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Abstract Analysis of large dimensional contingency tables is rather difficult. Fien-
berg and Kim (1999, Journal of American Statistical Association, 94, 229–239) stud-
ied the problem of combining conditional (on single variable) log-linear structures
for graphical models to obtain partial information about the full graphical log-linear
model. In this paper, we consider the general log-linear models and obtain explicit rep-
resentation for the log-linear parameters of the full model based on that of conditional
structures. As a consequence, we give conditions under which a particular log-linear
parameter is present or not in the full model. Some of the main results of Fienberg
and Kim follow from our results. The explicit relationships between full model and
the conditional structures are also presented. The connections between conditional
structures and the layer structures are pointed out. We investigate also the hierarchical
nature of the full model, based on conditional structures. Kim (2006, Computational
Statistics and Data Analysis, 50, 2044–2064) analyzed graphical log-linear models
based on conditional log-linear structures, when a set of variables is conditioned. For
this case, we employ the Möbius inversion technique to obtain the interaction param-
eters of the full log-linear model, and discuss their properties. The hierarchical nature
of the full model is also studied based on conditional structures. This result could be
effectively used for the model selection also. As applications of our results, we have
discussed several typical examples, including a real-life example.
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1 Introduction

A contingency table can be analyzed by a log-linear model which involves interac-
tion factors, also called log-linear parameters. These interaction factors identify the
underlying structure of the data given in the contingency table. Even in the case of
moderately large dimensional contingency tables, the associated log-linear models
involve a large number of interaction factors and hence the analysis becomes difficult.
Considering the levels of a categorical variable, say Xn , the full contingency table can
also be viewed as a collection of contingency tables (called layers) of dimension less
than by unity. Thus, an n-dimensional table, with the data collected on all the n-vari-
ables, can also be analyzed based on layer tables of dimension (n − 1). Sometimes,
the data is collected when one or more variables are fixed. This results in conditional
tables of dimension less than n. Observe that the analysis of conditional (say, when
a variable is fixed) log-linear structures (models) is rather easier compared to that of
the full model. As clearly demonstrated in Fienberg and Kim (1999) and Kim (2006),
conditional models play an important role in artificial intelligence and especially in
Bayesian networks. Also, Gilula and Haberman (1994) used conditional log-linear
models for analyzing panel studies which arise commonly in medical sciences and in
the behavioral sciences.

In case of graphical models, Fienberg and Kim (1999) showed that, using these
conditional log-linear structures, some amount of partial information about the under-
lying full log-linear model can be derived. They combined the conditional log-linear
structures (conditioned over one variable) to get a class of generators, which contains
the generating class of the underlying graphical log-linear model. They showed that if
a generator θ is present in all the conditional (when Xn is conditioned) structures, then
either θ or θ∪{n} will be present in the full log-linear model. However, if θ is present in
some, but not in all, conditional structures, then θ∪{n} will be present in the full model.
It is important to note that the class of graphical log-linear models, where all the gen-
erators are cliques of the graph (see, Whittaker 1990; Lauritzen 1996), is a subclass of
hierarchical log-linear models which is again a subclass of general log-linear models.

Observe that log-linear models are widely used in several disciplines, including in
survival analysis as accelerated life-time models (Christensen 2000). In this paper, we
consider the problem of general log-linear modeling (Agresti 2002; Christensen 1997),
based on conditional log-linear structures. Though our focus is combining conditional
log-linear structures, the approach can be used for combining log-linear structures
for the layer tables as well. We point out the close connections between them as and
when necessary. As mentioned earlier, the layer tables and the conditional tables arise
mainly from the way the data are collected or modeled. From the log-linear modeling
point of view, there is not much difference except the constant term. We first establish
an explicit representation for the interaction factors of the full log-linear model, based
on that of the conditional log-linear structures, when one variable is conditioned. It
is shown that some of the main results of Fienberg and Kim (1999) for the graphical
log-linear models follow from our results. We obtain necessary and sufficient condi-
tions, based on conditional interaction parameters, for the full model to be hierarchical.
We bring out the relationships between the full log-linear model and the conditional
log-linear structures.
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Kim (2006) extended the works of Fienberg and Kim (1999), and explored the rela-
tionship between the graphical log-linear model for the full table and the conditional
tables, when a set of variables is conditioned. In the same spirit, we obtain, using the
Möbius inversion technique (Lauritzen 1996), explicit representation for the interac-
tion parameters of the full model, based on the conditional interaction parameters,
when a set of variables is conditioned. Using these results, the properties of the full
model are analyzed in detail. Also, the hierarchical nature of the full model, using
conditional structures, is investigated. Several typical examples, including a real-life
example, are discussed as applications of our results. The proofs of the results in this
paper are given in the Appendix.

2 Log-linear modeling based on conditional (one variable) structures

2.1 Log-linear models

Consider an n-dimensional contingency table corresponding to n-categorical vari-
ables X1, . . . , Xn . Let the support of X j be Ī j = {1, . . . , I j }, 1 ≤ j ≤ n, and
V = {1, 2, . . . , n} denotes the set of indices of the variables. Let us denote the
n-dimensional contingency table by Jn = I1 × · · · × In . Also, let p(i1, . . . , in) =
P(X1 = i1, . . . , Xn = in), where i j ∈ Ī j , denote the probability that an observa-
tion (X1, . . . , Xn) falls into the cell (i1, . . . , in), that is, p(i1, . . . , in) denotes the
cell probability. For a subset, say, Z = {1, . . . , k} ⊆ V , let iZ = (i1, . . . , ik), and
τZ (iZ ) = τZ (i1, . . . , ik) denote the interaction factor between X1, . . . , Xk , when
(X1, . . . , Xk) = (i1, . . . , ik). Now let the saturated log-linear model for the full
(n-dimensional) table be (see, Whittemore 1978 or Vellaisamy and Vijay 2007)

l(i1, . . . , in) = ln p(i1, . . . , in) =
∑

Z⊆{1,2,...,n}
τZ (iZ ), (1)

where Z is any subset (including null set) of {1, . . . , n}. For instance, the log-linear
model for a 3-dimensional table is

l(i1, i2, i3) = τφ + τ1(i1) + τ2(i2) + τ3(i3) + τ12(i1, i2)

+ τ13(i1, i3) + τ23(i2, i3) + τ123(i1, i2, i3), (2)

where τφ denotes the overall mean, τ j (i j ) denotes the main effect of X j at level i j ,
and τ12(i1, i2) denotes an interaction effect between X1 and X2.

Let now Jn−1(in) = (I1×· · ·×In−1)(in) denote the (n−1)-dimensional conditional
contingency table, when Xn is conditioned at in ∈ Īn . Also, let p(i1, . . . , in−1|in) be
the cell probabilities (conditional probabilities) for the conditional table. Then, the
(saturated) log-linear model for the conditional table is

l(i1, . . . , in−1|in) = ln p(i1, . . . , in−1|in) =
∑

W⊆{1,2,...,n−1}
uW (iW |in), (3)
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where uW (iW |in) denotes, for example, a s-factor interaction of the conditional log-
linear model if |W | = s. For the case n = 3, we have

l(i1, i2|i3) = uφ(iφ |i3) + u1(i1|i3) + u2(i2|i3) + u12(i1, i2|i3),

where, for example, u12(i1, i2|i3) denotes an interaction effect between X1 and X2,
when X3 is conditioned at the level i3.

Let, for example, iZ = (i1, . . . , ik). The τ -terms and u-terms satisfy (see, Bishop
et al. 1975)

∑

i j

τZ (i1, . . . , ik) = 0, and
∑

i j

uZ (i1, . . . , ik |in) = 0, for every j, 1 ≤ j ≤ k.

(4)

Based on conditional log-linear structures, Fienberg and Kim (1999) identified a class
of possible graphical models for the full table. We obtain the following result which
gives relationships between the τ -terms of the full model and the u-terms of the con-
ditional structures.

Theorem 1 Consider the log-linear models defined in (1) and (3). Let p(in) =
P(Xn = in) denote the marginal distribution of Xn. Then, for every in ∈ Īn ,

(i) τφ = 1

In

∑

in∈ Īn

{ln p(in) + uφ(iφ |in)}, (5)

(ii) τn(in) = ln p(in) + uφ(iφ |in) − τφ. (6)

Also, for each W ⊆ {1, 2, . . . , n − 1}, W �= φ and in ∈ Īn ,

(iii) τW (iW ) = 1

In

∑

in∈ Īn

uW (iW |in), and (7)

(iv) τW∪n(iW , in) = uW (iW |in) − τW (iW ). (8)

Remark 1 It is clear, from (7) and (8), that all the interaction factors τZ , where Z �= φ

and Z �= {n}, can be obtained from the conditional interaction factors. However, the
terms τφ and τn , given respectively in (5) and (6), can not be obtained from conditional
interaction factors alone, as they require the knowledge of ln(p(in)) also. Note also
that, from (7) and (8), if uW (iW |in) does not depend on in , then τW∪n = 0. Also, con-
versely, if τW∪n = 0, then from (8), uW (iW |in) = τW (iW ) for all in , and so uW (iW |in)

does not depend on in .

Thus, we have the following important corollary which shows that the zeroness of
τ -terms in the full model can be inferred using the u-terms in the conditional models.

Corollary 1 Consider the log-linear Models (1) and (3). Let W be any nonempty
subset of {1, · · · , n −1}. Then τW∪n = 0 if and only if uW (iW |in) is independent of in.
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Suppose, for example, u(i1, i3|i4) is independent of i4 in 3-dimensional conditional
models. Then, it follows from Corollary 1 that τ134(i1, i3, i4) = 0 in the 4-dimensional
full model.

Observe that an n-dimensional table can also be viewed as a collection of (n − 1)-
dimensional tables (layers) corresponding to the levels of Xn . We state here that the
interaction factors corresponding to a particular layer, say Xn = k, are the same as
that of the (n − 1)-dimensional conditional table, conditioned on Xn = k, except for
the constant term. Consider, for example, a 3-dimensional table corresponding to the
variables X1, X2 and X3. When X3 = 1, we get a 2-dimensional table (layer) and let
the log-linear model for the layer table be given by

ln p(i1, i2; 1) = ηφ(1) + η1(i1; 1) + η2(i2; 1) + η12(i1, i2; 1). (9)

On the other hand, the log-linear model for the conditional table, when X3 is con-
ditioned at level 1, is

l(i1, i2|1) = uφ(iφ |1) + u1(i1|1) + u2(i2|1) + u12(i1, i2|1), (10)

Then, it can be easily seen that

ηφ(1) = uφ(iφ |1) + ln p(·, ·, 1); η1(i1; 1) = u1(i1|1);
η2(i2; 1) = u2(i2|1); η12(i1, i2; 1) = u12(i1, i2|1),

where p(·, ·, 1) = ∑
i1,i2

p(i1, i2; 1). Thus, the interaction parameters are the same
for both the layer table and the conditional table, except for the constant term. Indeed,
one can prove the following general result.

Theorem 2 Let ln p(i1, . . . , in−1; in) = ∑
W⊆{1,...,n−1} ηW (iW ; in) denote the log-

linear model for the (n − 1)-dimensional layer table corresponding to level in of Xn.
Also, let the conditional log-linear model for X1, . . . , Xn−1 be given by (3). Then,

ηW (iW ; in) = uW (iW |in) (11)

for each nonempty subset W of {1, . . . , n − 1}, and

ηφ(in) = uφ(iφ |in) + ln p(in). (12)

It is now clear from Theorems 1 and 2 that the interaction terms τZ can also be obtained
from the terms ηW ’s. That is,

τW (iW ) = 1

In

∑

in∈ Īn

ηW (iW ; in); and (13)

τW∪n(iW , in) = ηW (iW ; in) − τW (iW ) (14)

for each W ⊆ {1, . . . , n − 1}. We remark here that the formulas (13) and (14) remain
valid when W = φ also; thus the terms τφ and τn can also be obtained from η-terms.

123



314 P. Vellaisamy, V. Vijay

Table 1 Data corresponding to the conditional levels of C

C = 1:

B
A 1 2
1 30 10
2 20 10

C = 2:

B
A 1 2
1 90 20
2 30 10

C = 3:

B
A 1 2
1 60 10
2 40 10

Next we discuss hierarchical and graphical log-linear models.
The log-linear model, defined in (1), is said to be hierarchical if τA = 0 implies

τB = 0 for all B ⊃ A. It is known that many log-linear models, such as an unsaturated
model with all nonzero two-factor interactions, do not have direct MLE’s and in that
case one must resort to iterative procedure. However, for hierarchical log-linear models
the MLE’s are relatively easy to compute, since the estimates satisfy certain intuitive
marginal constraints. If the model structure of a hierarchical log-linear model is deter-
mined by the maximal domain subsets of the interaction factors, then these subsets are
called generators and the collection of all the generators is called the generating class
of the model. Also, if all the generators are cliques (maximal complete subgraph) of the
interaction graph then the model is graphical. For a detailed discussion on hierarchical
and graphical models, one may refer to Darroch et al. (1980).

Example 1 Consider the following conditional tables (Table 1)

For each conditional level of C, there are three 2 × 2 conditional tables. The odds
ratios can be seen to be OR(1) = 1.5, OR(2) = 1.5 and OR(3) = 1.5, where OR(i)
denotes the odds ratio of the i th conditional table. Also, the interaction factors are
given by (see, Bishop et al. 1975, p. 27),

u12(1, 1|1) = 1/4 ln(O R(1)).

Thus,

u12(1, 1|1) = u12(1, 1|2) = u12(1, 1|3) = 0.1014.

From Corollary 1, τ123(1, 1, k) = 0. Also, using (4), we have indeed τ123(i, j, k) = 0
for all (i, j, k). Therefore, the full model does not contain any three factor interaction
term. Similarly, it can be checked that all the other u-terms do not satisfy the condition
of Corollary 1. Hence, all other τ -terms are present in the full model. Thus, the full
model {{A, B}, {A, C}, {B, C}} is hierarchical but not graphical.

We next show that Theorems 3 and 4 of Fienberg and Kim (1999), for graphical
models, follow from our results. We adopt their notations, for convenience.

(i) Consider the case when a generator θ is common to all the conditional log-lin-
ear structures, that is, uθ (iθ |in) �= 0 for all in ∈ Īn . Note, in this case, either
uθ (iθ |in1) = uθ (iθ |in2) �= 0, for all in1, in2 ∈ Īn or uθ (iθ |in1) �= uθ (iθ |in2),
for some in1, in2 ∈ Īn .
In the first case, when uθ (iθ |in1) = uθ (iθ |in2), for all in1, in2 ∈ Īn , then by
Corollary 1, τθ∪n = 0. Since uθ (iθ |in) �= 0, for all in , we have from Eq. (7),
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Table 2 Conditional data for each level of C

C = 1:

B
A 1 2
1 30 10
2 40 20

C = 2:

B
A 1 2
1 10 20
2 30 40

τθ �= 0 and therefore θ is a generator for the full model. Note however θ ∪ n
is not a generator.
In the second case where uθ (iθ |in1) �= uθ (iθ |in2), for some in1, in2 ∈ Īn , we
have by Corollary 1, τθ∪n �= 0. Hence, θ ∪ n is a generator for the full model.
Therefore, if θ is present in all conditional log-linear structures, then either θ

or θ ∪ n is a generator for the full model. This is essentially Theorem 3 of
Fienberg and Kim (1999).

(ii) Consider next the case when a generator θ is not common to all conditional
log-linear structures, but is present in at least one of structures. This implies
that uθ (iθ |in j ) = 0, for some in j ∈ Īn , and uθ (iθ |inl ) �= 0, for some inl ∈ Īn .
Again by Corollary 1, τθ∪n �= 0, and so θ ∪ n is a generator for the full model.
This is essentially Theorem 4 of Fienberg and Kim (1999).

2.2 Hierarchical nature of the full model

We discuss here the hierarchical nature of the full and the conditional models. It is pos-
sible sometimes that the conditional log-linear models are hierarchical, while the full
log-linear models are non-hierarchical. We first discuss an example in this direction.

Example 2 Consider the following conditional data sets (Table 2)

From Table 2, we have u12(1, 1|1) = 0.1014 and u12(1, 1|2) = −0.1014. Also, it
can be easily checked that all other u-terms for both the tables are non-zero and so
the conditional models are hierarchical. Also, using (7) and (8), we get τ12(1, 1) = 0,
but τ123(1, 1, 1) �= 0, which implies τ12 = 0, but τ123 �= 0. Hence, the full model is
non-hierarchical.

The above example motivates the following result.

Theorem 3 Consider the full and conditional models specified in (1) and (3), and
assume τn �= 0. Then the full model is hierarchical if and only if for each W ⊆
{1, . . . , n − 1}, the u-terms satisfy either of the following two conditions:

(C1): uW (iW |in1) �= uW (iW |in2) for some in1 , in2 ∈ Īn �⇒
∑

in∈ Īn
uW (iW |in) �=

0.

(C2): (a) uW (iW |in) = uW (iW ), independent of in ∈ Īn �⇒ uW ′(iW ′ |in) =
uW ′(iW ′) is independent of in, for all W ′ ⊃ W .

(b) Also, uW (iW ) = 0 in C2(a) �⇒ uW ′(iW ′) = 0, for all W ′ ⊃ W .

Remark 2 It is not necessary to check the Conditions (C1) and (C2) for each W ⊆
{1, . . . , n − 1}. Indeed, the following procedure simplifies the task.
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Table 3 Number of accidents corresponding to the categories A, B, C and D

B 1 2

C 1 2 1 2

D D D D

A 1 2 1 2 1 2 1 2

1 8314 263 4188 50 42476 3440 19495 552

2 313 37 291 6 1841 383 1678 98

3 189 30 155 8 1214 290 1058 80

4 24 30 14 10 146 51 91 15

(i) Check first if the Condition (C2) holds for sets W1 of cardinality unity. If (C2)

holds for some W1, then it holds for all sets in D1 = {W ′|W ′ ⊃ W }.
(ii) Repeat Step (i) for sets W2 �∈ D1, with |W2| = 2, and so on.

(iii) Finally, for those W ’s for which (C2) is not satisfied, check for Condition (C1).
If all those W ’s satisfy (C1), then the full model is hierarchical. If (C1) is not
satisfied for some W , then stop the procedure and the model is non-hierarchical.

(iv) If, during the Steps (i)–(ii), the Condition (C2) is not satisfied for some W ∗,
then immediately check if W ∗ satisfies (C1). If W ∗ does not satisfy (C1), then
stop the procedure and the model is non-hierarchical.

We remark that, if the conditional Models (3) are hierarchical for each in ∈ Īn , then
the Condition C2(b) is automatically satisfied. Therefore, there is no need to check
Condition C2(b).

We now apply Theorems 1–3, and the above procedure to analyze a real-life
example.

Example 3 The 4-dimensional contingency table (Table 3) is from Jobson (1992). The
accidents were classified according to the following characteristics:

A: Injury Level (None(1), Minimal(2), Minor(3), Major/Fatal(4)); B: Seatbelt Usage
(Yes (1), No(2)); C: Sex of the Driver (Male(1), Female(2)); and D: Drivers Condition
(Normal(1), Drinking(2)).

Table 4 gives the estimated values of u-terms for each level of A. These values are
calculated using layer tables. Also, the associated values of test statistic (χ2-statistic)
and the corresponding p-values are also calculated using SAS.

Note that a small value of χ2 (or large p-value) indicates the corresponding interac-
tion parameter is zero. It is clear from the tables that u23 and u234 can be taken to be zero
and hence are equal for each level of A. Therefore, from Corollary 1, τ123 = τ1234 = 0.
Also, using (7), we get τ23 = τ234 = 0. Thus, the highest non-zero interaction factors
for the full model are τ124 and τ134. It can be seen that W = {2, 3} satisfies Condition
(C2) of Theorem 3. Also, the remaining sets {2}, {3}, {4}, {2, 4}, {3, 4} satisfy Condi-
tion (C1) of Theorem 3. Therefore, the full model is hierarchical with the generating
class G = {{A, B, D}, {A, C, D}}.
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Table 4 Estimated values of the
parameters using SAS

Parameter(u) Levels Estimate Chi-square Pr > ChiSq

A=1

B 1 −1.0177 2517.82 < 0.0001

C 1 0.6193 932.35 < 0.0001

B×C 1, 1 −0.0328 2.62 0.1055

D 1 1.7449 7401.87 < 0.0001

B×D 1, 1 0.2255 123.57 < 0.0001

C×D 1, 1 −0.2532 155.81 < 0.0001

B×C×D 1, 1, 1 0.00956 0.22 0.6374

A=2

B 1 −1.0818 349.74 < 0.0001

C 1 0.4185 52.34 < 0.0001

B×C 1, 1 0.0545 0.89 0.3458

D 1 1.3034 507.73 < 0.0001

B×D 1, 1 0.2008 12.05 0.0005

C×D 1, 1 −0.3771 42.49 < 0.0001

B×C×D 1, 1, 1 −0.0595 1.06 0.3037

A=3

B 1 −1.0440 372.10 < 0.0001

C 1 0.3682 46.28 < 0.0001

B×C 1, 1 0.0118 0.05 0.8269

D 1 1.1023 414.83 < 0.0001

B×D 1, 1 0.0988 3.33 0.0678

C×D 1, 1 −0.2842 27.58 < 0.0001

B×C×D 1, 1, 1 0.00336 0.00 0.9505

A=4

B 1 −0.5767 60.72 < 0.0001

C 1 0.4168 31.71 < 0.0001

B×C 1, 1 −0.00736 0.01 0.9207

D 1 0.3710 25.13 < 0.0001

B×D 1, 1 −0.3427 21.44 < 0.0001

C×D 1, 1 −0.1638 4.90 0.0269

B×C×D 1, 1, 1 0.0239 0.10 0.7465

Observe that Theorem 3 is of rather practical importance. Based on the given condi-
tional data sets, we can first estimate the conditional interaction parameters, and then
using Theorem 3, we can check if the full log-linear model is hierarchical or not. Thus,
Theorem 3 is useful from the point of view of model selection for the full model.

2.3 Relationships between the conditional and the full model

In this subsection, we obtain the explicit relationships between the full log-linear
models and log-linear structures for the conditional/layer tables.
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Define, for any Z ⊆ V = {1, . . . , n}, VZ = V \ Z and

l̃(n)
Z (iZ ) = 1∏

j∈VZ
I j

∑

i j : j∈VZ

l(i1, . . . , in), (15)

where the superscript n denotes the dimension of the table.
Similarly, for any W ⊆ D = {1, . . . , n − 1}, let DW = D\W , and

l̃(n−1)
W (iW |in) = 1∏

j∈DW
I j

∑

i j : j∈DW

l(i1, . . . , in−1|in). (16)

Obviously, the log-linear model for the full table, from (1), is

l̃(n)
V (iV ) = l(i1, . . . , in) =

∑

Z⊆V

τZ (iZ ) (17)

and log-linear model for the conditional table, from (3), is

l̃(n−1)
D (iD|in) = l(i1, . . . , in−1|in) =

∑

W⊆D

uW (iW |in). (18)

Observe that, if Y ⊆ V , it follows from (17),

l̃(n)
Y (iY ) =

∑

Z⊆Y

τZ (iZ ). (19)

The following result gives the general relationships between the log-linear models
for the full table and the conditional tables. In particular, when A = D, the result (iii)
of Theorem 4 gives the explicit representation for the full log-linear model.

Theorem 4 Consider the log-linear models defined in (17) and (18). Let
D = {1, . . . , n − 1}, and A ⊆ D. Then

(i) l̃(n)
φ = 1

In

∑

in∈ Īn

{ln p(in) + l̃(n−1)
φ (iφ |in)},

(ii) l̃(n)
n (in) = ln p(in) + l̃(n−1)

φ (iφ |in),

(iii) l̃(n)
A∪n(i A, in) − l̃(n)

n (in) = l̃(n−1)
A (i A|in) − l̃(n−1)

φ (iφ |in), and

(iv) l̃(n)
A (i A) − l̃(n)

φ = 1

In

∑

in∈ Īn

(l̃(n−1)
A (i A|in) − l̃(n−1)

φ (iφ |in)),

where l̃(n−1)
φ (iφ |in) = uφ(iφ |in).

The proof of the above theorem is omitted in view of Theorem 8.
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Remark 3 The n-dimensional full model can be obtained from the conditional models,
if we also know the marginal distribution (i.e., ln p(in)) of the conditioned variable.
Note also that the results in (iii) and (iv) hold for the layer tables also, when the
l̃ A(i A|in) is replaced by the corresponding quantity l̃ A(i A; in). Thus, the above results
are also useful for analyzing full model in terms of the layer models. For example, these
results can be used to interpret various hierarchical log-linear models (see, Santner
and Duffy 1989, p. 154).

3 Log-linear modeling based on conditional (set of variables) structures

In the earlier sections, we analyzed log-linear models for conditional tables where
only one variable (Xn) is conditioned. However, there are many practical situations
where the data is obtained, when a set of variables is conditioned. For this case of
multiple conditional variables, Kim (2006) explored the relationship between condi-
tional graphical models and the full graphical model. In the same spirit, we analyze,
in this section, the full (general) log-linear model based on conditional structures
(models), when a set of variables is conditioned.

Consider an n-dimensional contingency table corresponding to the variables
X1, . . . , Xn , and V = {1, 2, . . . , n}. Also, let C be the set of indices of the conditional
variables. Let τZ (iZ ) and uW (iW |iC ) henceforth respectively denote the |Z |-factor
and |W |-factor interactions for the full and the conditional models. As seen earlier,
the log-linear model for full (n-dimensional) table can be represented as

l(i1, . . . , in) =
∑

Z⊆V

τZ (iZ ). (20)

Assume hereafter, for simplicity, C = {d + 1, . . . , n} so that the support of
(Xd+1, . . . , Xn) is ĪC = Īd+1 × · · · × Īn , where Īk = {1, . . . , Ik}. Then, the log-
linear model for the conditional table, for fixed level of XC = iC ∈ ĪC , is given
by

l(i1, . . . , id |id+1, . . . , in) =
∑

W⊆D

uW (iW |iC ), (21)

where, here and henceforth, W is any subset of D = {1, . . . , d}. Let the log-linear
model for the marginal |C |-dimensional table of the conditional variables be

ln p(iC ) =
∑

Z⊆C

δZ (iZ ). (22)

We now introduce the following notation. Let CA = C \ A, for A ⊆ C , and define
ũW |A as

ũW |A(iW |i A) = 1
∏

j∈CA

I j

∑

i j : j∈CA

uW (iW |iC ). (23)
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When A = C , we get

ũW |C (iW |iC ) = uW (iW |iC ). (24)

Also, define T̃W |A as

T̃W |A(iW |i A) =
∑

Y⊆A

(−1)|A−Y |ũW |Y (iW |iY ), (25)

where |B| denotes the cardinality of the set B. Note that ũW |A and T̃W |A are defined
for any subset W (including the null set) of D.

We now need the following result, known as Möbius inversion formula. For more
details, see, (Lauritzen, 1996, p. 239).

Lemma 1 Let f and g be functions defined on the set of all subsets of a finite set V .
Then

f (A) =
∑

Z⊆A

g(Z), for all A ⊆ V ⇐⇒ g(A) =
∑

Z⊆A

(−1)|A−Z | f (Z),

for all A ⊆ V . (26)

The next result is a generalization of Theorem 1, when a set of variables is conditioned.

Theorem 5 Consider the log-linear Models (20), (21) and (22), and let T̃W |A be
defined as in (25). Then,

(i) τA(i A) = δA(i A) + T̃φ|A(iφ |i A), (27)

for any subset A ⊆ C, and

(ii) τW∪A(iW , i A) = T̃W |A(iW |i A), (28)

for W ⊆ {1, . . . , d}, W �= φ, and A ⊆ C.

When A = φ, Eqs. (27) and (28) reduce to

τφ(iφ) = δφ(iφ) + T̃φ|φ(iφ |iφ)

= 1∏
j∈C I j

∑

i j : j∈C

{ln p(iC ) + uφ(iφ |iC )}, (29)

and

τW (iW ) = T̃W |φ(iW |iφ) = 1∏
j∈C I j

∑

i j : j∈C

uW (iW |iC ). (30)
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It is clear now that the τA-terms, A ⊆ C , can not be obtained based on conditional
u-terms only. Indeed, we need the knowledge of the marginal distribution of XC (or
the marginal interaction parameters) also. This is precisely reflected in (27). Observe
also that Eqs. (27) and (28) specify all the τ -terms of the full model.

The following result, which is a direct consequence of Theorem 5, gives the con-
ditions under which a τ -term is zero in the full model.

Corollary 2 Let A ⊆ C. Then, τW∪A(iW , i A) = 0 if and only if T̃W |A(iW |i A) = 0,
where W ⊆ {1, . . . , d} and W �= φ.

The following result, which is an analogue of Theorem 2 and easy to prove, gives
connections between the interaction parameters of the layer model and that of the
conditional model.

Theorem 6 Let ln p(i1, . . . , id ; iC ) = ∑
W⊆{1,...,d} ηW (iW ; iC ) denote log-linear

model for the d-dimensional layer table corresponding to level iC of XC . Also, let the
conditional log-linear model for X1, . . . , Xd be given by (21). Then,

ηW (iW ; iC ) = uW (iW |iC ) (31)

for each nonempty subset W of {1, . . . , d}, and

ηφ(iC ) = uφ(iφ |iC ) + ln p(iC ). (32)

Next, we present a necessary and sufficient condition for the full Model (20) to be
hierarchical.

Theorem 7 Consider the full and the conditional models specified in (20) and (21).
Assume τA �= 0, for all A ⊆ C = {d + 1, . . . , n}. Then the full log-linear model is
hierarchical if and only if for each nonempty W ⊆ {1, . . . , d} and φ �= A ⊆ C, the
u-terms satisfy one of the following two conditions:

(C1): T̃W |A(iW |i A) �= 0 �⇒
∑

iC ∈ ĪC

uW (iW |iC ) �= 0.

(C2): (a) T̃W |A(iW |i A) = 0 �⇒ T̃W ′|A′(iW ′ |i A′) = 0 for all W ′ ⊇ W and
A ⊆ A′ ⊆ C; and

(b) T̃W |A(iW |i A) = 0 and
∑

iC ∈ ĪC
uW (iW |iC ) = 0 �⇒ T̃W ′|A′(iW ′ |i A′) =

0 and
∑

iC ∈ ĪC
uW ′(iW ′ |iC ) = 0 for all W ′ ⊇ W and A ⊆ A′ ⊆ C.

Note that, if Condition (C2) of Theorem 7 holds for some W ⊆ {1, . . . , d} and for
some A ⊆ C , then it is also true for all W ′ ⊃ W and for all A′ ⊃ A.

Finally, we present the relationships between the log-linear model of n-dimensional
table and the conditional d-dimensional table, where d = n − |C |. Let, for A ⊆ C ,

l̃(n−d)
A (i A) = 1

∏

j∈CA

I j

∑

i j : j∈CA

l(id+1, . . . , in) (33)
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and, for W ⊆ D = {1, . . . , d},

l∗(d)
W |A(iW |i A) = 1

∏

j∈CA

I j

∑

i j : j∈CA

l̃(d)
W |C (iW |iC ), (34)

where,

l̃(d)
W |C (iW |iC ) = 1

∏

j∈DW

I j

∑

i j : j∈DW

ln p(i1 . . . , id |id+1, . . . , in), (35)

and DW = D\W , as used earlier.
The next result is an extension of Theorem 4, for the case when a set of variables is

conditioned. As mentioned earlier, this result is useful to interpret various hierarchical
log-linear models also.

Theorem 8 Consider the log-linear Models (20) and (21). Then, for each A ⊆ C =
{d + 1, . . . , n}

(i) l̃(n)
A (i A) = l̃(n−d)

A (i A) + l∗(d)
φ|A (iφ |i A); and

(ii) l̃(n)
W∪A(iW , i A) − l̃(n)

A (i A) = l∗(d)
W |A(iW |i A) − l∗(d)

φ|A (iφ |i A),

where l∗(d)
φ|A (iφ |i A) = ũφ|A(iφ |i A) and W is any nonempty subset of D = {1, . . . , d}.

Observe that when W = D and A = C , we obtain the log-linear model for the full
table from Part (ii) of Theorem 8.

Appendix

Proof of Theorem 1. Note that, for each level of Xn = in ,

l(i1, . . . , in) = l(i1, . . . , in−1|in) + ln p(in).

Using (1) and (3), we get

∑

Z⊆{1,2,...,n}
τZ (iZ ) =

∑

W⊆{1,2,...,n−1}
uW (iW |in) + ln p(in). (36)

Summing over i j , for every j ∈ {1, . . . , n − 1} and using (4), we obtain

τφ + τn(in) = uφ(iφ |in) + ln p(in), (37)

which proves Part (ii).
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Summing now over in ∈ Īn , in (37) and using (4) again, Part (i) follows.
Substituting (37) in (36), we get

∑

Z⊆{1,··· ,n}
Z �=φ,Z �=n

τZ (iZ ) =
∑

W⊆{1,··· ,n−1}
W �=φ

uW (iW |in)

which is equivalent to

∑

W⊆{1,··· ,n−1}
W �=φ

{τW (iW ) + τW∪n(iW , in)} =
∑

W⊆{1,··· ,n−1}
W �=φ

uW (iW |in). (38)

Summing now over i j in (38), for every j ∈ {1, . . . , n}, except j = r �= n, and using
(4), we get

τr (ir ) = 1

In

∑

in∈ Īn

ur (ir |in). (39)

Similarly, summing over i j in (38), for every j ∈ {1, . . . , n − 1}, except j = r , and
using (4) gives,

τr∪n(ir , in) = ur (ir |in) − τr (ir ). (40)

Since r is arbitrary, Eqs. (39) and (40) prove Parts (iii) and (iv) respectively for the
subset W with |W | = 1.

Assume now

τW (iW ) = 1

In

∑

in∈ Īn

uW (iW |in); and (41)

τW∪n(iW , in) = uW (iW |in) − τW (iW ) (42)

are true for any subset W with |W | ≤ t , where 1 < t ≤ n − 2.
Let B ⊆ {1, . . . , n − 1} be such that |B| = t + 1. Summing over i j in (38), for

every j ∈ {1, . . . , n} \ B, and using (4), we get

∑

W⊆B
W �=φ

τW (iW ) = 1

In

∑

in∈ Īn

∑

W⊆B
W �=φ

uW (iW |in),

which, using the assumption (41), gives

τB(iB) = 1

In

∑

in∈ Īn

u B(iB |in).
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Also, summing now over i j in (38), for every j ∈ {1, . . . , n − 1} \ B, and using (4),
we get

∑

W⊆B
W �=φ

{τW (iW ) + τW∪n(iW , in)} =
∑

W⊆B
W �=φ

uW (iW |in)

which, using (42), leads to

τB(iB) + τB∪n(iB, in) = u B(iB |in).

Thus, (41) and (42), are true for W = B also. By induction, Parts (iii) and (iv)
follow. 
�
Proof of Theorem 3. First suppose that the Model (1) is hierarchical. We need to show
that either (C1) or (C2) holds. Consider now uW (iW |in), where W is any subset of
{1, . . . , n − 1}. Then either

uW (iW |in1) �= uW (iW |in2) for at least one pair (in1, in2) (43)

or

uW (iW |in1) = uW (iW |in2) for all (in1, in2). (44)

Suppose now (43) holds. In this case, we show (C1) holds. Suppose now

∑

in∈ Īn

uW (iW |in) = 0. (45)

Then, using Corollary 1, the Eq. (43) implies τW∪n �= 0. Also, (45) and (7) imply that
τW = 0, which contradicts the assumption that the full model is hierarchical. Thus,
(C1) holds.

Suppose, instead of (43), (44) holds. Suppose there exists a set W ′ ⊃ W for which

uW ′(iW ′ |in1) �= uW ′(iW ′ |in2) for some in1, in2 ∈ Īn .

Using Corollary 1, the above equations imply that τW∪n = 0 and τW ′∪n �= 0, contra-
dicts the assumption. Therefore, (C2(a)) holds.

Finally, let uW (iW ) = 0. Suppose there exists a set W ′ ⊃ W for which uW ′(iW ′) �=
0. Then, from (7), τW = 0 and τW ′ �= 0. Again a contradiction arises. Hence, (C2(b))

holds.
Conversely, let Condition (C1) or (C2) holds for each W ⊆ {1, . . . , n − 1}. Sup-

pose the model is non hierarchical. Then, for W ⊆ W ′ ⊆ {1, . . . , n − 1}, one of the
following three conditions must be true.

(a) τW = 0, but τW ′ �= 0.

(b) τW = 0, but τW∪n �= 0.

(c) τW∪n = 0, but τW ′∪n �= 0.

(46)
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Suppose (a) holds. Then, from (7), we have

∑

in∈ Īn

uW (iW |in) = 0, and (47)

∑

in∈ Īn

uW ′(iW ′ |in) �= 0. (48)

Note that (47) is true under one of the following two cases.
(i) uW (iW |in1) �= uW (iW |in2), for some in1, in2 ∈ Īn ; or (ii) uW (iW |in) = 0 for

each in ∈ Īn .
If (i) holds then, using Condition (C1),

∑
in∈ Īn

uW (iW |in) �= 0, which contradicts

(47). Note also that uW (iW |in1) �= uW (iW |in2), for some in1, in2 ∈ Īn , shows that
Condition (C2) can’t be satisfied.

If (ii) holds, then using Condition (C2(b)), uW ′(iW ′ |in) = 0, for each in ∈ Īn and
W ′ ⊃ W . This contradicts (48). Since uW (iW |in1) = uW (iW |in2), for all in1, in2 ∈ Īn ,
Condition (C1) can not be satisfied. Hence, (a) does not hold.

Similarly, if (b) is true, then, from (7), τW = 0 implies
∑

in∈ Īn
uW (iW |in) = 0.

Also, using Corollary 1, τW∪n �= 0 implies that there exist at least one pair in1, in2 ∈ Īn

for which uW (iW |in1) �= uW (iW |in2) which contradicts Condition (C1). Therefore,
(b) can not hold. Also, since uW (iW |in1) �= uW (iW |in2), Condition (C2) can not hold.

Assume now Condition (c) of (46) is true. Then, from Corollary 1, we have
uW (iW |in1) = uW (iW |in2), for all in1, in2 ∈ Īn but uW ′(iW ′ |in1) �= uW ′(iW ′ |in2)

for at least one pair in1 , in2 ∈ Īn . This contradicts Condition (C2). Since uW (iW |in) =
uW (iW |in), Condition (C1) can not be satisfied. Therefore, (c) does not hold. Thus,
we have shown that none of the Conditions (a)–(c) holds. This is equivalent to saying
that the full model is hierarchical. This completes the proof. 
�
Proof of Theorem 5. First note that,

l(i1, . . . , in) = l(i1, . . . , id |iC ) + ln p(iC ). (49)

Substituting (20) and (21) in (49), we get

∑

Z⊆{1,2,...,n}
τZ (iZ ) =

∑

W⊆{1,2,...,d}
uW (iW |iC ) + ln p(iC ). (50)

Summing over i j , for every j ∈ {1, . . . , d} and using (4), we obtain

∑

Z⊆C

τZ (iZ ) = uφ(iφ |iC ) + ln p(iC ). (51)

(i): Now from (22) and (51), we get

∑

Z⊆C

{τZ (iZ ) − δZ (iZ )} = uφ(iφ |iC ).
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Summing over i j : j ∈ CA = C \ A and using (4), we get

∑

Z⊆A

{τZ (iZ ) − δZ (iZ )} = 1∏
j∈CA

I j

∑

i j : j∈CA

uφ(iφ |iC ) = ũφ|A(iφ |i A), (using (23))

for every A ⊆ C . Using now Möbius inversion given in (26), we get

τA(i A) = δA(i A) +
∑

Z⊆A

(−1)|A−Z |ũφ|Z (iφ |iZ )

= δA(i A) + T̃φ|A(iφ |i A).

This proves Part (i).
(ii): Substituting (51) in (50), we get

∑

Z⊆{1,...,n}
Z �⊂C

τZ (iZ ) =
∑

W⊆{1,...,d}
W �=φ

uW (iW |iC )

which can be written as

∑

W⊆{1,...,d}
W �=φ

∑

Y⊆C

τY∪W (iY , iW ) =
∑

W⊆{1,...,d}
W �=φ

uW (iW |iC ). (52)

Let A be an arbitrary subset of C . Summing over i j , for every j ∈ C \ A in (52), and
using (23), we get

∑

W⊆{1,...,d}
W �=φ

∑

Y⊆A

τY∪W (iY , iW ) =
∑

Z⊆{1,...,d}
Z �=φ

ũW |A(iW |i A). (53)

Using the arguments similar to the proof of Theorem 1, we get

∑

Y⊆A

τY∪W (iY , iW ) = ũW |A(iW |i A), ∀ W ⊆ {1, . . . , d}, W �= φ. (54)

Since (54) is true for all A ⊆ C , we get by Möbius inversion formula (26),

τA∪W (i A, iW ) =
∑

Y⊆A

(−1)|A−Y |ũW |Y (iW |iY ).

The proof of Part (ii) now follows from (25). 
�
Proof of Theorem 7. First suppose the Model (20) is hierarchical. We need to show
that either (C1) or (C2) holds. Consider now ũW |A(iW |i A), where W ⊆ D and A ⊆
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C, A �= φ. Then either

(i) T̃W |A(iW |i A) �= 0 or (ii) T̃W |A(iW |i A) = 0.

If (i) holds, we need to show that
∑

iC ∈ ĪC
uW (iW |iC ) �= 0. Suppose now

∑

iC ∈ ĪC

uW (iW |iC ) = 0. (55)

Using Corollary 2, we get, from (i), τW∪A �= 0. Also, (30) and (55) imply that τW = 0.
This contradicts that the full model is hierarchical. Hence, Condition (C1) holds.

Assume next (ii) holds, which implies, using Corollary 2, τW∪A = 0. Suppose now
(C2(a)) does not hold. Then T̃W ′|A′ �= 0, for some W ′ ⊇ W and A′ ⊇ A, which,
using again Corollary 2, implies that τW ′∪A′ �= 0, which shows that the full model is
non-hierarchical. Hence, (C2(a)) holds.

The proof of (C2(b)) follows similarly.
Conversely, let for each W ⊆ {1, . . . , d} and for each nonempty subset A ⊆ C , the

Conditions (C1) or (C2) hold. Suppose that the full model is not hierarchical. Then
there must exist at least one W for which one of the following conditions must be
satisfied.

(a1) τW = 0, and τW ′ �= 0,
(a2) τW = 0, and τW∪A �= 0,
(a3) τW∪A = 0, and τW ′∪A′ �= 0,

for A ⊆ B ⊆ C and W ⊂ W ′ ⊆ {1, . . . , d}.
Suppose (a1) is true, which, using (30), is equivalent to

∑

iC ∈ ĪC

uW (iW |iC ) = 0, (56)

∑

iC ∈ ĪC

uW ′(iW ′ |iC ) �= 0. (57)

Suppose now W satisfies (C1). Then
∑

iC ∈ ĪC
uW (iW |iC ) �= 0, which contradicts (56).

Therefore, Condition (C1) can not hold. Similarly, if W satisfies (C2), then (C2(b))

and (56) imply that
∑

iC ∈ ĪC
uW ′(iW ′ |iC ) = 0, which contradicts (57). Therefore, W

does not satisfy (C2) also. Hence, Condition (a1) cannot hold.
Next suppose (a2) is true. Then, from (30), we have

∑
iC ∈ ĪC

uW (iW |iC ) = 0. Also,

τW∪A �= 0 and Corollary 2 imply T̃W |A(iW |i A) �= 0. This shows Condition (C1)

cannot hold. It is clear that Condition (C2) is not applicable for this case. Hence, (a2)

does not hold.
Finally, suppose (a3) holds. Then, from Corollary 2, T̃W |A(iW |i A) = 0. Also,

τW ′∪A′ �= 0 and Corollary 2 imply that T̃W ′|A′(iW ′ |i A′) �= 0. Hence, (C2) cannot hold.
Obviously (C1) also does not hold if (a3) holds.

Thus, none of the Conditions (a1)–(a3) holds. Therefore, the full model is hierar-
chical. This completes the proof. 
�
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Proof of Theorem 8. Recall from (51),

∑

Z⊆{d+1,...,n}
τZ (iZ ) = uφ|C (iφ |iC ) + l̃(n−d)

C (iC ).

Summing over i j : j ∈ CA, we get

∑

Z⊆A

τZ (iZ ) = 1∏
j∈CA

I j

∑

i j : j∈CA

[uφ|C (iφ |iC ) + l̃(n−d)
C (iC )]

= ũφ|A(iφ |i A) + l̃(n−d)
A (i A) = l∗(d)

φ|A (iφ |i A) + l̃(n−d)
A (i A),

using (34). This proves Part (i).
Next, it follows from (19),

l̃(n)
W∪A(iW , i A) =

∑

Z⊆W∪A

τZ (iZ )

=
∑

Y⊆W

∑

Z⊆A

τY∪Z (iY , iZ )

=
∑

Y⊆W
Y �=φ

∑

Z⊆A

τY∪Z (iY , iZ ) +
∑

Z⊆A

τZ (iZ ).

Using (54) and (19), the above equation becomes

l̃(n)
W∪A(iW , i A) =

∑

Y⊆W
Y �=φ

ũY |A(iY |i A) + l̃(n)
A (i A)

= l∗(d)
W |A(iW |i A) − l∗(d)

φ|A (iφ |i A) + l̃(n)
A (i A)

which proves Part (ii). 
�
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