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Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided
radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for
multimodal medical image fusion is presented, which is approximately shi
 invariant and can e�ectively suppress the pseudo-
Gibbs phenomena. 	e source medical images are initially transformed by NSCT followed by fusing low- and high-frequency
components. 	e phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-
frequency coe�cients, whereas the Log-Gabor energy that can e�ciently determine the frequency coe�cients from the clear and
detail parts is employed to fuse the high-frequency coe�cients. 	e proposed fusion method has been compared with the discrete
wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT)
based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the
proposed fusionmethod can obtainmore e�ective and accurate fusion results ofmultimodalmedical images than other algorithms.
Further, the applicability of the proposed method has been testi
ed by carrying out a clinical example on a woman a�ected with
recurrent tumor images.

1. Introduction

Medical imaging has attracted increasing attention in the
recent years due to its vital component inmedical diagnostics
and treatment [1]. However, each imaging modality reports
on a restricted domain and provides information in limited
domains that some are common, and some are unique
[2]. For example, computed tomography (CT) image can
provide dense structures like bones and hard tissues with less
distortionwhereasmagnetic resonance imaging (MRI) image
is better visualized in the case of so
 tissues [3]. Similarly, T1-
MRI image provides the details of an anatomical structure
of tissues while T2-MRI image provides information about
normal and pathological tissues [4]. As a result, multimodal
medical images which have relevant and complementary
information are necessary to be combined for a compen-
dious 
gure [5]. 	e multimodal medical image fusion is

the possible way to integrate complementary information
frommultiplemodality images [6].	e image fusion not only
obtains amore accurate and complete description of the same
target, but also reduces the randomness and redundancy to
increase the clinical applicability of image-guided diagnosis
and assessment of medical problems [7].

Generally image fusion techniques can be divided into
spatial domain and frequency domain techniques [8]. Spa-
tial domain techniques are carried out directly on the
source images. Weighted average method is the simplest
spatial domain approach. However, alongwith simplicity, this
method leads to several undesirable side e�ects like reduced
contrast [9]. Other spatial domain techniques have been
developed, such as intensity-hue-saturation (IHS), principal
component analysis (PCA), and the Brovey transform [10].
Although the fused images obtained by these methods have

high spatial quality, they usually overlook the high quality
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of spectral information and su�er from spectral degradation
[10]. Li et al. [11] introduced the arti
cial neural network
(ANN) to make image fusion. However, the performance
of ANN depends on the sample images and this is not an
appealing characteristic. Yang and Blum [12] used a statistical
approach to fuse the images. In their method, the distortion
is modeled as a mixture of Gaussian probability density
functions which is a limiting assumption. Since the actual
objects usually contain structures at many di�erent scales
or resolutions and multiscale techniques can provide the
means to exploit this fact, the frequency domain techniques
especially the multiscale techniques have attracted more and
more interest in image fusion [13].

In frequency domain techniques, each source image is

rst decomposed into a sequence of multiscale coe�cients.
Various fusion rules are then employed in the selection of
these coe�cients, which are synthesized via inverse trans-
forms to form the fused image. Recently, series of frequency
domain methods have been explored by using multiscale
transform, including Laplacian pyramid transform, gra-
dient pyramid transform, 
lter-subtract-decimate pyramid
transform, discrete wavelet transform (DWT), and complex
wavelet transform (CWT) [14–20]. 	ere is evidence that
multiscale transform based signal decomposition is similar
to the human visual system. As we know the wavelet analysis,
with its upstanding localize peculiarity in both time and
frequency domain, has become one of the most commonly
used methods in the 
elds of multiscale transform based
image fusion [16]. However, wavelet analysis cannot e�ec-
tively represent the line singularities and plane singularities
of the images and thus cannot represent the directions of the
edges of images accurately. To overcome these shortcomings
of the wavelet transform, Do and Vetterli [17] proposed
Contourlet transform which can give the asymptotic optimal
representation of contours and has been successfully used for
image fusion. However, the up- and downsampling process
of Contourlet decomposition and reconstruction results in
the Contourlet transform lacking shi
-invariance and having
pseudo-Gibbs phenomena in the fused image [19]. Later, da
Cunha et al. [20] proposed the nonsubsampled Contourlet
transform (NSCT) based on Contourlet transform. 	is
method inherits the advantages of Contourlet transform,
while possessing shi
-invariance and e�ectively suppressing
pseudo-Gibbs phenomena.

Although quite good results have been reported by NSCT
based method, there is still much room to improve the fusion
performance in the coe�cient selection as follows.

(a) 	e low-frequency coe�cients of the fused image can
be simply acquired by averaging the low-frequency
coe�cients of the input images. 	is rule decreased
contrast in the fused images [21] and cannot give the
fused subimage of high quality for medical images.

(b) 	e popularly used larger absolute rule is imple-
mented in the value of a single pixel of the current
high-frequency subband. 	e disadvantage of this
method is that the coe�cients only know the value of
a single pixel but not any of the relationship between

the corresponding coe�cients in high-frequency sub-
bands [22].

(c) Most fusion rules of the NSCT-based methods are
implemented in multifocus images [23], remote sens-
ing images [24], and infrared and visible images [25].
	e results are not of the same quality as those of the
multimodal medical images. For example, Chai et al.
[22] proposed aNSCTmethod based on features con-
trast ofmultiscale products to fusemultifocus images.
However, it has been proven that this algorithm is not
able to utilize prominent information present in the
subbands e�ciently and results in the poor quality
when it is used to fuse multimodal medical images
[26].

In this paper, a novel fusion framework based on NSCT
is proposed for multimodal medical images. 	e main
contribution of the method lies in the proposed fusion
rule, which can capture the best membership of source
images’ coe�cients to the corresponding fused coe�cient.
	e phase congruency and Log-Gabor energy are uni
ed
as the fusion rules for low- and high-frequency coe�cients,
respectively. 	e phase congruency provides a contrast and
brightness-invariant representation of low-frequency coe�-
cients whereas Log-Gabor energy e�ciently determines the
frequency coe�cients from the clear and detail parts in the
high frequency. 	e combinations of these two techniques
can preserve more details from source images and thus
improve the quality of the fused images. Experiments indicate
that the proposed framework can provide a better fusion
outcome when compared to series of traditional image
fusion methods in terms of both subjective and objective
evaluations.

	e rest of the paper is organized as follows. NSCT and
phase congruency are described in Section 2 followed by

the proposed multimodal medical image fusion framework

in Section 3. Experimental results and discussions are given

in Section 4 and the concluding remarks are presented in

Section 5.

2. Preliminaries

	is section provides the description of concepts on which
the proposed framework is based. 	ese concepts, including
NSCT and phase congruency, are described as follows.

2.1. Nonsubsampled Contourlet Transform (NSCT). Contour-
let transform can be divided into two stages [19]: Laplacian
pyramid (LP) and directional 
lter bank (DFB) and o�ers
an e�cient directional multiresolution image representation.
Among them, LP is 
rst utilized to capture the point singular-
ities and then followed by the DFB to link the singular point
into linear structures. LP is used to decompose the original
images into low-frequency and high-frequency subimages,
and DFB divides the high-frequency subbands into direc-
tional subbands. 	e Contourlet decomposed schematic
diagram is shown in Figure 1.
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Figure 1: Contourlet decomposed schematic diagram.
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Figure 2: NSCT decomposed schematic diagram.

	eNSCT is proposed based on the theory of Contourlet
transform. NSCT inherits the advantage of Contourlet
transform, enhances directional selectivity and shi
-invari-
ance, and e�ectively overcomes the pseudo-Gibbs phenom-
ena. NSCT is built on nonsubsampled pyramid 
lter bank
(NSPFB) and nonsubsampled directional 
lter bank
(NSDFB) [21]. Figure 2 gives the NSCT decomposition
framework with � = 2 levels.

	eNSPFB ensures themultiscale performance by taking
advantage of a two-channel nonsubsampled 
lter bank and
one low-frequency subband andone high-frequency subband
that can be produced at each decomposition level. 	e
NSDFB is a two-channel nonsubsampled 
lter bank con-
structed by eliminating the downsamplers and upsamplers
and combining the directional fan 
lter banks in the nonsub-
sampled directional 
lter [23]. NSDFB allows the direction
decomposition with � levels in each high-frequency subbands
from NSPFB and then produces 2� directional subbands with
the same size as the source images.	us, theNSDFB provides
the NSCT the multidirection performance and o�ers more
precise directional detail information to get more accurate
results [23]. 	erefore, NSCT leads to better frequency
selectivity and an essential property of the shi
-invariance
on account of nonsubsampled operation.	e size of di�erent
subimages decomposed by NSCT is identical. Additionally,
NSCT-based image fusion can e�ectively mitigate the e�ects
of misregistration on the results [27]. 	erefore, NSCT is
more suitable for image fusion.

2.2. Phase Congruency. Phase congruency is a feature percep-
tion approach which provides information that is invariant to
image illumination and contrast [28]. 	is model is built on

the Local EnergyModel [29], which postulates that important
features can be found at pointswhere the Fourier components
are maximally in phase. Furthermore, the angle at which the
phase congruency occurs signi
es the feature type.	e phase
congruency can be used for feature detection [30].	emodel
provides useful feature localization and noise compensation.
	e phase congruency at a point (�, �) can be de
ned as
follows [31]:

PC� (�, �)
= ∑
�
	� (�, �) [��� (�, �) (cos (
�� (�, �) − 
�� (�, �)))

− �������sin (
�� (�, �) − 
�� (�, �))������� − �]+
× (∑
�
��� (�, �) + �)−1,

(1)

where � is the orientation, 	�(�, �) is the weighting factor

based on frequency spread, ���(�, �) and 
��(�, �) are the

amplitude and phase for wavelet scale �, respectively, 
��(�, �)
is the weighted mean phase, � is a noise threshold constant,
and � is a small constant value to avoid division by zero.
	e notation []+ denotes that the enclosed quantity is equal
to itself when the value is positive, and zero otherwise. For
details of phase congruency measure see [29].

As we know the multimodal medical images have the
following characteristics:

(a) the images of di�erent modal have signi
cantly dif-
ferent pixel mappings;

(b) the capturing environment of di�erent modalities
varies and resulted in the change of illumination and
contrast;

(c) the edges and corners in the images are identi
ed by
collecting frequency components of the image that is
in phase.

According to the literature [26, 32], it is easy to 
nd
that phase congruency is not only invariant to di�erent pixel
intensity mappings, illumination, and contrast changes, but
also gives the Fourier components that are maximally in
phase. 	ese all will lead to e�cient fusion. 	at is why we
use phase congruency for multimodal medical fusion.

3. Proposed Multimodal Medical Image
Fusion Framework

	e framework of the proposed multimodal medical image
fusion algorithm is depicted in Figure 3, but before describing
it, the de
nition of local Log-Gabor energy in NSCT domain
is 
rst described as follows.

3.1. Log-Gabor Energy in NSCTDomain. 	ehigh-frequency
coe�cients in NSCT domain represent the detailed com-
ponents of the source images, such as the edges, textures,
and region boundaries [21]. In general, the coe�cients with
larger absolute values correspond to the sharper brightness
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Figure 3: 	e framework of the proposed fusion algorithm.

in the image. It is to be noted that the noise is also related to
high-frequency coe�cients and may cause miscalculation of
sharpness values and, therefore, a�ect the fusion performance
[26]. Furthermore, human visual system is generally more
sensitive to texture detail features than the value of a single
pixel.

To overcome the defect mentioned above, a novel high-
frequency fusion rule based on local Log-Gabor energy is
designed in this paper. Gabor wavelet is a popular technique
that has been extensively used to extract texture features
[33]. Log-Gabor 
lters are proposed based on Gabor 
lters.
Compared with Gabor 
lters, Log-Gabor 
lters cover the
shortage of the high frequency of Gabor 
lter component
expression and more in accord with human visual system
[34]. 	erefore, Log-Gabor wavelet can achieve optimal
spatial orientation and wider spectrum information at the
same time and thus more truly re�ect the frequency response
of the natural images and improve the performance in terms
of the accuracy [35].

Under polar coordinates, the Log-Gabor wavelet is
expressed as follows [36]:

� (�, �) = exp{− [ln (�/�0)]22[ln (�/�0)]2} × exp{−
(� − �0)22�2� } ,

(2)

in which �0 is the center frequency of the Log-Gabor 
lter,�0 is the direction of the 
lter, � is used to determine the
bandwidth of the radial 
lter, and �� is used to determine the
bandwidth of the orientation. If ��V�� (�, �) correspond to Log-
Gabor wavelets in scale � and direction V, the signal response
is expressed as follows:

��V�� (�, �) =  �� (�, �) ∗ ��V�� (�, �) , (3)

where  ��(�, �) is the coe�cient located at (�, �) in high-
frequency subimages of the source image � or " at the �th
scale, �th direction, and ∗ denotes convolution operation.	e
Log-Gabor energy of high-frequency subimages at the �th
scale, �th direction, is expressed as follows:

#�� (�, �) = �∑
�=1

�∑
V=1
√real(��V�� (�, �))2 + imag(��V�� (�, �))2, (4)

in which, real(��V�� (�, �)) is the real part of ��V�� (�, �) and
imag(��V�� (�, �)) is the imaginary part of ��V�� (�, �). 	e Log-
Gabor energy in NSCT domain at the local area around the
pixel (�, �) is given as

LE�� (�, �) = 1(2% + 1) (2& + 1)
	∑

=−	

�∑
�=−�

#�� (� + ', � + �) ,
(5)
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in which (2%+ 1)(2& + 1) is the window size. 	e proposed
de
nition of the local Log-Gabor energy not only extracts
more useful features from high-frequency coe�cients, but
also keeps a well performance in noisy environment.

3.2. Proposed Fusion Framework. 	e proposed NSCT-based
image fusion framework is discussed in this subsection.
Considering the input multimodal medical images (� and") are perfectly registered. 	e framework of the proposed
fusion method is shown Figure 3 and described as the
following three steps.

Step 1. Perform �-level NSCT on � and " to obtain one low-
frequency subimage and series of high-frequency subimages

at each level and direction �; that is, � : {*�,  ��,�} and " :{*
,  
�,�}, where *�, *
 are the low-frequency subimages and ��,�, ��,� represent the high-frequency subimages at level � ∈[1, �] in the orientation �.
Step 2. Fuse low- and high-frequency subbands via the
following novel fusion rule to obtain composite low- and
high-frequency subbands.

	e low-frequency coe�cients represent the approxima-
tion component of the source images. 	e popular widely
used approach is to apply the averaging methods to produce
the fused coe�cients. However, this rule reduced contrast
in the fused images and cannot give the fused subimage of
high quality for medical image.	erefore, the criterion based
on the phase congruency that is introduced in Section 2.2 is
employed to fuse the low-frequency coe�cients. 	e fusion
rule for the low-frequency subbands is de
ned as

*� (�, �)
= {{{{{

*� (�, �) , if PC�� (�, �) > PC
� (�, �)*
 (�, �) , if PC�� (�, �) < PC
� (�, �)0.5 (*� (�, �) + *
 (�, �)) , if PC�� (�, �) = PC
� (�, �) ,
(6)

where PC��(�, �), PC
�(�, �) is the phase congruency extracted
from low-frequency subimages of the source images� and ",
respectively.

For the high-frequency coe�cients, the most common
fusion rule is selecting the coe�cient with larger absolute
values. 	is rule does not take any consideration of the
surrounding pixels and cannot give the fused components
of high quality for medical image. Especially when the
source images contain noise, the noise could be mistaken for
fused coe�cients and cause miscalculation of the sharpness
value. 	erefore, the criterion based on Log-Gabor energy
is introduced to fuse high-frequency coe�cients. 	e fusion
rule for the high-frequency subbands is de
ned as

 ��� (�, �) = { ��� (�, �) , if LE��� (�, �) ≥ LE
�� (�, �) 
�� (�, �) , otherwise, (7)

where LE���(�, �) and LE
��(�, �) are the local Log-Gabor energy
extracted fromhigh-frequency subimages at the �th scale and�th direction of source images � and ", respectively.
Step 3. Perform �-level by the inverseNSCTon the fused low-
and high-frequency subimages. 	e fused image is obtained
ultimately in this way.

4. The Experimental Results and Analysis

It is well known that di�erent image quality metrics imply the
visual quality of images from di�erent aspects, but none of
them can directly imply the quality. In this paper, we consider
both the visual representation and quantitative assessment
of the fused images. For evaluation of the proposed fusion
method, we have considered 
ve separate fusion performance
metrics de
ned as below.

4.1. Evaluation Index System

4.1.1. Standard Deviation. 	e standard deviation (STD) of
an image with size of%0 × &0 is de
ned as [37]:

Std = ( 1%0 × &0
	0∑
�=1

�0∑
�=1
(A (�, �) − Ĉ)2)1/2, (8)

where A(�, �) is the pixel value of the fused image at the
position (�, �) and Ĉ is the mean value of the image. 	e STD
can be used to estimate how widely the gray values spread in
an image. 	e larger the STD, the better the result.

4.1.2. Edge Based SimilarityMeasure. 	e edge based similar-

ity measure (E�
/�) is proposed by Xydeas and Petrović [38].
	e de
nition is given as

E�
/�
= ∑	0�=1∑�0�=1 [E�� (�, �) H� (�, �) + E
� (�, �) H
 (�, �)]∑	0�=1∑�0�=1 [H� (�, �) + H
 (�, �)] ,

(9)

where H�(�, �) and H
(�, �) are the corresponding gradient
strength for images � and ", respectively. 	e de
nition ofE��(�, �) and E
�(�, �) is given as

E�� (�, �) = E��� (�, �) E��� (�, �) ,
E
� (�, �) = E
�� (�, �) E
�� (�, �) , (10)

where E��� (�, �) and E��� (�, �) are the edge strength and

orientation preservation values at location for image J (�
or "), respectively. 	e edge based similarity measure gives
the similarity between the edges transferred from the input
images to the fused image [26].	e larger the value, the better
the fusion result.
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4.1.3. Mutual Information. Mutual information (MI) [39]
between the fusion image A and the source images� and " is
de
ned as follows:

MI = MI�� +MI
�,
MI�� = �∑

�=0

�∑
�=0
K�� (L, �) log2 ( K�� (L, �)K� (L) K� (�)) ,

MI
� = �∑
�=0

�∑
�=0
K
� (M, �) log2 ( K
� (M, �)K
 (M) K� (�)) ,

(11)

where MI�� denotes the normalized mutual information
between the fused image and the input image �, "; L, M and� ∈ [0, *], and * is the number of bins. K�(L), K
(M), andK�(�) are the normalized gray level histograms of source

images and fused image. K��(L, �) is the joint gray level
histograms between fused image and each source image.

MI can indicate how much information the fused imageA conveys about the source images � and " [22]. 	erefore,
the greater the value of MI, the better the fusion e�ect.

4.1.4. Cross Entropy. 	e cross entropy is de
ned as [8]:

CE = �−1∑
�=0
N�log2 N�E� , (12)

where N� andE� denote the gray level histogram of the source
image and the fused image, respectively. 	e cross entropy is
used to evaluate the di�erence between the source images and
the fused image. 	e lower value corresponds to the better
fusion result.

4.1.5. Spatial Frequency. Spatial frequency is de
ned as [40]:

SF = √RF2 + CF2, (13)

where RF and CF are the row frequency and column fre-
quency, respectively, and are de
ned as

RF = √ 1%0&0
	0−1∑
�=0

�0−1∑
�=0
[A (�, �) − A (�, � − 1)]2,

CF = √ 1%0&0
	0−1∑
�=0

�0−1∑
�=0
[A (�, �) − A (� − 1, �)]2.

(14)

	e spatial frequency re�ects the edge information of the
fused image. Larger spatial frequency values indicate better
image quality.

4.2. Experiments on Multimodal Medical Image Fusion. To
evaluate the performance of the proposed image fusion
approach, the experiments are performed on three groups of
multimodal medical images. 	ese images are characterized
in two distinct pairs: (1) CT and MRI; (2) MR-T1 and MR-
T2. 	e images in Figures 4(a1)-4(b1) and 4(a2)-4(b2) are

CT and MRI images, whereas Figures 4(a3)-4(b3) are T1-
weighted MR image (MR-T1) and T2-weighted MR image
(MR-T2). All images have the same size of 256 × 256 pixel,
with 256-level gray scale. For all these image groups, the
results of the proposed fusion framework are compared with
those of the traditional discretewavelet transform (DWT) [13,
16], the second generation curvelet transform (fast discrete
curvelet transform, FDCT) [41, 42], the dual tree complex
wavelet transform (DTCWT) [4], and the nonsubsampled
Contourlet transform (NSCT-1 andNSCT-2) basedmethods.
	e high-frequency coe�cients and low-frequency coe�-
cients of DWT, FDCT, DTCWT, and NSCT-1 based methods
aremerged by the popular widely used fusion rule of selecting
the coe�cient with larger absolute values and the averaging
rule (average-maximum rule), respectively. NSCT-2 based
method is merged by the fusion rules proposed by Bhatnagar,
et al. in [26]. In order to perform a fair comparison, the source
images are all decomposed into the same levels with 3 for
those methods except FDCTmethod. For DWTmethod, the
images are decomposed using the DBSS (2, 2) wavelet. For
implementing NSCT, “9-7” 
lters and “pkva” 
lters (how to
set the 
lters can be seen in [43]) are used as the pyramidal
and directional 
lters, respectively.

4.2.1. Subjective Evaluation. 	e 
rst pair of medical images
are two groups of brain CT and MRI images on di�erent
aspects, shown in Figures 4(a1), 4(b1) and 4(a2), 4(b2),
respectively. It can be easily seen that the CT image shows
the dense structure while MRI provides information about
so
 tissues. 	e obtained fused images from DWT, FDCT,
DTCWT, NSCT-1, and NSCT-2 are shown in Figures 4(c1)–
4(g1) and 4(c2)–4(g2), respectively. 	e results for the pro-
posed fusion method have been shown in Figures 4(h1) and
4(h2). On comparing these results, it can be easily observed
that the proposedmethod outperforms those fusionmethods
and has good visual representation of fused image.

	e second pair of medical images areMR-T1 andMR-T2
images, shown in Figures 4(a3) and 4(b3). 	e comparison
of DWT, FDCT, DTCWT, NSCT-1, NSCT-2, and proposed
method, shown in Figures 4(c3)–4(h3), clearly implies that
the fusion result of the proposed method has better quality
and contrast in comparison to other methods.

Similarly, on observing the noticeable improvement has
been emphasized in Figure 4 by the red arrows and the
analysis above, one can easily verify the fact that again the
proposed method has been found superior in terms of visual
representation over DWT, FDCT, DTCWT, NSCT-1, and
NSCT-2 fusion methods.

4.2.2. Objective Evaluation. For objective evaluation of the
fusion results, shown in Figure 4, we have used 
ve fusion

metrics: cross entropy, spatial frequency, STD, E�
/�, and
MI.	e quantitative comparison of cross entropy and spatial
frequency for these fused images is visually given by Figures
5-6 and other metrics are given by Table 1.

On observing Figure 5, one can easily observe all the
three results of the proposed scheme have lower values of
cross entropy than any of the DWT, FDCT, DTCWT, NSCT-
1, and NSCT-2 fusion methods. 	e cross entropy is used to
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(a1)                (b1) (d1)(c1)

(e1) (h1)(g1)(f1)

(a2) (d2)(c2)(b2)

(e2)                (f2) (h2)(g2)

(a3) (c3)(b3) (d3)

(e3)                (f3)                (g3)                (h3)

Figure 4: Sourcemultimodalmedical images: (a1), (b1) image group 1 (CT andMRI); (a2), (b2) image group 2 (CT andMRI); (a3), (b3) image
group 3 (MR-T1 and MR-T2); fused images from (c1), (c2), (c3) DWT based method; (d1), (d2), (d3) FDCT based method; (e1), (e2), (e3)
DTCWT based method; (f1), (f2), (f3) NSCT-1 based method; (g1), (g2), (g3) NSCT-2 based method; (h1), (h2), (h3) our proposed method.
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Table 1: Comparison on quantitative evaluation of di�erent methods for the 
rst set medical images.

Images Evaluation DWT FDCT DTCWT NSCT-1 NSCT-2 Proposed method

Image group 1
(CT and MRI)

STD 41.160 39.170 40.132 40.581 54.641 58.476

QAB/F 0.618 0.592 0.652 0.683 0.427 0.716

MI 2.371 2.029 2.393 2.438 1.886 2.580

Image group 2
(CT and MRI)

STD 72.260 70.572 71.407 71.733 80.378 83.334

QAB/F 0.567 0.584 0.606 0.622 0.450 0.618

MI 3.137 3.138 3.198 3.235 2.915 3.302

Image group 3
(MR-T1 and MR-T2)

STD 37.358 36.856 37.358 37.277 39.023 40.630

QAB/F 0.635 0.647 0.668 0.682 0.589 0.689

MI 3.209 3.142 3.302 3.347 3.349 3.469

0

0.5

1

1.5

2

2.5

DWT FDCT DTCWT NSCT-1 NSCT-2

Cross entropy 

Group 1

Group 2

Group 3

Proposed
method

1.323 1.384

0.046

Figure 5: Comparison on cross entropy of di�erent methods and
images.

evaluate the di�erence between the source images and the
fused image. 	erefore, the lower value corresponds to the
better fusion result.

On observing Figure 6, two values of the spatial frequency
of the fused image obtained by the proposed method are
the highest, and the other one is 6.447 which is close to
the highest value 6.581. Observation of Table 1 yields that all
the three results of the proposed fusion scheme have higher

values of STD, E�
/�, and MI than any of other methods

except one value ofE�
/� (image group 2) is the second best.
However, an overall comparison shows the superiority of the
proposed fusion scheme.

4.2.3. Combined Evaluation. Since the subjective and objec-
tive evaluations separately are not able to examine fusion
results, we have combined them. From these 
gures (Figures
4–6) and table (Table 1), it is clearly to 
nd that the proposed
method not only preserves most of the source images char-
acteristics and information, but also improves the de
nition
and the spatial quality better than the existing methods,
which can be justi
ed by the optimum values of objective
criteria except one value of spatial frequency (image group

3) and one value of E�
/� (image group 2). Consider the
example of the 
rst set of images: the 
ve criteria values of
the proposed method are 1.323 (cross entropy), 7.050 (spatial

frequency), 58.476 (STD), 0.716 (E�
/�), and 2.580 (MI),
respectively. Each of them is the optimal one in the 
rst set
of experiments.

7.050

7.976

6.447
6

6.5

7

7.5

8

6.581

8.5

DWT FDCT DTCWT NSCT-1 NSCT-2

Spatial frequencies 

Group 1

Group 2

Group 3

Proposed
method

Figure 6: Comparison on spatial frequencies of di�erent methods
and images.

Among these methods, the result of NSCT-2 based
method also gives poor results when comparing to the
proposed NSCT-based method.	is stems from the fact that
high-frequency fusion rule of NSCT-2 based method is not
able to extract the detail information in the high frequency
e�ectively. Also, by carefully looking at the outputs of the
proposed NSCT-based method (Figures 4(h1), 4(h2), and
4(h3)), we can 
nd that they get more contrast and more
spatial resolution than the outputs of NSCT-2 based method
(highlighted by the red arrows) and other methods.	emain
reason behind the better performance is that the proposed
fusion rules for low- and high-frequency coe�cients can
e�ectively extract prominent and detail information from the
source images. 	erefore, it can be possible to conclude that
the proposed method is better than the existing methods.

4.3. Fusion ofMultimodalMedical Noisy Images and a Clinical
Example. To evaluate the performance of the proposed
method in noisy environment, the input image group 1 has
been additionally corrupted with Gaussian noise, with a
standard deviation of 5% (shown in Figures 7(a) and 7(b)).
In addition, a clinical applicability on noninvasive diagnosis
of neoplastic disease is given in the last subsection.

4.3.1. Fusion of Multimodal Medical Noisy Images. For com-
parison, apart from visual observation, objective criteria on

STD, MI, and E�
/� are used to evaluate how much clear
or detail information of the source images is transferred
to the fused images. However, maybe these criteria cannot
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: 	e multimodal medical images with noise: (a) CT image with 5% noise, (b) MRI image with 5% noise; fused images by (c) DWT,
(d) FDCT, (e) DTCWT, (f) NSCT-1, (g) NSCT-2, and (h) proposed method.

Table 2: Comparison on quantitative evaluation of di�erent methods for the noise medical images.

Evaluation DWT FDCT DTCWT NSCT-1 NSCT-2 Proposed method

STD 41.893 40.044 40.995 41.338 52.533 57.787

QAB/F 0.592 0.579 0.619 0.637 0.269 0.640

MI 2.785 2.539 2.826 2.882 1.816 2.914

e�ectively evaluate the performance of the fusion methods
in terms of the noise transmission. For further comparison,
Peak Signal to Noise Ratio (PSNR), a ratio between the
maximum possible power of a signal and the power of noise
that a�ects the 
delity [44], is used. 	e larger the value of
PSNR, the less the image distortion [45]. PSNR is formulated
as

PSNR = 10lg ��������� 255
2

RMSE2

��������� , (15)

where RMSE denotes the Root Mean Square Error between
the fused image and the reference image.	e reference image
in the following experiment is selecting from Figure 4(h1),
which is proven to be the best performance compared to other
images.

Figure 7 illustrates the fusion results obtained by the
di�erent methods. 	e comparison of the images fused by
DWT, FDCT, DTCWT, NSCT-1, NSCT-2, and proposed
method, shown in Figures 7(c)–7(h), clearly implies that
the fused image by proposed method has better quality and
contrast than other methods. Figure 8 shows the values of
PSNR of di�erent methods in fusing noisy images. One
can observe that the proposed method has higher values of

15
16
17
18
19
20
21
22
23
24
25

DWT FDCT DTCWT NSCT-1 NSCT-2 Proposed
method

PSNR

23.704

Figure 8: Comparison on PSNR of di�erent methods for the noise
medical images.

PSNR than any of the DWT, FDCT, DTCWT, NSCT-1, and
NSCT-2 fusionmethods. Table 2 gives the quantitative results

of fused images and shows that the values of STD, E�
/�,
and MI are also the highest of all the six methods. From
the analysis above, we can also observe that the proposed
scheme provides the best performance and outperforms the
other algorithms. In addition, compared with the result of
the NSCT-1 method using the average-maximum rule, it



10 Computational and Mathematical Methods in Medicine

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Brain images of the man with recurrent tumor: (a) MR-T1 image, (b) MR-T2 image; fused images by (c) DWT, (d) FDCT, (e)
DTCWT, (f) NSCT-1, (g) NSCT-2, and (h) proposed method.

Table 3: Comparison on quantitative evaluation of di�erent methods for the clinical medical images.

Evaluation DWT FDCT DTCWT NSCT-1 NSCT-2 Proposed method

STD 64.433 62.487 63.194 63.652 60.722 67.155

QAB/F 0.541 0.565 0.578 0.597 0.411 0.624

MI 2.507 2.455 2.540 2.584 2.392 2.624

demonstrated the validities of the proposed fusion rule in
noisy environment.

4.3.2. A Clinical Example on Noninvasive Diagnosis. In order
to demonstrate the practical value of the proposed scheme
in medical imaging, one clinical case on neoplastic diagnosis
is considered where MR-T1/MR-T2 medical modalities are
used. 	e images have been downloaded from the Harvard
University site (http://www.med.harvard.edu/AANLIB/home
.html). Figures 9(a)-9(b) show the recurrent tumor case of a
51-year-old woman who sought medical attention because of
gradually increasing right hemiparesis (weakness) and hemi-
anopia (visual loss). At craniotomy, le
 parietal anaplastic
astrocytoma was found. A right frontal lesion was biopsied.
A large region of mixed signal on MR-T1 and MR-T2 images
gives the signs of the possibility of active tumor (highlighted
by the red arrows).

Figures 9(c)–9(h) show the fused images by DWT, FDCT,
DTCWT, NSCT-1, NSCT-2, and proposed method. It is
obvious that the fused image by proposed method has better
contrast and sharpness of active tumor (highlighted by the red
arrows) than other methods. Table 3 shows the quantitative
evaluation of di�erent methods for the clinical medical
images. 	e values of the proposed method are optimum in

terms of STD, MI, and E�
/�. From Figure 9 and Table 3,
we can obtain the same conclusion that the proposed scheme
provides the best performance and outperforms the other
algorithms.

5. Conclusions

Multimodal medical image fusion plays an important role in
clinical applications. But the real challenge is to obtain a visu-
ally enhanced image through fusion process. In this paper, a
novel and e�ective image fusion framework based on NSCT
and Log-Gabor energy is proposed.	e potential advantages
include (1) NSCT is more suitable for image fusion because
of its advantages such as multiresolution, multidirection, and
shi
-invariance; (2) a new couple of fusion rules based on
phase congruency andLog-Gabor energy are used to preserve
more useful information in the fused image to improve the
quality of the fused images and overcome the limitations of
the traditional fusion rules; and (3) the proposed method
can provide a better performance than the current fusion
methods whatever the source images are clean or noisy. In
the experiments, 
ve groups of multimodal medical images,
including one group with noise and one group clinical
example of a woman a�ected with recurrent tumor, are
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fused by using traditional fusion methods and the proposed
framework.	e subjective and objective comparisons clearly
demonstrate that the proposed algorithm can enhance the
details of the fused image and can improve the visual e�ect
with less information distortion than other fusion methods.
In the future, we plan to design a pureC++ platform to reduce
the time cost and extend our method for 3D or 4D medical
image fusion.
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