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Abstract. We prove an existence theorem for good moduli spaces, and use it to construct the second
flip in the log minimal model program for Mg. In fact, our methods give a uniform self-contained
construction of the first three steps of the log minimal model program for Mg and Mg,n.
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1. Introduction

In an effort to understand the canonical model of Mg, Hassett and Keel introduced the log minimal

model program (LMMP) for Mg. For any α ∈ Q ∩ [0, 1] such that KMg
+ αδ is big, Hassett defined

(1.1) Mg(α) := Proj
⊕

m>0

H0(Mg, ⌊m(KMg
+ αδ)⌋),

and asked whether the spaces Mg(α) admit a modular interpretation [Has05]. In [HH09, HH13],
Hassett and Hyeon carried out the first two steps of this program by showing that:

Mg(α) =





Mg if α ∈ (9/11, 1]

M
ps
g if α ∈ (7/10, 9/11]

M
c
g if α = 7/10

M
h
g if α ∈ (2/3−ǫ, 7/10)

where M
ps
g , M

c
g , and M

h
g are the moduli spaces of pseudostable (see [Sch91]), c-semistable, and

h-semistable curves (see [HH13]), respectively. Additional steps of the LMMP for Mg are known
when g 6 5 [Has05, HL10, HL14, Fed12, CMJL12, CMJL14, FS13]. In these works, new projective
moduli spaces of curves are constructed using Geometric Invariant Theory (GIT). Indeed, one of
the most appealing features of the Hassett-Keel program is the way that it ties together different
compactifications of Mg obtained by varying the parameters implicit in Gieseker and Mumford’s

classical GIT construction of Mg [Mum65, Gie82]. We refer the reader to [Mor09] for a detailed
discussion of these modified GIT constructions.

In this paper, we develop new techniques for constructing moduli spaces without GIT and apply
them to construct the third step of the LMMP, a flip replacing Weierstrass genus 2 tails by ramphoid
cusps. In fact, we give a uniform construction of the first three steps of the LMMP for Mg, as well

as an analogous program for Mg,n. To motivate our approach, let us recall the three-step procedure

used to construct Mg and establish its projectivity intrinsically:

(1) Prove that the functor of stable curves is a proper Deligne-Mumford stackMg [DM69].

(2) Use the Keel-Mori theorem to show thatMg has a coarse moduli spaceMg →Mg [KM97].

(3) Prove that some line bundle onMg descends to an ample line bundle on Mg [Kol90, Cor93].

This is now the standard procedure for constructing projective moduli spaces in algebraic geometry.
It is indispensable in cases where a global quotient presentation for the relevant moduli problem is
not available, or where the GIT stability analysis is intractable, and there are good reasons to expect
both these issues to arise in further stages of the LMMP for Mg. Unfortunately, this procedure

cannot be used to construct the log canonical modelsMg(α) because potential moduli stacksMg(α)

may include curves with infinite automorphism groups. In other words, the stacks Mg(α) may be
non-separated and therefore may not possess a Keel-Mori coarse moduli space. The correct fix is to
replace the notion of a coarse moduli space by a good moduli space, as defined and developed by
Alper [Alp13, Alp12, Alp10, Alp14].

In this paper, we prove a general existence theorem for good moduli spaces of non-separated
algebraic stacks (Theorem 4.1) that can be viewed as a generalization of the Keel-Mori theorem
[KM97]. This allows us to carry out a modified version of the standard three-step procedure in order
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to construct moduli interpretations for the log canonical models1

(1.2) Mg,n(α) := Proj
⊕

m>0

H0(Mg,n, ⌊m(KMg,n
+ αδ + (1− α)ψ)⌋).

Specifically, for all α > 2/3−ǫ, where 0 < ǫ≪ 1, we

(1) Construct an algebraic stackMg,n(α) of α-stable curves (Theorem 2.7).

(2) Construct a good moduli spaceMg,n(α)→ Mg,n(α) (Theorem 4.25).

(3) Show that KMg,n(α)
+αδ+(1−α)ψ onMg,n(α) descends to an ample line bundle on Mg,n(α),

and conclude that Mg,n(α) ≃Mg,n(α) (Theorem 5.1).

In sum, we obtain the following result.

Main Theorem. There exists a diagram

Mg,n
� �

i+1

//

��

Mg,n(
9
11
)

φ1

��

Mg,n(
9
11
−ǫ) � �

i+2

//

φ−1
��

? _

i−1

oo Mg,n(
7
10
)

φ2

��

Mg,n(
7
10
−ǫ)? _

i−2

oo � �

i+3

//

φ−2
��

Mg,n(
2
3
)

φ3

��

Mg,n(
2
3
−ǫ)? _

i−3

oo

φ−3
��

Mg,n

j+1

$$

Mg,n(
9
11
−ǫ)

j+2

&&

j−1

xx

Mg,n(
7
10
−ǫ)

j+3

&&

j−2

xx

Mg,n(
2
3
−ǫ)

j−3

xx
Mg,n(

9
11
) Mg,n(

7
10
) Mg,n(

2
3
)

where:

(1) Mg,n(α) is the moduli stack of α-stable curves, and for c = 1, 2, 3:

(2) i+c and i−c are open immersions of algebraic stacks.

(3) The morphisms φc and φ
−
c are good moduli spaces.

(4) The morphisms j+c and j−c are projective morphisms induced by i+c and i−c , respectively.

When n = 0, the above diagram constitutes the steps of the log minimal model program for Mg. In

particular, j+1 is the first contraction, j−1 is an isomorphism, (j+2 , j
−
2 ) is the first flip, and (j+3 , j

−
3 )

is the second flip.

The parameter α passes through three critical values, namely α1 = 9/11, α2 = 7/10, and α3 = 2/3.
In the open intervals (9/11, 1), (7/10, 9/11), (2/3, 7/10) and (2/3−ǫ, 2/3), the definition of α-stability
does not change, and consequently neither doMg,n(α) or Mg,n(α).

The theorem is degenerate in several special cases: For (g, n) = (1, 1), (1, 2), (2, 0), the divisor
KMg,n

+ αδ + (1 − α)ψ hits the edge of the effective cone at 9/11, 7/10, and 7/10, respectively, and

hence the diagram should be taken to terminate at these critical values. Furthermore, when g = 1
and n > 3, or (g, n) = (3, 0), (3, 1), α-stability does not change at the threshold value α3 = 2/3, so
the morphisms (i+3 , i

−
3 ) and (j+3 , j

−
3 ) are isomorphisms. Finally, for (g, n) = (2, 1), j+3 is a divisorial

contraction and j−3 is an isomorphism.

1Note that the natural divisor for scaling in the pointed case is KMg,n
+αδ+(1−α)ψ = 13λ− (2−α)(δ−ψ) rather

than KMg,n
+ αδ; see [Smy11b, p.1845] for a discussion of this point.
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Remark. As mentioned above, when n = 0 and α > 7/10−ǫ, these spaces have been constructed using

GIT. In these cases, our definition of α-stability agrees with the GIT semistability notions studied

in the work of Schubert, Hassett, Hyeon, and Morrison [Sch91, HH09, HH13, HM10].

The key observation underlying our proof of the main theorem is that at each critical value
αc ∈ {9/11, 7/10, 2/3}, the inclusions

Mg,n(αc+ǫ) →֒ Mg,n(αc) ←֓ Mg,n(αc−ǫ)
can be locally modeled by an intrinsic variation of GIT problem (Theorem 3.11). It is this feature
of the geometry which enables us to verify the hypotheses of Theorem 4.1. We axiomatize this
connection between local VGIT and the existence of good moduli spaces in Theorem 4.2. In short,
Theorem 4.2 says that if X is an algebraic stack with a pair of open immersions X+ →֒ X ←֓ X−

which can be locally modeled by a VGIT problem, and if the open substack X+ and the two closed
substacks X rX− and X rX+ each admit good moduli spaces, then X admits a good moduli space.
This paves the way for an inductive construction of good moduli spaces for the stacksMg,n(α).

Let us conclude by briefly describing the geometry of the second flip. At α3 = 2/3, the locus of
curves with a genus 2 Weierstrass tail (i.e., a genus 2 subcurve nodally attached to the rest of the
curve at a Weierstrass point), or more generally a Weierstrass chain (see Definition 2.2), is flipped
to the locus of curves with a ramphoid cusp (y2 = x5). See Figure 1. The fibers of j+3 correspond to
varying moduli of Weierstrass chains, while the fibers of j−3 correspond to varying moduli of ramphoid
cuspidal crimpings. Moreover, if (K, p) is a fixed curve of genus g−2, all curves obtained by attaching

g=2

Weierstrass
point

j+3 =

y2=x5

j−3

Figure 1. Curves with a nodally attached genus 2 Weierstrass tail are flipped to

curves with a ramphoid cuspidal (y2 = x5) singularity.

a Weierstrass genus 2 tail at p or imposing a ramphoid cusp at p are identified inMg,n(2/3). This can

be seen on the level of stacks since, in Mg,n(2/3), all such curves admit an isotrivial specialization
to the curve C0, obtained by attaching a rational ramphoid cuspidal tail to K at p. See Figure 2.

Outline of the paper. In Section 2, we define the notion of α-stability for n-pointed curves and
prove that they are deformation open conditions. We conclude thatMg,n(α), the stack of n-pointed

α-stable curves of genus g, is algebraic. We also characterize the closed points ofMg,n(αc) for each
critical value αc. In Section 3, we develop the machinery of local quotient presentations and local
variation of GIT, and compute the VGIT chambers associated to closed points inMg,n(αc) for each

critical value αc. In particular, we show that the inclusionsMg,n(αc+ǫ) →֒ Mg,n(α) ←֓ Mg,n(αc−ǫ)
are cut out by these chambers. In Section 4, we prove three existence theorems for good moduli
spaces, and apply these to give an inductive proof that the stacksMg,n(α) admit good moduli spaces.
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g=2

Weierstrass
point

y2=x5

C0

y2=x5g=0

Figure 2. The curve C0 is the nodal union of a genus g − 2 curve K and a rational

ramphoid cuspidal tail. All curves obtained by either attaching a Weierstrass genus

2 tail to K at p, or imposing a ramphoid cusp on K at p, isotrivially specialize to C0.

Observe that Aut(C0) is not finite.

In Section 5, we give a direct proof that the line bundle KMg,n(αc+ǫ)
+ αcδ + (1 − αc)ψ is nef on

Mg,n(αc+ǫ) for each critical value αc, and use this to show that the good moduli spaces ofMg,n(α)

are the corresponding log canonical models Mg,n(α).

Notation. We work over a fixed algebraically closed field C of characteristic zero. An n-pointed
curve (C, {pi}ni=1) is a connected, reduced, proper 1-dimensional C-scheme C with n distinct smooth

marked points pi ∈ C. A curve C has an Ak-singularity at p ∈ C if ÔC,p ≃ C[[x, y]]/(y2 − xk+1). An
A1- (resp., A2-, A3-, A4-) singularity is also called a node (resp., cusp, tacnode, ramphoid cusp).

Line bundles and divisors, such as λ, δ, K, and ψ, on the stack of pointed curves with at-worst
A-singularities, are discussed in §5.1.

We use the notation ∆ = SpecR and ∆∗ = SpecK, where R is a discrete valuation ring with
fraction field K; we set 0, η and η to be the closed point, the generic point and the geometric
generic point respectively of ∆. We say that a flat family C → ∆ is an isotrivial specialization if
C ×∆ ∆∗ → ∆∗ is isotrivial.

Acknowledgments. We thank Brendan Hassett and Ian Morrison for their enthusiastic and long-
standing support of this project. In particular, we are grateful to Ian Morrison for detailed comments
and suggestions on the earlier version of this paper. We also thank Joe Harris, David Hyeon, Johan
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grants provided by Harvard University and the IHES, and the Australian Research Council grant
DE140101519. The second author was partially supported by NSF grant DMS-1259226 and the
Australian National University MSRVP fund. The third author was partially supported by NSF
grant DMS-0901095 and the Australian Research Council grant DE140100259. The third and fourth
author were also partially supported by a Columbia University short-term visitor grant. A portion
of this work was revised when the second author visited the Max-Planck-Institute for Mathematics
in Bonn.
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2. α-stability

In this section, we define α-stability (Definition 2.5) and show that it is an open condition. We
conclude that Mg,n(α), the stack of n-pointed α-stable curves of genus g, is an algebraic stack of
finite type over C (see Theorem 2.7). We also give a complete description of the closed points of
Mg,n(αc) for αc ∈ {2/3, 7/10, 9/11} (Theorem 2.23).

2.1. Definition of α-stability. The basic idea is to modify Deligne-Mumford stability by designat-
ing certain curve singularities as ‘stable,’ and certain subcurves as ‘unstable.’ We begin by defining
the unstable subcurves associated to the first three steps of the log MMP forMg,n.

Definition 2.1 (Tails and Bridges).

(1) An elliptic tail is a 1-pointed curve (E, q) of arithmetic genus 1 which admits a finite, sur-

jective, degree 2 map φ : E → P1 ramified at q.

(2) An elliptic bridge is a 2-pointed curve (E, q1, q2) of arithmetic genus 1 which admits a finite,

surjective, degree 2 map φ : E → P1 such that φ−1({∞}) = {q1 + q2}.
(3) A Weierstrass genus 2 tail (or simply Weierstrass tail) is a 1-pointed curve (E, q) of arith-

metic genus 2 which admits a finite, surjective, degree 2 map φ : E → P1 ramified at q.

We use the term αc-tail to mean an elliptic tail if αc = 9/11, an elliptic bridge if αc = 7/10, and a

Weierstrass tail if αc = 2/3.

q
g=1

q1

q2 g=1
q

g=2

Weierstrass point

Figure 3. An elliptic tail, elliptic bridge, and Weierstrass tail.

Remark. If (E, q) is an elliptic or Weierstrass tail, then E is irreducible. If (E, q1, q2) is an elliptic

bridge, then E is irreducible or E is a union of two smooth rational curves.

Unfortunately, we cannot describe our α-stability conditions purely in terms of tails and bridges.
As seen in [HH13], one extra layer of combinatorial description is needed, and this is encapsulated
in our definition of chains.

Definition 2.2 (Chains). An elliptic chain of length r is a 2-pointed curve (E, p1, p2) which admits

a finite, surjective morphism

γ :
r∐

i=1

(Ei, q2i−1, q2i)→ (E, p1, p2)

such that:

(1) (Ei, q2i−1, q2i) is an elliptic bridge for i = 1, . . . , r.

(2) γ is an isomorphism when restricted to Ei r {q2i−1, q2i} for i = 1, . . . , r.

(3) γ(q2i) = γ(q2i+1) is an A3-singularity for i = 1, . . . , r − 1.

(4) γ(q1) = p1 and γ(q2r) = p2.
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A Weierstrass chain of length r is a 1-pointed curve (E, p) which admits a finite, surjective morphism

γ :
r−1∐

i=1

(Ei, q2i−1, q2i)
∐

(Er, q2r−1)→ (E, p)

such that:

(1) (Ei, q2i−1, q2i) is an elliptic bridge for i = 1, . . . , r − 1, and (Er, q2r−1) is a Weierstrass tail.

(2) γ is an isomorphism when restricted to Eir{q2i−1, q2i} (for i = 1, . . . , r−1) and Err{q2r−1}.
(3) γ(q2i) = γ(q2i+1) is an A3-singularity for i = 1, . . . , r − 1.

(4) γ(q1) = p.

An elliptic (resp., Weierstrass) chain of length 1 is simply an elliptic bridge (resp., Weierstrass tail).

(A)

p1 p2

1111

(B)

p

2111
Weierstrass point

Figure 4. Curve (A) (resp., (B)) is an elliptic (resp., Weierstrass) chain of length 4.

When describing tails and chains as subcurves, it is important to specify the singularities along
which the tail or chain is attached. This motivates the following pair of definitions.

Definition 2.3 (Gluing morphism). A gluing morphism γ : (E, {qi}mi=1) → (C, {pi}ni=1) between

two pointed curves is a finite morphism E → C, which is an open immersion when restricted to

E − {q1, . . . , qm}. We do not require the points {γ(qi)}mi=1 to be distinct.

Definition 2.4 (Tails and Chains with Attaching Data). Let (C, {pi}ni=1) be an n-pointed curve.

We say that (C, {pi}ni=1) has

(1) Ak-attached elliptic tail if there is a gluing morphism γ : (E, q)→ (C, {pi}ni=1) such that

(a) (E, q) is an elliptic tail.

(b) γ(q) is an Ak-singularity of C, or k = 1 and γ(q) is a marked point.

(2) Ak1/Ak2-attached elliptic chain if there is a gluing morphism γ : (E, q1, q2) → (C, {pi}ni=1)

such that

(a) (E, q1, q2) is an elliptic chain.

(b) γ(qi) is an Aki-singularity of C, or ki = 1 and γ(qi) is a marked point (i = 1, 2).

(3) Ak-attached Weierstrass chain if there is a gluing morphism γ : (E, q) → (C, {pi}ni=1) such

that

(a) (E, q) is a Weierstrass chain.

(b) γ(q) is an Ak-singularity of C, or k = 1 and γ(q) is a marked point.

Note that this definition entails an essential, systematic abuse of notation: when we say that a curve

has an A1-attached tail or chain, we always allow the A1-attachment points to be marked points.

We can now define α-stability.
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Definition 2.5 (α-stability). For α ∈ (2/3− ǫ, 1], we say that an n-pointed curve (C, {pi}ni=1) is

α-stable if ωC(Σ
n
i=1pi) is ample and:

For α ∈ (9/11, 1): C has only A1-singularities.

For α = 9/11: C has only A1, A2-singularities.

For α ∈ (7/10, 9/11): C has only A1, A2-singularities, and does not contain:

• A1-attached elliptic tails.

For α = 7/10: C has only A1, A2, A3-singularities, and does not contain:

• A1, A3-attached elliptic tails.

For α ∈ (2/3, 7/10): C has only A1, A2, A3-singularities, and does not contain:

• A1, A3-attached elliptic tails,

• A1/A1-attached elliptic chains.

For α = 2/3: C has only A1, A2, A3, A4-singularities, and does not contain:

• A1, A3, A4-attached elliptic tails,

• A1/A1, A1/A4, A4/A4-attached elliptic chains.

For α ∈ (2/3−ǫ, 2/3): C has only A1, A2, A3, A4-singularities, and does not contain:

• A1, A3, A4-attached elliptic tails,

• A1/A1, A1/A4, A4/A4-attached elliptic chains,

• A1-attached Weierstrass chains.

A family of α-stable curves is a flat and proper family whose geometric fibers are α-stable. We let

Mg,n(α) denote the stack of n-pointed α-stable curves of arithmetic genus g.

(A)

A3 1

g − 2

Weierstrass
point

(B)

2

g − 2

(C)

A3

g − 3

1 1 p

(D)

1

A4

g − 3

Figure 5. Curve (A) has an A3-attached elliptic tail; it is never α-stable. Curve

(B) has an A1-attached Weierstrass tail; it is α-stable for α ≥ 2/3. Curve (C) has an

A1/A1-attached elliptic chain of length 2; it is α-stable for α ≥ 7/10. Curve (D) has

an A1/A4-attached elliptic bridge; it is never α-stable.

Remark. Our definition of an elliptic chain is similar, but not identical to, the definition of an open

tacnodal elliptic chain appearing in [HH13, Definition 2.4]. Whereas open tacnodal elliptic chains
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are built out of arbitrary curves of arithmetic genus one, our elliptic chains are built out of elliptic

bridges. Nevertheless, it is easy to see that our definition of (7/10−ǫ)-stability agrees with the

definition of h-semistability in [HH13, Definition 2.7].

It will be useful to have a uniform way of referring to the singularities allowed and the subcurves
excluded at each stage of the LMMP. Thus, for any α ∈ (2/3−ǫ, 1], we use the term α-stable singularity
to refer to any allowed singularity at the given value of α. For example, a 7

10
-stable singularity is

a node, cusp, or tacnode. Similarly, we use the term α-unstable subcurve to refer to any excluded
subcurve at the given value of α. For example, a 7

10
-unstable subcurve is simply an A1 or A3-

attached elliptic tail. With this terminology, we may say that a curve is α-stable if it has only
α-stable singularities and no α-unstable subcurves. Furthermore, if αc ∈ {2/3, 7/10, 9/11} is a critical
value, we use the term αc-critical singularity to refer to the newly-allowed singularity at α = αc and
αc-critical subcurve to refer to the newly disallowed subcurves at α = αc − ǫ. Thus, a 7

10
-critical

singularity is a tacnode, and a 7
10
-critical subcurve is an elliptic chain with A1/A1-attaching.

Before plunging into the deformation theory and combinatorics of α-stable curves necessary to
prove Theorem 2.7 and carry out the VGIT analysis in Section 3, we take a moment to contemplate
on the features of α-stability that underlie our arguments and to give some intuition behind the
items of Definition 2.5. The following are the properties of α-stability that are desired and that we
prove to be true for all α ∈ (2/3−ǫ, 1]:

(1) α-stability is deformation open.
(2) The stackMg,n(α) of all α-stable curves has a good moduli space, and

(3) The line bundle K+αδ+(1−α)ψ onMg,n(α) descends to an ample line bundle on the good
moduli space.

We will verify (1) in Proposition 2.16 (see also Definition 2.8) and deduce Theorem 2.7. Note that
we disallow A3-attached elliptic tails at α = 7/10, so that A1/A1-attached elliptic bridges form a
closed locus inMg,n(7/10).

Existence of good moduli space in (2) requires that the automorphism of every closed α-stable
curve is reductive. We verify this necessary condition in Proposition 2.6, and turn around to use it
as an ingredient in the proof of existence for the good moduli space (Corollary 3.3 and Theorem 4.2).

Statement (3) implies that the action of the stabilizer on the fiber of the line bundle K + αδ +
(1− α)ψ at every point is trivial. As explained in [AFS14], this condition places strong restrictions
on what curves with Gm-action can be α-stable. For example, at α = 7/10, the fact that a nodally
attached A3/2-atom (i.e., the tacnodal union of a smooth rational curve with a cuspidal rational
curve) is disallowed by character considerations provides different heuristics for why we disallow
A3-attached elliptic tails. At α = 2/3, the fact that a nodally attached A3/4-atom (i.e., the tacnodal
union of a smooth rational curve with a ramphoid cuspidal rational curve) is disallowed by character
considerations explains why we disallow A1/A4-attached elliptic chains (as this A3/4-atom is an
A1/A4-attached elliptic bridge).

Proposition 2.6. Aut(C, {pi}ni=1)
◦ is a torus for every α-stable curve (C, {pi}ni=1). Consequently,

Aut(C, {pi}ni=1) is reductive.

Proof. Automorphisms in Aut(C, {pi}ni=1)
◦ do not permute irreducible components. Every geometric

genus 1 irreducible component has at least one special (singular or marked) point, and every geometric

genus 0 irreducible component has at least two special points. It follows that the only irreducible
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components with a positive dimensional automorphism group are rational curves with two special

points, whose automorphism group is Gm. The claim follows. �

Remark. We should note that our proof of Proposition 2.6 uses features of α-stability that hold only

for α > 2/3 − ǫ. We expect that for lower values of α, the yet-to-be-defined, α-stability will allow

for α-stable curves with non-reductive stabilizers. For example, a curve with an A5-attached P1 can

have Ga as its automorphism group. However, we believe that for a correct definition of α-stability,

it will hold to be true that the stabilizers of all closed points will be reductive.

2.2. Deformation openness. Our first main result is the following theorem.

Theorem 2.7. For α ∈ (2/3−ǫ, 1], the stackMg,n(α) of α-stable curves is algebraic and of finite type

over SpecC. Furthermore, for each critical value αc ∈ {2/3, 7/10, 9/11}, we have open immersions:

Mg,n(αc + ǫ) →֒ Mg,n(αc) ←֓ Mg,n(αc − ǫ).

Let Ug,n be the stack of flat, proper families of curves (π : C → T, {σi}ni=1), where the sections
{σi}ni=1 are distinct and lie in the smooth locus of π, ωC/T (Σ

n
i=1σi) is relatively ample, and the

geometric fibers of π are n-pointed curves of arithmetic genus g with only A-singularities. Since Ug,n
parameterizes canonically polarized curves, Ug,n is algebraic and finite type over C. Let Ug,n(Aℓ) ⊂
Ug,n be the open substack parameterizing curves with at worst A1, . . . , Aℓ singularities. We will show

that eachMg,n(α) can be obtained from a suitable Ug,n(Aℓ) by excising a finite collection of closed
substacks. As a result, we obtain a proof of Theorem 2.7.

Definition 2.8. We let T Ak ,BAk1/Ak2 ,WAk denote the following constructible subsets of Ug,n:
T Ak := Locus of curves containing an Ak-attached elliptic tail.

BAk1/Ak2 := Locus of curves containing an Ak1/Ak2-attached elliptic chain.

WAk := Locus of curves containing an Ak-attached Weierstrass chain.

With this notation, we can describe our stability conditions (set-theoretically) as follows:

Mg,n(9/11+ǫ) = Ug,n(A1)

Mg,n(9/11) = Ug,n(A2)

Mg,n(9/11−ǫ) =Mg,n(9/11)− T A1

Mg,n(7/10) = Ug,n(A3)−
⋃

i∈{1,3}

T Ai

Mg,n(7/10−ǫ) =Mg,n(7/10)− BA1/A1

Mg,n(2/3) = Ug,n(A4)−
⋃

i∈{1,3,4}

T Ai −
⋃

i,j∈{1,4}

BAi/Aj

Mg,n(2/3−ǫ) =Mg,n(2/3)−WA1

Here, when we writeMg,n(9/11)− T A1 , we mean of courseMg,n(9/11)−
(
T A1 ∩Mg,n(9/11)

)
, and

similarly for each of the subsequent set-theoretic subtractions.
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We must show that at each stage the collection of loci T Ak , BAk1/Ak2 , and WAk that we excise
is closed. We break this analysis into two steps: In Corollaries 2.11 and 2.12, we analyze how
the attaching singularities of an α-unstable subcurve degenerate, and in Lemmas 2.13 and 2.14, we
analyze degenerations of α-unstable curves. We combine these results to prove the desired statement
in Proposition 2.16.

Definition 2.9 (Inner/Outer Singularities). We say that an Ak-singularity p ∈ C is outer if it lies

on two distinct irreducible components of C, and inner if it lies on a single irreducible component.

(N.B. If k is even, then any Ak-singularity is necessarily inner.)

Suppose C → ∆ is a family of curves with at worst A-singularities, where ∆ is the spectrum of
a DVR. Denote by Cη the geometric generic fiber and by C0 the central fiber. We are interested in
how the singularities of Cη degenerate in C0. By deformation theory, an Ak-singularity can deform
to a collection of {Ak1 , . . . , Akr} singularities if and only if

∑r
i=1(ki + 1) 6 k + 1. In the following

proposition, we refine this result for outer singularities.

Proposition 2.10. Let p ∈ C0 be an Am-singularity, and suppose that p is the limit of an outer

singularity q ∈ Cη. Then p is outer (in particular, m is odd) and each singularity of Cη that ap-

proaches p must be outer and must lie on the same two irreducible components of Cη as q. Moreover,

the collection of singularities approaching p is necessarily of the form {A2k1+1, A2k2+1, . . . , A2kr+1},
where

∑r
i=1(2ki + 2) = m + 1, and there exists a simultaneous normalization of the family C → ∆

along this set of generic singularities.

Proof. Suppose q is an A2k1+1-singularity. We may take the local equation of C around p to be

y2 = (x− a1(t))2k1+2
r∏

i=2

(x− ai(t))mi , where 2k1 + 2 +
r∑

i=2

mi = m+ 1.

By assumption, the general fiber of this family has at least two irreducible components, and it follows

that each mi must be even. Thus, we can rewrite the above equation as

(2.1) y2 =
r∏

i=1

(x− ai(t))2ki+2,

where k1, k2, . . . , kr satisfy
∑r

i=1(2ki + 2) = m + 1. It now follows by inspection that Cη contains

outer singularities {A2k1+1, A2k2+1, . . . , A2kr+1} joining the same two irreducible components of Cη
and approaching p ∈ C0. Clearly, the normalization of the family (2.1) exists and is a union of two

smooth families over ∆. �

Using the previous proposition, we can understand how the attaching singularities of a subcurve
may degenerate.

Corollary 2.11. Let (π : C → ∆, {σi}ni=1) be a family of curves in Ug,n. Suppose that τ is a section

of π such that τ(η) ∈ Cη is a disconnecting A2k+1-singularity of the geometric generic fiber. Then

τ(0) ∈ C0 is also a disconnecting A2k+1-singularity.

Proof. A disconnecting singularity τ(η) is outer and joins two irreducible components which do not

meet elsewhere. By Proposition 2.10, τ(η) cannot collide with other singularities of Cη in the special
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fiber and so must remain A2k−1-singularity. The normalization of C along τ separates C into two

connected components, so τ(0) is disconnecting. �

Corollary 2.12. Let (π : C → ∆, {σi}ni=1) be a family of curves in Ug,n. Suppose that τ1, τ2 are

sections of π such that τ1(η), τ2(η) ∈ Cη are A2k1+1 and A2k2+1-singularities of the geometric generic

fiber. Suppose also that the normalization of Cη along τ1(η)∪ τ2(η) consists of two connected compo-

nents, while the normalization of Cη along either τ1(η) or τ2(η) individually is connected. Then we

have two possible cases for the limits τ1(0) and τ2(0):

(1) τ1(0) and τ2(0) are distinct A2k1+1 and A2k2+1-singularities, respectively, or

(2) τ1(0) = τ2(0) is an A2k1+2k2+3-singularity.

Proof. Our assumptions imply that the singularities τ1(η) and τ2(η) are outer and are the only two

singularities connecting the two connected components of the normalization of Cη along τ1(η)∪τ2(η).
By Proposition 2.10, these two singularities cannot collide with any additional singularities of Cη in

the special fiber. If τ1(η) and τ2(η) themselves do not collide, we have case (1). If they do collide,

then, applying Proposition 2.10 once more, we have case (2). �

Lemma 2.13 (Limits of tails and bridges).

(1) Let (H → ∆, τ1) be a family in U1,1 whose generic fiber is an elliptic tail. Then the special

fiber (H, p) is an elliptic tail.

(2) Let (H → ∆, τ1, τ2) be a family in U1,2 whose generic fiber is an elliptic bridge. Then the

special fiber (H, p1, p2) satisfies one of the following conditions:

(a) (H, p1, p2) is an elliptic bridge.

(b) (H, p1, p2) contains an A1-attached elliptic tail.

(3) Let (H → ∆, τ1) be a family in U2,1 whose generic fiber is a Weierstrass tail. Then the special

fiber (H, p) satisfies one of the following conditions:

(a) (H, p) is a Weierstrass tail.

(b) (H, p) contains an A1 or A3-attached elliptic tail, or an A1/A1-attached elliptic bridge.

Proof. (1) For every (H, p) ∈ U1,1, the curve H is irreducible, and |2p| defines a degree 2 map to P1

by Riemann-Roch. Hence U1,1 = T A1 .

For (2), the special fiber (H, p1, p2) is a curve of arithmetic genus 1 with ωH(p1+p2) ample. Since

ωH(p1 + p2) has degree 2, H has at most 2 irreducible components. The possible topological types

of H are listed in the top row of Figure 6. We see immediately that any curve with one of the first

three topological types is an elliptic bridge, while any curve with the last topological type contains

an A1-attached elliptic tail.

Finally, for (3), the special fiber (H, p) is a curve of arithmetic genus 2 with ωH(p) ample and

h0(ωH(−2p)) > 1 by semicontinuity. Since ωH(p) has degree three, H has at most three components,

and the possible topological types of H are listed in the bottom three rows of Figure 6. One sees

immediately that if H does not contain an A1 or A3-attached elliptic tail or an A1/A1-attached

elliptic bridge, there are only three possibilities for the topological type of H: either H is irreducible

or H has topological type (A) or (B). However, topological types (A) and (B) do not satisfy

h0(ωH(−2p)) > 1. Finally, if (H, p) is irreducible, then it must be a Weierstrass tail. Indeed, the
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Figure 6. Topological types of curves in U1,2(A∞) and U2,1(A∞). For convenience,

we have suppressed the data of inner singularities, and we record only the arithmetic

genus of each component and the outer singularities (which are either nodes or tacn-

odes, as indicated by the picture). Components without a label have arithmetic genus

zero.

linear equivalence ωH ∼ 2p follows immediately from the corresponding linear equivalence on the

general fiber. �

Lemma 2.14 (Limits of elliptic chains). Let (H → ∆, τ1, τ2) be a family in U2r−1,2 whose generic

fiber is an elliptic chain of length r. Then the special fiber (H, p1, p2) satisfies one of the following

conditions:

(a) (H, p1, p2) contains an A1/A1-attached elliptic chain of length 6 r.

(b) (H, p1, p2) contains an A1-attached elliptic tail.

Proof. We will assume (H, p1, p2) contains no A1-attached elliptic tails, and prove that (a) holds.

By Lemma 2.13, this assumption implies that if (E, q1, q2) is a genus one subcurve of H, nodally

attached at q1 and q2, and ωE(q1 + q2) is ample on E, then (E, q1, q2) is an A1/A1-attached elliptic

bridge.

To begin, let γ1, . . . , γr−1 be sections picking out the tacnodes in the general fiber at which the

sequence of elliptic bridges are attached to each other. By Corollary 2.11, the limits γ1(0), . . . , γr−1(0)

remain tacnodes, so the normalization of φ : H̃ → H along γ1, . . . , γr−1 is well-defined and we obtain
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r flat families of 2-pointed curves of arithmetic genus 1, i.e. we have

H̃ =

r∐

i=1

(Ei, σ2i−1, σ2i),

where σ1 := τ1, σ2r := τ2, and φ−1(γi) = {σ2i, σ2i+1}. The relative ampleness of ωH/∆(τ1 + τ2)

implies

(1) ωE1(p1 + 2p2), ωEr(2p2r−1 + p2r) ample on E1, Er respectively.

(2) ωEi(2p2i−1 + 2p2i) ample on Ei for i = 2, . . . , r − 1.

It follows that for each 1 6 i 6 r, either (Ei, p2i−1, p2i) is an elliptic bridge or one of the following

must hold:

(a) (Ei, p2i−1, p2i) = (P1, p2i−1, q
′
2i−1)∪ (E′

i, q2i−1, p2i)/(q
′
2i−1 ∼ q2i−1), where (E

′
i, q2i−1, p2i) is an

elliptic bridge.

(b) (Ei, p2i−1, p2i) = (E′
i, p2i−1, q2i) ∪ (P1, q′2i, p2i)/(q2i ∼ q′2i), where (E′

i, q2i−1, p2i) is an elliptic

bridge.

(c) (Ei, p2i−1, p2i) = (P1, p2i−1, q
′
2i−1) ∪ (E′

i, q2i−1, q2i) ∪ (P1, q′2i, p2i)/(q
′
2i−1 ∼ q2i−1, q2i ∼ q′2i),

where (E′
i, q2i−1, p2i) is an elliptic bridge.

In the cases (a), (b), (c) respectively, we say that Ei sprouts on the left, right, or left and right. Note

that if E1 or Er sprouts at all, then E1 or Er contains an A1/A1-attached elliptic bridge. Similarly,

if Ei sprouts on both the left and right (2 6 i 6 r − 1), then Ei contains an A1/A1-attached elliptic

bridge. Thus, we may assume without loss of generality that E1 and Er do not sprout and that

Ei (2 6 i 6 r − 1) sprouts on the left or right, but not both. We now observe that any collection

{Es, . . . , Es+t} such that Es sprouts on the left (or s = 0), Es+t sprouts on the right (or s+ t = r),

and Ek does not sprout for s < k < s+ t, contains an A1/A1-attached elliptic chain. �

Lemma 2.15 (Limits of Weierstrass chains). Let (H → ∆, τ) be a family in U2r,1 whose generic fiber

is a Weierstrass chain of length r. Then the special fiber satisfies one of the following conditions:

(a) (H, p) contains an A1-attached Weirstrass chain of length 6 r

(b) (H, p) contains an A1/A1-attached elliptic chain of length < r.

(c) (H, p) contains an A1 or A3-attached elliptic tail.

Proof. As in the proof of Lemma 2.14, let γ1, . . . , γr−1 be sections picking out the attaching tacn-

odes in the general fiber. By Corollary 2.11, the limits γ1(0), . . . , γr−1(0) remain tacnodes, so the

normalization φ : H̃ → H along γ1, . . . , γr−1 is well-defined. We obtain r − 1 families of 2-pointed

curves of arithmetic genus 1 and a single family of 1-pointed curves of genus 2:

H̃ =

r−1∐

i=1

(Ei, σ2i−1, σ2i)
∐

(Er, σ2r−1)

where σ1 := τ and φ−1(γi) = {σ2i, σ2i+1}.
As in the proof of Lemma 2.14, we must consider the possibility that some Ei’s sprout in the

special fiber. If Er sprouts on the left, then Er itself contains a Weierstrass tail, so we may assume

that this does not happen. Now let s < r be maximal such that Es sprouts. If Es sprouts on the
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left, then Es ∪ Es+1 ∪ . . . ∪ Er gives a Weierstrass chain in the special fiber. If Es sprouts on the

right, then arguing as in Lemma 2.14 produces an A1/A1-attached elliptic chain in E1∪ . . .∪Es. �

Proposition 2.16.

(1) T A1 ∪ T Am is closed in Ug,n for any odd m.

(2) BA1/A1 is closed in Ug,n −
⋃
i∈{1,3} T Ai.

(3) BAm/Am and BA1/Am are closed in Ug,n(Am)− T A1 − BA1/A1 for any even m.

(4) WAm is closed in Ug,n(Am)−
⋃
i∈{1,3} T Ai − BA1/A1 for any odd m.

Proof. The given loci are obviously constructible, so it suffices to show that they are closed under

specialization.

For (1), let (C → ∆, {σi}ni=1) be a family in Ug,n whose generic fiber lies in T A2k+1 . Possibly after

a finite base-change, let τ be the section picking out the attaching A2k+1-singularity of the elliptic

tail in the generic fiber. By Corollary 2.11, the limit τ(0) is also A2k+1-singularity. Consider the

normalization C̃ → C along τ . Let H ⊂ C̃ be the component whose generic fiber is an elliptic tail

and let α be the preimage of τ on H. Then ωH((k + 1)α) is relatively ample. We conclude that

either ωH0(α(0)) is ample, or α(0) lies on a rational curve attached nodally to the rest of H0. In

the former case, (H0, α(0)) is an elliptic tail by Lemma 2.13, so C0 contains an elliptic tail with

A2k+1-attaching, as desired. In the latter case, H0 contains an A1-attached elliptic tail. We conclude

that C0 ∈ T A1 ∪ T A2k+1 , as desired.

For (2), let (C → ∆, {σi}ni=1) be a family in Ug,n whose generic fiber lies in BA1/A1 . Possibly after

a finite base change, let τ1, τ2 be the sections picking out the attaching nodes of an elliptic chain in

the general fiber. By Proposition 2.10, τ1(0) and τ2(0) either remain nodes, or, if the elliptic chain

has length 1, can coalesce to form an outer A3-singularity. In either case there exists a normalization

of C along τ1 and τ2. Since Cη becomes separated after normalizing along τ1 and τ2, we conclude

that the limit of the elliptic chain is an connected component of C0 attached either along two nodes,

or, when r = 1, along a separating A3-singularity. In the former case, C0 has an elliptic chain by

Lemma 2.14. In the latter case, C0 has arithmetic genus 1 connected component A3-attached to the

rest of the curve, so that C0 ∈ T A1 ∪ T A3 .

The proof of (3) is essentially identical to (2), making use of the observation that in Ug,n(Ak), the
limit of an Ak-singularity must be an Ak-singularity. The proof of (4) is essentially identical to (1),

using Lemma 2.15 in place of Lemma 2.13. �

Proof of Theorem 2.7. For αc = 9/11, 7/10, and 2/3, Proposition 2.16 implies that Mg,n(αc) is ob-

tained by excising closed substacks from Ug,n(A2), Ug,n(A3), and Ug,n(A4), respectively. Because

Mg,n(αc + ǫ) =Mg,n(αc)r {the locus of curves with αc-critical singularities},

we conclude thatMg,n(αc+ǫ) →֒ Mg,n(αc) is an open immersion. Finally, applying Proposition 2.16

once more, we see thatMg,n(αc − ǫ) is obtained by excising closed substacks fromMg,n(αc). �
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2.3. Properties of α-stability. In this section, we record several elementary properties of α-
stability that will be needed in subsequent arguments. Recall that if (C, {pi}ni=1) is a Deligne-

Mumford stable curve and q ∈ C is a node, then the pointed normalization (C̃, {pi}ni=1, q1, q2) of C
at q is Deligne-Mumford stable. The same statement holds for α-stable curves.

Lemma 2.17. Suppose (C, {pi}ni=1) is an α-stable curve and q ∈ C is a node. Then the pointed

normalization (C̃, {pi}ni=1, q1, q2) of C at q is α-stable.

Proof. Follows immediately from the definition of α-stability. �

Unfortunately, the converse of Lemma 2.17 is false. Nodally gluing two marked points of an α-
stable curve may fail to preserve α-stability if the two marked points are both on the same component,
or both on rational components – see Figure 7. The following lemma says that these are the only
problems that can arise.

Lemma 2.18.

(1) If (C̃1, {pi}ni=1, q1) and (C̃2, {pi}ni=1, q2) are α-stable curves, then

(C̃1, {pi}ni=1, q1) ∪ (C̃2, {pi}ni=1, q2)/(q1 ∼ q2)
is α-stable.

(2) If (C̃, {pi}ni=1, q1, q2) is an α-stable curve, then

(C̃, {pi}ni=1, q1, q2)/(q1 ∼ q2)
is α-stable provided one of the following conditions hold:

• q1 and q2 lie on disjoint irreducible components of C̃,

• q1 and q2 lie on distinct irreducible components of C̃, and at least one of these components

is not a smooth rational curve.

(A)

q1
q2

q2q1

(B)

Figure 7. In (A), two marked points on a genus 0 tail (resp., two conjugate points

on an elliptic tail) are glued to yield an elliptic tail (resp., a Weierstrass tail). In (B),

two marked points on distinct rational components are glued to yield an elliptic bridge.

Proof. Let C := (C̃, q1, q2)/(q1 ∼ q2), and let φ : C̃ → C be the gluing morphism which identifies

q1, q2 to a node q ∈ C. It suffices to show that if E ⊂ C is an α-unstable curve, then φ−1(E) is an

α-unstable subcurve of C̃. The key observation is that any α-unstable subcurve E has the following
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property: If E1, E2 ⊂ E are two distinct irreducible components of E, then the intersection E1 ∩E2

never consists of a single node. Furthermore, if one of E1 or E2 is irrational, then the intersection

E1 ∩ E2 never contains any nodes. For elliptic tails, this statement is vacuous since elliptic tails

are irreducible. For elliptic and Weierstrass chains, it follows from examining the topological types

of elliptic bridges and Weierstrass tails (see Figure 6). From this observation, it follows that no

α-unstable E ⊂ C can contain both branches of q. Indeed, the hypotheses of (1) and (2) each

imply that either the two branches of the node q ∈ C lie on distinct irreducible components whose

intersection is precisely q, or else that that the two branches lie on distinct irreducible components,

one of which is irrational. Thus, we may assume that E ⊂ C is disjoint from q or contains only one

branch of q.

If E ⊂ C is disjoint from q, then φ−1 is an isomorphism in a neighborhood of E and the statement

is clear. If E ⊂ C contains only one branch of the node q, then q must be an attaching point of E. We

may assume without loss of generality that E contains the branch labeled by q1. Now φ−1(E)→ E

is an isomorphism away from q1 and sends q1 to the node q. Since an α-unstable curve with nodal

attaching is also α-unstable with marked point attaching, φ−1(E) is an α-unstable subcurve of C̃. �

Corollary 2.19.

(1) Suppose that (C, {pi}ni=1, q1) is
9
11
-stable and (E, q′1) is a an elliptic tail. Then

(C ∪ E, {pi}ni=1)/(q1 ∼ q′1) is 9
11
-stable.

(2) Suppose (C, {pi}ni=1, q1, q2) is
7
10
-stable and (E, q′1, q

′
2) is an elliptic chain. Then

(C ∪ E, {pi}ni=1)/(q1 ∼ q′1, q2 ∼ q′2) is 7
10
-stable.

(3) Suppose (C1, {pi}mi=1, q1) and (C2, {pi}n−mi=1 , q2) are
7
10
-stable and (E, q′1, q

′
2) is an elliptic chain.

Then (C1 ∪ C2 ∪ E, {pi}ni=1)/(q1 ∼ q′1, q2 ∼ q′2) is 7
10
-stable.

(4) Suppose (C, {pi}ni=1, q1) is
7
10
-stable and (E, q′1, q

′
2) is an elliptic chain.

Then (C ∪ E, {pi}ni=1, q
′
2)/(q1 ∼ q′1) is 7

10
-stable.

(5) Suppose that (C, {pi}ni=1, q1) is
2
3
-stable and (E, q′1) is a Weierstrass chain.

Then (C ∪ E, {pi}ni=1)/(q1 ∼ q′1) is 2
3
-stable.

Proof. (1), (3), (4), and (5) follow immediately from Lemma 2.18. For (2), one must apply Lemma

2.18 twice: First apply Lemma 2.18(1) to glue q1 ∼ q′1, then apply Lemma 2.18(2) to glue q2 ∼ q′2,

noting that if q2 and q′2 do not lie on disjoint irreducible components of (C ∪E, {pi}ni=1, q2, q
′
2)/(q1 ∼

q′1), then E must be an irreducible genus one curve, so q′2 does not lie on a smooth rational curve. �

Next, we consider a question which does not arise for Deligne-Mumford stable curves: Suppose
(C, {pi}ni=1) is an α-stable curve and q ∈ C is a non-nodal singularity with m ∈ {1, 2} branches.

When is the pointed normalization (C̃, {pi}ni=1, {qi}mi=1) of C at q α-stable? One obvious obstacle is
that ω

C̃
(Σni=1pi + Σmi=1qi) need not be ample. Indeed, one or both of the marked points qi may lie

on a smooth P1 meeting the rest of the curve in a single node. We thus define the stable pointed

normalization of (C, {pi}ni=1) to be the (possibly disconnected) curve obtained from C̃ by contracting
these semistable P1’s. This is well-defined except in several degenerate cases: First, when (g, n) =
(1, 1), (1, 2), (2, 1), the stable pointed normalization of a cuspidal, tacnodal, and ramphoid cuspidal
curve is a point. In these cases, we regard the stable pointed normalization as being undefined.

Second, in the tacnodal case, it can happen that (C̃, {pi}ni=1, {qi}mi=1) has two connected components,
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one of which is a smooth 2-pointed P1. In this case, we define the stable pointed normalization to
be the curve obtained by deleting this component and taking the stabilization of the remaining
connected component.

In general, the stable pointed normalization of an α-stable curve at a non-nodal singularity need
not be α-stable. Nevertheless, there is one important case where this statement does hold, namely
when αc is a critical value and q ∈ C is an αc-critical singularity.

Lemma 2.20. Let (C, {pi}ni=1) be an αc-stable curve, and suppose q ∈ C is an αc-critical singularity.

Then the stable pointed normalization of (C, {pi}ni=1) at q ∈ C is αc-stable if and only if (C, {pi}ni=1)

is αc-stable.

Proof. Follows from the definition of α-stability by an elementary case-by-case analysis. �

2.4. αc-closed curves. We now give an explicit characterization of the closed points of Mg,n(αc)
when αc ∈ {9/11, 7/10, 2/3} is a critical value (see Theorem 2.23).

Definition 2.21 (αc-atoms).

(1) A 9
11
-atom is a 1-pointed curve of arithmetic genus one obtained by gluing

SpecC[x, y]/(y2 − x3) and SpecC[n] via x = n−2, y = n−3, and marking the point n = 0.

(2) A 7
10
-atom is a 2-pointed curve of arithmetic genus one obtained by gluing

SpecC[x, y]/(y2 − x4) and SpecC[n1]
∐

SpecC[n2] via x = (n−1
1 , n−1

2 ), y = (n−2
1 ,−n−2

2 ), and

marking the points n1 = 0 and n2 = 0.

(3) A 2
3
-atom is a 1-pointed curve of arithmetic genus two obtained gluing

SpecC[x, y]/(y2 − x5) and SpecC[n] via x = n−2, y = n−5, and marking the point n = 0.

We will often abuse notation by simply writing E to refer to the αc-atom (E, q) if αc ∈ {2/3, 9/11}
(resp., (E, q1, q2) if αc = 7/10).

Every αc-atom E satisfies Aut(E) ≃ Gm, where the action of Gm = SpecC[t, t−1] is given by

(2.2)

For αc = 9/11: x 7→ t−2x, y 7→ t−3y, n 7→ tn.

For αc = 7/10: x 7→ t−1x, y 7→ t−2y, n1 7→ tn1, n2 7→ tn2.

For αc = 2/3: x 7→ t−2x, y 7→ t−5y, n 7→ tn.

A3

q1 q2q

A2

q

A4

Figure 8. A 9
11
-atom, 7

10
-atom, and 2

3
-atom, respectively.

In order to describe the closed points of Mg,n(αc) precisely, we need the following terminology.
We say that C admits a decomposition C = C1 ∪ · · · ∪ Cr if C1, . . . , Cr are proper subcurves whose
union is all of C, and either Ci ∩Cj = ∅ or Ci meets Cj nodally. When (C, {pi}ni=1) is an n-pointed
curve, and C = C1 ∪ · · · ∪ Cr is a decomposition of C, we always consider Ci as a pointed curve by
taking as marked points the subset of {pi}ni=1 supported on Ci and the attaching points Ci∩ (C\Ci).
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Definition 2.22 (αc-closed curves). Let αc ∈ {2/3, 7/10, 9/11} be a critical value. We say that an

n-pointed curve (C, {pi}ni=1) is αc-closed if there is a decomposition C = K ∪ E1 ∪ · · · ∪ Er, where
(1) E1, . . . , Er are αc-atoms.

(2) K is an (αc+ǫ)-stable curve containing no nodally-attached αc-tails.

(3) K is a closed curve in the stack of (αc+ǫ)-stable curves.

We call K the core of (C, {pi}ni=1), and we call the decomposition C = K∪E1∪· · ·∪Er the canonical
decomposition of C. Of course, we consider K as a pointed curve where the set of marked points is

the union of {pi}ni=1∩K and K∩ (C rK). Note that we allow the possibility that K is disconnected

or empty.

We can now state the main result of this section.

Theorem 2.23 (Characterization of αc-closed curves). Let αc ∈ {9/11, 7/10, 2/3} be a critical value.

An αc-stable curve (C, {pi}ni=1) is a closed point ofMg,n(αc) if and only if (C, {pi}ni=1) is αc-closed.

To prove the above theorem, we need several preliminary lemmas.

Lemma 2.24.

(1) Suppose (E, q) is an elliptic tail. Then (E, q) is a closed point of M1,1(9/11) if and only if

(E, q) is a 9
11
-atom.

(2) Suppose (E, q1, q2) is an elliptic bridge. Then (E, q1, q2) is a closed point of M1,2(7/10) if

and only if (C, q1, q2) is a 7
10
-atom.

(3) Suppose (E, q) is a Weierstrass tail. Then (C, q) is a closed point ofM2,1(2/3) if and only if

(C, q) is a 2
3
-atom.

Proof. Case (1) follows from the observation thatM1,1(9/11) ≃ [C2/Gm], where Gm acts with weights

4 and 6. Case (2) follows from the observation that M1,2(7/10) ≃ [C3/Gm], where Gm acts with

weights 2, 3, and 4. The proofs of these assertions parallel our argument in case (3) below, so we

leave the details to the reader.

We proceed to prove case (3). First, we show that if (E, q) is any Weierstrass tail, then (E, q)

admits an isotrivial specialization to a 2
3
-atom. To do so, we can write any Weierstrass genus 2 tail

as a degree 2 cover of P1 with the equation on P(1, 3, 1) given by

y2 = x5z + a3x
3z3 + a2x

2z4 + a1xz
5 + a0z

6

where ai ∈ C, and the marked point q corresponds to y = z = 0. Acting by λ · (x, y, z) = (x, λy, λ2z),

we see that this cover is isomorphic to

y2 = x5z + λ4a3x
3z3 + λ6a2x

2z4 + λ8a1xz
5 + λ10a0z

6

for any λ ∈ C∗. Letting λ → 0, we obtain an isotrivial specialization of (E, q) to the double cover

y2 = x5z, which is a 2
3
-atom.

Next, we show that if (E, q) is a 2
3
-atom, then (E, q) does not admit any nontrivial isotrivial

specializations inM2,1(2/3). Let (E → ∆, σ) be an isotrivial specialization inM2,1(2/3) with generic

fiber isomorphic to (E, q). Let τ be the section of E → ∆ which picks out the unique ramphoid cusp

of the generic fiber. Since the limit of a ramphoid cusp is a ramphoid cusp inM2,1(2/3), τ(0) is also
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ramphoid cusp. Now let τ : Ẽ → E be the simultaneous normalization of E along τ , and let τ̃ and

σ̃ be the inverse images of τ and σ respectively. Then (Ẽ → ∆, τ̃ , σ̃) is an isotrivial specialization

of 2-pointed curves of arithmetic genus 0 with smooth general fiber. To prove that the original

isotrivial specialization is trivial, it suffices to prove that (Ẽ → ∆, τ̃ , σ̃) is trivial, i.e. we must show

that the special fiber is smooth (equivalently, irreducible). The fact that ωE/∆(σ) is relatively ample

on E implies that ω
Ẽ/∆

(3τ̃ + σ̃) is relatively ample on Ẽ , which implies that the special fiber of Ẽ is

irreducible. �

Lemma 2.25. Suppose (C, {pi}ni=1) is a closed point of Mg,n(αc+ǫ). Then (C, {pi}ni=1) remains

closed inMg,n(αc) if and only if (C, {pi}ni=1) contains no nodally attached αc-tail.

Proof. We prove the case αc = 2/3 and leave the other cases to the reader. To lighten notation, we

often omit marked points {pi}ni=1 in the rest of the proof.

First, we show that if (C, {pi}ni=1) has A1-attached Weierstrass tail, then it does not remain

closed inMg,n(2/3). Suppose we have a decomposition C = K ∪ Z, where (Z, q) is an A1-attached

Weierstrass tail. By Lemma 2.24, (Z, q) admits an isotrivial specialization to a 2
3
-atom (E, q1). We

may glue this specialization to the trivial family K×∆ to obtain a nontrivial isotrivial specialization

C  K ∪ E, where E is nodally attached at q1. By Lemma 2.18, K ∪ E is 2
3
-stable, so this is a

nontrivial isotrivial specialization inMg,n(2/3).

Next, we show that if (C, {pi}ni=1) has no nodally-attached Weierstrass tails, then it remains

closed in Mg,n(2/3). In other words, if there exists a nontrivial isotrivial specialization C  C0,

then C necessarily contains a nodally-attached Weierstrass tail. To begin, note that the special

fiber C0 of the nontrivial isotrivial specialization C → ∆ must contain at least one ramphoid cusp.

Otherwise, (C → ∆, {σi}ni=1) would constitute a nontrivial, isotrivial specialization inMg,n(2/3+ ǫ),

contradicting the hypothesis that (C, {pi}ni=1) is closed inMg,n(2/3+ǫ). For simplicity, let us assume

that the special fiber C0 contains a single ramphoid cusp q. Locally around this point, we may write

C as

y2 = x5 + a3(t)x
3 + a2(t)x

2 + a1(t)x+ a0(t),

where t is the uniformizer of ∆ at 0 and ai(0) = 0. By [CML13, Section 7.6], after possibly a finite

base change, there exists a (weighted) blow-up φ : C̃ → C such that the special fiber C̃0 is isomorphic

to the normalization of C at q attached nodally to the curve T , where T is defined by an equation

y2 = x5 + b3x
3z2 + b2x

2z3 + b1xz
4 + b0z

5 on P(2, 5, 2) for some [b3 : b2 : b1 : b0] ∈ P(4, 6, 8, 10)

(depending on the ai(t)) and such that T is attached to C at [x : y : z] = [1 : 0 : 1]. Evidently,

T is a genus 2 double cover of P1 ∼= P(2, 2) via the projection [x : y : z] 7→ [x : y] and [1 : 0 : 1]

is a ramification point of this cover. It follows that C̃0 has a Weierstrass tail. The special fiber of

C̃ is isomorphic to the stable pointed normalization of C0 at q, together with a nodally attached

Weierstrass tail. By Lemma 2.20 and Corollary 2.19, (C̃0, {pi}ni=1) is α-stable. Since it contains no

ramphoid cusps, it is also (αc+ǫ)-stable. By hypothesis, (C, {pi}ni=1) is closed inMg,n(α+ǫ), so the

family (C̃ → ∆, {σi}ni=1) must be trivial. This implies that the generic fiber (C, {pi}ni=1) must have

a nodally-attached Weierstrass tail. �

The following lemma says that one can use isotrivial specializations to replace αc-critical singu-
larities and αc-tails by αc-atoms.
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Lemma 2.26. Let (C, {pi}ni=1) be an n-pointed curve, and let E be the αc-atom.

(1) Suppose q ∈ C is an αc-critical singularity. Then there exists an isotrivial specialization

C  C0 = C̃ ∪ E to an n-pointed curve C0 which is the nodal union of E and the stable pointed

normalization C̃ of C at q along the marked point(s) of E and the pre-image(s) of q in C̃.

(2) Suppose C decomposes as C = K ∪ Z, where Z is an αc-tail. Then there exists an isotrivial

specialization C  C0 = K ∪E to an n-pointed curve C0 which is the nodal union of K and E along

the marked point(s) of E and K ∩ Z.

Proof. We prove the case αc = 2/3, and leave the remaining two cases to the reader. For (1), let

C × ∆ be the trivial family, let C̃ → C × ∆ be the normalization along q × ∆, and let C̃′ → C̃ be

the blow-up of C̃ at the point lying over (q, 0). Let τ denote the strict transform of q × ∆ on C̃′,
and note that τ passes through a smooth point of the exceptional divisor. A local calculation, as

in the proof of Proposition 4.18, shows that we may ‘recrimp.’ Namely, there exists a finite map

ψ : C̃′ → C′ such that ψ is an isomorphism on C̃′ − τ , so that C′ has a ramphoid cusp along ψ ◦ τ ,
and the ramphoid cuspidal rational tail in the central fiber is an αc-atom, i.e., has trivial crimping.

Blowing down any semistable P1’s in the central fiber of C′ → ∆ (these appear, for example, when q

lies on an unmarked P1 attached nodally to the rest of the curve), we arrive at the desired isotrivial

specialization. For (2), note that there exists an isotrivial specialization (Z, q1) (E, q1) by Lemma

2.24. Gluing this to the trivial family (K ×∆, q1 ×∆) gives the desired isotrivial specialization. �

Proof of Theorem 2.23. We consider the case αc = 2/3, and leave the other two cases to the reader.

First, we show that every 2
3
-closed curve (C, {pi}ni=1) is a closed point of Mg,n(2/3). Let (C →

∆, {σi}ni=1) be any isotrivial specialization of (C, {pi}ni=1) in Mg,n(2/3); we will show it must be

trivial. Let C = K ∪ E1 ∪ · · · ∪ Er be the canonical decomposition and let qi = K ∩ Ei. Each qi is

a disconnecting node in the general fiber of C → ∆, so qi specializes to a node in the special fiber

by Corollary 2.11. Possibly after a finite base change, we may normalize along the corresponding

nodal sections to obtain isotrivial specializations K and E1, . . . , Er. By Lemma 2.17, K is a family

inMg−2r,n+r(2/3) and E1, . . . , Er are families inM2,1(2/3). Since K contains no Weierstrass tails in

the general fiber, it is trivial by Lemma 2.25. The families E1, . . . , Er are trivial by Lemma 2.24. It

follows that the original family (C → ∆, {σi}ni=1) is trivial, as desired.

Next, we show that if (C, {pi}ni=1) ∈ Mg,n(2/3) is a closed point, then (C, {pi}ni=1) must be 2
3
-

closed. First, we claim that every ramphoid cusp of C must lie on a nodally attached 2
3
-atom.

Indeed, if q ∈ C is a ramphoid cusp which does not lie on a nodally attached 2
3
-atom, then Lemma

2.26 gives an isotrivial specialization (C, {pi}ni=1)  (C0, {pi}ni=1) in which C0 sprouts a nodally

attached 2
3
-atom at q. Note that (C0, {pi}ni=1) is 2

3
-stable by Lemma 2.20 and Corollary 2.19, so

this gives a nontrivial isotrivial specialization in Mg,n(2/3). Second, we claim that C contains no

nodally-attached Weierstrass tails which are not 2
3
-atoms. Indeed, if it does, then Lemma 2.26 gives

an isotrivial specialization (C, {pi}ni=1)  (C0, {pi}ni=1) which replaces this Weierstrass tail by a 2
3
-

atom. Note that (C0, {pi}ni=1) is
2
3
-stable by Lemma 2.17 and Corollary 2.19, so this gives a nontrivial

isotrivial specialization inMg,n(2/3). It is now easy to see that C is 2
3
-closed. Indeed, if E1, . . . , Er

are the nodally attached 2
3
-atoms of C, then the complement K has no ramphoid cusps and no

nodally-attached Weierstrass tails. Since K is 2
3
-stable and has no ramphoid cusps, it is (2

3
+ǫ)-stable.
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Furthermore, K must be closed in Mg,n(2/3+ǫ), since a nontrivial isotrivial specialization of K in

Mg,n(2/3+ǫ) would induce a nontrivial, isotrivial specialization of (C, {pi}ni=1) in Mg,n(2/3). We

conclude that (C, {pi}ni=1) is
2
3
-closed as desired. �

2.5. Combinatorial type of an αc-closed curve. In the previous section, we saw that every αc-
stable curve which is closed inMg,n(αc) has a canonical decomposition C = K ∪E1 ∪ · · · ∪Er where
E1, . . . , Er are the αc-atoms of C. We wish to use this decomposition to compute the local VGIT
chambers associated to C. For the two critical values αc ∈ {7/10, 9/11}, the pointed curve K does
not have infinitesimal automorphisms and does not affect this computation. However, if αc = 2/3,
then K may have infinitesimal automorphisms due to the presence of rosaries (see Definition 2.27),
which leads us to consider a slight enhancement of the canonical decomposition. Once we have taken
care of this wrinkle, we define the combinatorial type of an αc-closed curve in Definition 2.33). The
key point of this definition is that it establishes the notation that will be used in carrying out the
local VGIT calculations in Section 3.

Definition 2.27 (Rosaries). We say that (R, p1, p2) is a rosary of length ℓ if there exists a surjective

gluing morphism

γ :
ℓ∐

i=1

(Ri, q2i−1, q2i) →֒ (R, p1, p2)

satisfying:

(1) (Ri, q2i−1, q2i) is a 2-pointed smooth rational curve for i = 1, . . . , ℓ.

(2) γ is an isomorphism when restricted to Ri r {q2i−1, q2i} for i = 1, . . . , ℓ.

(3) γ(q2i) = γ(q2i+1) is an A3-singularity for i = 1, . . . , ℓ− 1.

(4) γ(q1) = p1 and γ(q2ℓ) = p2.

We say that (C, {pi}ni=1) has an Ak1/Ak2-attached (open) rosary of length ℓ if there exists a gluing

morphism γ : (R, p1, p2) →֒ (C, {pi}ni=1) such that

(a) (R, p1, p2) is a rosary of length ℓ.

(b) γ(pi) is an Aki-singularity of C, or ki = 1 and γ(qi) is a marked point of (C, {pi}ni=1).

We say that C is a closed rosary of length ℓ if C has A3/A3-attached rosary γ : (R, p1, p2) →֒ C of

length ℓ such that γ(p1) = γ(p2) is an A3-singularity of C.

Remark 2.28. A rosary of even length is an elliptic chain and thus can never appear in a (7/10− ǫ)-
stable curve.

Note that if (R, p1, p2) is a rosary, then Aut(R, p1, p2) ≃ Gm. Hassett and Hyeon showed that all
infinitesimal automorphisms of (7/10− ǫ)-stable curves are accounted for by rosaries [HH13, Section
8]. In Proposition 2.29 and Corollary 2.30, we record a slight refinement of their result.

Proposition 2.29. Suppose (C, {pi}ni=1) is (7/10− ǫ)-stable with Aut(C, {pi}ni=1)
◦ ≃ Gkm. Then one

of the following holds:

(1) There exists a decomposition C = C0 ∪ R1 ∪ · · · ∪ Rk, where each Ri is an A1/A1-attached

rosary of odd length, and C0 contains no A1/A1-attached rosaries. Note that we allow C0 to

be empty.
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p1 p2

000 0

0

0

0

(A) (B)

Figure 9. Curve (A) is a rosary of length 3. Curve (B) is a closed rosary of length 4.

(2) k = 1 and C is a closed rosary of even length.

Proof. Consider first the case in which C is simply a chain of rational curves, say R1, . . . , Rk, where

Ri meets Ri+1 in a single point, and Rk meets R1 in a single point. These attaching points may be

either nodes or tacnodes. If every attaching point is a tacnode, then we are in case (2). If some of

the attaching points are nodes, then the set of rational curves between any two consecutive nodes

in the chain are tacnodally attached and thus constitute A1/A1-attached rosary. In other words, we

are in case (1) with C0 empty.

From now on, we may assume that not all components of C are rational curves meeting the rest

of the curve in two points. In particular, there exist components on which Aut(C, {pi}ni=1)
◦ acts

trivially. We proceed by induction on the dimension of Aut(C, {pi}ni=1)
◦, noting that if dimension is

0, there is nothing to prove.

Note that if Aut(C, {pi}ni=1)
◦ acts nontrivially on a component T1 and T1 meets a component S

on which Aut(C, {pi}ni=1)
◦ acts trivially, then their point of attachment must be a node (and not a

tacnode). This follows immediately from the fact that an automorphism of P1 which fixes two points

and the tangent space at one of these points must be trivial. Now let T1, . . . , Tℓ be the maximal

length chain containing T1 on which Aut(C, {pi}ni=1)
◦ acts nontrivially; we have just argued that T1

and Tℓ must be attached to the rest of C at nodes. If each Ti is tacnodally attached to Ti+1, then

R := T1 ∪ · · · ∪ Tℓ is an A1/A1-attached rosary in C. If some Ti is attached to Ti+1 at a node, then

choosing minimal such i, we see that R := T1∪· · ·∪Ti is an A1/A1-attached rosary. Thus, C contains

an A1/A1-attached rosary R, necessarily of odd length by Remark 2.28. If it is not all of C, then

the dimension of Aut(C rR, {pi}ni=1)
◦ is one less than the dimension of Aut(C, {pi}ni=1)

◦, so we are

done by induction. �

Corollary 2.30. Suppose (C, {pi}ni=1) is a closed (7/10−ǫ)-stable curve with Aut(C, {pi}ni=1)
◦ ≃ Gkm.

Then there exists a decomposition C = C0 ∪ R1 ∪ · · · ∪ Rk where each Ri is A1/A1-attached rosary

of length 3.

Proof. This follows immediately from Proposition 2.29 and two observations:

• If R is a rosary of odd length ℓ > 5, then R admits an isotrivial specialization to the nodal

union of a rosary of length 3 and length ℓ− 2.
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• A closed rosary of even length ℓ admits an isotrivial specialization to the nodal union of ℓ/2

rosaries of length 3 arranged in a closed chain.

�

In order to compute the local VGIT chambers for an αc-closed curve, it will be useful to have the
following notation.

Definition 2.31 (Links). A 7
10
-link of length ℓ is a 2-pointed curve (E, p1, p2) which admits a de-

composition

E = E1 ∪ · · · ∪ Eℓ such that:

(1) (Ej , qj−1, qj) is a
7
10
-atom for j = 1, . . . , ℓ.

(2) qj := Ej ∩ Ej+1 is a node for j = 1, . . . , ℓ− 1.

(3) q0 := p1 is a marked point of E1 and qℓ := p2 is a marked point of Eℓ.

A 2
3
-link of length ℓ is a 1-pointed curve (E, p) which admits a decomposition

E = R1 ∪ · · · ∪Rℓ−1 ∪ Eℓ such that:

(1) (Rj , qj−1, qj) is a rosary of length 3 for j = 1, . . . , ℓ− 1, and (Eℓ, qℓ) is a
2
3
-atom.

(2) qj := Rj ∩Rj+1 is a node for j = 1, . . . , ℓ− 2, and qℓ−1 := Rℓ−1 ∩ Eℓ is a node.

(3) q0 := p is a marked point of R1.

When we refer to a 7
10
-link (E, p1, p2) (resp., 2

3
-link (E, p)) as a subcurve of a larger curve, we

always take it to be A1/A1-attached at p1 and p2 (resp., at p).

A3 A3A3

p1 p6
(A)

(B)
A4

p
A3 A3 A3 A3

Figure 10. Curve (A) (resp., (B)) is a 7
10
-link (resp., 2

3
-link) of length 3. Each

component above is a rational curve.

Now let C = K ∪E1 ∪ · · · ∪Er be the canonical decomposition of an αc-closed curve C, where K
is the core and Ei’s are αc-atoms. Observe that as long as K 6= ∅, then each 7

10
-atom (resp., 2

3
-atom)

Ei of a
7
10
-closed (resp., 2

3
-closed) curve is a component of a unique 7

10
-link (resp., 2

3
-link) of maximal

length. When αc = 2/3, we make the following definition.
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Definition 2.32 (Secondary core for αc = 2/3). Suppose C = K ∪ E1 ∪ . . . ∪ Er is the canonical

decomposition of an 2
3
-closed curve C. For each 2

3
-atom Ei, let Li be the maximal length 2

3
-link

containing Ei. We call K ′ := C r (L1 ∪ · · · ∪ Lr) the secondary core of C, which we consider as a

curve marked with the points ({pi}ni=1 ∩K ′)∪ (K ′ ∩ (C rK ′). The secondary core has the property

that any A1/A1-attached rosary R ⊆ K ′, satisfies R ∩ Li = ∅ for i = 1, . . . , r.

We can now define combinatorial types of αc-closed curves. We refer the reader to Figure 11 for
a graphical accompaniment of the following definition.

Definition 2.33 (Combinatorial Type of αc-closed curve).

• A 9
11
-closed curve (C, {pi}ni=1) has combinatorial type

(A) If the core K is nonempty. In this case,

C = K ∪ E1 ∪ · · · ∪ Er
where each Ei is a

9
11
-atom meeting K at a single node qi.

(B) If (g, n) = (2, 0) and C = E1 ∪ E2 where E1 and E2 are 9
11
-atoms meeting each other in a

single node q ∈ C.
(C) If (g, n) = (1, 1) and C = E1 is a 9

11
-atom.

• A 7
10
-closed curve (C, {pi}ni=1) has combinatorial type

(A) If the core is nonempty. In this case, we have

C = K ∪ L1 ∪ · · · ∪ Lr ∪ Lr+1 ∪ · · · ∪ Lr+s
where

• For i = 1, . . . , r: Li =
⋃ℓi
j=1Ei,j is a 7/10-link of length ℓi meeting K at two distinct

nodes. In particular, Ei,1 meets K at a node qi,0, Ei,ℓi meets K at a node qi,ℓi , and Ei,j
meets Ei,j+1 at a node qi,j .

• For i = r+1, . . . , r+ s: Li =
⋃ℓi
j=1Ei,j is a 7/10-link of length ℓi meeting K at a single

node and terminating in a marked point. In particular, Ei,1 meets K at a node qi,0, and

Ei,j meets Ei,j+1 at a node qi,j .

(B) If n = 2 and (C, p1, p2) is a 7/10-link of length g, i.e. C = E1 ∪ · · · ∪ Eg where each Ej is a
7
10
-atom, Ej meets Ej+1 at a node qj , p1 ∈ E1 and p2 ∈ Eg.

(C) If n = 0 and C is a 7/10-link of length g − 1, whose endpoints are nodally glued. In other

words, C = E1 ∪ · · · ∪Eg−1, where each Ej is a
7
10
-atom, Ej meets Ej+1 at a node qj , and E1

meets Eg−1 at a node q0.

• A 2
3
-closed curve (C, {pi}ni=1) has combinatorial type

(A) If the secondary core K ′ is nonempty. In this case, we write

C = K ′ ∪ L1 ∪ · · · ∪ Lr
where for i = 1, . . . , r, Li =

⋃ℓi−1
j=1 Ri,j ∪ Ei is a 2

3
-link of length ℓi. In particular, Ei is a

2
3
-atom and each Ri,j a length 3 rosary such that Ri,1 meets K ′ at a node qi,0, Ri,j meets

Ri,j+1 at a node qi,j , and Ri,ℓi−1 meets Ei in a node qi,ℓi−1. We denote the tacnodes of the

rosary Ri,j by τi,j,1 and τi,j,2, and the unique ramphoid cusp of Ei by ξi.
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(B) If n = 1, g = 2ℓ and (C, p1) is a 2
3
-link of length ℓ, i.e. C = R1 ∪ · · · ∪ Rℓ−1 ∪ Eℓ, where

R1, . . . , Rℓ−1 are rosaries of length 3 with p1 ∈ R1 and Eℓ is a
2
3
-atom. For j = 1, . . . , ℓ− 1,

we label the tacnodes of Rj as τj,1 and τj,2, the node where Rj intersects Rj+1 as qj , the

node where Rℓ−1 intersects Eℓ as qℓ−1 and the unique ramphoid cusp of Eℓ as ξ.

(C) If n = 0, g = 2ℓ+2 and C is the nodal union of two 2
3
-links, i.e. C = E0∪R1∪· · ·∪Rℓ−1∪Eℓ,

where E0, Eℓ are
2
3
-atoms, and R1, . . . , Rℓ−1 are rosaries of length 3. For j = 1, . . . , ℓ− 2, Rj

intersects Rj+1 at a node qj , E0 intersects R1 in a node q0, and Rℓ−1 intersects Eℓ in a node

qℓ−1. We label the ramphoid cusps of E0, Eℓ as ξ0, ξ1, and the tacnodes of Rj as τj,1 and τj,2.
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Figure 11. The left (resp. right) column indicates the combinatorial types of 7
10
-

closed (resp. 2
3
-closed) curves.
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3. Local description of the flips

In this section, we give an étale local description of the open immersions from Theorem 2.7

Mg,n(αc + ǫ) →֒ Mg,n(αc) ←֓ Mg,n(αc−ǫ)
at each critical value αc ∈ {2/3, 7/10, 9/11}.

Roughly speaking, our main result says that, étale locally around any closed point of Mg,n(αc),
these inclusions are induced by a variation of GIT problem. In Section 3.1, we develop the necessary
background material on local quotient presentations and local VGIT in order to state our main
result (Theorem 3.11). In Section 3.2, we collect several basic facts concerning local variation of GIT
which will be used in subsequent sections. In Section 3.3, we describe explicit coordinates on the
formal miniversal deformation space of an αc-closed curve. In Section 3.4, we use these coordinates
to compute the associated VGIT chambers and thus conclude the proof of Theorem 3.11.

3.1. Local quotient presentations.

Definition 3.1. Let X be an algebraic stack of finite type over SpecC, and let x ∈ X (C) be a closed

point. We say that f : W → X is a local quotient presentation around x if

(1) The stabilizer Gx of x ∈ X is reductive.

(2) W = [SpecA / Gx], where A is a finite type C-algebra.

(3) f is étale and affine.

(4) There exists a point w ∈ W such that f(w) = x and f induces an isomorphism Gw ≃ Gx.
We say that X admits local quotient presentations if there exist local quotient presentations around

all closed points x ∈ X (C). We sometimes write f : (W, w)→ (X , x) as a local quotient presentation

to indicate the chosen preimage of x.

It is an interesting (and still unsolved) problem to determine when an algebraic stack admits local
quotient presentations. Happily, the following result suffices for our purposes:

Proposition 3.2. [Alp10, Theorem 3] Let X be a normal algebraic stack of finite type over SpecC

such that X = [X/G] where G is a connected algebraic group acting on a normal separated scheme X.

Then for any closed point x ∈ X (C) with a reductive stabilizer, X admits a local quotient presentation

around x.

Corollary 3.3. For each α > 2/3−ǫ,Mg,n(α) admits local quotient presentations.

Proof of Corollary 3.3. By definition of α-stability, eachMg,n(α) can be realized as [X/G], where X

is a non-singular locally closed subvariety of the Hilbert scheme of some PN and G = PGL(N+1). By

Proposition 2.6, stabilizers of α-stable curves are reductive. Thus we can apply Proposition 3.2. �

Recall that if G is a reductive group acting on an affine scheme X = SpecA by σ : G×X → X,
there is a natural correspondence between G-linearizations of the structure sheaf OX and characters
χ : G → Gm = SpecC[t, t−1]. Precisely, a character χ defines a G-linearization L of the structure
sheaf OX as follows. The element χ∗(t) ∈ Γ(G,O∗

G) induces a G-linearization σ
∗OX → p∗2OX defined

by p∗1(χ
∗(t))−1 ∈ Γ(G×X,O∗

G×X). Therefore, we can associate to χ the semistable loci Xss
L and Xss

L−1

(cf. [Mum65, Definition 1.7]). The following definition describes explicitly the change in semistable
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locus as we move from χ to χ−1 in the character lattice of G. See [Tha96] and [DH98] for the general
setup of variation of GIT.

Definition 3.4 (VGIT chambers). Let G be a reductive group acting on an affine scheme X =

SpecA. Let χ : G → Gm be a character and set An := {f ∈ A | σ∗(f) = χ∗(t)−nf} = Γ(X,L⊗n)G.
We define the VGIT ideals associated to χ to be:

I+χ := (f ∈ A | f ∈ An for some n > 0),

I−χ := (f ∈ A | f ∈ An for some n < 0).

The VGIT (+)-chamber and (−)-chamber of X associated to χ are the open subschemes

X+
χ := X r V(I+χ ) →֒ X, X−

χ := X r V(I−χ ) →֒ X.

Since the open subsets X+
χ , X

−
χ are G-invariant, we also have stack-theoretic open immersions

[X+
χ /G] →֒ [X/G] ←֓ [X−

χ /G].

We will refer to these open immersions as the VGIT (+)/(−)-chambers of [X/G] associated to χ.

Remark 3.5. For an alternative characterization of X+
χ , note that χ−1 defines an action of G on

X × A1 via g · (x, s) = (g · x, χ(g)−1 · s). Then x ∈ X+
χ if and only if the orbit closure G · (x, 1) does

not intersect the zero section X × {0}.

The natural inclusions of VGIT chambers induce projective morphisms of GIT quotients.

Proposition 3.6. Let L be the G-linearization of the structure sheaf on X corresponding to a

character χ. Then there are natural identifications of X+
χ and X−

χ with the semistable loci Xss
L and

Xss
L−1, respectively. There is a commutative diagram

X+
χ

��

� � // X

��

X−
χ

? _oo

��
X+
χ //G := Proj

⊕
d≥0Ad

// SpecA0 Proj
⊕

d≥0A−d =: X−
χ //Goo

where X → SpecA0, X
+
χ → X+

χ //G and X−
χ → X−

χ //G are GIT quotients. The restriction of L to

X+
χ (resp., L−1 to X−

χ ) descends to line bundle O(1) on X+
χ //G (resp., O(1) on X−

χ //G) relatively

ample over SpecA0. In particular, for every point x ∈ X+
χ ∪X−

χ , the character of Gx corresponding

to L|BGx is trivial.

Proof. This follows immediately from the definitions and [Mum65, Theorem 1.10]. �

Next, we show how to use the data of a line bundle L on a stack X to define VGIT chambers
associated to any local quotient presentation of X . In this situation, note that if x ∈ X (C) is any
point, then there is a natural action of the automorphism group Gx on the fiber L|BGx that induces
a character χL : Gx → Gm.
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Definition 3.7 (VGIT chambers of a local quotient presentation). Let X be an algebraic stack of

finite type over SpecC and let L be a line bundle on X . Let x ∈ X be a closed point. If f : W → X
is a local quotient presentation around x, we define the chambers of W associated to L

W+
L →֒ W ←֓ W−

L

to be the VGIT chambers associated to the character χL : Gx → Gm.

Definition 3.8. Suppose X is an algebraic stack of finite type over SpecCC that admits local

quotient presentations and L is a line bundle on X . We say that open substacks X+ and X−

of X arise from local VGIT with respect to L at a point x ∈ X if there exists a local quotient

presentation f : W = [SpecA/Gx]→ X around x such that f∗L is the line bundle corresponding to

the linearization of OSpecA by χL and such that there is a Cartesian diagram:

(3.1) W+
L

��

� � // W
f

��

W−
L

? _oo

��
X+ � � // X X−? _oo

The following key technical result allows to check that two given open substacks X+ and X− arise
from local VGIT with respect to a given line bundle L on X by working formally locally.

Proposition 3.9. Let X be a smooth algebraic stack of finite type over SpecC that admits local

quotient presentations. Let L be a line bundle on X . Let X+ and X− be open substacks of X . Let

x ∈ X be a closed point and let χ : Gx → Gm be the character induced from the action of Gx on

the fiber of L over x. Let T1(x) be the first-order deformation space of x, let A = C[T1(x)], and let

Â = C[[T1(x)]] be the completion of A at the origin. The affine space T = SpecA inherits an action

of Gx. Let IZ+ , IZ− ⊆ Â be the ideals defined by the reduced closed substacks Z+ = X r X+ and

Z− = X r X−. Let I+, I− ⊆ A be the VGIT ideals associated to χ. If IZ+ = I+Â and IZ− = I−Â,

then X+ →֒ X ←֓ X− arise from local VGIT with respect to L at x.

The proof Proposition 3.9 will be given in Section 3.2. We will now explain how this result is used
in our situation.

On the stackMg,n(α), there is a natural line bundle to use in conjunction with the VGIT formal-

ism, namely δ − ψ. Since this line bundle is defined over Mg,n(α) for each α, there is an induced
character χδ−ψ : Aut(C, {pi}ni=1)→ Gm for any α-stable curve (C, {pi}ni=1).

Definition 3.10 (I+, I−). If (C, {pi}ni=1) is an αc-closed curve, the affine space

X = SpecC[T1(C, {pi}ni=1)]

inherits an action of Aut(C, {pi}ni=1), and we define I+ and I− to be the VGIT ideals in C[T1(C, {pi}ni=1)]

associated to the character χδ−ψ.

The main result of this section simply says that the VGIT chambers associated to δ − ψ locally
cut out the inclusionsMg,n(αc+ǫ) →֒ Mg,n(αc) ←֓ Mg,n(αc−ǫ).
Theorem 3.11. Let αc ∈ {2/3, 7/10, 9/11}. Then the open substacks

Mg,n(αc + ǫ) →֒ Mg,n(αc) ←֓ Mg,n(αc − ǫ)
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arise from local VGIT with respect to δ − ψ at every closed point (C, {pi}ni=1) ∈Mg,n(αc).

The remainder of Section 3 is devoted to the proof of Theorem 3.11. In Section 3.2, we prove basic
facts concerning the VGIT chambers defined above and, in particular, we prove Proposition 3.9. In

Section 3.3, we construct, for any αc-closed curve (C, {pi}ni=1), coordinates for D̂ef(C, {pi}ni=1) and
describe the ideals IZ+ and IZ− . In Section 3.4, we use this coordinate description to compute the

VGIT ideals I+ and I−. In Proposition 3.29 we prove that IZ+ = I+Â and IZ− = I−Â, so that
Theorem 3.11 follows from Proposition 3.9.

3.2. Preliminary facts about local VGIT. In this section, we collect several basic facts concern-
ing variation of GIT for the action of a reductive group on an affine scheme which will be needed in
subsequent sections. In particular, we formulate a version of the Hilbert-Mumford criterion which
will be useful for computing the VGIT chambers associated to an αc-closed curve.

Definition 3.12. Recall that given a character χ : G→ Gm and a one-parameter subgroup λ : Gm →
G, the composition χ◦λ : Gm → Gm is naturally identified with the integer n such that (χ◦λ)∗t = tn.

We define the pairing of χ and λ as 〈χ, λ〉 = n.

Proposition 3.13 (Affine Hilbert-Mumford criterion). Suppose G is a reductive group over SpecC

acting on an affine scheme X = SpecA of finite type over SpecC. Let χ : G → Gm be a character.

Let x ∈ X(C). Then x /∈ X+
χ (resp., x /∈ X−

χ ) if and only if there exists a one-parameter subgroup

λ : Gm → G with 〈χ, λ〉 > 0 (resp., 〈χ, λ〉 < 0) such that limt→0 λ(t) · x exists.

Proof. Consider the action of G on X × A1 induced by χ−1 as in Remark 3.5. Then x /∈ X+
χ if and

only if G · (x, 1) ∩ (X × {0}) 6= ∅. By the Hilbert-Mumford criterion [Mum65, Theorem 2.1], this

is equivalent to the existence of a one-parameter subgroup λ : Gm → G such limt→0 λ(t) · (x, 1) ∈
X ×{0}. We are done by observing that limt→0 λ(t) · (x, 1) = limt→0(λ(t) ·x, t〈χ,λ〉) ∈ X ×{0} if and
only if limt→0 λ(t) · x exists and 〈χ, λ〉 > 0. �

The following are three immediate corollaries of Proposition 3.13:

Corollary 3.14. Let Gi be reductive groups acting on affine schemes Xi of finite type over SpecC

and χi : Gi → Gm be characters for i = 1, . . . , n. Consider the diagonal action of G =
∏
iGi on

X =
∏
iXi and the character

∏
i χi : G→ Gm. Then

X rX+
χ =

n⋃

i=1

X1 × · · · × (Xi r (Xi)
+
χi)× · · · ×Xn,

X rX−
χ =

n⋃

i=1

X1 × · · · × (Xi r (Xi)
−
χi)× · · · ×Xn.

�

Corollary 3.15. Let G be a reductive group over SpecC acting on an affine X = SpecA of finite

type over SpecC. Let χ : G → Gm be a character. Let Z ⊆ X be a G-invariant closed subscheme.

Then Z+
χ = X+

χ ∩ Z and Z−
χ = X−

χ ∩ Z. �
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Corollary 3.16. Let G be a reductive group with character χ : G → Gm. Suppose G acts on an

affine scheme X = SpecA of finite type over SpecC. Let G◦ be the connected component of the

identity and χ◦ = χ|G◦. Then the VGIT chambers X+
χ , X

−
χ for the action of G on X are equal to

the VGIT chambers X+
χ◦ , X−

χ◦ for action of G◦ on X. �

Proposition 3.17. Let G be a reductive group acting on an affine variety X of finite type over

SpecC. Let χ : G → Gm be a non-trivial character. Let λ : Gm → G be a one-parameter subgroup

and x ∈ X−
χ (C) such that x0 = limt→0 λ(t) · x ∈ XG is fixed by G. Then 〈χ, λ〉 > 0.

Proof. As x ∈ X−
χ , 〈χ, λ〉 ≥ 0 by Proposition 3.13. Suppose 〈χ, λ〉 = 0. Considering the action of

G on X × A1 induced by χ as in Remark 3.5, then limt→0 λ(t) · (x, 1) = (x0, 1) ∈ XG × A1. But

XG is contained in the unstable locus X rX−
χ since χ is a nontrivial linearization. It follows that

G · (x, 1) ∩ (XG × {0}) 6= ∅ which contradicts x ∈ X−
χ . �

Lemma 3.18. Let G be a reductive group with character χ : G → Gm and h : SpecA = X →
Y = SpecB be a G-invariant morphism of affine schemes finite type over SpecC. Assume that

A = B ⊗BG AG. Then h−1(Y +
χ ) = X+

χ and h−1(Y −
χ ) = X−

χ .

Proof. We use Proposition 3.13. If x /∈ X+
χ , then there exists λ : Gm → G with 〈χ, λ〉 > 0 such

that x0 = limt→0 λ(t) · x exists. It follows that h(x0) = limt→0 λ(t) · h(x) exists, and so h(x) /∈ Y +
χ .

We conclude that h−1(Y +
χ ) ⊆ X+

χ . Conversely, suppose h(x) /∈ Y +
χ . Then there exists λ : Gm → G

with 〈χ, λ〉 > 0 such that limt→0 λ(t) · h(x) exists. Since limt→0 λ(t) · h(x) exists and since both

SpecA→ SpecAG and SpecB → SpecBG are GIT quotients, there is a commutative diagram

SpecC[t]

((

""

&&
SpecA

h //

��

SpecB

��
SpecAG // SpecBG

Since the square is Cartesian, the map Gm = SpecC[t, t−1] → SpecA given by t 7→ λ(t) · x extends

to SpecC[t]→ SpecA. It follows that x /∈ X+
χ . We conclude that X+

χ ⊆ h−1(Y +
χ ). �

In order to prove Proposition 3.9, we need the following Lemma.

Lemma 3.19. Let G be a reductive group acting on a smooth affine variety W = SpecA over SpecC.

Let w ∈ W be a fixed point of G. Let χ : G → Gm be a character. There is a Zariski-open affine

neighborhood W ′ ⊆W containing w and a G-invariant étale morphism h : W ′ → T = SpecC[TW,w],

where TW,w is the tangent space at w, such that

h−1(T+
χ ) =W ′+

χ h−1(T+
χ ) =W ′+

χ .

Proof. The maximal ideal m ⊆ A of w ∈ W is G-invariant. Since G is reductive, there exists a

splittingm/m2 →֒ m of the surjectionm→ m/m2 ofG-representations. The inclusionm/m2 →֒ m ⊆ A
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induces a morphism on algebras Sym∗
m/m2 → A which is G-equivariant which in turns gives a G-

equivariant morphism h : SpecA → T étale at w ∈ W . By applying Luna’s Fundamental Lemma

(see [Lun73]), there exists a G-invariant open affine W ′ = SpecA′ ⊆ SpecA containing w such that

the diagram

SpecA′ //

��

SpecC[TW,w]

��
SpecA′G // SpecC[TW,w]

G

is Cartesian with SpecA′G → SpecC[TW,w]
G étale. From Lemma 3.18, the induced map h|W ′ : W ′ →

T satisfies h|−1
W ′(T+

χ ) =W ′+
χ and h|−1

W ′(T+
χ ) =W ′+

χ . �

Proof of Proposition 3.9. Let f : W = [W/Gx] → X be an étale local quotient presentation around

x where W = SpecA. By Lemma 3.19, after shrinking W, we may assume that there is an induced

Gx-invariant morphism h : W → T = SpecC[T1(x)] such that h−1(T+
χ ) =W+

χ and h−1(T+
χ ) =W+

χ .

This provides a diagram

Spf Â // W = [SpecA/Gx]

��

h

**
X Y = [SpecC[T1(x)]/Gx]

In particular, I+A and I−A are the VGIT ideals in A corresponding to (+)/(−) VGIT chambers.

Since I+Â = IZ+ and I−Â = IZ− , it follows that the ideals defining Z+,Z− and W rW+
χ ,W rW−

χ

must agree in a Zariski-open neighborhood U ⊆ SpecA of w. By shrinking further, we may also

assume that the pullback of L to U is trivial. By Lemma 4.7, we may assume that U is affine

scheme such that π−1(π(U)) = U where π : SpecA → SpecAG. If we set U = [U/G], then the

composition U →֒ W → X is a local quotient presentation. By applying Lemma 3.19, U+ =W+ ∩U
and U− = W− ∩ U so that in U the ideals defining Z+,Z− and U r U+,U r U− agree. Moreover,

the pullback of L to U is clearly identified with the linearization of OU by χ. Therefore, U → X has

the desired properties. �

3.3. Deformation theory of αc-closed curves. Our goal in this section is to describe coordinates
on the formal deformation space of an αc-closed curve (C, {pi}ni=1) in which the ideals IZ+ and IZ− can
be described explicitly, and which simultaneously diagonalize the natural action of Aut(C, {pi}ni=1).
We begin by describing the action of Aut(E) on the space of first-order deformations T1(E) of a
single αc-atom E (Lemma 3.20) and a single rosary of length 3 (Lemma 3.21). Then we describe the
action of Aut(C, {pi}ni=1) on the first-order deformation space T1(C, {pi}ni=1) for each combinatorial
type of an αc-closed curve (C, {pi}ni=1) from Definition 2.33 (Proposition 3.22). Finally, we pass from
coordinates on the first-order deformation space to coordinates on the formal deformation space

D̂ef(C, {pi}ni=1) (Proposition 3.25).

Throughout this section, we let T1(C, {pi}ni=1) denote the first-order deformation space of (C, {pi}ni=1)

and T1(ÔC,ξ) the first-order deformation space of a singularity ξ ∈ C. Finally, we let Aut(C, {pi}ni=1)
◦
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denote the connected component of the identity of the automorphism group of (C, {pi}ni=1). We some-
times write T1(C) (resp., Aut(C)) for T1(C, {pi}ni=1) (resp., Aut(C, {pi}ni=1)) if no confusion is likely.

3.3.1. Action on the first-order deformation space for an αc-atom and rosary. Suppose (E, q) (resp.,
(E, q1, q2)) is an αc-atom (see Definition 2.21) with singular point ξ ∈ E. By (2.2), we may fix an

isomorphism Aut(E) ≃ Gm = SpecC[t, t−1] and coordinates on ÔE,ξ and ÔE,q (resp., ÔE,q1 and

ÔE,q2) so that the action of Aut(E) is specified by:

•αc = 9/11: ÔE,ξ ≃ C[[x, y]]/(y2 − x3), ÔE,q ≃ C[[n]], and Gm acts by

x 7→ t−2x, y 7→ t−3y, n 7→ tn.

•αc = 7/10: ÔE,ξ ≃ C[[x, y]]/(y2 − x4), ÔE,q1 ≃ C[[n1]], ÔE,q2 ≃ C[[n2]], and Gm acts by

x 7→ t−1x, y 7→ t−2y, n1 7→ tn1, n2 7→ tn2.

•αc = 2/3: ÔE,ξ ≃ C[[x, y]]/(y2 − x5), ÔE,q ≃ C[[n]] and Gm, acts by

x 7→ t−2x, y 7→ t−5y, n 7→ tn.

We have an exact sequence of Aut(E)-representations

0→ Cr1(E)
α−→ T1(E)

β−→ T1(ÔE,ξ)→ 0

where Cr1(E) denotes the space of first-order deformations which induces trivial deformations of ξ.
In fact, since the pointed normalization of E has no non-trivial deformations, we may identity Cr1(E)
with the space of crimping deformations, i.e., deformations which fix the pointed normalization and
the analytic isomorphism type of the singularity. Note that in the cases αc = 9/11 and αc = 7/10,
Cr1(E) = 0, i.e., there is a unique way to impose a cusp on a 2-pointed rational curve (resp., a
tacnode on a pair of 2-pointed rational curves).

Lemma 3.20. Let E be an αc-atom. Fix Aut(E) ≃ Gm as above.

•αc = 9/11: T1(E) ≃ T1(ÔE,ξ) and there are coordinates s0, s1 on T1(ÔE,ξ) with weights −6,−4.
•αc = 7/10: T1(E) ≃ T1(ÔE,ξ) and there are coordinates s0, s1, s2 on T1(ÔE,ξ) with weights

−4,−3,−2.
•αc = 2/3: T1(E) ≃ Cr1(E) ⊕ T1(ÔE,ξ) and there are coordinates c on Cr1(E) and s0, s1, s2, s3 on

T1(ÔE,ξ) with with weights 1 and −10,−8,−6,−4, respectively.

Proof. We prove the case αc = 2/3 and leave the other cases to the reader. By deformation theory

of hypersurface singularities, we have

T1(ÔE,ξ) ∼→ C4, SpecC[[x, y, ε]]/(y2 − x5 − s∗3εx3 − s∗2εx2 − s∗1εx− s∗0ε, ε2) 7→ (s∗0, s
∗
1, s

∗
2, s

∗
3),

and Gm acts by s∗k 7→ t10−2ks∗k. Thus, Gm acts on T1(ÔE,ξ)∨ by sk 7→ t2k−10sk.

From [vdW10, Example 1.111], we have

Cr1(E)
∼→ C, SpecC[(s+ c∗εs2)2, (s+ c∗εs2)5, ε]/(ε)2 7→ c∗,

and Gm acts by c∗ → t−1c∗. Thus, Gm acts on Cr1(E)∨ by c 7→ tc. �
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Now let (R, p1, p2) =
∐3
i=1(Ri, q2i−1, q2i) be a rosary of length 3 (see Definition 2.27). Denote the

tacnodes of R as τ1 := q2 = q3 and τ2 := q4 = q5. We fix an isomorphism Aut(R, p1, p2) ≃ Gm =

SpecC[t, t−1] such that Gm acts on ÔR,τi = C[[xi, yi]]/(y
2
i − x4i ) via x1 7→ t−1x1, y1 7→ t−2y1 and

x2 7→ tx2, y2 7→ t2y2, and acts on ÔR,pi = C[[ni]] via n1 7→ tn1 and n2 7→ t−1n2.

Lemma 3.21. Let (R, p1, p2) be a rosary of length 3. Fix Aut(R, p1, p2) ≃ Gm as above. Then

T1(R, p1, p2) = T1(ÔR,τ1) ⊕ T1(ÔR,τ2) and there are coordinates on T1(ÔR,τ1) (resp., T1(ÔR,τ2))
with weights −2,−3,−4 (resp., 2, 3, 4).

Proof. This is established similarly to Lemma 3.20. �

The above lemmas immediately imply a description for the action of Aut(C, {pi}ni=1)
◦ on T1(C, {pi}ni=1)

for any αc-closed curve.

Proposition 3.22 (Diagonalized Coordinates on T1(C, {pi}ni=1)). Let (C, {pi}ni=1) be an αc-closed

curve. Depending on the combinatorial type of (C, {pi}ni=1) from Definition 2.33, the following state-

ments hold:

•αc = 9/11 of Type A: There are decompositions

Aut(C)◦ =
r∏

i=1

Aut(Ei) T
1(C) = T1(K)⊕

[
r⊕

i=1

T1(Ei)

]
⊕
[

r⊕

i=1

T1(ÔC,qi)
]

For 1 6 i 6 r, let ti be the coordinate on Aut(Ei) ≃ Gm. There are coordinates

“singularity” si = (si,0, si,1) on T1(ÔEi,ξi) for 1 6 i 6 r

“node” ni on T1(ÔC,qi) for 1 6 i 6 r

such that Aut(C)◦ acts trivially on T1(K) and on the coordinates si, ni by

si,0 7→ t−6
i si,0 si,1 7→ t−4

i si,1 ni 7→ tini.

•αc = 9/11 of Type B: There are decompositions

Aut(C)◦ = Aut(E1)×Aut(E2) T1(C) = T1(E1)⊕ T1(E2)⊕ T1(ÔC,q)
For 1 6 i 6 2, let ti be the coordinate on Aut(Ei) ≃ Gm. There are coordinates si = (si,0, si,1) on

T1(Ei) and a coordinate n on T1(ÔC,q) such that the action of Aut(C)◦ on T1(C) is given by

si,0 7→ t−6
i si,0 si,1 7→ t−4

i si,1 n 7→ t1t2n.

•αc = 9/11 of Type C: This case is described in Lemma 3.20.

•αc = 7/10 of Type A: There are decompositions

Aut(C)◦ =

r+s∏

i=1

ℓi∏

j=1

Aut(Ei,j)

T1(C) =T1(K)⊕
r+s⊕

i=1




ℓi⊕

j=1

T1(Ei,j)⊕
ℓi−1⊕

j=0

T1(ÔC,qi,j )


⊕

r⊕

i=1

T1(ÔC,qi,ℓi )
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Let ti,j be the coordinate on Aut(Ei,j) ≃ Gm. There are coordinates

“singularity” si,j =
(
si,j,k

)2
k=0

on T1(Ei,j) 1 6 i 6 r + s, 1 6 j 6 ℓi
“node” ni,j on T1(ÔC,qi,j ) 1 6 i 6 r + s, 0 6 j 6 ℓi − 1

“node” ni,ℓi on T1(ÔC,qi,ℓi ) 1 6 i 6 r

such that Aut(C)◦ acts trivially on T1(K) and on si,j , ni,j by

si,j,k 7→ tk−4
i,j si,j,k

ni,0 7→ ti,1ni,0 ni,ℓi 7→ ti,ℓini,ℓi ni,j 7→ ti,jti,j+1ni,j (j 6= 0, ℓi).

•αc = 7/10 of Type B: There are decompositions

Aut(C, p1, p2)
◦ =

g∏

i=1

Aut(Ei)

T1(C, p1, p2) =

g⊕

i=1

T1(Ei)⊕
g−1⊕

i=1

T1(ÔC,qi)

Let ti be the coordinate on Aut(Ei) ≃ Gm. There are coordinates si = (si,0, si,1, si,2) on T1(Ei) and

coordinates ni on T1(ÔC,qi) such that the action of Aut(C, {pi}ni=1)
◦ on T1(C, {pi}ni=1) is given by

si,k 7→ tk−4
i si,k ni 7→ titi+1ni.

•αc = 7/10 of Type C: There are decompositions

Aut(C)◦ =

g−1∏

i=1

Aut(Ei)

T1(C) =

g−1⊕

i=1

T1(Ei)⊕
g−2⊕

i=0

T1(ÔC,qi)

Let ti be the coordinate on Aut(Ei) ≃ Gm. There are coordinates si = (si,0, si,1, si,2) on T1(Ei) and

coordinates ni on T1(ÔC,qi) such that the action of Aut(C, {pi}ni=1)
◦ on T1(C, {pi}ni=1) is given by

si,k 7→ tk−4
i si,k ni 7→ titi+1ni,

and where t0 := tg−1.
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•αc = 2/3 of Type A: There exist decompositions

Aut(C, {pi}ni=1)
◦ = Aut(K ′)◦ ×

r∏

i=1

Aut(Li)

= Aut(K ′)◦ ×
r∏

i=1



ℓi−1∏

j=1

Aut(Ri,j)×Aut(Ei)




T1(C, {pi}ni=1) = T1(K ′)⊕
r⊕

i=1

T1(Li)

r⊕

i=1

T1(ÔC,qi,0)

= T1(K ′)⊕
r⊕

i=1



ℓi−1⊕

j=1

T1(Ri,j)⊕
ℓi−1⊕

j=0

T1(ÔC,qi,j )⊕ T1(Ei)




where Aut(K ′)◦ acts trivially on
⊕r

i=1T
1(Li)

⊕r
i=1T

1(ÔC,qi,0) and
∏r
i=1Aut(Li) acts trivially on

T1(K ′). For 1 6 i 6 r, 1 6 j 6 ℓi − 1, let ti,j denote the coordinate on Aut(Ri,j) ≃ Gm, and let ti,ℓi
denote the coordinate on Aut(Ei) ≃ Gm. Then there exist coordinates

“rosary” ri,j = (ri,j,k)
2
k=0, r

′
i,j = (r′i,j,k)

2
k=0 on T1(Ri,j) for 1 6 i 6 r, 1 ≤ j < ℓi

“singularity” si = (si,k)
3
k=0 on T1(ÔC,ξi) ⊂ T1(Ei) for 1 6 i 6 r

“crimping” ci on Cr1(Ei) ⊂ T1(Ei) for 1 6 i 6 r

“node” ni,j on T1(ÔC,qi,j ) for 1 6 i 6 r, 0 6 j < ℓi

such that the action of
∏r
i=1Aut(Li) on

⊕r
i=1T

1(Li) is given by

ri,j,k 7→ tk−4
i,j ri,j,k r′i,j,k 7→ t4−ki,j r′i,j,k si,k 7→ t2k−10

i,ℓi
si,k

ci 7→ ti,ℓici ni,0 7→ ti,1ni,0 ni,j 7→ t−1
i,j ti,j+1ni,j (0 < j < ℓi).

Note that we need not specify the action of Aut(K ′)◦ on T1(K ′) as this will be irrelevant for the

calculation of the VGIT chambers associated to (C, {pi}ni=1).

•αc = 2/3 of Type B: There exist decompositions

Aut(C, {pi}ni=1)
◦ =

ℓ−1∏

i=1

Aut(Ri)×Aut(Eℓ)

T1(C, {pi}ni=1) =
ℓ−1⊕

i=1

[
T1(Ri)⊕ T1(ÔC,qi)

]
⊕ T1(Eℓ)

For 1 6 i 6 ℓ − 1, let ti be the coordinate on Aut(Ri) ≃ Gm, and let tℓ be the coordinate on

Aut(Eℓ) ≃ Gm. Then there are coordinates

“rosary” ri = (ri,k)
2
k=0, r

′
i = (r′i,k)

2
k=0 on T1(Ri) for 1 6 i 6 ℓ− 1

“singularity” s = (sk)
3
k=0 on T1(ÔC,ξ) ⊂ T1(Eℓ)

“crimping” c on Cr1(Eℓ) ⊂ T1(Eℓ)

“node” ni on T1(ÔC,qi) for 1 6 i 6 ℓ− 1
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such that the action of Aut(C)◦ on T1(C) is given by

ri,k 7→ tk−4
i ri,k r′i,k 7→ t4−ki r′i,k sk 7→ t2k−10

ℓ sk
c 7→ tℓc ni 7→ t−1

i ti+1ni (0 ≤ i < ℓ).

•αc = 2/3 of Type C: There exist decompositions

Aut(C)◦ = Aut(E0)×Aut(Eℓ)×
ℓ−1∏

i=1

Aut(Ri)

T1(C) = T1(E0)⊕ T1(Eℓ)⊕
ℓ−1⊕

i=1

T1(Ri)⊕
ℓ−1⊕

i=0

T1(ÔC,qi)

Let t0, tℓ be coordinates on Aut(E0) ≃ Gm and Aut(Eℓ) ≃ Gm, and for 0 6 i 6 ℓ, let ti be the

coordinate on Aut(Ri) ≃ Gm. Then there are coordinates

“rosary” ri = (ri,k)
2
k=0, r

′
i = (r′i,k)

2
k=0 on T1(Ri) for 1 6 i 6 ℓ− 1

“singularity” si = (si,k)
3
k=0 on T1(ÔC,ξi) ⊂ T1(Ei) for i = 0, ℓ

“crimping” ci on Cr1(Ei) ⊂ T1(Ei) for i = 0, ℓ

“node” ni on T1(ÔC,qi) for 0 6 i 6 ℓ− 1

such that the action of Aut(C)◦ on T1(C) is given by

ri,k 7→ tk−4
i ri,k r′i,k 7→ t4−ki r′i,k si,k 7→ t2k−10

i si,k
ci 7→ tici n0 7→ t0t1n0 ni 7→ t−1

i ti+1ni (0 < i < ℓ) nℓ 7→ tℓ−1tℓn0

Proof. This follows easily from Lemmas 3.20 and 3.21. �

It is evident that the coordinates of Proposition 3.22 on T1(C, {pi}ni=1) diagonalize the natural
action of Aut(C, {pi}ni=1)

◦. However, we need slightly more. We need coordinates which diagonalize
the natural action of Aut(C, {pi}ni=1)

◦ and which cut out the natural geometrically-defined loci on

D̂ef(C, {pi}ni=1) = SpfC[[T1(C, {pi}ni=1)]]. For example, when αc = 2/3, the {si} coordinates should
cut out the locus of formal deformations preserving the singularities and the {ci, ni} coordinates
should cut out the locus of formal deformations preserving a Weierstrass tail. This is almost a purely
formal statement (see Lemma 3.24 below); however there is one non-trivial geometric input. We must
show that the crimping coordinate which defines the locus of ramphoid cuspidal deformations with
trivial crimping can be extended to a global coordinate which vanishes on the locus of Weierstrass
tails. This is essentially a first-order statement which we prove below in Lemma 3.23.

The 2
3
-atom E defines a point in Z+ ∩ Z− ⊆ M2,1(2/3) using the notation of Z+,Z− from

Proposition 3.9. If we denote this point by 0, we have natural inclusions of Aut(E)-representations

i : T1
Z+,0 →֒ T1

M2,1(2/3),0
= T1(E) and j : T1

Z−,0 →֒ T1
M2,1(2/3),0

= T1(E).

On the other hand, recall that we have the exact sequence of Aut(E, q)-representations.

(3.2) 0→ Cr1(E)
α−→ T1(E)

β−→ T1(ÔE,ξ)→ 0

where T1(ÔE,ξ) denotes the space of first-order deformations of the singularity ξ ∈ E, and Cr1(E)
denotes the space of first-order crimping deformations. The key point is that the tangent spaces
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of these global stacks are naturally identified as deformations of the singularity and the crimping
respectively.

Lemma 3.23. With notation as above, there exist isomorphisms of Aut(E)-representations

T1
Z−,0 ≃ T1(ÔE,ξ)

T1
Z+,0 ≃ Cr1(E)

inducing a splitting of (3.2) with i = α and j = β−1.

Proof. It suffices to show that the composition

α ◦ i : TZ−,0 → TM2,1(2/3),0
= T1(E)→ T1(ÔE,ξ)

is an isomorphism, and that the composition

α ◦ j : TZ+,0 → TM2,1(2/3),0
= T1(E)→ T1(ÔE,ξ)

is zero. The latter follows from the former by transversality of TZ−,0 and TZ+,0. To see that α ◦ i
is an isomorphism, observe that Z− ≃ [A4/Gm] with weights −4,−6, −8,−10, where the universal

family is given by

(y2 − x5 − a3εx3 − a2εx2 − a1εx− a0ε, ε2) : a3, . . . , a0 ∈ C}.
On the other hand, there is a natural isomorphism

T1(ÔE,ξ) ={SpecC[[x, y, ε]]/(y2 − x5 − a3εx3 − a2εx2 − a1εx− a0ε, ε2) : a3, . . . , a0 ∈ C}.
Evidently, α ◦ i is the identity map in the given coordinates. �

Lemma 3.24. Let V be a finite-dimensional representation of a torus G, let X = SpfC[[V ]], and let

m ⊆ C[[V ]] be the maximal ideal. Suppose we are a given a collection of G-invariant formal smooth

closed subschemes Zi := SpfC[[V ]]/Ii, (i = 1, . . . , r) which intersect transversely at 0, and a basis

x1, . . . , xn for V such that:

(1) x1, . . . , xn diagonalize the action of G.

(2) Ii/mIi is spanned by a subset of x1, . . . , xn.

Then there exist coordinates X ≃ SpfC[[x′1, . . . , x
′
k]] such that

(1) x′1, . . . , x
′
n diagonalize the action of G.

(2) x′1, . . . , x
′
n reduce modulo m to x1, . . . , xn.

(3) Ii is generated by a subset of x′1, . . . , x
′
n.

Proof. Let xi,1, . . . , xi,di be a diagonal basis for Ii/mIi as a G-representation. Consider the surjection

Ii → Ii/mIi

and choose an equivariant section, i.e., choose x′i,1, . . . , x
′
i,di

such that each spans a one-dimensional

sub-representation of G. By Nakayama’s Lemma, these elements generate Ii. Repeating this proce-

dure for each Zi, we obtain x
′
i,j for i = 1, . . . , r and j = 1, . . . , di. Since the Zi’s intersect transversely,

these coordinates induce linearly independent elements of V . Thus they may be completed to a di-

agonal basis, and this gives the necessary coordinate change. �
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Proposition 3.25 (Explicit Description of IZ+ , IZ−). Let (C, {pi}ni=1) be an αc-closed curve. There

exist coordinates ni, si, ci (resp., ni,j , si,j) on D̂ef(C, {pi}ni=1) such that the action of Aut(C, {pi}ni=1)
◦

on D̂ef(C, {pi}ni=1) = Spf Â is given as in Proposition 3.22, and such that the ideals IZ+, IZ− are

given as follows:

•αc = 9/11, Type A: IZ+ =
⋂r
i=1(si), IZ− =

⋂r
i=1(ni).

•αc = 9/11, Type B: IZ+ = (s1) ∩ (s2), IZ− = (n).

•αc = 9/11, Type C: IZ+ = (s), IZ− = (0).

•αc = 7/10, Type A: IZ+ =
⋂
i,j(si,j) , IZ− =

⋂
i,µ,ν∈S Ji,µ,ν where

S := {i, µ, ν : 1 6 i 6 r + s, 1 6 µ 6

⌈
ℓi
2

⌉
, 0 6 ν 6 ℓi − 2µ+ 1}

Ji,µ,ν := (ni,ν , si,ν+2, . . . , si,ν+2µ−2, ni,ν+2µ−1), for i = 1, . . . , r

Ji,µ,ν := (ni,ν , si,ν+2, . . . , si,ν+2µ−2), for i = r + 1, . . . , r + s.

•αc = 7/10, Type B: IZ+ =
⋂
i(si) , IZ− =

⋂
µ,ν∈S Jµ,ν where

S := {µ, ν : 1 6 µ 6
⌈g
2

⌉
, 0 6 ν 6 g − 2µ+ 1}

Jµ,ν := (nν , sν+2, . . . , sν+2µ−2, nν+2µ−1),

and n0 := 0 and ng := 0.

•αc = 7/10, Type C: IZ+ =
⋂
i(si) , IZ− =

⋂
µ,ν∈S Jµ,ν where

S := {µ, ν : 1 6 µ 6

⌈
g − 1

2

⌉
, 0 6 ν 6 g − 2}

Jµ,ν := (nν , sν+2, . . . , sν+2µ−2, nν+2µ−1),

and the subscripts are taken modulo g − 1.

•αc = 2/3, Type A: IZ+ =
⋂r
i=1(si),

IZ− =

r⋂

i=1

ℓi−1⋂

j=0

(ni,j , r
′
i,j+1, r

′
i,j+2, . . . , r

′
i,ℓi−1, ci).

•αc = 2/3, Type B: IZ+ = (s),

IZ− =

ℓ−1⋂

i=1

(ni, r
′
i+1, r

′
i+2, . . . , r

′
ℓ−1, c) ∩ (r′1, r

′
2, . . . , r

′
ℓ−1, c).

•αc = 2/3, Type C: IZ+ = (s1) ∩ (s2),

IZ− =

ℓ−1⋂

i=0

(ni, ri, ri−1, . . . , r1, c0) ∩
ℓ−1⋂

i=0

(ni, r
′
i+1, r

′
i+2, . . . , r

′
ℓ−1, cℓ).

Proof. We prove the statement when (C, {pi}ni=1) is a 2
3
-closed curve of combinatorial type A; the

other cases are similar and left to the reader. Let D̂ef(C, {pi}ni=1) = Spf Â → Mg,n(2/3) be a

miniversal deformation space of (C, {pi}ni=1). For i = 1, . . . , r, we define
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• Z+
i = Spf Â/IZ+

i
is the locus of deformations preserving the ith ramphoid cusp ξi.

• Z−
i = Spf Â/IZ−

i
is the locus of deformations preserving the ith Weierstrass tail.

Since Z+
i (resp., Z−

i ) are smooth, G-invariant, formal closed subschemes of Spf Â, the conormal

space of Z+
i (resp., Z−

i ) is canonically identified with IZ+
i
/m

Â
IZ+

i
(resp., IZ−

i
/m

Â
IZ−

i
). Thus, in the

notation of Proposition 3.22, we have IZ+
i
/m

Â
IZ+

i
≃ T1(ÔEi,ξi)∨. Moreover, if ℓi = 1, we have

IZ−
i
/m

Â
IZ−

i
≃ Cr1(Ei)

∨ ⊕ T1(ÔEi,qi)∨

using Lemma 3.23 to identify Cr1(Ei)
∨ as the conormal space of the locus of deformations of Ei for

which the attaching point remains Weierstrass.

If ℓi > 1 (i.e., Ei is not a nodally-attached Weierstrass tail), we define

• Ti,j = Spf Â/ITi,j as the locus of deformations preserving the tacnode τi,j,2, for j = 1, . . . , ℓi−
2.

• Wi = Spf Â/IWi as the closure of the locus of deformations preserving the tacnode τi,ℓi−1,2

such that the tacnodally attached genus 2 curve is attached at a Weierstrass point.

• Ni,j = Spf Â/INi,j as the locus of deformations preserving the node qi,j , for j = 0, . . . , ℓi − 1.

We observe that for each i with ℓi > 1, Wi is a smooth, G-invariant formal subscheme, and there is

an identification

IWi/mÂ
IWi ≃ Cr1(Ei)

∨ ⊕ T1(ÔC,τi,ℓi−1,2
)∨.

If we choose coordinates ci ∈ Cr1(Ei)
∨ and si,0, si,1, si,2, si,3 ∈ T1(ÔC,τi,ℓi−1,2

)∨ cutting out Wi and

a coordinate ni,ℓi−1 cutting out Ni,ℓi−1, then it is easy to check that Z−
i is necessarily cut out by ci

and ni,ℓi−1.

Formally locally around (C, {pi}ni=1), Z+ and Z− decompose as

Z+ ×Mg,n(2/3)
Spf Â = Z+

1 ∪ · · · ∪ Z+
r ,

Z− ×Mg,n(2/3)
Spf Â =

r⋃

i=1

(
Z−
i ∪

ℓi−2⋃

j=0

(
Wi ∩

ℓi−2⋂

k=j+1

Ti,k ∩Ni,j

))

For each i = 1, . . . , r, we consider the cotangent space of Z+
i and either the cotangent space of Z−

i

if ℓi = 1 or the set of cotangents spaces of Ti,j ,Wi, Ni,j if ℓi > 1. Since this collection of subspaces

of T1(C, {pi}ni=1) as i ranges from 1 to r is linearly independent, we may apply Lemma 3.24 to this

collection of formal closed subschemes to obtain coordinates with the required properties. �

3.4. Local VGIT chambers for an αc-closed curve. In this section, we explicitly compute
the VGIT ideals I+, I− ⊆ C[T 1(C, {pi}ni=1)] (Definition 3.10) for any αc-closed curve. The main
result (Proposition 3.29) states that the VGIT ideals agree formally locally with the ideals IZ+ ,
IZ− . By Proposition 3.9, this suffices to establish Theorem 3.11. In order to carry out the com-
putation of I+ and I−, we must do two things: First, we must explicitly identify the character
χδ−ψ : Aut(C, {pi}ni=1) → Gm for any αc-closed curve. Second, we must compute the ideals of
positive and negative semi-invariants with respect to this character.
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Definition 3.26. Let E1, . . . , Er be the αc-atoms of (C, {pi}ni=1), and let ti ∈ Aut(Ei) be the

coordinate specified in Proposition 3.22. Let

χ⋆ : Aut(C, {pi}ni=1)
◦ → Gm = SpecC[t, t−1]

be the character defined by t 7→ t1t2 · · · tr. Note that χ⋆ is trivial on automorphisms fixing the

αc-atoms.

The following proposition shows that χδ−ψ is simply a positive multiple of χ⋆. Since it will be
important in Proposition 5.4, we also prove now that the character of KMg,n(αc)

+ αcδ + (1 − αc)ψ
is trivial for αc-closed curves.

Proposition 3.27. Let αc ∈ {9/11, 7/10, 2/3} be a critical value and let (C, {pi}ni=1) be an αc-closed

curve. Then there exists a positive integer N such that χδ−ψ|Aut(C,{pi}ni=1)
◦ = χN⋆ for every αc-closed

curve (C, {pi}ni=1). Specifically,

N =





11 if αc = 9/11

10 if αc = 7/10

39 if αc = 2/3

In particular, I±χδ−ψ = I±χ⋆ .

Proof. We prove the case when αc = 2/3 for an αc-closed curve (C, {pi}ni=1) of Type A. Let C =

K ′ ∪ L1 ∪ · · · ∪ Lr be the decomposition of C as in Definition 2.33, and suppose that the rank of

Aut(K ′) is k. Corollary 2.30 implies that there exist length three rosaries R′
1, . . . , R

′
k such that

Aut(K ′)◦ ≃∏k
i=1Aut(R

′
i). Thus, we have

Aut(C)◦ = Aut(K ′)◦ ×
r∏

i=1

Aut(Li)

=
k∏

i=1

Aut(R′
i)×

r∏

i=1



ℓi−1∏

j=1

Aut(Ri,j)×Aut(Ei)


 .

Let ρ′i : Gm → Aut(C) (resp. ρi,j , ϕi) be the one-parameter subgroup corresponding to Aut(R′
i) ⊂

Aut(C) (resp. Aut(R′
i,j),Aut(Ei) ⊂ Aut(C)). By [AFS14, Sections 3.1.2–3.1.3], we have

〈χδ−ψ, ρ′i〉 = 0, 〈χδ−ψ, ρi,j〉 = 0, 〈χδ−ψ, ϕi〉 = 39.

On the other hand, the definition of χ⋆ obviously implies

〈χ⋆, ρ′i〉 = 0, 〈χ⋆, ρi,j〉 = 0, 〈χ⋆, ϕi〉 = 1.

It follows that χδ−ψ = χ39
⋆ as desired. �

Proposition 3.28. For any αc-closed curve (C, {pi}ni=1), the action of Aut(C, {pi}ni=1)
◦ on the fiber

of KMg,n(αc)
+ αcδ + (1− αc)ψ is trivial.

Proof. We prove the case when αc = 2/3 for an αc-closed curve (C, {pi}ni=1) of Type A. Let ρ
′
i, ρi,j , ϕi

be the one-parameter subgroups of Aut(C, {pi}ni=1) as in the proof of Proposition 3.27. By [AFS14,

Sections 3.1.2–3.1.3], we have
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〈χλ, ρ′i〉 = 0 〈χλ, ρi,j〉 = 0 〈χλ, ϕi〉 = 4

〈χδ−ψ, ρ′i〉 = 0 〈χδ−ψ, ρi,j〉 = 0 〈χδ−ψ, ϕi〉 = 39.

Using the identity

(3.3) KMg,n(αc)
+ αcδ + (1− αc)ψ = 13λ+ (αc − 2)(δ − ψ)

one easily computes

〈χK
Mg,n(αc)

+αcδ+(1−αc)ψ, ρi〉 = 〈χKMg,n(αc)
+αcδ+(1−αc)ψ, ρi,j〉 = 〈χKMg,n(αc)

+αcδ+(1−αc)ψ, ϕi〉 = 0,

and the claim follows. �

Proposition 3.27 and Corollary 3.16 imply that we can compute the VGIT ideals I− and I+ as the
ideals of semi-invariants associated to χ⋆. In the following proposition, we compute these explicitly,
and show that they are identical to the ideals IZ+ and IZ− , as described in Proposition 3.25.

Proposition 3.29 (Description of VGIT ideals). Let (C, {pi}ni=1) be an αc-closed curve for a critical

value αc ∈ {2/3, 7/10, 9/11}. Then I+Â = IZ+ and I−Â = IZ− .

We establish the proposition first in the case of an αc-atom, then in the case of an αc-link, and
finally for each of the distinct combinatorial types of αc-closed curves.

3.4.1. The case of an αc-atom.

Lemma 3.30. Let E be an αc-atom. Using the notation of Lemma 3.20 for the action of Aut(E)

on T1(E), we have

•αc = 9/11: I+ = (s0, s1), I− = (0).

•αc = 7/10: I+ = (s0, s1, s2), I− = (0).

•αc = 2/3: I+ = (s0, s1, s2, s3), I− = (c).

Proof. This is a direct computation from the definitions. The I+ (resp., I−) ideal is generated by all

semi-invariants of negative (resp., positive) weight. �

3.4.2. The case of a 7
10
-link. We handle the special case when C has one nodally-attached 7

10
-link,

i.e., C is a 7
10
-closed curve of type A with r = 1 and s = 0. Using Proposition 3.22, we have

Aut(C)◦ = Aut(L1) T1(C) = T1(K)⊕ T1(L1)

with coordinates t1, . . . , tℓ on Aut(L1) and coordinates sj = (sj,0, sj,1, sj,2) (j = 1, . . . , ℓ), nj (j =
0, . . . , ℓ) on T1(L1) so that the action of Aut(C, {pi}ni=1)

◦ on T1(L1) is given by

sj,k 7→ tk−4
j sj,k, n0 7→ t1n0, nℓ 7→ tℓnℓ, nj 7→ tjtj+1nj for j 6= 0, ℓ .

Lemma 3.31. With the above notation, the vanishing loci of I+ and I− are

V (I+) =
ℓ⋃

j=1

V (sj) V (I−) =
⋃

µ≥1

ℓ−2µ+1⋃

ν=0

Vµ,ν

where Vµ,ν = V (nν , sν+2, . . . , sν+2µ−2, nν+2µ−1).

Remark. For instance, V1,ν = V (nν , nν+1) and V2,ν = V (nν , sν+2, nν+3).
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Proof. We will use the Hilbert-Mumford criterion of Proposition 3.13. For the V (I+) case, suppose

x ∈ V (sj) for some j. Set λ = (λi) : Gm → Gℓm ≃
∏ℓ
i=1Aut(Ei) where λi = 1 for i 6= j and λj = id.

Then 〈χ⋆, λ〉 = 1 and limt→0 λ(t) ·x exists so x ∈ V (I+). Conversely, let λ = (λi) be a one-parameter

subgroup with 〈χ⋆, λ〉 =
∑

i λi > 0 such that limt→0 λ(t) · x exists. Then for some j, we have λj > 0

which implies that sj(x) = 0.

For the V (I−) case, the inclusion ⊇ is easy: suppose that x ∈ Vµ,ν for µ ≥ 1 and ν = 0, . . . , ℓ −
2µ+ 1. Set

λ =
(
0, . . . , 0︸ ︷︷ ︸

ν

,−1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
2µ−1

, 0, . . . , 0︸ ︷︷ ︸
ℓ−2µ−ν+1

)

Then 〈χ⋆, λ〉 =
∑

i λi = −1 and limt→0 λ(t) · x exists so x ∈ V (I−). For the ⊆ inclusion, we

will use induction on ℓ. If ℓ = 1, then V (I−) = V (n0, n1). For ℓ > 1, suppose x ∈ V (I−) and

λ = (λi) : Gm → Gℓm is a one-parameter subgroup with
∑ℓ

i=1 λi < 0 such that limt→0 λ(t) · x
exists. If λℓ ≥ 0, then

∑ℓ−1
i=1 λℓ < 0 so by the induction hypothesis x ∈ Vµ,ν for some µ ≥ 1 and

ν = 0, . . . , ℓ − 2µ. If λℓ < 0, then we immediately conclude that nℓ(x) = 0. If λℓ−1 + λℓ < 0, then

nℓ−1(x) = 0 so x ∈ V1,ℓ−1. If λℓ−1+λℓ ≥ 0, then λℓ−1 ≥ 0 so sℓ−1(x) = 0. Furthermore,
∑ℓ−2

i=1 λi < 0

so by applying the induction hypothesis and restricting to the locus V (nℓ−2, sℓ−1, nℓ−1, sℓ, nℓ), we can

conclude either: (1) x ∈ Vµ,ν for µ ≥ 1 and ν = 0, . . . , ℓ−2µ−1, or (2) x ∈ V (nℓ−µ−4, sℓ−µ−2, . . . , sℓ−3)

for some µ ≥ 1. In case (2), since sℓ−1(x) = nℓ(x) = 0, we have x ∈ Vµ+1,ℓ−µ−4. �

Remark. The chamber V (I+) is the closed locus in the deformation space consisting of curves with

a tacnode while V (I−) consists of curves containing an elliptic chain.

3.4.3. The case of a 2
3
-link. We now handle the special case when C has one nodally-attached 2

3
-link

of length ℓ, i.e., C is a 2
3
-closed curve of combinatorial type A with r = 1. Using Proposition 3.22,

we have

Aut(C)◦ = Aut(K ′)×Aut(L1) T1(C) = T1(K ′)⊕ T1(L1)

with coordinates t1, . . . , tℓ on Aut(L1) and coordinates rj = (rj,0, rj,1, rj,2), r
′
j = (r′j,0, r

′
j,1, r

′
j,2), nj

(j = 0, . . . , ℓ − 1), s = (s0, s1, s2, s3), c on T1(L1), so that the action of Aut(L1) on T1(L1) is given
by

rj,k 7→ tk−4
j rj,k, r′j,k 7→ t4−kj r′j,k, sk 7→ t2k−10

ℓ sk
c 7→ tℓc n0 7→ t1n0, nj 7→ t−1

j tj+1nj (0 < j < ℓ).

The character χ⋆ is given by

Aut(C)◦ ≃ Gℓm → Gm, (t1, . . . , tℓ) 7→ tℓ

Lemma 3.32. With the above notation, the vanishing loci of I+ and I− are

V (I+) = V (s) V (I−) =

ℓ−1⋃

j=0

V (nj , r
′
j+1, r

′
j+2, . . . , r

′
ℓ−1, c)

Remark. For instance, if ℓ = 2, V (I−) = V (n1, c) ∪ V (n0, r
′
1, c).
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Proof. The first equality is obvious. We use the Hilbert-Mumford criterion to verify the second.

Suppose x ∈ V (nj , r
′
j+1, . . . , r

′
ℓ−1, c) for some j = 0, . . . , ℓ− 1. If we set

λ =
(
0, . . . , 0︸ ︷︷ ︸

j

,−1,−1, . . . ,−1︸ ︷︷ ︸
ℓ−j

)

then 〈χ⋆, λ〉 = −1 < 0 and limt→0 λ(t) · x exists. Therefore, x ∈ V (I−). Conversely, suppose

x ∈ V (I−) and λ = (λi) : Gm → Gℓm is a one-parameter subgroup with 〈χ⋆, λ〉 = λℓ < 0 such that

limt→0 λ(t) · x exists. Clearly, we may assume that λℓ = −1. First, it is clear that c(x) = 0. If

nℓ−1(x) = 0, then x ∈ V (nℓ−1, c). Otherwise, as the limit exists, λℓ−1 ≤ −1 so that r′ℓ−1(x) = 0. If

nℓ−2(x) = 0, then x ∈ V (nℓ−2, r
′
ℓ−1, c). Continuing by induction, we see that there must be some

j = 0, . . . , ℓ− 1 with x ∈ V (nj , r
′
j+1, r

′
j+2, . . . , r

′
ℓ−1, c) which establishes the lemma. �

3.4.4. The general case. We are now ready thanks to Lemmas 3.31 and 3.32 as well as Corollaries
3.14 and 3.15 to establish Proposition 3.29 in full generality.

Proof of Proposition 3.29. Let (C, {pi}ni=1) be an αc-closed curve and consider the action of Aut(C, {pi}ni=1)
on T1(C, {pi}ni=1) described in Proposition 3.22. We split the proof into the types of αc-closed curves
according to Definition 2.33.

•αc = 9/11 of Type A. By using Corollary 3.14, one may assume that r = 1 in which case the
statement is clear.

•αc = 9/11 of Type B. A simple application of Proposition 3.13 shows that V (I+) = (s1, s2), and
V (I−) = (n).

•αc = 9/11 of Type C. This is Lemma 3.30.

•αc = 7/10 of Type A. By Corollary 3.14, it is enough to consider the case when either r = 1, s = 0
or r = 0, s = 1. The case of r = 1 and s = 0 is the example worked out in Lemma 3.31. If
r = 1, s = 0, the action of Aut(C, {pi}ni=1)

◦ on Def(C, {pi}ni=1) is same as the action given in Lemma
3.31 restricted to the closed subscheme V (nℓ) = 0. This case therefore follows from Corollary 3.15
and Lemma 3.31.

•αc = 7/10 of Type B. The action of Aut(C, {pi}ni=1)
◦ on T1(C, {pi}ni=1) is the same action as in

Lemma 3.31 restricted to the closed subscheme V (n0, nr+1) = 0 so this case follows from Corollary
3.15 and Lemma 3.31.

•αc = 7/10 of Type C. This follows from an argument similar to the proof of Lemma 3.31.

•αc = 2/3 of Type A. By Corollary 3.14, it is enough to consider the case when r = 1 which is the
example worked out in Lemma 3.32.

•αc = 2/3 of Type B. The action here is the same action as in Lemma 3.32 restricted to the closed
subscheme V (n0) so this case follows from Corollary 3.15 and Lemma 3.32.

•αc = 2/3 of Type C. This case can be handled by an argument similar to the proof of Lemma 3.32.

�

Proof of Theorem 3.11. Proposition 3.29 implies that IZ+ = I+Â and IZ− = I−Â so we may apply

Proposition 3.9 to conclude the statement of the theorem. �
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4. Existence of good moduli spaces

In this section, we prove that the algebraic stacksMg,n(α) possess good moduli spaces (Theorem
4.25). In Section 4.1, we prove three general existence results for good moduli spaces. The first
of these, Theorem 4.1, gives conditions under which one may use a local quotient presentation to
construct a good moduli space. As we explain below, this may be considered as an analog of the
Keel-Mori theorem [KM97] for algebraic stacks, but in practice the hypotheses of the theorem are
much harder to verify than those of the Keel-Mori theorem. Our second existence result, Theorem
4.2, gives one situation in which the hypotheses of Theorem 4.1 are satisfied. It says that if X is
an algebraic stack and X+ →֒ X ←֓ X− is a pair of open immersions locally cut out by VGIT,
then X admits a good moduli space if X+, X r X+, and X r X− do. The third existence result,
Proposition 4.3, proves that one can check existence of a good moduli space after passing to a finite
cover. These results pave the way for the argument in Section 4.2 which proves the existence of good
moduli spaces forMg,n(α) inductively.

4.1. General existence results. In this section, we prove the following three results. Recall the
definition of a local quotient presentation from Definition 3.1. Note that if an algebraic stack X
of finite type over SpecC admits local quotient presentations around every closed point, then X
necessarily has affine diagonal.

Theorem 4.1. Let X be an algebraic stack of finite type over SpecC. Suppose that:

(1) For every closed point x ∈ X , there exists a local quotient presentation f : W → X around x

such that:

(a) f is stabilizer preserving at closed points of W.

(b) f sends closed points to closed points.

(2) For any C-point x ∈ X , the closed substack {x} admits a good moduli space.

Then X admits a good moduli space.

Theorem 4.2. Let X be an algebraic stack of finite type over SpecC, and let L be a line bundle on

X . Let X+,X− ⊂ X be open substacks, and let Z+ = X r X+ and Z− = X r X− be their reduced

complements. Suppose that

(1) X+, Z+, Z− admit good moduli spaces.

(2) For all closed points x ∈ Z+ ∩Z−, there exists a local quotient presentation W → X around

x and a Cartesian diagram

W+
L

��

� � // W

��

W−
L

? _oo

��
X+ � � // X X−? _oo

(4.1)

where W+
L ,W−

L are the VGIT chambers of W with respect to L.
Then there exist good moduli spaces X → X and X− → X− such that X+ → X and X− → X are

proper and surjective. In particular, if X+ is proper over SpecC, then X and X− are also proper

over SpecC.
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Recall that an algebraic stack X is called a global quotient stack if X ≃ [Y/GLn], where Y is an
algebraic space with an action of GLn.

Proposition 4.3. Let f : X → Y be a morphism of algebraic stacks of finite type over C. Suppose

that:

(1) f : X → Y is finite and surjective.

(2) There exists a good moduli space X → X with X separated.

(3) Y is a global quotient stack and admits local quotient presentations.

Then there exists a good moduli space Y → Y with Y separated. Moreover, if X is proper, so is Y .

Both Theorem 4.2 and Proposition 4.3 are proved using Theorem 4.1. In order to motivate the
statement of Theorem 4.1, let us give an informal sketch of the proof. If X admits local quotient
presentations, then every closed point x ∈ X admits an étale neighborhood of the form

[SpecAx/Gx]→ X ,
where Ax is a finite-type C-algebra and Gx is the stabilizer of x. The union

∐
x∈X [SpecAx/Gx]

defines an étale cover of X ; reducing to a finite subcover, we obtain an atlas f : W → X with the
following properties:

(1) f is affine and étale.
(2) W admits a good moduli space W .

Indeed, (2) follows simply by taking invariants [SpecAx/Gx] → SpecAGxx and since f is affine, the
fiber product R := W ×X W admits a good moduli space R. We may thus consider the following
diagram:

R
p1 //
p2

//

ϕ

��

W f //

φ
��

// X

R
q1 //
q2

// W

(4.2)

The crucial question is: can we choose f : W → X to guarantee that the projections q1, q2 : R⇒W
define an étale equivalence relation. If so, then the algebraic space quotient X =W/R gives a good
moduli space for X .

If X is separated, we can always do this. Indeed, if X is separated, the atlas f may be chosen to
be stabilizer preserving.2 Thus, we may take the projections R⇒W to be stabilizer preserving and
étale, and this implies that the projections R ⇒ W are étale.3 This leads to a direct proof of the
Keel-Mori theorem for separated Deligne-Mumford stacks of finite type over SpecC (one can show
directly that such stacks always admit local quotient presentations). In general, of course, algebraic

2The set of points ω ∈ W where f is not stabilizer preserving is simply the image of the complement of the open

substack IW ⊂ IX ×X W in W and therefore is closed since IX → X is proper. By removing this locus from W,

f : W → X may be chosen to be stabilizer preserving.
3To see this, note that if r ∈ R is any closed point and ρ ∈ R is its preimage, then ÔR,r ≃ D

Gρ
ρ , where Dρ denotes

the miniversal formal deformation space of ρ and Gρ is the stabilizer of ρ; similarly ÔW,qi(r) ≃ D
Gpi(ρ)

pi(ρ)
. Now pi étale

implies Dρ ≃ Dpi(ρ) and pi stabilizer preserving implies Gρ ≃ Gpi(ρ), so ÔR,r ≃ ÔW,qi(r), i.e. qi is étale.
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stacks need not be separated so we must find weaker conditions which ensure that the projections
q1, q2 are étale. In particular, we must identify a set of sufficient conditions which can be directly
verified for geometrically-defined stacks such asMg,n(α).

Our result gives at least one plausible answer to this problem. To begin, note that if ω ∈ W is a

closed C-point with image w ∈ W , then the formal neighborhood ÔW,w can be identified with the

Gω-invariants D
Gω
ω of the miniversal deformation space Dω of ω. Thus, we may ensure that qi is

étale at a C-point r ∈ R, or equivalently that the induced map ÔW,qi(r) → ÔR,r is an isomorphism,
by manually imposing the following conditions: pi(ρ) should be a closed point, where ρ ∈ R is the
unique closed point in the preimage of r ∈ R, and pi should induce an isomorphism of stabilizer

groups Gρ ≃ Gpi(ρ). Indeed, we then have ÔW,qi(r) = D
Gpi(ρ)
pi(ρ)

≃ D
Gρ
ρ = ÔR,r, where the middle

isomorphism follows from the hypothesis that pi is étale and stabilizer preserving. In sum, we have
identified two key conditions that will imply that R⇒W is an étale equivalence relation:

(⋆) The morphism f : W → X is stabilizer preserving at closed points.
(⋆⋆) The projections p1, p2 : W ×X W ⇒W send closed points to closed points.

Condition (⋆) is precisely hypothesis (1a) of Theorem 4.1. In practice, it is difficult to directly
verify condition (⋆⋆), but it turns out that it is implied by conditions (1b) and (2), which are often
easier to verify.

Section 4.1.2 is devoted to making the above argument precise. Then in Sections 4.1.3 and 4.1.4,
we prove Theorem 4.2 and Proposition 4.3 by showing that after suitable reductions, their hypotheses
imply that conditions (1a), (1b) and (2) of Theorem 4.1 are satisfied.

4.1.1. Definitions and preparatory material.

Definition 4.4. Let f : X → Y be a morphism of algebraic stacks of finite type over SpecC. We

say that

• f sends closed points to closed points if for every closed point x ∈ X , f(x) ∈ Y is closed.

• f is stabilizer preserving at x ∈ X (C) if AutX (C)(x)→ AutY(C)(f(x)) is an isomorphism.

• For a closed point x ∈ X , f is strongly étale at x if f is étale at x, f is stabilizer preserving

at x and f(x) ∈ Y is closed.

• f is strongly étale if f is strongly étale at all closed points of X .

Definition 4.5. Let φ : X → X be a good moduli space. We say that an open substack U ⊂ X is

saturated if φ−1(φ(U)) = U .

The following proposition is simply a stack-theoretic formulation of Luna’s well-known results in
invariant theory [Lun73, Chapitre II] often referred to as Luna’s fundamental lemma. It justifies
the terminology strongly étale by showing that strongly étale morphisms induce étale morphisms of
good moduli spaces. It is also shows that for a morphism of algebraic stacks admitting good moduli
spaces, strongly étale is an open condition.
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Proposition 4.6. Consider a commutative diagram

W f //

ϕ

��

X
φ
��

W
g // X

(4.3)

where f is a representable, separated morphism between algebraic stacks of finite type over SpecC.

Suppose ϕ : W →W and φ : X → X are good moduli spaces. Then

(1) If f is strongly étale at w ∈ W, then g is étale at ϕ(w).

(2) If f is strongly étale, then g is étale and Diagram (4.3) is Cartesian.

(3) There exists a saturated open substack U ⊂ W such that:

(a) f |U : U → X is strongly étale and f(U) ⊂ X is saturated.

(b) If w ∈ W is a closed point such that f is strongly étale at w, then w ∈ U .

Proof. [Alp13, Theorem 5.1] gives part (1) and that g is étale in (2). The hypotheses in (2) imply

that the induced morphism Ψ: W → W ×X X is representable, separated, quasi-finite and sends

closed points to closed points. [Alp13, Proposition 6.4] implies that Ψ is finite. Moreover, since f

and g are étale, so is Ψ. But since W and W ×X X both have W as a good moduli space, it follows

that a closed point in W ×X X has a unique preimage under Ψ. Therefore, Ψ is an isomorphism and

the diagram is Cartesian. Statement (3) follows from [Alp10, Theorem 6.10]. �

Lemma 4.7. Let X be an algebraic stack of finite type over SpecC and φ : X → X be a good moduli

space. Let x ∈ X be a closed point and U ⊂ X be an open substack containing x. Then there exists a

saturated open substack U1 ⊂ U containing x. Moreover, if X ≃ [SpecA/G] with G reductive, then U1
can be chosen to be of the form [SpecB/G] for a G-invariant open affine subscheme SpecB ⊂ SpecA.

Proof. The substacks {x} and X r U are closed and disjoint. By [Alp13, Theorem 4.16], φ({x})
and Z := φ(X r U) are closed and disjoint. Therefore, we take U1 = φ−1(X r Z). For the second

statement, take U1 = φ−1(U1) for an affine open subscheme U1 ⊂ X r Z. �

Lemma 4.8. Let f : X → Y be a strongly étale morphism of algebraic stacks of finite type over

SpecC. Suppose that X admits a good moduli space and for any point y ∈ Y(C), {y} admits a good

moduli space. Then for any finite type morphism g : Y ′ → Y, the base change f ′ : X ×Y Y ′ → Y ′ is

strongly étale.

Proof. Clearly, f ′ is étale. Let x′ ∈ X ×Y Y ′ be a closed point. To check that f ′ is stabilizer

preserving at x′ and f ′(x′) ∈ Y ′ is closed, we may replace Y with {g(f ′(x′))} and X with {g′(x′)}
where g′ : X ×Y Y ′ → X . Since f is strongly étale, Proposition 4.6(2) implies that f is in fact an

isomorphism in which case the desired statements regarding f ′ are clear. �

4.1.2. Existence via local quotient presentations. In this section, we prove Theorem 4.1.

Proposition 4.9. Let X be an algebraic stack of finite type over SpecC. Suppose that:

(1) There exists an affine, strongly étale, surjective morphism f : X1 → X from an algebraic

stack X1 admitting a good moduli space φ1 : X1 → X1.
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(2) For any C-point x ∈ X , the closed substack {x} admits a good moduli space.

Then X admits a good moduli space φ : X → X.

Proof. Set X2 = X1 ×X X1. By Lemma 4.8, the projections p1, p2 : X2 → X1 are strongly étale.

As f is affine, there exists a good moduli space φ2 : X2 → X2 with projections q1, q2 : X2 → X1.

Similarly, X3 := X1 ×X X1 ×X X1 admits a good moduli space φ3 : X3 → X3. By Proposition 4.6(2),

the induced diagram

X3
//
////

φ3
��

X2
// //

φ2
��

X1
f //

φ1
��

X

X3
//
//// X2

//// X1

is Cartesian. Moreover, by the universality of good moduli spaces, there is an induced identity map

X1 → X2, an inverse X2 → X2 and a composition X2 ×q1,X1,q2 X2 → X2 giving X2 ⇒ X1 an étale

groupoid structure.

To check that ∆: X2 → X1 ×X1 is a monomorphism, it suffices to check that there is a unique

pre-image of (x1, x1) ∈ X1×X1 where x1 ∈ X1(C). Let ξ1 ∈ X1 be the unique closed point in φ−1
1 (x1).

Since X1 → X is stabilizer preserving at ξ1, we can set G := AutX1(C)(ξ1) ≃ AutX (C)(f(ξ1)). There

are diagrams

BG //

��

BG×BG

��
X2

//

��

X1 ×X1

��
X // X × X

X2
(p1,p2)//

φ2
��

X1 ×X1

φ1×φ1
��

X2
∆ // X1 ×X1

where the squares in the left diagram are Cartesian. Suppose x2 ∈ X2(C) is a preimage of (x1, x1)

under ∆: X2 → X1×X1. Let ξ2 ∈ X2 be the unique closed point in φ−1
2 (x2). Then (p1(ξ2), p2(ξ2)) ∈

X1 × X1 is closed and is therefore the unique closed point (ξ1, ξ1) in the (φ1 × φ1)−1(x1, x1). But

by Cartesianness of the left diagram, ξ2 is the unique point in X2 which maps to (ξ1, ξ1) under

X2 → X1 ×X1. Therefore, x2 is the unique preimage of (x1, x1).

Since X2×q1,X1,q2X2 → X2 is an étale equivalence relation, there exists an algebraic space quotient

X and induced maps φ : X → X and X1 → X. Consider

X2
//

��

X1
//

��

X1

��
X1

// X // X

Since X2 ≃ X1 ×X1 X2 and X2 ≃ X1 ×X X1, the left and outer squares above are Cartesian. Since

X1 → X is étale and surjective, it follows that the right square is Cartesian. By descent ([Alp13,

Prop. 4.7]), φ : X → X is a good moduli space. �
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Proof of Theorem 4.1. After taking a disjoint union of finitely many local quotient presentations,
there exists a strongly étale, affine and surjective morphism f : W → X where W admits a good
moduli space. The theorem now follows from Proposition 4.9. �

4.1.3. Existence via local VGIT. In this section, we prove Theorem 4.2. We will need the following
lemma on isotrivial specializations.

Lemma 4.10. Let X be an algebraic stack of finite type over SpecC, and let L be a line bundle on

X . Let X+,X− ⊂ X be open substacks, and let Z+ = X r X+, Z− = X r X− be their reduced

complements. Suppose that for all closed points x ∈ X , there exists a local quotient presentation

f : W → X around x and a Cartesian diagram

W+

��

� � // W
f
��

W−? _oo

��
X+ � � // X X−? _oo

(4.4)

where W+ =W+
L and W− =W−

L are the VGIT chambers of W with respect to L. Then

(1) If z ∈ X+(C) ∩ X−(C), then the closure of z in X is contained in X+ ∩ X−.

(2) If z ∈ X (C) is a closed point, then either z ∈ X+ ∩ X− or z ∈ Z+ ∩ Z−.

Proof. For (1), if the closure of z in X is not contained in X+ ∩ X−, there exists an isotrivial

specialization z  x to a closed point in X r (X+ ∩ X−). Choose a local quotient presentation

f : W = [W/Gx] → X around x such that (4.4) is Cartesian. Since f−1(x) 6⊂ W+ ∩ W−, the

character χ = L|BGx is non-trivial. By the Hilbert-Mumford criterion ([Mum65, Theorem 2.1]),

there exists a one-parameter subgroup λ : Gm → Gx such that limt→0 λ(t) · w = w0 where w ∈ W
and w0 ∈WGx are points over z and x, respectively. As w ∈W+

χ ∩W−
χ and w0 ∈WGx , by applying

Proposition 3.17 twice with the characters χ and χ−1, we see that both 〈χ, λ〉 < 0 and 〈χ, λ〉 > 0, a

contradiction.

For (2), choose a local quotient presentation f : (W, w) → X around z with W = [W/Gx]. Let

χ = L|BGx be the character of L. Since w ∈WGx , w can be semistable with respect to χ if and only

if χ is trivial. It follows that either w ∈ W+ ∩W− in the case χ is trivial, or w /∈ W+ ∪W− in the

case χ is non-trivial. �

Proof of Theorem 4.2. We show that X has a good moduli space by verifying the hypotheses of
Theorem 4.1. Let x0 ∈ X be a closed point. By Lemma 4.10(2), we have either x0 ∈ X+ ∩ X− or
x0 ∈ Z+∩Z−. Suppose first that x0 ∈ X+∩X−. Since X+ admits a good moduli space, Proposition
4.6(3) implies we may choose a local quotient presentation f : W → X+ which is strongly étale. By
applying Lemma 4.7, we may shrink further to assume that f(W) ⊂ X+∩X−. Then Lemma 4.10(1)
implies that the composition f : W → X+ →֒ X is also strongly étale.
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On the other hand, suppose x0 ∈ Z+∩Z−. Choose a local quotient presentation f : (W, w0)→ X
around x0 inducing a Cartesian diagram

W+

��

� � // W
f
��

W−? _oo

��
X+ � � // X X−? _oo

(4.5)

with W+ = W+
L and W− = W−

L . We claim that, after shrinking suitably, we may assume that f is
strongly étale. In proving this claim, we make implicit repeated use of Lemma 4.7 in conjunction
with Lemma 3.18 to argue that if W ′ ⊂ W is an open substack containing w0, there exists open
substack W ′′ ⊂ W ′ containing w0 such that W ′′ → X is a local quotient presentation inducing a
Cartesian diagram as in (4.5).

Using the hypothesis that Z+,Z−, and X+ admit good moduli spaces, we will first show that f
may be chosen to satisfy:

(A) f |f−1(Z+), f |f−1(Z−) is strongly étale
(B) f |W+ is strongly étale.

If f satisfies (A) and (B), then f is also strongly étale. Indeed, if w ∈ W is a closed point, then
either w ∈ f−1(Z+) ∪ f−1(Z−) or w ∈ f−1(X+) ∩ f−1(X−). In the former case, (A) immediately
implies that f is stabilizer preserving at w and f(w) is closed in X . In the latter case, (B) implies
that f is stabilizer preserving at w and that f(w) is closed in X+. Since f(w) ∈ X+ ∩ X− however,
Lemma 4.10(1) implies that f(w) remains closed in X .

It remains to show that f can be chosen to satisfy (A) and (B). For (A), Proposition 4.6(3) implies
the existence of an open substack Q ⊂ f−1(Z+) containing w0 such that f |Q is strongly étale. After
shrinking W suitably, we may assume W ∩ f−1(Z+) ⊂ Q. One argues similarly for f |f−1(Z−).

For (B), Proposition 4.6(3) implies there exists an open substack U ⊂ W+ such that f |U : U → X+

is strongly étale; moreover, U contains all closed points w ∈ W+ such that f |W+ : W+ → X+ is
strongly étale at w. Let V = W+

r U and let V be the closure of V in W. We claim that w0 /∈ V.
Once this is established, we may replace W by an appropriate open substack of W r V to obtain
a local quotient presentation satisfying (B). Suppose, by way of contradiction, that w0 ∈ V. Then
there exists a specialization diagram

SpecK = ∆∗ //

��

V

��
SpecR = ∆

h // W

such that h(0) = w0. By Proposition 3.6, there exist good moduli spaces W → W and W+ → W+,
and the induced morphism W+ → W is proper. Since the composition W+ → W+ → W is
universally closed, there exists, after an extension of the fraction field K, a diagram

∆∗ //

��

W+
� _

��

// W+

��
∆

h //

h̃

<<

W // W
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and a lift h̃ : ∆ → W+ that extends ∆∗ → W+ with w̃ = h̃(0) ∈ W+ closed. There is an isotrivial
specialization w̃  w0. It follows from Lemma 4.10(1) that w̃ ∈ f−1(Z−). By assumption (A),
f |U : U → X+ is strongly étale at w̃ so that w̃ ∈ U . On the other hand, the generic point of the

specialization h̃ : ∆→W+ lands in V so that w̃ ∈ V, a contradiction. Thus, w0 /∈ V as desired.

We have now shown that X satisfies condition (1) in Theorem 4.1, and it remains to verify condition

(2). Let x ∈ X (C). If x ∈ Z+ (resp., x ∈ Z−), then {x} ⊂ Z+ (resp., {x} ⊂ Z−). Therefore, since

Z+ (resp., Z−) admits a good moduli space, so does {x}. On the other hand, if x ∈ X− ∩X+, then
Lemma 4.10(1) implies the closure of x in X is contained in X+. Since X+ admits a good moduli

space, so does {x}. Now Theorem 4.1 implies that X admits a good moduli space φ : X → X.

Next, we use Theorem 4.1 to show that X− admits a good moduli space. Let x ∈ X− be a closed
point and x  x0 be the isotrivial specialization to the unique closed point x0 ∈ X in its closure.
By Proposition 4.6, there exists a strongly étale local quotient presentation f : W → X inducing a
Cartesian diagram as in (4.1). By Lemma 4.8, the base change f− : W− → X− is strongly étale. As
W− admits a good moduli space, we may shrink W− further so that f− : W− → X− is a strongly
étale local quotient presentation about x.

It remains to check that if x ∈ X−(C) is any point, then its closure {x} in X− admits a good
moduli space. Let x  x0 be the isotrivial specialization to the unique closed point x0 ∈ X in the
closure of x. We claim in fact that φ−1(φ(x0))∩X− admits a good moduli space. Clearly this claim

implies that {x} ⊂ X− does as well. We can choose a local quotient presentation f : (W, w0) → X
about x0 inducing a Cartesian diagram as in (4.1). After shrinking, we may assume by Proposition
4.6(3) that f is strongly étale and we may also assume that w0 is the unique preimage of x0. If we set
Z = φ−1(φ(x0)), then f |f−1(Z) : f

−1(Z)→ Z is in fact an isomorphism as both f−1(Z) and Z have

Spec (C) as a good moduli space. AsW−
L admits a good moduli space, so doesW−

L ∩f−1(Z) = X−∩Z.
This establishes that X− admits a good moduli space.

Finally, we argue that X+ → X and X− → X are proper and surjective. By taking a disjoint
union of local quotient presentations and applying Proposition 4.6(3), there exists a strongly étale,
affine, stabilizer preserving and surjective morphism f : W → X from an algebraic stack admitting
a good moduli space W → W such that W = X ×X W . Moreover, if we set W+ := f−1(X+) and
W− := f−1(X−), then (see Proposition 3.6) W+ and W− admit good moduli spaces W+ and W−

such that W− →W and W+ →W are proper and surjective. This gives commutative cubes

W+ �
� //

��

}}

W

��

~~

W−? _oo

��

||
X+ �

� //

��

X

��

X−

��

? _oo

W+ //

}}

W

~~

W−oo

||
X+ // X X−oo

(4.6)

The same argument as in the proof that X− admits a good moduli space shows that f |W+ : W+ →
X+ and f |W− : W− → X− send closed points to closed points. By Proposition 4.6(2), the left and
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right faces are Cartesian squares. Since the top faces are also Cartesian, we have W+ = X+ ×X W
and W− = X− ×X W . In particular, W+ → X+ ×X W and W− → X− ×X W are good moduli
spaces. By uniqueness of good moduli spaces, we have X+ ×X W = W+ and X− ×X W = W−.
Since W+ → W and W− → W are proper and surjective, X+ → X and X− → X are proper and
surjective by étale descent. �

4.1.4. Existence via finite covers. In proving Proposition 4.3, we will appeal to following lemma:

Lemma 4.11. Consider a commutative diagram

X // 77Y // X

of algebraic stacks of finite type over SpecC where X is an algebraic space. Suppose that:

(1) X → Y is finite and surjective.

(2) X → X is cohomologically affine.

(3) Y is a global quotient stack.

Then Y → X is cohomologically affine.

Proof. We may write Y = [V/GLn], where V is an algebraic space with an action of GLn. Since

X → Y is affine, X is the quotient stack X = [U/G] where U = X ×Y V . Since U → X is affine

and X → X is cohomologically affine, U → X is affine by Serre’s criterion. The morphism U → V

is finite and surjective so by Chevalley’s theorem, we can conclude that V → X is affine. Therefore

Y → X is cohomologically affine. �

Proof of Proposition 4.3. Let Z be the scheme-theoretic image of X → X × Y. Since X → Y is
finite and X is separated, X → Z is finite. As Z is a global quotient stack since Y is, we may apply
Lemma 4.11 to conclude that the projection Z → X is cohomologically affine which implies that Z
admits a separated good moduli space. The composition Z →֒ X × Y → Y is finite, surjective and
stabilizer preserving at closed points. Therefore, by replacing X with Z, to prove the proposition,
we may assume that f : X → Y is stabilizer preserving at closed points.

We will now show that the hypotheses of Theorem 4.1 are satisfied. Let y0 ∈ Y be a closed point
and g : (Y ′, y′0)→ Y be a local quotient presentation about y0. Consider the Cartesian diagram

X ′ f ′ //

g′

��

Y ′

g

��
X f // Y

We claim that g′ is strongly étale at each point x′ ∈ f ′−1(y′0). Indeed, g′ is stabilizer preserving at
x′ by hypothesis (1) together with the fact that g is stabilizer preserving at y′0, and g

′(x′) is a closed
point of X because f(g′(x′)) is closed. By Proposition 4.6, there exists an open substack U ′ ⊂ X ′

containing the fiber of y′0 such that g′|U ′ is strongly étale. Therefore, y′0 /∈ Z = Y ′
r f ′(X ′

r U ′)
and g|Y ′rZ is strongly étale. By shrinking further using Lemma 4.7, we obtain a local quotient
presentation g : Y ′ → Y about y0 which is strongly étale.

Finally, let y ∈ Y(C) and x ∈ X (C) be any preimage. Set X0 = {x} ⊂ X and Y0 = {y} ⊂ Y. As
X0 → Y0 is finite and surjective, X0 → Spec (C) is a good moduli space and Y0 is a global quotient
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stack, we may conclude using Lemma 4.11 that Y0 admits a good moduli space. Therefore, we may
apply Theorem 4.1 to establish the proposition. �

Remark. The hypothesis that X is separated in Proposition 4.3 is necessary. For example, let X be

the affine line with 0 doubled and let Z2 act on X by swapping the points at 0 and fixing all other

points. Then X → [X/Z2] satisfies the hypotheses but [X/Z2] does not admit a good moduli space.

4.2. Application to Mg,n(α). In this section, we apply Theorem 4.2 to prove that the algebraic

stacksMg,n(α) admit good moduli spaces (Theorem 4.25). We have already proved that the inclu-

sionsMg,n(α+ǫ) →֒ Mg,n(α) ←֓ Mg,n(α−ǫ) arise from local VGIT with respect to δ−ψ (Theorem
3.11). Thus, it only remains to show that for each critical value αc ∈ {9/11, 7/10, 2/3}, the closed
substacks

Sg,n(αc) :=Mg,n(αc)rMg,n(αc+ǫ)

Hg,n(αc) :=Mg,n(αc)rMg,n(αc−ǫ)
admit good moduli spaces. We will prove this statement by induction on g. Like the boundary strata
ofMg,n, Hg,n(αc) can be described (up to a finite cover) as a product of moduli spaces of αc-stable

curves of lower genus. Likewise, Sg,n(αc) can be described (up to a finite cover) as stacky projective
bundles over moduli spaces of αc-stable curves of lower genus. We use induction to deduce that
these products and projective bundles admit good moduli spaces, and then apply Proposition 4.3 to
conclude that Sg,n(αc) and Hg,n(αc) admit good moduli spaces.

4.2.1. Existence for Sg,n(αc).

Lemma 4.12. We have:

S1,1(9/11) ≃ BGm

S1,2(7/10) ≃ BGm

S2,1(2/3) ≃ [A1/Gm], where Gm acts with weight 1.

In particular, the algebraic stacks S1,1(9/11), S1,2(7/10), S2,1(2/3) admit good moduli spaces.

Proof. The algebraic stacks S1,1(9/11) and S1,2(7/10) each contain a unique C-point, namely the
9
11
-atom and the 7

10
-atom, and each of these curves have a Gm-automorphism group. The stack

S2,1(2/3) contains two isomorphism classes of curves, namely the 2
3
-atom, and the rational ramphoid

cuspidal curve with non-trivial crimping. We construct this stack explicitly as follows: start with

the constant family (P1 × A1,∞× A1), let c be a coordinate on A1, and t a coordinate on P1 −∞.

Now let P1 × A1 → C be the map defined by the inclusion of algebras C[t2 + ct3, t5] ⊂ C[c, t] on the

complement of the infinity section, and defined as an isomorphism on the complement of the zero

section. Then (C → A1,∞×A1) is a family of rational ramphoid cuspidal curves whose fiber over zero

is a 2
3
-atom. Furthermore, Gm acts on the base and total space of this family by t → λ−1t, c → λc,

since the subalgebra C[t2+ct3, t5] ⊂ C[c, t] is invariant under this action. Thus, the family descends to

[A1/Gm] and there is an induced map [A1/Gm]→M2,1(2/3). This map is a locally closed immersion

by [vdW10, Theorem 1.109], and the image is precisely S2,1(2/3). Thus, S2,1(2/3) ≃ [A1/Gm] as

desired. �
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For higher values of (g, n), the key observation is that every curve in Sg,n(αc) can be obtained from
an αc-stable curve by ‘sprouting’ an appropriate singularity. We make this precise in the following
definition.

Definition 4.13. If (C, p1) is a 1-pointed curve, we say that C ′ is a (ramphoid) cuspidal sprouting

of (C, p1) if C ′ contains a (ramphoid) cusp q ∈ C ′, and the pointed normalization of C ′ at q is

isomorphic to one of:

(a) (C, p1).

(b) (C ∪ P1,∞) where C and P1 are glued nodally by identifying p1 ∼ 0.

If (C, p1, p2) is a 2-pointed curve, we say that C ′ is a tacnodal sprouting of (C, p1, p2) if C
′ contains

a tacnode q ∈ C ′, and the pointed normalization of C ′ at q is isomorphic to one of:

(a) (C, p1, p2).

(b) (C ∪ P1, p1,∞) where C and P1 are glued nodally by identifying p2 ∼ 0.

(c) (C ∪ P1, p2,∞) where C and P1 are glued nodally by identifying p1 ∼ 0.

(d) (C ∪ P1 ∪ P1,∞1,∞2) where C is glued nodally to two copies of P1 along p1 ∼ 0, p2 ∼ 0.

In this definition, we allow the possibility that (C, p1, p2) = (C1, p1)
∐
(C2, p2) is disconnected, with

one marked point on each connected component.

If (C, p1) is a 1-pointed curve, we say that C ′ is a one-sided tacnodal sprouting of (C, p1) if C
′ contains

a tacnode q ∈ C ′, and the pointed normalization of C ′ at q is isomorphic to one of:

(a) (C, p1)
∐
(P1, 0).

(b) (C ∪ P1,∞)
∐
(P1, 0) where C and P1 are glued nodally by identifying p1 ∼ 0.

Remark. Suppose C ′ is a cuspidal sprouting, one-sided tacnodal sprouting or ramphoid cuspidal

sprouting of (C, p1) (resp., tacnodal sprouting of (C, p1, p2)) with αc-critical singularity q ∈ C ′.

Then (C, p1) (resp., (C, p1, p2)) is the stable pointed normalization of C ′ along q. By Lemma 2.20,

C ′ is αc-stable if and only if (C, p1) (resp., (C, p1, p2)) is αc-stable.

Lemma 4.14. Fix αc ∈ {9/11, 7/10, 2/3}, and suppose (C, {pi}ni=1) ∈ Sg,n(αc).
(1) If (g, n) 6= (1, 1), then (C, {pi}ni=1) is a cuspidal sprouting of a 9/11-stable curve inMg−1,n+1(9/11).

(2) If (g, n) 6= (1, 2), then one of the following holds:

(a) (C, {pi}ni=1) is a tacnodal sprouting of a 7/10-stable curve inMg−2,n+2(7/10).

(b) (C, {pi}ni=1) is a tacnodal sprouting of a 7/10-stable curve in Mg−i−1,n−m+1(7/10) ×
Mi,m+1(7/10).

(c) (C, {pi}ni=1) is a one-sided tacnodal sprouting of a 7/10-stable curve inMg−1,n(7/10).

(3) If (g, n) 6= (2, 1), then (C, {pi}ni=1) is a ramphoid cuspidal sprouting of a 2/3-stable curve in

Mg−2,n+2(2/3).

Proof. If (C, {pi}ni=1) ∈ Sg,n(αc), then (C, {pi}ni=1) contains an αc-critical singularity q ∈ C. The

stable pointed normalization of (C, {pi}ni=1) along q is well-defined by our hypothesis on (g, n), and

is αc-stable by Lemma 2.20. �
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Lemma 4.14 gives a set-theoretic description of Sg,n(αc), and we must now augment this to a stack-
theoretic description. This means constructing universal families of cuspidal, tacnodal, and ramphoid
cuspidal sproutings. A nearly identical construction was carried out in [Smy11b] for elliptic m-fold
points (in particular, cusps and tacnodes), and for all curve singularities in [vdW10]. The only key
difference is that here we allow all branches to sprout P1’s rather than a restricted subset. Therefore,
we obtain non-separated, stacky compactifications (rather than Deligne-Mumford compactifications)
of the associated crimping stack of the singularity. In what follows, if C → T is any family of curves
with a section τ , we say that C has an Ak-singularity along τ if, étale locally on the base, the
Henselization of C along τ is isomorphic to the Henselization of T × C[x, y]/(y2 − xk+1) along the
zero section (cf. [vdW10, Definition 1.64]).

Definition 4.15. Let Sproutg,n(Ak) denote the stack of flat families of curves (C → T, {σi}n+1
i=1 )

satisfying

(1) (C → T, {σi}ni=1) is a T -point of Ug,n(Ak).
(2) C has an Ak-singularity along σn+1.

The fact that Sproutg,n(Ak) is an algebraic stack over (Schemes/C) is verified in [vdW10]. There
are obvious forgetful functors

Fk : Sproutg,n(Ak)→ Ug,n(Ak),
given by forgetting the section σn+1.

Proposition 4.16. Fk is representable and finite.

Proof. It is clear that Fk is representable. The fact that F2 is quasi-finite follows from the observations

that a curve (C, {pi}ni=1) in Ug,n(Ak) has only a finite number of Ak-singularities and that for a C-point

x ∈ Sproutg,n(Ak), the induced map AutSproutg,n(Ak)(x) → AutUg,n(Ak)(Fk(x)) on automorphism

groups has finite cokernel. To show that F2 is finite, it now suffices to verify the valuative criterion

for properness: let ∆ be the spectrum of a discrete valuation ring, let ∆∗ denote the spectrum of its

fraction field, and suppose we are given a diagram

∆∗ //

��

Sproutg,n(Ak)

Fk
��

∆ // Ug,n(Ak)

This corresponds to a diagram of families,

C∆∗

π∆∗

��

// C
π
��

∆∗ //

σn+1

CC

∆

such that C∆∗ has Ak-singularity along σn+1. Since C → ∆ is proper, σn+1 extends uniquely to a

section of π, and since the limit of an Ak-singularity in Ug,n(Ak) is necessarily an Ak-singularity,

C has an Ak-singularity along σn+1. This induces a unique lift ∆ → Sproutg,n(Ak), cf. [vdW10,

Theorem 1.109]. �
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The algebraic stacks Sproutg,n(Ak) also admit stable pointed normalization functors, given by

forgetting the crimping data of the singularity along σn+1. To be precise, if (C → T, {σ}n+1
i=1 ) is a

T -point of Sproutg,n(Ak), there exists a commutative diagram

C̃
φ

xx

��

ψ

��
Cs

&&

C

��
T

{σ̃i}
n+k
i=1

GG

{σsi }
n+k
i=1

ZZ

{σi}
n+k
i=1

MM

satisfying:

(1) (C̃ → T, {σ̃i}n+ki=1 ) is a family of (n+ k)-pointed curves, where k ∈ {1, 2}.
(2) ψ is the pointed normalization of C along σn+1, i.e. ψ is finite and restricts to an isomorphism

on the open set C̃ − ∪ki=1σ̃n+i.

(3) φ is the stabilization of (C̃, {σ̃i}n+ki=1 ), i.e. φ is the morphism associated to a high multiple of

the line bundle ω
C̃/T

(Σn+ki=1 σ̃i).

Remark 4.17. Issues arise when defining the stable pointed normalization for (g, n) small relative

to k. From now on, we assume k ∈ {2, 3, 4}, and that (g, n) 6= (1, 1), (1, 2), (2, 1) when k = 2, 3, 4,

respectively. This ensures that the stabilization morphism φ is well-defined. Indeed, under these

hypotheses, ω
C̃
(Σiσ̃i) will be relatively big and nef, and the only components of fibers of (C̃, {σ̃i}n+ki=1 )

on which ω
C̃
(Σiσ̃i) has degree zero will be P1’s which meet the rest of the curve in a single node and

are marked by one of the sections σ̃n+i. The effect of φ is simply to blow-down these P1’s.

Since normalization and stabilization are canonically defined, the association

(C → T, {σi}ni=1) 7→ (Cs → T, {σsi }n+ki=1 )

is functorial, and we obtain normalization functors:

N2 : Sproutg,n(A2)→ Ug−1,n+1(A2)

N3 : Sproutg,n(A3)→
∐

g1+g2=g
n1+n2=n

(
Ug1,n1+1(A3)× Ug2,n2+1(A3)

) ∐
Ug−2,n+2(A3)

∐
Ug−1,n+1(A3)

N4 : Sproutg,n(A4)→ Ug−2,n+1(A4)

The connected components of the range of N3 correspond to the different possibilities for the stable
pointed normalization of C along σn+1. Note that the last case Ug−1,n+1(A3) corresponds to a one-
sided tacnodal sprouting, i.e. one connected component of the pointed normalization of C along σn+1

is a family of 2-pointed P1’s. It is convenient to distinguish these possibilities by defining:

Sproutnsg,n(A3) = N−1
3 (Ug−2,n+2(A3))

Sproutg1,n1
g,n (A3) = N−1

3 (Ug1,n1+1(A3)× Ug2,n2+1(A3))

Sprout0,2g,n(A3) = N−1
3 (Ug−1,n+1(A3))
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The following key proposition shows that Nk makes Sproutg,n(Ak) a stacky projective bundle over
the moduli stack of pointed normalizations.

We will use the following notation: if E is a locally free sheaf on an algebraic stack X , we let V (E)
denote the total space of the associated vector bundle, [V (E)/Gm] the quotient stack for the natural
action of Gm on the fibers of V (E), and p : [V (E)/Gm]→ T the natural projection.

Proposition 4.18. In the following statements, we let (π : C → Ug,n(Ak), {σi}ni=1) denote the uni-

versal family over Ug,n(Ak), and (π : C → Ug1,n1(Ak) × Ug2,n2(Ak), {σi}n1
i=1, {τi}n2

i=1) the universal

family over Ug1,n1(Ak)× Ug2,n2(Ak).

(1) Let E be the invertible sheaf on Ug−1,n+1(A2) defined by

E := π∗ (OC(−2σn+1)/OC(−3σn+1))

Then there exists an isomorphism

γ : [V (E)/Gm] ≃ Sproutg,n(A2)

such that N2 ◦ γ = p.

(2) Let E be the locally free sheaf on Ug−2,n+2(A3) defined by

E := π∗ (OC(−σn+1)/OC(−2σn+1)⊕ OC(−σn+2)/OC(−2σn+2))

Then there exists an isomorphism

γ : [V (E)/Gm] ≃ Sproutnsg,n(A3)

such that N3 ◦ γ = p.

(3) Let E be the locally free sheaf on Ug1,n1+1(A3)× Ug2,n1+1(A3) defined by

E := π∗ (OC(−σn1+1)/OC(−2σn1+1)⊕ OC(−τn2+1)/OC(−2τn2+1))

Then there exists an isomorphism

γ : [V (E)/Gm] ≃ Sproutg1,n1
g,n (A3)

such that N3 ◦ γ = p.

(4) Let E be the locally free sheaf on Ug−1,n+1(A3) defined by

E := π∗ (OC(−σn+1)/OC(−2σn+1))

Then there exists an isomorphism

γ : [V (E)/Gm] ≃ Sprout0,2g,n(A3)

such that N3 ◦ γ = p.
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(5) Let E be the locally free sheaf on Ug−2,n+1(A4) defined by

E := π∗ (OC(−2σn+1)/OC(−4σn+1))

Then there exists an isomorphism

γ : [V (E)/Gm] ≃ Sproutg,n(A4)

such that N4 ◦ γ = p.

Proof. We prove the hardest case (5), and leave the others as an exercise to the reader. To construct

a map γ : [V (E)/Gm]→ Sproutg,n(A4), we start with a family (π : C → X, {σi}n+1
i=1 ) in Ug−2,n+1(A4),

and construct a family of ramphoid cuspidal sproutings over [V (EX)/Gm], where
EX := π∗ (OC(−2σn+1)/OC(−4σn+1)) .

Let V := V (EX), p : V → X the natural projection, and (CV → V, σV ) the family obtained from

(C → X,σn+1) by base change along p. As the construction is local around σn+1, we will not keep

track of {σi}ni=1 for the remainder of the argument. If we set EV = p∗EX , there exists a tautological

section e : OV → EV . Let Z ⊂ V denote the divisor along which the composition

OV → EV → (πV )∗ (OCV (−2σV )/OCV (−3σV ))

vanishes, and let φ : C̃ → CV be the blow-up of CV along σV (Z). Since σV (Z) ⊂ CV is a regular

subscheme of codimension 2, the exceptional divisor E of the blow-up is a P1-bundle over σV (Z). In

other words, for all z ∈ Z, we have

C̃z = Cz ∪ Ez = Cz ∪ P1.

Let σ̃ be the strict transform of σV on C̃, and observe that σ̃ passes through a smooth point of the

P1 component in every fiber over Z. We will construct a map C̃ → C′ which crimps σ̃ to a ramphoid

cusp, and C′ → X will be the desired family of ramphoid cuspidal sproutings.

Setting π̃ : C̃ → CV → V and

Ẽ = (π̃)∗
(
O

C̃
(−2σ̃)/O

C̃
(−4σ̃)

)

we claim that e induces a section ẽ : OV → Ẽ with the property that the composition

OV → Ẽ → π̃∗
(
O

C̃
(−2σ̃)/O

C̃
(−3σ̃)

)

is never zero. To see this, let U = SpecR ⊂ X be an open affine along which E is trivial, and choose

local coordinates on a, b on p−1(U) = SpecR[a, b] such that the tautological section e is given by

at2 + bt3, where t is a local equation for σV on CV . In these coordinates, φ is the blow-up along

a = t = 0. Let ã, t̃ be homogeneous coordinates for the blow-up and note that on the chart ã 6= 0,

t′ := t̃/ã gives a local equation for σ̃V . In these coordinates, φ is given by

(a, b, t′)→ (a, b, at′)

The section at2 + bt3 pulls back to a3(t′2 + bt′3), and t′2 + bt′3 is a section of Ẽ over p−1(U) with the

stated property.
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We will use ẽ to construct a map ψ : C̃ → C′ such that C′ has a ramphoid cusp along ψ ◦ σ̃. It

is sufficient to define ψ locally around σ̃, so we may assume π̃ is affine, i.e. C̃ := Spec V π̃∗OC̃
. We

specify a sheaf of OV -subalgebras of π̃∗OC̃
as follows: Consider the exact sequence

0→ π̃∗OC̃V
(−4σ̃)→ π̃∗OC̃V

(−2σ̃)→ Ẽ → 0

and let F ⊂ π̃∗OC̃
be the sheaf of OV -subalgebras generated by any inverse image of ẽ and all

functions in π̃∗OC̃
(−4σ̃). We let ψ : Spec V π̃∗OC̃

→ C′ := Spec V F be the map corresponding to the

inclusion F ⊂ π̃∗OC̃
. By construction, the complete local ring ÔC′

v ,(ψ◦σ̃)(v)
⊂ Ô

C̃v ,σ̃(v)
≃ C[[t]] is of

the form C[[t2 + bt3, t5]] ⊂ C[[t]], and this subalgebra is isomorphic to C[[x, y]]/(y2 − x5).
Finally, we claim that C′ → V descends to a family of ramphoid cuspidal sproutings over the

quotient stack [V/Gm]. It suffices to show that the subsheaf F ⊂ π̃∗OC̃
is invariant under the natural

action of Gm on V . Using the same local coordinates introduced above, the sheaf F is given over the

open set SpecR[a, b] by the R[a, b]-algebra generated by t′2+ bt′3 and t′5, where t′ is a local equation

for σ̃ on C̃. To see that this algebra is Gm-invariant, note that the Gm-action on V = SpecR[a, b]

(acting with weight 1 on a and b) extends canonically to a Gm-action on the blow-up, where Gm acts

on ã, t̃ with weight 1 and 0, respectively. Thus, Gm acts on t′ = t̃/ũ with weight −1, so the section

t′2+ bt′3 is a semi-invariant. It follows that the algebra generated by t′2+ bt′3 and t′5 is Gm-invariant

as desired. Thus, we obtain a family (C′ → [V/Gm], ψ ◦ σ̃) in Sproutg,n(A4) as desired.

To define an inverse map i−1 : Sproutg,n(A4) → [V/Gm], we start with a family (C → X,σ) in

Ug,n(A4) such that C has an A4-singularity along σ. We must construct a map X → [V (E)/Gm]. By
taking the stable pointed normalization of C along σ, we obtain a diagram

C̃
φ

xx

��

ψ

��
Cs

&&

C

��
X

σ̃

GG

σs

ZZ

σ

LL

satisfying

(1) (C̃ → X, σ̃) is a family of (n+ 1)-pointed curves.

(2) ψ is the pointed normalization of C along σ, i.e. ψ is finite and restricts to an isomorphism

on the open set C̃ − σ̃.
(3) φ is the stabilization of (C̃, σ̃), i.e. φ is the morphism associated to a high multiple of the

relatively nef line bundle ω
C̃/X

(σ̃).

By Lemma 2.20, (Cs → X,σsi ) induces a map X → Ug−2,n+1(A4), and we must show that this lifts

to define a map X → [V (E)/Gm]. To see this, let F be the coherent sheaf defined by the following

exact sequence

0→ π∗OC ∩ π̃∗OC̃
(−4σ̃) ⊂ π∗OC ∩ π̃∗OC̃

(−2σ̃)→ F → 0.

The condition that C has a ramphoid cusp along ψ ◦ σ̃ implies that F ⊂ π̃∗OC̃
(−2σ)/O

C̃
(−4σ) is a

rank one subbundle. In particular, F induces a subbundle of πs∗OCs(−2σs)/OCs(−4σs) over the locus
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of fibers on which φ is an isomorphism. A local computation, similar to the one performed in the

definition of γ, shows that F extends to a subsheaf of πs∗OCs(−2σs)/OCs(−4σs) over all of X (though

not a subbundle; the morphism on fibers is zero precisely where φ fails to be an isomorphism). The

subsheaf F ⊂ E induces the desired morphism X → [V/Gm]. �

Proposition 4.19. Let αc ∈ {9/11, 7/10, 2/3} and suppose that Mg′,n′(αc) admits a proper good

moduli space for all (g′, n′) with g′ < g. Then Sg,n(αc) admits a proper good moduli space.

Proof. Let αc = 9/11. By Lemma 4.12, we may assume (g, n) 6= (1, 1). By Proposition 4.18(1), there

is a locally free sheaf E onMg−1,n+1(9/11) such that [V (E)/Gm] is the base of the universal family

of cuspidal sproutings of curves in Mg−1,n+1(9/11). By Lemma 2.20, the fibers of this family are

9/11-stable so there is an induced map

Ψ: [V (E)/Gm]→Mg,n(9/11).

By Lemma 4.14, Ψ maps surjectively onto Sg,n(9/11). Furthermore, Ψ is finite by Proposition 4.16.

By hypothesis,Mg−1,n+1(9/11) and therefore [V (E)/Gm] admits a proper good moduli space. Thus,

Sg,n(9/11) admits a proper good moduli space by Proposition 4.3.

Let αc = 7/10. By Lemma 4.12, we may assume (g, n) 6= (1, 2). If g > 2, Proposition 4.18(2)

provides a locally free sheaf E on Mg−2,n+2(7/10) such that [V (E)/Gm] is the base of the universal

family of tacnodal sproutings of curves inMg−2,n+2(7/10), and there is an induced map [V (E)/Gm]→
Mg,n(7/10). Similarly, for every pair of integers (i,m) such thatMg−i−1,n−m+1(7/10)×Mi,m+1(7/10)

is defined, by Proposition 4.18(3), there is a locally free sheaf E onMg−i−1,n−m+1(7/10)×Mi,m+1(7/10)

such that [V (E)/Gm] is the universal family of tacnodal sproutings. By Lemma 2.20, there are in-

duced maps [V (E)/Gm] → Mg,n(7/10). Finally, Proposition 4.18(4) provides a locally free sheaf on

Mg−1,n(7/10) such that [V (E)/Gm] is the base of the universal family of one-sided tacnodal sproutings

of curves inMg−1,n(7/10). By Lemma 2.20, there is an induced map [V (E)/Gm]→Mg,n(7/10). The

union of the maps [V (E)/Gm] → Mg,n(7/10) cover Sg,n(7/10) by Lemma 4.14. Furthermore, each

map is finite by Proposition 4.16. By hypothesis, each of the stacky projective bundles [V (E)/Gm]
admits a proper good moduli space, and therefore so does Sg,n(7/10) by Proposition 4.3.

Let αc = 2/3. By Lemma 4.12, we may assume (g, n) 6= (2, 1). By Proposition 4.18(5), there is

a locally free sheaf E on Mg−2,n+1(2/3) such that [V (E)/Gm] is the base of the universal family of

ramphoid cuspidal sproutings of curves inMg−2,n+1(2/3). By Lemma 2.20, there is an induced map

Ψ: [V (E)/Gm] →Mg,n(2/3) which maps surjectively onto Sg,n(2/3) by Lemma 4.14. Furthermore,

Ψ is finite by Proposition 4.16. Thus, Sg,n(2/3) admits a proper good moduli space by Proposition

4.3. �

4.2.2. Existence for Hg,n(αc). In this section, we use induction on g to prove that Hg,n(αc) admits
a good moduli space. The base case is handled by the following easy lemma.

Lemma 4.20. We have:

H1,1(9/11) = [A2/Gm], with weights 4, 6.

H1,2(7/10) = [A3/Gm], with weights 2, 3, 4.

H2,1(2/3) = [A4/Gm], with weights 4, 6, 8, 10.
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In particular, H1,1(9/11), H1,2(7/10), H2,1(2/3) each admit a good moduli space.

Proof. We describe the case of H2,1(2/3), as the other two are essentially identical. Consider the

family of Weierstrass tails over A4 given by:

y2 = x5z + a3x
3z3 + a2x

2z4 + a1xz
5 + a0z

6,

where the Weierstrass section is given by [1, 0, 0]. Since Gm acts on the base and total space of this

family by

x→ λ2x, y → λ5y, ai → λ10−2iai,

the family descends to [A4/Gm]. One checks that the induced map [A4/Gm] → H2,1(2/3) is an

isomorphism. �

Lemma 4.20 gives an explicit description of the stack of elliptic tails, elliptic bridges, and Weier-
strass tails. In the case αc = 7/10 (resp., αc = 2/3), we will also need an explicit description of the
stack of elliptic chains (resp., Weierstrass chains) of length r.

Lemma 4.21. Let r > 1 be an integer, and let

ECr ⊂M2r−1,2(7/10) (resp., WCr ⊂M2r,1(2/3) )

denote the closure of the locally closed substack of elliptic chains (resp., Weierstrass chains) of length

r. Then ECr (resp., WCr) admits a good moduli space.

Proof. For elliptic chains, Lemma 4.20 handles the case r = 1 as EC1 = H1,2(7/10). By induction

on r, we may assume that ECr−1 admits a good moduli space. By Proposition 4.18(3), there is a

locally free sheaf E on ECr−1 × H1,2(7/10) such that [V (E)/Gm] is the base of the universal family

of tacnodal sproutings over ECr−1 × H1,2(7/10). By Lemma 2.20, there is an induced morphism

Ψ: [V(E)/Gm] →M2r−1,2(7/10). The image of Ψ is ECr, and Ψ is finite by Proposition 4.16. Since

ECr−1 × H1,2(7/10) admits a good moduli space, Proposition 4.3 implies that ECr admits a good

moduli space.

For Weierstrass chains, Lemma 4.20 again handles the case r = 1 as WC1 = H2,1(2/3). By

induction, we may assume thatWCr−1 admits a good moduli space. By Proposition 4.18(3), there is

a locally free sheaf E on H1,2(7/10)×WCr−1 such that [V (E)/Gm] is the base of the universal family

of tacnodal sproutings over H1,2(7/10)×WCr−1. Indeed, we may take E to be

π∗ (OC(−σ)/OC(−2σ)⊕ OC(−τ)/OC(−2τ)) ,
where π : C → H1,2(7/10) × WCr−1 is the universal family, σ corresponds to one of the universal

sections over H1,2(7/10), and τ corresponds to the universal section over WCr−1. If V ⊂ [V (E)/Gm]
is the open locus parameterizing sproutings which do not introduce an elliptic bridge, then V is the

complement of the subbundle [V (π∗OC(−τ))/Gm] ⊂ [V (E)/Gm]. Since H1,2(7/10) ×WCr−1 admits

a good moduli space, and V (E)\V (π∗OC(−τ)) is affine over H1,2(7/10) ×WCr−1, V admits a good

moduli space. By Lemma 2.20, there is an induced morphism Ψ: V → M2r,1(2/3). The image of

Ψ is WCr and Ψ is finite by Proposition 4.16 so Proposition 4.3 implies that WCr admits a good

moduli space. �
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For higher (g, n), we can use gluing maps to decomposeHg,n(αc) into products of lower-dimensional
moduli spaces.

Lemma 4.22. Let αc ∈ {9/11, 7/10, 2/3}. There exist finite gluing morphisms

Ψ: Mg1,n1+1(αc)×Mg2,n2+1(αc)→Mg1+g2,n1+n2(αc)

obtained by identifying (C, {pi}n1+1
i=1 ) and (C ′, {p′i}n2+1

i=1 ) nodally at pn1+1 ∼ p′n2+1

Proof. Ψ is well-defined by Lemma 2.18. To see that Ψ is finite, first observe that Ψ is clearly

representable and quasi-finite. Furthermore, since the limit of a disconnecting node is a disconnecting

node inMg,n(αc) (Corollary 2.11), Ψ satisfies the valuative criterion for properness. �

In the case αc = 7/10, we will need two additional gluing morphisms.

Lemma 4.23. There exist finite gluing morphisms

Mg,n+2(7/10)× ECr →Mg+2r,n(7/10) , ECr →M2r(7/10),

where the first map is obtained by nodally gluing (C, {pi}n+2
i=1 ) and an elliptic chain (Z, q1, q2) at

pn+1 ∼ q1 and pn+2 ∼ q2, and the second map is obtained by nodally self-gluing an elliptic chain

(Z, q1, q2) at q1 ∼ q2.

Proof. These gluing maps are well-defined by Lemma 2.18, and finiteness follows as in Lemma 4.22.

�

Proposition 4.24. Let αc ∈ {9/11, 7/10, 2/3} and suppose that Mg′,n′(αc) admits a proper good

moduli space for all (g′, n′) satisfying g′ < g. Then Hg,n(αc) admits a proper good moduli space.

Proof. Let αc = 9/11. By Lemma 4.20, we may assume (g, n) 6= (1, 1). By Lemma 4.22, there exists

a finite gluing morphism

Ψ: Mg−1,n+1(9/11)×H1,1(9/11)→Mg,n(9/11),

whose image is precisely Hg,n(9/11). Now Hg,n(9/11) admits a proper good moduli space by Propo-

sition 4.3.

Let αc = 7/10. For every r such that Mg−2r,n+2(7/10) (resp., Mg−2r−1,n(7/10)) exists, Lemma

4.23 (resp., Lemma 4.22) gives a finite gluing morphism

Mg−2r,n+2(7/10)× ECr → Hg,n(7/10)(
resp., Mg−2r−1,n(7/10)× ECr → Hg,n(7/10)

)
,

that identifies (C, {pi}n+2
i=1 ) (resp., (C, {pi}ni=1)) to (Z, q1, q2) at pn+1 ∼ q1, pn+2 ∼ q2 (resp., pn ∼ q1).

In addition, for every triple of integers (i,m, r) such that Mi,m+1(7/10) ×Mg−i−2r+1,n−m+1(7/10)

exists, Lemma 4.22 gives a finite gluing morphism

Mi,m+1(7/10)×Mg−i−2r+1,n−m+1(7/10)× ECr → Hg,n(7/10),
which identifies (C, {pi}m+1

i=1 ), (C ′, {p′i}n−m+1
i=1 ), (Z, q1, q2) nodally at pm+1 ∼ q1, p

′
n−m+1 ∼ q2. Fi-

nally, if (g, n) = (2r, 0), Lemma 4.23 gives a finite gluing morphism

ECr → H2r(7/10),
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which nodally self-glues (Z, q1, q2) at q1 ∼ q2. The union of these gluing morphisms coversHg,n(7/10).
Thus, Hg,n(7/10) admits a proper good moduli space by Proposition 4.3 and Lemma 4.21.

Let αc = 2/3. By Lemma 4.20, we may assume (g, n) 6= (2, 1). For each r = 1, . . . , ⌊g2⌋, Lemma

4.22 provides a finite gluing morphism

Mg−2r,n+1(2/3)×WCr(2/3)→Mg,n(2/3)

(if r = g/2 and n = 1, we consider Mg−2r,n+1(2/3) as the emptyset). The union of these gluing

morphisms cover Hg,n(2/3). Now Hg,n(2/3) admits a proper good moduli space by Proposition 4.3

and Lemma 4.21. �

4.2.3. Existence forMg,n(α).

Theorem 4.25. For every α ∈ (2/3−ǫ, 1], Mg,n(α) admits a good moduli space Mg,n(α) which is

a proper algebraic space. Furthermore, for each critical value αc ∈ {2/3, 7/10, 9/11}, there exists a

diagram

Mg,n(αc+ǫ)

��

� � //Mg,n(αc)

��

Mg,n(αc−ǫ)? _oo

��
Mg,n(αc+ǫ) // Mg,n(αc) Mg,n(αc−ǫ)oo

where Mg,n(αc) → Mg,n(αc), Mg,n(αc+ǫ) → Mg,n(αc+ǫ) and Mg,n(αc−ǫ) → Mg,n(αc−ǫ) are good

moduli spaces, and where Mg,n(αc+ǫ)→ Mg,n(αc) and Mg,n(αc−ǫ)→ Mg,n(αc) are proper morphisms

of algebraic spaces.

Remark. The reader should not confuse Mg,n(α) with the projective variety Mg,n(α) defined in (1.2).

The goal of Section 5 is to establish the isomorphism Mg,n(α) ≃Mg,n(α).

Proof. Fix αc ∈ {9/11, 7/10, 2/3}. Note that M0,n(αc) =M0,n, so M0,n(αc) admits a proper good

moduli space for all n. By induction on g, we may assume that Mg′,n′(αc) admits a proper good

moduli space for all (g′, n′) with g′ < g. Note that Mg,n(α) =Mg,n for α > 9/11. By descending

induction on α, we may now assume that Mg,n(α) admits a good moduli space for all α > αc+ǫ.

By Theorem 3.11, the inclusionsMg,n(α+ǫ) →֒ Mg,n(α) ←֓ Mg,n(α−ǫ) arise from local VGIT with

respect to δ−ψ, and Propositions 4.24 and 4.19 imply that Hg,n(αc) =Mg,n(αc)rMg,n(αc−ǫ) and
Sg,n(αc) = Mg,n(αc) rMg,n(αc+ǫ) admit proper good moduli spaces. Now Theorem 4.2 implies

thatMg,n(αc) andMg,n(αc−ǫ) admit proper good moduli spaces fitting into the stated diagram. �

5. Projectivity of the good moduli spaces

Theorem 4.25 establishes the existence of the good moduli space φα : Mg,n(α) → Mg,n(α) for

α > 2/3−ǫ. SinceMg,n(α) parameterizes unobstructed curves, it is a smooth algebraic stack and so

has a canonical divisor KMg,n(α)
. Because non-nodal curves in Mg,n(α) form a closed substack of

codimension 2, the standard formula gives KMg,n(α)
= 13λ− 2δ + ψ, cf. [Log03, Theorem 2.6]. The

main result of this section says that Mg,n(α) is projective and isomorphic to the log canonical model

Mg,n(α) defined by (1.2):
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Theorem 5.1. For α > 2/3−ǫ, the following statements hold:

(1) The line bundle KMg,n(α)
+ αδ + (1− α)ψ descends to an ample line bundle on Mg,n(α).

(2) Mg,n(α) ≃Mg,n(α).

We proceed to prove this result assuming Propositions 5.2, 5.3, 5.4 and Theorem 5.5, which will
be proved subsequently. Of these, Theorem 5.5 is the most involved and its proof will occupy §§5.4–
5.5. Note that throughout this section, we make use of the following standard abuse of notation:
Whenever L is a line bundle onMg,n(α) that descends to the good moduli space, we denote the corre-

sponding line bundle on Mg,n(α) also by L. In this situation, pullback defines a natural isomorphism

H0
(
Mg,n(α),L

)
≃ H0

(
Mg,n(α),L

)
.

Proof of Theorem 5.1. First, we show that Part (2) follows from Part (1). Indeed, supposeKMg,n(α)
+

αδ + (1− α)ψ descends to an ample line bundle on Mg,n(α). Then

Mg,n(α) ≃ ProjR
(
Mg,n(α),KMg,n(α)

+ αδ + (1− α)ψ
)
≃Mg,n(α),

where the second isomorphism is given by Proposition 5.2.

The proof of Part (1) proceeds by descending induction on α beginning with the known case

α > 9/11, when Mg,n(α) = Mg,n. Let αc ∈ {α1 = 9/11, α2 = 7/10, α3 = 2/3} and take α0 = 1.

Suppose we know Part (1) for all α > αc−1 − ǫ. By Theorem 5.5, the line bundle KMg,n(αc−1−ǫ)
+

αcδ + (1− αc)ψ is nef onMg,n(αc−1 − ǫ) and all curves on which it has degree 0 are contracted by

Mg,n(αc−1 − ǫ)→ Mg,n(αc). It follows by Proposition 5.3 that the statement of Part (1) holds for all

α > αc. Finally, Proposition 5.4 gives the statement of Part (1) for α > αc − ǫ. �

Proposition 5.2. Let α > 2/3− ǫ. Suppose that KMg,n(α)
+ βδ + (1− β)ψ descends to Mg,n(α) for

some β 6 α. Then we have

ProjR
(
Mg,n(α),KMg,n(α)

+ βδ + (1− β)ψ
)
≃Mg,n(β).

Proof. Consider the rational map fα : Mg,n 99K Mg,n(α). If α > 9/11, then fα is an isomorphism.

If 7/10 < α 6 9/11, then fα|Mg,nrδ1,0
is an isomorphism onto the complement of the codimension 2

locus of cuspidal curves in Mg,n(α). If α 6 7/10, then fα|Mg,nr(δ1,0 ∪ δ1,1)
is an isomorphism onto the

complement of the codimension 2 locus of cuspidal and tacnodal curves in Mg,n(α). (If n = 0, then

δ1,1 = ∅). It follows that we have a discrepancy equation

(5.1) f∗α
(
KMg,n(α)

+ βδ + (1− β)ψ
)
≃ KMg,n

+ βδ + (1− β)ψ + c0δ1,0 + c1δ1,1,

where c0 = 0 if α > 9/11 and c1 = 0 if α > 7/10.

Let T1 ⊂Mg,n be a non-trivial family of elliptic tails and T2 ⊂Mg,nr δ1,0 be a non-trivial family

of 1-pointed elliptic tails. Then fα is regular along T1, and for α 6 9/11 contracts T1 to a point.

Similarly, fα is regular along T2, and for α 6 7/10 contracts T2 to a point. By intersecting both sides

of (5.1) with T1 and T2, we obtain c0 = 11β − 9 6 0 if α 6 9/11, and c1 = 10β − 7 6 0 if α 6 7/10.

It follows that

ProjR
(
Mg,n(α),KMg,n(α)

+ βδ + (1− β)ψ
)
≃ ProjR

(
Mg,n,KMg,n

+ βδ + (1− β)ψ
)
=Mg,n(β).

�
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Proposition 5.3. Fix αc ∈ {α1 = 9/11, α2 = 7/10, α3 = 2/3} and take α0 = 1. Suppose that for all

0 < ǫ≪ 1,

KMg,n(αc−1−ǫ)
+ (αc−1 − ǫ)δ + (1− αc−1 + ǫ)ψ

descends to an ample line bundle on Mg,n(αc−1 − ǫ). In addition, suppose that

KMg,n(αc−1−ǫ)
+ αcδ + (1− αc)ψ

is nef onMg,n(αc−1 − ǫ) and all curves on which it has degree 0 are contracted by Mg,n(αc−1 − ǫ)→
Mg,n(αc). Then KMg,n(α)

+ αδ + (1 − α)ψ descends to an ample line bundle on Mg,n(α) for all

α ∈ [αc, αc−1).

Proof. By Proposition 3.28, for any αc-closed curve (C, {pi}ni=1), the action of Aut(C, {pi}ni=1)
◦ on

the fiber of KMg,n(αc)
+αcδ+(1−αc)ψ is trivial. It follows that KMg,n(αc)

+αcδ+(1−αc)ψ descends

to Mg,n(αc). Consider the open immersion of stacks Mg,n(αc−1 − ǫ) → Mg,n(αc) and the induced

map on the good moduli spaces j : Mg,n(αc−1 − ǫ)→ Mg,n(αc). We have that

j∗
(
KMg,n(αc)

+ αcδ + (1− αc)ψ
)
= KMg,n(αc−1−ǫ)

+ αcδ + (1− αc)ψ.

It follows by assumption that KMg,n(αc−1−ǫ)
+αcδ+(1−αc)ψ descends to a nef line bundle on the

projective variety Mg,n(αc−1 − ǫ). First, we show that KMg,n(αc−1−ǫ)
+ αcδ+ (1− αc)ψ is semiample

on Mg,n(αc−1 − ǫ). To bootstrap from nefness to semiampleness, we first consider the case n = 0

and g > 3. By Proposition 5.2, the section ring of KMg(αc−1−ǫ)
+ αcδ on Mg(αc−1 − ǫ) is identified

with the section ring of KMg
+ αcδ on Mg. The latter line bundle is big, by standard bounds on

the effective cone of Mg, and finitely generated by [BCHM10, Corollary 1.2.1]. We conclude that

KMg(αc−1−ǫ)
+αcδ is big, nef, and finitely generated, and so is semiample by [Laz04, Theorem 2.3.15].

When n > 1, simply note that KMg+hn(αc−1−ǫ)
+ αcδ pulls back to KMg,n(αc−1−ǫ)

+ αcδ + (1− αc)ψ
under the morphismMg,n(αc−1 − ǫ)→Mg+nh(αc−1 − ǫ) defined by attaching a fixed general curve

of genus h > 3 to every marked point.

We have established that

j∗
(
KMg,n(αc)

+ αcδ + (1− αc)ψ
)
= KMg,n(αc−1−ǫ)

+ αcδ + (1− αc)ψ

is semiample on Mg,n(αc−1 − ǫ). By assumption, it has degree 0 only on curves contracted by

Mg,n(αc−1 − ǫ) → Mg,n(αc). We conclude that KMg,n(αc)
+ αcδ + (1 − αc)ψ is semiample and is

positive on all curves in Mg,n(αc). Therefore, KMg,n(αc)
+ αcδ + (1− αc)ψ is ample on Mg,n(αc).

The statement for α ∈ (αc, αc−1) follows by interpolation. �

Proposition 5.4. Fix αc ∈ {9/11, 7/10, 2/3}. Suppose that KMg,n(αc)
+ αcδ + (1− αc)ψ descends to

an ample line bundle on Mg,n(αc). Then for all 0 < ǫ≪ 1,

KMg,n(αc−ǫ)
+ (αc − ǫ)δc + (1− αc + ǫ)ψ

descends to an ample line bundle on Mg,n(αc − ǫ).
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Proof. Consider the proper morphism π : Mg,n(αc− ǫ) → Mg,n(αc) given by Theorem 4.25. Our

assumption implies that KMg,n(αc−ǫ)
+ αcδ + (1 − αc)ψ descends to a line bundle on Mg,n(αc−ǫ)

which is a pullback of an ample line bundle on Mg,n(αc) via π. To establish the proposition, it

suffices to show that a positive multiple of ψ − δ onMg,n(αc−ǫ) descends to a π-ample line bundle

on Mg,n(αc−ǫ).
For every (αc−ǫ)-stable curve (C, {pi}ni=1), the induced character of Aut(C, {pi}ni=1)

◦ on δ − ψ is

trivial by Proposition 3.27. It follows by [Alp13, Theorem 10.3] that a positive multiple of δ − ψ
descends to a line bundle N on Mg,n(αc−ǫ).

To show that N∨ is relatively ample over Mg,n(αc), consider the commutative cube

(5.2) W

��

f

zz

W−
χ

? _oo

��

xx
Mg,n(αc)

φαc

��

Mg,n(αc−ǫ)

φαc−ǫ

��

? _oo

W//G

zz

W−
χ //G

xx

oo

Mg,n(αc) Mg,n(αc−ǫ)
πoo

where W = [SpecA/G]→W//G = SpecAG and W−
χδ−ψ

→W−
χδ−ψ

//G = Proj
⊕

d≥0Ad are the good

moduli spaces as in Proposition 3.6. Since the vertical arrows are good moduli spaces, by Proposition

4.6 and Lemmas 3.18 and 4.7, after shrinking W by a saturated open substack such that f sends

closed points to closed points and is stabilizer preserving at closed points, we may assume that the

left and right faces are Cartesian. The argument in the proof of Theorem 4.2 concerning Diagram

(5.2) shows that the bottom face is Cartesian.

The restriction of N∨ to W−
χδ−ψ

descends to the relative O(1) on W−
χδ−ψ

//G. Therefore, the

pullback of N∨ on Mg,n(αc−ǫ) to W−
χ //G is O(1) and, in particular, is relatively ample over W//G.

Since the bottom face is Cartesian, it follows by descent that N∨ is relatively ample over Mg,n(αc).

The proposition follows. �

5.1. Main positivity result. A well-known result of Cornalba and Harris says that

Theorem ([CH88]). KMg,n
+ 9

11δ+
2
11ψ ∼ 11λ− δ+ψ is nef onMg,n for all (g, n), and has degree

0 precisely on families whose only non-isotrivial components are A1-attached elliptic tails.

In a similar vein, Cornalba proved that 12λ− δ + ψ is ample onMg,n and thus obtained a direct

intersection-theoretic proof of the projectivity of Mg,n [Cor93]. We refer the reader to [ACG11,
Chapter 14] for the comprehensive treatment of intersection-theoretic approaches to projectivity of
Mg,n, many of which make appearance in the sequel. In the introduction to [Cor93], the author says
that “... it is hard to see how [these techniques] could be extended to other situations.” In what
follows, we do precisely that by giving intersection-theoretic proofs of projectivity for Mg,n(7/10−ǫ)
and Mg,n(2/3−ǫ).
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Theorem 5.5 (Positivity of log canonical divisors).

(a) KMg,n(9/11−ǫ)
+ 7

10δ +
3
10ψ ∼ 10λ − δ + ψ is nef on Mg,n(9/11 − ǫ), and, if (g, n) 6= (2, 0),

has degree 0 precisely on families whose only non-isotrivial components are A1/A1-attached

elliptic bridges. It is trivial if (g, n) = (2, 0).

(b) KMg,n(7/10−ǫ)
+ 2

3δ +
1
3ψ ∼ 39

4 λ− δ + ψ is nef onMg,n(7/10− ǫ), and has degree 0 precisely

on families whose only non-isotrivial components are A1-attached Weierstrass chains.

Our proof of this theorem is organized as follows. In Section 5.2, we develop a theory of simul-
taneous normalization of families of at-worst tacnodal curves. By tracking how the relevant divisor
classes change under normalization, we can reduce to proving a (more complicated) positivity result
for families of generically smooth curves. In Section 5.3, we collect several preliminary positivity
results, stemming from three sources: the Cornalba-Harris inequality, the Hodge Index Theorem,
and some ad hoc divisor calculations on M0,n. Finally, in Sections 5.4 and 5.5, we combine these
ingredients to prove parts (a) and (b) of Theorem 5.5, respectively.

The following terminology will be in force throughout the rest of this section: We let Ũg denote

the stack of connected curves of arithmetic genus g with only A-singularities, and let Ũg(Aℓ) ⊂ Ũg be
the open substack parameterizing curves with at worst A1, . . . , Aℓ singularities. Since Ũg is smooth,
we may freely alternate between line bundles and divisor classes. In addition, any relation between

divisor classes on Ũg that holds on the open substack of at-worst nodal curves extends to Ũg.
Let π : C → Ũg be the universal family. We define the Hodge class as λ := c1(π∗ωπ) and the kappa

class as κ := π∗(c1(ωπ)
2). The divisor parameterizing singular curves in Ũg is denoted δ; it can be

further decomposed as δ = δirr+δred, where δred is the closed (by Corollary 2.11) locus of curves with

disconnecting nodes. By the preceding remarks, Mumford’s relation κ = 12λ− δ holds on Ũg. Note
that the higher Hodge bundles π∗(ω

m
π ) for m > 2 are well-defined on the open locus in Ũg of curves

with nef dualizing sheaf (it is the complement of the closed locus of curves with rational tails). On
this locus, the Grothendieck-Riemann-Roch formula gives

(5.3) c1(π∗(ω
m
π )) = λ+

m2 −m
2

κ.

Now let C → B be a family of curves in Ũg. If σ : B → C is any section of the family, we define
ψσ := σ∗ωC/B. We say that σ is smooth if it avoids the relative singular locus of C/B.

From now on, we work only with one-parameter families C → B over a smooth and proper curve
B. If σ : B → C is generically smooth and the only singularities of fibers that σ(B) passes through
are nodes, then σ(B) is a Q-Cartier divisor on C, and we define the index of σ to be

(5.4) ι(σ) := (ωC/B + σ) · σ.
Notice that the index ι(σ) is non-negative, and if σ is smooth, then ι(σ) = 0. We also have the
following standard result:

Lemma 5.6. Suppose C → B is a generically smooth non-isotrivial family of curves in Ũg.
(1) If g > 1 and σ : B → C is a smooth section, then σ2 < 0.

(2) If g = 0 and σ, σ′, σ′′ : B → C are 3 smooth sections such that σ is disjoint from σ′ and σ′′,

then σ2 < 0.
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Let C → B be a one-parameter family of curves in Ũg. If p ∈ C is a node of its fiber, then the
local equation of C at p is xy = te, for some e ∈ Z called the index of p and denoted index(p). A
rational tail (resp., a rational bridge) of a fiber is a P1 meeting the rest of the fiber in exactly one

(resp., two) nodes. If E ⊂ Cb is a rational tail and p = E ∩ (Cb r E), then the index of E is defined

to be index(p). Similarly, if E ⊂ Cb is a rational bridge and {p, q} = E ∩ (Cb r E), then the index
of E is defined to be min{index(p), index(q)}. We also denote the index of E by index(E). We say
that a rational bridge E ⊂ Cb is balanced if index(p) = index(q).

5.2. Degenerations and simultaneous normalization. Our first goal is to develop a theory of
simultaneous normalization along generic singularities in families of at-worst tacnodal curves. In
contrast to the situation for nodal curves, where normalization along a nodal section can always be
performed because a node is not allowed to degenerate to a worse singularity, we must now deal with
families where a node degenerates to a cusp or a tacnode, where two nodes degenerate to a tacnode,
or where a cusp degenerates to a tacnode.

The following result, stated in the notation of §2.2, describes all possible degenerations of singu-
larities in one-parameter families of tacnodal curves.

Proposition 5.7. Suppose C → ∆ is a family of at-worst tacnodal curves over ∆, the spectrum of

a DVR. Denote by Cη the geometric generic fiber and by C0 the central fiber. Then the only possible

limits in C0 of the singularities of Cη are the following:

(1) A limit of a tacnode of Cη is necessarily a tacnode of C0. Moreover, a limit of an outer

tacnode is necessarily an outer tacnode.

(2) A limit of a cusp of Cη is either a cusp or a tacnode of C0.

(3) A limit of an inner node of Cη is either a node, a cusp, or a tacnode of C0.

(4) A limit of an outer node of Cη is either an outer node of C0 or an outer tacnode of C0.

Moreover, if an outer tacnode of C0 is a limit of an outer node, it must be a limit of two

outer nodes, necessarily joining the same components.

Proof. By deformation theory of A-singularities, a cusp deforms only to a node, a tacnode deforms

only either to a cusp, or to a node, or to two nodes. Given this, the result follows directly from

Proposition 2.10. �

We describe the operation of normalization along the generic singularities for each of the following
degenerations:

(A) Inner nodes degenerate to cusps and tacnodes (see Proposition 5.9).
(B) Outer nodes degenerate to tacnodes (see Proposition 5.10).
(C) Cusps degenerate to tacnodes (see Proposition 5.11).

We begin with a preliminary result concerning normalization along a collection of generic nodes.

Suppose π : X → B is a family in Ũg with sections {σi}ki=1 such that σi(t) are distinct nodes of Xb
for a generic b ∈ B and such that {σi(B)}ki=1 do not meet any other generic singularities. (The last
condition will be automatically satisfied when {σi}ki=1 is the collection of all inner or all outer nodes.)
Let ν : Y → X be the normalization of X along ∪ki=1σi(B). Denote by {η+i , η−i } the two preimages

of σi (which exist after a base change). Let R+
i : ν∗OY → Oσi(B) (resp., R−

i : ν∗OY → Oσi(B)) be
the morphisms of sheaves on X induced by pushing forward the restriction maps OY → Oη±i (B)
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and composing with the natural isomorphisms ν∗(Oη±i (B)) ≃ Oσi(B). We let Ri := R+
i − R−

i be the

difference map, and R := ⊕ki=1Ri : ν∗OY −→ ⊕ki=1Oσi(B). In this notation, we have the following
result.

Lemma 5.8. There is an exact sequence

(5.5) 0→ OX
ν#−→ ν∗OY

R−→ ⊕ki=1Oσi(B) → K → 0,

where K is supported on the finitely many points of X at which the generic nodes {σi(B)}ki=1 degen-

erate to worse singularities. Consequently,

λX/B = λY/B + length(π∗K).

Proof. Away from finitely many points on X where the generic nodes degenerate, im (ν#) = ker(R)

and R is surjective. Consider now a point p ∈ X where a generic nodes coalesce. A local chart of X
around p can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− s1(t))2 · · · (x− sa(t))2f(x, t)

)
,

where x = si(t) are the equations of generic nodes. By assumption on the generic nodes, f(x, t) is

a square-free polynomial. Hence Y = SpecC[[x, u, t]]/
(
u2 − f(x, t)

)
and the normalization map is

y 7→ u
∏a
i=1(x− si(t)).

Without loss of generality, the equation of η±i is u = ±vi(t), where vi(t)2 = f(si(t), t). It follows

that Ri : C[[x, u, t]]/(u2 − f(x, t))→ C[[t]] is given by

Ri
(
g(x, u, t)

)
= g(si(t), vi(t), t)− g(si(t),−vi(t), t).

Write C[[x, u, t]]/(u2 − f(x, t)) = C[[x, t]] + uC[[x, t]]. Clearly, C[[x, t]] ⊂ ker(R) ∩ im (ν#). Note

that ug(x, t) ∈ ker(R) if and only if Ri
(
ug(x, t)

)
= 2vi(t)g(si(t), t) = 0 for every i if and only if

g(x, t) ∈ (x−si(t)) for every i. Since the generic nodes are distinct, we conclude that ug(x, t) ∈ ker(R)

if and only if
∏a
i=1(x− si(t)) | g(x, t) if and only if ug(x, t) ∈ yC[[x, t]] ⊂ im (ν#). The exactness of

(5.5) follows.

Pushing forward (5.5) to B and noting that c1((π ◦ ν)∗OY) = c1(π∗OX) = c1(π∗Osi(B)) = 0, we

obtain

c1(R
1(π ◦ ν)∗OY) = c1(R

1π∗OX ) + c1(π∗K).
The formula relating Hodge classes now follows by relative Serre duality. �

Proposition 5.9 (Type A degeneration). Suppose X/B is a family in Ũg(A3) with sections {σi}ki=1

such that σi(b) are distinct inner nodes of Xb for a generic b ∈ B, degenerating to cusps and tacnodes

over a finite set of points of B. Denote by Y the normalization of X along ∪ki=1σi(B) and by {η+i , η−i }
the two preimages of σi. Then {η±i } are sections of Y/B satisfying:

(1) If σi(b) is a cusp of Xb, then η+i (b) = η−i (b) is a smooth point of Yb.
(2) If σi(b) is a tacnode of Xb and σj(b) 6= σi(b) for all j 6= i, then η+i (b) = η−i (b) is a node of Yb

and η+i + η−i is Cartier at b.

(3) If σi(b) = σj(b) is a tacnode of Xb for some i 6= j, then (up to ±) η+i (b) = η+j (b) and

η−i (b) = η−j (b) are smooth and distinct points of Yb.
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Set ηi := η+i + η−i and ψηi := ωY/B · ηi = ψη+i
+ ψη−i

. Define

ψinner :=
k∑

i=1

ψηi , δtacn :=
∑

i 6=j

(
ηi · ηj

)
, and δinner =

k∑

i=1

(η+i · η−i ).

Then we have the following formulae:

λX/B = λY/B +
1

2
δtacn + δinner +

k∑

i=1

ι(η+i ),

δX/B = δY/B − ψinner + 4δtacn + 10δinner + 10

k∑

i=1

ι(η+i ).

A pair of sections {η+i , η−i } arising from the normalization of a generic inner node will be called

inner nodal pair and η±i will be called inner nodal transforms.

Proof. The formula for the Hodge class follows from Lemma 5.8, whose notation we keep, once we

analyze the torsion sheaf K on X . Consider the following loci in X :
(a) Cu is the locus of cusps in X/B which are limits of generic inner nodes.

(b) Tn1 is the locus of tacnodes in X/B which are limits of a single generic inner node.

(c) Tn2 is the locus of tacnodes in X/B which are limits of two generic inner nodes.

(a) A local chart of X around a point p ∈ Cu can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− t2m)2(x+ 2t2m)

)
,

where x = t2m is the equation of the generic node σ degenerating to the cusp p. Then Y =

SpecC[[x, u, t]]/
(
u2 − x − 2t2m

)
and the normalization map is y 7→ u(x − t2m). The preimages η+

and η− of the generic node σ have equations u =
√
3tm and u = −

√
3tm. Note that Y is smooth and

the intersection multiplicity of η+ and η− at the preimage of p is m. It follows that the contribution

of p to δinner is m.

The elements of C[[x, u, t]]/
(
u2−x−2t2m

)
that do not lie in ker(R) are of the form ug(x, t) and we

have R
(
ug(x, t)

)
= 2
√
3tmg(t2m, t). It follows that im (R) = (tm) ⊂ C[[t]]. Hence Kp = C[[t]]/im (R)

has length m.

(b) A local chart of X around a point p ∈ Tn1 can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− tm)2(x2 + t2c)

)
,

where x = tm is the equation of the generic node σ degenerating to the tacnode p. Then Y =

SpecC[[x, u, t]]/(u2 − x2 − t2c) is a normal surface with A2c−1-singularity at the preimage of p, and

the normalization map is given by y 7→ u(x − tm). The preimage of σ is the bi-section given by

the equation u2 = t2m + t2c, which splits into two sections given by the equations u = ±v(t),
where the valuation of v(t) is equal to min{m, c}. The map R : C[[x, u, t]]/(u2 − x2 − t2c) → C[[t]]

sends an element of the form ug(x, t) to 2v(t)g(tm, t) and everything else to 0. We conclude that

Kp = C[[t]]/im (R) has length min{m, c}.
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It remains to show that the contribution of p to
(
η+ · η− + ι(η+)

)
is min{m, c}. There are two

cases to consider. First, suppose c 6 m. Then the equations of η+ and η− are u = αtc and u = −αtc
where α 6= 0 is a unit in C[[t]]. The minimal resolution h : Ỹ → Y has the exceptional divisor

E1 ∪ · · · ∪ E2c−1,

which is a chain of (−2)-curves. The strict transforms η̃+ and η̃− meet the central (−2)-curve Ec
at two distinct points. Clearly, h∗ωY/B = ω

Ỹ/B
and a straightforward computation shows that

h∗(η+ + η−) = η̃+ + η̃− +
c−1∑

i=1

i(Ei + E2c−i) + cEc.

It follows that the contribution of p to
(
η+ · η− + ι(η+)

)
= (ωX/B + η+ + η−) · η+ is c.

Suppose now that c > m. Then the equations of η+ and η− are u = αtm and u = −αtm,
respectively, where α 6= 0 is a unit in C[[t]]. The exceptional divisor of the minimal resolution

h : Ỹ → Y is still a chain of (−2)-curves of length 2c − 1. However, η̃+ and η̃− now meet Em and

E2c−m, respectively. It follows that the contribution of p to
(
η+ · η− + ι(η+)

)
is m.

(c) A local chart of X around a point p ∈ Tn2 can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− tm)2(x+ tm)2

)
,

where x = tm and x = −tm are the equations of the generic nodes {σ1, σ2} coalescing to the tacnode

p. Then Y = SpecC[[x, u, t]]/(u2 − 1) is a union of two smooth sheets, and the normalization map

is given by y 7→ u(x− tm)(x+ tm). The preimages η+1 and η−1 of the generic node σ1 have equations

{u = 1, x = tm} and {u = −1, x = tm}. The preimages η+2 and η−2 of the generic node σ2 have

equations {u = 1, x = −tm} and {u = −1, x = −tm}. In particular, η±j are smooth sections,

with η+1 meeting η+2 , and η
−
1 meeting η−2 , each with intersection multiplicity m. It follows that the

contribution of p to δtacn is 2m.

The elements of C[[x, u, t]]/(u2 − 1) that do not lie in ker(R) are of the form ug(x, t) and we have

R(ug(x, t)) = (2g(tm, t), 2g(−tm, t)) ∈ C[[t]]⊕ C[[t]]. It follows that

im (R) = 〈(1, 1), (t, t), . . . , (tm−1, tm−1)〉+ (tm)× (tm) ⊂ C[[t]]× C[[t]].

Hence Kp = (C[[t]]⊕ C[[t]])/im (R) has length m.

It remains to prove the formula for the boundary classes. To do this, note that ν∗ωX/B =

ωY/B

(∑k
i=1(η

+
i + η−i )

)
. Therefore,

κX/B = κY/B + 2
∑

16i<j6k

(
(η+i + η−i ) · (η+j + η−j )

)
+ 2ωY/B ·

k∑

i=1

(η+i + η−i ) +
k∑

i=1

(η+i + η−i )
2

= κY/B + 2δtacn + ωY/B ·
k∑

i=1

(η+i + η−i ) +
k∑

i=1

(
ωY/B · η+i + (η+i )

2 + ωY/B · η−i + (η−i )
2
)
+ 2

k∑

i=1

(
η+i · η−i

)

= κY/B + 2δtacn + ψinner + 2

k∑

i=1

ι(η+i ) + 2δinner.
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Using Mumford’s relation κ = 12λ− δ and the already established relation between λX/B and λY/B,

we obtain the desired relation between δX/B and δY/B. �

Proposition 5.10 (Type B degeneration). Suppose X/B is a family in Ũg(A3) with sections {σi}ki=1

such that σi(b) are outer nodes of Xb for a generic b ∈ B, degenerating to outer tacnodes over a finite

set of points of B. Denote by Y the normalization of X along ∪ki=1σi(B) and by {ζ+i , ζ−i } the two

preimages of σi. Then {ζ±i }ki=1 are smooth sections of Y such that ζ+i and ζ−i lie on different

irreducible components of Y. Setting

δtacn :=
∑

i 6=j

(ζ+i + ζ−i ) · (ζ+j + ζ−j ),

we have the following formulae:

λX/B = λY/B +
1

2
δtacn,

δX/B = δY/B −
k∑

i=1

(ψζ+i
+ ψζ−i

) + 4δtacn.

The sections {ζ+i , ζ−i }ki=1 will be called outer nodal transforms.

Proof. By Proposition 5.7, outer nodes can degenerate only to outer tacnodes. Moreover, an outer

tacnode which is a limit of one outer node is a limit of two outer nodes. The statement now follows by

repeating verbatim the proof of Proposition 5.9 beginning with part (c), and using Lemma 5.8. �

Proposition 5.11 (Type C degeneration). Suppose X/B is a family in Ũg with sections {σi}ki=1

such that σi(b) is a cusp of Xb for a generic b ∈ B, degenerating to a tacnode over a finite set of

points in B. Denote by Y the normalization of X along ∪ki=1σi(B) and by ξi the preimage of σi.

Then ξi is a section of Y/B such that ξi(t) is a node of Yb whenever σi(b) is a tacnode of Xb and

ξi(b) is a smooth point of Yb otherwise. Moreover, 2ξi is Cartier and we have the following formulae:

λX/B = λY/B −
k∑

i=1

ψξi + 2
k∑

i=1

ι(ξi),

δX/B = δY/B − 12
k∑

i=1

ψξi + 20
k∑

i=1

ι(ξi).

The sections ξi will be called cuspidal transforms.

Proof. The proof of this proposition is easier than the previous two results because a generic cusp

cannot collide with another generic singularity. In particular, we can consider the case of a single

generic cusp σ. Let ν : Y → X be the normalization along σ. Suppose σ(b) is a tacnode. Then the

local equation of X around σ(b) is

y2 = (x− a(t))3(x+ 3a(t)),

where x = a(t) is the equation of the generic cusp. It follows that Y has local equation u2 =

(x − a(t))(x + 3a(t)) and ν is given by y 7→ u(x − a(t)). The preimage of σ is a section ξ : B → Y
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given by x− a(t) = u = 0. Note that ξ(b) = {x = u = t = 0} is a node of Yb, and consequently ξ is

not Cartier at ξ(b).

Clearly, ν∗ωX/B = ωY/B(2ξ) and by duality theory for singular curves

π∗ωX/B = (π ◦ ν)∗(ωY/B(2ξ)).

Therefore,

κX/B = (ωY/B + 2ξ)2 = (ωY/B)
2 + 4(ξ2 + ξ · ωY/B) = κY/B + 4ι(ξ),

and by the Grothendieck-Riemann-Roch formula λX/B = c1
(
(π◦ν)∗(ωY/B(2ξ))

)
= λY/B−ψξ+2ι(ξ).

The claim follows. �

5.3. Preliminary positivity results.

Proposition 5.12 (Cornalba-Harris inequality). Let g > 2. Suppose f : C → B is a generically

smooth family in Ũg(A3), over a smooth and proper curve B, with ωC/B relatively nef. Then
(
8 +

4

g

)
λC/B − δC/B > 0.

Moreover, if the general fiber of C/B is non-hyperelliptic and C/B is non-isotrivial, then the inequality

is strict.

Remark. When the total space C is smooth, this result was proved in [Xia87] and [Sto08, Theorem

2.1], with no restrictions on fiber singularities.

Proof. As in [Sto08, Theorem 2.1], if the general fiber of C/B is non-hyperelliptic, the result is

obtained by the original argument of Cornalba and Harris [CH88], which we now recall.

Suppose Cb for some b ∈ B is a non-hyperelliptic curve of genus g > 3. After a finite base change,

we can assume that λ ∈ Pic (B) is g-divisible. Then the line bundle L := ωC/B ⊗ f∗(−λ/g) on C
satisfies the following conditions:

(1) det(f∗(L)) ≃ OB.

(2) f∗(Lm) is a vector bundle of rank (2m− 1)(g − 1) for all m > 2.

(3) Symm f∗(L)→ f∗(Lm) is generically surjective for all m > 1.

For m > 2 and general b ∈ B, the map SymmH0(Cb, ωCb) → H0(Cb, ω
m
Cb
) defines the mth Hilbert

point of Cb. Since the canonical embedding of Cb has a stable mth Hilbert point for some m≫ 0 by

[Mor09, Lemma 14], the proof of [CH88, Theorem 1.1] gives c1(f∗(Lm)) > 0. Using (5.3), we obtain

(5.6)

(
8 +

4

g
− 2(g − 1)

gm
+

2

gm(m− 1)

)
λ− δ = c1(f∗(Lm)) > 0.

To conclude we note that δ > 0, and if δ = 0, then λ > 0 for any non-isotrivial family by the existence

of the Torelli morphism Mg → Ag. We conclude that (8 + 4/g)λ− δ > 0.

Suppose now that C → B is a family of at-worst tacnodal curves with a relatively nef ωC/B and

a smooth hyperelliptic generic fiber. To prove the requisite inequality, we construct C/B explicitly

as a double cover of a family of (2g + 2)-pointed curves, and prove a corresponding inequality on

families of rational pointed curves.
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Suppose that (Y/B, {σi}2g+2
i=1 ) is a family of (2g+2)-pointed at-worst nodal rational curves where

σi are smooth sections and no more than 4 sections meet at a point. We say that an irreducible

component E in the fiber Yb of Y/B is an odd bridge if the following conditions hold:

(1) E meets the rest of the fiber Yb r E in two nodes of equal index,

(2) E ·∑2g+2
i=1 σi = 2,

(3) the degree of
∑2g+2

i=1 σi on each of the connected components of Yb r E is odd.

Suppose h : Y → Z is a blow-down of some collection of odd bridges. The image of
∑2g+2

i=1 σi in

Z will be denoted by Σ. Note that while the individual images of σi’s are not Cartier on Z along

the image of blown-down odd bridges, the total class of Σ is Cartier on Z. We say that a node

p ∈ Zb (resp., p ∈ Yb) is an odd node if the degree of Σ (resp.,
∑2g+2

i=1 σi) on each of the connected

component of the normalization of Zb (resp., Yb) at p is odd. We denote by δodd the Cartier divisor

on B associated to all odd nodes of Z/B (resp., Y/B).

The hyperelliptic involution on the generic fiber of f : C → B extends to all of C and realizes C/B
as a double cover of a family (Z/B,Σ) described above in such a way that C → Z ramifies over Σ.

Let δodd be the divisor of odd nodes of Z/B. We have the following standard formulae:

λC/B =
1

8

(
Σ2 + 2ωZ/B · Σ− δodd

)
Z/B

,

δC/B =

(
Σ2 + ωZ/B · Σ+ 2ω2

Z/B −
3

2
δodd

)

Z/B

.

Consider h : Y → Z. Then h∗(Σ) =
∑2g+2

i=1 σi + E, where E is a collection of odd bridges, and

h∗ωZ/B = ωY/B. Set ψY/B := ωY/B ·
∑2g+2

i=1 σi, δinner :=
∑

i 6=j(σi · σj), and e := −1
2E

2. Then

λC/B =

(
1

8
(ψY/B + 2δinner − δodd) +

1

2
e

)

Y/B

,

δC/B =

(
2δinner + 2δeven +

1

2
δodd + 5e

)

Y/B

.

We obtain
(
8 +

4

g

)
λC/B − δC/B =

(
2g + 1

2g
ψ +

1

g
δinner +

(
2

g
− 1

)
e− 2δeven −

(
3

2
+

1

2g

)
δodd

)

Y/B

.

Multiplying by 2g, we need to show that on Y/B we have

(2g + 1)ψ + 2δinner − 4gδeven − (3g + 1)δodd − (2g − 4)e > 0.

Noting that

(2g + 1)ψ + 2δinner =

g+1∑

i=2

i(2g + 2− i)δi,

and using the inequality 2e 6 δodd, we obtain the desired claim. �
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Hodge Index Theorem Inequalities. We apply a method of Harris [Har84] to obtain inequalities be-
tween the ψ-classes, indices of cuspidal and inner nodal transforms, and the κ class. In the following
lemmas, we use the following variant of Hodge Index Theorem for singular surfaces.

Lemma 5.13. Let S be a proper reduced algebraic space of dimension 2. Suppose there exists a

Cartier divisor H on S such that H2 > 0. Then the intersection pairing on NS(S) has signature

(1, ℓ).

Proof. Let π : S̃ → S be the minimal desingularization of the normalization of S. Then S̃ is a smooth

projective surface. Note that π∗ : NS(S)→ NS(S̃) is an injection preserving the intersection pairing.

The statement now follows from the Hodge Index Theorem for smooth projective surfaces. �

Lemma 5.14. Suppose X/B is a family of Gorenstein curves of arithmetic genus g > 2 with a

section ξ. Let ι(ξ) = (ξ + ωX/B) · ξ be the index of ξ. Then

(5.7) ψξ >
(g − 1)

g
ι(ξ) +

κ

4g(g − 1)
.

Proof. Apply the Hodge Index Theorem to the three classes 〈F, ξ, ωX/B〉, where F is the fiber class.

Since ξ + kF has positive self-intersection for k ≫ 0, the determinant of the following intersection

pairing matrix is non-negative:



0 1 2g − 2

1 −ψξ + ι(ξ) ψξ
2g − 2 ψξ κ


 .

The claim follows by expanding the determinant. �

Lemma 5.15. Suppose X/B is a family of Gorenstein curves of arithmetic genus g > 2 with a pair

of sections η+, η−. Then

(5.8) ψη+ + ψη− >
2(g − 1)

g + 1

(
(η+ · η−) + ι(η+)

)
+

κ

g2 − 1
.

Proof. Consider the three divisor classes 〈F, η = η+ + η−, ωX/B〉, where F is the fiber class. Since

η+kF has positive self-intersection for k ≫ 0, the Hodge Index Theorem implies that the determinant

of the following intersection pairing matrix is non-negative:



0 2 2g − 2

2 −ψη+ − ψη− + 2(η+ · η−) + ι(η+) + ι(η−) ψη+ + ψη−

2g − 2 ψη+ + ψη− κ


 .

The claim follows by expanding the determinant. �

Lemma 5.16. Suppose X/B is a family in Ũ2(A3) with a smooth section τ . Then

(5.9) 8ψτ > κ.

Moreover, if δred = 0, then the equality is satisfied if and only if (X/B, τ) is a family of Weierstrass

tails inM2,1(7/10− ǫ).
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Proof. The inequality follows directly from Lemma 5.14 by taking g = 2. Moreover, the proof

of Lemma 5.14 shows that equality holds if and only if the intersection pairing on 〈F, τ, ωX/B〉
is degenerate. Assuming δred = 0, there is a global hyperelliptic involution h : X → X . Hence

ωX/B ≡ τ + h(τ) + xF , for some x ∈ Z. Observe that ωX/B · τ = ωX/B · h(τ) and F · τ = F · h(τ).
Since no combination of ω and F is in the kernel of the intersection pairing, we conclude that

τ2 = τ · h(τ).
However, the intersection number on the left is negative by Lemma 5.6 and the intersection number

on the right is non-negative whenever τ 6= h(τ). We conclude that equality holds if only if h(τ) = τ ,

that is τ is a Weierstrass section. �

We will need special variants of Lemmas 5.14 and 5.15 for the case of relative genus 1 and 0.

Lemma 5.17. Let X/B be a family of Gorenstein curves of arithmetic genus 1 with a pair of sections

η+, η−, and suppose that η+ and η− are disjoint from N smooth pairwise disjoint section of X/B.

Then

(η+ · η−) + ι(η+) 6
N + 2

2N
(ψη+ + ψη−) +

1

2N2
δred.

Proof. Let Σ be the sum of N pairwise disjoint smooth sections of X/B disjoint from {η+, η−}. Then
(ωX/B + 2Σ)2 = ω2

X/B = κ. Apply the Hodge Index Theorem to 〈F, η+ + η−, ωX/B + 2Σ〉, where F
is the fiber class. The determinant of the matrix


0 2 2N

−ψη+ − ψη− + 2(η+ · η−) + ι(η+) + ι(η−) ψη+ + ψη−

2N ψη+ + ψη− κ




is non-negative. Therefore

−4κ+ 8N(ψη+ + ψη−) + 4N2(ψη+ + ψη−) > 8N2
(
(η+ · η−) + ι(η+)

)
,

which gives the desired inequality using κ = −δred. �

Lemma 5.18. Let X/B be a family of Gorenstein curves of arithmetic genus 1 with a section ξ,

and suppose that ξ is disjoint from N smooth pairwise disjoint sections of X . Then

ι(ξ) 6
N + 1

N
ψξ +

1

4N2
δred.

Furthermore, suppose N = 1, with τ being a smooth section disjoint from ξ, and δred = 0. Then

equality holds if and only if 2ξ ∼ 2τ .

Proof. Let Σ be the collection of smooth sections of X/B disjoint from ξ. By the Hodge Index

Theorem applied to 〈F, ξ, ωX/B + 2Σ〉, the determinant of the matrix



0 1 2N

1 −ψξ + ι(ξ) ψξ
2N ψξ κ




is non-negative. Therefore

ι(ξ) 6 ψξ +
1

N
ψξ −

1

4N2
κ.
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This gives the desired inequality using κ = −δred.
To prove the last assertion observe that because δred = 0 all fibers of X/B are irreducible curves

of genus 1. In particular, ωX/B = λF and it follows from the existence of the group law on the set

of sections of X/B that there exists a section τ ′ such that 2ξ − τ = τ ′. Since τ ∩ ξ = ∅, we have

τ ′ ∩ ξ = ∅. If equality holds, then the intersection pairing matrix on the classes F, ξ, τ is degenerate.

Hence some linear combination (xξ+yτ + zF ) intersects F, ξ, τ trivially. Clearly, y 6= 0. Intersecting

with τ , we obtain y(τ · τ) + z = 0; and intersecting with τ ′, we obtain y(τ · τ ′) + z = 0. Hence

τ2 = τ · τ ′. This leads to a contradiction if τ 6= τ ′. �

5.3.1. An inequality between divisor classes on M0,N . The proof of Theorem 5.5 will require the

following ad hoc effectivity result onM0,N .

Lemma 5.19. Suppose {η+i , η−i }ai=1 are sections of a family of N -pointed Deligne-Mumford stable

rational curves. Let ψinner :=
∑a

i=1

(
ψη+i

+ ψη−i

)
and δinner :=

∑a
i=1 δ{η+i ,η

−
i }. If a > 2, then for

any generically smooth one-parameter family inM0,N , we have

ψinner > 4δinner + 4
a∑

i=1

∑

β /∈{η+i ,η
−
i }ai=1

δ{η+i ,η
−
i ,β}

+ 2
a− 2

a− 1

∑

i 6=j

δ{η±i , η
±
j } +

5a− 9

a− 1

a∑

i=1

∑

j 6=i

δ{η+i ,η
−
i ,η

±
j }.

Proof. For any two distinct ψ-classes onM0,N , we have the following standard relation:

(5.10) ψσ + ψτ =
∑

S: σ∈S, τ /∈S

δS .

We apply (5.10) to the right-hand side of

(a− 1)ψinner =
∑

16i<j6a

(ψη±i
+ ψη±j

)− (a− 1)

a∑

i=1

(ψη+i
+ ψη−i

).

This gives us a formula of the following form:

(a− 1)ψinner =
∑

cSδS .

We now estimate the coefficients of the boundary divisors appearing on the right-hand side. Suppose

there are x pairs {η+i , η−i } such that η+i ∈ S and η−i /∈ S, or vice versa, and that S contains y pairs

{η+i , η−i }. Set z = a− x− y. Then
cS = ((x+ 2y)(x+ 2z)− x)− (a− 1)x = x(y + z) + 4yz.

We have that

(1) cS > 0 for every S.

(2) If S = {η+i , η−i } or S = {η+i , η−i , β}, where β /∈ {η+i , η−i }ai=1, then x = 0 and y = 1, and so

cS = 4(a− 1).

(3) If S = {η±i , η±j } for i 6= j, then x = 2 and y = 0, and so cS = 2(a− 2).

(4) If S = {η+i , η−i , η±j } for j 6= i, then x = 1 and y = 1, and so cS = 5a− 9.

The claim follows. �
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5.4. Proof of Theorem 5.5(a). Notice that 10λ − δ + ψ = 0 on M2,0(9/11 − ǫ) by the standard
relation 10λ = δirr + 2δred that holds for all families in U2.

We now prove that 10λ − δ + ψ is nef on Mg,n(9/11 − ǫ) and has degree 0 precisely on families
whose only non-isotrivial components are A1/A1-attached elliptic bridges, for all (g, n) 6= (2, 0). Let
(C/B, {σi}ni=1) be a (9/11 − ǫ)-stable family. The proof proceeds by normalizing C along generic
singularities to arrive at a family of generically smooth curves, where the Cornalba-Harris inequality
holds, or at a family of low genus curves, where the requisite inequality is established by ad-hoc
methods. Keeping in mind that generic outer nodes and generic cusps of C/B do not degenerate, but
generic inner nodes of C/B can degenerate to cusps, we begin by normalizing generic outer nodes,
then normalize generic cusps, and finally normalize generic inner nodes.

5.4.1. Reduction 1: Normalization along generic outer nodes. Let X be the normalization of C along
generic outer nodes, marked by nodal transforms. By Lemma 2.17 every connected component of
X/B is a family of generically irreducible (9/11− ǫ)-stable curves. By Proposition 5.10, we have

(10λ− δ + ψ)C/B = (10λ− δ + ψ)X/B.

We have reduced to proving 10λ− δ + ψ > 0 for a family with generically irreducible fibers.

5.4.2. Reduction 2: Normalization along generic cusps. Suppose (X/B, {σi}ni=1) is a family of (9/11−
ǫ)-stable curves with generically irreducible fibers. Let Y be the normalization of X along generic
cusps. Denote by {ξi}ci=1 the cuspidal transforms on Y. Set ψcusp :=

∑c
i=1 ψξi and ψY/B := ψX/B +

ψcusp. Then by Proposition 5.11, we have

(10λ− δ + ψ)X/B = (10λ− δ + ψ)Y/B + ψcusp.

We have reduced to proving 10λ− δ + ψ + ψcusp > 0 for a family (Y/B, {σi}ni=1, {ξi}ci=1), where

(1) The fibers are at-worst cuspidal and the generic fiber is irreducible and at-worst nodal.
(2) {σi}ni=1, {ξi}ci=1 are smooth sections and ωY/B(

∑n
i=1 σi +

∑c
i=1 ξi) is relatively ample.4

5.4.3. Reduction 3: Normalization along generic inner nodes. Consider (Y/B, {σi}ni=1, {ξi}ci=1) as in
5.4.2. Let a be the number of generic inner nodes of Y/B. We let Z → Y be the normalization
and denote by η+i and η−i the inner nodal transforms of the ith generic node. We obtain a family(
Z/B, {σi}ni=1, {η±i }ai=1, {ξi}ci=1

)
, where

(1) The fibers are at-worst cuspidal curves and the generic fiber is smooth.
(2) The sections {σi}ni=1, {η±i }ai=1, {ξi}ci=1 are all smooth and pairwise disjoint, except that η+i

can intersect η−i for each i.

(3) ωZ/B

(∑n
i=1 σi +

∑a
i=1(η

+
i + η−i ) +

∑c
i=1 ξi

)
is relatively ample.

By Proposition 5.9, we have that

(10λ− δ + ψ + ψcusp)Y/B = (10λ− δ + ψ + ψcusp)Z/B,

where ψcusp =
∑c

i=1 ψξi and ψZ/B = ψY/B +
∑a

i=1(ψη+i
+ ψη−i

).

We let N = n+2a+ c be the total number of sections of Z/B, including cuspidal and inner nodal
transforms. Our proof that (10λ−δ+ψ+ψcusp)Z/B > 0 will depend on the relative genus h of Z/B.

4 A priori, only ωY/B(
∑n
i=1 σi + 2

∑c
i=1 ξi) is relatively ample. However, a rational tail cannot meet just a single

cuspidal transform because the original family X/B cannot have cuspidal elliptic tails.
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Suppose h > 2. Passing to the relative minimal model of Z/B only decreases the degree of (10λ −
δ + ψ + ψcusp). Hence we will assume that ωZ/B is relatively nef. We still have N smooth and
distinct sections (which can now intersect pairwise). With ωZ/B relatively nef, we can apply the
Cornalba-Harris inequality. If h > 3, then 10 > 8 + 4/h and so 10λ− δ > 0 by Proposition 5.12. If
h = 2, then Proposition 5.12 gives 10λ− δ > 0. Lemma 5.6 gives ψ + ψcusp > 0 since we must have

N > 1 (if N = 0, then C/B was a family inM2,0(9/11− ǫ)).
Suppose h = 1. Using relations on the stack on N -pointed Gorenstein genus 1 curves inherited
from standard relations in Pic (M1,N ) given by [AC98, Theorem 2.2], we have λ = δirr/12, and
ψ = Nδirr/12 +

∑
S |S|δ0,S > Nδirr/12 + 2δred. If N > 3, we obtain

10λ+ ψ − δ > 10δirr/12 +Nδirr/12 + 2δred − (δirr + δred) > 0.

If N = 2, we obtain 10λ− δ+ψ > δred > 0 and ψcusp > 0. We conclude that 10λ− δ+ψ+ψcusp > 0
with the equality holding if only if ψcusp = δred = 0. This is possible if and only if all fibers are
irreducible and there are no cuspidal transforms (by Lemma 5.6), which implies that X/B = Y/B
is a family of A1/A1-attached elliptic bridges.

Suppose h = 0. Then all fibers of Z/B are in fact at-worst nodal. Because λ = 0, we can write
(10λ− δ + ψ + ψcusp)Z/B = ψ − δ + ψcusp. Blow-up the points of intersection of η+i and η−i for each

i. We obtain a family
(
W/B, {σi}ni=1, {η±i }ai=1, {ξi}ci=1

)
in M0,N . Setting δinner :=

∑a
i=1 δ{η+i ,η

−
i },

we have

(ψ − δ + ψcusp)Z/B = (ψ − δ − δinner + ψcusp)W/B .

If a = 0, then δinner = 0 and we are done because ψ−δ > 0 for any family of Deligne-Mumford stable
rational curves, for example by [KM13, Lemma 3.6]. If a > 2, then by Lemma 5.19,

∑a
i=1(ψη+i

+

ψη−i
) > 4δinner. In addition, 3ψ > 4δ by a similar argument. It follows that ψ > δ + δinner and so

we are done.

Finally, if a = 1, then
(
Y/B, {σi}ni=1, {ξi}bi=1

)
obtained in 5.4.2 is a family of arithmetic genus

1 (generically nodal) curves and the proof in the case of h = 1 above goes through without any
modifications to show that (10λ− δ+ψ+ψcusp)Y/B > 0 with the equality if and only if X/B = Y/B
is a (generically nodal) elliptic bridge.

5.5. Proof of Theorem 5.5(b). In the remaining part of the paper, we prove Theorem 5.5(b). Let
(C/B, {σi}ni=1) be a (7/10−ǫ)-stable generically non-isotrivial family of curves. We begin by dealing
with the case when C/B has a generic rosary, or a generic A1/A3 or A3/A3-attached elliptic bridge.
In both cases, generic tacnodes come into play and we will repeatedly use the following result that
explains what happens under normalization of a generic tacnode:

Proposition 5.20. Suppose X/B is a family in Ũg with a section τ such that τ(b) is a tacnode of

Xb for all b ∈ B. Denote by Y the normalization of X along τ and by τ+ and τ− the preimages of

τ . Then τ± are smooth sections satisfying ψτ+ = ψτ− and we have the following formulae:

λX/B = λY/B −
1

2
(ψτ+ + ψτ−),

δX/B = δY/B − 6(ψτ+ + ψτ−).

Proof. This is [Smy11b, Proposition 3.4] (although it is stated there only in the case of g = 1). �
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5.5.1. Reduction 1: The case of generic rosaries. Let C be the geometric generic fiber of C/B and
consider a maximal length rosary R = R1 ∪ · · · ∪ Rℓ of C (see Definition 2.27). Since C/B is non-
isotrivial, the rosary cannot be closed. Let T := C rR. The point T ∩ R1 (resp., T ∩ Rℓ) is either
an outer node or an outer tacnode, so its limit in every fiber is the same singularity by Proposition
2.10. Similarly, the limits of the tacnodes Ri ∩ Ri+1, for i = 1, . . . , ℓ − 1, remain tacnodes in every
fiber. We then have that C = T ∪R1 ∪ · · · ∪Rℓ, where the geometric generic fiber of Ri and T is Ri
and T respectively. Let χ1 (resp., χ2) be the nodal or tacnodal section along which T and R1 (resp.,
Rℓ) meet. Let τi, for i = 1, . . . , ℓ− 1, be the tacnodal section along which Ri and Ri+1 meet. In the
rest of the proof we use the fact that self-intersections of 2 disjoint smooth sections on a P1-bundle
over B are equal of opposite signs. Together with Proposition 5.20, this gives

(ψχ1)R1/B = −(ψτ1)R1/B = −(ψτ1)R2/B = (ψτ2)R2/B = · · · = (−1)ℓ−1(ψτℓ−1
)Rℓ/B = (−1)ℓ(ψχ2)Rℓ/B.

In what follows, we set ψT /B =
∑n

i=1 ψσi + ψχ1 + ψχ2 = ψC/B + ψχ1 + ψχ2 .

Case I: R is A1/A1-attached rosary. By Remark 2.28, ℓ must be odd. By Proposition 5.20, we
obtain (

39

4
λ− δ + ψ

)

C/B

=

(
39

4
λ− δ + ψ

)

T /B

.

Since (T , {σi}ni=1, χ1, χ2) is (7/10−ǫ)-stable and R/B is isotrivial, we reduce to proving Theorem
5.5(b) for (T , {σi}ni=1, χ1, χ2), which has one less generic rosary than (C/B, {σi}ni=1).

Case 2: R is A1/A3-attached rosary. Suppose χ1 is a nodal section and χ2 is a tacnodal section.
By the maximality assumption on R, the irreducible component of T meeting Rℓ is not a 2-pointed
smooth rational curve. It follows by Lemma 5.6 that (ψχ2)T > 0. By Proposition 5.20, we have

(
39

4
λ− δ + ψ

)

C/B

=

(
39

4
λ− δ + ψ

)

T /B

+ (ψχ1)R1/B +
5

4
(ψχ2)Rℓ/B +

9

4

ℓ−1∑

i=1

(ψτi)Ri .

If ℓ is odd, then
∑ℓ−1

i=1 (ψτi)Ri
= 0 and ψχ1 = −ψχ2 . We thus obtain:

(
39

4
λ− δ + ψ

)

C/B

=

(
39

4
λ− δ + ψ

)

T /B

+
1

4
(ψχ2)T /B >

(
39

4
λ− δ + ψ

)

T /B

.

Noting that ψχ2 = 0 only ifR/B is isotrivial, we reduce to proving Theorem 5.5(b) for (T , {σi}ni=1, χ1, χ2).

If ℓ is even, then ψχ1 = ψχ2 and
∑ℓ−1

i=1(ψτi)Ri + ψχ2 = 0, so that
(
39

4
λ− δ + ψ

)

C/B

=

(
39

4
λ− δ + ψ

)

T /B

.

Furthermore, we observe that R/B is isotrivial and we reduce to proving Theorem 5.5(b) for
(T , {σi}ni=1, χ1, χ2).

Case 3: R is A3/A3-attached rosary. By the maximality assumption on R, neither T ∩ R1 nor
T ∩R2 lies on a 2-pointed rational component of T . It follows by Lemma 5.6 that (ψχ1)T , (ψχ2)T > 0.

However, ψχ1 = (−1)ℓψχ2 . Therefore, either ψχ1 = ψχ2 = 0, in which caseR/B is an isotrivial family,
or ℓ is even and ψχ1 = ψχ2 > 0. In either case, Proposition 5.20 gives

(
39

4
λ− δ + ψ

)

C/B

=

(
39

4
λ− δ + ψ

)

T /B

+
1

4
(ψχ2)R/B >

(
39

4
λ− δ + ψ

)

T /B

,
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and the inequality is strict if R is not isotrivial. Thus we reduce to proving Theorem 5.5(b) for
(T , {σi}ni=1, χ1, χ2).

5.5.2. Reduction 2: The case of generic A1/A3 or A3/A3-attached elliptic bridges. Suppose the geo-
metric generic fiber of C/B can be written as C = T1 ∪ E ∪ T2, where E is an A1/A3-attached
elliptic bridge. Let q1 = T1 ∩ E be a node and q2 = T2 ∩ E be a tacnode. By Proposition 2.10,
the limit of q1 (resp., q2) remains a node (resp., a tacnode) in every fiber. Thus we can write
C = (T1, τ0) ∪ (E , τ1, τ2) ∪ (T2, τ3), where τ0 ∼ τ1 are glued nodally and τ2 ∼ τ3 are glued tacnodally.
Since A1/A1-attached elliptic bridges are disallowed, fibers of E have no separating nodes and so
(E , τ1, τ2) is a family of elliptic bridges. By Lemma 2.17, (T1, τ0) is (7/10− ǫ)-stable. Also, (T2, τ3) is
(7/10− ǫ)-stable because τ3 cannot lie on an A1-attached elliptic tail in T2.

Set C′ = (T1, τ0)∪ (T2, τ3), where we glue by τ0 ∼ τ3 nodally. Then (C′/B, {σi}ni=1) is a (7/10− ǫ)-
stable family by Lemma 2.18. By Proposition 5.20, we have

(
39

4
λ− δ + ψ

)

C/B

=

(
39

4
λ− δ + ψ

)

T1/B

+

(
39

4
λ− δ + ψτ1 +

5

4
ψτ2

)

E/B

+

(
39

4
λ− δ + ψ

)

T2/B

=

(
39

4
λ− δ + ψ

)

T1/B

+

(
39

4
λ− δ + ψ

)

T2/B

=

(
39

4
λ− δ + ψ

)

C′/B

,

where we have used relations (ψτ1)E/B = (ψτ2)E/B = λE/B and δE/B = 12λE/B, both of which hold
because (δred)E/B = 0.

Note that (E/B, τ1, τ2) is trivial if and only if ψτ2 = ψτ3 = 0. Thus we have reduced to proving
the requisite inequalities for the family C′/B with one less generic A1/A3-attached elliptic bridge.
Moreover, the equality for C′/B holds if and only if the equality for C/B holds and C′/B is obtained
by replacing a generic node of C′ by a family of elliptic bridges A1/A3-attached along the nodal
transforms.

Similarly, if the generic fiber of C/B has an A3/A3-attached elliptic bridge, then we can remove
the bridge and recrimp the two remaining components of C along a generic tacnode. The calculation
similar to the above shows that the degree of

(
39
4 λ− δ + ψ

)
does not change under this operation.

Replacing an attaching node of a Weierstrass chain of length ℓ by an A1/A3-attached elliptic bridge
in a way that preserves (7/10−ǫ)-stability gives a Weierstrass chain of length ℓ+1. Similarly, replacing
a tacnode in a Weierstrass chain of length ℓ by an A3/A3-attached elliptic bridge gives a Weierstrass
chain of length ℓ+ 1. In what follows, we will prove that for a non-isotrivial (7/10−ǫ)-stable family
(C/B, {σi}ni=1) with no generic A1/A3 or A3/A3-attached elliptic bridges, we have

(
39
4 λ− δ + ψ

)
C/B
>

0 and equality holds if and only if C/B is a family of Weierstrass tails. This implies that for every
non-isotrivial (7/10−ǫ)-stable family (C/B, {σi}ni=1), we have

(
39
4 λ− δ + ψ

)
C/B

> 0 and equality

holds if and only if C/B is a family of Weierstrass chains.

5.5.3. Reduction 3: Normalization along generic tacnodes. Suppose now (C/B, {σi}ni=1) is a family
of (7/10− ǫ)-stable curves with no generic rosaries and no generic A1/A3 or A3/A3-attached elliptic
bridges. Let X be the normalization of C along generic tacnodes. Denote by {τ±i }di=1 the preimages

of the generic tacnodes, and call them tacnodal transforms. Set ψtacn :=
∑d

i=1(ψτ+i
+ ψτ−i

) and
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ψX/B := ψC/B + ψtacn. Applying Proposition 5.20 we have

(
39

4
λ− δ + ψ

)

C/B

=

(
39

4
λ− δ + ψ +

1

8
ψtacn

)

X/B

.

If we now treat each tacnodal transform τ±i as a marked section, then every connected component
of X is a generically (7/10− ǫ)-stable family (there are no generic A1/A3 or A3/A3-attached elliptic
bridges). Blowing-down all rational tails meeting a single tacnodal transform and no other marked
sections does not change

(
39
4 λ− δ + ψ

)
X/B

but makes (X/B, {σi}ni=1, {τ±i }di=1) into a (7/10 − ǫ)-

stable family. We still have ψtacn > 0 by Lemma 5.6, with strict inequality if d > 1. Thus, we have
reduced to proving Theorem 5.5(b) for a (7/10− ǫ)-stable family with no generic tacnodes.

5.5.4. Reduction 4: Normalization along generic outer nodes. Suppose (X/B, {σi}ni=1) is a (7/10−ǫ)-
stable family with no generic tacnodes. Let Y be the normalization of X along the generic outer
nodes and let {ζ+i , ζ−i }bi=1 be the transforms of the generic outer nodes. Set δtacn :=

∑
i 6=j(ζ

±
i · ζ±j )

and ψY/B := ψX/B +
∑b

i=1(ψζ+i
+ ψζ−i

). Then by Proposition 5.10, we have

(
39

4
λ− δ + ψ

)

X/B

=

(
39

4
λ− δ + ψ +

7

8
δtacn

)

Y/B

.

5.5.5. Reduction 5: Normalization along generic cusps. Let Y be as in 5.5.4 and let Z be the nor-
malization of (a connected component of) Y along generic cusps and let {ξi}ci=1 be the cuspidal
transforms on Z. Then the family (Z/B, {σi}ni=1, {ζi}bi=1, {ξi}ci=1) satisfies the following properties:

(1) The generic fiber is irreducible and at-worst nodal.
(2) The sections {σi}ni=1 are smooth, pairwise non-intersecting and disjoint from {ζi}bi=1.
(3) The sections {ζi}bi=1 are smooth and at most two of them can meet at any given point of Z.
(4) The sections {ξi}ci=1 are pairwise non-intersecting and disjoint from {ζi}bi=1 and {σi}ni=1.

Set c(B) := 2
∑c

i=1 ι(ξi), where ι(ξi) is the index of the cuspidal transform ξi, and ψcusp :=
∑c

i=1 ψξi .
Then we have by Proposition 5.11

(
39

4
λ− δ + ψ +

7

8
δtacn

)

Y/B

=

(
39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)

Z/B

.(5.11)

Our goal for the rest of the section is to prove that the expression on the right-hand side of (5.11)
is non-negative and equals 0 if and only if the only non-isotrivial components of the family X/B
from 5.5.4 are A1-attached Weierstrass tails.

Let h be the geometric genus of the generic fiber of Z and let a be the number of generic inner
nodes of Z. Our further analysis breaks down according to the following possibilities:

(A) h > 3; see §5.5.6.
(B) h = 2, or (h, a) = (1, 1), or (h, a) = (0, 2); see §5.5.7.
(C) h = 1 and a 6= 1, or (h, a) = (0, 1); see §5.5.8.
(D) h = 0 and a > 3, or (h, a) = (0, 0); see §5.5.9.
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5.5.6. Case A: Relative geometric genus h > 3. Suppose Z/B is a family as in 5.5.5. Let W be the
normalization of Z along the generic inner nodes. Let {η+i , η−i }ai=1 be the inner nodal transforms on

W. Then (W/B, {σi}ni=1, {η±i }ai=1, {ζi}bi=1, {ξi}ci=1) satisfies the following properties:

(1) The generic fiber is a smooth curve of genus h > 3.
(2) Sections {σi}ni=1 are smooth, non-intersecting, and disjoint from {η±i }ai=1, {ζi}bi=1, and {ξi}ci=1.

(3) Inner nodal transforms {η±i }ai=1 are disjoint from {ζi}bi=1 and {ξi}ci=1. Their properties are
described by Proposition 5.9.

(4) Outer nodal transforms {ζi}bi=1 are disjoint from {ξi}ci=1. Their properties are described by
Proposition 5.10.

(5) Cuspidal transforms {ξi}ci=1 have properties described by Proposition 5.11.

We let ψW/B := ψZ/B +
∑a

i=1(ψη+i
+ ψη−i

) and (δtacn)W/B := (δtacn)Z/B +
∑

i 6=j(η
±
i · η±j ). We

set δinner :=
∑a

i=1(η
+
i · η−i ) and n(B) :=

∑a
i=1 ι(η

+
i ), where ι(η

+
i ) is the index of the inner nodal

transform η+i . Then by Proposition 5.9:

(5.12)

(
39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)

Z/B

=

(
39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp +

7

8
δtacn

)

W/B

.

Passing to the relative minimal model of W/B does not increase the degree of the divisor on the
right-hand side of (5.12). Hence we will assume that ωW/B is relatively nef. Then by Proposition

5.12, we have (8 + 4/h)λ − δ > 0. Since h > 3 and δ > 0, we obtain 39
4 λ − δ > 0 (when δ = 0, we

have λ > 0 by the existence of the Torelli morphism). We proceed to estimate the remaining terms
of (5.12). Clearly, δtacn > 0. Since h > 3 and κ = 12λ− δ > 0, the inequalities of Lemmas 5.14 and
5.15 give

ψcusp =

c∑

i=1

ψξi >
(h− 1)

h

c∑

i=1

ι(ξi) + c
κ

4h(h− 1)
=
h− 1

2h
c(B) + c

κ

4h(h− 1)
>

1

3
c(B),

a∑

i=1

(ψη+i
+ ψη−i

) >
2(h− 1)

h+ 1

a∑

i=1

((η+i · η−i ) + ι(η+i )) + a
κ

h2 − 1
> δinner + n(B).

Summarizing, we conclude that the right hand side of (5.12) is strictly positive.

5.5.7. Case B: Relative genus 2. Suppose Z/B is a family as in 5.5.5 with relative geometric genus
h = 2. Let W be the normalization of Z along the generic inner nodes. As in 5.5.6, we reduce to
proving that

(5.13)

(
39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp +

7

8
δtacn

)

W/B

> 0,

under the assumption that ωW/B is relatively nef.

For any family W/B of arithmetic genus 2 curves with a relatively nef ωW/B, we have

(5.14) 10λ = δirr + 2δred,
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This relation implies that δ 6 10λ for any generically irreducible family and, consequently, κ =
12λ− δ > 2λ, with the equality achieved only if δred = 0, i.e., if there are no fibers where two genus
1 components meet at a node. It follows that 39

4 λ− δ > −λ/4, with the equality only if δred = 0.

By Lemma 5.15, we have

a∑

i=1

(ψη+i
+ ψη−i

) >
2

3
(δinner + n(B)) + a

κ

3
.

By Lemma 5.14, we have

ψcusp >
1

4
c(B) + c

κ

8
.

Putting these inequalities together and using κ > 2λ, we obtain

9

4
ψcusp +

a∑

i=1

(ψη+i
+ ψη−i

) >
1

4
δinner +

1

4
n(B) +

1

4
c(B) +

(
2a

3
+

9c

16

)
λ.

If a+ c > 1, we obtain a strict inequality in (5.13) at once. Suppose a = c = 0. So far, we have that

(
39

4
λ− δ + ψ

)

W/B

>

n∑

i=1

ψσi +
b∑

i=1

ψζi −
1

4
λ.

We now invoke Lemma 5.16 that gives

n∑

i=1

ψσi +
b∑

i=1

ψζi >
(n+ b)

8
κ >

(n+ b)

4
λ.

Since n+ b > 1 (otherwise, W/B is an unpointed family of genus 2 curves, which is impossible), we

conclude that
∑n

i=1 ψσi +
∑b

i=1 ψζi − λ/4 > 0 and that equality is achieved if and only if n+ b = 1,
δred = 0, and equality is achieved in Lemma 5.16. This is precisely the situation when Y/B =W/B
is a family of A1-attached Weierstrass genus 2 tails.

Finally, if (h, a) = (1, 1) or (h, a) = (0, 2), we proceed exactly as above but without normalizing the
inner nodes: For a family (Z/B, {σi}ni=1, {ζi}bi=1, {ξi}ci=1) as in 5.5.5, where the relative arithmetic
genus of Z/B is 2, we need to prove

(
39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)

Z/B

> 0.

Applying (5.14) to estimate δ, Lemma 5.14 to estimate ψcusp, and Lemma 5.16 to estimate
∑n

i=1 ψσi+∑b
i=1 ψζi (all of which apply even if the total space Z is not normal), we obtain

39

4
λ − δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn > −

1

4
λ +

4n+ 4b+ 9c

16
λ +

5

16
c(B) +

7

8
δtacn > 0.

Moreover, equality is achieved if and only if δred = 0, c = 0, and n + b = 1, which is precisely the
situation when Y/B = Z/B is a family of A1-attached (generically nodal) Weierstrass genus 2 tails.
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5.5.8. Case C: Relative genus 1. Suppose Z/B is a family as in 5.5.5 of relative genus 1 and with a
generic inner nodes, where a 6= 1. We consider the case a > 2 first. Let W be the family obtained
from Z by the following operations:

(1) Normalize Z along all generic inner nodes to obtain inner nodal pairs {η+i , η−i }ai=1.
(2) Blow-up all cuspidal and inner nodal transforms to make them Cartier divisors.
(3) Blow-up points of η±i ∩ η±j for all i 6= j.

(4) Blow-up points of ζi ∩ ζj for all i 6= j.

As a result, the sections of W/B do not intersect pairwise with the only possible exception that η+i
is allowed to meet η−i . A node of Z through which ξi passes is replaced in W by a balanced rational
bridge meeting the strict transform of ξi, which we continue to denote by ξi. We say that such a
bridge is a cuspidal bridge associated to ξi. Moreover, if we let c(ξi) be the sum of the indices of all
bridges associated to ξi, then

2ι(ξi)Z/B = c(ξi)W/B.

Suppose {η+i , η−i } is an inner nodal pair of Z/B. Then a node of Z through which η+i and η−i both

pass is replaced in W by a balanced rational bridge meeting the strict transforms of η+i and η−i ,

which we continue to denote by η+i and η−i . We say that such a bridge is an inner nodal bridge

associated to {η+i , η−i }. Moreover, if we let n(ηi) be the sum of the indices of all bridges associated

to {η+i , η−i }, then
((η+i · η−i ) + ι(η+i ))Z/B = ((η+i · η−i ) + n(ηi))W/B.

On W/B, we define

δinner :=
a∑

i=1

(η+i · η−i ), δtacn :=
∑

i 6=j

δ0,{η±i ,η
±
j } +

∑

i 6=j

δ0,{ζi,ζj},

and let n(B) (resp., c(B)) be the sum of the indices of all inner nodal (resp., cuspidal) bridges. We
reduce to proving that

(
39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp −

1

8
δtacn

)

W/B

> 0.

We will make use of the standard relations for pointed families of genus 1 curves and Lemmas 5.17
and 5.18. Let N = n+ 2a+ b+ c be the total number of marked sections of W/B. Clearly, N > 2.
We consider first the case when N > 3. Then by Lemma 5.17, we have

δinner + n(B) 6
N

2(N − 2)

a∑

i=1

(ψη+i
+ ψη−i

) +
a

2(N − 2)2
δred.

Applying Lemma 5.18, we obtain

c(B) 6
2N

N − 1
ψcusp +

c

4(N − 1)2
δred.



LOG MINIMAL MODEL PROGRAM FOR Mg,n: THE SECOND FLIP 87

Using the above two inequalities and rewriting δ = 12λ+ δred, we see that

(5.15)
39

4
λ− δ + ψ − 1

4
(δinner + n(B) + c(B)) +

5

4
ψcusp −

1

8
δtacn

> −9

4
λ+

(
5

4
− N

2(N − 1)

)
ψcusp + ψ − N

8(N − 2)

a∑

i=1

(ψη+i
+ ψη−i

)

−
(
1 +

a

8(N − 2)2
+

c

16(N − 1)2

)
δred −

1

8
δtacn.

We rewrite each ψ-class on the right-hand side of (5.15) using the standard relation on families of
arithmetic genus 1 curves:

ψσ = λ+
∑

σ∈S

δ0,S .

The coefficient of λ in the resulting expression for the right-hand side of (5.15) is

(5.16) − 9

4
+ c

(
5

4
− N

2(N − 1)

)
+N − aN

4(N − 2)
.

Using N > 2a+ c and the assumption N > 3, it is easy to check that (5.16) is always positive.

A similarly straightforward but tedious calculation shows that each boundary divisor δ0,S appears
in the resulting expression for the right-hand side of (5.15) with a positive coefficient. Thus we have
shown that the right-hand side of (5.15) is positive for every non-isotrivial family with N > 3.

We consider now the case of N = 2. Since C/B in 5.5.3 has no generic elliptic bridges (nodally
or tacnodally attached), we must have c = 1 and n + b = 1. Let ξ be the corresponding cuspidal
transform and τ be either a marked smooth section (if n = 1) or an outer nodal transform (if b = 1).
We trivially have δinner = n(B) = δtacn = δred = 0. Using δirr = 12λ and the inequality c(B) 6 4ψcusp
from Lemma 5.18, we obtain:

39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp −

1

8
δtacn

=
39

4
λ− δ + ψ − 1

4
c(B) +

5

4
ψcusp >

39

4
λ− 12λ+ ψ +

1

4
ψcusp

=
39

4
λ− 12λ+ 2λ+

1

4
λ = 0.

Moreover, equality holds only if equality holds in Lemma 5.18. This happens if and only if 2ξ ∼ 2τ
and implies that Y/B in 5.5.4 is a generically cuspidal family of A1-attached Weierstrass genus 2
tails. We are done with the analysis in the case g = 1 and a 6= 1.

If (g, a) = (0, 1), we proceed exactly as above, but without normalizing the inner node.

5.5.9. Case D: Relative geometric genus 0. Suppose Z/B is a family as in 5.5.5 of relative geometric
genus 0 and with a generic inner nodes, where either a > 3 or a = 0. We consider the case a > 3
first. Let W be the family obtained from Z by the following operations:

(1) Normalize Z along all generic inner nodes to obtain inner nodal pairs {η+i , η−i }ai=1.
(2) Blow-up all cuspidal and inner nodal transforms to make them Cartier divisors. This opera-

tion introduces cuspidal or nodal bridges as in 5.5.8.
(3) Blow-up points of η±i ∩ η±j for all 1 6 i < j 6 a.
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(4) Blow-up points of ζi ∩ ζj for all 1 6 i < j 6 b.
(5) Blow-up points of η+i ∩ η−i for all 1 6 i 6 a.
(6) Blow-down all rational tails marked by a single section (such tails are necessarily adjacent

either to cuspidal or inner nodal bridges).

As a result, W/B is a family inM0,N , where N = n+ 2a+ b+ c and a > 3. On W/B, we define

δinner :=

a∑

i=1

δ{η+i ,η
−
i }, δtacn :=

∑

i 6=j

δ{η±i ,η
±
j } +

∑

i 6=j

δ{ζi,ζj},

δNB3 :=

a∑

i=1

∑

β 6=η+i ,η
−
i

δ{η+i ,η
−
i ,β}

, δCB2 :=

c∑

i=1

∑

β 6=ξi

δ{ξi,β},

and let n(B) (resp., c(B)) be the sum of the indices of all inner nodal (resp., cuspidal) bridges. Then

(
39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)

Z/B

=

(
ψ +

5

4
ψcusp − δ −

5

4
δinner −

1

4
(n(B) + c(B) + δNB3 + δCB2 )− 1

8
δtacn

)

W/B

.

We are going to prove that a (strict!) inequality

ψ +
5

4
ψcusp − δ −

5

4
δinner −

1

4
(n(B) + c(B) + δNB3 + δCB2 )− 1

8
δtacn > 0

always holds on W/B. In doing so, we will use the following standard relation onM0,N :

(5.17) ψ =
∑

r>2

r(N − r)
N − 1

δr.

First we deal with the case of a family with 3 inner nodal pairs and no other marked sections, i.e.,
a = 3 and N = 6. The desired inequality in this case simplifies to

ψ − δ − 5

4
δinner −

1

4
(n(B) + δNB3 )− 1

8
(δ2 − δinner) > 0.

We have an obvious inequality 2n(B) 6 δ2. Thus we reduce to proving

(5.18) ψ >
5

4
δ2 +

9

8
δinner + δ3 +

1

4
δNB3 .

For a > 3, Lemma 5.19 gives

ψ > 4δinner + δtacn + 3δNB3 = 3δinner + δ2 + 3δNB3 .

Combining this with the standard relation 5ψ = 8δ2 + 9δ3 gives

8ψ > 9δinner + 11δ2 + 9δ3 + 9δNB3 .

This clearly implies (5.18) as desired.

Next, we consider the case of N > 7. In this case, every inner nodal or cuspidal bridge is
adjacent to a node from

∑
r>3 δr. As a result, we have n(B) + c(B) 6 2

∑
r>3 δr. Furthermore,
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1
4δ
CB
2 + 1

8δtacn+
1
4δinner 6

1
4δ2 (because a node from δ2 can contribute only to one of the δinner, δtacn,

or δCB2 ). Hence we reduce to proving

(5.19) ψ +
5

4
ψcusp −

5

4
δ2 − δinner −

3

2

∑

r>3

δr −
1

4
δNB3 > 0

We combine the inequality of Lemma 5.19 with the standard relation (5.17), and the obvious
ψ > ψinner to obtain

3

(
ψ −

∑

r>2

r(N − r)
N − 1

δr

)
+
(
ψinner − 4δinner − 3δNB3

)
+
(
ψ − ψinner

)
> 0.

This gives the estimate

4ψ > 4δinner +
6(N − 2)

N − 1
δ2 +

9(N − 3)

N − 1

∑

r>3

δr + 3δNB3 .

Using N > 7 and ψcusp > 0, we finally get

ψ +
5

4
ψcusp > δinner +

5

4
δ2 +

3

2

∑

r>3

δr +
3

4
δNB3 .

Moreover, the equality could be achieved only if N = 7 and ψ − ψinner = 0 which is impossible
because ψ = ψinner implies that all sections are inner nodal transforms and so N must be even.
Hence we have established (5.19) as desired.

At last, we consider the case of a = 0. Because the family W/B is non-isotrivial, we must have
N > 4. In addition, if N = 4, then there exists a unique family of 4-pointed Deligne-Mumford stable
rational curves. The requisite inequality is easily verified for this family by hand. If N > 5, then
using the inequality 2c(B) 6 δ, we reduce to proving

ψ +
5

4
ψcusp −

9

8
δ − 1

4
δCB2 − 1

8
δtacn > 0.

The standard relation (5.17) gives

ψ >
3

2

∑

r>2

δr >
11

8
δ2 +

9

8

∑

r>3

δr >
9

8
δ +

1

4
δ2.

Finally, the inequality δ2 > δ
CB
2 + δtacn gives the desired result.

This completes the proof of Theorem 5.5 (b).

Appendix A.

In this appendix, we give examples of algebraic stacks including moduli stacks of curves which
fail to have a good moduli space owing to a failure of conditions (1a), (1b), and (2) in Theorem 4.1.
Note that there is an obviously necessary topological condition for a stack to admit a good moduli
space, namely that every C-point has a unique isotrivial specialization to a closed point, and each of
our examples satisfies this condition. The purpose of these examples is to illustrate the more subtle
kinds of stacky behavior that can obstruct the existence of good moduli spaces.
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Failure of condition (1a) in Theorem 4.1.

Example A.1. Let X = [X/Z2] be the quotient stack where X is the non-separated affine line and

Z2 acts on X by swapping the origins and fixing all other points. The algebraic stack clearly satisfies

condition (1b) and (2). Then there is an étale, affine morphism A1 → X which is stabilizer preserving

at the origin but is not stabilizer preserving in an open neighborhood. The algebraic stack X does

not admit a good moduli space.

While the above example may appear entirely pathological, we now provide two natural moduli
stacks similar to this example.

Example A.2. Consider the Deligne-Mumford locus X ⊆ [Sym4 P1/PGL2] of unordered tuples

(p1, p2, p3, p4) where at least three points are distinct. Consider the family (0, 1, λ,∞) with λ ∈ P1.

When λ /∈ {0, 1,∞}, Aut(0, 1, λ,∞) ∼= Z/2Z × Z/2Z; indeed, if σ ∈ PGL2 is the unique element

such that σ(0) =∞, σ(∞) = 0 and σ(1) = λ, then σ([x, y]) = [y, λx] so that σ(λ) = 1 and therefore

σ ∈ Aut(0, 1, λ,∞). Similarly, there is an element τ which acts via 0
τ↔ 1, λ

τ↔∞ and an element α

which acts via 0
α↔ λ, 1

τ↔∞. However, if λ ∈ {0, 1,∞}, Aut(0, 1, λ,∞) ∼= Z/2Z.

Therefore if x = (0, 1,∞,∞), any étale morphism f : [SpecA/Z2] → X , where SpecA is a Z2-

equivariant algebraization of the deformation space of x, will be stabilizer preserving at x but not

in any open neighborhood. This failure of condition (1a) here is due to the fact that automorphisms

of the generic fiber do not extend to the special fiber. The algebraic stack X does not admit a good

moduli space but we note that if one enlarges the stack X to [(Sym4 P1)ss/PGL2] by including the

point (0, 0,∞,∞), there does exist a good moduli space.

Example A.3. Let V2 be the stack of all reduced, connected curves of genus 2, and let [C] ∈ V2
denote a cuspidal curve whose pointed normalization is a generic 1-pointed smooth elliptic curve

(E, p). We will show that any Deligne-Mumford open neighborhoodM⊂ V2 of [C] is non-separated

and fails to satisfy condition (1a).

Note that Aut(C) = Aut(E, p) = Z/2Z. Thus, to show that no étale neighborhood

[Def(C)/Aut(C)]→M
can be stabilizer preserving where Def(C) = SpecA is an Aut(C)-equivariant algebraized miniversal

deformation space, it is sufficient to exhibit a family C → ∆ whose special fiber is C, and whose

generic fiber has automorphism group Z/2Z × Z/2Z. To do this, let C ′ be the curve obtained by

nodally gluing two identical copies of (E, p) along their respective marked points. Then C ′ admits an

involution swapping the two components, and a corresponding degree 2 map C ′ → E ramified over

the single point p. We may smooth C ′ to a family C′ → ∆ of smooth double covers of E, simply by

separating the ramification points. By [Smy11a, Lemma 2.12], there exists a birational contraction

C′ → C contracting one of the two copies of E in the central fiber to a cusp. The family C → ∆ now

has the desired properties; the generic fiber has both a hyperelliptic and bielliptic involution while

the central fiber is C.

Failure of condition (1b) in Theorem 4.1.

Example A.4. Let X = [A2
r 0/Gm] where Gm acts via t · (x, y) = (x, ty). Let U = {y 6=

0} = [SpecC[x, y]y/Gm] ⊆ X . Observe that the point (0, 1) is closed in U and X . Then the open
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immersion f : U → X has the property that f(0, 1) ∈ X is closed while for x 6= 0, (x, 1) ∈ U is closed

but f(x, 1) ∈ X is not closed. In other words, f : U → X does not send closed points to closed points

and, in fact, there is no étale neighborhood W → X of (0, 1) which sends closed points to closed

points. The algebraic stack X does not admit a good moduli space.

Example A.5. Let M =Mg ∪M1 ∪M2, where M1 consists of all curves of arithmetic genus g

with a single cusp and smooth normalization, andM2 consist of all curves of the form D∪E0, where

D is a smooth curve of genus g − 1 and E0 is a rational cuspidal curve attached to C nodally.

We observe thatM has the following property: If C = D ∪ E, where D is a curve of genus g − 1

and E is an elliptic tail, then [C] ∈ M is a closed point if and only if D is singular. Indeed, if D is

smooth, then C admits an isotrivial specialization to D ∪ E0, where E0 is a rational cuspidal tail.

Now consider any curve of the form C = D∪E where D is a singular curve of genus g−1 and E is a

smooth elliptic tail, and, for simplicity, assume that D has no automorphisms. We claim that there

is no étale neighborhood of the form [Def(C)/Aut(C)] → M, which sends closed points to closed

points. Indeed, curves of the form D′ ∪E where D′ is smooth will appear in any such neighborhood

and will obviously be closed in [Def(C)/Aut(C)] (since this is a Deligne-Mumford stack), but are

not closed inM.

Failure of condition (2) in Theorem 4.1.

Example A.6. Let X = [X/Gm] where X is the nodal cubic curve with the Gm-action given by

multiplication. Observe that X is an algebraic stack with two points – one open and one closed. But

X does not admit a good moduli space; if it did, X would necessarily be cohomologically affine and

consequently X would be affine, a contradiction. However, there is an étale and affine (but not finite)

morphism W = [Spec (C[x, y]/xy)/Gm] → X where Gm = SpecC[t, t−1] acts on SpecC[x, y]/xy via

t · (x, y) = (tx, t−1y) which is stabilizer preserving and sends closed points to closed points; however,

the two projections W ×X W ⇒W do not send closed points to closed points.

To realize this étale local presentation concretely, we may express X = Y/Z2 where Y is the union

of two P1’s with coordinates [x1, y1] and [x2, y2] glued via nodes at p = 01 = 02 and q = ∞1 = ∞2

by the action of Z/2Z where −1 acts via [x1, y1] ↔ [y2, x2]. There is a Gm-action on Y given by

t · [x1, y1] = [tx1, y1] and t · [x2, y2] = [x1, ty1] which descends to the Gm-action on X. There is a finite

étale morphism [Y/Gm] → X , but [Y/Gm] is not cohomologically affine. If we instead, consider the

open substack W = [(Y r {p})/Gm], then W ∼= [Spec (C[x, y]/xy)/Gm] is cohomologically affine and

there is an étale representable morphism f : W → X . It is easy to see that

W ×X W ∼= [(Y r {p})/Gm]
∐

[(Y r {p, q})/Gm]
But [(Y r {p, q})/Gm] ∼= SpecC

∐
SpecC and the projections p1, p2 : W ×X W →W correspond to

the inclusion of the two open points into W which clearly don’t send closed points to closed points.

Example A.7. Consider the algebraic stackMss,1
g of Deligne-Mumford semistable curves C where

any rational subcurve connected to C at only two points is smooth. Let D0 be the Deligne-Mumford

semistable curve D′ ∪ P1, obtained by gluing a P1 to a smooth genus g − 1 curve D′ at two points

p, q. For simplicity, let us assume that Aut(D′, p, q) = 0, so Aut(D0) = Gm. There is a unique

isomorphism class of curves which isotrivially specializes to D0, namely the nodal curve D1 obtained
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by gluing D at p and q. Thus, {[D1]} has two points – one open and one closed. In fact, {[D1]} is
isomorphic to the quotient stack [X/Gm] considered in Example A.6.
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