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Abstract

We show here that codimension three Artinian Gorenstein sequences are
log-concave, and that there are codimension four Artinian Gorenstein se-
quences that are not log-concave. We also show the log-concavity of level
sequences in codimension two.
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1 Introduction.

A codimension r Gorenstein sequence is here a Hilbert function H(A) that oc-
curs for a codimension r graded Artinian Gorenstein (AG) algebra A over an in-
finite field F. The codimension two Gorenstein sequences are the same as those
for complete intersections A(a, b) = F[x, y]/(xa, yb) - known to F.H.S. Macaulay
[Mac1, Mac2]. The codimension three Gorenstein sequences are known be-
cause of the Pfaffian structure theorem of D. Buchsbaum and D. Eisenbud
[BuEi], (Lemma 1.3 below, see also [St1,Di]). The Hilbert function H(A) of a
graded Artin algebra is a sequence satisfying a certain condition determined by
F.H.S. Macaulay (Equation (2), Lemma 1.1 below, [Mac3], and [BrHe, §4.2]).
We will call such a sequence satisfying Equation (2) a Macaulay sequence. The
socle of an Artinian algebra A is (0 : mA) where mA is its maximal ideal,
and the socle degree of A is the highest degree of a socle element; when A is
Artinian Gorenstein, the socle degree of A is the highest degree j for which
H(A)j 6= 0. We recall

Lemma 1.1. [Macaulay’s theorem [Mac3]] Let H = H(A) = (1, r, h2, . . . , ha, . . .)
be the Hilbert function of an algebra quotient of R = F[x1, . . . , xr]. We may
write uniquely, for a ≥ 1, the Macaulay expansion

ha =
a

∑

i=1

(

ni

i

)

with na > na−1 > · · · > n1 ≥ 0. (1)

Then we have

ha+1 ≤ h(a)a :=
a

∑

i=1

(

ni + 1

i+ 1

)

. (2)

For further discussion see [BrHe, Lemma 4.2.6,Theorem 4.2.10]. When
there is equality in Equation (2) we term this maximum Macaulay growth
from degree a to degree a+ 1 [BrHe, Section 4.2].

Definition 1.2. An SI sequence H = (1, r, . . . , r, 1j) of socle-degree j is a
sequence satisfying both

hi = hj−i for 0 ≤ i ≤ j/2;

(∆H)≤j/2 is a Macaulay sequence, (3)

where (∆H)i = hi − hi−1 (take h−1 = 0).

We have

Lemma 1.3. [BuEi,St1] A sequence H = (1, 3, . . . , hi, . . . , 3, 1) is a codimen-
sion three Gorenstein sequence if and only if H is an SI sequence.
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The proof follows from the D. Buchsbaum and D. Eisenbud Pfaffian struc-
ture theorem for codimension three Gorenstein algebras [BuEi]; see also [Di]
and [IK, Theorem 5.25].

It is well known that in any codimension, the SI sequences are a subset of
the Gorenstein sequences: when r ≥ 5, the SI sequences are a proper subset of
the Gorenstein sequences, which may be non-unimodal; when r = 4 it is open
whether the SI sequences might be all the Gorenstein sequences. A result of
N. Altafi shows that given a finite SI sequence H, there is always a strong
Lefschetz Artinian Gorenstein algebra of Hilbert function H [Alt].

Definition 1.4. We say that a finite sequence H = (h0, h1, . . . , hi, . . . , hj) is
log-concave in a degree i ∈ [1, j − 1] if

hi−1 · hi+1 ≤ h2i . (4)

The sequence H is log-concave if it is log-concave in each such degree i.

See the R. Stanley 1989 survey [St2], the F. Brenti 1994 [Bre], and many
more recent articles. Log-concavity has a relation with the Hodge-Riemann
property of certain algebras [Ba,H,MMS,MuNaYa].

2 Codimension three Gorenstein sequences

are log-concave.

Theorem 2.1. Let A be a standard graded AG algebra of socle degree j with
Hilbert function H(A) = (h0, h1, . . . , hj) satisfying h1 = 3. Then the sequence
H(A) is log-concave.

Proof. Note that it suffices to show that Equation (4) holds for 1 ≤ i ≤
⌊

j
2

⌋

,

since for i >
⌊

j
2

⌋

, we have 1 ≤ j − i ≤
⌊

j
2

⌋

and hence Equation (4) will hold

for these i by symmetry of the Hilbert function. For each 1 ≤ i ≤
⌊

j
2

⌋

, we

have hi ≤
(

h1+i−1
i

)

=
(

i+2
i

)

, and if we have equality for every i, then H(A)
is log-concave since the binomial coefficients are log-concave. Otherwise we

may choose the smallest index u, 1 ≤ u ≤
⌊

j
2

⌋

such that hu <
(u+2

u

)

. Then

of course Equation (4) holds for 1 ≤ i ≤ u − 1 for the preceding reason, and

hence we need only check Equation (4) for u ≤ i ≤
⌊

j
2

⌋

. Let j′ ==
⌊

j
2

⌋

. The

following two observations are key: by Lemma 1.3

(i). H(A) is an SI sequence, and hence the first difference

∆H(A)≤j′ = (1, 2, . . . ,∆Hj′) (5)
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is the Hilbert function for some standard graded Artinian algebra of
codimension 2, and

(ii). The Hilbert function of a standard graded Artinian algebra of codimen-
sion 2 is non-increasing after the initial degree d of its defining ideal (here
d = min{i | ∆H(A)i < i+ 1}) so ∆H(A)≤j′ in Equation (5) satisfies

∆H(A)j′ = (1, 2, . . . , d,∆d, . . . ,∆j′), with d ≥ ∆d ≥ ∆d+1 ≥ · · · ≥ ∆j′.
(6)

The second observation is well known (see [Mac1], [I1, Lemma 1.3])1 and can
be seen as follows: Let B = F[x, y]/I be any standard graded Artinian algebra
in codimension two, suppose that Ip 6= 0 and suppose that f1, . . . , fm ∈ Ip
are linearly independent forms in I of degree p. Then certainly xf1, . . . , xfm
are linearly independent in I of degree p + 1; also, if f1 has maximum y-
power among the set of fi, then yf1, xf1, . . . , xfm ⊂ F[x, y]p+1 are linearly
independent, showing that dimF(Ip) < dimF(Ip+1), and hence G = H(B) =
(1, 2, . . . , gp, . . .) satisfies

gp = dimF(F[x, y]p)− dimF(Ip) = (p+ 1− dimF(Ip)

≥p+ 2− dimF(Ip+1) = dimF(F[x, y]p+1)− dimF(Ip+1) = gp+1.

Finally, for any integer i satisfying d ≤ i ≤
⌊

j
2

⌋

, we must therefore have

h2i ≥ h2i − (hi − hi−1)
2 = (hi − (hi − hi−1))(hi + (hi − hi−1))

≥ (hi − (hi − hi−1))(hi + (hi+1 − hi)) = hi−1hi+1,

and hence H(A) is log-concave.

3 Codimension four Gorenstein sequences

that are not log-concave.

Many codimension four Gorenstein sequences, as H = (1, 4, 10, 14, 10, 4, 1), are
log-concave. We first show that there are codimension four SI sequences that
are not log-concave (Proposition 3.2); then we show that there are codimension
four SI sequences that are not log-concave for an arbitrarily large consecutive
sequence of degrees (Proposition 3.4).

The codimension four Gorenstein sequences H include the SI sequences,
those satisfying ∆H≤j/2 = (1, 3, . . .) is the Hilbert function of a codimension

1The article [Mac1] also determines all the Hilbert functions that do occur for local algebras of
codimension two, as well as for the graded algebras.
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three graded Artin algebra A = R/I (Definition 1.2). We first restrict to
codimension four SI sequences satisfying

∆H≤j/2 = (1, 3, . . . , rk, b, c) where rk =

(

k + 2

2

)

= dimFRk. (7)

We denote by S = F[x, y, z, w], and let sk = dimF Sk = (1+3+· · ·+rk) =
(

k+3
3

)

.
Then the sum function of ∆(H)≤j/2 above satisfies

H≤j/2 = (1, 4, . . . , sk, sk + b, sk + b+ c) .

The log-concavity condition (4) here in degree k + 1 for H is

sk(sk + b+ c) < (sk + b)2 or, equivalently, sk(c− b) < b2. (8)

Keeping b, c constant with c > b then this certainly is negated for k large
enough. The next idea is to choose b suitably and let sk + b in degree k+1 to
sk + b+ c in degree k + 2 have maximum Macaulay growth (see Lemma 1.1).

The dimension dimF(F[x, y, z, w]k) = sk. For codimension three, if ha < ra

we will denote by δ(ha) = h
(a)
a − ha: here, this is just the number of terms

in the Macaulay expansion of Equation (1) with ni = i + 1. Then, taking
a = k+1, ha = sk + b, sk+2 = ha + c with c = ha+ δ(ha) (maximum Macaulay
growth) the log-concavity condition Equation (8) becomes δ ·sk ≤ b2. Thus, to
violate log-concavity in degree k+1 for a Hilbert function sequence H having
as its key entries hk = sk, hk+1 = sk + b, hk+2 = sk + b+ δ we need only assure

δ · sk > b2. (9)

Remark 3.1. Recall that the Gotzmann regularity degree of the constant
polynomial {s} is itself s (see [IK, Proposition C.32]). This implies for an SI
sequence H that once (∆H)i ≤ s for an integer i ∈ [s, j/2] then (∆H)≤j/2 is

non-increasing in higher degrees than i. Also, in order for δ = h
(a)
a − ha ≥ 2

we must have ha ≥ 2a + 1, with equality when ha =
(a+1

a

)

+
( a
a−1

)

. For δ =

h
(a)
a −ha ≥ 3 we need ha ≥ 3a, with equality when ha =

(a+1
a

)

+
( a
a−1

)

+
(a−1
a−2

)

.
Evidently, for δ ≥ 4 we need

b = ha ≥ δ · a− (2 + · · ·+ (δ − 2))

= δ · a− δ(δ − 3)/2. (10)

These inequalities for δ ≥ 2 will greatly affect our search for small examples
of SI sequences in codimension four that are not log-concave - that satisfy
Equation (9).
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We will denote by Ha→b the subsequence (ha, ha+1, . . . , hb) of H.

Proposition 3.2 (SI sequences in 4 variables that are not log-concave). We
give a series of minimal examples, depending on the choice of δ.

Case δ = 1. First we consider δ = 1 and take b =
(s+1

s

)

, in degree s = k + 1.
We need sk > b2 = (s + 1)2. Taking δ = 1, b = 76, k = 5, so s5 = 56 > 72 we
have

H = (1, 4, 10, 20, 35, 56, 63, 71, 63, 56, 35, 20, 10, 4, 114 ), n = 449,

then h5 · h7 = 56 · 71 = 3976 > 3969 = 632 = h26.
Taking δ = 1, b = 87, k = 6 so s6 = 84 > 82 we have

H = (1, 4, 10, 20, 35, 56, 84, 92, 101, 92, 84, 56, 35, 20, 10, 4, 116 ), n = 705,

then h6 · h8 = 84 · 101 = 8484 > 8464 = 922 = h27. Since 84 > 92 we have a
second example where δ = 1, b = 9, H8→12 = (84, 93, 103, 93, 84) of socle degree
16 and length n = 709, also not log-concave in degree 7, as h6 ·h8 = 84 · 103 =
8652 > 8649 = 932 = h27.

In general, taking δ = 1, k >> 5, we may choose bk+1 (that is, b in degree
k + 1) satisfying k + 2 ≤ b ≤ (k/6)3/2 (asymptotically, not for small b) that
will satisfy the conditions of Remark 3.1 and also satisfy sk > b2, Equation 9,
so we will obtain again a non log-concave H.

Case δ = 2. Now taking δ = 2, b = 23 we have 2s10 = 2(286) = 572 > 529 =
232 and 23 satisfies 23 = 2(11) + 1, the lower bound from Remark 3.1. This is
the lowest pair δ = 2, b = 23 with a = 11 satisfying Equation (9), and leads to
an example of non log-concave H of socle degree 24, whose key entries are

H10→14 = (286, 309, 334, 309, 286), (11)

satisfying h10 · h12 = 286 · 334 = 95524 > 95481 = 3092 = h211, so H of length
n = 2954 that is non log-concave in degree 11.

Now taking δ = 2, b = 25 we have 2s11 = 2(364) = 728 > 625 = 252 = ∆h212
so we have new H of socle degree 26 whose key entries are

H11→15 = (364, 389, 416, 389, 364),

satisfying h11 ·h13 = 364 ·416 = 151424 > 151321 = 3892 = h212, so H of length
n = 4034 that is non log-concave in degree 12. Evidently, we may replace 25
by 26 as also 728 > 262 = 676. Then the key entries of H would be

for b = 26,H11→15 = (364, 390, 418, 390, 364).
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This sequence of examples with δ = 2 can evidently be continued, the next
arises from δ = 2, b = 27, 2s12 = 2(455) = 910 > 729 = (27)2, so gives an SI
sequence H of socle degree 28 with key entries

H12→16 = (455, 482, 511, 482, 455),

satisfying h12 · h14 = 232505 > 232324 = 4822 = h213. Evidently, we may
replace 27 by b ∈ [27, 30] as 910 > 302.

The general δ = 2 case with fixed k and lowest b = 2k+3 will be sk, k ≥ 10
satisfying 2sk > (2k + 3)2, leading to an SI sequence H = (1, 4, . . . , 4, 12k+4)
of socle degree 2k + 4, with key entries

Hk→(k+4) = (sk, sk + 2k + 3, sk + 4k + 8, sk + 2k + 3, sk),

of length n = 2
(k+4

4

)

+ 3sk + 8k + 14, that is not log-concave in degree k + 1.
Given k, the maximum b satisfying Equation (9) is

√
2sk; for k = 25

this is b = ⌊√2s25⌋ = ⌊
√
6552⌋ = 80. When (k, b) is a fixed pair, satisfying

2k + 3 ≤ b ≤ √
2sk the key entries in the corresponding non log-concave H of

socle degree 2k + 4 are

Hk→(k+4) = (sk, sk + b, sk + 2b+ 2, sk + b, sk),

and H has length 2
(k+4

4

)

+ 3sk + 4b+ 2.

Case δ = 3. We have 3 · s18 = 3 ·
(20
3

)

= 3420 > 3249 = 9(19)2, so taking
(δ, k, b) = (3, 18, 3 ·19) we generate a smallest H for δ = 3, here of socle degree
j = 40 that is not log-concave in degree 19, that has key H values

H18→22 = (1140, 1197, 1257, 1197, 1140).

Case δ ≥ 4. To satisfy Remark 3.1 and Equation (9), we must have δ ·sk ≥ b2,
or δ ·

(k+3
k

)

> b2, where also b ≥ δk. Solving for bmax, and approximating
(k+3

k

)

by k3/6, we have δk3/6 ≤ b2max, so if b is in the interval

b ∈ [δ · k, δ1/2 · k3/2/63/2], (12)

then the triple (δ, k, b) will produce a codimension four SI sequence H with key
entries

Hk→k+4 = (sk, sk + δ · b, sk + 2δ · b, sk + δ · b, sk)
and socle degree 2k + 4 that is non log-concave in degree k + 1.
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Example 3.3 (Lengthening the non log-concave examples H). The lowest
δ = 2 example is Equation (11) of socle degree j = 24, where H10→14 =
(286, 309, 334, 309, 286) and ∆H10→12 = (r10, r10 + 23, r10 + 25) = (66, 89, 91).
We may lengthen this by adding a further sequence after ∆H12 = 114 that
satisfies the Macaulay inequalities Equation (2) for codimension three. For
example we may adjoin to ∆H the sequence (1613, 1714, 815, 716), leading to a
key sequence

H ′
10→22 = (286, 309, 334, 350, 367, 375, 382, 375, 367, 350, 334, 309, 286),

of an AG Hilbert functionH ′ of socle degree j = 32 that is still non log-concave
in degree 11.

In the next Proposition, we extend the maximum growth portion of ∆H,
by a distance ℓ, obtaining in some cases, especially when sb >> b2 a new AG
sequence H ′(ℓ) having a longer consecutive subset of non log-concave adjacent
triples, whose length we can specify. Further, we specify hk+uhk+u+2−h2k+u+1

for each u ∈ [0, ℓ], showing that it is a sequence with linear first differences.

Proposition 3.4 (Sequences H having multiple non log-concave places). As-
sume that (δ, k, b) is a triple as in Proposition 3.2 for which δ · sk > b2, and let
H be the related codimension four Hilbert function of socle degree j = 2k + 4,
whose key part is

Hk→k+4 = (sk, sk + b, sk + 2b+ δ, sk + b, sk)

and which is non log-concave in degree k + 1. Let ℓ be a positive integer. We
define an extended sequence H ′(ℓ) identical to H in degrees i ∈ [0, k + 2], and
satisfying

∆H ′(ℓ)t = ∆Tt for t ≤ k + 1 and for t > k + ℓ+ 2;

∆H ′(ℓ)k+1→k+ℓ+2 = (b, b+ δ, b + 2δ, . . . , b+ (ℓ− 1)δ, b + (ℓ)δ, b + (ℓ+ 1)δ).
(13)

Then H ′(ℓ) has socle degree 2k + 4 + 2ℓ, and we have for each u ∈ [1, ℓ + 2]
that h′k+u = sk + bu+ δ(1 + 2 + · · ·+ (u− 1)). Letting δ = 1 we have for each
such u

h′k+u · h′k+u+2 − (h′k+u+1)
2 = sk − b2 − ((b+ 1) + · · ·+ (b+ u)). (14)

Assume now that

bℓ+
ℓ(ℓ+ 1)

2
< sk − b2. (15)

Then H ′(ℓ) is non log-concave in the positions k+1, k+2, . . . , k+ ℓ, k+ ℓ+1.

8



Proof. We generalize the proof of Equations (8) and (9). Beginning with
(δ = 1, b, k) then using the definition of ∆H ′ in Equation (13) and recalling
that Hk = sk we conclude that H ′ = (1, h′1, . . .) satisfies

for u ∈ [0, ℓ], h′k+u = sk + bu+

u−1
∑

ν=1

ν.

Then, similarly to Equation (8) we have for u ∈ [1, ℓ + 1] and i = k + u

h′i−1h
′
i+1 − h′

2
i = (h′i − (b+ u− 1)))(h′i + b+ u)− h′i

2

= h′i − (b+ u− 1)(b+ u)

= sk − b2 − b(u− 1)−
u−1
∑

ν=1

ν

= sk − b2 − b(u− 1)− u2 − u

2
. (16)

The last statement of the Proposition concerning non log-concavity for H ′(ℓ)
for ℓ satisfying Equation (15) follows.

Example 3.5. We take from Proposition 3.2 the first sequence H where δ =
1, k = 8, b = 109 with key entries H8→12 = (1658, 175, 186, 175, 165) and recall
that h8h10 − h29 = 30690 − 30625 = 65 = s8 − b2 = 165 − 102. We choose ℓ as
in Equation (14), the maximum such that for b = 10

(b+ 1) + (b+ 2) + · · ·+ (b+ ℓ) < 65, from which we have ℓ = 4.

We now consider ∆H ′(4)≤j/2 = (1, 3, 6, 10, 15, 21, 28, 36, 45, 109 , 11, 12, 13, 14, 15),
so

H ′(4) = (1, 4, 10, 20, 35, 56, 84, 120, 165, 1759 , 186, 198, 211, 225, 24014 ,

225, 211, 198, 186, 175, 165, 120, 84, 56, 35, 20, 10, 4, 128). (17)

of socle degree 28, which is non log-concave in degrees 9, 10, 11, 12, 13 with
successive differences (writing hi for t

′
i)

hi−1hi+1 − h2i = (659, 5410, 4211, 2912, 1513),

whose second differences are (11, 12, 13, 14), consistent with Equations (13)
and (14). Note that H ′(5)13,14,15 = (225, 24014 , 256) whence hi−1hi+1−h2i = 0
for i = 16, so H ′(5) begins log-concavity in degree 16; this is again consistent
with Equation (14) and shows that the maximum length of a non log-concave
sequence for H ′ arising from this H is five.

9



Note, that combining with the idea of Example 3.3, we can make codi-
mension four Gorenstein sequences H ′ with certain specified consecutive sub-
sequences of degrees where H ′ is non log-concave, but that may have gaps
between them of degrees where H ′ is log-concave.

Remark 3.6. According to [H, Theorem 3] these non log-concave h-vectors
cannot be the h-vectors of a matroid representable in characteristic zero. Chris
McDaniel poses the question of whether a related f -vector: f(t) = h(1 + t) of
one of these non log-concave h might be non-unimodal.

4 Higher codimension Gorenstein sequences,

level sequences.

In codimension at least five, Gorenstein sequences need not be unimodal. For
example, R. Stanley used an idealization construction [Na] or [IMM, §3.1]
to show H = (1, 13, 12, 13, 1) is a Gorenstein sequence for an algebra A ×
Hom(A,F) where A = F[x, y, z]/(x, y, z)4 of Hilbert function (1, 3, 6, 10) [St1],
Analogous examples, sometimes requiring higher socle degree j, can be made
in codimensions at least five: in codimension five the lowest socle-degree non-
unimodal Gorenstein sequence known has j = 16 and contains the subsequence
(h7, h8, h9) = (91, 90, 91) [BeI] (see also [MZ,MNZ1] for further discussion of
unimodality for Gorenstein sequences).

4.1 Higher codimension SI sequences.

SI sequences by construction are unimodal. We note that, as in codimension
four, some SI sequences in codimension five or larger are log-concave, and some
are not. We illustrate both with the next example.

Example 4.1 (Codimenson five). (i). Consider the codimension five SI se-
quence H(j) = (1, 5, t2, . . .) having socle degree j with

∆H(j) = (1, 4, 10, 14, 20, 27, 35, 44, . . .)

where ∆H(j)k =
(k+2

k

)

+
( k
k−1

)

+
(k−2
k−2

)

for 3 ≤ k ≤ j/2 and j ≥ 6. Then
H(j)≤j/2 = (1, 5, 15, 29, 49, 76, 111, 155, . . . , ) where

H(j)k = −1 +

(

k + 3

k

)

+

(

k + 1

k − 1

)

+

(

k − 1

k − 2

)

for 3 ≤ k ≤ j/2,

and H(j)k = H(j)j−k for k ≥ j/2. It is easy to verify that for j ≥ 6
each such H(j) is log-concave. The reason is that the sequence H(j)k for
k ≤ j/2 is dominated by its fast-growing term

(

k+3
k

)

which is cubic in k.
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(ii). This suggests that the way to create non log-concave examples
of SI sequences is to imitate the construction in codimension four, that
is, set ∆H ′ = (1, 4, r2, . . . , ru−1, δu, . . .) where the non-zero terms of the
Macaulay expansion of δu have the form

(

w+1
w

)

- that is, we assume that
after a certain degree u the first difference ∆H ′ has maximal Macaulay
growth, and is linear in k. Consider then ∆H ′ = (1, 4, 10, 20, 5, 6, 7, . . .)
so that H ′ = (1, 5, 15, 35, 40, 46, 53, 61, 70, . . .. Here 35 · 46 = 1610 > 402,
so taking j = 10 and H ′ = (1, 5, 15, 35, 40, 46, 40, 35, 15, 5, 110) gives a
non-log-concave sequence. Likewise, 40 · 53 > 462, so taking j = 12 the
SI sequence H ′ = (1, 5, 15, 35, 40, 46, 53, 46, 40, 35, 15, 5, 112) is non-log-
concave in two adjacent places. But it stops there, as 46 · 61 = 2806 <
2809 = 532.

To get a longer non-log-concave consecutive subsequence, it suffices
to begin the minimal linear growth later. For example, taking ∆H ′ =
(1, 4, 10, 20, 35, 6, 7, 8, . . .) so

H ′
≤j/2 = (1, 5, 15, 35, 70, 76, 83, 91, 100, 110, 121 . . .), (18)

we have h′
k−1 · h′

k+1 > h′
k
2 for k = 4, 5, 6, 7, 8 with equality for k = 9, so

taking

H ′ = (1, 5, 15, 35, 70, 76, 83, 91, 100, 110, 100, 91, 83, 76, 70, 35, 15, 5, 118)

gives 5 adjacent non-log-concave entries centered in degrees 4 to 8. Taking
j = 20 will give equality in the log-concavity equation in degree 9.

4.2 Log-concavity of level sequences.

Recall that the socle of an Artinian algebra A is (0 : mA) where mA is its
maximal ideal. A level sequence is a Hilbert function possible for an Artinian
algebra A = R/I,R = F[x1, . . . , xr] having socle all in the same degree, that
is, H(A) = (1, r, . . . , tj , 0) and the socle of A = (0 : mA) = Aj: we say A
has type tj. The Hilbert functions of level algebras are well known in codi-
mension 2, essentially due to F.H.S. Macaulay [Mac1] but they are not known
for type t in higher codimension except for the Gorenstein codimension three
case (r, t) = (3, 1) (for some partial results see [ChoI, Za1]). Given a Hilbert
function sequence H = (. . . , hi, . . .), we denote by ei = hi−1 − hi = −∆(H)i.

We have [I3, Proposition 2.6, Lemma 2.15]
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Lemma 4.2. The Hilbert function H = H(A) of a level quotient A = R/I of
R = F[x, y] satisfies

H = (1, 2, . . . , d, td, td+1, . . . , tj , 0) where tj = ej+1 ≥ ej ≥ ej−1 ≥ · · · d− td.
(19)

A compressed level algebra of codimension r, socle degree j and type t is
one having Hilbert function

H(A)i = min{ri, trj−i}, (20)

where ri = dimFRi and R = F[x1, . . . , xr] (see [I2] and [Bo, Definition 1.3]).
For example, with (r, t, j) = (3, 2, 5) the compressed level Hilbert function
H = (1, 3, 6, 10, 6, 2).

Proposition 4.3. (i). Every codimension two level sequence is log-concave.
(ii). Every compressed level Hilbert function in any codimension is log-concave.

Proof. The proof of (i) is essentially a translation of the proof of Theorem 2.1,
with Equation (19) replacing Equation (6), there. The proof of (ii) follows from
the log-concavity of the sequence (1, r1, r2, . . . , ri . . .) where ri = dimkRi =
(r+i−1

r

)

- as, letting e = e(r, t, j) be the highest degree such that H(A)i = ri
in Equation (20), for i < e we have h2i = r2i ≥ ri−1 · ri+1 = hi−1 · hi+1; and
h2e = r2e ≥ re−1re+1 ≥ he−1he+1; and for i > e + 1 we have hi = trj−i, so
likewise h2i ≥ hi−1hi; for i = e+ 1 we have, since trj−e ≥ he,

h2i = t2r2j−(e+1) ≥ trj−e · trj−(e+2) ≥ he · hi+1.

However, there are codimension three level sequences that are not unimodal
- see [We,AhS], the former giving a non-unimodal example with r = 3, t = 5.

4.2.1 Problems

A pure O-sequence is a Hilbert function H = H(A) that can occur for a
monomial level algebra A = R/I of socle degree j: that is, Ij has a basis of
monomials. In codimension three, a type two monomial Artinian algebra is
known to be weak Lefschetz (there is a linear form ℓ such that mℓ : Ai → Ai+1

has maximum rank for each i), provided F has characteristic zero [BMMNZ,
Theorem 6.2]. This implies that H(A) is differentiable (the first difference
is an O-sequence) until its maximum value, which may be repeated, then
H(A) is decreasing [MNZ2, Theorem 12]). Although their Hilbert functions
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(codimension three, type two) are characterized in [BMMNZ, Proposition 6.1],
it remains to see if these sequences are log-concave.

There is a subtle connection of pure O-sequences with algebras associated
to matroids (see [CM,C-T,H,MuNaYa]).

Recall that a sequence H = (1, 2, . . . , d−1, d, hd, hd+1, · · · , hj) is admissible
of decreasing type if d ≥ hd ≥ · · · ) and there is b ≥ d such that

d = hd−1 = · · · = hb−1 > hb > hb+1 > · · · > hj . (21)

Recall that an h-vector of a Gorenstein domain D of dimension s is the Hilbert
function H(A), A = D/(ℓ1, . . . , ℓs) where ℓ1, . . . , ℓs is a regular sequence of
linear forms. The h-vectors of Gorenstein domains are a proper subclass of
Artinian Gorenstein sequences. When H = (1, 2, . . . , d, hd, hd+1, . . . , hj) the
condition for H to be an h-vector is for H to be admissible of decreasing
type [GP]. The AG sequence H = (1, 3, . . .) as in Lemma 1.3 is an h-vector
of a Gorenstein domain if and only if the difference sequence of Equation (6)
is admissible of decreasing type [DV], [Va, Theorem 2.18]. A characterization
of the Hilbert function of Gorenstein domains in higher codimension h1 ≥ 4 is
not known. Also, it is apparently still open whether such h-vectors (1, h1, . . .)
of domains with h1 ≥ 4 would be log-concave [Bre, Conjecture 5.2].

While the deformation properties of Artinian algebras have been widely
studied (see, for example, [EmI,Di,BoI,CJN,AEI]) it appears open to check
whether there are special properties, pertaining, say to smoothability - defor-
mations to a smooth scheme - depending on the log-concavity of the Hilbert
functions H. What can we say about the irreducible components of the variety
GT parametrizing graded Artinian algebras of Hilbert function H when r ≥ 4
and H is log-concave?

Subsequent to our work, and partly inspired by it, F. Zanello has further
studied which level sequences and pure O-sequences are log-concave, resolving
the problem in some cases and proposing additional problems [Za2].

Acknowledgment. We appreciate discussions with Chris McDaniel, who pro-
posed the problem of determining which Artinian Gorenstein sequences might
be log-concave, and suggested the reference [H]. Juan Migliore suggested a
mention of level sequences of codimension three, which need not be log-concave,
and asked about log-concavity for pure level O sequences of low type in codi-
mension three. We appreciate comments of F. Zanello. We are thankful for
helpful comments of the referee.
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very much in the hands-on style of our work together.
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