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Log-concave sampling: Metropolis-Hastings algorithms are fast!
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Abstract

We consider the problem of sampling from a strongly log-concave density in R
d, and prove a non-

asymptotic upper bound on the mixing time of the Metropolis-adjusted Langevin algorithm (MALA).

The method draws samples by running a Markov chain obtained from the discretization of an ap-

propriate Langevin diffusion, combined with an accept-reject step to ensure the correct stationary

distribution. Relative to known guarantees for the unadjusted Langevin algorithm (ULA), our bounds

reveal that the use of an accept-reject step in MALA leads to an exponentially improved dependence

on the error-tolerance. Concretely, in order to obtain samples with TV error at most δ for a density

with condition number κ, we show that MALA requires O
(

κd log(1/δ)
)

steps, as compared to the

O
(

κ2d/δ2
)

steps established in past work on ULA. We also demonstrate the gains of MALA over

ULA for weakly log-concave densities. Furthermore, we derive mixing time bounds for a zeroth-order

method Metropolized random walk (MRW) and show that it mixes O(κd) slower than MALA.
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1. Main Results

Recent decades have witnessed great success of Markov Chain Monte Carlo (MCMC) algorithms

suited for generating random samples; for instance, see the handbook (Brooks et al., 2011) and refer-

ences therein. In a broad sense, these methods are based on two steps. The first step is to construct

a Markov chain whose stationary distribution is either equal to the target distribution or close to it in

a suitable metric. Given this chain, the second step is to draw samples by simulating the chain for a

certain number of steps.

Many algorithms have been proposed and studied for sampling from probability distributions with

a density on a continuous space. Two broad categories of these methods are zeroth-order methods

and first-order methods. On one hand, a zeroth-order method is based on querying the density of the

distribution (up to a proportionality constant) at a point in each iteration. By contrast, a first-order

method also makes use of gradient information about the density. A few popular examples of ze-
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roth order algorithms include Metropolized random walk (MRW) (Mengersen et al., 1996; Roberts

and Tweedie, 1996b), Ball Walk (Lovász and Simonovits, 1990; Dyer et al., 1991; Lovász and Si-

monovits, 1993) and the Hit-and-run algorithm (Bélisle et al., 1993; Kannan et al., 1995; Lovász,

1999; Lovász and Vempala, 2006, 2007). A number of first-order methods are based on the Langevin

diffusion. Algorithms related to the Langevin diffusion include the Metropolis adjusted Langevin Al-

gorithm (MALA) (Roberts and Tweedie, 1996a; Roberts and Stramer, 2002; Bou-Rabee and Hairer,

2012), the unadjusted Langevin algorithm (ULA) (Parisi, 1981; Grenander and Miller, 1994; Roberts

and Tweedie, 1996a; Dalalyan, 2016), underdamped Langevin MCMC (Cheng et al., 2017), Rieman-

nian MALA (Xifara et al., 2014), Proximal-MALA (Pereyra, 2016; Durmus et al., 2016), Metropolis

adjusted Langevin truncated algorithm (Roberts and Tweedie, 1996a), Hamiltonian Monte carlo (Neal,

2011) and Projected ULA (Bubeck et al., 2015). There is now a rich body of work on these methods,

and we do not attempt to provide a comprehensive summary in this paper. More details can be found

in the survey (Roberts et al., 2004), which covers MCMC algorithms for general distributions, and the

survey (Vempala, 2005), which focuses on random walks for compactly supported distributions.

In this paper, we study sampling algorithms for sampling from a log-concave distribution equipped

with a density. A log-concave density takes the form

π (x) =
e−f(x)

∫

Rd

e−f(y)dy

for all x ∈ R
d, (1)

where f is a convex function on R
d. Up to an additive constant, the function −f corresponds to

the log-likelihood defined by the density. Standard examples of log-concave distributions include the

normal distribution, exponential distribution and Laplace distribution.

Some recent work has provided non-asymptotic bounds on the mixing times of Langevin type

algorithms for sampling from a log-concave density. The mixing time corresponds to the number of

steps, as function of both the problem dimension d and the error tolerance δ, to obtain a sample from

a distribution that is δ-close to the target distribution in total variation distance. It is known that both

the ULA updates (Dalalyan, 2016; Durmus and Moulines, 2016; Cheng and Bartlett, 2017) as well as

underdamped Langevin MCMC (Cheng et al., 2017) have mixing times that scale polynomially in the

dimension d, as well the inverse of the error tolerance 1/δ.

Both the ULA and underdamped-Langevin MCMC methods are based on evaluations of the gra-

dient ∇f , along with the addition of Gaussian noise. Durmus and Moulines (2016) show that for an

appropriate decaying step size schedule, the ULA algorithm converges to the right stationary distri-

bution. However, their results, albeit non-asymptotic, are hard to quantify. In the sequel, we limit

our discussion to Langevin algorithms based on constant step sizes, for which there are a number of

explicit quantitative bounds on the mixing time. When one uses a fixed step size for these algorithms,

an important issue is that the resulting random walks are asymptotically biased: due to the lack of

Metropolis-Hastings correction step, the algorithms will not converge to the stationary distribution

if run for a large number of steps. Furthermore, if the step size is not chosen carefully the chains

may become transient (Roberts and Tweedie, 1996a). Thus, typical theory is based on running such a

chain for a pre-specified number of steps, depending on the tolerance, dimension and other problem

parameters.

In contrast, the Metropolis-Hastings step that underlies the MALA algorithm ensures that the re-

sulting random walk has the correct stationary distribution. Roberts and Tweedie (1996a) derived suf-
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ficient conditions for exponential convergence of the Langevin diffusion and its discretizations, with

and without Metropolis-adjustment. However, they considered the distributions with f(x) = ‖x‖α2
and proved geometric convergence of ULA and MALA under some specific conditions. In a more

general setting, Bou-Rabee and Hairer (2012) and Eberle (2014) derived non-asymptotic mixing time

bounds for MALA. However, all these bounds are non-explicit in the case of logconcave sampling,

and so makes it difficult to extract an explicit dependence in terms of the dimension d and error tol-

erance δ. In particular, Eberle (2014) made significant contribution to establishing the accept-reject

rate of MALA by assuming differentiability of the target function to fourth order, but its final mix-

ing rate is only explicit when the sampling domain is contained in a ball with constant radius. A

precise characterization of this dependence is needed if one wants to make quantitative comparisons

with other algorithms, including ULA and other Langevin-type schemes. With this context, one of

the main contributions of our paper is to provide an explicit upper bound on the mixing time of the

MALA algorithm.

This work contains two main results, both having to do with the mixing times of MCMC methods

for sampling. As described above, our first and primary contribution is an explicit analysis of the

mixing time of Metropolis adjusted Langevin Algorithm (MALA). A second contribution is to use

similar techniques to analyze a zeroth-order method called Metropolized random walk (MRW) and

derive a explicit non-asymptotic mixing time bound for it. Unlike the ULA, these methods make use

of the Metropolis-hastings accept-reject step and consequently converge to the target distributions in

the limit of infinite steps. Here we provide explicit non-asymptotic mixing time bounds for MALA

and MRW and show that MALA converges significantly faster than ULA. In particular, we show that

if the density is strongly log-concave and smooth, the δ-mixing time for MALA scales as κd log(1/δ)
which is significantly faster than ULA’s convergence rate of order κ2d/δ2. We also show that MRW

mixes O (κd) slowly when compared to MALA. Furthermore, if the density is weakly log-concave,

we show that MALA converges in O
(

d2/δ1.5
)

time in comparison to the O
(

d3/δ4
)

mixing time for

ULA. These results are summarized in Table 1.
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Random walk Strongly log-concave Weakly log-concave

ULA (Cheng and Bartlett, 2017) O

(

dκ2 log((log β)/δ)

δ2

)

Õ

(

dL2

δ6

)

ULA (Dalalyan, 2016) O

(

dκ2 log2(β/δ)

δ2

)

Õ

(

d3L2

δ4

)

MRW O

(

d2κ2 log

(

β

δ

))

Õ

(

d4 L2.5

δ1.5

)

MALA O

(

max
{

dκ, d0.5κ1.5
}

log

(

β

δ

))

Õ

(

d2 L1.5

δ1.5

)

Table 1. Scalings of upper bounds on δ-mixing time for different random walks in R
d with target

π ∝ e−f . In the second column, we consider smooth and strongly log-concave densities, and report

the bounds from a β-warm start for densities such that mId � ∇2f(x) � LId for any x ∈ R
d and

use κ := L/m to denote the condition number of the density. The big-O notation hides universal

constants. In the last column, we summarize the scaling for weakly log-concave smooth densities:

0 � ∇2f(x) � LId for all x ∈ R
d. For this case, the Õ notation is used to track scaling only with

respect to d, δ and L and ignore dependence on the starting distribution and a few other parameters.
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László Lovász and Santosh Vempala. Hit-and-run from a corner. SIAM Journal on Computing, 35(4):

985–1005, 2006.
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