, 1.9], �
−(j+1)
T is also an isomorphism. This

proves (7.9.3). �

Lemma 7.10. Let X be a subscheme of PN , F a coherent sheaf on X and N a
fixed line bundle on PN . Then F is Sk at x if and only if Ext j

PN (F ,N )x = 0 for
all j > N − k.

Proof. Since OPN ,x is a regular local ring,

d := depthOX,x
Fx = depthO

PN,x
Fx = N − proj dimO

PN,x
Fx.

Therefore, d ≥ k if and only if ExtjO
PN,x

(Fx,Nx) = 0 for all j > N − k. �

Using our results in this section we obtain a criterion for Serre’s Sk condition,
analogous to [KM98, 5.72], in the relative setting.

Theorem 7.11. Let φ : X → B be a projective DB family, x ∈ X and b = φ(x).
Then Xb is Sk at x if and only if

h−i(ω
�

φ )x = 0 for i < k.

Proof. Let F = OXb
, j = N − i and N = ωPN

b
. Then (7.3) and (7.10) imply that

Xb is Sk at x if and only if h−i(ω
�

Xb
)x = 0 for i < k. Then the statement follows

from (7.9.3) and Nakayama’s lemma. �

The following result asserts the invariance of the Sk property in DB families:

Theorem 7.12. Let φ : X → B be a projective DB family and U ⊆ X be an open
subset. Assume that B is connected and the general fiber Ubgen of φ

∣∣
U

is Sk. Then

all fibers Ub of φ
∣∣
U

are Sk.

Proof. Suppose that the fiber Ub of φ
∣∣
U

is not Sk. Then by (7.11) there exists an

i < k such that h−i(ω
�

φ )x = 0 for some x ∈ Ub. Let Z be an irreducible component

of supph−i(ω
�

φ ) such that Z∩Ub = ∅. It follows that Z∩U is dense in Z. By (7.9.1)

h−i(ω
�

φ ) is flat over B, and thus Z and then also Z ∩ U dominate B. However,

that implies that Z ∩Ubgen = ∅, contradicting the assumption that Ubgen is Sk, and
hence the proof is complete. �

As mentioned in the Introduction, our main application is the following.

Corollary 7.13. Let φ : X → B be a projective family with potentially lc fibers
or a projective lc morphism and let U ⊆ X be an open subset. Assume that B is
connected and the general fiber Ubgen of φ

∣∣
U

is Sk (resp. CM). Then all fibers Ub of

φ
∣∣
U

are Sk (resp. CM).

Proof. Follows directly from (6.2) and (7.12). �

The following example shows that the equivalent statement does not hold in
mixed characteristic.

Example 7.14 (Schröer). Let S be an ordinary Enriques surface in characteristic 2
(see [CD89, p. 77] for the definition of ordinary). Then S is liftable to characteristic
0 by [CD89, 1.4.1]. Let η : Y → SpecR be a family of Enriques surfaces such that
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the special fiber is isomorphic to S and the general fiber is an Enriques surface of
characteristic 0.

Let ζ : Z → SpecR be the family of the projectivized cones over the members
of the family η. I.e., for any t ∈ SpecR, Zt is the projectivized cone over Yt.
Since KYt

≡ 0 for all t ∈ SpecR, we obtain that ζ is both a projective family with
potentially lc fibers and a projective lc morphism. By the choice of η, the dimension
of the cohomology group H1(Yb,OYb

) jumps: it is 0 on the general fiber and 1 on
the special fiber. Consequently, by (7.15), the general fiber of ζ is CM, but the
special fiber is not.

Recall the following CM condition used in the above example:

Lemma 7.15. Let E be a smooth projective variety over a field of arbitrary charac-
teristic and let Z be the cone over E. Then Z is CM if and only if hi(E,OE(m)) = 0
for 0 < i < dimE and m ∈ Z.

Proof. See [Kol08, Ex. 71] and [Kov99, 3.3]. �
The most natural statement along these lines would be if we did not have to

assume the existence of the projective compactification of the family U → B. This
is related to the following conjecture, which is an interesting and natural problem
on its own:

Conjecture 7.16. Let ψ : U → B be an affine, finite type lc morphism. Then there
exists a base change morphism ϑ : T → B and a projective lc morphism φ : X → T
such that UT ⊆ X and ψT = φ

∣∣
UT

.

We expect that (7.16) should follow from an argument using MMP techniques,
but it might require parts that are at this time still open, such as the abundance
conjecture. On the other hand, (7.16) would clearly imply the following strength-
ening of (7.13):

Conjecture-Corollary 7.17. Let ψ : U → B be a finite type lc morphism. Assume
that B is connected and the general fiber of ψ is Sk (resp. CM). Then all fibers are
Sk (resp. CM).
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