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Log Double Power Law for Concrete Creep 

by Zden~k P. Balant and Jenn-Chuan Chern 

An improved law of creep of concrete at constant humidity and 

temperature is proposed. The well-known double power law gives too 

high a final slope of creep curves compared to available test data. 

This is remedied by a new formula which exhibits a continuous tran­

sition from a power curve to a straight line in the logarithm of creep 

duration. The straight line has the same slope for all ages at loading, 

and the higher the age at loading, the longer is the duration at which 

the transition occurs. The exponent of the initial power curve is 

higher than that used in the double power law and is much too high 

in comparison with the existing test results for very short load dura­

tions in the dynamic range. This penalty, however, is outweighed by 

better extrapolation to very long load durations. The new formula 

significantly restricts the occurrence of divergence of creep curves at 

various ages at loading but does not eliminate it completely unless 

closeness of data fit is sacrificed. The new formula also greatly re­

duces the occurrence of negative values at the end of calculated stress 

relaxation curves. 

Extensive statistical analysis of most test data available in the lit­

erature reveals a relatively modest improvement in the overall coeffi­

cient of variation for the deviations of the formula from test data and 

a significant improvement for the deviations of the final slope from 

its measured value. The same improvements were achieved in an ear­

lier study in which the transition from the power law to the logarith­

mic law was abrupt, with a discontinuity in curvature. The continuity 

of curvature in the present formulation is desirable for applications 

in data extrapolation. 

Keywords: coefficient of variation; computer programs; concretes; creep prop­

erties; dynamic modulus of elasticity; humidity; loads (forces); measurement; 

strains, strength; stresses; stress relaxation; temperature. 

Although existing test data on creep of concrete at 

constant temperature and constant specific water con­

tent can be accurately described by the double power 

law,I-3 certain deviations seem to be systematic rather 

than random. In particular, the final slope of the curves 

of strain versus the logarithm of loading duration ap­

pears too steep for tests of long duration. 

A preceding work4 showed that final slopes that agree 

with test data can be attained by introducing at a cer­

tain time a transition from the double power law to a 

logarithmic law, in which the curves of strain versus 

log-time are straight lines of the same slope for all ages 

at loading with the load duration at the transition in­

creasing with a higher age at loading. In that work4 the 

transition from the power curve to the logarithmic 

curve was considered to occur suddenly, with a discon-

ACI JOURNAL I September-October 1985 

tinuous change in curvature, but without a discontin­

uous change in slope. However, from the viewpoint of 

the physical mechanism of creep, there is no reason for 

a sudden transition from one creep law to another. 

Therefore, a creep law that is smooth and approaches 

asymptotically the double power law for very short load 

durations and the logarithmic law for very long load 

durations seems more realistic. Furthermore, a smooth 

creep law is preferable for the extrapolation of short­

time creep data. Development of such a creep law is the 

objective of this work. 

REVIEW OF DOUBLE POWER LAW 
The basic creep of concrete, i.e., the creep at con­

stant temperature and constant specific water content, 

may be relatively well-described by the double power 
law'-3 

cpl 
J(t,t') = + - (t' -m + a)(t - t,)n (1) 

Eo Eo 

in which J(/,I') is the compliance function (or the creep 

function) = the strain at age t caused by a unit uniax­

ial constant stress acting since age t'; Eo is the asymp­

totic modulus, such that l/Eo represents the asymptotic 

value of the creep curve J(t ,I') versus log «( - t') as log 

(t - t') ..... - 00 or (t - t') ..... 0; n, m, a, and 

cp, are material parameters whose typical values are n "'" 

\Is, m "" Y3, a ::::: 0.05 if ( and (' are in days, and cpl = 

3 to 6; and Eo ::::: 1.5 E 28 , where E28 is the conventional 

(static) elastic modulus at age 28 days. Since (t - t' Y 
= exp[n In(t - t')], the plots of J(t,t') versus log (t 

- (') at constant t' have the shape of exponentials. 

When the double power law was originally proposed, I 

a was considered as O. A nonzero value of a does not 

improve data fits but does agree with the idea that even 

an infinitely old concrete should exhibit some creep. 
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Fig. 1-(a) Creep curve in log-time scale (a = true 
elastic deformation, b = true creep, a' = conven­
tional elastic deformation, and b' = conventional 
creep); and (b) transition from power law to the loga­
rithmic law 

Eq. (1) has a remarkably broad range of applicabil­

ity. It works from a loading age of 1 day to many years 

and for load durations from 1 sec to several decades. It 

also yields reasonable compliance values for rapidly 

(dynamically) applied loads, and the dynamic modulus 

is acceptably estimated by Eq. (1) as 1/1(t' + A,(') for 

A == lO-7 day. The conventional (static) elastic modu­

lus is obtained as the value of 1/ l(t' + A, t') for A == 
0.1 day.5 Parameters Eo, CPI> m, and (¥ are needed to de-
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scribe the age-dependence of the elastic modulus, and 

thus only the one additional parameter n is needed to 

describe all creep. 

Various other creep laws have been proposed in the 

pasL I
-
3M Extensive statistical studies of practically all 

test data documented in the literature revealed, how­

ever, that the double power law allows the smallest 

coefficient of variation for deviations from the avail­

able data. The power function of load duration was in­

troduced by Straub and Shank.IO,11 Wittman et al. 7 pre­

sented supporting arguments based on the activation 

energy theory, and Cinlar, Bazant, and Osman2 gave 

other supporting arguments based on a certain reason­

able hypothesis for the stochastic nature of the creep 

process. 

Some investigators believed the power function of 

( - (' predicted too much creep for load durations be­

yond about one month. This conclusion, however, was 

reached by applying the power function to only that 

part of the creep strain that is in addition to the con­

ventional short-time strain, which corresponds roughly 

to the load duration of 0.1 day. The horizontal asymp­

tote 1/ Eo is then too high, and to fit the data for me­

dium load durations (up to about 30 days) a relatively 

high exponent n (about n == \13) is needed. This causes 

the power curve to shoot above the data points for 

longer durations. However, if the power function is 

applied to the entire creep strain, including that which 

occurs for extremely short load durations in the dy­

namic range (about 0.001 sec), the power function be­

comes acceptable even for relatively long durations 

(several years). In this case, exponent n is then about 1s, 
which is small enough to prevent the power curve from 

overshooting the long-time data points [Fig. l(a)]. In 

addition, the inclusion of all creep strain under the 

power law allows 1/ Eo to be considered as age-indepen­

dent, whereas in the earlier formulas it was necessary to 

use an age-dependent short-time modulus E(t'). 

Although the double power law is formulated for 

basic creep, i.e., the creep of sealed specimens, it is not 

irrelevant for many structures exposed to weather. For 

walls over approximately 1 ft thick, only a small part of 

the initial water content is lost during a normal lifetime 

of 50 years, whereas for a 6-in. cylinder most of the 

initial water content is lost within lO years, as diffusion 

calculations confirm. Consequently, the creep of such 

walls is closer to that of a sealed cylinder than to that 

of a 6-in. cylinder exposed to drying.3 

LOG DOUBLE POWER LAW 

With (t - t')n = en' if ~ = In(t - t'), the power 

curves plotted in log-time scale appear as exponential 

curves, the slope of which is steadily increasing. How­

ever, the prevalent trend of long-time creep measure­

ments indicates that the slope becomes constant when a 

certain limiting slope b, common to the curves for all 

ages t' at loading, is approached. This was already 

noted in Reference 4. Thus it appears that for very long 

load durations the creep law should asymptotically ap­

proach the form 
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J(t,t') = a(t') + b In(t - t') (2) 

which is similar to the logarithmic law proposed by 

Hanson and Harboe. 14,15 At the same time, the creep 

law should asymptotically approach the double power 

law in Eq. (1) as t - t' -+ 0 or log(t - t') -+ - 00. 

The simplest smooth formula satisfying both asymp­

totic conditions is the log double power law 

J(t,t') 
1 1/10 

- + - In [1 + 1/11 (t'-m 
Eo Eo 

+ a)(t - tTl (3) 

where 1/10 and 1/1! are constants. Indeed, denoting x == 

1/11 (t,-m + a) (t - t')" and realizing that ln(l + x) :::: 

x when x is small (approximately x ~ 0.1), Eq. (3) be­

comes nearly identical to Eq. (1) for small (t t') if 

we set 

(4) 

Furthermore, for large x, In(1 + x) == In(1 + lIx) + 

In x :::: In x; therefore, Eq. (3) becomes nearly identical 

to Eq. (2) for large (t - t') if we set 

The transition from Eq. (1) to (2) is gradual and cen­

ters on the time for which x = 1 or 1/I1(t' -m + a) (t -

t'Y = I,i.e., on the time 

This transition time becomes longer as the age at load­

ing t' increases [Fig. l(b)]. This agrees with the fact 

that a constant slope b in the log-time scale appears to 

be reached fairly early if t' is small, and very late or 

hardly at all if t' is very large. 

As with the double power law, Eq. (3) can in princi­

ple be applied to only basic creep, which represents a 

constitutive property of the material. It is often over­

looked that the additional creep due to drying, as 

known, is not a constitutive property. Rather, it is an 

average property of the specimen as a whole, since the 

available test data represent the overall deformation of 

specimens in which drying caused highly nonuniform 

transient distributions of moisture content and stress 

and produced microcracking. Consequently, an empir­

ical description of the mean creep of drying specimens 

requires much more complicated formulas. 
The logarithmic law of Hanson and Harboe, !4,15 

which has the form J(t,t') = lIE(t') + B log(l + t -

t') where t - t' is in days, is equivalent to the limiting 

case of Eq. (3) for very long t - t', i.e., to m -+ 00, 

a 1/11 = 1, n = 1, and Eo -+ E(t'). 

VERIFICATION BY TEST DATA FROM 

LITERATURE 

Eq. (3) contains six material parameters (Eo, n, m, a, 

1/10' 1/11) that must be determined from test data. This 

may be efficiently accomplished by computer optimi-
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zation in which the sum of squared deviations A of Eq. 

(3) from the given data is minimized. A suitable library 

subroutine for this purpose is the Marquardt-Leven­

berg algorithm, which is often used for the fitting of 

creep data.! The data used in this optimization were 

drawn from a computerized data bank set up at North­

western University,2,16 which contains most of the test 

data available in the literature. 

The raw measurements as found in the literature were 

replaced by visually hand-smoothed curves. These 

curves were characterized by data points placed on the 

curves at regularly spaced intervals in the log (t - t') 

scale. This eliminates the bias due to crowding of data 

points in some portions of the log-time scale, as found 

in most reported data, and mitigates also to some ex­

tent the measurement error, which is not felt by real 

structures. 

The solid lines in Fig. 2 represent the calculated op­

timal fits achieved for the test data from References 14, 

15, and)7 through 23. These fits seem satisfactory and 

better than any others achieved previously, The corre­

sponding values of the material parameters for each 

concrete, obtained by computer optimization, are also 

listed in Fig. 2. 

The error of the log double power law may be char­

acterized by the overall coefficient of variation W of the 

deviations from test data 

(

1 N )11 
W = N F. wJ ; with 

= 1(_1_ t A2) 11 
Wj J

j 
n _ 1 i= 1 'J 

(7) 

in which lij (i == 1, . . . n) are the characteristic data 

points for the data series number j which are placed at 

regular spacings in log-time on the hand-smoothed 

measured curves; Aij is the vertical deviations of Eq. (3) 

from these characteristic data points; ~ is the mean 

compliance value for data series number j; Wj is the 

coefficient of variation of the deviations from test data 

for data series number j; and j = 1, . . . N are all the 

data series considered. The values of Wj and ware sum­

marized in Table 1 (Column LDPL). For comparison, 

Table 1 also lists the values of Wj and w for the opti­

mum fits attainable with the double power law (DPL), 

plotted as the dashed line curves in Fig. 2 and charac­

terized by the material parameter values listed in Ref­

erence 1. For the double power law, w = 5.5 percent 

(for a = 0),1 while with the log double power law w = 
3.4 percent is achieved (Table 1). The improvement is 

appreciable but not drastic, which is not surprising 

since the capability of the double power law to repre­

sent test data is already quite good. 

Similar to a previous studt in which an abrupt tran­

sition from power curves to logarithmic curves was 

used, a more significant improvement is found in the 

representation of the final slopes of the measured long­

term creep curves, which is important for the extrapo­

lation of creep measurements. The final slopes were 
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Table 1 - Coefficients of variation for test data 

~ 
Optimum fits Prediction formula 

j Data set DPL' DPL' LDPL DPU" ACI" CEB" LDPL 

I. Canyon Ferry 4.60 5.58 3.80 39.6 47.3 18.7 15.8 

Dam"'" 

2. Ross Dam"'" 3.50 7.00 2.70 27.7 16.3 25.5 14.2 

3. Dworshak 5.46 5.63 3.20 21.2 35.4 46.0 11.8 

Dam" 

4. Rostasy et al22 1.00 1.20 0.60 5.1 12.2 7.9 8.0 

5. L'Hermite et 4.90 6.28 4.60 25.2 52.3 19.8 16.9 

al." 

6. Shasta 4.10 5.37 4.20 16.6 27.5 20.3 23.9 
Dam!4,15 

7. Wylfa 4.14 4.15 4.00 21.0 35.4 46.0 9.82 

Vessel" " 

8. Gamble- 2.82 6.20 2.80 - - - -
Thomass" 

9. McDonald" - - - 20.0 24.1 4.0 14.7 

10. Meyers- - - - 14.2 15.4 27.5 14.1 

Maity" 

II. York et al." - - - 16.1 23.2 8.7 14.4 

12. Mossiossian- - - - 7.81 - - 3.46 

Gamble" 

13. Keeton" - - - 26.9 36.4 52.4 16.1 

14. Ross" 93 - - - 33.7 35.0 14.2 41.2 

percent 

Number of data 8 8 8 13.0 12.0 12.0 13.0 

sets N 

W = (~W;IN)" 4.03 5.45 3.44 23.11 32.35 28.72 17.97 

"Statistical values are provided by Reference 2. 

determined graphically as illustrated in Fig. 2 and 3 by 

the dashed straight lines. The deviations of the slope 

aJ(t,t')lalog(t - t') calculated from Eq. (3) for the last 

sampling time have been analyzed statistically, and their 

coefficients of variation (combined for all t'), along 

with the corresponding values for the double power 

law, are listed for each data series in Table 2. For the 

latter, the coefficient of variation for the final slope 

deviations is found to be WI = 34 percent while for our 

log double power law this is reduced to WI = 19 per­

cent. The improvement here is indeed significant. 

In the fits shown in Fig. 2, we may detect one unde­

sirable feature: the curvature of the creep curves at very 

short load durations (less than 1 day) is often too high, 

as are the compliance values at the beginning of the 

creep curves, particularly for high t' . The problem is in 

the value of exponent n. The optimum values of n listed 

in the figures are mostly around Y3, while fitting of the 

same test data with the double power law yields n = 
lis. The latter value gives just about the correct left­

ward extrapolation into the dynamic range, i.e., a cor­

rect dynamic modulus, whereas for n == YJ the dy­

namic modulus is obtained too close to the static mod­

ulus of elasticity. 

Compared to the previous study in which a sudden 

transition from the power curve to the logarithmic 

function was used, here we have the advantage of a 

smooth formula without a sudden change in curvature, 
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Fig. 3-Statistical regression analysis of test data for 
log double power law and double power law 

but a disadvantage in the loss of applicability of the 

formula to very short loading durations, particularly 

the dynamic range. 

If some material parameters are estimated, then the 

remaining parameters can be easily determined by lin­

ear regression. For example, we may define x = In[1 

+ 1/1] (t' -m + a) (t - t,)n] and choose the values of m, 

n, a, and 1/1] based on experience (e.g., on the basis of 

the values listed in Fig. 2 and 4). Then, if we plot the 

measured values y = J(t, t') versus x, straight-line 

regression gives us Eo -] as the intercept and 1/Io/Eo as the 

slope, since y = Eo - 1 + (1/10/ Eo)x. The errors in the in­

tercept and slope may be characterized by correction 

coefficients Co and CI , defined by the relation y = (1 + 
cO)EO-

1 + c l (1/I/Eo)x. Then, ifwesetz = EoJ(t,t') - 1, 

the plot of z versus x must be a straight line, i.e., Z = 
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Table 2 - Final slopes 

Optimum fits Prediction formulas 

Data DPL,' LDPL, DPL,' LPDL, 

set (' AD A, AD A, 

2 0.38 0.07 1.20 0.00 

7 0.17 0.20 0.85 0.03 

1 28 0.00 0.08 0.00 0.05 

90 0.40 0.20 0.10 0.25 

365 0.32 0.00 0.20 0.00 

2 0.70 0.19 1.00 0.18 

7 0.00 0.00 0.50 0.20 

2 28 0.26 0.00 0.00 0.20 

90 0.50 0.05 0.50 0.20 

365 0.60 0.00 0.40 0.33 

I 0.60 0.00 1.64 0.22 

3 0.05 0.00 1.00 0.00 

3 7 0.20 0.00 0.80 0.10 

28 0.00 0.00 0.00 0.23 

90 0.50 0.40 0.30 0.07 

4 28 0.25 0.00 0.11 0.20 

7 0.04 0.33 0.54 0.05 

5 
28 0.17 0.17 0.50 0.23 

90 0.17 0.17 0.25 0.15 

730 0.60 0.50 0.60 0.70 

28 0.39 0.16 0.35 0.10 

6 
91 0.00 0.10 0.08 0.05 

365 0.00 0.20 0.10 0.75 

2645 0.50 0.20 0.10 0.50 

7 0.39 0.39 0.20 0.14 

7 
60 0.17 0.17 0.40 0.22 

400 0.05 0.05 0.30 0.60 

4560 0.29 0.29 0.15 0.00 

2 0.20 0.00 - -
8 

7 0.00 0.08 - -
17 0.00 0.00 - -
40 0.28 0.20 - -

9 90 - - 0.96 1.33 

10 
72 - - 0.04 0.00 

28 - - 0.52 0.00 

11 90 - - 0.41 0.90 

12 4 - - 0.05 0.00 

13 8 - - 0.16 0.40 

8 - - 1.38 1.72 

14 - - 0.42 0.79 

14 28 - - 1.30 2.00 

60 - - 1.50 1.90 

90 - - 1.50 1.45 

N 32 32 39 39 

WI 33.7 19.1 71.40 69.00 

(58.00) (38.80) 

<l.D and <l., are normalized errors of final slopes for curves of double pO'li'er 
law kD and log double power law k~ in comparisons with the final slope of test 
datak, defined as \k"lk - 1\ and Ik,lk - 1\, respectively. 

WI = -- E M" or -- E <l.i, (
In )~ (1 n )" 

n - 1 i_I n - 1 i= I • 

C1x + Co. Thus, the sum cP of the squared vertical devia­

tions of the data points from the straight regression line 

is a measure of the error. The initial estimates of the 

values of m, n, a, and 1/11 may be improved by carrying 
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out the regression for various estimates and then pick­

ing the one which gives the smallest cPo 

If the formula [Eq. (3)] were perfect, then C I should 

be 1 and Co should be 0. Statistical regression analysis, 

shown in the plot in Fig. 3, yields for C1 and Co values 

that differ only slightly from 1 and 0, respectively, if 

the values of the material parameters m, n, a, and 1/11 

previously obtained by nonlinear optimization are used. 

This is another confirmation of the optimization re­

sults. 

Regression analysis has the advantage of providing 

statistics, such as the confidence limits, as a function of 

x; see the dashed curves in Fig. 3, which represent the 

95 percent confidence limits. Although these curves 

look straight, due to the large size of the data set and a 

small coefficient of variation, they actually have the 

shape of hyperbolas and diverge as the distance from 

the centroid of the data set increases. In this manner, 

the confidence limits increasingly separate when the test 

data are extrapolated to longer times. A useful feature 

of the regresssion plot in Fig. 3 is that it permits com­

bining the data from different laboratories for differ­

ent concretes. This greatly broadens the statistical ba­

sis. 

Alternatively, another linear regression is possible by 

choosing the values of Eo, 1/10' m, and a in advance and 

defining x = log«( - (') andy == log [(exp{[Eol(t,(') 

- I1No} - 1)/«(' -m + a)]. Here, straight-line regres­

sion of y versus x yields n as the slope and log 1/11 as the 

intercept. This type of regression plot, however, is usu­

ally quite scattered, since the value of y appears to be 

sensitive to small changes in the parameters. 
For comparison, the same type of regression as in 

Fig. 3(a) is shown in 3(b) for the double power law. 

Here y == Eol(t,t') - 1, and x = cPl(t' -m + a) «( -

t')". Again, the log double power law yields narrower 

confidence limits than does the double power law (Fig. 

3). (The definitions of x for Fig. 3(a) and (b) are differ­

ent, and thus the scales are not the same.) 

Another interesting plot is that of J(t, (') versus log t 

(Fig. 2). This plot should approach a straight line 

asymptotically for very large ( (different straight lines 

for different ('). The plots in Fig. 2 clearly confirm 

such an asymptotic trend, thus confirming the transi­

tion to a logarithmic law. However, such plots are not 

useful for small values of «( - t' )/( because they crowd 

the data points together. 

DIVERGENCE OF CREEP CURVES 

The double power law is known to exhibit a certain 

questionable property. 12,24,25 The creep curves for differ­

ent ages (' at loading begin to diverge after a certain 

load duration ( - I' = ()D is exceeded. This property 

causes their shape to be nonmonotic when creep recov­

ery curves are calculated from J (t, (') on the basis of 

the principle of superposition. 

Although this might seem puzzling, no fundamental 

(thermodynamic) reason exists that would prohibit 

divergence and nonmonotonic recovery in the case of 
an aging material. I2

,24,25 In fact, both properties have 

ACI JOURNAL I September-October 1985 



Dworahak Dam.1968 

1.10 lll.-Z."',X,O-'/p.ri 

""","0 

uo 

uo 

n-O.300 

_z.zoox,o-# 
y,- Q.17' ~. .. ' . 

011-",11",. 

o.oof----+----.,f---+---+--+---+--j 
I(J' 1(J3 1(J2 I(JI I~ I~ 

,'/0 

,10 

.. 
,,,., 

Shute Dam.1953.1958, aellled 

lJK.- 1.3St XtO-'/pri 

..... ",116 

... 0.3" 

.. ,.IOOXfO-4 

y,- 0."3 

'+1- '0.36 

.. 

Hi' 

,,+-----+----+----+----i 

1 ... r-----------------, 
Roas Dam 1953,1958 

1.20 1[1 1~ ::!:~X'O-'/Pft 

n- 0.340 

00 _ Z,ZOOX,O-# 

'j~::~~ 

:1 ~<~:-;~~~ 
! --- ~----- .. ~~;;--~ 

<Ot ~-- ~--; __ 

2Dtl ~~~'I 
~- 14,22 r.. 

0.00· I I . 
I~ I~ I~ I~ 

,.0 

,.20 

L'Hermite.t aJ,,1965.1971. (RH=IOOSj 

/ 

a.co+-, --f---+---+--+---+---i---j 
lri' lei' 10' 10-3 10-2 10-1 I~ 

Canyon Ferry Dam,1958 ... .;-Y 
l/Eo- ,.402XfO-'/pri ;/// 

m= '.1" 
n= 0.S23 

-= 2.S00XtO.... ... ... " ... 

~UU ~-

v,= as.I! "", ... "", \",Z 00.'\1' I!I --~-;;.1f;'" 

. ---~~~:!;~j;~ 
_;--i!i ____ -a----~1I _7";"~;--

~------~!~ 

~~.-

01= '5.B3" 

I~ 

I Roatasy,Teicben.Enaelke.1971 

"'tl l/Eo- '.326X'O-'/pri 
m= 0.9B7 

""" 0.306 

4= !.OOOX'O-# 

'VIa::: '.740 

V,= 6.60S 

lIcDonllld 1975. aellled 

l/Eo-, .3,9 X'O-'/pn 

,",=0.646 

n=0.!67 

m:=2.960X'0 .... 

'VIo=2.0" 

'VI,=3."0 _~t9_6ft~:-: 

.' .20 !l---"'---

b-______ +-______ -r ______ ~_~~'-.,-7~ 
10-1 lri' 

1.00r----------------------, 

Keeton 1965. (RH= I 00") 

l/Eo"" '.3'B x'o-'/pri 
m",,0.648 

n=0.315 

1S=2. 760X'0-# 

'VIo""Z.066 

·'h=2.657 I!i 

Q:)= 16.09y., 

.20b------+------+------; 

1.00,-------------------, 

1.20 

lIoallio.aian.Gamble 1972. (RH=IOOo;) 

n=0.420 

a=2.660 X'O .... 

"Yo·'.'!S 

"Y1- '.B7! 

01= 3.460~ 

1~ 

.'70 

".0 

W'ylfa VeMtll Concrete, Haled 

l11e- t,SO'XtO-'/pri 

,...0.427 

ft. 0.3'0 
_ 3.000 Xto-4 

..,-I.t," 

'Pl- 1,B26 

101 

Ross 1958. 

I~ 

(RH~93") 

1/10- ',317 XtO-'/pri 

m= 0.B03 

ns 0.340 

.... 3.3S0XtO"" 

'Y,·2.036 

11- I. au 

I~ 

Weyers and Waity 1970, sealed 

l/Eo- 1 .• '36 X'O-'/pn 

::::::: __ --;.~f~~.: 
-= '.460X'0-# _......,/ ./ 

Vo-,.tI! /_~;~.-I!f"" 
"Yl- ~o:-OJ-/ (!J 

./ 

.- '4.0196 
mix A 

Weyers and Waity 1970, seal~d 

,/ 
l/Eo- ,.33IX'0-'/pri J' 

m- '.t06 ~/";.,./ 
n=0.420 ,,/ J 
a= ',BOOX'O.... /<:. ./jP'/ 

Va"" '.526 ,...0;;,,& ~ l!)~ 
Y,= , '.02 ..... / t,;... (!J 

...... "'" I!I 

.so ......... I!I 
,.."'-111 

York,Kennedy,Perry 1970, sealed 

1/10- 1.3Z'X'0-'/pri 

m=0.a92 

fI.= 0,360 

a= Z.96DX'0 .... 

"Yo- ,.,BO 

"YI"" 3.40B 

10' 

I~ 

I~ 

1Q+I--------i--------+-------+I------~ 

I~ 10' I~ I~ I~ WI I~ 1~ 1~ 

t-t'(days) 

Fig. 4-Curves obtained when material parameters are predicted from strength and composition of concrete 

ACI JOURNAL I September-October 1985 671 



(,) ,---------

" Canyon Ferry Dam.1958 Dworsha.k Dam,1968 , 
I 

- Loti-Oollbl.PO'III'a-LAw I 

( b ) j 
•. , 

- Loc-DelubleP01I'erlAwi 
...... Doubl. P ......... La. I 

~ 2' ~ ----.-<.-.. ~~~.:~.. I 

1l. 1····~,.29...,.. . .... 

1, ~ ~ .. Doubl. P,...... ! 

~ •. of 
'" . 

S 
-:;-
~. 

~1.0 

Fig. 5-Stress-relaxation curves for Dworshak Dam l7 

and Canyon Ferry Dam 14
,15 calculated from superposi­

tion principle after data smoothing with double power 
law and log double power law 

been observed in some experiments. For example, the 

divergence can be visually recognized in the measured 

plots of J(t, t') versus log t in Fig. 2. Nevertheless, there 

exists no reason why divergence should occur. More­

over, it might be that observed divergence is caused by 

some nonlinear phenomena,24 which cannot be de­

scribed by the compliance function. For these reasons, 

and because divergence causes some computational 

problems, it is probably preferable to avoid or limit its 

occurrence as far as test data permit. 

Divergence occurs when the creep curve for a higher 

age at loading t I and the same t has a smaller slope 

aJ(t,t')lat, i.e., when a2J(t,t')lat at' is negative, which 

is what we want to avoid. Differentiation of Eq. (3) 

yields 

aJ(t,t ' ) 

at 

n1/l[ (t ' -m + a) (t - t')" -I 

1 + 1/11 (t' -m + a) (t - t')n 

and so divergence does not take place as long as 

a2J(t,t') 

at at' 

(8) 

n1/lo ifl - f2 + fJ) >- 0 (9) 

Eo (t - t')" [1 + 1/11 (t ' - m + a) (t - t')nF ---

in which 

(l - n) (t,-m + a), 

mt' -I-m (t - t'), 

1/11 (t' -m + a)2 (t - t')" (10) 

The inequality of Eq. (9) implies that fl + h ~f2' The 

duration t - t' at which divergence begins is the solu­

tion of this inequality. An explicit solution, however, is 

impossible. 

Evaluating the magnitudes of fl, f2' and fJ for the 

various data sets and various t and t ' ,fl is usually small 

as compared to fz and fJ' Thus the condition of nondi­

vergence may be approximately stated as h ~ f2' and 

this inequality can be solved explicitly for t - t', yield­

ing 
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Table 3 - Elasped time limits for nondivergence 
for creep test data of L'Hermite et al. (1965) fitted 
by double power law and log double power law 
(in days) 

LDPL' 

t' DPL* Exact, Eq, (9) Approximate, Eq. (II) 

7 33.8 450 430 

28 152,0 500 491 

90 558,0 1080 1010 

730 6283,9 50000 49500 

*m = 0,329, n = 0,084, and ex = 0,198, 
'm = J.l06, n = 0.342, >/; = 68.4. and ex = 0.0036. 

This is a sufficient condition but not a necessary one 

because fl was neglected. The exact limit on t - t ' is 

larger than Eq. (11) indicates, but usually it is only 

slightly larger (Table 3). 

Divergence cannot be totally prevented and will al­

ways occur at sufficiently long load durations. For the 

double power law, 24 the nondivergence condition leads 

to fl ~ f2 rather than fl + fJ ~ f2' Since always h > 
0, the range of non divergence for our log double power 

law is always broader (actually much broader) than it is 

for the double power law. Moreover, after the adjacent 

creep curves start to diverge, they are found to increase 

their separation by only a little, much less than one 

finds for the double power law; see the plots of J(t,t ' ) 

versus log t in Fig. 2. Thus the recovery curves calcu­

lated from J(t, t ') on the basis of the superposition 

principle would never be too far from a monotonic 

curve. 

STRESS RELAXATION PREDICTIONS 
Stress relaxation at constant strain, unlike creep re­

covery, may be closely predicted from J(t,t') on the 

basis of the principle of superposition. This is con­

firmed by relaxation measurements. 26 Although mea­

surements for very long durations t - t' of imposed 

strain are lacking, frequently it is found that the relax­

ation curves calculated from J(t, t') cross into negative 

values of stress at very long t - t ' (over 10 years) if t' 

is small. This is usually found when the actual mea­

sured compliance values are used and when they are 

smoothed by the double power law. 

From the thermodynamic viewpoint, no fundamen­

tal law exists that would prohibit such negative values 

when one deals with an aging material. 25 Nevertheless, 

in absence of experimental support, such behavior 

seems suspicious, especially since it is not clear whether 

it might be caused merely by some random scatter of 

compliance measurements or by an error in the for­

mula for the compliance function (or by some nonlin­

ear phenomena). Although not imperative, we prefer a 

compliance function that avoids or minimizes the oc­

currence of negative values of the associated relaxation 

function. 

Fig. 5 shows examples of the relaxation curves, which 

were calculated on the basis of the superposition prin­

ciple (using a highly accurate step-by-step algorithm27
,28) 

from the compliance functions that give the optimum 
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fits of the test data for Dworshak Dam17 and for Can­

yon Ferry Dam. 14
,15 While the relaxation curves do cross 

at long times into negative values for the double power 

law, this does not happen for the present log double 

power law. 

EXTRAPOLATION OF TEST DATA 

The more realistic representation of the slope of the 

long-time creep curves, as well as the smoothness of 

the log double power law, is particularly useful for ex­

trapolating short-time measurements into long-time 

measurements. This will be demonstrated using the 

measurements of Rostasy et aI., 22 which represent one 

of the best controlled and least scattered creep mea­

surements available (Fig. 6). Assume that only the 

measurements up to load-durations t - t' = 6 months 

are known. The optimum fit of these data is obtained 

by linear regression as described previously. This yields 

the solid curve plotted in Fig. 4. This curve is very close 

to the remaining measurements, which demonstrates 

the extrapolation capability of the log double power 

law. 

For comparison, Fig. 6 also shows the extrapolation 

obtained when the data up to 6 months duration are 

fitted by the so-called Ross' hyperbola (dashed lines). 

This hyperbola represents a widely used method. 13,29 The 

extrapolation is very poor, which reinforces recent neg­

ative conclusions about this extrapolation approach. 13
,29 

CONCLUSIONS 
1. The final slopes of long-time creep curves as given 

by the double power law are predominantly on the high 

side when compared to long-term measurements. This 

may be remedied by the log double power law, which 

exhibits a continuous transition from a power curve to 

a straight line in the logarithmic scale of load duration. 

The slope of this line is the same for all ages at load­

ing, and the younger the concrete the earlier the transi­

tion occurs. 

2. The log double power law appears suitable for ex­

trapolating short-time creep measurements to long load 

durations. 

3. The exponent of the initial power curve is higher 

than that for the double power law (about YJ instead of 

about \Is). This has the disadvantage that the log dou­

ble power law does not apply for very short load dura­

tions (under 0.1 day) and especially not for the dy­

namic range, whereas the doubie power law does apply 

for this range. This is the price paid for better long­

term extrapolation. 

4. The aforementioned disadvantage for very short 

load durations does not exist for the previously formu­

lated double power logarithmic law, in which the tran­

sition from a power curve to a logarithmic curve is 

sudden, with a discontinuous change in curvature. The 

continuity of curvature in the present formulation is, 

however, advantageous for extrapolation of test data. 

5. The log double power law (same as the previous 

double power logarithmic law) significantly restricts the 

occurrence of divergence of creep curves for various 
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Fig. 6-Example of extrapolation based on data for 
load duration up to six months 

ages at loading. However, divergence cannot be elimi­

nated completely if a good fit of test data should not be 

sacrificed. 

6. The present formulation (similar to the previous 

double power logarithmic law) also greatly reduces the 

occurrence of negative stress values at the long-time tail 

of stress relaxation curves calculated on the basis of the 

principle of superposition. 

7. Compared to the double power law, the present 

formulation achieves only a small improvement in the 

overall coefficient of variation for the deviations from 

the bulk of the test data reported in the literature. 

However, a significant improvement is achieved in the 

coefficient of variation for the deviations of the final 

slope of the measured creep curves from that predicted 

by the present formula. (These features are the same as 

for the previous double power logarithmic law.) 

A further improvement of the concrete creep law is 

given in the paper "Triple Power Law for Concrete 

Creep," by Bazant and Chern, Journal of Engineering 

Mechanics, ASCE, V. 111, 1985, pp. 63-83. 
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APPENDIX-PREDICTIONS OF CREEP FROM 
CONCRETE STRENGTH AND COMPOSITION 

Demonstration of the capability to fit the bulk of the existing test 

data confirms the applicability of the type of the mathematical for­

mula. However, it is another matter to predict the values of the 

material parameters in the formula from the given strength and com­

position of concrete. This problem is generally known for huge sta­

tistical scatter,"] no matter which formula is used. Because the uncer­

tainty of predicting material parameters in the creep law from the 

strength and composition is much larger than that of the creep law 

itself, it is not important to use a very accurate creep law if only the 

strength and composition are specified and no creep measurements 

per se are taken. 

Therefore, the use of the present formulation can at best bring only 

a minor advantage over the double power law in the prediction prob-
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lem. Nevertheless, more realistic final slopes are still an advantage, 

and thus the previously developed prediction formulas for the pa­

rameters of the double power law'" have been modified, in a purely 

empirical manner, to yield prediction formulas for the material pa­

rameters in the present log double power law. Analysis of the test 

data previously used for the BP Model' indicated that the six param­

eters in Eq. (3) can be predicted by the following empirical formulas 

with 

Eo = E~ + 0.77 (I + 526e - ,.91 fi )-' 

E' o 0.0062 if: - 5) if f: ~ 5 ksi, else E~ = 0 

m 0.4 + 0.79 (1 + 1.16 x 1O-'e '''fi)-', 

n 2.5 n DP," a = 0.5 a DPL 

0.87 + 1.31 (1 + 8330e-'·"fi)-', 

1.5 + 42500 (586 + e-'''ff)-' 

(AI) 

(A2) 

(A3) 

(A4) 

in which f: is the standard cylindrical strength of concrete at age 28 

days, which must be given in ksi (1 ksi = 1000 psi = 6.895 MPa); 

the subscript DPL refers to the values given by the BP Model for­

mulas for the double power law' 

a :: 0.0025 or a 
16 wlc 

(A5) 

n 0.288 0.000325 if: )'4 (A6) 
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or for x > 0, n 0.3 + 

for x :e;;;: 0, n = 0.3 

0.175 x' 

5130 + x' 

with x being defined as in Eq. (18) of Reference 2, i.e. 

x = 2.1 -- + 0.1 f: - - 0, - 4 [ 
alc ( )'" (W)'" (a)"'] 

(sic)" c g 

(A7a) 

(A7b) 

(A8) 

where c = cement content in kg/m'; wlc = water-cement ratio; alc 

= aggregate-cement ratio; gls = gravel-sand ratio; sic = sand-ce­

ment ratio (all ratios by weight); f: is 28-day cylinder strength in ksi; 

and 0, is a coefficient taken as 1.00 for ordinary cements of ASTM 

Types I and II, 0.93 for cements of Type III, and 1.05 for cements of 

Type IV. 

The prediction results are illustrated in Fig. 4. The overall coeffi­

cient of variation for the deviations of the predicted compliance val­

ues from test data for all the data sets used is W = 18.0 percent, while 

for the BP Model W = 23.1 percent.' For the ACI Committee 209 

recommendations," the comparable value is 32.4 percent,' and for the 

CEB-FIP Model Code" 28.7 percent' (see Table I). For the devia­

tions of the final predicted slopes from the measured slopes, the 

combined coefficient of variation for all data sets is wf = 69 percent, 

and 71 percent for the BP Model. Calculation of these last values in­

cluded Ross's data," which conspicuously differ from other data sets. 

If these data were omitted, wf would be 38.8 percent for the log dou­

ble power law and 58.0 percent for the double power law (see Table 

2). 

These prediction formulas must be considered rather crude and a 

more careful study of the prediction problem needs to be carried out 

in the future, particularly for the effect of concrete composition. 
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