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LOG MINIMAL MODEL PROGRAM FOR THE MODULI SPACE OF STABLE

JAROD ALPER, MAKSYM FEDORCHUK, DAVID ISHII SMYTH, AND FREDERICK VAN DER WYCK

CURVES: THE SECOND FLIP

ABSTRACT. We prove an existence theorem for good moduli spaces, and use it to construct the second
flip in the log minimal model program for M, . In fact, our methods give a uniform self-contained
construction of the first three steps of the log minimal model program for My, and Mg .
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1. INTRODUCTION

In an effort to understand the canonical model of M, Hassett and Keel introduced the log minimal
model program (LMMP) for M. For any o € QN [0, 1] such that Ky, + ad is big, Hassett defined

(1.1) My(a) = Proj @5 H(M,, L (K, + @d))),
m=0

and asked whether the spaces My(«) admit a modular interpretation [Has05]. In [HH09, HH13],
Hassett and Hyeon carried out the first two steps of this program by showing that:

M, ifae(9/11,1]
_ M if a € (7/10,9/11]
Mo(a) = { -9 ’
A=V it =710
M) if € (2/3—¢,7/10)

where Mﬁ ° Mgc , and Mgh are the moduli spaces of pseudostable (see [Sch91]), c-semistable, and

h-semistable curves (see [HH13]), respectively. Additional steps of the LMMP for M, are known
when g < 5 [Has05, HL10, HL14, Fed12, CMJL12, CMJL14, FS13]. In these works, new projective
moduli spaces of curves are constructed using Geometric Invariant Theory (GIT). Indeed, one of
the most appealing features of the Hassett-Keel program is the way that it ties together different
compactifications of M, obtained by varying the parameters implicit in Gieseker and Mumford’s
classical GIT construction of My [Mum65, Gie82]. We refer the reader to [Mor09] for a detailed
discussion of these modified GIT constructions.

In this paper, we develop new techniques for constructing moduli spaces without GIT and apply
them to construct the third step of the LMMP, a flip replacing Weierstrass genus 2 tails by ramphoid
cusps. In fact, we give a uniform construction of the first three steps of the LMMP for M, as well
as an analogous program for M. To motivate our approach, let us recall the three-step procedure
used to construct M, and establish its projectivity intrinsically:

(1) Prove that the functor of stable curves is a proper Deligne-Mumford stack M, [DM69].
(2) Use the Keel-Mori theorem to show that M, has a coarse moduli space M, — M, [KM97].
(3) Prove that some line bundle on M,, descends to an ample line bundle on M, [Kol90, Cor93].

This is now the standard procedure for constructing projective moduli spaces in algebraic geometry.
It is indispensable in cases where a global quotient presentation for the relevant moduli problem is
not available, or where the GIT stability analysis is intractable, and there are good reasons to expect
both these issues to arise in further stages of the LMMP for M,. Unfortunately, this procedure
cannot be used to construct the log canonical models M ,(a) because potential moduli stacks M ()
may include curves with infinite automorphism groups. In other words, the stacks Mg (a) may be
non-separated and therefore may not possess a Keel-Mori coarse moduli space. The correct fix is to
replace the notion of a coarse moduli space by a good moduli space, as defined and developed by
Alper [Alp13, Alp12, Alp10, Alp14].

In this paper, we prove a general existence theorem for good moduli spaces of non-separated
algebraic stacks (Theorem 4.1) that can be viewed as a generalization of the Keel-Mori theorem
[KM97]. This allows us to carry out a modified version of the standard three-step procedure in order
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to construct moduli interpretations for the log canonical models'

(12) M (@) i=Proj @) B My, m(Kg, , + b+ (1 - a)i)]).
m=0

Specifically, for all & > 2/3—¢, where 0 < € < 1, we

(1) Construct an algebraic stack M ,(a) of a-stable curves (Theorem 2.7).

(2) Construct a good moduli space M ,(a) = My () (Theorem 4.25).

(3) Show that Kz ) +ad+(1—a)y on M (a) descends to an ample line bundle on M, ,, (),
g,n

and conclude that My, (o) ~ My, (o) (Theorem 5.1).

In sum, we obtain the following result.
Main Theorem. There exists a diagram

Wy My (§5) "My (§s = Myn(5) <M G =0 Myn3) ="My (3~0)

i 3 z2 ] 3 i3
| i A
Mg,n $1 1& Mg,n (% —e) 3 Mg,n (% —€)
| TN TN
Mgn( (5) Mgn(3)
where:

(1) Myn(a) is the moduli stack of a-stable curves, and for ¢ =1,2,3:

(2) it and i are open immersions of algebraic stacks.

(8) The morphisms ¢. and ¢, are good moduli spaces.

(4) The morphisms jI and j. are projective morphisms induced by it and i_ , respectively.

When n = 0, the above diagram constitutes the steps of the log minimal model program for Mg. In
particular, j; is the first contraction, ji is an isomorphism, (j3,j5 ) is the first flip, and (45,73 )
1s the second flip.

The parameter a passes through three critical values, namely a; = 9/11, as = 7/10, and a3 = 2/3.
In the open intervals (9/11,1),(7/10,9/11),(2/3,7/10) and (2/3—¢,2/3), the definition of a-stability
does not change, and consequently neither do M, () or M ().

The theorem is degenerate in several special cases: For (¢g,n) = (1,1), (1,2), (2,0), the divisor
Kﬂg,n + ad + (1 — a)tp hits the edge of the effective cone at 9/11,7/10, and 7/10, respectively, and
hence the diagram should be taken to terminate at these critical values. Furthermore, when g = 1
and n > 3, or (g,n) = (3,0),(3,1), a-stability does not change at the threshold Value ag = 2/3, so
the morphisms (i1 ,i3) and (j],j;) are isomorphisms. Finally, for (g,n) = (2,1), j5 is a divisorial
contraction and j; is an isomorphism.

INote that the natural divisor for scaling in the pointed case is Kz, , tod+ (1—a)y = 13X — (2—a) (6 — ) rather
than Kﬂg .+ ad; see [Smy11b, p.1845] for a discussion of this point.
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Remark. As mentioned above, when n = 0 and o > 7/10—¢, these spaces have been constructed using
GIT. In these cases, our definition of a-stability agrees with the GIT semistability notions studied
in the work of Schubert, Hassett, Hyeon, and Morrison [Sch91, HH09, HH13, HM10].

The key observation underlying our proof of the main theorem is that at each critical value
ae € {9/11,7/10,2/3}, the inclusions

ﬂg,n(ac—i-e) — ﬂg,n(ac) P ﬂgm(ac—e)

can be locally modeled by an intrinsic variation of GIT problem (Theorem 3.11). It is this feature
of the geometry which enables us to verify the hypotheses of Theorem 4.1. We axiomatize this
connection between local VGIT and the existence of good moduli spaces in Theorem 4.2. In short,
Theorem 4.2 says that if X is an algebraic stack with a pair of open immersions X < X > X~
which can be locally modeled by a VGIT problem, and if the open substack X' and the two closed
substacks X~ X~ and X ~\ X" each admit good moduli spaces, then X admits a good moduli space.
This paves the way for an inductive construction of good moduli spaces for the stacks M, ().
Let us conclude by briefly describing the geometry of the second flip. At ag = 2/3, the locus of
curves with a genus 2 Weierstrass tail (i.e., a genus 2 subcurve nodally attached to the rest of the
curve at a Weierstrass point), or more generally a Weierstrass chain (see Definition 2.2), is flipped
to the locus of curves with a ramphoid cusp (y? = 2°). See Figure 1. The fibers of jgr correspond to
varying moduli of Weierstrass chains, while the fibers of j; correspond to varying moduli of ramphoid
cuspidal crimpings. Moreover, if (K, p) is a fixed curve of genus g—2, all curves obtained by attaching

Yy =x

\Weierstrass
point

FIGURE 1. Curves with a nodally attached genus 2 Weierstrass tail are flipped to
curves with a ramphoid cuspidal (y? = 2°) singularity.

a Weierstrass genus 2 tail at p or imposing a ramphoid cusp at p are identified in Mg’n (2/3). This can
be seen on the level of stacks since, in My, (2/3), all such curves admit an isotrivial specialization
to the curve Cp, obtained by attaching a rational ramphoid cuspidal tail to K at p. See Figure 2.

Outline of the paper. In Section 2, we define the notion of a-stability for n-pointed curves and
prove that they are deformation open conditions. We conclude that M, (c), the stack of n-pointed
a-stable curves of genus g, is algebraic. We also characterize the closed points of ﬂg,n(ac) for each
critical value a.. In Section 3, we develop the machinery of local quotient presentations and local
variation of GIT, and compute the VGIT chambers associated to closed points in ﬂg,n(ac) for each
critical value .. In particular, we show that the inclusions Mg, (act€) <= My (@) <= My (ce—e)
are cut out by these chambers. In Section 4, we prove three existence theorems for good moduli
spaces, and apply these to give an inductive proof that the stacks M, ,(«) admit good moduli spaces.
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y2 =27

9=2 g=0 y*=z

‘Weierstrass
point

Co
FIGURE 2. The curve Cy is the nodal union of a genus g — 2 curve K and a rational
ramphoid cuspidal tail. All curves obtained by either attaching a Weierstrass genus
2 tail to K at p, or imposing a ramphoid cusp on K at p, isotrivially specialize to Cj.
Observe that Aut(Cp) is not finite.

In Section 5, we give a direct proof that the line bundle Kﬂq n(aete) T acd + (1 — ae)t) is nef on

M (acte) for each critical value ., and use this to show that the good moduli spaces of M ,,(c)
are the corresponding log canonical models M, ().

Notation. We work over a fixed algebraically closed field C of characteristic zero. An n-pointed
curve (C,{p;}~) is a connected, reduced, proper 1-dimensional C-scheme C with n distinct smooth
marked points p; € C. A curve C has an Ag-singularity at p € C if 5(),;; ~ Cl[z,y]]/(y? — zFt1). An
Aj- (resp., As-, As-, Ay-) singularity is also called a node (resp., cusp, tacnode, ramphoid cusp).

Line bundles and divisors, such as A, 4, K, and 1, on the stack of pointed curves with at-worst
A-singularities, are discussed in §5.1.

We use the notation A = Spec R and A* = Spec K, where R is a discrete valuation ring with
fraction field K; we set 0, n and 77 to be the closed point, the generic point and the geometric
generic point respectively of A. We say that a flat family C — A is an isotrivial specialization if
C xa A* — A* is isotrivial.

Acknowledgments. We thank Brendan Hassett and lan Morrison for their enthusiastic and long-
standing support of this project. In particular, we are grateful to Ian Morrison for detailed comments
and suggestions on the earlier version of this paper. We also thank Joe Harris, David Hyeon, Johan
de Jong, Sean Keel, and Ravi Vakil for many useful conversations and suggestions.

This project originated from the stimulating environment provided by MSRI’s Algebraic Geom-
etry program in the spring of 2009. During the preparation of this paper, the first author was
partially supported by an NSF Postdoctoral Research Fellowship grant 0802921, short-term research
grants provided by Harvard University and the IHES, and the Australian Research Council grant
DE140101519. The second author was partially supported by NSF grant DMS-1259226 and the
Australian National University MSRVP fund. The third author was partially supported by NSF
grant DMS-0901095 and the Australian Research Council grant DE140100259. The third and fourth
author were also partially supported by a Columbia University short-term visitor grant. A portion
of this work was revised when the second author visited the Max-Planck-Institute for Mathematics
in Bonn.



6 ALPER, FEDORCHUK, SMYTH, AND VAN DER WYCK

2. a-STABILITY

In this section, we define a-stability (Definition 2.5) and show that it is an open condition. We
conclude that mg,n(a), the stack of n-pointed a-stable curves of genus g, is an algebraic stack of
finite type over C (see Theorem 2.7). We also give a complete description of the closed points of
Mg n(ae) for a. € {2/3,7/10,9/11} (Theorem 2.23).

2.1. Definition of a-stability. The basic idea is to modify Deligne-Mumford stability by designat-
ing certain curve singularities as ‘stable,” and certain subcurves as ‘unstable.” We begin by defining
the unstable subcurves associated to the first three steps of the log MMP for M,,,.

Definition 2.1 (Tails and Bridges).

(1) An elliptic tail is a 1-pointed curve (FE,q) of arithmetic genus 1 which admits a finite, sur-
jective, degree 2 map ¢: E — P! ramified at g¢.

(2) An elliptic bridge is a 2-pointed curve (E, q1,¢g2) of arithmetic genus 1 which admits a finite,
surjective, degree 2 map ¢: E — P! such that ¢~ ({o0}) = {q1 + q2}.

(3) A Weierstrass genus 2 tail (or simply Weierstrass tail) is a 1-pointed curve (E,q) of arith-
metic genus 2 which admits a finite, surjective, degree 2 map ¢: E — P! ramified at ¢.

We use the term ac-tail to mean an elliptic tail if o, = 9/11, an elliptic bridge if a, = 7/10, and a
Weierstrass tail if a. = 2/3.

‘Weierstrass point

FIGURE 3. An elliptic tail, elliptic bridge, and Weierstrass tail.

Remark. If (E,q) is an elliptic or Weierstrass tail, then F is irreducible. If (E,q1,q2) is an elliptic
bridge, then E is irreducible or E is a union of two smooth rational curves.

Unfortunately, we cannot describe our a-stability conditions purely in terms of tails and bridges.
As seen in [HH13], one extra layer of combinatorial description is needed, and this is encapsulated
in our definition of chains.

Definition 2.2 (Chains). An elliptic chain of length r is a 2-pointed curve (E, p1,p2) which admits
a finite, surjective morphism

T
v H(Eiani—17QQi) — (E7p17p2)
i=1

such that:

(1) (Ei, q2i—1,q2:) is an elliptic bridge for i = 1,.

(2) ~ is an isomorphism when restricted to E; \ {qu 1,2} fori=1,...,r.
(3) v(q2i) = Y(q2i+1) is an Ag-singularity for i =1,...,r — 1.

(4) v(q1) = p1 and ¥(g2r) = p2.
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A Weierstrass chain of length r is a 1-pointed curve (E, p) which admits a finite, surjective morphism

r—1
v: [1En 21, a20) [[(Brs g201) = (B, p)
i=1

such that:

(1) (Ei, q2i—1,q2:) is an elliptic bridge for i = 1,...,r — 1, and (E,, g2,—1) is a Weierstrass tail.
(2) + is an isomorphism when restricted to E;~{q2i—1,¢2i} (fori =1,...,r—1) and E, ~{q2,—1}
(3) v(q2i) = v(q2i+1) is an Ag-singularity for i = 1,...,r — 1.

(4) v(q1) =p.

An elliptic (resp., Weierstrass) chain of length 1 is simply an elliptic bridge (resp., Weierstrass tail).

Weierstrass point

FIGURE 4. Curve (A) (resp., (B)) is an elliptic (resp., Weierstrass) chain of length 4.

When describing tails and chains as subcurves, it is important to specify the singularities along
which the tail or chain is attached. This motivates the following pair of definitions.

Definition 2.3 (Gluing morphism). A gluing morphism ~v: (E,{¢:}",) — (C,{pi}]~,) between
two pointed curves is a finite morphism E — C, which is an open immersion when restricted to
E—{q,...,qm}. We do not require the points {7(g;)}"; to be distinct.

Definition 2.4 (Tails and Chains with Attaching Data). Let (C,{p;}]",) be an n-pointed curve.
We say that (C,{p;}"_) has

(1) Ag-attached elliptic tail if there is a gluing morphism v: (E,q) — (C,{p;}}_;) such that
(a) (E,q) is an elliptic tail.
(b) v(q) is an Ag-singularity of C, or kK =1 and v(q) is a marked point.
(2) Ak, /Ag,-attached elliptic chain if there is a gluing morphism v: (E,q1,¢2) — (C,{pi}l)
such that
(a) (E,q1,q2) is an elliptic chain.
i i ,-Si ) T = i = ,2).
(b) v(g) is an Ay,-singularity of C, or k; = 1 and 7(g;) is a marked point (i = 1, 2)
3) Ap-attached Weierstrass chain if there is a gluing morphism ~: (E,q) — (C,{p;},) such
=1
that
(a) (E,q) is a Weierstrass chain.
(b) v(q) is an Ag-singularity of C, or kK =1 and v(q) is a marked point.

Note that this definition entails an essential, systematic abuse of notation: when we say that a curve
has an Aj-attached tail or chain, we always allow the Aj-attachment points to be marked points.

We can now define a-stability.
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Definition 2.5 (a-stability). For a € (2/3—¢, 1], we say that an n-pointed curve (C,{p;}}—,) is
a-stable if we (X} p;) is ample and:
For a € (9/11,1): C has only A;-singularities.
For o = 9/11: C has only A;, As-singularities.
For a € (7/10,9/11): C has only A;, As-singularities, and does not contain:
e Aj-attached elliptic tails.
For o = 7/10: C has only A;, As, As-singularities, and does not contain:
e Ay, As-attached elliptic tails.
For a € (2/3,7/10): C has only Aj, Ag, As-singularities, and does not contain:
o A, As-attached elliptic tails,
e Ay /Aj-attached elliptic chains.
For o = 2/3: C has only Ay, As, A3, Ay-singularities, and does not contain:
o A, A3, As-attached elliptic tails,
o A1/A1, A1 /Ay, Ay/Ay-attached elliptic chains.
For o € (2/3—¢,2/3): C has only A;, As, Az, As-singularities, and does not contain:
e Ay, A3, As-attached elliptic tails,
o Ay/Ay, A1/Ay, Ay/Ay-attached elliptic chains,
o Aj-attached Weierstrass chains.

A family of a-stable curves is a flat and proper family whose geometric fibers are a-stable. We let
M () denote the stack of n-pointed a-stable curves of arithmetic genus g.

As 1 2
(A) (B) ,
\Weierstrass
poin
g—2 g—2
Ay
1
(D)
g — 3

FIGURE 5. Curve (A) has an As-attached elliptic tail; it is never a-stable. Curve
(B) has an A;j-attached Weierstrass tail; it is a-stable for a > 2/3. Curve (C) has an
A1 /A;-attached elliptic chain of length 2; it is a-stable for aw > 7/10. Curve (D) has
an Aj/Ay-attached elliptic bridge; it is never a-stable.

Remark. Our definition of an elliptic chain is similar, but not identical to, the definition of an open
tacnodal elliptic chain appearing in [HH13, Definition 2.4]. Whereas open tacnodal elliptic chains
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are built out of arbitrary curves of arithmetic genus one, our elliptic chains are built out of elliptic
bridges. Nevertheless, it is easy to see that our definition of (7/10—¢)-stability agrees with the
definition of h-semistability in [HH13, Definition 2.7].

It will be useful to have a uniform way of referring to the singularities allowed and the subcurves
excluded at each stage of the LMMP. Thus, for any o € (2/3—¢, 1], we use the term «a-stable singularity
to refer to any allowed singularity at the given value of o. For example, a {5-stable singularity is
a node, cusp, or tacnode. Similarly, we use the term «-unstable subcurve to refer to any excluded
subcurve at the given value of o. For example, a -5-unstable subcurve is simply an A; or As-
attached elliptic tail. With this terminology, we may say that a curve is a-stable if it has only
a-stable singularities and no a-unstable subcurves. Furthermore, if o € {2/3,7/10,9/11} is a critical
value, we use the term «a.-critical singularity to refer to the newly-allowed singularity at o = o, and
ae-critical subcurve to refer to the newly disallowed subcurves at @ = a. — €. Thus, a %—critical
singularity is a tacnode, and a {5-critical subcurve is an elliptic chain with A;/A;-attaching.

Before plunging into the deformation theory and combinatorics of a-stable curves necessary to
prove Theorem 2.7 and carry out the VGIT analysis in Section 3, we take a moment to contemplate
on the features of a-stability that underlie our arguments and to give some intuition behind the
items of Definition 2.5. The following are the properties of a-stability that are desired and that we
prove to be true for all « € (2/3—¢,1]:

(1) a-stability is deformation open.

(2) The stack M, () of all a-stable curves has a good moduli space, and

(3) The line bundle K +ad+ (1 — )y on M, () descends to an ample line bundle on the good
moduli space.

We will verify (1) in Proposition 2.16 (see also Definition 2.8) and deduce Theorem 2.7. Note that
we disallow As-attached elliptic tails at @ = 7/10, so that A;/Aj-attached elliptic bridges form a
closed locus in M ,,(7/10).

Existence of good moduli space in (2) requires that the automorphism of every closed a-stable
curve is reductive. We verify this necessary condition in Proposition 2.6, and turn around to use it
as an ingredient in the proof of existence for the good moduli space (Corollary 3.3 and Theorem 4.2).

Statement (3) implies that the action of the stabilizer on the fiber of the line bundle K + ad +
(1 — a)? at every point is trivial. As explained in [AFS14], this condition places strong restrictions
on what curves with G,,-action can be a-stable. For example, at @ = 7/10, the fact that a nodally
attached Asjp-atom (i.e., the tacnodal union of a smooth rational curve with a cuspidal rational
curve) is disallowed by character considerations provides different heuristics for why we disallow
Asz-attached elliptic tails. At o = 2/3, the fact that a nodally attached Ajs/s-atom (i.e., the tacnodal
union of a smooth rational curve with a ramphoid cuspidal rational curve) is disallowed by character
considerations explains why we disallow A;/As-attached elliptic chains (as this Az 4-atom is an
Aj /Ay-attached elliptic bridge).

Proposition 2.6. Aut(C, {p;}!',)° is a torus for every a-stable curve (C,{p;}i_ ). Consequently,
Aut(C, {pi}-,) is reductive.

Proof. Automorphisms in Aut(C, {p;}!_;)° do not permute irreducible components. Every geometric
genus 1 irreducible component has at least one special (singular or marked) point, and every geometric
genus 0 irreducible component has at least two special points. It follows that the only irreducible
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components with a positive dimensional automorphism group are rational curves with two special
points, whose automorphism group is G,,. The claim follows. U

Remark. We should note that our proof of Proposition 2.6 uses features of a-stability that hold only
for « > 2/3 — e. We expect that for lower values of «, the yet-to-be-defined, a-stability will allow
for a-stable curves with non-reductive stabilizers. For example, a curve with an As-attached P! can
have G, as its automorphism group. However, we believe that for a correct definition of a-stability,
it will hold to be true that the stabilizers of all closed points will be reductive.

2.2. Deformation openness. Our first main result is the following theorem.

Theorem 2.7. For a € (2/3—¢,1], the stack My () of a-stable curves is algebraic and of finite type
over Spec C. Furthermore, for each critical value o, € {2/3,7/10,9/11}, we have open immersions:

Mgm(ac +e€) = mg,n(CVC) «~ Mg,n(ac —€).

Let Uy, be the stack of flat, proper families of curves (7: C — T,{o;}"), where the sections
{0}, are distinct and lie in the smooth locus of 7, we /T(Z?ﬂai) is relatively ample, and the
geometric fibers of 7 are n-pointed curves of arithmetic genus g with only A-singularities. Since Uy,
parameterizes canonically polarized curves, Uy , is algebraic and finite type over C. Let U, ,(Ay) C
Uy, be the open substack parameterizing curves with at worst Ay, ..., Ay singularities. We will show
that each M () can be obtained from a suitable U, ,(A,) by excising a finite collection of closed
substacks. As a result, we obtain a proof of Theorem 2.7.

Definition 2.8. We let T4, BAk1/Aky WAk denote the following constructible subsets of Ugn:

T4k := Locus of curves containing an Aj-attached elliptic tail.
BAk1/4k .= Locus of curves containing an Ay, /Ay,-attached elliptic chain.

WAk .= Locus of curves containing an Ag-attached Weierstrass chain.

With this notation, we can describe our stability conditions (set-theoretically) as follows:

My n(9/11+¢€) = ugn(Al)

My (9/11) = Uy 1 (As)
Mgn(9/11—¢) = ﬂ (9/11) TA
Mon(7/10) =Uyn(Az) — | T

1€{1,3}
M, (7/10) BA/A
Upn(A)— | 74— | BYY
i€{1,3,4} i,j€{1,4}
Mi,n(2/3—€) = Mg (2/3) = WHh

Here, when we write Mg, (9/11) — T, we mean of course My, (9/11) — (T4 N M ,,(9/11)), and
similarly for each of the subsequent set-theoretic subtractions.

M (7/10—¢€)
Mgn(2/3)
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We must show that at each stage the collection of loci T4*, Bk / A2 and WA that we excise
is closed. We break this analysis into two steps: In Corollaries 2.11 and 2.12, we analyze how
the attaching singularities of an a-unstable subcurve degenerate, and in Lemmas 2.13 and 2.14, we
analyze degenerations of a-unstable curves. We combine these results to prove the desired statement
in Proposition 2.16.

Definition 2.9 (Inner/Outer Singularities). We say that an Ag-singularity p € C' is outer if it lies
on two distinct irreducible components of C, and inner if it lies on a single irreducible component.
(N.B. If k is even, then any Ag-singularity is necessarily inner.)

Suppose C — A is a family of curves with at worst A-singularities, where A is the spectrum of
a DVR. Denote by Cy the geometric generic fiber and by Cy the central fiber. We are interested in
how the singularities of (5 degenerate in Cy. By deformation theory, an Ag-singularity can deform
to a collection of {Ay,, ..., Ay, } singularities if and only if >/, (ki + 1) < k+ 1. In the following
proposition, we refine this result for outer singularities.

Proposition 2.10. Let p € Cy be an A,,-singularity, and suppose that p is the limit of an outer
singularity ¢ € Cy. Then p is outer (in particular, m is odd) and each singularity of Cy that ap-
proaches p must be outer and must lie on the same two irreducible components of Cy as q. Moreover,
the collection of singularities approaching p is necessarily of the form {Aag,+1, Aokyt1,-- - Aokt1}s
where Y (2k; +2) = m + 1, and there exists a simultaneous normalization of the family C — A
along this set of generic singularities.

Proof. Suppose ¢ is an Agy, y1-singularity. We may take the local equation of C around p to be

T '
y? = (z — ay (1)) t2 H(fv —a;(t))™, where 2k; +2 + Zml =m+ 1L
i=2 i=2
By assumption, the general fiber of this family has at least two irreducible components, and it follows
that each m; must be even. Thus, we can rewrite the above equation as

,
(2.1) v* = [ [ (@ — ai(®)**2,

i=1
where ki, ko, ...,k satisfy >°. ;(2k; +2) = m + 1. It now follows by inspection that C5 contains
outer singularities {Aak, 11, A2ky+1,- - -, A2k, +1} joining the same two irreducible components of C
and approaching p € Cj. Clearly, the normalization of the family (2.1) exists and is a union of two
smooth families over A. O

Using the previous proposition, we can understand how the attaching singularities of a subcurve
may degenerate.

Corollary 2.11. Let (r: C = A, {o;}~) be a family of curves in Uy . Suppose that T is a section
of m such that 7() € Cy is a disconnecting Agyy1-singularity of the geometric generic fiber. Then
7(0) € Cy is also a disconnecting Aggy1-singularity.

Proof. A disconnecting singularity 7(7) is outer and joins two irreducible components which do not
meet elsewhere. By Proposition 2.10, 7(7) cannot collide with other singularities of Cy in the special
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fiber and so must remain Asp_1-singularity. The normalization of C along 7 separates C into two
connected components, so 7(0) is disconnecting. O

Corollary 2.12. Let (m: C — A,{o;}l") be a family of curves in Uy,. Suppose that 11, 7o are
sections of m such that (1), 72(7) € Cy are Agg, 41 and Agy,1-singularities of the geometric generic
fiber. Suppose also that the normalization of Cy along 11(7) U 2(7) consists of two connected compo-
nents, while the normalization of Cy along either () or m2(7) individually is connected. Then we
have two possible cases for the limits 71(0) and 12(0):

(1) 71(0) and 12(0) are distinct Agg, 11 and Agk,+1-singularities, respectively, or
(2) 71(0) = 12(0) is an Agk, +2k,+3-Singularity.

Proof. Our assumptions imply that the singularities 71(7) and 72(7) are outer and are the only two
singularities connecting the two connected components of the normalization of C; along 7 (77) Ut (7).
By Proposition 2.10, these two singularities cannot collide with any additional singularities of 5 in
the special fiber. If 71(77) and 72(77) themselves do not collide, we have case (1). If they do collide,
then, applying Proposition 2.10 once more, we have case (2). O

Lemma 2.13 (Limits of tails and bridges).

(1) Let (H — A, 1) be a family in Ui1 whose generic fiber is an elliptic tail. Then the special
fiber (H,p) is an elliptic tail.
(2) Let (H — A,11,72) be a family in Uy 2 whose generic fiber is an elliptic bridge. Then the
special fiber (H,p1,p2) satisfies one of the following conditions:
(a) (H,p1,p2) is an elliptic bridge.
(b) (H,p1,p2) contains an Aj-attached elliptic tail.
(3) Let (H — A, 71) be a family in Us 1 whose generic fiber is a Weierstrass tail. Then the special
fiber (H,p) satisfies one of the following conditions:
(a) (H,p) is a Weierstrass tail.
(b) (H,p) contains an Ay or As-attached elliptic tail, or an Ay/A;-attached elliptic bridge.

Proof. (1) For every (H,p) € Uy 1, the curve H is irreducible, and |2p| defines a degree 2 map to P!
by Riemann-Roch. Hence U; 1 = T4,

For (2), the special fiber (H, p1,p2) is a curve of arithmetic genus 1 with wg(p1 + p2) ample. Since
wr (p1 + p2) has degree 2, H has at most 2 irreducible components. The possible topological types
of H are listed in the top row of Figure 6. We see immediately that any curve with one of the first
three topological types is an elliptic bridge, while any curve with the last topological type contains
an Aj-attached elliptic tail.

Finally, for (3), the special fiber (H,p) is a curve of arithmetic genus 2 with wg(p) ample and
hO(wg (—2p)) > 1 by semicontinuity. Since wy(p) has degree three, H has at most three components,
and the possible topological types of H are listed in the bottom three rows of Figure 6. One sees
immediately that if H does not contain an A; or As-attached elliptic tail or an A;/A;-attached
elliptic bridge, there are only three possibilities for the topological type of H: either H is irreducible
or H has topological type (A) or (B). However, topological types (A) and (B) do not satisfy
hO(wp (—2p)) > 1. Finally, if (H,p) is irreducible, then it must be a Weierstrass tail. Indeed, the
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FIGURE 6. Topological types of curves in U; 2(Ax) and Uz 1 (A ). For convenience,
we have suppressed the data of inner singularities, and we record only the arithmetic
genus of each component and the outer singularities (which are either nodes or tacn-
odes, as indicated by the picture). Components without a label have arithmetic genus
Z€ero.

linear equivalence wy ~ 2p follows immediately from the corresponding linear equivalence on the
general fiber. O

Lemma 2.14 (Limits of elliptic chains). Let (H — A, 11, 72) be a family in Usy—1 2 whose generic
fiber is an elliptic chain of length r. Then the special fiber (H,p1,p2) satisfies one of the following
conditions:

(a) (H,p1,p2) contains an Ai/Ai-attached elliptic chain of length < r.
(b) (H,p1,p2) contains an Ai-attached elliptic tail.

Proof. We will assume (H,p1,p2) contains no Aj-attached elliptic tails, and prove that (a) holds.
By Lemma 2.13, this assumption implies that if (E,q1,g2) is a genus one subcurve of H, nodally
attached at ¢; and ¢o, and wg(q1 + ¢2) is ample on E, then (E, q1,¢q2) is an A;/A;-attached elliptic
bridge.

To begin, let ~1,...,7v-—1 be sections picking out the tacnodes in the general fiber at which the
sequence of elliptic bridges are attached to each other. By Corollary 2.11, the limits v1(0), . ..,v.—1(0)
remain tacnodes, so the normalization of ¢: H—oH along 71, ...,7r—1 is well-defined and we obtain
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r flat families of 2-pointed curves of arithmetic genus 1, i.e. we have

,
H= H(gi;UQi—1702i)7
i=1

where o1 = 71, 09, 1= T2, and ¢ 1(v;) = {092i,02i11}. The relative ampleness of wH/A(Tl + 79)
implies

(1) wg, (p1 + 2p2),wE, (2p2r—1 + p2r) ample on Ey, E, respectively.

(2) wg,(2p2i—1 + 2p2;) ample on E; for i =2,...,r — 1.
It follows that for each 1 < ¢ < r, either (E;, p2;i—1,p2i) is an elliptic bridge or one of the following
must hold:

(a) (Ei,p2i-1,p2) = (PY,p2i—1,dh; 1) U(E}, q2i—1,p2)/(dh_1 ~ qi—1), where (E., q2;—1, p2;) is an
elliptic bridge.

(b) (Ei,p2i—1,p2i) = (Bl p2i—1,q2i) U (PY, ¢b;, p2i)/(q2i ~ ¢b;), where (E!, g2i—1,p2;) is an elliptic
bridge.

(¢) (Ei,p2i-1,p2i) = (PY,poi—1,db; 1) U (Bl qoi-1,q2:) U (PY, ¢, p2i)/(dhi 1 ~ @oi-1,q2i ~ qb;),
where (E!, q2;—1, p2i) is an elliptic bridge.

(3
In the cases (a), (b), (c) respectively, we say that E; sprouts on the left, right, or left and right. Note
that if Fy or E, sprouts at all, then F; or E, contains an A;/Aj-attached elliptic bridge. Similarly,
if E; sprouts on both the left and right (2 < i < r — 1), then E; contains an A;/A;-attached elliptic
bridge. Thus, we may assume without loss of generality that F; and FE, do not sprout and that
E; (2 <i < r—1) sprouts on the left or right, but not both. We now observe that any collection
{Es, ..., Esy+} such that Es sprouts on the left (or s = 0), Es1+ sprouts on the right (or s + ¢ =r),
and E}, does not sprout for s < k < s+ t, contains an A /A;-attached elliptic chain. O

Lemma 2.15 (Limits of Weierstrass chains). Let (H — A, 7) be a family in Us, 1 whose generic fiber
is a Weierstrass chain of length r. Then the special fiber satisfies one of the following conditions:

(a) (H,p) contains an A;-attached Weirstrass chain of length < r
(b) (H,p) contains an Ay /A1-attached elliptic chain of length < r.
(c) (H,p) contains an Ay or As-attached elliptic tail.

Proof. As in the proof of Lemma 2.14, let 7q,...,7,—1 be sections picking out the attaching tacn-
odes in the general fiber. By Corollary 2.11, the limits 1(0),...,7.—1(0) remain tacnodes, so the
normalization ¢: H—H along 71, ...,7-—1 is well-defined. We obtain r — 1 families of 2-pointed
curves of arithmetic genus 1 and a single family of 1-pointed curves of genus 2:
_ r—1
H=[](& 02i1,00) [[(Er 0201)
i=1
where o7 := 7 and (ﬁ*l(%‘) = {UQi,UQZ‘+1}.
As in the proof of Lemma 2.14, we must consider the possibility that some FE;’s sprout in the
special fiber. If E,. sprouts on the left, then FE, itself contains a Weierstrass tail, so we may assume
that this does not happen. Now let s < r be maximal such that F; sprouts. If Fs sprouts on the
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left, then Fs U FEs1q U...U E, gives a Weierstrass chain in the special fiber. If E4 sprouts on the
right, then arguing as in Lemma 2.14 produces an A;/A;j-attached elliptic chain in FyU...UFE,. O

Proposition 2.16.

(1) T4 UTAn is closed in Uy, for any odd m.

(2) BA/A s closed in Uy, — Uiegi3) TA

(3) BAm/Am and BM/Am are closed in Uy p(Am) — T4 — BA/AY for any even m.
(4) WAm is closed in Uy n(Ap) — Uieq1.3) TA — BAYAY for any odd m.

Proof. The given loci are obviously constructible, so it suffices to show that they are closed under
specialization.

For (1), let (C — A, {0;}",) be a family in ¢, whose generic fiber lies in 742t+1. Possibly after
a finite base-change, let 7 be the section picking out the attaching Asji-singularity of the elliptic
tail in the generic fiber. By Corollary 2.11, the limit 7(0) is also Agj1-singularity. Consider the
normalization C' — C along 7. Let H C C be the component whose generic fiber is an elliptic tail
and let a be the preimage of 7 on H. Then wy((k + 1)«) is relatively ample. We conclude that
either wy,(«(0)) is ample, or a(0) lies on a rational curve attached nodally to the rest of Hy. In
the former case, (Hp,«(0)) is an elliptic tail by Lemma 2.13, so Cjy contains an elliptic tail with
Agkr1-attaching, as desired. In the latter case, Hy contains an Aj-attached elliptic tail. We conclude
that Cy € T4 U TA2k+1, as desired.

For (2), let (C — A, {o;}",) be a family in U, , whose generic fiber lies in B41/41. Possibly after
a finite base change, let 7, 79 be the sections picking out the attaching nodes of an elliptic chain in
the general fiber. By Proposition 2.10, 71(0) and 72(0) either remain nodes, or, if the elliptic chain
has length 1, can coalesce to form an outer As-singularity. In either case there exists a normalization
of C along 71 and 73. Since C5 becomes separated after normalizing along 71 and 72, we conclude
that the limit of the elliptic chain is an connected component of Cy attached either along two nodes,
or, when r = 1, along a separating As-singularity. In the former case, Cy has an elliptic chain by
Lemma 2.14. In the latter case, Cy has arithmetic genus 1 connected component As-attached to the
rest of the curve, so that Cy € T4t U T4,

The proof of (3) is essentially identical to (2), making use of the observation that in U, ,,(Ay), the
limit of an Ag-singularity must be an Ag-singularity. The proof of (4) is essentially identical to (1),
using Lemma 2.15 in place of Lemma 2.13. ([l

Proof of Theorem 2.7. For a. = 9/11,7/10, and 2/3, Proposition 2.16 implies that M, () is ob-
tained by excising closed substacks from Uy ,(As2), Uy n(As), and Uy n(As), respectively. Because

Mg (e +€) = Mypn(ac) \ {the locus of curves with a,-critical singularities},

we conclude that M ,(a.+€) < M, n(a.) is an open immersion. Finally, applying Proposition 2.16
once more, we see that Mg, (a. — €) is obtained by excising closed substacks from M, ,(c.). O
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2.3. Properties of a-stability. In this section, we record several elementary properties of a-
stability that will be needed in subsequent arguments. Recall that if (C,{p;}I";) is a Deligne-
Mumford stable curve and ¢ € C' is a node, then the pointed normalization (C, {p;}}'_{,q1,¢2) of C

at ¢ is Deligne-Mumford stable. The same statement holds for a-stable curves.

Lemma 2.17. Suppose (C,{p;}I",) is an a-stable curve and g € C is a node. Then the pointed
normalization (C,{pi}l'1,q1,q2) of C at q is a-stable.

Proof. Follows immediately from the definition of a-stability. O

Unfortunately, the converse of Lemma 2.17 is false. Nodally gluing two marked points of an a-
stable curve may fail to preserve a-stability if the two marked points are both on the same component,
or both on rational components — see Figure 7. The following lemma says that these are the only
problems that can arise.

Lemma 2.18.
(1) If (51, {pi}i-1,q1) and (52, {pi}i-1,q2) are a-stable curves, then

(Cr ApiYiy a1) U (Co, {pitiey, @2) /(@1 ~ o)
18 a;stable.
(2) If (C.{pi}i_q,q1,q2) is an a-stable curve, then

(Co Py, a1, 02) /(@1 ~ ¢2)

s a-stable provided one of the following conditions hold:
e g1 and qo lie on disjoint irreducible components of 6,
e ¢ and gy lie on distinct irreducible components ofCN', and at least one of these components
18 not a smooth rational curve.

LI

FIGURE 7. In (A), two marked points on a genus 0 tail (resp., two conjugate points
on an elliptic tall) are glued to yield an elliptic tail (resp., a Weierstrass tail). In (B),
two marked points on distinct rational components are glued to yield an elliptic bridge.

Proof. Let C := (G,Q1,Q2)/(Q1 ~ q2), and let ¢: C — C be the gluing morphism which identifies
q1,q2 to a node ¢ € C. It suffices to show that if £ C C is an a-unstable curve, then ¢~!(E) is an
a-unstable subcurve of C. The key observation is that any a-unstable subcurve E has the following
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property: If E1, Fs C E are two distinct irreducible components of F, then the intersection F1 N Ea
never consists of a single node. Furthermore, if one of E; or Ej is irrational, then the intersection
FEy1 N Ey never contains any nodes. For elliptic tails, this statement is vacuous since elliptic tails
are irreducible. For elliptic and Weierstrass chains, it follows from examining the topological types
of elliptic bridges and Weierstrass tails (see Figure 6). From this observation, it follows that no
a-unstable £ C C can contain both branches of ¢g. Indeed, the hypotheses of (1) and (2) each
imply that either the two branches of the node ¢ € C lie on distinct irreducible components whose
intersection is precisely g, or else that that the two branches lie on distinct irreducible components,
one of which is irrational. Thus, we may assume that £ C C' is disjoint from ¢ or contains only one
branch of q.

If E C C is disjoint from ¢, then ¢! is an isomorphism in a neighborhood of E and the statement
is clear. If £ C C contains only one branch of the node ¢, then ¢ must be an attaching point of £. We
may assume without loss of generality that E contains the branch labeled by ¢;. Now ¢~ }(E) — E
is an isomorphism away from ¢; and sends ¢; to the node ¢. Since an a-unstable curve with nodal
attaching is also a-unstable with marked point attaching, ¢~!(E) is an a-unstable subcurve of C. O

Corollary 2.19.

(1) Suppose that (C,{pi}i—1,q1) is & -stable and (E,q}) is a an elliptic tail. Then
(CUE {pi}1)/(q1 ~ q}) is Z-stable.

(2) Suppose (C,{pi}i—1,q1,q2) is 15-stable and (E, q},q5) is an elliptic chain. Then
(CUEApi}i))/ (@ ~ di, a2 ~ ¢3) is f5-stable.

(3) Suppose (C1,{pi}i™1,q1) and (Co, {pi}1 ", q2) are-stable and (E, q}, ¢5) is an elliptic chain.
Then (C1UCy U E {p;i}?y)/(q1 ~ ¢}, q2 ~ ¢b) is 15-stable.

(4) Suppose (C,{pi}i—i,q1) is 15-stable and (E,q},q5) is an elliptic chain.
Then (CUE, {pi}i'_1,q5)/(q1 ~ q1) is 15-stable.

(5) Suppose that (C,{pi}7_1,q1) is 2-stable and (E,q}) is a Weierstrass chain.
Then (CUE, {p;i}}'1)/(q1 ~ q}) is 3-stable.

Proof. (1), (3), (4), and (5) follow immediately from Lemma 2.18. For (2), one must apply Lemma
2.18 twice: First apply Lemma 2.18(1) to glue ¢; ~ ¢, then apply Lemma 2.18(2) to glue g2 ~ ¢b,
noting that if g2 and ¢4 do not lie on disjoint irreducible components of (C'U E, {p;} 1, q2,¢5)/(q1 ~
¢;), then E must be an irreducible genus one curve, so ¢4 does not lie on a smooth rational curve. [

Next, we consider a question which does not arise for Deligne-Mumford stable curves: Suppose
(C,{pi}}—,) is an a-stable curve and ¢ € C is a non-nodal singularity with m € {1,2} branches.
When is the pointed normalization (C, {piti—1,{qi}>,) of C at q a-stable? One obvious obstacle is
that wx(X7_p; + ¥{2,¢;) need not be ample. Indeed, one or both of the marked points ¢; may lie
on a smooth P! meeting the rest of the curve in a single node. We thus define the stable pointed
normalization of (C, {p;}I'_,) to be the (possibly disconnected) curve obtained from C by contracting
these semistable P!’s. This is well-defined except in several degenerate cases: First, when (g,n) =
(1,1),(1,2),(2,1), the stable pointed normalization of a cuspidal, tacnodal, and ramphoid cuspidal
curve is a point. In these cases, we regard the stable pointed normalization as being undefined.
Second, in the tacnodal case, it can happen that (C, {pi}i=1,{¢i}>,) has two connected components,
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one of which is a smooth 2-pointed P'. In this case, we define the stable pointed normalization to
be the curve obtained by deleting this component and taking the stabilization of the remaining
connected component.

In general, the stable pointed normalization of an a-stable curve at a non-nodal singularity need
not be a-stable. Nevertheless, there is one important case where this statement does hold, namely
when a. is a critical value and ¢ € C' is an a,-critical singularity.

Lemma 2.20. Let (C, {p;}I'_;) be an a.-stable curve, and suppose q € C' is an a.-critical singularity.
Then the stable pointed normalization of (C,{pi}’_,) at ¢ € C is a-stable if and only if (C,{pi}’)
18 «.-stable.

Proof. Follows from the definition of a-stability by an elementary case-by-case analysis. O

2.4. a.-closed curves. We now give an explicit characterization of the closed points of ﬂgm(ac)
when a. € {9/11,7/10,2/3} is a critical value (see Theorem 2.23).

Definition 2.21 (a.-atoms).

(1) A Z-atom is a 1-pointed curve of arithmetic genus one obtained by gluing
Spec Clx,y]/(y? — ) and Spec C[n] via x = n~2, y = n~3, and marking the point n = 0.
(2) A %-atom is a 2-pointed curve of arithmetic genus one obtained by gluing
Spec Clz, y]/(y* — ) and Spec C[n1] [ [ Spec C[na] via z = (n;*,ny'), y = (ny?, —ny?), and
marking the points ny = 0 and ny = 0.
(3) A 2-atom is a 1-pointed curve of arithmetic genus two obtained gluing
Spec Clx,y]/(y? — x°) and Spec C[n] via x = n~2, y = n~°, and marking the point n = 0.
We will often abuse notation by simply writing E to refer to the a.-atom (FE,q) if a. € {2/3,9/11}
(resp.. (E,q1, ) if @, = 7/10).
Every a.-atom E satisfies Aut(E) ~ G,,, where the action of G,, = Spec C[t,t™!] is given by
For a, =9/11: z— 72z, y — t 3y, n— tn.
(2.2) For a, = 7/10: x>t 1z, y > t 2y, ny — tng, ng — tno.

For o, =2/3: z— 2z, y t_5y, n — tn.

A2 A4

-~ A__ y M/

q q1 q2

FIGURE 8. A Z-atom, -atom, and 2-atom, respectively.

In order to describe the closed points of M, (c.) precisely, we need the following terminology.
We say that C' admits a decomposition C' = C1 U ---UC, if C4,...,C, are proper subcurves whose
union is all of C', and either C; N Cj = @ or C; meets Cj nodally. When (C, {p;}!_;) is an n-pointed
curve, and C = C; U---UC(C, is a decomposition of C, we always consider C; as a pointed curve by
taking as marked points the subset of {p;}?_; supported on C; and the attaching points C; N (C\Cy).
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Definition 2.22 (a.-closed curves). Let a. € {2/3,7/10,9/11} be a critical value. We say that an
n-pointed curve (C,{p;}7_ ;) is ac-closed if there is a decomposition C = K U Ey U --- U E,., where

(1) Eq,...,E, are a.-atoms.
(2) K is an (a.+e€)-stable curve containing no nodally-attached a,-tails.
(3) K is a closed curve in the stack of (a.+e€)-stable curves.

We call K the core of (C,{pi}},), and we call the decomposition C = K UE;U---UE, the canonical
decomposition of C. Of course, we consider K as a pointed curve where the set of marked points is
the union of {p;}I" ;N K and KN(C \ K). Note that we allow the possibility that K is disconnected
or empty.

We can now state the main result of this section.

Theorem 2.23 (Characterization of a.-closed curves). Let . € {9/11,7/10,2/3} be a critical value.
An ac-stable curve (C,{p;}?_) is a closed point of Mgn(ce) if and only if (C,{pi}1;) is ac-closed.

To prove the above theorem, we need several preliminary lemmas.

Lemma 2.24.

(1) Suppose (E,q) is an elliptic tail. Then (E,q) is a closed point of My 1(9/11) if and only if
(E,q) is a & -atom.

(2) Suppose (E,q1,q2) is an elliptic bridge. Then (E,q1,q2) is a closed point of My 2(7/10) if
and only if (C,q1,q2) is a {5-atom.

(3) Suppose (E,q) is a Weierstrass tail. Then (C,q) is a closed point of Ma1(2/3) if and only if
(C,q) is a 3-atom.

Proof. Case (1) follows from the observation that M 1(9/11) =~ [C%/G,,], where G,, acts with weights
4 and 6. Case (2) follows from the observation that Mj 2(7/10) ~ [C3/G,,], where G,, acts with
weights 2, 3, and 4. The proofs of these assertions parallel our argument in case (3) below, so we
leave the details to the reader.

We proceed to prove case (3). First, we show that if (F,q) is any Weierstrass tail, then (FE,q)
admits an isotrivial specialization to a 2-atom. To do so, we can write any Weierstrass genus 2 tail
as a degree 2 cover of P! with the equation on P(1,3,1) given by

y2 =2z + a3x3z3 + a2x224 + alxz5 + aozﬁ

where a; € C, and the marked point ¢ corresponds to y = z = 0. Acting by A- (z,y, 2) = (z, Ay, \22),
we see that this cover is isomorphic to

y? = 202 + Magz 23 4+ Nasa?2? + N8ajz2® + M0q2°
for any A € C*. Letting A — 0, we obtain an isotrivial specialization of (E,q) to the double cover
y? = 2°z, which is a 2-atom.

Next, we show that if (F,q) is a 2-atom, then (E,q) does not admit any nontrivial isotrivial
specializations in Ma1(2/3). Let (£ — A, o) be an isotrivial specialization in Ma 1(2/3) with generic
fiber isomorphic to (E,q). Let 7 be the section of £ — A which picks out the unique ramphoid cusp
of the generic fiber. Since the limit of a ramphoid cusp is a ramphoid cusp in Ma1(2/3), 7(0) is also
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ramphoid cusp. Now let 7: & — € be the simultaneous normalization of & along 7, and let 7 and
o be the inverse images of 7 and o respectively. Then (5~ — A,7,0) is an isotrivial specialization
of 2-pointed curves of arithmetic genus 0 with smooth general fiber. To prove that the original
isotrivial specialization is trivial, it suffices to prove that (g — A,7,0) is trivial, i.e. we must show
that the special fiber is smooth (equivalently, irreducible). The fact that we (o) is relatively ample
on & implies that wz A (37 + o) is relatively ample on &, which implies that the special fiber of € is
irreducible. O

Lemma 2.25. Suppose (C,{p;}!"_;) is a closed point of My n(cc+e€). Then (C,{pi}"_,) remains
closed in Mg n(a) if and only if (C,{p;}*_;) contains no nodally attached c.-tail.

Proof. We prove the case o, = 2/3 and leave the other cases to the reader. To lighten notation, we
often omit marked points {p;}; in the rest of the proof.

First, we show that if (C,{p;},) has Aj-attached Weierstrass tail, then it does not remain
closed in Mg ,(2/3). Suppose we have a decomposition C' = K U Z, where (Z, q) is an A;-attached
Weierstrass tail. By Lemma 2.24, (Z,q) admits an isotrivial specialization to a 2-atom (E,q1). We
may glue this specialization to the trivial family K x A to obtain a nontrivial isotrivial specialization
C ~» K UE, where E is nodally attached at ¢;. By Lemma 2.18, K U E is 2-stable, so this is a
nontrivial isotrivial specialization in M, ,,(2/3).

Next, we show that if (C,{p;};) has no nodally-attached Weierstrass tails, then it remains
closed in M97n(2/3). In other words, if there exists a nontrivial isotrivial specialization C' ~» Cj,
then C' necessarily contains a nodally-attached Weierstrass tail. To begin, note that the special
fiber Cy of the nontrivial isotrivial specialization C — A must contain at least one ramphoid cusp.
Otherwise, (C — A, {0;}"_;) would constitute a nontrivial, isotrivial specialization in M, (2/3 + €),
contradicting the hypothesis that (C, {p;}!"_) is closed in My ,,(2/3+¢€). For simplicity, let us assume
that the special fiber Cjy contains a single ramphoid cusp ¢. Locally around this point, we may write
C as

y? = 2 + az(t)x® + ax(t)z? + a1 () + ao(t),
where t is the uniformizer of A at 0 and a;(0) = 0. By [CML13, Section 7.6], after possibly a finite
base change, there exists a (weighted) blow-up ¢: C — C such that the special fiber 50 is isomorphic
to the normalization of C at ¢ attached nodally to the curve T, where T is defined by an equation
y? = 2 + b3x32? + box?2® + biwz? + bpz® on P(2,5,2) for some [b3 : by : by : bg] € P(4,6,8,10)
(depending on the a;(t)) and such that T is attached to C at [z : y : 2] = [1 : 0 : 1]. Evidently,
T is a genus 2 double cover of P! = P(2,2) via the projection [x : y : 2] + [x : y] and [1 : 0 : 1]
is a ramification point of this cover. It follows that (~70 has a Weierstrass tail. The special fiber of
C is isomorphic to the stable pointed normalization of Cy at ¢, together with a nodally attached
Weierstrass tail. By Lemma 2.20 and Corollary 2.19, (50, {pi}l",) is a-stable. Since it contains no
ramphoid cusps, it is also (a.+e€)-stable. By hypothesis, (C, {p;}!_) is closed in M, ,(a+¢€), so the
family (C — A, {o;}1) must be trivial. This implies that the generic fiber (C,{p;}?_;) must have
a nodally-attached Weierstrass tail. ([l

The following lemma says that one can use isotrivial specializations to replace a.-critical singu-
larities and a.-tails by a.-atoms.
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Lemma 2.26. Let (C, {p;}!'_,) be an n-pointed curve, and let E be the co.-atom.

(1) Suppose q € C is an ac-critical singularity. Then there exists an isotrivial specialization
C ~ Cy=CUE to an n-pointed curve Cy which is the nodal union of E and the stable pointed
normalization C of C at q along the marked point(s) of E and the pre-image(s) of q in C.

(2) Suppose C' decomposes as C = K U Z, where Z is an a.-tail. Then there exists an isotrivial

specialization C ~~ Cy = K UFE to an n-pointed curve Cy which is the nodal union of K and E along
the marked point(s) of E and KN Z.

Proof. We prove the case a. = 2/3, and leave the remaining two cases to the reader. For (1), let
C x A be the trivial family, let C — C x A be the normalization along ¢ x A, and let C" — C be
the blow-up of C at the point lying over (¢,0). Let 7 denote the strict transform of ¢ x A on c’ ,
and note that 7 passes through a smooth point of the exceptional divisor. A local calculation, as
in the proof of Proposition 4.18, shows that we may ‘recrimp.” Namely, there exists a finite map
P C' — ' such that 1) is an isomorphism on - 7, so that C’ has a ramphoid cusp along 1) o T,
and the ramphoid cuspidal rational tail in the central fiber is an a.-atom, i.e., has trivial crimping.
Blowing down any semistable P!’s in the central fiber of C’ — A (these appear, for example, when ¢
lies on an unmarked P! attached nodally to the rest of the curve), we arrive at the desired isotrivial
specialization. For (2), note that there exists an isotrivial specialization (Z, q1) ~ (E, q1) by Lemma
2.24. Gluing this to the trivial family (K x A, ¢ x A) gives the desired isotrivial specialization. [

Proof of Theorem 2.23. We consider the case o, = 2/3, and leave the other two cases to the reader.
First, we show that every Z-closed curve (C,{p;}!",) is a closed point of Mg ,(2/3). Let (C —
A,{o;}" ;) be any isotrivial specialization of (C,{p;}" ;) in M, (2/3); we will show it must be
trivial. Let C = K U Eq U ---U E, be the canonical decomposition and let ¢; = K N E;. Each ¢; is
a disconnecting node in the general fiber of C — A, so ¢; specializes to a node in the special fiber
by Corollary 2.11. Possibly after a finite base change, we may normalize along the corresponding
nodal sections to obtain isotrivial specializations K and &1, ...,&.. By Lemma 2.17, K is a family
in My_2;n4-(2/3) and &1, ..., &, are families in M2 1(2/3). Since K contains no Weierstrass tails in
the general fiber, it is trivial by Lemma 2.25. The families &1, ..., &, are trivial by Lemma 2.24. It
follows that the original family (C — A, {o;}},) is trivial, as desired.

Next, we show that if (C,{p;}?_;) € Mgn(2/3) is a closed point, then (C,{p;}?"_;) must be 2-
closed. First, we claim that every ramphoid cusp of C' must lie on a nodally attached %—atom.
Indeed, if ¢ € C is a ramphoid cusp which does not lie on a nodally attached 2-atom, then Lemma
2.26 gives an isotrivial specialization (C,{p;}}'_;) ~» (Co,{pi}?_;) in which Cy sprouts a nodally
attached 2-atom at q. Note that (Co, {p;}j—,) is 3-stable by Lemma 2.20 and Corollary 2.19, so
this gives a nontrivial isotrivial specialization in M, ,(2/3). Second, we claim that C' contains no
nodally-attached Weierstrass tails which are not 2-atoms. Indeed, if it does, then Lemma 2.26 gives
an isotrivial specialization (C,{p;}i~;) ~> (Co,{pi}?—;) which replaces this Weierstrass tail by a 2-
atom. Note that (Co, {p;}}) is 2-stable by Lemma 2.17 and Corollary 2.19, so this gives a nontrivial
isotrivial specialization in ﬂg,n(2/3). It is now easy to see that C' is 2-closed. Indeed, if E1, ..., E,
are the nodally attached 2-atoms of C, then the complement K has no ramphoid cusps and no
nodally-attached Weierstrass tails. Since K is 2-stable and has no ramphoid cusps, it is (3-+¢)-stable.
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Furthermore, K must be closed in M, ,(2/3+¢), since a nontrivial isotrivial specialization of K in
Mg, (2/3+¢€) would induce a nontrivial, isotrivial specialization of (C,{p;}";) in My, (2/3). We
conclude that (C, {p;}I~,) is 2-closed as desired. O

2.5. Combinatorial type of an a.-closed curve. In the previous section, we saw that every a.-
stable curve which is closed in ﬂg,n(ac) has a canonical decomposition C = K UFE;U---U E, where
FEq, ..., E, are the a.-atoms of C. We wish to use this decomposition to compute the local VGIT
chambers associated to C. For the two critical values . € {7/10,9/11}, the pointed curve K does
not have infinitesimal automorphisms and does not affect this computation. However, if o, = 2/3,
then K may have infinitesimal automorphisms due to the presence of rosaries (see Definition 2.27),
which leads us to consider a slight enhancement of the canonical decomposition. Once we have taken
care of this wrinkle, we define the combinatorial type of an a.-closed curve in Definition 2.33). The
key point of this definition is that it establishes the notation that will be used in carrying out the
local VGIT calculations in Section 3.

Definition 2.27 (Rosaries). We say that (R, p1,p2) is a rosary of length ¢ if there exists a surjective
gluing morphism

¢
vi JI(Ri q2i-1, 026) = (R, p1,p2)

i=1
satisfying:
(1) (Ri,q2i-1,q2:) is a 2-pointed smooth rational curve for i =1,..., ¢.
(2) ~ is an isomorphism when restricted to R; \ {q2i—1,q2i} for i =1,... L.

(3) v(q2i) = v(q2i+1) is an As-singularity fori =1,...,¢ — 1.

(4) v(q1) = p1 and y(g2¢) = p2.
We say that (C,{p;}!"_,) has an Ay, /Ay,-attached (open) rosary of length ¢ if there exists a gluing
morphism v: (R,p1,p2) = (C,{pi}I;) such that

(a) (R,p1,p2) is a rosary of length £.

(b) v(pi) is an Ag,-singularity of C, or k; = 1 and ~(¢;) is a marked point of (C, {p;}I ;).

We say that C' is a closed rosary of length ¢ if C has Az/As-attached rosary v: (R,p1,p2) — C of
length ¢ such that y(p1) = v(p2) is an As-singularity of C.

Remark 2.28. A rosary of even length is an elliptic chain and thus can never appear in a (7/10 — ¢€)-
stable curve.

Note that if (R, p1,p2) is a rosary, then Aut(R,p1,p2) ~ G,,. Hassett and Hyeon showed that all
infinitesimal automorphisms of (7/10 — €)-stable curves are accounted for by rosaries [HH13, Section
8]. In Proposition 2.29 and Corollary 2.30, we record a slight refinement of their result.

Proposition 2.29. Suppose (C, {p;}?,) is (7/10 — €)-stable with Aut(C, {p;}"_,)° ~ GF,. Then one
of the following holds:

(1) There exists a decomposition C' = Cy U Ry U ---U Ry, where each R; is an A;/A;-attached
rosary of odd length, and Cy contains no Ay /A1-attached rosaries. Note that we allow Cy to
be empty.
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0

0

FIGURE 9. Curve (A) is a rosary of length 3. Curve (B) is a closed rosary of length 4.

(2) k=1 and C is a closed rosary of even length.

Proof. Consider first the case in which C' is simply a chain of rational curves, say Ry, ..., Ry, where
R; meets R;11 in a single point, and Rj; meets R; in a single point. These attaching points may be
either nodes or tacnodes. If every attaching point is a tacnode, then we are in case (2). If some of
the attaching points are nodes, then the set of rational curves between any two consecutive nodes
in the chain are tacnodally attached and thus constitute A;/A;-attached rosary. In other words, we
are in case (1) with Cp empty.

From now on, we may assume that not all components of C are rational curves meeting the rest
of the curve in two points. In particular, there exist components on which Aut(C,{p;}I")° acts
trivially. We proceed by induction on the dimension of Aut(C, {p;}_,)°, noting that if dimension is
0, there is nothing to prove.

Note that if Aut(C, {p;}}_;)° acts nontrivially on a component 77 and 7; meets a component S
on which Aut(C, {p;}}'_;)° acts trivially, then their point of attachment must be a node (and not a
tacnode). This follows immediately from the fact that an automorphism of P! which fixes two points
and the tangent space at one of these points must be trivial. Now let 77,...,T; be the maximal
length chain containing 77 on which Aut(C, {p;},)° acts nontrivially; we have just argued that T}
and Ty must be attached to the rest of C' at nodes. If each T is tacnodally attached to T;y1, then
R:=TyU---UTy is an Aj/A;-attached rosary in C. If some T; is attached to T;41 at a node, then
choosing minimal such i, we see that R := T7U---UT; is an A; /A;-attached rosary. Thus, C contains
an Aj/Aj-attached rosary R, necessarily of odd length by Remark 2.28. If it is not all of C, then
the dimension of Aut(C' \ R, {p;}!'_,)° is one less than the dimension of Aut(C, {p;}}_,)°, so we are
done by induction. O

Corollary 2.30. Suppose (C,{pi}1,) is a closed (7/10—¢)-stable curve with Aut(C, {p;}?,)° ~ GF,.
Then there exists a decomposition C' = Cy U Ry U --- U Ry, where each R; is Ay/A;-attached rosary
of length 3.

Proof. This follows immediately from Proposition 2.29 and two observations:

e If R is a rosary of odd length ¢ > 5, then R admits an isotrivial specialization to the nodal
union of a rosary of length 3 and length ¢ — 2.



24 ALPER, FEDORCHUK, SMYTH, AND VAN DER WYCK

e A closed rosary of even length ¢ admits an isotrivial specialization to the nodal union of ¢/2
rosaries of length 3 arranged in a closed chain.

O

In order to compute the local VGIT chambers for an a.-closed curve, it will be useful to have the
following notation.

Definition 2.31 (Links). A L-link of length ¢ is a 2-pointed curve (E, p1, p2) which admits a de-
composition
E=FU---UE, such that:

(1) (Ej,qj-1,qj) is a {5-atom for j =1,...,¢.
(2) ¢j:=E;jNEj;1isanodefor j=1,...,0—1.
(3) qo := p1 is a marked point of E; and ¢y := po is a marked point of Ej.

A 2-link of length € is a 1-pointed curve (E,p) which admits a decomposition
EFE=RU---UR;_1UE such that:

(1) (Rj,qj—1,q;5) is a rosary of length 3 for j =1,...,4—1, and (Ey, q) is a 3-atom.
(2) ¢j :==RjNRj;41isanode for j =1,...,0 -2, and g1 := Ry_1 N Ey is a node.
(3) qo := p is a marked point of Rj.

When we refer to a 5-link (E,p1,p2) (resp., 2-link (E,p)) as a subcurve of a larger curve, we
always take it to be A;/Aj-attached at p; and py (resp., at p).

A3 A3 A3
P De

FIGURE 10. Curve (A) (resp., (B)) is a §-link (resp., Z-link) of length 3. Each
component above is a rational curve.

Now let C = KU FE{U---U E, be the canonical decomposition of an a.-closed curve C, where K
is the core and E;’s are o-atoms. Observe that as long as K # @, then each ;5-atom (resp., 2-atom)
E; of a {L-closed (resp., 2-closed) curve is a component of a unique 5-link (resp., 2-link) of maximal
length. When a, = 2/3, we make the following definition.
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Definition 2.32 (Secondary core for a, = 2/3). Suppose C = K U Ey U...U E, is the canonical
decomposition of an 2-closed curve C. For each 2-atom Ej, let L; be the maximal length Z-link

containing F;. We call K/ := C' ~\ (L1 U---UL;) the secondary core of C, which we consider as a
curve marked with the points ({p;}?_; N K') U (K'N(C ~\ K'). The secondary core has the property
that any A;/A;j-attached rosary R C K| satisfies RN L; =g fori=1,...,r.

We can now define combinatorial types of a.-closed curves. We refer the reader to Figure 11 for
a graphical accompaniment of the following definition.

Definition 2.33 (Combinatorial Type of a,.-closed curve).

e A 2_closed curve (C,{p;}I~,) has combinatorial type

(A) If the core K is nonempty. In this case,

(B)
(©)

C=KUEiU---UE,

where each E; is a 2-atom meeting K at a single node g;.

If (g,n) = (2,0) and C' = E; U E; where E; and E» are 2-atoms meeting each other in a
single node g € C.

If (g,n) = (1,1) and C = E; is a 2-atom.

e A L-closed curve (C,{p;}! ;) has combinatorial type

10

(A)

(B)
(©)

If the core is nonempty. In this case, we have
C=KULU---UL ULy U---ULp44

where
efFori=1,...,rm L; = U?"'Zl E; ; is a 7/10-link of length ¢; meeting K at two distinct
nodes. In particular, E;; meets K at a node ¢; 0, F; ¢, meets K at a node ¢;¢,, and E; ;
meets Fj; ;11 at a node g; ;.
efori=r+1,...;r+s L;= Ug;l E; ; is a 7/10-link of length /; meeting K at a single
node and terminating in a marked point. In particular, F; ; meets K at a node g; o, and
Ei,j meets Ei,j+1 at a node qi,j-
If n =2 and (C,p1,p2) is a 7/10-link of length g, i.e. C = E; U---U E, where each E; is a
1—70—atom, E; meets E; 1 at a node ¢;, p1 € E1 and p2 € E,.
If n =0 and C is a 7/10-link of length g — 1, whose endpoints are nodally glued. In other
words, C'= E1U---UE,_1, where each F; is a 1—70—atom, E; meets Ej11 at a node gj, and F,
meets E;_1 at a node qp.

e A 2-closed curve (C,{p;}I~,) has combinatorial type

(A)

If the secondary core K’ is nonempty. In this case, we write
C=KULU---UL,

where for ¢ = 1,...,r, L; = U?"Z_ll R;; U Ej; is a 2-link of length ¢;. In particular, E; is a
%—atom and each R;; a length 3 rosary such that R;; meets K’ at a node gi0, R j meets
R; j+1 at a node g¢; ;, and R;¢,_1 meets E; in a node ¢; ¢,—1. We denote the tacnodes of the
rosary I; ; by 7; ;1 and 7 ; 2, and the unique ramphoid cusp of E; by &;.
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(B) If n =1, g = 20 and (C,p1) is a 2-link of length ¢, i.e. C' = Ry U---U Ry_; U Ey, where
Ry,..., Ry are rosaries of length 3 with p; € Ry and Ey is a 2-atom. For j =1,...,0—1,
we label the tacnodes of R; as 71 and 72, the node where R; intersects R; 1 as g;, the
node where R, 1 intersects Fy as qu—1 and the unique ramphoid cusp of E; as &.

(C) If n =0, g = 2¢+2 and C is the nodal union of two 2-links, i.e. C = EgUR U---UR;_1UEy,
where Ey, Ey are %—atoms, and Ryq,...,Ry_y are rosaries of length 3. For j =1,...,/ -2, R,
intersects R;11 at a node g;, Ey intersects R in a node qo, and Ry_; intersects E, in a node
qr—1- We label the ramphoid cusps of Ey, Ey as &, &1, and the tacnodes of R; as 751 and 7; 2.

10 Qe =

wiN

Type A

Type B

Type C

FIGURE 11. The left (resp. right) column indicates the combinatorial types of -
closed (resp. 2-closed) curves.
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3. LOCAL DESCRIPTION OF THE FLIPS

In this section, we give an étale local description of the open immersions from Theorem 2.7
Mg (e +e€) = Mga(ac) ¢ Mgn(ac—e)
at each critical value o, € {2/3,7/10,9/11}.

Roughly speaking, our main result says that, étale locally around any closed point of ﬂg,n (),
these inclusions are induced by a variation of GIT problem. In Section 3.1, we develop the necessary
background material on local quotient presentations and local VGIT in order to state our main
result (Theorem 3.11). In Section 3.2, we collect several basic facts concerning local variation of GIT
which will be used in subsequent sections. In Section 3.3, we describe explicit coordinates on the

formal miniversal deformation space of an a.-closed curve. In Section 3.4, we use these coordinates
to compute the associated VGIT chambers and thus conclude the proof of Theorem 3.11.

3.1. Local quotient presentations.

Definition 3.1. Let X be an algebraic stack of finite type over Spec C, and let x € X'(C) be a closed
point. We say that f: W — X is a local quotient presentation around x if

(1) The stabilizer G of z € X is reductive.

(2) W = [Spec A / G|, where A is a finite type C-algebra.

(3) f is étale and affine.

(4) There exists a point w € W such that f(w) =z and f induces an isomorphism G, ~ G, .

We say that X' admits local quotient presentations if there exist local quotient presentations around
all closed points z € X'(C). We sometimes write f: (W, w) — (X, x) as a local quotient presentation
to indicate the chosen preimage of z.

It is an interesting (and still unsolved) problem to determine when an algebraic stack admits local
quotient presentations. Happily, the following result suffices for our purposes:

Proposition 3.2. [Alpl0, Theorem 3] Let X be a normal algebraic stack of finite type over Spec C
such that X = [X/G] where G is a connected algebraic group acting on a normal separated scheme X .
Then for any closed point x € X (C) with a reductive stabilizer, X admits a local quotient presentation
around x.

Corollary 3.3. For each o« > 2/3—c¢, ﬂg’n(a) admits local quotient presentations.

Proof of Corollary 5.3. By definition of a-stability, each Mg, () can be realized as [X/G], where X
is a non-singular locally closed subvariety of the Hilbert scheme of some PY and G = PGL(N +1). By
Proposition 2.6, stabilizers of a-stable curves are reductive. Thus we can apply Proposition 3.2. [

Recall that if G is a reductive group acting on an affine scheme X = Spec A by 0: G x X — X,
there is a natural correspondence between G-linearizations of the structure sheaf Ox and characters
X: G — G, = SpecC[t,t71]. Precisely, a character y defines a G-linearization £ of the structure
sheaf Ox as follows. The element x*(t) € I'(G, Of,) induces a G-linearization 0*Ox — p5Ox defined
by pi(x*(t)) ! € T(Gx X, 0f, x). Therefore, we can associate to x the semistable loci X7 and X%,
(cf. [Mum65, Definition 1.7]). The following definition describes explicitly the change in semistable
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locus as we move from x to x ! in the character lattice of G. See [Tha96] and [DH98] for the general
setup of variation of GIT.

Definition 3.4 (VGIT chambers). Let G be a reductive group acting on an affine scheme X =
Spec A. Let x: G — G,, be a character and set A, := {f € A | o*(f) = x*(t)""f} = ['(X, LE)C.
We define the VGIT ideals associated to x to be:

IT:=(feA| feA, for some n > 0),
I, == (feAlfeA, for somen <0).

The VGIT (4)-chamber and (—)-chamber of X associated to x are the open subschemes
X=X \V(I}) =X, X :=X\V() =X
Since the open subsets X; , X are G-invariant, we also have stack-theoretic open immersions
[X;/G] = [X/G] « [X/G].
We will refer to these open immersions as the VGIT (+)/(—)-chambers of [X/G] associated to x.

Remark 3.5. For an alternative characterization of X;(L , note that x~! defines an action of G on

X x A viag-(2,8) = (9-7,x(9)"'-5). Then z € XF if and only if the orbit closure G - (x, 1) does
not intersect the zero section X x {0}.

The natural inclusions of VGIT chambers induce projective morphisms of GIT quotients.

Proposition 3.6. Let L be the G-linearization of the structure sheaf on X corresponding to a
character x. Then there are natural identifications of X;r and X, with the semistable loci X* and
X7 1, respectively. There is a commutative diagram

Jr —
X;f¢ X X7

| |

XF)/G :=Proj @ 59 Aa — Spec Ag =<—— Proj P s A-a =: X, /|G

where X — Spec Ao, X7 — X[ //G and X, — X, //G are GIT quotients. The restriction of L to
X\ (resp., L7 to X ) descends to line bundle O(1) on X} //G (resp., O(1) on Xy //G) relatively
ample over Spec Ag. In particular, for every point x € X;‘ U X, the character of Gy corresponding
to L|pq, is trivial.

Proof. This follows immediately from the definitions and [Mum65, Theorem 1.10]. O

Next, we show how to use the data of a line bundle £ on a stack X to define VGIT chambers
associated to any local quotient presentation of X. In this situation, note that if z € X(C) is any
point, then there is a natural action of the automorphism group G, on the fiber £|pq, that induces
a character x.: G, — G,,.
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Definition 3.7 (VGIT chambers of a local quotient presentation). Let X be an algebraic stack of
finite type over Spec C and let £ be a line bundle on X. Let z € X be a closed point. If f: W — X
is a local quotient presentation around x, we define the chambers of W associated to L

WL =W W,
to be the VGIT chambers associated to the character x.: G, — G,,.

Definition 3.8. Suppose X is an algebraic stack of finite type over Spec CC that admits local
quotient presentations and £ is a line bundle on X. We say that open substacks X and X~
of X arise from local VGIT with respect to L at a point x € X if there exists a local quotient
presentation f: W = [Spec A/ G;] — X around z such that f*£ is the line bundle corresponding to
the linearization of Ogpec 4 by X and such that there is a Cartesian diagram:

(3.1) WL W W,

b

Xte— XY <—x~

The following key technical result allows to check that two given open substacks X and X'~ arise
from local VGIT with respect to a given line bundle £ on X by working formally locally.

Proposition 3.9. Let X be a smooth algebraic stack of finite type over SpecC that admits local
quotient presentations. Let L be a line bundle on X. Let X and X~ be open substacks of X. Let
x € X be a closed point and let x: G, — G,, be the character induced from the action of G5 on
the fiber of L over x. Let T*(x) be the first-order deformation space of x, let A = C[T*(z)], and let
A = C[[T"(z)]] be the completion of A at the origin. The affine space T = Spec A inherits an action
of Gy. Let Iz+,1z- C A be the ideals defined by the reduced closed substacks ZT = X ~ Xt and
ZTm=X~NX". Let It I~ C A be the VGIT ideals associated to x. If [z+ = ITA and Iz- = I A,
then XT — X <= X~ arise from local VGIT with respect to L at x.

The proof Proposition 3.9 will be given in Section 3.2. We will now explain how this result is used
in our situation.

On the stack M, (), there is a natural line bundle to use in conjunction with the VGIT formal-
ism, namely § —¢. Since this line bundle is defined over M, ,(c) for each «, there is an induced
character x5_y: Aut(C,{p;}?_;) = Gy, for any a-stable curve (C, {p;}i-,).

Definition 3.10 (I't,I7). If (C,{p;}},) is an a.-closed curve, the affine space
X = Spec C[TH(C, {p:}})]

inherits an action of Aut(C, {p;}?_,), and we define I'* and I~ to be the VGIT ideals in C[T!(C, {p;}1,)]
associated to the character xs_.

The main result of this section simply says that the VGIT chambers associated to 6 — ¢ locally
cut out the inclusions Mg, (ac+e€) = Mg, (ac) <= Mg p(oc—e).

Theorem 3.11. Let o € {2/3,7/10,9/11}. Then the open substacks
Mg n(ae+€) = Myn(ae) < Mgn(ae.—¢)
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arise from local VGIT with respect to § — 1 at every closed point (C,{p;}1"_;) € Mgn(ac).

The remainder of Section 3 is devoted to the proof of Theorem 3.11. In Section 3.2, we prove basic
facts concerning the VGIT chambers defined above and, in particular, we prove Proposition 3.9. In
Section 3.3, we construct, for any a.-closed curve (C,{p;}7;), coordinates for [/)&(C, {pi}l~,) and
describe the ideals Iz+ and Iz-. In Section 3.4, we use this coordinate description to compute the
VGIT ideals It and I~. In Proposition 3.29 we prove that Iz+ = ITA and I- = I~ A, so that
Theorem 3.11 follows from Proposition 3.9.

3.2. Preliminary facts about local VGIT. In this section, we collect several basic facts concern-
ing variation of GIT for the action of a reductive group on an affine scheme which will be needed in
subsequent sections. In particular, we formulate a version of the Hilbert-Mumford criterion which
will be useful for computing the VGIT chambers associated to an a.-closed curve.

Definition 3.12. Recall that given a character x: G — G, and a one-parameter subgroup A: G,, —
G, the composition yoA: G,, — Gy, is naturally identified with the integer n such that (xo\)*t = ¢".
We define the pairing of x and X as (x, \) = n.

Proposition 3.13 (Affine Hilbert-Mumford criterion). Suppose G is a reductive group over Spec C
acting on an affine scheme X = Spec A of finite type over SpecC. Let x: G — G,, be a character.
Let © € X(C). Then = ¢ X; (resp., x ¢ X5 ) if and only if there exists a one-parameter subgroup
A G, — G with (x,\) >0 (resp., (x,A\) < 0) such that lim;_,o A(t) - x exists.

Proof. Consider the action of G on X x A! induced by x~! as in Remark 3.5. Then z ¢ X; if and

only if G- (z,1) N (X x {0}) # @. By the Hilbert-Mumford criterion [Mum65, Theorem 2.1], this
is equivalent to the existence of a one-parameter subgroup A: G,, — G such lim; o A(¢) - (z,1) €
X x {0}. We are done by observing that lim o A(t) - (x,1) = lim;_,o(A(t) -z, t%N) € X x {0} if and
only if lim;_,0 A() - « exists and (x, \) > 0. O

The following are three immediate corollaries of Proposition 3.13:

Corollary 3.14. Let G; be reductive groups acting on affine schemes X; of finite type over SpecC
and x;: Gy — Gy, be characters for i = 1,...,n. Consider the diagonal action of G = [[; G;i on
X =11, Xi and the character [[; xi: G — Gy,. Then

n
XNXF =X s x (XN (Xa)f) x - x X
=1

n
XXy =X % x (XN (X5)
=1

) XX X,

O
Corollary 3.15. Let G be a reductive group over SpecC acting on an affine X = Spec A of finite

type over SpecC. Let x: G — Gy, be a character. Let Z C X be a G-invariant closed subscheme.
Then Z} = X} NZ and Z;, = X, NZ. O
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Corollary 3.16. Let G be a reductive group with character x: G — G,,. Suppose G acts on an
affine scheme X = Spec A of finite type over SpecC. Let G° be the connected component of the
identity and x° = x|go. Then the VGIT chambers X;,X; for the action of G on X are equal to
the VGIT chambers X;o,X;o for action of G° on X. g

Proposition 3.17. Let G be a reductive group acting on an affine variety X of finite type over
SpecC. Let x: G — G, be a non-trivial character. Let \: G,, — G be a one-parameter subgroup
and v € X (C) such that vo = lim;,o A(t) - @ € XC is fized by G. Then (x,\) > 0.

Proof. As x € X7, (x,\) > 0 by Proposition 3.13. Suppose (x,A) = 0. Considering the action of
G on X x A! induced by x as in Remark 3.5, then lim;_,o A(t) - (x,1) = (zg,1) € X& x Al. But
X is contained in the unstable locus X X since x is a nontrivial linearization. It follows that
G- (x,1)N (X% x {0}) # @ which contradicts z € X O

Lemma 3.18. Let G be a reductive group with character x: G — G,, and h: SpecA = X —
Y = Spec B be a G-invariant morphism of affine schemes finite type over SpecC. Assume that
A=B®pc A®. Then h™(Y}) = X and h™1(Y) = X

Proof. We use Proposition 3.13. If 2 ¢ X, then there exists A\: G, — G with (x,\) > 0 such

that o = lim; o A(t) - = exists. It follows that h(zo) = lim o A(t) - h(z) exists, and so h(z) ¢ Y.

We conclude that h~'(Y;") € X7 Conversely, suppose h(z) ¢ Y, \. Then there exists A\: G, — G

with (x,A) > 0 such that lim; ;0 A(t) - h(z) exists. Since lim,o A(t) - h(x) exists and since both

Spec A — Spec A® and Spec B — Spec BS are GIT quotients, there is a commutative diagram
Spec C[t]

~

EN

Spec A L Spec B

| i

Spec AY —— Spec B

Since the square is Cartesian, the map G,, = Spec C[t,t~!] — Spec A given by t ++ A(t) - = extends
to Spec C[t] — Spec A. It follows that ¢ X;7. We conclude that X~ C h~!(Y1). O

In order to prove Proposition 3.9, we need the following Lemma.

Lemma 3.19. Let G be a reductive group acting on a smooth affine variety W = Spec A over SpecC.
Let w € W be a fized point of G. Let x: G — Gy, be a character. There is a Zariski-open affine
neighborhood W' C W containing w and a G-invariant étale morphism h: W' — T = Spec C[Tw ),
where Ty, is the tangent space at w, such that

—1phy it —1+y _
WNTH =W NI = Wi

Proof. The maximal ideal m C A of w € W is G-invariant. Since G is reductive, there exists a
splitting m/m? < m of the surjection m — m/m? of G-representations. The inclusion m/m? < m C A
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induces a morphism on algebras Sym* m/m? — A which is G-equivariant which in turns gives a G-
equivariant morphism h: Spec A — T étale at w € W. By applying Luna’s Fundamental Lemma
(see [Lun73]), there exists a G-invariant open affine W’ = Spec A’ C Spec A containing w such that
the diagram

Spec A —— Spec C[Tiy ]

| |

Spec A'Y —— Spec C[Tiy.]¢
is Cartesian with Spec A’C — Spec C[Tw,w]G étale. From Lemma 3.18, the induced map h|y:: W' —
T satisfies Ay, (TF) = W and bl (T30) = Wi O

Proof of Proposition 3.9. Let f: W = [W/G,] — X be an étale local quotient presentation around
x where W = Spec A. By Lemma 3.19, after shrinking W, we may assume that there is an induced
G-invariant morphism h: W — T = Spec C[T"(z)] such that h=*(T}}) = W, and = Y(T}7) = WI.
This provides a diagram

Spf A —— W = [Spec A/G,]

I

X Y = [Spec C[T(x)]/G,]

In particular, ITA and I~ A are the VGIT ideals in A corresponding to (+)/(—) VGIT chambers.
Since It A = Iz+ and A= Iz, it follows that the ideals defining Z%, Z~ and W W;{, WA W
must agree in a Zariski-open neighborhood U C Spec A of w. By shrinking further, we may also
assume that the pullback of £ to U is trivial. By Lemma 4.7, we may assume that U is affine
scheme such that 7' (7(U)) = U where 7: Spec A — Spec A®. If we set U = [U/G], then the
composition U < W — X is a local quotient presentation. By applying Lemma 3.19, U™ = W nU
and U~ = W™ NU so that in U the ideals defining Z7, Z~ and U ~ UT,U ~ U~ agree. Moreover,
the pullback of L to U is clearly identified with the linearization of Oy by x. Therefore, Y — X has
the desired properties. ]

3.3. Deformation theory of a.-closed curves. Our goal in this section is to describe coordinates
on the formal deformation space of an a.-closed curve (C, {p;}?_;) in which the ideals Iz+ and Iz- can
be described explicitly, and which simultaneously diagonalize the natural action of Aut(C, {p;}I,).
We begin by describing the action of Aut(E) on the space of first-order deformations T!(E) of a
single a-atom E (Lemma 3.20) and a single rosary of length 3 (Lemma 3.21). Then we describe the
action of Aut(C, {p;}?_;) on the first-order deformation space T'(C, {p;}?_,) for each combinatorial
type of an a.-closed curve (C, {p;}I" ;) from Definition 2.33 (Proposition 3.22). Finally, we pass from
@Qrdinates on the first-order deformation space to coordinates on the formal deformation space
Def(C, {pi}_;) (Proposition 3.25).
Throughout this section, we let T1(C, {p; ) denote the first-order deformation space of (C, {p;}}- ;)

and Tl(@cﬁg) the first-order deformation space of a singularity £ € C. Finally, we let Aut(C, {p;}}~)°
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denote the connected component of the identity of the automorphism group of (C, {p;}7_;). We some-
times write T1(C) (resp., Aut(C)) for TY(C, {p;}7—,) (vesp., Aut(C, {p;}7_,)) if no confusion is likely.

3.3.1. Action on the first-order deformation space for an a.-atom and rosary. Suppose (E,q) (resp.,
(E,q1,q2)) is an ac-atom (see Definition 2.21) with singular point £ € E. By (2.2), we may fix an
isomorphism Aut(E) ~ G,, = SpecC[t,t"!] and coordinates on @E,g and @E,q (resp., 6E,q1 and
@E7q2) so that the action of Aut(F) is specified by:

eac=9/11: Opg = Clla,yll/(s? — 2%), Op,y = Clln]], and Gy acts by

T+ t_2x, Y t_3y, n > tn.

e, =T7/10: @Eé = C[[xa y]]/(y2 - x4)7 6E,Q1 = C[[nl]]? 6E,q2 = C[[nQ]L and G,, acts by

T — t_lx, Y = t_2y, ni — tny, no — tna.

e, =2/3: @E,g ~ C[lx,y]]/(y? — %), (5}37,1 ~ C[[n]] and G,,, acts by
T — t*2x, Y — t*Sy, n — tn.

We have an exact sequence of Aut(FE)-representations
0— Crl(B) S THE) S THOpe) — 0

where Cr!(FE) denotes the space of first-order deformations which induces trivial deformations of €.
In fact, since the pointed normalization of E has no non-trivial deformations, we may identity Cr!(E)
with the space of crimping deformations, i.e., deformations which fix the pointed normalization and
the analytic isomorphism type of the singularity. Note that in the cases a. = 9/11 and a, = 7/10,
Crl(E) = 0, i.e., there is a unique way to impose a cusp on a 2-pointed rational curve (resp., a
tacnode on a pair of 2-pointed rational curves).

Lemma 3.20. Let E be an ac-atom. Fixz Aut(E) ~ G, as above.

ea.=9/11: THE) ~ Tl((/’)\E,g) and there are coordinates so, s1 on Tl((aE,g) with weights —6, —4.
ea, = 7/10: THE) ~ Tl(@Eyg) and there are coordinates sg,S1,S2 on Tl(@E,g) with weights
—4,-3,-2.

ea.=2/3: THE) ~CrY(E) @ Tl(@E@) and there are coordinates ¢ on Cr'(E) and sq, s1, 52,53 on
Tl(@ﬂg) with with weights 1 and —10,—8, —6, —4, respectively.

Proof. We prove the case a, = 2/3 and leave the other cases to the reader. By deformation theory
of hypersurface singularities, we have
Tl (6E,§) :> ([347 SpecC[[m,y,e]]/(y2 - x5 - Sz)k’&.x?) - 836‘%‘2 - ST&’.%' - 835782) = (837 81(7 3;7 8§>7

and G,, acts by s; — tw_%sz. Thus, G, acts on Tl(@E,E)V by sj, > t267 105,
From [vdW10, Example 1.111], we have

Crl(E) 5 C, SpecC[(s + c*es?)?, (s + c*es?)5,¢]/(e)? > ¢,
and Gy, acts by ¢ — t~1c*. Thus, G,, acts on Cr'(E)Y by ¢+ te. O
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Now let (R, p1,p2) = H?:l(Ri7 @2i—1,q2;) be a rosary of length 3 (see Definition 2.27). Denote the
tacnodes of R as 1 := g2 = ¢3 and 79 := q4 = ¢g5. We fix an isomorphism Aut(R,p1,p2) ~ G,, =
Spec C[t,t71] such that G,, acts on @R,n = Cllzs, i/ (v? — x}) via 21 — t7 1oy, y1 — ¢t 2y; and
To > tTa, Yo —> 2o, and acts on @R,pi = C[[n;]] via ny + tny and ng +— t~1n,.

Lemma 3.21. Let (R,p1,p2) be a rosary of length 3. Fir Aut(R, pl,pg) Gy, as above. Then
TYR,p1,p2) = THOrr) ® T! ((93772) and there are coordinates on T'(Og ) (resp., TI(OR )
with weights —2, -3, —4 (resp., 2,3,4).

Proof. This is established similarly to Lemma 3.20. U

The above lemmas immediately imply a description for the action of Aut(C, {p;}?,)° on TX(C, {p;}!

1)

for any a.-closed curve.

Proposition 3.22 (Diagonalized Coordinates on T!(C, {p;}?,)). Let (C,{p;}?,) be an a.-closed
curve. Depending on the combinatorial type of (C,{p;}}_,) from Definition 2.33, the following state-
ments hold:

e, = 9/11 of Type A: There are decompositions

r

P r'(E)

i=1

r

P T (0cy)

i=1

Aut(C)° = ﬁAut(Ei) THO) = THK)® ®

For 1 <i<r, lett; be the coordinate on Aut(E;) ~ G,,. There are coordinates
“singularity” s; = (Si0,5i,1) on T! ((’)E &) for1<i<r
‘node” n; on T! ((’)C ) forl<i<r
such that Aut(C)° acts trivially on T*(K) and on the coordinates s;,n; by
83,0 > t;63i70 Si1 > ti_4si71 n; — tin;.
e, =9/11 of Type B: There are decompositions
Aut(C)° = Aut(Ey) x Aut(E») TY(C) = TY(E)) & TY(Ey) & T (O¢,)
For1 < i <2, lett; be the coordir/z\ate on Aut(E;) ~ Gp,. There are coordinates s; = (s;0,5i1) on
TY(E;) and a coordinate n on TY(Oc¢,,) such that the action of Aut(C)° on TY(C) is given by
850 > ti_6siy0 8i1 > t;48i,1 n — titan.

e, =9/11 of Type C: This case is described in Lemma 3.20.
e, =7/10 of Type A: There are decompositions

r+s £;

Aut(C)° =[] ] Aut(E:)

i=1 j=1
r+s l; 0;—1

T! (©) =T' (K)® @ @ T! (E’L}j) ® @ Tl(@\aqi,j) & é Tl(@C,Qi,ei)

=1 | j=1 j=0 i=1
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Let t; j be the coordinate on Aut(E; ;) ~ G,,. There are coordinates

“‘singularity” s; ; = (SiJ}k)i:o on TI(E”) 1<i<r+s, 1<j<Y4
“node” i j on Tl((’)cq”) 1<i<r+s0<5<4-1
“node” Mg, on Tl((”)c d, ) 1<i<r

such that Aut(C)° acts trivially on T'(K) and on s; j,n;; by

k-4
Sigk 7t Sigk
nio i nie, — tigNig, nij o tigtigeingg (5 #0,4;).

e, = 7/10 of Type B: There are decompositions
Aut(C, p1,p2)° H Aut(E
g—1
Y(C,p1,p2) EB T'(E) & P T (Ocy)
i=1

Let t; be the coordinate on Aut(E;) =~ G,,. There are coordinates s; = (s;0,8i.1,5i2) on T (E;) and
coordinates n; on T*(Oc,,) such that the action of Aut(C, {p;}1)° on TH(C, {p;}",) is given by

th4

Sik = Uy Sk n; +— titH_ln,;.

e, = 7/10 of Type C: There are decompositions

g—1
Aut(C)° = [ ] Aut(E;)
Zg:—ll g—2
THC) = P THE) & P T (Oc,)
=1 1=0

Let t; be the coordinate on Aut(E;) ~ G,,. There are coordinates s; = (sip,Si1,Si2) on Tl(Ei) and
coordinates n; on T (Oc,,) such that the action of Aut(C, {p;}1,)° on T(C, {p;}?_,) is given by

¢t

Sik =l Sik n; +— titi+1ni,

and where tg :=t,_1.
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e, =2/3 of Type A: There exist decompositions
Aut(C, {pi}i=i)° = Aut(K")° x HAut
r l;i—1
= Aut(K XH HAut ij) % Aut(E;)
=1 | j=1
TC, {pi}iey) = THK) @ @T1 L) @T%@c,qi,o)
i=1
r l;—1 £;—1

LK) e P @Tl i @@T (Ocq;,;) @ THE))
=1 =

where Aut(K')° acts trivially on @)_, T'(L;) ®|_, Tl(@\c,qi,o) and [1i_, Aut(L;) acts trivially on
TI(K’). For1<i<r,1<j</{;—1,lett;; denote the coordinate on Aut(R; ;) =~ Gp,, and let t; 4,
denote the coordinate on Aut(E;) ~ G,,. Then there exist coordinates

“rosary” ri; = (Tijk)i_g r; ;= (ré,j,k)zzo on T! (R ;) for1<i<r1<j<¥
“singularity” s; = (six)i_o on T! (C’)C ¢) CTHE;) for1<i<

‘crimping” ¢ on CrY(E;) c TYE;) for1<i<r

‘node” Ni on Tl(@(;,qi’j) Jor1<i<r,0<j<¥

such that the action of [[i_; Aut(L;) on @_, T'(L;) is given by

. k—4,. . / 4—kK, 1 2k—10
Tigk T tij Tigk Tigk T tig Tigk Sik 7 tze Si,k
C; — ti&.ci 14,0 — ti’lni70 nij = t tz RERKLZN (0 <y < &)

Note that we need not specify the action of Aut(K')° on TY(K') as this will be irrelevant for the
calculation of the VGIT chambers associated to (C,{p;}7—;).

e, =2/3 of Type B: There exist decompositions

/—1
Aut(C, {pi}i=y)° = [ [ Aut(R;) x Aut(Ey)
=1
-1
T(C, {pitis) = @D | T (R) © T (Ocy,)| @ T (BY)
=1

For 1 < i < £ —1, let t; be the coordinate on Aut(R;) =~ G,,, and let t; be the coordinate on
Aut(Ey) ~ G,,. Then there are coordinates

“rosary” v = (rig)i_g, T = (7‘27,{)%:0 on TYR)) for1<i<i—1
“singularity” s = (sg)i_, on THOc¢) C Tl(Eg)
“crimping” ¢ on CrY(E,) c TYE,)

i

“nhode” n; on T (@c ) for1<i<i—1
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such that the action of Aut(C)° on TH(C) is given by

Tik Tik Ti,k: —> z k S Sk
c = te ni o~ ti 1tz+1nl (0<i<d).
e, =2/3 of Type C: There exist decompositions
/-1
Aut(C)° = Aut(Ep) x Aut(Ep) x HAut(RZ-)
i=1
-1 /—1
T(C) = T'(Eo) @ T'(Er) @ P T (R:) @ P T (Ocy,)
i=1 i=0

Let to,ty be coordinates on Aut(Ep) ~ G, and Aut(Ey) ~ G, and for 0 < i < ¢, let t; be the
coordinate on Aut(R;) ~ G,,. Then there are coordinates

“osary” r; = (rik)ieg, Th = (Té,k)zzo on TYR)) for1<i<i—1
“singularity” s; = (six)s_g on ((/9\05 )y C THE;) fori= O, 14
‘crimping” ¢ on Cr'(E;) c TYE;)  fori= 0 l
“node” n; on THOcy) foro<i<(—1
such that the action of Aut(C)° on TY(C) is given by
rig ot Tik tik Tik Sk & 2104, 1
Ci — tic; ng +— toting n; — tz-_ltH_lni (0 <1< f) ng —  ty_1tymo
Proof. This follows easily from Lemmas 3.20 and 3.21. g

It is evident that the coordinates of Proposition 3.22 on Tl(C’, {pi}?_,) diagonalize the natural
action of Aut(C, {p;},)°. However, we need slightly more. We need coordinates which diagonalize
the natural action of Aut(C, {p;},)° and which cut out the natural geometrically-defined loci on
5&(07 {pi}"_;) = SpfC[[TY(C, {p;},)]]. For example, when . = 2/3, the {s;} coordinates should
cut out the locus of formal deformations preserving the singularities and the {¢;,n;} coordinates
should cut out the locus of formal deformations preserving a Weierstrass tail. This is almost a purely
formal statement (see Lemma 3.24 below); however there is one non-trivial geometric input. We must
show that the crimping coordinate which defines the locus of ramphoid cuspidal deformations with
trivial crimping can be extended to a global coordinate which vanishes on the locus of Weierstrass
tails. This is essentially a first-order statement which we prove below in Lemma 3.23.

The %—atom E defines a point in 2T N Z~ C ﬂ2,1(2/3) using the notation of Z,Z~ from

Proposition 3.9. If we denote this point by 0, we have natural inclusions of Aut(FE)-representations

it Thy = Ty =TYE) and j: Ty = T =THE).

2,1(2/3),0 271(2/3),0

On the other hand, recall that we have the exact sequence of Aut(F, q)-representations.
(3.2) 0— Crl(B) S THE) S T Ope) — 0

where T'(O p¢) denotes the space of first-order deformations of the singularity ¢ € E, and Cr'(E)
denotes the space of first-order crimping deformations. The key point is that the tangent spaces
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of these global stacks are naturally identified as deformations of the singularity and the crimping
respectively.

Lemma 3.23. With notation as above, there exist isomorphisms of Aut(E)-representations
T o ~T'(Opg)
Tgto ~ Crl(E)
inducing a splitting of (3.2) with i = « and j = s~
Proof. Tt suffices to show that the composition
aoi: Tz = Tyg, om0 =T (E) = T (Ogg)
is an isomorphism, and that the composition
@oj: TZ+,0 — Tm2’1(2/3)70 = Tl(E) — Tl(OEyg)

is zero. The latter follows from the former by transversality of Tz~ o and Tz+ 5. To see that a0
is an isomorphism, observe that Z~ ~ [A*/G,,] with weights —4,—6, —8,—10, where the universal
family is given by

(y2 — 20 — agex® — agex?® — ajex — a05,82) ag,...,a9 € C}h.
On the other hand, there is a natural isomorphism
Tl(@E’g) ={Spec C[[z,y,€]]/(y* — 2° — azex® — agex® — a1ex — age,€?) :as, ..., a9 € C}.
Evidently, « o7 is the identity map in the given coordinates. (|

Lemma 3.24. Let V' be a finite-dimensional representation of a torus G, let X = SpfC[[V]], and let
m C C[[V]] be the maximal ideal. Suppose we are a given a collection of G-invariant formal smooth
closed subschemes Z; = SptC[[V]]|/L;, (i = 1,...,7) which intersect transversely at 0, and a basis
T1,...,Tn for V such that:

(1) x1,...,x, diagonalize the action of G.
(2) I;/ml; is spanned by a subset of x1,...,Ty.
Then there exist coordinates X ~ SpfC[[z], ..., x}]] such that
(1) x, ... 2, diagonalize the action of G.
(2) 2, ... 2, reduce modulo m to x1,...,%,.

/
n-

(3) I, is generated by a subset of 2, ..., x

Proof. Let z;1,...,x;q, be a diagonal basis for I;/mI; as a G-representation. Consider the surjection
I, — I; / ml;
and choose an equivariant section, i.e., choose 7, ..., 2} 4; such that each spans a one-dimensional

sub-representation of G. By Nakayama’s Lemma, these elements generate I;. Repeating this proce-
dure for each Z;, we obtain m;j fori=1,...,rand j =1,...,d;. Since the Z;’s intersect transversely,
these coordinates induce linearly independent elements of V. Thus they may be completed to a di-
agonal basis, and this gives the necessary coordinate change. O
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Proposition 3.25 (Explicit Description of Iz+, Iz-). Let (C,{pi}I,) be an ac-closed curve. There
exist coordinates n;,s;, ¢; (resp., nij,8ij) on ISe\f(C’, {pi}l) such that the action of Aut(C,{p;i}}_)°
on I/)e\f((]7 {pi}iy) = Spfﬁ is given as in Proposition 3.22, and such that the ideals Iz+, Iz— are
given as follows:

ea, =9/11, Type A: Tz+ =(i_y(si), Iz— =iy (n).

ea, =9/11, Type B: Iz+ = (s1) N(s2), Iz- = (n).

ea, =9/11, Type C: Iz+ = (s), Iz— = (0).

ea. =7/10, Type A: Iz+ = ﬂm-(sm) Iz = ﬂi%yes Jiu where

/.
Si={i,pv:1<i<r+s1<pu< [21-‘,0<1/<&—2,u+1}

Ji,u,u = (ni’l,, Si 42, ,S@V_,_Q'u_z, 711'71,_;_2#_1), fOT‘ = 1, N

qu, = (nw, Si,u4+2y - ,Si7y+2“_2), fOT' t=1r+ 1, ..., T+ 8.

ea.=7/10, Type B: Iz+ =(,(si) , Iz- =\, es Juy where

S:={prv:1<pu< {g-‘70<l/<g—2u+1}
Ju,u = (nu’sy+2a cee 7Sl/+2,u,727n11+2u71)7
and ng := 0 and ng := 0.

ea.=7/10, Type C: Iz+ =(;(si) , Iz- =), es Juy where

g—1

S::{u,yzlgpg[ -‘,Oéygg—%

J,u,zz = (nzxa Sy+42y -5 Su42u—2, ny+2,u71)7

and the subscripts are taken modulo g — 1.
ea.=2/3, Type A: Iz+ = ﬂ§:1(sz‘);

roli—1
Iz- = ﬂ ﬂ (nivj,rg’jﬂ,rg’jJrQ, ... 71';,61-—17@)-
i=1 j=0
ea,=2/3, Type B: Iz+ = (s),
/-1
Iz- = ﬂ(ni,rgﬂ,réﬁ, s, 0)N (T, rh, . Ty, 0).
i=1
ea, =2/3 Type C: Iz+ = (s1)N(s2),
/—1 /—1
Iz- = m(ni,ri,ri_l, .o, r1,c0) N ﬂ(ni,r;+1,r;+2, ey Tp_q,Cp)e
=0 1=0

Proof. We prove the statement when (C,{p;}_,) is a 2-closed curve of combinatorial type A; the

other cases are similar and left to the reader. Let ﬁa’(c, {pitl,) = SpfA — M (2/3) be a
miniversal deformation space of (C,{p;};—,). For i =1,...,r, we define
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° Zj = Spf A /1,+ is the locus of deformations preserving the ith ramphoid cusp &;.

o Z. = Spf A /I,- is the locus of deformations preserving the i Weierstrass tail.

Since Zl-+ (resp., Z; ) are smooth, G-invariant, formal closed subschemes of Spf A\, the conormal
space of Z;" (resp., Z; ) is canonically identified with I,+/m 31+ (resp., I,— /mzI,-). Thus, in the

notation of Proposition 3.22, we have I+ /m [, + ~ Tl(@Ei@)V. Moreover, if ¢; = 1, we have
I,-/mzl,- = Cr'(E;)" © T'(Op,q,)"

using Lemma 3.23 to identify Cr!(E;)Y as the conormal space of the locus of deformations of E; for
which the attaching point remains Weierstrass.
If ¢; > 1 (i.e., E; is not a nodally-attached Weierstrass tail), we define

o 1= Spf/Al/ITi’j as the locus of deformations preserving the tacnode 7; j2, for j =1,...,¢; —
2.

o W; = Spf X/Iwi as the closure of the locus of deformations preserving the tacnode 7; 4,12
such that the tacnodally attached genus 2 curve is attached at a Weierstrass point.

e N;; = SpfA/Iy,; as the locus of deformations preserving the node g¢; ;, for j =0,...,¢; — 1.

We observe that for each i with ¢; > 1, W, is a smooth, G-invariant formal subscheme, and there is
an identification

T, /m3lw, = Cr' (B))" @ T (Ocyr,,, )"

If we choose coordinates ¢; € Cr!(E;)Y and s;,8i1,5i2, i3 € Tl(@cm’zﬁm)v cutting out W; and
a coordinate n; ¢,_1 cutting out NV; »,_1, then it is easy to check that Z; is necessarily cut out by ¢;
and g 0;—1-

Formally locally around (C,{p;}!_;), Z* and Z~ decompose as

T Zi—2 Kl'—Q
27 XF, 0 (2)3) Spf U (Z;u U (W; ﬂ TMmNi,j))
i=1 j=0 k=j+1

For each i =1,...,r, we consider the cotangent space of Z;r and either the cotangent space of Z~
if /; = 1 or the set of cotangents spaces of T; ;, W;, N; ; if £; > 1. Since this collection of subspaces
of T]L(C'7 {pi}?_,) as i ranges from 1 to r is linearly independent, we may apply Lemma 3.24 to this
collection of formal closed subschemes to obtain coordinates with the required properties. ([l

3.4. Local VGIT chambers for an a.-closed curve. In this section, we explicitly compute
the VGIT ideals I, 1~ C C[TY(C,{p;}?,)] (Definition 3.10) for any a.-closed curve. The main
result (Proposition 3.29) states that the VGIT ideals agree formally locally with the ideals Iz+,
Iz-. By Proposition 3.9, this suffices to establish Theorem 3.11. In order to carry out the com-
putation of I and I~, we must do two things: First, we must explicitly identify the character
Xo—v: Aut(C,{p;}7—;) — G, for any ac-closed curve. Second, we must compute the ideals of
positive and negative semi-invariants with respect to this character.
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Definition 3.26. Let Ei,...,E, be the acatoms of (C,{p;}]~;), and let t; € Aut(E;) be the
coordinate specified in Proposition 3.22. Let

Xs: Aut(C,{pi}*,)° — G,, = SpecCl[t,t7!]

be the character defined by ¢t — tito---t.. Note that x, is trivial on automorphisms fixing the
a.~atoms.

The following proposition shows that xs_, is simply a positive multiple of x,. Since it will be
important in Proposition 5.4, we also prove now that the character of ng w(e) T acd + (1 — ag)y

is trivial for a.-closed curves.

Proposition 3.27. Let o € {9/11,7/10,2/3} be a critical value and let (C,{p;}}—,) be an a.-closed
curve. Then there exists a positive integer N such that Xs—y|Aut(C {p:}
curve (C,{pi}1—,). Specifically,

n ye = XN for every a.-closed
11 if a. =9/11

N=¢ 10 ifa.=7/10
39 ifa.=2/3

; + I ==
In particular, I, =I5,

Proof. We prove the case when o, = 2/3 for an a.-closed curve (C,{p;}_;) of Type A. Let C =
K'ULyU---UL, be the decomposition of C' as in Definition 2.33, and suppose that the rank of
Aut(K’) is k. Corollary 2.30 implies that there exist length three rosaries R],..., R} such that
Aut(K')° ~ Hle Aut(RY). Thus, we have

Aut(C)° = Aut(K')° x ﬁAUt(Li)

=1
k r l;—1
= [JAut(R) x [T | ][] Aut(Rij) x Aut(E;)
i=1 i=1 | j=1

Let p}: Gp, — Aut(C) (resp. pij, i) be the one-parameter subgroup corresponding to Aut(R}) C
Aut(C) (resp. Aut(R; ), Aut(E;) C Aut(C)). By [AFSI14, Sections 3.1.2-3.1.3], we have

(X6—y, ) = 0, (X6—y>pij) =0, (X6—» i) = 39.
On the other hand, the definition of y, obviously implies
0o P) =0, (X pij) =0, (o) =1
It follows that xs5_y = 2 as desired. O

Proposition 3.28. For any a.-closed curve (C,{p;}}_,), the action of Aut(C,{p;}I_,)° on the fiber
of K1, .. (a0) T e + (1 — ae)p is trivial.

Proof. We prove the case when a, = 2/3 for an a.-closed curve (C, {p;}I'_;) of Type A. Let p., p; ;, i
be the one-parameter subgroups of Aut(C, {p;}}_,) as in the proof of Proposition 3.27. By [AFS14,
Sections 3.1.2-3.1.3], we have
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(O p) =0 (X, pij) =0 (xXr, i) = 4
(Xs—y,0}) =0 (X6—y» pi) =0 (X6—y» i) = 39.
Using the identity

(3.3) K

one easily computes

+acd+ (1 —ae)y =13\ + (ae — 2)(6 — )

g.n(ae)

XK, ooy Faed+ (1o Pi) = (XK Yoot (1—ae)s Pig) = (XK tacd+(1—ae)ps Pi) = 0,

Mg,n(ac) Mg,n(ac)

and the claim follows. O

Proposition 3.27 and Corollary 3.16 imply that we can compute the VGIT ideals I~ and I™ as the
ideals of semi-invariants associated to x.. In the following proposition, we compute these explicitly,
and show that they are identical to the ideals Iz+ and Iz-, as described in Proposition 3.25.

Proposition 3.29 (Description of VGIT ideals). Let (C,{p;}_;) be an a.-closed curve for a critical

~

value o, € {2/3,7/10,9/11}. Then ITA=1Iz+ and ["A =I5,

We establish the proposition first in the case of an a.-atom, then in the case of an a.-link, and
finally for each of the distinct combinatorial types of a.-closed curves.

3.4.1. The case of an a.-atom.

Lemma 3.30. Let E be an ac-atom. Using the notation of Lemma 3.20 for the action of Aut(E)
on TYE), we have

ea.=9/11: It = (sg,51), I= =(0).

ea.=T7/10: It = (sp,s1,82), I =(0).

ea.=2/3: IT = (sg,51,82,83), I~ =(c).

Proof. This is a direct computation from the definitions. The I (resp., I ™) ideal is generated by all
semi-invariants of negative (resp., positive) weight. (|

3.4.2. The case of a 15-link. We handle the special case when C' has one nodally-attached -link,

ie., C is a;5-closed curve of type A with » =1 and s = 0. Using Proposition 3.22, we have
Aut(C)° = Aut(L) THC) = TY(K) @ TH(L,)

with coordinates t1,...,t; on Aut(L;) and coordinates s; = (sj0,5;1,552) (j =1,...,0), n; (j =
0,...,¢) on T*(L;) so that the action of Aut(C,{p;}1;)° on T!(L;) is given by

k—4 .
Sjk tj Sjky, No > ting, mp > teny, n; — tjtj_Hle for ] 75 0,5.

Lemma 3.31. With the above notation, the vanishing loci of IT and I~ are

£ 0—2p+1
VIt = JVi(s;) v =J U Viw
j=1 u>1 v=0

where Vu,u = V(nm Sy+25 -+ -5 Su42u—2, nl/+2,u71)-

Remark. For instance, V1, = V(ny,ny4+1) and Vo, = V(n,,sy42, nu43).
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Proof. We will use the Hilbert-Mumford criterion of Proposition 3.13. For the V(I™) case, suppose
x € V(s;) for some j. Set A = (\;): Gy, — Gf, ~ Hle Aut(E;) where A\; =1 for i # j and \; = id.
Then (x4, A) = 1 and limy_,o A\(¢) -z exists so z € V(I"). Conversely, let A = ()\;) be a one-parameter
subgroup with (x,, A) = >, A; > 0 such that lim;_,o A(t) -  exists. Then for some j, we have \; >0
which implies that s;(z) = 0.

For the V(I7) case, the inclusion 2 is easy: suppose that x € V,,, for p > 1 and v =0,..., ¢ —
2p+ 1. Set

A= (0,...,0,-1,1,-1,...,1,-1, 0,...,0 )
—— ——
v 2u—1 {—2p—v+1
Then (x«,A) = > ;A = —1 and lim; 0 A(¢) - = exists so x € V(I7). For the C inclusion, we

will use induction on ¢. If £ = 1, then V(I~) = V(ng,n1). For ¢ > 1, suppose x € V(I~) and
A= (\): G, — G is a one-parameter subgroup with Zle Ai < 0 such that lim; 0 A(t) -
exists. If Ay > 0, then Zf;ll A¢ < 0 so by the induction hypothesis x € V,,, for some p > 1 and
v=20,...,0—2u. If \y <0, then we immediately conclude that ny(x) = 0. If A\p_1 + Ay < 0, then
ne—1(x) =0soxz € Vi 1. If Aj_1 +X¢ >0, then Ap_; > 00 s;—1(z) = 0. Furthermore, Zf;% A <0
so by applying the induction hypothesis and restricting to the locus V (ng_s,s¢_1, n¢—1, 8¢, ng), we can
conclude either: (1) z € V), forp>1landv =0,...,0—2u—1,0r (2) x € V(n4—p—a,S¢—p—2, - - - ,5¢—3)
for some p > 1. In case (2), since sy_1(x) = ny(x) =0, we have x € V11 0—p—4. O

Remark. The chamber V(I1) is the closed locus in the deformation space consisting of curves with
a tacnode while V(I7) consists of curves containing an elliptic chain.

3.4.3. The case of a %-link. We now handle the special case when C' has one nodally-attached Z-link
of length ¢, i.e., C'is a 2-closed curve of combinatorial type A with r = 1. Using Proposition 3.22,
we have

Aut(C)° = Aut(K') x Aut(Ly)  TYHC) = THK) @ THL,)
with coordinates t1,...,t, on Aut(L1) and coordinates r; = (r5,0,75,1,75,2),¥; = (750,751,7j2)s 7

(j=0,....,0—1), s = (s, 51, 82,53), con T(Ly), so that the action of Aut(L1) on T*(L;) is given
by

k—4 / 44—k, .1 2k—10
Tik = b5 ik Tip b ik Sk t€1 Sk .
c — tee ng > ting, n; ot tiang (0 <j <0).

The character x4 is given by
Aut(C)° ~ G, = Gy (b1, t0) = 1y

Lemma 3.32. With the above notation, the vanishing loci of I* and I~ are

-1

V(I+) = V<S) V(I_) = U V(nj7r;'+l7r;'+27 cee 7r/6717 C)
7=0

Remark. For instance, if £ =2, V(I7) =V (ny,¢) UV (ng,r},c).
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Proof. The first equality is obvious. We use the Hilbert-Mumford criterion to verify the second.

Suppose x € V(nj,r;-H, ...,ry_q,c) for some j =0,...,¢—1. If we set
A=(0,...,0,—1,-1,...,-1)
—_—— ———
J L—j
then (x4, A\) = —1 < 0 and lim;_,0 A(f) - = exists. Therefore, z € V(I7). Conversely, suppose
r € V({I)and A = ()\;): Gy, — G, is a one-parameter subgroup with (x, \) = A\ < 0 such that
limy_,0 A(t) - = exists. Clearly, we may assume that A\, = —1. First, it is clear that c¢(x) = 0. If

ne—1(z) = 0, then € V(ny_1,c). Otherwise, as the limit exists, A\p_; < —1 so that rj,_,(z) =0. If
ne—o(x) = 0, then = € V(ny_o,r},_,,c). Continuing by induction, we see that there must be some
j=0,....,0 =1 with x € V(nj,r} 4,1} 5,...,r)_;,c) which establishes the lemma. O

3.4.4. The general case. We are now ready thanks to Lemmas 3.31 and 3.32 as well as Corollaries

3.14 and 3.15 to establish Proposition 3.29 in full generality.

Proof of Proposition 3.29. Let (C,{p;}_,) be an a,-closed curve and consider the action of Aut(C, {p;}} ;)

on TH(C, {p; ? 1) described in Proposition 3.22. We split the proof into the types of a.-closed curves

according to Definition 2.33.

ea, = 9/11 of Type A. By using Corollary 3.14, one may assume that r = 1 in which case the

statement is clear.

ea. = 9/11 of Type B. A simple application of Proposition 3.13 shows that V(IT) = (sy,s2), and

V(™) = (n).

e, =9/11 of Type C. This is Lemma 3.30.

ea. =7/10 of Type A. By Corollary 3.14, it is enough to consider the case when either r = 1,5 =0

or r = 0,s = 1. The case of r = 1 and s = 0 is the example worked out in Lemma 3.31. If

r=1,s =0, the action of Aut(C, {p;}?'_)° on Def(C, {p;}?_,) is same as the action given in Lemma

3.31 restricted to the closed subscheme V'(n;) = 0. This case therefore follows from Corollary 3.15

and Lemma 3.31.

e, = 7/10 of Type B. The action of Aut(C,{p;}?_,)° on TY(C,{p;}?_,) is the same action as in

Lemma 3.31 restricted to the closed subscheme V'(ng,n,4+1) = 0 so this case follows from Corollary

3.15 and Lemma 3.31.

e, =7/10 of Type C. This follows from an argument similar to the proof of Lemma 3.31.

ea,. = 2/3 of Type A. By Corollary 3.14, it is enough to consider the case when r = 1 which is the

example worked out in Lemma 3.32.

e, = 2/3 of Type B. The action here is the same action as in Lemma 3.32 restricted to the closed

subscheme V' (ng) so this case follows from Corollary 3.15 and Lemma 3.32.

e, =2/3 of Type C. This case can be handled by an argument similar to the proof of Lemma 3.32.
O

Proof of Theorem 3.11. Proposition 3.29 implies that [z+ = ITA and Iz- = I~ A so we may apply
Proposition 3.9 to conclude the statement of the theorem. O
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4. EXISTENCE OF GOOD MODULI SPACES

In this section, we prove that the algebraic stacks ﬂg,n(a) possess good moduli spaces (Theorem
4.25). In Section 4.1, we prove three general existence results for good moduli spaces. The first
of these, Theorem 4.1, gives conditions under which one may use a local quotient presentation to
construct a good moduli space. As we explain below, this may be considered as an analog of the
Keel-Mori theorem [KM97] for algebraic stacks, but in practice the hypotheses of the theorem are
much harder to verify than those of the Keel-Mori theorem. Our second existence result, Theorem
4.2, gives one situation in which the hypotheses of Theorem 4.1 are satisfied. It says that if X is
an algebraic stack and X* — X <> X~ is a pair of open immersions locally cut out by VGIT,
then X admits a good moduli space if X, X \ X, and X ~ X~ do. The third existence result,
Proposition 4.3, proves that one can check existence of a good moduli space after passing to a finite
cover. These results pave the way for the argument in Section 4.2 which proves the existence of good
moduli spaces for M, () inductively.

4.1. General existence results. In this section, we prove the following three results. Recall the
definition of a local quotient presentation from Definition 3.1. Note that if an algebraic stack X
of finite type over Spec C admits local quotient presentations around every closed point, then X
necessarily has affine diagonal.

Theorem 4.1. Let X be an algebraic stack of finite type over Spec C. Suppose that:

(1) For every closed point x € X, there exists a local quotient presentation f: W — X around x
such that:
(a) f is stabilizer preserving at closed points of W.
(b) f sends closed points to closed points.

(2) For any C-point x € X, the closed substack @ admits a good moduli space.

Then X admits a good moduli space.
Theorem 4.2. Let X be an algebraic stack of finite type over SpecC, and let L be a line bundle on

X. Let X7, X~ C X be open substacks, and let Z¥ = X ~ X and Z= = X ~ X~ be their reduced
complements. Suppose that

(1) X+, Z*, Z= admit good moduli spaces.
(2) For all closed points x € ZT N Z~, there exists a local quotient presentation VW — X around
x and a Cartesian diagram

WEC—= W — W,
(4.1) l J{ i
Xt X <X~

where WZ‘, W, are the VGIT chambers of W with respect to L.

Then there exist good moduli spaces X — X and X~ — X~ such that XT — X and X~ — X are
proper and surjective. In particular, if X is proper over SpecC, then X and X~ are also proper
over Spec C.
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Recall that an algebraic stack X is called a global quotient stack if X ~ [Y/GL,], where Y is an
algebraic space with an action of GL,,.

Proposition 4.3. Let f: X — Y be a morphism of algebraic stacks of finite type over C. Suppose
that:

(1) f: X = Y is finite and surjective.
(2) There ezists a good moduli space X — X with X separated.
(3) Y is a global quotient stack and admits local quotient presentations.

Then there exists a good moduli space Y — Y with Y separated. Moreover, if X is proper, so is Y.

Both Theorem 4.2 and Proposition 4.3 are proved using Theorem 4.1. In order to motivate the
statement of Theorem 4.1, let us give an informal sketch of the proof. If X admits local quotient
presentations, then every closed point x € X admits an étale neighborhood of the form

[Spec A, /G| — X,

where A, is a finite-type C-algebra and G, is the stabilizer of 2. The union [, [Spec A;/G4]
defines an étale cover of X’; reducing to a finite subcover, we obtain an atlas f: W — X with the
following properties:

(1) f is affine and étale.
(2) W admits a good moduli space W.

Indeed, (2) follows simply by taking invariants [Spec A,/G.] — Spec AG* and since f is affine, the
fiber product R := W xx W admits a good moduli space R. We may thus consider the following
diagram:

p1 f
R—W—X

P2
(4.2) iw l¢
R—=W

92

The crucial question is: can we choose f: W — X to guarantee that the projections ¢1,q2: R =W
define an étale equivalence relation. If so, then the algebraic space quotient X = W/R gives a good
moduli space for X.

If X is separated, we can always do this. Indeed, if X is separated, the atlas f may be chosen to
be stabilizer preserving.? Thus, we may take the projections R = W to be stabilizer preserving and
étale, and this implies that the projections R = W are étale.® This leads to a direct proof of the
Keel-Mori theorem for separated Deligne-Mumford stacks of finite type over Spec C (one can show
directly that such stacks always admit local quotient presentations). In general, of course, algebraic

2The set of points w € W where f is not stabilizer preserving is simply the image of the complement of the open
substack Iyy C Ix xx W in W and therefore is closed since Ix — X is proper. By removing this locus from W,
f: W — X may be chosen to be stabilizer preserving.

3To see this, note that if » € R is any closed point and p € R is its preimage, then @Rw o~ D,?", where D, denotes

~ G,
the miniversal formal deformation space of p and G, is the stabilizer of p; similarly Ow,q, () D, ’Z;)()p ). Now p; étale

implies D, ~ D, (,) and p; stabilizer preserving implies G, ~ G, (,), S0 (’A)RJ ~ @\W:‘Zi(r>7 i.e. q; is étale.
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stacks need not be separated so we must find weaker conditions which ensure that the projections
q1,qe are étale. In particular, we must identify a set of sufficient conditions which can be directly
verified for geometrically-defined stacks such as Mg, (a).

Our result gives at least one plausible answer to this problem. To begin, note that if w € W is a
closed C-point with image w € W, then the formal neighborhood @Ww can be identified with the
G,-invariants DGW of the miniversal deformation space D, of w. Thus, we may ensure that g; is
étale at a C-point r € R, or equivalently that the induced map qu (r) = Opw is an isomorphism,
by manually imposing the following conditions: p;(p) should be a closed point, where p € R is the
unique closed point in the preimage of r € R, and p; should induce an isomorphism of stabilizer

-~ G,.
groups G, ~ Gy, (,). Indeed, we then have Oy g () = Dp zz;) ~ D, G — (’)RT, where the middle
isomorphism follows from the hypothesis that p; is étale and stabilizer preserving. In sum, we have

identified two key conditions that will imply that R = W is an étale equivalence relation:

(x) The morphism f: W — X is stabilizer preserving at closed points.
(%%x) The projections pi,p2: W xx W = W send closed points to closed points.

Condition (%) is precisely hypothesis (1a) of Theorem 4.1. In practice, it is difficult to directly
verify condition (xx), but it turns out that it is implied by conditions (1b) and (2), which are often
easier to verify.

Section 4.1.2 is devoted to making the above argument precise. Then in Sections 4.1.3 and 4.1.4,
we prove Theorem 4.2 and Proposition 4.3 by showing that after suitable reductions, their hypotheses
imply that conditions (1a), (1b) and (2) of Theorem 4.1 are satisfied.

4.1.1. Definitions and preparatory material.

Definition 4.4. Let f: X — Y be a morphism of algebraic stacks of finite type over Spec C. We
say that

e f sends closed points to closed points if for every closed point x € X, f(x) € ) is closed.

e [ is stabilizer preserving at v € X(C) if Auty(c)(v) — Auty)(f(z)) is an isomorphism.

e For a closed point x € X, f is strongly étale at x if f is étale at x, f is stabilizer preserving
at z and f(x) € ) is closed.

e f is strongly étale if f is strongly étale at all closed points of X.

Definition 4.5. Let ¢: X — X be a good moduli space. We say that an open substack & C X is
saturated if ¢~ (p(U)) = U.

The following proposition is simply a stack-theoretic formulation of Luna’s well-known results in
invariant theory [Lun73, Chapitre II] often referred to as Luna’s fundamental lemma. It justifies
the terminology strongly étale by showing that strongly étale morphisms induce étale morphisms of
good moduli spaces. It is also shows that for a morphism of algebraic stacks admitting good moduli
spaces, strongly étale is an open condition.
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Proposition 4.6. Consider a commutative diagram
f
W—4x
(4.3) iq, l 5
g
W—X

where f is a representable, separated morphism between algebraic stacks of finite type over SpecC.
Suppose p: W = W and ¢: X — X are good moduli spaces. Then

(1) If f is strongly étale at w € W, then g is étale at p(w).
(2) If f is strongly étale, then g is étale and Diagram (4.3) is Cartesian.
(3) There exists a saturated open substack U C W such that:
(a) flu: U — X is strongly étale and f(U) C X is saturated.
(b) If w € W is a closed point such that f is strongly étale at w, then w € U.

Proof. [Alp13, Theorem 5.1] gives part (1) and that g is étale in (2). The hypotheses in (2) imply
that the induced morphism ¥U: W — W xx & is representable, separated, quasi-finite and sends
closed points to closed points. [Alpl3, Proposition 6.4] implies that W is finite. Moreover, since f
and g are étale, so is ¥. But since W and W x x X both have W as a good moduli space, it follows
that a closed point in W X x X’ has a unique preimage under ¥. Therefore, ¥ is an isomorphism and
the diagram is Cartesian. Statement (3) follows from [Alp10, Theorem 6.10]. O

Lemma 4.7. Let X be an algebraic stack of finite type over SpecC and ¢: X — X be a good moduli
space. Let x € X be a closed point and U C X be an open substack containing x. Then there exists a
saturated open substack Uy C U containing x. Moreover, if X ~ [Spec A/G| with G reductive, then U,
can be chosen to be of the form [Spec B/G] for a G-invariant open affine subscheme Spec B C Spec A.

Proof. The substacks {z} and X \ U are closed and disjoint. By [Alp13, Theorem 4.16], ¢({x})
and Z := ¢(X \U) are closed and disjoint. Therefore, we take U; = ¢~ 1(X \ Z). For the second
statement, take U = qﬁ_l(Ul) for an affine open subscheme U; C X \ Z. ]

Lemma 4.8. Let f: X — Y be a strongly étale morphism of algebraic stacks of finite type over
SpecC. Suppose that X admits a good moduli space and for any point y € Y(C), @ admits a good
moduli space. Then for any finite type morphism g: Y’ — Y, the base change f': X xy Y — V' is
strongly étale.

Proof. Clearly, f’ is étale. Let 2’ € X xy )’ be a closed point. To check that f’ is stabilizer
preserving at z’ and f’(z') € )’ is closed, we may replace Y with {g(f’(2’))} and X with {¢'(2’)}
where ¢': X xy V' — X. Since f is strongly étale, Proposition 4.6(2) implies that f is in fact an

isomorphism in which case the desired statements regarding f’ are clear. t
4.1.2. Existence via local quotient presentations. In this section, we prove Theorem 4.1.

Proposition 4.9. Let X be an algebraic stack of finite type over Spec C. Suppose that:

(1) There exists an affine, strongly étale, surjective morphism f: X1 — X from an algebraic
stack X1 admitting a good moduli space ¢1: X1 — X7.
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(2) For any C-point x € X, the closed substack m admits a good moduli space.
Then X admits a good moduli space ¢: X — X.

Proof. Set Xo = X} xy X;. By Lemma 4.8, the projections py,p2: Xo — X are strongly étale.
As f is affine, there exists a good moduli space ¢o: Xo — Xo with projections ¢i,q2: Xo — Xi.
Similarly, X3 := X} Xy A1 X x A1 admits a good moduli space ¢3: X3 — X3. By Proposition 4.6(2),
the induced diagram

X3 — XQ — Xl 4>f X

iqﬁ:’, iqﬁz i(ﬁl
Xg—=Xo—= X,

is Cartesian. Moreover, by the universality of good moduli spaces, there is an induced identity map
X1 — Xy, an inverse Xo — X2 and a composition Xo x4, x, 4, X2 — Xo giving Xo = X; an étale
groupoid structure.

To check that A: X9 — X7 x X7 is a monomorphism, it suffices to check that there is a unique
pre-image of (z1, 1) € X1 x X7 where z; € X1(C). Let & € &) be the unique closed point in QSfl(:nl).
Since X1 — A’ is stabilizer preserving at 1, we can set G := Auty, (¢)(£1) =~ Auty(c)(f(€1)). There
are diagrams

BG — = BG x BG X, PP v x

l J{ l@ i¢>1><¢1
Xy —= X X X} Xy —2 X, x X
X XXX

where the squares in the left diagram are Cartesian. Suppose zo € X3(C) is a preimage of (z1,x1)
under A: Xo — X7 x Xq. Let & € X5 be the unique closed point in ¢51($2). Then (p1(&2),p2(&2)) €
Xy x Xy is closed and is therefore the unique closed point (£1,&;) in the (¢ x ¢1) (1, 21). But
by Cartesianness of the left diagram, & is the unique point in A3 which maps to (£1,&1) under
Xo — X1 x X1. Therefore, x5 is the unique preimage of (x1,xz1).

Since X3 X4, x,,4, X2 — X3 is an étale equivalence relation, there exists an algebraic space quotient
X and induced maps ¢: X - X and X; — X. Consider

Xy —=X —— X3

L

X — ¥ ——X

Since Xy >~ X; xx, X2 and Xy ~ X xx X, the left and outer squares above are Cartesian. Since
X; — X is étale and surjective, it follows that the right square is Cartesian. By descent ([Alp13,
Prop. 4.7]), ¢: X — X is a good moduli space. O
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Proof of Theorem /.1. After taking a disjoint union of finitely many local quotient presentations,
there exists a strongly étale, affine and surjective morphism f: W — X where W admits a good
moduli space. The theorem now follows from Proposition 4.9. (]

4.1.3. Existence via local VGIT. In this section, we prove Theorem 4.2. We will need the following
lemma on isotrivial specializations.

Lemma 4.10. Let X be an algebraic stack of finite type over SpecC, and let L be a line bundle on
X. Let XT, X~ C X be open substacks, and let Z* = X ~\ XT, Z= = X ~ X~ be their reduced
complements. Suppose that for all closed points © € X, there exists a local quotient presentation
f: W — X around x and a Cartesian diagram

WHe——s W <—W~

T

Xte—— XY <—Ox~

where WT = WZ and W~ = W, are the VGIT chambers of VW with respect to L. Then

(1) If z € X*T(C) N X~ (C), then the closure of z in X is contained in XT NX~.
(2) If z € X(C) is a closed point, then either z € XTNX~ orze ZtNZ~.

Proof. For (1), if the closure of z in X is not contained in X* N X, there exists an isotrivial
specialization z ~ z to a closed point in X ~ (X" N X~). Choose a local quotient presentation
f: W = [W/G,] — X around z such that (4.4) is Cartesian. Since f~'(z) ¢ W™ N W™, the
character x = L|pg, is non-trivial. By the Hilbert-Mumford criterion ([Mum65, Theorem 2.1]),
there exists a one-parameter subgroup A\: G,, — G, such that lim; o A(t) - w = wy where w € W
and wy € W= are points over z and z, respectively. As w € W;r AW, and wg € WE&= by applying
Proposition 3.17 twice with the characters x and x !, we see that both (x,\) < 0 and (x,\) >0, a
contradiction.

For (2), choose a local quotient presentation f: (W,w) — X around z with W = [W/G]. Let
X = L|pa, be the character of £. Since w € W&, w can be semistable with respect to y if and only
if x is trivial. It follows that either w € WT N W™ in the case x is trivial, or w ¢ WT UW™ in the
case x is non-trivial. ]

Proof of Theorem 4.2. We show that X has a good moduli space by verifying the hypotheses of
Theorem 4.1. Let zp € X be a closed point. By Lemma 4.10(2), we have either zyp € XT N X~ or
9 € ZTNZ~. Suppose first that g € XTNAX~. Since X" admits a good moduli space, Proposition
4.6(3) implies we may choose a local quotient presentation f: W — X+ which is strongly étale. By
applying Lemma 4.7, we may shrink further to assume that f()W) C X NX~. Then Lemma 4.10(1)
implies that the composition f: W — Xt < X is also strongly étale.
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On the other hand, suppose zo € ZT N Z~. Choose a local quotient presentation f: (W, wg) — X
around xg inducing a Cartesian diagram

Wt W <~—W—

T

Xt X < OX~

with Wt = WZF and W~ = W,. We claim that, after shrinking suitably, we may assume that f is
strongly étale. In proving this claim, we make implicit repeated use of Lemma 4.7 in conjunction
with Lemma 3.18 to argue that if W' C W is an open substack containing wg, there exists open
substack W/’ C W' containing wg such that W/’ — X is a local quotient presentation inducing a
Cartesian diagram as in (4.5).

Using the hypothesis that Z%, Z~, and X" admit good moduli spaces, we will first show that f
may be chosen to satisfy:

(A) flp-1(z+), flp-1(z-) is strongly étale

(B) flyy+ is strongly étale.
If f satisfies (A) and (B), then f is also strongly étale. Indeed, if w € W is a closed point, then
either w € fHY(ZT)U f~HZ27) or w € f~1(XT)N f71(X 7). In the former case, (A) immediately
implies that f is stabilizer preserving at w and f(w) is closed in X. In the latter case, (B) implies
that f is stabilizer preserving at w and that f(w) is closed in X*. Since f(w) € X N X~ however,
Lemma 4.10(1) implies that f(w) remains closed in X.

It remains to show that f can be chosen to satisfy (A) and (B). For (A), Proposition 4.6(3) implies
the existence of an open substack Q C f~1(Z%) containing wg such that f|g is strongly étale. After
shrinking W suitably, we may assume W N f~1(2%) € Q. One argues similarly for f]| 1z

For (B), Proposition 4.6(3) implies there exists an open substack Y C W such that fly;: U — X'T
is strongly étale; moreover, U contains all closed points w € W™ such that fly+: Wt — X7 is
strongly étale at w. Let V = WT \ U and let V be the closure of V in W. We claim that wg ¢ V.
Once this is established, we may replace W by an appropriate open substack of YW ~. V to obtain
a local quotient presentation satisfying (B). Suppose, by way of contradiction, that wy € V. Then
there exists a specialization diagram

Spec K = A* ——=Y

L

SpecR = A —hw
such that h(0) = wy. By Proposition 3.6, there exist good moduli spaces W — W and W — W,
and the induced morphism W+ — W is proper. Since the composition WT — W+ — W is
universally closed, there exists, after an extension of the fraction field K, a diagram

A* wt W+

e

Ay W
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and a lift h: A — W7 that extends A* — W with @ = h(0) € W closed. There is an isotrivial
specialization @ ~» wp. It follows from Lemma 4.10(1) that w € f~'(Z7). By assumption (A),
flu: U — X7 is strongly étale at w so that w € U. On the other hand, the generic point of the
specialization h: A — W+ lands in V so that @ € V, a contradiction. Thus, wg ¢ V as desired.

We have now shown that X" satisfies condition (1) in Theorem 4.1, and it remains to verify condition
(2). Let z € X(C). If x € Z% (resp., x € Z7), then {x} C ZT (resp., {x} C Z7). Therefore, since
Z* (resp., Z7) admits a good moduli space, so does {x}. On the other hand, if x € X~ N X", then
Lemma 4.10(1) implies the closure of z in X is contained in X*. Since Xt admits a good moduli
space, so does m Now Theorem 4.1 implies that X admits a good moduli space ¢: X — X.

Next, we use Theorem 4.1 to show that X'~ admits a good moduli space. Let x € X'~ be a closed
point and x ~» xg be the isotrivial specialization to the unique closed point zg € X in its closure.
By Proposition 4.6, there exists a strongly étale local quotient presentation f: W — X inducing a
Cartesian diagram as in (4.1). By Lemma 4.8, the base change f~: W~ — X~ is strongly étale. As
W™ admits a good moduli space, we may shrink W~ further so that f~: W™ — &X'~ is a strongly
étale local quotient presentation about x.

It remains to check that if x € X~ (C) is any point, then its closure {z} in X~ admits a good
moduli space. Let z ~ x¢ be the isotrivial specialization to the unique closed point zg € X in the
closure of . We claim in fact that ¢~ 1(é(x9)) N X~ admits a good moduli space. Clearly this claim
implies that m C X~ does as well. We can choose a local quotient presentation f: (W, wy) — X
about z( inducing a Cartesian diagram as in (4.1). After shrinking, we may assume by Proposition
4.6(3) that f is strongly étale and we may also assume that wy is the unique preimage of xg. If we set
Z = ¢ (¢(x0)), then fl-1(z): f~1(2) — Z is in fact an isomorphism as both f~!(Z) and Z have
Spec (C) as a good moduli space. As W, admits a good moduli space, so does W, Nf "1 (Z) = X NZ.
This establishes that X~ admits a good moduli space.

Finally, we argue that X+ — X and X~ — X are proper and surjective. By taking a disjoint
union of local quotient presentations and applying Proposition 4.6(3), there exists a strongly étale,
affine, stabilizer preserving and surjective morphism f: W — X from an algebraic stack admitting
a good moduli space W — W such that W = X xx W. Moreover, if we set W := f~1(XT) and
W™ := f~1(X7), then (see Proposition 3.6) WT and W~ admit good moduli spaces W and W~
such that W~ — W and W' — W are proper and surjective. This gives commutative cubes

/W+( w /w
x+C X / dy—
(4.6)
wt W W
X+/ X/ X/

The same argument as in the proof that X~ admits a good moduli space shows that f|y+: W —
XT and flyy-: W~ — X~ send closed points to closed points. By Proposition 4.6(2), the left and
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right faces are Cartesian squares. Since the top faces are also Cartesian, we have Wt = XT xx W
and W~ = X~ xx W. In particular, W — X+ xx W and W~ — X~ xx W are good moduli
spaces. By uniqueness of good moduli spaces, we have XT xx W = Wt and X~ xx W = W~.
Since Wt — W and W~ — W are proper and surjective, XT — X and X~ — X are proper and
surjective by étale descent. O

4.1.4. Euzistence via finite covers. In proving Proposition 4.3, we will appeal to following lemma:

Lemma 4.11. Consider a commutative diagram
X—)Y——>X
\_/
of algebraic stacks of finite type over Spec C where X is an algebraic space. Suppose that:

(1) X — Y is finite and surjective.
(2) X — X is cohomologically affine.
(3) Y is a global quotient stack.

Then Y — X is cohomologically affine.

Proof. We may write Y = [V/GL,], where V is an algebraic space with an action of GL,. Since
X — Y is affine, X' is the quotient stack X = [U/G] where U = X xy V. Since U — X is affine
and X — X is cohomologically affine, U — X is affine by Serre’s criterion. The morphism U — V
is finite and surjective so by Chevalley’s theorem, we can conclude that V' — X is affine. Therefore
Y — X is cohomologically affine. (|

Proof of Proposition 4.3. Let Z be the scheme-theoretic image of X — X x ). Since X — Y is
finite and X is separated, X — Z is finite. As Z is a global quotient stack since Y is, we may apply
Lemma 4.11 to conclude that the projection Z — X is cohomologically affine which implies that Z
admits a separated good moduli space. The composition Z — X x ) — Y is finite, surjective and
stabilizer preserving at closed points. Therefore, by replacing X with Z, to prove the proposition,
we may assume that f: X — ) is stabilizer preserving at closed points.

We will now show that the hypotheses of Theorem 4.1 are satisfied. Let yo € J be a closed point
and g: (V',y,) — Y be a local quotient presentation about yy. Consider the Cartesian diagram

X/ fl yl

o
x—1 .y

We claim that ¢’ is strongly étale at each point 2’ € f~!(yj). Indeed, ¢ is stabilizer preserving at
2’ by hypothesis (1) together with the fact that g is stabilizer preserving at y(,, and ¢'(2’) is a closed
point of X because f(¢'(x')) is closed. By Proposition 4.6, there exists an open substack U’ C X’
containing the fiber of y(, such that ¢'|;; is strongly étale. Therefore, y, ¢ Z = Y ~ f/(X' \U)
and g|y. z is strongly étale. By shrinking further using Lemma 4.7, we obtain a local quotient
presentation g: Y’ — ) about 1y which is strongly étale.

Finally, let y € Y(C) and z € X(C) be any preimage. Set Xy = m C X and Yy = @ Cc Y. As
Xo — Yo is finite and surjective, Xy — Spec (C) is a good moduli space and ) is a global quotient
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stack, we may conclude using Lemma 4.11 that )y admits a good moduli space. Therefore, we may
apply Theorem 4.1 to establish the proposition. O

Remark. The hypothesis that X is separated in Proposition 4.3 is necessary. For example, let X be
the affine line with 0 doubled and let Zs act on X by swapping the points at 0 and fixing all other
points. Then X — [X/Z5] satisfies the hypotheses but [X/Z3] does not admit a good moduli space.

4.2. Application to M, ,(a). In this section, we apply Theorem 4.2 to prove that the algebraic
stacks M (o) admit good moduli spaces (Theorem 4.25). We have already proved that the inclu-
sions My, (a+e€) <= My, (a) <> My, (a—e) arise from local VGIT with respect to § — ¢ (Theorem
3.11). Thus, it only remains to show that for each critical value o, € {9/11,7/10,2/3}, the closed
substacks o o o

Sgnl(ae) = Mgn(oe) N~ Mgn(acte)

Hyn(oe) := Mgn(ae) N Mg n(ae—e)
admit good moduli spaces. We will prove this statement by induction on g. Like the boundary strata
of My, Hgn(ae) can be described (up to a finite cover) as a product of moduli spaces of a.-stable
curves of lower genus. Likewise, S, ,,(c) can be described (up to a finite cover) as stacky projective
bundles over moduli spaces of ac-stable curves of lower genus. We use induction to deduce that
these products and projective bundles admit good moduli spaces, and then apply Proposition 4.3 to
conclude that S ,,(a.) and H,yp(a.) admit good moduli spaces.

4.2.1. Ezistence for Syn(ac).

Lemma 4.12. We have:
81.1(9/11) ~ BGy,
812(7/10) =~ BGy,
S521(2/3) =~ [A'/G,,], where G, acts with weight 1.
In particular, the algebraic stacks S11(9/11), S1.2(7/10), S2.1(2/3) admit good moduli spaces.

Proof. The algebraic stacks S;1(9/11) and S;2(7/10) each contain a unique C-point, namely the
Z-atom and the [-atom, and each of these curves have a Gp-automorphism group. The stack
S2.1(2/3) contains two isomorphism classes of curves, namely the 2-atom, and the rational ramphoid
cuspidal curve with non-trivial crimping. We construct this stack explicitly as follows: start with
the constant family (P! x A, 0o x Al), let ¢ be a coordinate on A, and ¢ a coordinate on P! — oo.
Now let P! x Al — C be the map defined by the inclusion of algebras C[t? + ct3,t%] C C[c,t] on the
complement of the infinity section, and defined as an isomorphism on the complement of the zero
section. Then (C — A, 00 x A!) is a family of rational ramphoid cuspidal curves whose fiber over zero
is a 2-atom. Furthermore, G,, acts on the base and total space of this family by ¢ — At e — A,
since the subalgebra C[t?+ct3,t5] C C|e, #] is invariant under this action. Thus, the family descends to
[Al/G,,] and there is an induced map [A!/G,,] — Ma1(2/3). This map is a locally closed immersion
by [vdW10, Theorem 1.109], and the image is precisely S21(2/3). Thus, S21(2/3) ~ [Al/G,,] as
desired. g
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For higher values of (g,n), the key observation is that every curve in Sy, () can be obtained from
an a.-stable curve by ‘sprouting’ an appropriate singularity. We make this precise in the following
definition.

Definition 4.13. If (C,p;) is a 1-pointed curve, we say that C’ is a (ramphoid) cuspidal sprouting
of (C,p1) if C’ contains a (ramphoid) cusp ¢ € C’, and the pointed normalization of C’ at ¢ is
isomorphic to one of:

(a) (C7p1)'
(b) (C UP!, 00) where C' and P! are glued nodally by identifying p; ~ 0.

If (C,p1,p2) is a 2-pointed curve, we say that C’ is a tacnodal sprouting of (C,p1,p2) if C’ contains
a tacnode g € C’, and the pointed normalization of C’ at ¢ is isomorphic to one of:

(a) (C,p1,p2).
(b) (CUP!, p1,00) where C and P! are glued nodally by identifying ps ~ 0.

(c) (CUPL, pay, 00) where C' and P! are glued nodally by identifying p; ~ 0.
(d) (CUP'UP!, 001, 007) where C is glued nodally to two copies of P! along p; ~ 0, pa ~ 0.

In this definition, we allow the possibility that (C,p1,p2) = (C1,p1) [[(C2,p2) is disconnected, with
one marked point on each connected component.

If (C, p1) is a 1-pointed curve, we say that C’ is a one-sided tacnodal sprouting of (C,py) if C’ contains
a tacnode g € C', and the pointed normalization of C’ at ¢ is isomorphic to one of:

(a) (C,p1)I1(P*,0).
(b) (CUPY, 00) (P!, 0) where C and P! are glued nodally by identifying p; ~ 0.

Remark. Suppose C’ is a cuspidal sprouting, one-sided tacnodal sprouting or ramphoid cuspidal
sprouting of (C,p1) (resp., tacnodal sprouting of (C,p1,p2)) with a,-critical singularity ¢ € C'.
Then (C,p1) (resp., (C,p1,p2)) is the stable pointed normalization of C’ along q. By Lemma 2.20,
(" is ac-stable if and only if (C, p1) (resp., (C,p1,p2)) is a.-stable.

Lemma 4.14. Fiz o, € {9/11,7/10,2/3}, and suppose (C, {p;}1;) € Sgnlac).

(1) If (g,n) # (1,1), then (C, {pi}?,) is a cuspidal sprouting of a 9/11-stable curve in Mgy_1 541(9/11).
(2) If (g,n) # (1,2), then one of the following holds:
(a) (C,{pi}™,) is a tacnodal sprouting of a 7/10-stable curve in My_g ,4+2(7/10).
(b) (C,{pi}i~y) is a tacnodal sprouting of a 7/10-stable curve in Mg_;—1 n—m+1(7/10) X
M m11(7/10). o
(c) (C,{pi}i-,) is a one-sided tacnodal sprouting of a 7/10-stable curve in Mgy_1,(7/10).
(3) If (g,n) # (2,1), then (C,{pi}}'_,) is a ramphoid cuspidal sprouting of a 2/3-stable curve in

M9—2,n+2(2/3)'

Proof. If (C,{pi}?*;) € Syn(ac), then (C,{p;}" ;) contains an a.-critical singularity ¢ € C. The
stable pointed normalization of (C, {p;}I"_,) along ¢ is well-defined by our hypothesis on (g,n), and
is a.-stable by Lemma 2.20. g
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Lemma 4.14 gives a set-theoretic description of Sg’n (), and we must now augment this to a stack-
theoretic description. This means constructing universal families of cuspidal, tacnodal, and ramphoid
cuspidal sproutings. A nearly identical construction was carried out in [Smy11b] for elliptic m-fold
points (in particular, cusps and tacnodes), and for all curve singularities in [vdW10]. The only key
difference is that here we allow all branches to sprout P!’s rather than a restricted subset. Therefore,
we obtain non-separated, stacky compactifications (rather than Deligne-Mumford compactifications)
of the associated crimping stack of the singularity. In what follows, if C — T is any family of curves
with a section 7, we say that C has an Ag-singularity along T if, étale locally on the base, the
Henselization of C along 7 is isomorphic to the Henselization of T x C[z,y]/(y?> — z¥!) along the
zero section (cf. [vdW10, Definition 1.64]).

Definition 4.15. Let Sprout,,(Ax) denote the stack of flat families of curves (C — T, {o:}
satisfying

(1) (C = T,{0i}}~,) is a T-point of Uy »(Ak).

(2) C has an Ag-singularity along op,41.

The fact that Sprout, ,(Ay) is an algebraic stack over (Schemes/C) is verified in [vdW10]. There
are obvious forgetful functors

F.: Sprouty , (Ag) — Uy n(Ak),

given by forgetting the section o,41.

Proposition 4.16. F} is representable and finite.

Proof. 1t is clear that F}, is representable. The fact that F5 is quasi-finite follows from the observations
that a curve (C, {p;}I";) in Uy »(Aj) has only a finite number of Ag-singularities and that for a C-point
z € Sprouty ,(Ak), the induced map Autgprour, , (4,) (%) — Auty, ,(a,)(Fk(z)) on automorphism
groups has finite cokernel. To show that F5 is finite, it now suffices to verify the valuative criterion
for properness: let A be the spectrum of a discrete valuation ring, let A* denote the spectrum of its
fraction field, and suppose we are given a diagram

A* —— Sprout, ,, (Ak)

l |

A Ugn(Ag)

This corresponds to a diagram of families,
Cax —C
A —— A

such that Ca+ has Ag-singularity along o,+1. Since C — A is proper, o,+1 extends uniquely to a
section of 7, and since the limit of an Aj-singularity in U, ,(Ax) is necessarily an Ag-singularity,
C has an Aj-singularity along 0,,11. This induces a unique lift A — Sprout, ,(Ag), cf. [vdW10,
Theorem 1.109). O
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The algebraic stacks Sproutgm(Ak) also admit stable pointed normalization functors, given by

forgetting the crimping data of the singularity along o,41. To be precise, if (C — T, {a}"“) is a
T-point of Sprout, ,,(A), there exists a commutative diagram

C
SN
CS Z}n+k
4
satisfying:

(1) (C =T, {oz}"%’) is a family of (n + k)-pointed curves, where k € {1,2}.
(2) % is the pointed normalization of C along 0,41, i.e. 9 is finite and restricts to an isomorphism

fosyitt

on the open set C— UZE 15n+l
(3) ¢ is the stabilization of (C, {az}"+k) i.e. ¢ is the morphism associated to a high multiple of
the line bundle wz /T(E +ko*l)

Remark 4.17. Issues arise when defining the stable pointed normalization for (g,n) small relative
to k. From now on, we assume k € {2,3,4}, and that (g,n) # (1,1),(1,2),(2,1) when k = 2,3,4,
respectively. This ensures that the stabilization morphism ¢ is well-defined. Indeed, under these
hypotheses, wz(2;0;) will be relatively big and nef, and the only components of fibers of (C {al}"Jrk)
on which w (E ;) has degree zero will be P1’s which meet the rest of the curve in a single node and
are marked by one of the sections &,4;. The effect of ¢ is simply to blow-down these P'’s.

Since normalization and stabilization are canonically defined, the association
(€= T {oi}iy) = (€ = T, {o{}1H)
is functorial, and we obtain normalization functors:
Naz: Sprout,, n(A2) = Ug—1 nt1(A2)

N3: Sprouty,,(43) = [ (Ugimi+1(A3) X Ugnz41(43)) [T Usp-2m42(A3) [T Us-1,n41(A3)

91+92=9
ni1+ngs=n

Ny: Sprouty,,(As4) = Ug—2n+1(Aa)

The connected components of the range of N3 correspond to the different possibilities for the stable
pointed normalization of C along o,,41. Note that the last case Uy—1 ,,41(A3) corresponds to a one-
sided tacnodal sprouting, i.e. one connected component of the pointed normalization of C along 7,41
is a family of 2-pointed P!’s. It is convenient to distinguish these possibilities by defining:

Sprout*, (A3) = N3 ' (Uy—2,nt2(As3))
SprOUtghnl (A3) = ?:1 (ugl,n1+1 (A3) X Z’{gz,n2+1 (A3))
Sprouty’ (As) = Ny ! (Ug—1,1+1(43))
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The following key proposition shows that Ny makes Sprout, ,,(Ax) a stacky projective bundle over

ALPER, FEDORCHUK, SMYTH, AND VAN DER WYCK

the moduli stack of pointed normalizations.

We will use the following notation: if £ is a locally free sheaf on an algebraic stack X, we let V(&)
denote the total space of the associated vector bundle, [V (£)/G,,] the quotient stack for the natural

action of G, on the fibers of V(£), and p: [V(E)/G,] — T the natural projection.

Proposition 4.18. In the following statements, we let (1: C — Uy n(Ar),{0i}}_,) denote the uni-
versal family over Uy rn(Ag), and (m: C — Ug, n, (Ak) X Ugy o (Ak), {oi}ity, {7

family over Ug, n, (Ak) X Ugy mo (Ak).

(1)

(2)

(3)

(4)

Let &€ be the invertible sheaf on Uy_1 n+1(As2) defined by
&= mu (Oc(=20041)/Oc(=30n+11))
Then there exists an isomorphism
v: [V(€)/6m] ~ Sprout, ,,(A2)

such that Ng o~y = p.

Let & be the locally free sheaf on Ug—2 n12(A3z) defined by
& =m (Oc(—0n41)/ Oc(—20n41) ® Oc(—0n+2)/Oc(—20n+12))
Then there exists an isomorphism
7: [V(E)/Gm] ~ Sprout?, (4s)

such that N3 o~ = p.

Let & be the locally free sheaf on Ug, n,+1(As) X Ugy ny+1(As) defined by
€ =m (Oc(=0n141)/ Oc(=20m,41) ® Oc(—Tny+1)/ Oc(—2Tny41))

Then there exists an isomorphism

7: [V(€)/Cm] ~ Sproutg ;™ (As)
such that N3 o~ = p.
Let & be the locally free sheaf on Ug—1n+1(A3) defined by

£ i= 1 (Oc(=0ns1)/ Oc(~20011))
Then there exists an isomorphism

7v: [V(€)/Gm] = Sprouty;, (4s)

such that N3 o~ = p.

n2

21) the universal
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(5) Let £ be the locally free sheaf on Uy—2n+1(As) defined by
E =m (Oc(—20n41)/Oc(—40p41))

Then there exists an isomorphism
v: [V(E)/Cm] ~ Sprout, ,(A4)
such that Nyo~ = p.

Proof. We prove the hardest case (5), and leave the others as an exercise to the reader. To construct
amap v: [V(E)/Gn] — Sprout, ,,(As), we start with a family (7: C — X, {o; " in Uy—on41(As),
and construct a family of ramphoid cuspidal sproutings over [V (Ex)/G,,], where

Ex =7 (Oc(—20p41)/Oc(—40n+11)) -

Let V := V(€x), p: V — X the natural projection, and (Cy — V,oy) the family obtained from
(C — X,0p,41) by base change along p. As the construction is local around 0,1, we will not keep
track of {o;}]; for the remainder of the argument. If we set & = p*Ex, there exists a tautological
section e: Oy — &y. Let Z C V denote the divisor along which the composition

Oy = & = (wv)« (Ocy (—20v)/ Oy (=30v))

vanishes, and let ¢: C — Cy be the blow-up of Cy along oy (Z). Since oy (Z) C Cy is a regular
subscheme of codimension 2, the exceptional divisor E of the blow-up is a P!-bundle over oy/(Z). In
other words, for all z € Z, we have

C.=C,UE, =C,UP.

Let & be the strict transform of oy on C, , and observe that ¢ passes through a smooth point of the
P! component in every fiber over Z. We will construct a map C — C’ which crimps & to a ramphoid
cusp, and C" — X will be the desired family of ramphoid cuspidal sproutings.

Setting 7: C— Cy — V and
£ = (7): (05(—25)/0(—47))
we claim that e induces a section €¢: Oy — £ with the property that the composition
Ov — € — 7 (05(—25)/0x(—37))

is never zero. To see this, let U = Spec R C X be an open affine along which & is trivial, and choose
local coordinates on a,b on p~!(U) = Spec R[a, b] such that the tautological section e is given by
at? 4 bt3, where t is a local equation for oy on Cy. In these coordinates, ¢ is the blow-up along
a=1t=0. Let @t be homogeneous coordinates for the blow-up and note that on the chart @ # 0,
t = t~/2i gives a local equation for oy . In these coordinates, ¢ is given by

(a,b,t") — (a,b,at’)

The section at? + bt pulls back to a®(t”2 + bt"), and 2 4 bt is a section of € over p~(U) with the
stated property.
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We will use € to construct a map ¢: C — €’ such that €’ has a ramphoid cusp along ¢ o 5. It
is sufficient to define ¢ locally around o, so we may assume 7 is affine, i.e. C := Spec7.05. We
specify a sheaf of Oy -subalgebras of 7,05 as follows: Consider the exact sequence

0 — 705 (40)—>7T*(9 ( 25) > € =0

and let # C m.0z be the sheaf of Oy-subalgebras generated by any inverse image of e and all
functions in 7.0z ( 7). We let ¢: Spec 705 — C' := Spec VJ be the map correspondlng to the
inclusion .# C 7.0 By construction, the complete local ring ﬁcz,wog)( )y C ﬁcv 5() = ~ C[[t] is of
the form C[[t? + bt3, t5]] C C[[#]], and this subalgebra is isomorphic to C[[z,]]/(y* — x°).

Finally, we claim that C’ — V descends to a family of ramphoid cuspidal sproutings over the
quotient stack [V/Gy,]. It suffices to show that the subsheaf . C 7.0p is invariant under the natural
action of G,, on V. Using the same local coordinates introduced above, the sheaf .% is given over the
open set Spec R[a, b] by the R[a, b]-algebra generated by 2 + bt and #°, where ¢ is a local equation
for & on C. To see that this algebra is Gp,-invariant, note that the G,,-action on V = Spec Rla, b]
(actmg with weight 1 on a and b) extends canonically to a G,,-action on the blow-up, where G,, acts
on @, t with weight 1 and 0, respectively. Thus, G,, acts on t' = t/u with weight —1, so the section
2+ bt’3 is a semi-invariant. It follows that the algebra generated by t'2 + bt’3 and " is G,,-invariant
as desired. Thus, we obtain a family (C" — [V//Cp], % o &) in Sprout, ,,(A4) as desired.

To define an inverse map i~ ': Sprout, ,(A4) — [V/Gy,], we start with a family (C — X,0) in
Uy n(As) such that C has an Ay-singularity along 0. We must construct a map X — [V(£)/G,,]. B
taking the stable pointed normalization of C along o, we obtain a diagram

satisfying
(1) (C — X,5&) is a family of (n 4 1)-pointed curves.
(2) % is the pointed normalization of C along o, i.e. 1 is finite and restricts to an isomorphism
on the open set C-5.
(3) ¢ is the stabilization of (C,&), i.e. ¢ is the morphism associated to a high multiple of the
relatively nef line bundle wz ) ().

By Lemma 2.20, (C* — X, 0}) induces a map X — Z/{g 2.n+1(A4), and we must show that this lifts
to define a map X — [V(E)/G,,]. To see this, let .# be the coherent sheaf defined by the following
exact sequence

0 = m0c N T O5(—40) C Te0c N T O5(—20) — F — 0.
The condition that C has a ramphoid cusp along 9 o ¢ implies that .F C 7.05(—20)/05(—40) is a
rank one subbundle. In particular, .# induces a subbundle of 7§ 0¢s(—20°)/Ocs(—40°) over the locus



LOG MINIMAL MODEL PROGRAM FOR Mg,n: THE SECOND FLIP 61

of fibers on which ¢ is an isomorphism. A local computation, similar to the one performed in the
definition of 7, shows that .7 extends to a subsheaf of wf0¢s(—20°)/Ocs(—40°) over all of X (though
not a subbundle; the morphism on fibers is zero precisely where ¢ fails to be an isomorphism). The
subsheaf .# C £ induces the desired morphism X — [V/G,,]. O

Proposition 4.19. Let o € {9/11,7/10,2/3} and suppose that My .(ac) admits a proper good
moduli space for all (¢',n’) with ¢’ < g. Then Syn(ac) admits a proper good moduli space.

Proof. Let a, = 9/11. By Lemma 4.12, we may assume (g,n) # (1,1). By Proposition 4.18(1), there
is a locally free sheaf & on My_1,,+1(9/11) such that [V (£)/Gy,] is the base of the universal family

of cuspidal sproutings of curves in My_1,41(9/11). By Lemma 2.20, the fibers of this family are
9/11-stable so there is an induced map

U: [V(E)/Cp] = Mg ,(9/11).

By Lemma 4.14, ¥ maps surjectively onto S, ,(9/11). Furthermore, ¥ is finite by Proposition 4.16.
By hypothesis, My_1 ,41(9/11) and therefore [V (£)/G,,] admits a proper good moduli space. Thus,
39771(9/11) admits a proper good moduli space by Proposition 4.3.

Let . = 7/10. By Lemma 4.12, we may assume (g,n) # (1,2). If g > 2, Proposition 4.18(2)
provides a locally free sheaf & on My_3,42(7/10) such that [V (£)/Gy,] is the base of the universal
family of tacnodal sproutings of curves in My_3 ,,+2(7/10), and there is an induced map [V (£)/G,,] —
ﬂg,n(7/10). Similarly, for every pair of integers (i, m) such that Mg_i_l’n_m+1(7/10) X M m+1(7/10)
is defined, by Proposition 4.18(3), there is a locally free sheaf € on Mg_;_1 n—m+1(7/10) X M; 1, +1(7/10)
such that [V (£)/G,,] is the universal family of tacnodal sproutings. By Lemma 2.20, there are in-
duced maps [V (€)/G,] — M,,(7/10). Finally, Proposition 4.18(4) provides a locally free sheaf on
M_1.,(7/10) such that [V (€)/G,,] is the base of the universal family of one-sided tacnodal sproutings
of curves in My_1 ,,(7/10). By Lemma 2.20, there is an induced map [V (€)/Gy,] = Mg, (7/10). The
union of the maps [V(€)/Gn] — My, (7/10) cover S;,,(7/10) by Lemma 4.14. Furthermore, each
map is finite by Proposition 4.16. By hypothesis, each of the stacky projective bundles [V (£)/G,,]
admits a proper good moduli space, and therefore so does gg,n(7/ 10) by Proposition 4.3.

Let a. = 2/3. By Lemma 4.12, we may assume (g,n) # (2,1). By Proposition 4.18(5), there is
a locally free sheaf & on My_s ,41(2/3) such that [V/(£)/G,,] is the base of the universal family of
ramphoid cuspidal sproutings of curves in ﬂg_27n+1(2/3). By Lemma 2.20, there is an induced map
U: [V(E)/Gm] = Myn(2/3) which maps surjectively onto Sy, (2/3) by Lemma 4.14. Furthermore,
V¥ is finite by Proposition 4.16. Thus, gg,n(Q /3) admits a proper good moduli space by Proposition
4.3. ]

4.2.2. Ezistence for Hgn(ac). In this section, we use induction on g to prove that Hg () admits
a good moduli space. The base case is handled by the following easy lemma.

Lemma 4.20. We have:
H1.1(9/11) = [A?/Cy], with weights 4,6.
H12(7/10) = [A3 /Gy, with weights 2,3, 4.
Ho1(2/3) = [AY/C,], with weights 4,6,8, 10.
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In particular, H11(9/11), H12(7/10), H2.1(2/3) each admit a good moduli space.

Proof. We describe the case of Ha1(2/3), as the other two are essentially identical. Consider the
family of Weierstrass tails over A* given by:

y2 =2z + a3x3z3 + a2x2z4 + a1x25 + a026,
where the Weierstrass section is given by [1,0,0]. Since G,, acts on the base and total space of this
family by
Tz — Nz, y— Ny, a; — AO0=2ig,.

the family descends to [A*/G,,]. One checks that the induced map [A*/G,,] — Ha1(2/3) is an
isomorphism. O

Lemma 4.20 gives an explicit description of the stack of elliptic tails, elliptic bridges, and Weier-
strass tails. In the case a. = 7/10 (resp., a. = 2/3), we will also need an explicit description of the
stack of elliptic chains (resp., Weierstrass chains) of length 7.

Lemma 4.21. Let r > 1 be an integer, and let
EC, C Mar_12(7/10) (resp., WC, C May1(2/3))

denote the closure of the locally closed substack of elliptic chains (resp., Weierstrass chains) of length
r. Then EC, (resp., WC,) admits a good moduli space.

Proof. For elliptic chains, Lemma 4.20 handles the case r = 1 as £C1 = H12(7/10). By induction
on r, we may assume that £C,_1 admits a good moduli space. By Proposition 4.18(3), there is a
locally free sheaf & on EC,_1 x H12(7/10) such that [V(£)/C,,] is the base of the universal family
of tacnodal sproutings over £C,_1 x H12(7/10). By Lemma 2.20, there is an induced morphism
U: [V(E)/C] = Map—12(7/10). The image of ¥ is £C,, and ¥ is finite by Proposition 4.16. Since
ECy—1 x H12(7/10) admits a good moduli space, Proposition 4.3 implies that £C, admits a good
moduli space.

For Weierstrass chains, Lemma 4.20 again handles the case r = 1 as WC; = H21(2/3). By
induction, we may assume that WC,_; admits a good moduli space. By Proposition 4.18(3), there is
a locally free sheaf & on Hj 2(7/10) x WC,_1 such that [V (€)/G,,] is the base of the universal family

of tacnodal sproutings over Hj2(7/10) x WC,_;. Indeed, we may take £ to be
s (Oc(—0)/Oc(—20) & Oc(—7)/Oc(—27)),

where 7: C — ﬁm(?/ 10) x WC,_; is the universal family, o corresponds to one of the universal
sections over Hj 2(7/10), and T corresponds to the universal section over WC,_1. If V C [V(€)/Gp]
is the open locus parameterizing sproutings which do not introduce an elliptic bridge, then V is the
complement of the subbundle [V (7.0¢(—7))/Cpm] C [V(E)/Gm). Since Hi2(7/10) x WC,—; admits
a good moduli space, and V(E)\V (m.0¢(—7)) is affine over Hi 2(7/10) x WC,_1, V admits a good
moduli space. By Lemma 2.20, there is an induced morphism ¥: V — ﬂzm@/ 3). The image of
¥ is WC, and V¥ is finite by Proposition 4.16 so Proposition 4.3 implies that WC,. admits a good
moduli space. O
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For higher (g, n), we can use gluing maps to decompose ﬂg,n(ac) into products of lower-dimensional
moduli spaces.

Lemma 4.22. Let a, € {9/11,7/10,2/3}. There exist finite gluing morphisms
v mghm—i-l(O%) X ﬂgz,nz—Fl(QC) - ﬂ5]1+g27n1+nz (a)
obtained by identifying (C, {pl}lnzlfl) and (C', {pé}?j'{l) nodally at pp, 11 ~ Py
Proof. ¥ is well-defined by Lemma 2.18. To see that W is finite, first observe that ¥ is clearly

representable and quasi-finite. Furthermore, since the limit of a disconnecting node is a disconnecting
node in Mgy ,(c) (Corollary 2.11), ¥ satisfies the valuative criterion for properness. O

In the case a. = 7/10, we will need two additional gluing morphisms.

Lemma 4.23. There exist finite gluing morphisms

M n2(7/10) x EC, — Mgyorn(7/10), EC. — Mo (7/10),

where the first map is obtained by nodally gluing (C,{p; ?212) and an elliptic chain (Z,q1,q2) at

DPnt+1 ~ q1 and Ppy2 ~ q2, and the second map is obtained by nodally self-gluing an elliptic chain
(Z,q1,42) at ¢1 ~ q2.

Proof. These gluing maps are well-defined by Lemma 2.18, and finiteness follows as in Lemma 4.22.
O

Proposition 4.24. Let o, € {9/11,7/10,2/3} and suppose that ﬂgr,n/(ac) admits a proper good
moduli space for all (¢',n') satisfying g < g. Then Hgn(ae) admits a proper good moduli space.

Proof. Let a. = 9/11. By Lemma 4.20, we may assume (g,n) # (1,1). By Lemma 4.22, there exists
a finite gluing morphism

U My_1n41(9/11) X H1,1(9/11) = My, (9/11),
whose image is precisely H,,(9/11). Now H,,(9/11) admits a proper good moduli space by Propo-
sition 4.3.

Let a. = 7/10. For every r such that My_2; ,,4+2(7/10) (resp., My_2,_1,(7/10)) exists, Lemma
4.23 (resp., Lemma 4.22) gives a finite gluing morphism
M2 42(7/10) X EC; — Hy.n(7/10)

(resp., Mg—2r—1,n(7/10) x ECr — Hyn(7/10)),
that identifies (C, {p;}}7?) (resp., (C, {pi}{=1)) to (Z,q1,42) at pny1 ~ q1, Prsa ~ g2 (vesp., pn ~ q1)-
In addition, for every triple of integers (i, m,r) such that M, ,;,11(7/10) X Mg_i—2r11n—m+1(7/10)
exists, Lemma 4.22 gives a finite gluing morphism

M m41(7/10) X My_i—9r41 n—m+1(7/10) X EC, — H g, (7/10),
which identifies (C, {pi}?f{l), (C" AP, ?:_lmﬂ), (Z,q1,q2) nodally at ppi1 ~ q1, P)_py1 ~ G2 Fi-
nally, if (g,n) = (2r,0), Lemma 4.23 gives a finite gluing morphism
EC — Har(7/10),
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which nodally self-glues (Z, g1, ¢2) at g1 ~ g2. The union of these gluing morphisms covers H, ,,(7/10).
Thus, H,,(7/10) admits a proper good moduli space by Proposition 4.3 and Lemma 4.21.

Let a. = 2/3. By Lemma 4.20, we may assume (g,n) # (2,1). For each r = 1,..., %], Lemma
4.22 provides a finite gluing morphism

My2rn1(2/3) x WC,(2/3) = Myn(2/3)

(if r = g/2 and n = 1, we consider My_5,,11(2/3) as the emptyset). The union of these gluing
morphisms cover Hy,(2/3). Now Hy,(2/3) admits a proper good moduli space by Proposition 4.3
and Lemma 4.21. ([l

4.2.3. Euistence for My ().

Theorem 4.25. For every a € (2/3—¢,1], Myn(a) admits a good moduli space My, (a) which is
a proper algebraic space. Furthermore, for each critical value o, € {2/3,7/10,9/11}, there ezists a
diagram

Mg,n(ac+e)c—> Mg,n(ozc) <—3ﬂg7n(ac —€)

| | |

n(acte) —— Mgﬂn(ac) ~— Mg n(ae—e)

Mg
where Mgn(ae) = Mg n(ac), Mg,n(ac—kﬂ — Myn(aete) and ﬂgm(gc—e) — Myn(ae—€) are good

moduli spaces, and where My, (ac+€) = Mg p(ac) and Mg pn(ae—e) = Mg n(ae) are proper morphisms
of algebraic spaces.

Remark. The reader should not confuse M, ,,(«) with the projective variety M, ,(«) defined in (1.2).
The goal of Section 5 is to establish the isomorphism My, () ~ M, ().

Proof. Fix a. € {9/11,7/10,2/3}. Note that ﬂo,n(ac) = Mo,n, SO Mo,n(ac) admits a proper good
moduli space for all n. By induction on g, we may assume that ﬂgx,n/(ac) admits a proper good
moduli space for all (¢/,n’) with ¢’ < g. Note that M, (a) = My, for a > 9/11. By descending
induction on o, we may now assume that ﬂg,n(a) admits a good moduli space for all a > a.+e.
By Theorem 3.11, the inclusions Mg ,(a+e) <= Mg, (o) <> M, (a—e) arise from local VGIT with
respect to § — 1), and Propositions 4.24 and 4.19 imply that H, ., () = Mgn(ae) ~ Mg, (ac—€) and
Sgnlac) = Mgn(ae) N~ Mgn(ac+e) admit proper good moduli spaces. Now Theorem 4.2 implies
that M, , () and M, ,(ce—€) admit proper good moduli spaces fitting into the stated diagram. O

5. PROJECTIVITY OF THE GOOD MODULI SPACES

Theorem 4.25 establishes the existence of the good moduli space ¢q: Mgy, (o) — My ,() for
a > 2/3—e. Since M, () parameterizes unobstructed curves, it is a smooth algebraic stack and so
has a canonical divisor KMM( o)~ Because non-nodal curves in M, ,(a) form a closed substack of
codimension 2, the standard formula gives ngyn(a) = 13X\ =25 + 9, cf. [Log03, Theorem 2.6]. The

main result of this section says that M, ,(c) is projective and isomorphic to the log canonical model
Mg, (a) defined by (1.2):
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Theorem 5.1. For a > 2/3—¢, the following statements hold:
(1) Zhe line b?ﬁdle K4, () T 0+ (1 — @)y descends to an ample line bundle on My ,(c).

We proceed to prove this result assuming Propositions 5.2, 5.3, 5.4 and Theorem 5.5, which will
be proved subsequently. Of these, Theorem 5.5 is the most involved and its proof will occupy §§5.4—
5.5. Note that throughout this section, we make use of the following standard abuse of notation:
Whenever £ is a line bundle on M, ,, () that descends to the good moduli space, we denote the corre-
sponding line bundle on Mg,n(oz) also by L. In this situation, pullback defines a natural isomorphism

H(Mgn(a), £) =~ HO (Mg n(a), L).
Proof of Theorem 5.1. First, we show that Part (2) follows from Part (1). Indeed, suppose Kﬂg et
ad + (1 — a)y descends to an ample line bundle on M, (). Then

Mgn (@) 2 Proj R(Mgn(c), K4, (o) T 00+ (1 —a)Y) =~ Myn(a),

where the second isomorphism is given by Proposition 5.2.

The proof of Part (1) proceeds by descending induction on « beginning with the known case
a > 9/11, when My ,(a) = Mg,. Let ac € {a1 = 9/11,a2 = 7/10,a3 = 2/3} and take ap = 1.
Suppose we know Part (1) for all & > a.—1 — €. By Theorem 5.5, the line bundle K w(@emr—e) T

acd + (1 — )y is nef on M, ,(ce—1 — €) and all curves on which it has degree 0 are contracted by
Mgn(ce—1 — €) = Mgn(ae). It follows by Proposition 5.3 that the statement of Part (1) holds for all
a > a.. Finally, Proposition 5.4 gives the statement of Part (1) for a > o, — €. ]

Proposition 5.2. Let a > 2/3 — €. Suppose that K3, i)+ B6 + (1 — B)y descends to My () for
some B < a. Then we have

PI‘Oj R(Mg,n(a)a Kﬁgﬂn(a) + ﬂé + (1 - /8)1/)) = Mgv"(ﬂ)

Proof. Consider the rational map fo: My, --» Mg (). If a > 9/11, then f, is an isomorphism.
If 7/10 < o < 9/11, then fo|57 M, is an isomorphism onto the complement of the codimension 2

locus of cuspidal curves in I}’Igm( ). If a < 7/10, then fu|57 M,

n\01,0

e~ (01.0U611) is an isomorphism onto the

complement of the codimension 2 locus of cuspidal and tacnodal curves in My, (). (If n = 0, then
011 = @). It follows that we have a discrepancy equation

(5.1) fx (ng’n(a) + B85+ (1 - B)) ~ Kyg,,, + 80+ (1= B)Y + codio + 1o,

where ¢g = 0 if @« > 9/11 and ¢; = 0 if « > 7/10.

Let T C ﬂg,n be a non-trivial family of elliptic tails and T C Mg,n N\ 01,0 be a non-trivial family
of 1-pointed elliptic tails. Then f, is regular along 77, and for a < 9/11 contracts 7T} to a point.
Similarly, f, is regular along 75, and for av < 7/10 contracts 75 to a point. By intersecting both sides
of (5.1) with T} and T3, we obtain ¢p = 11 —9 < 0 if & < 9/11, and ¢; = 105 — 7 < 0 if o < 7/10.
It follows that

Proj R(Myn(@), K5q, (o) + 80 + (1 = B)¢) = Proj R(Mgn, K5z + B0+ (1= B)Y) = Mgn(B).
O
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Proposition 5.3. Fiz a. € {a1 = 9/11, a9 = 7/10, a3 = 2/3} and take ag = 1. Suppose that for all
O<ex 1,
Kt e 10+ (e = 00 (1= ey + )

descends to an ample line bundle on Mg’n(ac,l —€). In addition, suppose that
ng’n(aC71_€) + 0605 + (1 - Ozc)lp

is nef on My n(ce—1 — €) and all curves on which it has degree 0 are contracted by My p(ce—1 —€) —
Mgn(ae). Then K, (o) T 00 + (1 — )y descends to an ample line bundle on My, (a) for all
a € [, 0e—1).

Proof. By Proposition 3.28, for any a.-closed curve (C,{p;}}_;), the action of Aut(C,{p;}~,)° on
the fiber of Kz )T @cd+(1—ac)y is trivial. It follows that Kzz )+ acd+ (1— )1 descends

to Hg,n(ozc). Consider the open immersion of stacks Mgm(ozc_l —€) — ﬂg,n(ac) and the induced
map on the good moduli spaces j: Mg n(e—1 —€) = Mg, (ac). We have that

j*(Kﬂg,n(O&c) + O[C(s + (1 o ac)w) = Kﬂg,n(ac—l—E) - acé - (1 - O(C)r(/J.

It follows by assumption that Kzz + a0+ (1 — )1 descends to a nef line bundle on the

Qe—1—€)

projective variety My, (ae—1 — €). First, we show that Kﬂg o + a0 + (1 — a)t) is semiample

o Qe—1—€)
on My n(ae—1 —€). To bootstrap from nefness to semiampleness, we first consider the case n = 0
and g > 3. By Proposition 5.2, the section ring of ng( + a0 on Mg(ac,l — €) is identified

Qe—1—€
with the section ring of ng + a6 on M,. The latter line1 bl)mdle is big, by standard bounds on
the effective cone of M, and finitely generated by [BCHMI10, Corollary 1.2.1]. We conclude that
Kﬂg( o1—€) +a.d is big, nef, and finitely generated, and so is semiample by [Laz04, Theorem 2.3.15].
When n > 1, simply note that Kﬂg%n(%_l_ﬁ) + acd pulls back to Kz +acd+ (1 —ae)y
under the morphism My ,(ae—1 — €) = Mgypn(ac—1 — €) defined by attaching a fixed general curve
of genus h > 3 to every marked point.
We have established that

Qe—1—€)

j* (ngyn(QC) + 0456 + (1 - Oéc)rl/)) - ngyn(ac—l_g) + ac& + (1 o ac)w

is semiample on My, (a.—1 — €). By assumption, it has degree 0 only on curves contracted by
My n(ae—1 —€) = Myn(ac). We conclude that K34, n(a0) T @cd + (1 — ac)y is semiample and is
positive on all curves in Mg, (). Therefore, KR4, (ae) Q0+ (1 — ac)? is ample on My, (ac).

The statement for a € (a, a—1) follows by interpolation. O

Proposition 5.4. Fiz a. € {9/11,7/10,2/3}. Suppose that ng e T acd + (1 — ae)yp descends to
an ample line bundle on My (o). Then for all0 < e < 1,

Ky nae-e) + (e = e + (1= ac + €)1

descends to an ample line bundle on My, (ce — €).
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Proof. Consider the proper morphism 7: Mg, (ac—€) — My n(ac) given by Theorem 4.25. Our

assumption implies that Kﬂg’ (@e—e) T acd + (1 — )y descends to a line bundle on M, ,(c.—¢)

n

which is a pullback of an ample line bundle on Mg,n(ac) via w. To establish the proposition, it
suffices to show that a positive multiple of ¢ — & on M, (a.—¢) descends to a m-ample line bundle
on My (ac—e).

For every (a.—e)-stable curve (C,{p;}?_,), the induced character of Aut(C,{p;} ;)° on § — 1 is
trivial by Proposition 3.27. It follows by [Alp13, Theorem 10.3] that a positive multiple of § — 1
descends to a line bundle A on M, (a.—e).

To show that AV is relatively ample over Mg, (a.), consider the commutative cube

(5.2) w SWy
/ /
Mg,n(ae) Mg,n(ae—e)
¢O¢¢ ¢O¢c76
w)G l Wy IG
Flg.n(ac) - Wig,n (e —e)

where W = [Spec A/G] — W//G = Spec A% and Wi, = Wy, /|G = Proj @ ;> Aa are the good
moduli spaces as in Proposition 3.6. Since the vertical arrows are good moduli spaces, by Proposition
4.6 and Lemmas 3.18 and 4.7, after shrinking W by a saturated open substack such that f sends
closed points to closed points and is stabilizer preserving at closed points, we may assume that the
left and right faces are Cartesian. The argument in the proof of Theorem 4.2 concerning Diagram
(5.2) shows that the bottom face is Cartesian.

The restriction of NV to Wy, = descends to the relative O(1) on Wy, //G. Therefore, the
pullback of AN on My, (ac—€) to W /G is O(1) and, in particular, is relatively ample over W//G.
Since the bottom face is Cartesian, it follows by descent that AV is relatively ample over My, (cc).

The proposition follows. O

5.1. Main positivity result. A well-known result of Cornalba and Harris says that

Theorem ([CHSS]). Ky, + 26+ 2y ~ 1IN =6+ is nef on My, for all (g,n), and has degree
0 precisely on families whose only non-isotrivial components are Ai-attached elliptic tails.

In a similar vein, Cornalba proved that 12X — é + 1 is ample on ﬂg,n and thus obtained a direct
intersection-theoretic proof of the projectivity of Mg,n [Cor93]. We refer the reader to [ACGI11,
Chapter 14] for the comprehensive treatment of intersection-theoretic approaches to projectivity of
Mg,ny many of which make appearance in the sequel. In the introduction to [Cor93], the author says
that “... it is hard to see how [these techniques] could be extended to other situations.” In what
follows, we do precisely that by giving intersection-theoretic proofs of projectivity for My, (7/10—e¢)
and Mg ,(2/3—¢).
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Theorem 5.5 (Positivity of log canonical divisors).

(a) Kxq, . (9/11-0) T 56+ 24p ~ 10X — § + ¢ is nef on My, (9/11 —€), and, if (g,n) # (2,0),
has degree 0 precisely on families whose only non-isotrivial components are Ay /A;-attached
elliptic bridges. It is trivial if (g,n) = (2,0).

(b) K4, o7/10-0) + %5 + %¢ ~ %)\ — 041 is nef on My, (7/10 — €), and has degree 0 precisely
on families whose only non-isotrivial components are A1-attached Weierstrass chains.

Our proof of this theorem is organized as follows. In Section 5.2, we develop a theory of simul-
taneous normalization of families of at-worst tacnodal curves. By tracking how the relevant divisor
classes change under normalization, we can reduce to proving a (more complicated) positivity result
for families of generically smooth curves. In Section 5.3, we collect several preliminary positivity
results, stemming from three sources: the Cornalba-Harris inequality, the Hodge Index Theorem,
and some ad hoc divisor calculations on Mo,m Finally, in Sections 5.4 and 5.5, we combine these

ingredients to prove parts (a) and (b) of Theorem 5.5, respectively.

The following terminology will be in force throughout the rest of this section: We let ng denote
the stack of connected curves of arithmetic genus g with only A-singularities, and let Zj{g(Ag) C Z/ng be
the open substack parameterizing curves with at worst Ay, ..., A, singularities. Since ﬁg is smooth,
we may freely alternate between line bundles and divisor classes. In addition, any relation between

divisor classes on U, that holds on the open substack of at-worst nodal curves extends to U,.

Let m: C — Z/N{g be the universal family. We define the Hodge class as A := c¢j(m.w;) and the kappa
class as K = m.(c1(wy)?). The divisor parameterizing singular curves in L~{g is denoted 9; it can be
further decomposed as § = diyy + 0red, Where dreq is the closed (by Corollary 2.11) locus of curves with
disconnecting nodes. By the preceding remarks, Mumford’s relation x = 12\ — § holds on Hg. Note
that the higher Hodge bundles 7. (w}*) for m > 2 are well-defined on the open locus in LN{g of curves
with nef dualizing sheaf (it is the complement of the closed locus of curves with rational tails). On
this locus, the Grothendieck-Riemann-Roch formula gives

2
(5.3) c1(m(W™) = A + wﬁ.

Now let C — B be a family of curves in LN{g. If o: B — C is any section of the family, we define
Yo := 0*we/p. We say that o is smooth if it avoids the relative singular locus of C/B.

From now on, we work only with one-parameter families C — B over a smooth and proper curve
B. If 0: B — C is generically smooth and the only singularities of fibers that o(B) passes through
are nodes, then o(B) is a Q-Cartier divisor on C, and we define the index of o to be

(5.4) o) == (we/p +0) - 0.

Notice that the index ¢(o) is non-negative, and if o is smooth, then (o) = 0. We also have the
following standard result:

Lemma 5.6. Suppose C — B is a generically smooth non-isotrivial family of curves in LN{g.

(1) If g>1 and 0: B — C is a smooth section, then o® < 0.
(2) If g =0 and o,0',0": B — C are 3 smooth sections such that o is disjoint from o' and o”,
then o2 < 0.
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Let C — B be a one-parameter family of curves in ng. If p € C is a node of its fiber, then the
local equation of C at p is xy = t°, for some e € Z called the indezx of p and denoted index(p). A
rational tail (resp., a rational bridge) of a fiber is a P! meeting the rest of the fiber in exactly one
(resp., two) nodes. If E C C} is a rational tail and p = E N (Cy, \ E), then the index of E is defined
to be index(p). Similarly, if £ C C} is a rational bridge and {p,q} = E N (Cp \ E), then the index
of F is defined to be min{index(p),index(q)}. We also denote the index of E by index(F). We say
that a rational bridge E C Cj is balanced if index(p) = index(q).

5.2. Degenerations and simultaneous normalization. Our first goal is to develop a theory of
simultaneous normalization along generic singularities in families of at-worst tacnodal curves. In
contrast to the situation for nodal curves, where normalization along a nodal section can always be
performed because a node is not allowed to degenerate to a worse singularity, we must now deal with
families where a node degenerates to a cusp or a tacnode, where two nodes degenerate to a tacnode,
or where a cusp degenerates to a tacnode.

The following result, stated in the notation of §2.2, describes all possible degenerations of singu-
larities in one-parameter families of tacnodal curves.

Proposition 5.7. Suppose C — A is a family of at-worst tacnodal curves over A, the spectrum of
a DVR. Denote by Cy the geometric generic fiber and by Co the central fiber. Then the only possible
limits in Co of the singularities of Cy are the following:

(1) A limit of a tacnode of Cy is necessarily a tacnode of Cy. Moreover, a limit of an outer
tacnode is necessarily an outer tacnode.

(2) A limit of a cusp of Cy is either a cusp or a tacnode of Cy.

(3) A limit of an inner node of Cy is either a node, a cusp, or a tacnode of Cy.

(4) A limit of an outer node of Cy is either an outer node of Cy or an outer tacnode of Cp.
Moreover, if an outer tacnode of Cy is a limit of an outer node, it must be a limit of two
outer nodes, necessarily joining the same components.

Proof. By deformation theory of A-singularities, a cusp deforms only to a node, a tacnode deforms
only either to a cusp, or to a node, or to two nodes. Given this, the result follows directly from
Proposition 2.10. O

We describe the operation of normalization along the generic singularities for each of the following
degenerations:

(A) Inner nodes degenerate to cusps and tacnodes (see Proposition 5.9).
(B) Outer nodes degenerate to tacnodes (see Proposition 5.10).
(C) Cusps degenerate to tacnodes (see Proposition 5.11).

We begin with a preliminary result concerning normalization along a collection of generic nodes.
Suppose m: X — B is a family in ﬁg with sections {ai}le such that o;(t) are distinct nodes of X
for a generic b € B and such that {o;(B)}*_; do not meet any other generic singularities. (The last
condition will be automatically satisfied when {o;}¥_, is the collection of all inner or all outer nodes.)
Let v: Y — X be the normalization of X' along U¥_,0;(B). Denote by {n;",n; } the two preimages
of o; (which exist after a base change). Let R : 1,0y — Oy, (resp., Ry : vi0y — Oy (py) be

the morphisms of sheaves on X induced by pushing forward the restriction maps 0y — ﬁni( B)
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and composing with the natural isomorphisms V*(ﬁni(B)) ~ Oy ). Welet R; = R;“ — R, be the
difference map, and R := @leRi: v Oy — EBi?‘:l U, (B)- In this notation, we have the following
result.

Lemma 5.8. There is an exact sequence
v# R k
(5.5) 0= Ox —v.0y — @1:16’@(3) - K =0,

where K is supported on the finitely many points of X at which the generic nodes {o;(B)}¢_, degen-
erate to worse singularities. Consequently,

)‘X/B = )\y/B =+ length(ﬁ*lC)

Proof. Away from finitely many points on X where the generic nodes degenerate, im (v#) = ker(R)
and R is surjective. Consider now a point p € X where a generic nodes coalesce. A local chart of X
around p can be taken to be

SpecCllz,y, 1))/ (y* — (x = 51(t))* -+~ (2 — sa(1))* f (2, 1)),
where x = s;(t) are the equations of generic nodes. By assumption on the generic nodes, f(z,t) is
a square-free polynomial. Hence ) = Spec C[[m,u,tﬂ/(uQ — fl(x, t)) and the normalization map is
y = u]lim (x = si(t),
Without loss of generality, the equation of 7" is u = +uv;(t), where v;(t)? = f(s;(t),t). It follows
that R;: C[[x,u,t]]/(u® — f(z,t)) — C[[t]] is given by

Ri(g(xv uat)) = g(si(t)v Ui(t)at) - g(si(t)a _Ui(t)>t)'

Write C[[x,u,t]]/(u® — f(z,t)) = C[[z,t]] + uC[[z,]]. Clearly, C[[z,t]] C ker(R) N im (v#). Note
that ug(z,t) € ker(R) if and only if R;(ug(z,t)) = 2v;(t)g(si(t),t) = 0 for every i if and only if
g(x,t) € (x—s;(t)) for every i. Since the generic nodes are distinct, we conclude that ug(z,t) € ker(R)
if and only if [[%, (x — si(t)) | g(z,t) if and only if ug(z,t) € yC[[x,t]] C im (v¥). The exactness of
(5.5) follows.

Pushing forward (5.5) to B and noting that c;((7 o v).0y) = c1(m0x) = c1(m: Oy, (p)) = 0, we
obtain

Cl(Rl(ﬂ’ o V)*ﬁy) = Cl(Rlﬂ'*ﬁx) + 61(77'*/(:).

The formula relating Hodge classes now follows by relative Serre duality. g

Proposition 5.9 (Type A degeneration). Suppose X /B is a family in Z/N{g(Ag) with sections {o;}F_,
such that o;(b) are distinct inner nodes of Xy for a generic b € B, degenerating to cusps and tacnodes
over a finite set of points of B. Denote by Y the normalization of X along U¥_,a;(B) and by {nton}
the two preimages of o;. Then {nzi} are sections of Y /B satisfying:
(1) If 0;(b) is a cusp of Xy, then n; (b) = n; (b) is a smooth point of V.
(2) If 04(b) is a tacnode of X, and a;(b) # ci(b) for all j # i, then n; (b) = n; (b) is a node of Vs
and 771-Jr +n, s Cartier at b.
(3) If 0i(b) = oj(b) is a tacnode of X, for some i # j, then (up to &) n;(b) = n;(b) and
n; (b) =n; (b) are smooth and distinct points of V.
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Set n; 1= nj +n; and ¥y, == wy g N = wm-* + @Zlm_—. Define

k k
Vinner 1= anm Otacn = 2(771 : 77j)7 and  dipner = Z(T];L : 77;)
i=1 i i=1

Then we have the following formulae:

k
1
)‘X/B = )‘y/B + Eétacn + 6inner + § [1(77;'_)7
=1

k
5X/B = 5)}/3 - winner + 45tacn + 105@'717167” +10 Z L(U;r)
i=1
A pair of sections {77?,772-_} arising from the normalization of a generic inner node will be called
inner nodal pair and nz-i will be called inner nodal transforms.

Proof. The formula for the Hodge class follows from Lemma 5.8, whose notation we keep, once we
analyze the torsion sheaf I on X. Consider the following loci in X

(a) Cu is the locus of cusps in X'/B which are limits of generic inner nodes.
(b) Tny is the locus of tacnodes in X' /B which are limits of a single generic inner node.
(c) Tng is the locus of tacnodes in X'/B which are limits of two generic inner nodes.

(a) A local chart of X around a point p € Cu can be taken to be
Spec Clla, y. 1]/ (y* — (& — 27)*(x + 2t*™)),

where = = t?™ is the equation of the generic node o degenerating to the cusp p. Then ) =
Spec C[[z,u,t]]/(u? — 2 — 2t*™) and the normalization map is y — u(xz — t*™). The preimages 1"
and 1~ of the generic node ¢ have equations u = V3t™ and u = —/3t™. Note that ) is smooth and
the intersection multiplicity of n™ and i~ at the preimage of p is m. It follows that the contribution
of p to dinner is M.

The elements of C[z, u, t]]/(u? — z — 2t*™) that do not lie in ker(R) are of the form ug(z,t) and we
have R (ug(z,t)) = 2v/3t™g(t*™,t). It follows that im (R) = (¢™) C C[[t]]. Hence K, = C[[t]]/im (R)
has length m.

(b) A local chart of X around a point p € Tn; can be taken to be

Spec C[[z, y, t]]/(y2 —(x — tm)Q(al:2 + tQC)),

where x = t"™ is the equation of the generic node o degenerating to the tacnode p. Then Y =
Spec C[[z, u, t]]/(u? — 22 — 2¢) is a normal surface with As._;-singularity at the preimage of p, and
the normalization map is given by y +— u(x — t™). The preimage of o is the bi-section given by
the equation u? = #2™ + 3¢, which splits into two sections given by the equations u = +v(t),
where the valuation of v(t) is equal to min{m,c}. The map R: C[[z,u,]]/(u® — 2? — t2¢) — C[[t]]
sends an element of the form wug(x,t) to 2v(t)g(t",t) and everything else to 0. We conclude that
ICp = C|[t]]/im (R) has length min{m, c}.
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It remains to show that the contribution of p to (n™ -7~ + «(n™)) is min{m,c}. There are two
cases to consider. First, suppose ¢ < m. Then the equations of nt and n~ are u = ot and u = —at¢
where a # 0 is a unit in C[[¢]]. The minimal resolution h: Y — Y has the exceptional divisor

EyU---UEy. 1,

which is a chain of (—2)-curves. The strict transforms 777 and 77~ meet the central (—2)-curve E,
at two distinct points. Clearly, h*wy g = w5 and a straightforward computation shows that

c—1
Rt +n ) =0 +7 + > i(Ei + Baxi) + cE.
i=1
It follows that the contribution of p to (77+ T+ L(’I7+)) = (wx/B + nt+n7)-ntis e
Suppose now that ¢ > m. Then the equations of n* and n~ are u = at™ and u = —at™,
respectively, where o # 0 is a unit in CI[[¢]]. The exceptional divisor of the minimal resolution
h: Y — Y is still a chain of (—2)-curves of length 2c — 1. However, 77+ and 77~ now meet E,, and
Ec—m, respectively. It follows that the contribution of p to (g% -7~ +(n™)) is m.
(c) A local chart of X around a point p € Tng can be taken to be

Spec Cl[[z, y, t]]/(y2 —(z— tm)Q(aj + tm)Z),

where x = t™ and © = —t" are the equations of the generic nodes {01, 02} coalescing to the tacnode
p. Then Y = Spec C[[z, u,t]]/(u® — 1) is a union of two smooth sheets, and the normalization map
is given by y +— u(z — t™)(z + t™). The preimages n;” and 7, of the generic node oy have equations
{u=1,2 =t} and {u = —1,2 = t™}. The preimages 7, and 7, of the generic node o have
equations {u = 1,2 = —t"} and {u = —1,z = —t™}. In particular, njj-E are smooth sections,
with 771+ meeting n;r , and 1, meeting 7, , each with intersection multiplicity m. It follows that the
contribution of p to d¢gepn is 2m.

The elements of C[[x,u,t]]/(u? — 1) that do not lie in ker(R) are of the form ug(z,t) and we have
R(ug(z,t)) = (29(t™, t),29(—t™,t)) € C[[t]] ® C][t]]. It follows that

im (R) = ((1,1), (t,t), ..., (™ ™) + (#™) x (™) < C[[t]] x C[[t]].

Hence K, = (C[[t]] @ C[[t]])/im (R) has length m.
It remains to prove the formula for the boundary classes. To do this, note that v*wy/;p =
wy/B (Zle(n;r —{—77;)). Therefore,

k k
kg =ryp+2 > (0 +07)-f +07)) +2wy5- Y 0 +n07)+ > (0 +n;)?
1<i<j<k =1 =1
k k k
= Ky/B + 20tacn +wy/p - Yy (07 )+ (wyys e+ ) Fwypen 7)) +2) (0 ny)
=1 =1 =1

k
= KRy/B + 25tacn + wirmer +2 Z L(U,j_) + 25inner-
i=1
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Using Mumford’s relation £ = 12\ — 4 and the already established relation between A\y,p and Ay, g,
we obtain the desired relation between dy,p and dy/p. O

Proposition 5.10 (Type B degeneration). Suppose X' /B is a family in LN{g(Ag) with sections {o;}k_,
such that 0;(b) are outer nodes of Xy for a generic b € B, degenerating to outer tacnodes over a finite
set of points of B. Denote by Y the normalization of X along UF_,0:(B) and by {(;7, ¢} the two
preimages of o;. Then {{ii}f:l are smooth sections of )V such that C;r and ¢; lie on different
irreducible components of Y. Setting

5tacn = Z(C:’_ + Cz_) ' (Cj_ + Cj_)a
i#j

we have the following formulae:

1
Ax/B=Ay/B+ §5tacn,
k

6X/B = 5)//3 - Z(wg" + "ﬁc;) + 40acn-
=1

The sections {Cj, C{}le will be called outer nodal transforms.

Proof. By Proposition 5.7, outer nodes can degenerate only to outer tacnodes. Moreover, an outer
tacnode which is a limit of one outer node is a limit of two outer nodes. The statement now follows by
repeating verbatim the proof of Proposition 5.9 beginning with part (c), and using Lemma 5.8. [

Proposition 5.11 (Type C degeneration). Suppose X /B is a family in ?;{g with sections {o;}¥_,
such that o;(b) is a cusp of Xy for a generic b € B, degenerating to a tacnode over a finite set of
points in B. Denote by Y the normalization of X along Uleai(B) and by & the preimage of o;.
Then &; is a section of /B such that &(t) is a node of Y whenever o;(b) is a tacnode of X, and
&i(b) is a smooth point of Yy otherwise. Moreover, 2&; is Cartier and we have the following formulae:

K k
Av/p=Ayp— > e +2) i),
i=1 =1

k k
5;{/3 = 53}/3 — 1221[)51. + QOZL(&).
1=1 i=1

The sections & will be called cuspidal transforms.

Proof. The proof of this proposition is easier than the previous two results because a generic cusp
cannot collide with another generic singularity. In particular, we can consider the case of a single
generic cusp o. Let v: Y — X be the normalization along . Suppose o(b) is a tacnode. Then the
local equation of X around o(b) is

y? = (z —a(t)*(z + 3a(t),

where = a(t) is the equation of the generic cusp. It follows that ) has local equation u? =
(x —a(t))(z + 3a(t)) and v is given by y — u(z — a(t)). The preimage of ¢ is a section £&: B — Y
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given by  — a(t) = u = 0. Note that £(b) = {z = u =t = 0} is a node of ), and consequently ¢ is
not Cartier at £(b).
Clearly, v*'wy/p = wy/p(2£) and by duality theory for singular curves

Wy /g = (T ov)«(wy/p(28)).
Therefore,
Kx/p = (wy/p +28)° = (wy/p)* + 4 + € wy/p) = Ky p + 4(£),
and by the Grothendieck-Riemann-Roch formula Ay, = c1 ((mov).(wy/p(2€))) = Ay 5 —the +20().
The claim follows. U

5.3. Preliminary positivity results.

Proposition 5.12 (Cornalba-Harris inequality). Let g > 2. Suppose f: C — B is a generically
smooth family in Uy(As), over a smooth and proper curve B, with we,p relatively nef. Then

4
<8+ g) )‘C/B — 5C/B = 0.

Moreover, if the general fiber of C/B is non-hyperelliptic and C/B is non-isotrivial, then the inequality
18 strict.

Remark. When the total space C is smooth, this result was proved in [Xia87] and [Sto08, Theorem
2.1], with no restrictions on fiber singularities.

Proof. As in [Sto08, Theorem 2.1], if the general fiber of C/B is non-hyperelliptic, the result is
obtained by the original argument of Cornalba and Harris [CH88], which we now recall.

Suppose C, for some b € B is a non-hyperelliptic curve of genus g > 3. After a finite base change,
we can assume that A € Pic(B) is g-divisible. Then the line bundle £ := we/p ® f*(—=A/g) on C
satisfies the following conditions:

(1) det(f«(L)) ~ Op.
(2) f«(L™) is a vector bundle of rank (2m — 1)(g — 1) for all m > 2.
(3) Sym™ f.(L) — f«(L™) is generically surjective for all m > 1.
For m > 2 and general b € B, the map Sym™ H(Cy,w¢,) — HO(Cb,wg?b) defines the m!" Hilbert

point of Cp. Since the canonical embedding of Cj, has a stable m** Hilbert point for some m >> 0 by
[Mor09, Lemma 14], the proof of [CH88, Theorem 1.1] gives ¢1(f«(L£™)) = 0. Using (5.3), we obtain

%_2(971) 2 _S=c m
(5.6) <8+g = +gm(m—1)>)\ 6 =c1(fe(L™)) = 0.

To conclude we note that § > 0, and if 6 = 0, then A > 0 for any non-isotrivial family by the existence
of the Torelli morphism M, — A,. We conclude that (8 +4/g) A — & > 0.

Suppose now that C — B is a family of at-worst tacnodal curves with a relatively nef we,p and
a smooth hyperelliptic generic fiber. To prove the requisite inequality, we construct C/B explicitly
as a double cover of a family of (2g + 2)-pointed curves, and prove a corresponding inequality on
families of rational pointed curves.
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Suppose that (V/B,{ 1}29+2) is a family of (2g + 2)-pointed at-worst nodal rational curves where
o; are smooth sections and no more than 4 sections meet at a point. We say that an irreducible
component F in the fiber Y} of /B is an odd bridge if the following conditions hold:

(1) E meets the rest of the fiber ¥}, \ £ in two nodes of equal index,
( ) E. ZQngQ o= 2
(3) the degree of Z il % 5; on each of the connected components of Y, ~ E is odd.

Suppose h: Y — Z is a blow-down of some collection of odd bridges. The image of ) gJ{Z o; in
Z will be denoted by ¥. Note that while the individual images of ;’s are not Cartier on Z along
the image of blown-down odd bridges, the total class of ¥ is Cartier on Z. We say that a node
p € 2 (resp., p € )p) is an odd node if the degree of ¥ (resp., 2291& 0;) on each of the connected
component of the normalization of Z;, (resp., V) at p is odd. We denote by d,qq4 the Cartier divisor
on B associated to all odd nodes of Z/B (resp., Y/B).

The hyperelliptic involution on the generic fiber of f: C — B extends to all of C and realizes C/B
as a double cover of a family (Z/B, ) described above in such a way that C — Z ramifies over X.
Let doqq be the divisor of odd nodes of Z/B. We have the following standard formulae:

(E +2wz/p - X — bodd)

AC/B_ Z/B’

§
3

Consider h: Y — Z. Then h*(X) = ZQQJ{Q 0; + E, where E is a collection of odd bridges, and
h*wz/p = wy/p. Set Py,p:=wy,p - S2972 04, Sinner = >izj(0i-0j), and e := —1FE®. Then

1 1
>‘C/B = <8(¢)y/3 + 28inner — dodd) + 2€> )
Y/B

1
6C/B = <25inner + 20even + iéodd + 56)
Y/B

We obtain

2 1 1 2 3 1
<8+ > >‘C/B_5C/B = < s Y + —0inner + <_1>6_25even_ <+> 6odd> .
29 g g 2 2 V/B

Multiplying by 2g, we need to show that on ))/B we have

(29 + 1)1/} + 20inner — 4g5even — (39 + 1)5odd — (2g — 4)6 > 0.

Noting that
g+1

(29 + 1)% + 26imner = » (29 + 2 — 1)3;,
=2

and using the inequality 2e < §,44, Wwe obtain the desired claim. (|
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Hodge Index Theorem Inequalities. We apply a method of Harris [Har84] to obtain inequalities be-
tween the 1-classes, indices of cuspidal and inner nodal transforms, and the x class. In the following
lemmas, we use the following variant of Hodge Index Theorem for singular surfaces.

Lemma 5.13. Let S be a proper reduced algebraic space of dimension 2. Suppose there exists a
Cartier divisor H on S such that H?> > 0. Then the intersection pairing on NS(S) has signature

(1,0).

Proof. Let m: S — S be the minimal desingularization of the normalization of S. Then S is a smooth

projective surface. Note that 7*: NS(S) — NS(.9) is an injection preserving the intersection pairing.
The statement now follows from the Hodge Index Theorem for smooth projective surfaces. O

Lemma 5.14. Suppose X /B is a family of Gorenstein curves of arithmetic genus g > 2 with a
section §. Let 1(§) = (§ +wx/p) - € be the inder of §. Then
(9-1) K
L&) + .

g © 49(g — 1)
Proof. Apply the Hodge Index Theorem to the three classes (F),{,wy/p), where F' is the fiber class.
Since £ + kF has positive self-intersection for £ > 0, the determinant of the following intersection
pairing matrix is non-negative:

(5.7) (>

0 1 2g — 2
L —de+u) ¢
2g -2 Qﬂg Y
The claim follows by expanding the determinant. g

Lemma 5.15. Suppose X /B is a family of Gorenstein curves of arithmetic genus g > 2 with a pair
of sections n*,n~. Then

2(9—1)

S () ) +

(5.8) Ut + by = oy
Proof. Consider the three divisor classes (F,n =n" + 7", wy /B), Where F' is the fiber class. Since
n+kF has positive self-intersection for k > 0, the Hodge Index Theorem implies that the determinant

of the following intersection pairing matrix is non-negative:

0 2 2g — 2
2 _wnJr - wnf + 2(77+ : 77_) + L(Tl+) + L(n_) wT]JF + wn*
2g -2 ¢77+ + lbn— K
The claim follows by expanding the determinant. O

Lemma 5.16. Suppose X /B is a family in LNIQ(Ag) with a smooth section 7. Then

Moreover, if §;eq = 0, then the equality is satisfied if and only if (X /B, T) is a family of Weierstrass
tails in Ma1(7/10 — €).
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Proof. The inequality follows directly from Lemma 5.14 by taking ¢ = 2. Moreover, the proof
of Lemma 5.14 shows that equality holds if and only if the intersection pairing on (F,7,wx/p)
is degenerate. Assuming d,.q = 0, there is a global hyperelliptic involution h: X — X. Hence
wx/B =T + (1) + zF, for some x € Z. Observe that wy,p -7 = wy/p - h(7) and F -7 = F - h(7).
Since no combination of w and F' is in the kernel of the intersection pairing, we conclude that

2 =7 h(r).

However, the intersection number on the left is negative by Lemma 5.6 and the intersection number
on the right is non-negative whenever 7 # h(7). We conclude that equality holds if only if A(7) = T,
that is 7 is a Weierstrass section. g

We will need special variants of Lemmas 5.14 and 5.15 for the case of relative genus 1 and 0.

Lemma 5.17. Let X /B be a family of Gorenstein curves of arithmetic genus 1 with a pair of sections
nt,n~, and suppose that n* and n~ are disjoint from N smooth pairwise disjoint section of X /B.
Then

1
Wéred-
Proof. Let ¥ be the sum of N pairwise disjoint smooth sections of X /B disjoint from {n*,n~}. Then
(wx/B + 2%)% = wi,/B = k. Apply the Hodge Index Theorem to (F,n* + n~,wx/p + 2%), where F'
is the fiber class. The determinant of the matrix

N
(" -n7) +un®) < %Q(W +4p-) +

0 2 2N
—1/177+ - %* + 2(77+ : 777) + [’(77+) + L(777) 1/47* + wn*
2N Uyt + - K

is non-negative. Therefore
—4k + 8N (s + b= ) +AN? (Ve + 0= ) = 8N ((nt - n7) +u(n™)),
which gives the desired inequality using K = —eq- ]

Lemma 5.18. Let X /B be a family of Gorenstein curves of arithmetic genus 1 with a section &,
and suppose that & is disjoint from N smooth pairwise disjoint sections of X. Then
N +1 1
<
Furthermore, suppose N = 1, with 7 being a smooth section disjoint from &, and dpeq = 0. Then
equality holds if and only if 2§ ~ 27.

5red .

Proof. Let 3 be the collection of smooth sections of X' /B disjoint from &. By the Hodge Index
Theorem applied to (F,§,wy/p + 2%), the determinant of the matrix

0 1 2N
L —tpe+u(§) e
2N e K

is non-negative. Therefore

1 1
L&) < e + ng ~ N2t
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This gives the desired inequality using Kk = —dyeq.

To prove the last assertion observe that because d,.q = 0 all fibers of X'/ B are irreducible curves
of genus 1. In particular, wy,p = AF and it follows from the existence of the group law on the set
of sections of X'/B that there exists a section 7/ such that 26 — 7 = 7/. Since 7N ¢ = &, we have
7'N& = @. If equality holds, then the intersection pairing matrix on the classes F, &, 7 is degenerate.
Hence some linear combination (x€ +y7 + zF') intersects F, {, 7 trivially. Clearly, y # 0. Intersecting

with 7, we obtain y(7 - 7) + z = 0; and intersecting with 7/, we obtain y(7 - 7') + 2 = 0. Hence

72 = 7.7/, This leads to a contradiction if 7 # 7’. O

5.3.1. An inequality between divisor classes on Mo n. The proof of Theorem 5.5 will require the
following ad hoc effectivity result on My .

Lemma 5.19. Suppose {n;“,r];}?zl are sections of a family of N-pointed Deligne-Mumford stable
rational curves. Let Yipner = > 4y (1/)7]+ +¢n__) and Sipner == Y iy 5{77_+ e If a > 2, then for

any generically smooth one-parameter family in Mo n, we have

a a
a—2 5a — 9
Yinner Z Ainner +4 Z Z 5{77?777[,5} T 2@ -1 Z 6{77?771*} t a—1 Z Z 5{77?,77[771*}’
i=1 B¢ {nt mye i) ! i—1 jAi !

Proof. For any two distinct 1-classes on HQ ~, we have the following standard relation:
(5‘10) wa + w’r = Z 55’-

S: o€S, 7¢S
We apply (5.10) to the right-hand side of

a

(a — 1)¢inner = Z (wn?: + ¢nf) — (a — 1) Z(wn;r + 1/)777)

1<i<j<a i=1

This gives us a formula of the following form:

(a - 1)¢inner = Z CS(SS-

We now estimate the coefficients of the boundary divisors appearing on the right-hand side. Suppose
there are x pairs {7];r ,m; } such that 77;F € S and n; ¢S, or vice versa, and that S contains y pairs
{nt,n;}. Set z=a -z —y. Then

cs = ((x+2y)(x+22) —2)— (a— Dz =2x(y+ z) + dy=.
We have that

(1) c¢g = 0 for every S.

(2) If S = {n,n;} or S = {n,n;, B}, where 8 ¢ {n/,n;}%,, then £ =0 and y = 1, and so
cs =4(a—1).

(3) If S = {nf, 77]3:} for i # j, then z = 2 and y = 0, and so c¢g = 2(a — 2).

(4) IfS:{nf,ni_,n;E} for j # 4, then x =1 and y = 1, and so ¢g = 5a — 9.

The claim follows. OJ
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5.4. Proof of Theorem 5.5(a). Notice that 10\ — § + ¢ = 0 on M2 (9/11 — €) by the standard
relation 10\ = &y + 20eq that holds for all families in Us.

We now prove that 10\ — & + 1 is nef on M, ,(9/11 — €) and has degree 0 precisely on families
whose only non-isotrivial components are A;/A;-attached elliptic bridges, for all (g,n) # (2,0). Let
(C/B,{0i} ;) be a (9/11 — ¢)-stable family. The proof proceeds by normalizing C along generic
singularities to arrive at a family of generically smooth curves, where the Cornalba-Harris inequality
holds, or at a family of low genus curves, where the requisite inequality is established by ad-hoc
methods. Keeping in mind that generic outer nodes and generic cusps of C/B do not degenerate, but
generic inner nodes of C/B can degenerate to cusps, we begin by normalizing generic outer nodes,
then normalize generic cusps, and finally normalize generic inner nodes.

5.4.1. Reduction 1: Normalization along generic outer nodes. Let X be the normalization of C along
generic outer nodes, marked by nodal transforms. By Lemma 2.17 every connected component of
X /B is a family of generically irreducible (9/11 — €)-stable curves. By Proposition 5.10, we have

(10)\ -0+ w)c/g = (10)\ -0+ 1/})/\’/3-
We have reduced to proving 10\ — § + ¢ > 0 for a family with generically irreducible fibers.

5.4.2. Reduction 2: Normalization along generic cusps. Suppose (X /B, {0;}!'_;) is a family of (9/11—
€)-stable curves with generically irreducible fibers. Let )’ be the normalization of X along generic
cusps. Denote by {;}5_; the cuspidal transforms on Y. Set Yeysp := > ;1 V¢, and Yy :=v%x/B+
Yeusp- Then by Proposition 5.11, we have

(10A =6+ ) x/p = (10A =0 + )y B + Yeusp-
We have reduced to proving 10\ — § + 1 + eysp = 0 for a family (V/B, {0}, {&}{_,), where

(1) The fibers are at-worst cuspidal and the generic fiber is irreducible and at-worst nodal.
(2) {oi}y. {& )5, are smooth sections and wy,5(3 1 0 + D7 &) is relatively ample.”

5.4.3. Reduction 3: Normalization along generic inner nodes. Consider (¥/B,{o;}11,{&}5_;) asin
5.4.2. Let a be the number of generic inner nodes of J/B. We let Z — ) be the normalization
and denote by 771-+ and 7, the inner nodal transforms of the it" generic node. We obtain a family

(Z/Bv {Ui}?:lv {77?:};;1:1? {gi}§:1)7 where
(1) The fibers are at-worst cuspidal curves and the generic fiber is smooth.
(2) The sections {o;}7_;, {nF 1%, {&}5, are all smooth and pairwise disjoint, except that n;"
can intersect 7, for each i.
(3) wz/B (Z?:l o + Z?Zl(n;r +n07)+ D fl-) is relatively ample.
By Proposition 5.9, we have that

(10)‘ -0+ ¢ + 7vbcusp)y/B = (1())‘ -6+ 7/] + wcusp)Z/Bv

where Yeusp = Y5y Vg, and Yz/p = Yy p + 2?21(%; + 1/177;)-
We let N = n+ 2a+ ¢ be the total number of sections of Z/B, including cuspidal and inner nodal
transforms. Our proof that (10A — 3§+ +%cusp) z/p = 0 will depend on the relative genus h of Z/B.

1A priori, only wy, (31, 0s + 23 5, &) is relatively ample. However, a rational tail cannot meet just a single
cuspidal transform because the original family X' /B cannot have cuspidal elliptic tails.
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Suppose h > 2. Passing to the relative minimal model of Z/B only decreases the degree of (10 —
0 + v + Yeusp). Hence we will assume that wz,p is relatively nef. We still have N smooth and
distinct sections (which can now intersect pairwise). With wz,p relatively nef, we can apply the
Cornalba-Harris inequality. If A > 3, then 10 > 8 +4/h and so 10\ — 6 > 0 by Proposition 5.12. If
h = 2, then Proposition 5.12 gives 10\ — § > 0. Lemma 5.6 gives ¥ 4 1cyusp > 0 since we must have
N > 1 (if N =0, then C/B was a family in M3 ¢(9/11 — ¢)).

Suppose h = 1. Using relations on the stack on N-pointed Gorenstein genus 1 curves inherited
from standard relations in Pic (Mj y) given by [AC98, Theorem 2.2], we have A\ = &, /12, and
P = Ndim«/12 + ZS ‘5’50,5 > N(Sirr/12 + 20eq. If N > 3, we obtain

10X+ — & = 1063, /12 4+ Nivr /12 + 28req — (Sirr + Orea) > 0.

If N =2, we obtain 10\ — 6 + 1 > dreq = 0 and Yeysp = 0. We conclude that 10\ — 0 4+ ¥ 4+ ey = 0
with the equality holding if only if ¥cusp = drea = 0. This is possible if and only if all fibers are
irreducible and there are no cuspidal transforms (by Lemma 5.6), which implies that X/B = Y/B
is a family of A;/A;-attached elliptic bridges.

Suppose h = 0. Then all fibers of Z/B are in fact at-worst nodal. Because A = 0, we can write
(ION =0+ + wcusp)g/g =1 — 0 + Yeusp. Blow-up the points of intersection of nj and 7, for each
i. We obtain a family (W/B, {oi}1 4, {nii}?:l, {§i}§:1) in Mo n. Setting dinper == Y iy 5{771-+777f}’
we have

(77/) -0+ wcusp)z/B = (¢ — 0 — dinner + wcusp)w/B .

If a = 0, then §;pner = 0 and we are done because ¢ —§ > 0 for any family of Deligne-Mumford stable
rational curves, for example by [KM13, Lemma 3.6]. If a > 2, then by Lemma 5.19, Z?:l(wn.* +

¢m_) > 40inner. In addition, 3¢ > 46 by a similar argument. It follows that 1) > § + d;jpner and so
we are done.

Finally, if a = 1, then (y/B, {oi}71.{& ?:1) obtained in 5.4.2 is a family of arithmetic genus
1 (generically nodal) curves and the proof in the case of h = 1 above goes through without any
modifications to show that (10A — 0+t +vcusp)y,/p = 0 with the equality if and only if X'/B =) /B

is a (generically nodal) elliptic bridge.

5.5. Proof of Theorem 5.5(b). In the remaining part of the paper, we prove Theorem 5.5(b). Let
(C/B,{oi}}_;) be a (7/10—¢)-stable generically non-isotrivial family of curves. We begin by dealing
with the case when C/B has a generic rosary, or a generic A;/As or As/As-attached elliptic bridge.
In both cases, generic tacnodes come into play and we will repeatedly use the following result that
explains what happens under normalization of a generic tacnode:

Proposition 5.20. Suppose X /B is a family in Z;g with a section T such that 7(b) is a tacnode of
Xy for all b € B. Denote by Y the normalization of X along T and by 7" and 7~ the preimages of

7. Then 7F are smooth sections satisfying V¥,+ = 1.~ and we have the following formulae:

1
/\X/B = /\y/B - 5(¢T+ + wa)v
6x/B = 0y/B — 6(tr+ + ).

Proof. This is [Smyl1b, Proposition 3.4] (although it is stated there only in the case of g =1). O
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5.5.1. Reduction 1: The case of generic rosaries. Let C be the geometric generic fiber of C/B and
consider a maximal length rosary R = R; U --- U Ry of C (see Definition 2.27). Since C/B is non-
isotrivial, the rosary cannot be closed. Let T':= C' ~. R. The point T'N Ry (resp., T' N Ry) is either
an outer node or an outer tacnode, so its limit in every fiber is the same singularity by Proposition
2.10. Similarly, the limits of the tacnodes R; N R;y1, for ¢ = 1,...,¢ — 1, remain tacnodes in every
fiber. We then have that C =T UR U---URy, where the geometric generic fiber of R; and T is R;
and T respectively. Let x1 (resp., x2) be the nodal or tacnodal section along which 7 and R (resp.,
R¢) meet. Let 7;, for i = 1,...,¢—1, be the tacnodal section along which R; and R;y; meet. In the
rest of the proof we use the fact that self-intersections of 2 disjoint smooth sections on a P'-bundle
over B are equal of opposite signs. Together with Proposition 5.20, this gives

(V)R /B = —(Ur)Rry B = —(Wr)Ro/B = Wr)meyp =+ = (=1 r,)rym = (=1)"(¥y2) R, 5

In what follows, we set Y7/ = > i1 Yo, + Uy, +Uxy = Ve B + xy + Vo
Case I: R is Aj/A;-attached rosary. By Remark 2.28, ¢ must be odd. By Proposition 5.20, we

obtain
(?’9A—5+¢> =<39>\—6+¢> .
4 ¢/B 4 T/B

Since (T,{oi}i1,x1,Xx2) is (7/10—¢)-stable and R/B is isotrivial, we reduce to proving Theorem
5.5(b) for (T,{oi}"_ 1, x1, x2), which has one less generic rosary than (C/B, {o;}I" ;).

Case 2: R is Aj/As-attached rosary. Suppose x1 is a nodal section and y2 is a tacnodal section.
By the maximality assumption on R, the irreducible component of T" meeting Ry is not a 2-pointed
smooth rational curve. It follows by Lemma 5.6 that (1,,)7 > 0. By Proposition 5.20, we have

39 39 5 9 —
<4>‘_6+¢> = <4)‘_6+¢> +(¢X1)R1/B+Z(wXQ)Rg/B"_ZZ(wn)Ri'
¢/B T/B i=1
If ¢ is odd, then Zf;ll (¥r;)%, = 0 and ¢y, = —¢y,. We thus obtain:

39 39 1 39
P+ — (P51 () > (A6 +
( 4 TZJ) /B < 4 1!}) T/B 1l < 4 ¢>

Noting that 1), = 0 only if R/B is isotrivial, we reduce to proving Theorem 5.5(b) for (7, {os}7_;, X1, X2)-
If £ is even, then 1y, = by, and 3251 (¥, )R, + Py, = 0, so that

39 39
<4>\_5+¢> :<4>\—6+1/1> .
c/B T/B

Furthermore, we observe that R/B is isotrivial and we reduce to proving Theorem 5.5(b) for
(Tv {Ui}?:p X1, XZ)'

Case 3: R is As/As-attached rosary. By the maximality assumption on R, neither T'N Ry nor
TN Ry lies on a 2-pointed rational component of 7'. It follows by Lemma 5.6 that (¢, )71, (¥y,)7 = 0.
However, 1, = (—1)51/5(2. Therefore, either ¢, = 1, = 0, in which case R/B is an isotrivial family,
or £ is even and v, = 1, > 0. In either case, Proposition 5.20 gives

39 39 1 39
(4A—6+¢) - <4A—6+w) (W rys > <4A—6+¢> ,
¢/B T/B T/B

T/B
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and the inequality is strict if R is not isotrivial. Thus we reduce to proving Theorem 5.5(b) for

(7.7 {0-2'}?:17 X1, X?)

5.5.2. Reduction 2: The case of generic A1/As or As/As-attached elliptic bridges. Suppose the geo-
metric generic fiber of C/B can be written as C' = Ty} U E'U Ty, where E is an A;/As-attached
elliptic bridge. Let g1 = 71 N E be a node and ¢o = T> N E be a tacnode. By Proposition 2.10,
the limit of ¢; (resp., ¢2) remains a node (resp., a tacnode) in every fiber. Thus we can write
C=(Ti,m0)U(E,11,72) U(T2,73), where 79 ~ 71 are glued nodally and 79 ~ 73 are glued tacnodally.
Since Aj/A;-attached elliptic bridges are disallowed, fibers of £ have no separating nodes and so
(€,71,72) is a family of elliptic bridges. By Lemma 2.17, (71,7) is (7/10 — ¢)-stable. Also, (72,73) is
(7/10 — €)-stable because 73 cannot lie on an Aj-attached elliptic tail in 7.

Set C' = (T1,10) U (T2, 13), where we glue by 79 ~ 73 nodally. Then (C'/B, {o;}" ) is a (7/10 —¢)-
stable family by Lemma 2.18. By Proposition 5.20, we have

39 39 39 5 39
<4)\—(5+¢> :<4/\—(5+w> +(4)\—(5+¢7’1+4w7’2> +<4)\—(5+¢>
¢c/B T1/B &/B T2/B

39 39 39
:<)\—5+¢> +<)\—(5+¢> :<)\—5+1/1> ,
4 /B \4 T2/B 4 /B

where we have used relations (v, )¢/p = (sz)g/B = A¢g/p and 0g/p = 12A¢/p, both of which hold
because (dred)s/p = 0.

Note that (£/B, 11, 72) is trivial if and only if ¢, = 9, = 0. Thus we have reduced to proving
the requisite inequalities for the family C’/B with one less generic A;/As-attached elliptic bridge.
Moreover, the equality for C’/B holds if and only if the equality for C/B holds and C’/B is obtained
by replacing a generic node of C’ by a family of elliptic bridges A;/As-attached along the nodal
transforms.

Similarly, if the generic fiber of C/B has an As/As-attached elliptic bridge, then we can remove
the bridge and recrimp the two remaining components of C along a generic tacnode. The calculation
similar to the above shows that the degree of (%)\ -0+ 1/1) does not change under this operation.

Replacing an attaching node of a Weierstrass chain of length ¢ by an A; /As-attached elliptic bridge
in a way that preserves (7/10—¢)-stability gives a Weierstrass chain of length /+1. Similarly, replacing
a tacnode in a Weierstrass chain of length ¢ by an As/As-attached elliptic bridge gives a Weierstrass
chain of length ¢+ 1. In what follows, we will prove that for a non-isotrivial (7/10—¢)-stable family
(C/B,{oi}7_) with no generic A1 /As or As/As-attached elliptic bridges, we have (32X — 6 + Q/J)C/B >
0 and equality holds if and only if C/B is a family of Weierstrass tails. This implies that for every
non-isotrivial (7/10—e¢)-stable family (C/B,{o;}",), we have (32X -4+ w)c/B > 0 and equality
holds if and only if C/B is a family of Weierstrass chains.

5.5.3. Reduction 3: Normalization along generic tacnodes. Suppose now (C/B,{o;}!' ;) is a family
of (7/10 — €)-stable curves with no generic rosaries and no generic A; /A3 or As/As-attached elliptic
bridges. Let X be the normalization of C along generic tacnodes. Denote by {7'1-jE 51:1 the preimages

of the generic tacnodes, and call them tacnodal transforms. Set yuen = 2?21@# + 1 _-) and
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Yx/B = Yc/B + Ytacn- Applying Proposition 5.20 we have
39 39
C/B

If we now treat each tacnodal transform Tl-i as a marked section, then every connected component
of X is a generically (7/10 — €)-stable family (there are no generic A;/As or As/As-attached elliptic
bridges). Blowing-down all rational tails meeting a single tacnodal transform and no other marked
sections does not change (%)\ — 5+@Z))X/B but makes (X/B,{o;}, {Tl.i}f:l) into a (7/10 — €)-
stable family. We still have 40, = 0 by Lemma 5.6, with strict inequality if d > 1. Thus, we have
reduced to proving Theorem 5.5(b) for a (7/10 — €)-stable family with no generic tacnodes.

X/B.

5.5.4. Reduction 4: Normalization along generic outer nodes. Suppose (X /B,{o;}I" ) is a (7/10—¢)-
stable family with no generic tacnodes. Let ) be the normalization of X along the generic outer
nodes and let {¢;, C;}le be the transforms of the generic outer nodes. Set d;4¢n := Z#j(g“f . C]i)

and ¥y p == Yx/p + Zgzl(@bqgr + d}C-_)' Then by Proposition 5.10, we have

39 39 7
(A—(H-?,Z)) = (A—5+¢+5tam> .
4 x/B 4 8 /B

5.5.5. Reduction 5: Normalization along generic cusps. Let ) be as in 5.5.4 and let Z be the nor-
malization of (a connected component of) ) along generic cusps and let {&}$_; be the cuspidal
transforms on Z. Then the family (Z/B, {o:}™q, {G}2_;, {&}5 ) satisfies the following properties:

(1) The generic fiber is irreducible and at-worst nodal.

(2) The sections {ai}?zl are smooth, pairwise non-intersecting and disjoint from {¢;}2_;.

(3) The sections {Q}Z , are smooth and at most two of them can meet at any given point of Z.
(4) The sections {¢;}$_, are pairwise non-intersecting and disjoint from {¢;}?_, and {o;}7_

Set ¢(B) := 27 ; (&), where ¢(§) is the index of the cuspidal transform &;, and teysp := Zi:l e, -
Then we have by Proposition 5.11

1 7
*C(B) + 6tacn> .
4 8 2B

Our goal for the rest of the section is to prove that the expression on the right-hand side of (5.11)
is non-negative and equals 0 if and only if the only non-isotrivial components of the family X'/B
from 5.5.4 are Aj-attached Weierstrass tails.

39 7 39 )
(511) (4)\—5+¢+ 85tacn>y/3 - <4)\_5+w+4¢cusp_

Let h be the geometric genus of the generic fiber of Z and let a be the number of generic inner
nodes of Z. Our further analysis breaks down according to the following possibilities:

(A) h > 3; see §5.5.6.

(B) h =2, or (h,a) = (1,1), or (h,a) = (0,2); see §5.5.7.
(C) h —landa#l or (h a) = (0,1); see §558

(D) h=0and a > 3, or (h,a) = (0,0); see §5.5.
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5.5.6. Case A: Relative geometric genus h > 3. Suppose Z/B is a family as in 5.5.5. Let W be the
normalization of Z along the generic inner nodes. Let {77:r ,M; ti—1 be the inner nodal transforms on
W. Then (W/B,{os}_y, {nF oy, {G Yoy, {&}5,) satisfies the following properties:

(1) The generic fiber is a smooth curve of genus h >

(2) Sections {o;}7 ; are smooth, non—mtersectmg7 and dlsJomt from {n}o_,, {¢:}0,, and {&15_,.

(3) Inner nodal transforms {n"}%_, are disjoint from {¢;}?_; and {&}¢_,. Their properties are
described by Proposition 5.9.

(4) Outer nodal transforms {¢;}?_; are disjoint from {&}¢_,. Their properties are described by
Proposition 5.10.

(5) Cuspidal transforms {&;}¢_; have properties described by Proposition 5.11.

We let Yy p == ¢z/p + Zizl(@bnj + 7/)771_—) and (5tacn)W/B = (5tacn)Z/B + Zi;ﬁj(nii ) n]i) We
set Ginner = Yoy (i - n;7) and n(B) == Y%, u(n;"), where ¢(n;") is the index of the inner nodal
transform 771‘+ . Then by Proposition 5.9:

39 5) 1 7
(512) <4>‘ -9 + 1/1 + Z¢cu5p - ZC(B) + 85tacn> 2/B

— (52040 = JBimer = 10B) = 16lB) + Sy + )
W/B

Passing to the relative minimal model of W/B does not increase the degree of the divisor on the
right-hand side of (5.12). Hence we will assume that wyy, /B is relatively nef. Then by Proposition
5.12, we have (8 4+4/h) A — 6 > 0. Since h > 3 and ¢ > 0, we obtain %)\ —0 >0 (when § = 0, we
have A > 0 by the existence of the Torelli morphism). We proceed to estimate the remaining terms
of (5.12). Clearly, dtgen, > 0. Since h > 3 and kK = 12\ — § > 0, the inequalities of Lemmas 5.14 and
5.15 give

-3 (h=1) § . K _h—1 K 1
wcusp = Zw& = h ;L(fz) +C4h(h— 1) Y C(B) +Cm > §C(B)’
y K
;(¢++w / h+1 Zl +L7’]2 ))+ h 1 >6inne'r+n(B).

Summarizing, we conclude that the right hand side of (5.12) is strictly positive.

5.5.7. Case B: Relative genus 2. Suppose Z/B is a family as in 5.5.5 with relative geometric genus
h = 2. Let W be the normalization of Z along the generic inner nodes. As in 5.5.6, we reduce to
proving that

1 1 5 7
(513) < A—0+ ¢ mner - *TL(B) - *C(B) + Ewcusp + 85tacn> = 07

4 4 W/B

under the assumption that wyy,p is relatively nef.
For any family W/B of arithmetic genus 2 curves with a relatively nef wyy g, we have

(514) 10>\ = 6irr + 26red7
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This relation implies that § < 10X for any generically irreducible family and, consequently, x =

12X — 6 > 2), with the equality achieved only if d,.q = 0, i.e., if there are no fibers where two genus

1 components meet at a node. It follows that %)\ — 0 > —\/4, with the equality only if d,eq = 0.
By Lemma 5.15, we have

a

Y (W + 1) = 5 (Ginner +n(B)) + ag,

i=1

Wil N

By Lemma 5.14, we have

¢(B) + cg.

1
wcusp = Z
Putting these inequalities together and using x > 2\, we obtain

1 1

1 2a  9c
¢cusp + Z + + ¢ Z5znner + Zn(B) + ZC(B) + <3 + 16) A

If a+ ¢ > 1, we obtain a strict inequality in (5.13) at once. Suppose a = ¢ = 0. So far, we have that

(39)\ 5+¢> Zzpm+z%—4
W/B

=1

We now invoke Lemma 5.16 that gives

ngﬁZ% "+b K> (nzb)x.

Since n 4+ b > 1 (otherwise, YW/B is an unpointed family of genus 2 curves, which is impossible), we
conclude that " | 1, + Z?:l ¢, — A/4 > 0 and that equality is achieved if and only if n +b =1,
dred = 0, and equality is achieved in Lemma 5.16. This is precisely the situation when Y/B =W/B
is a family of Aj-attached Weierstrass genus 2 tails.

Finally, if (h,a) = (1,1) or (h,a) = (0, 2), we proceed exactly as above but without normalizing the
inner nodes: For a family (Z/B, {o:}" 1, {G}_;, {&}5,) as in 5.5.5, where the relative arithmetic
genus of Z/B is 2, we need to prove

39 1 7
< A=0+Y+ zﬁcusp *C(B) + 5tacn> 2 0.

Applying (5.14) to estimate ¢, Lemma 5.14 to estimate ¢)¢ysp, and Lemma 5.16 to estimate Y ;- | ¢)q, +
Z?:l ¢, (all of which apply even if the total space Z is not normal), we obtain

1 7 1 4dn +4b+ 9c ) 7
16B) + Otaen 2 — A+ ——— A+ 1e(B) + oacn = 0.

39 5
ZA_‘SerJFZ%””_z; 4 16 16

Moreover, equality is achieved if and only if d,cq = 0, ¢ = 0, and n + b = 1, which is precisely the
situation when V/B = Z /B is a family of A;-attached (generically nodal) Weierstrass genus 2 tails.
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5.5.8. Case C: Relative genus 1. Suppose Z/B is a family as in 5.5.5 of relative genus 1 and with a
generic inner nodes, where a # 1. We consider the case a > 2 first. Let W be the family obtained
from Z by the following operations:

(1) Normalize Z along all generic inner nodes to obtain inner nodal pairs {17;|r My e
(2) Blow-up all cuspidal and inner nodal transforms to make them Cartier divisors.
(3) Blow-up points of nii N nf for all i # j.

(4) Blow-up points of ¢; N (; for all i # j.

As a result, the sections of W/B do not intersect pairwise with the only possible exception that n;r
is allowed to meet 1,". A node of Z through which &; passes is replaced in W by a balanced rational
bridge meeting the strict transform of &;, which we continue to denote by &. We say that such a
bridge is a cuspidal bridge associated to &;. Moreover, if we let ¢(&;) be the sum of the indices of all
bridges associated to &;, then

2u(&i)z/B = c(&i)wyB-

Suppose {n;",n; } is an inner nodal pair of Z/B. Then a node of Z through which n;” and n;” both
pass is replaced in W by a balanced rational bridge meeting the strict transforms of n;r and n;",
which we continue to denote by n;r and 7n;. We say that such a bridge is an inner nodal bridge
associated to {n;",n; }. Moreover, if we let n(n;) be the sum of the indices of all bridges associated
to {n;",n; }, then

(- m) + e )z = ((0f 07 ) +n(m))wys.
On W/B, we define

a

Oinner := Z(Uj : 77;)’ Otacn = Z 507{173[’774[} + Z 60,{Ci,<j}’

J
i=1 i#] i#]

and let n(B) (resp., ¢(B)) be the sum of the indices of all inner nodal (resp., cuspidal) bridges. We

reduce to proving that

1

1
39A - 5 + w - 75inne7" - n(B) - *C(B) + §wcusp - *5tacn 2 0
4 4 8 W/B

4

We will make use of the standard relations for pointed families of genus 1 curves and Lemmas 5.17
and 5.18. Let N = n + 2a + b+ ¢ be the total number of marked sections of W/B. Clearly, N > 2.
We consider first the case when N > 3. Then by Lemma 5.17, we have

a

N a
Pnner 418 < gy 2o ) gy gt
Applying Lemma 5.18, we obtain
2N c

B gi Ccus 76I‘ .
AB) S =g Yeusn + gy —yzdeed
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Using the above two inequalities and rewriting § = 12\ 4 d,0q, We see that

39 1 b 1
(515) ZA -0+ 1/1 - Z (&Lnner + n(B) + C(B)) + Zdjcusp - gfstacn
9 5 N N -
= —1)\ + <4 - 2(N—1)> Yeusp + 1 — S(N_z);(wn; -H/)m—)

a c 1
B (1 + 8(N — 2)2 + 16(N _ 1)2) 6red — gétacm

We rewrite each ¢-class on the right-hand side of (5.15) using the standard relation on families of
arithmetic genus 1 curves:

Yo =A+ > dos.
oeS
The coefficient of A in the resulting expression for the right-hand side of (5.15) is
9 5 N aN
1 — = - N———.
(5.16) 4+C(4 2(1\7—1)>Jr A(N —2)

Using N > 2a + ¢ and the assumption N > 3, it is easy to check that (5.16) is always positive.

A similarly straightforward but tedious calculation shows that each boundary divisor dg s appears
in the resulting expression for the right-hand side of (5.15) with a positive coefficient. Thus we have
shown that the right-hand side of (5.15) is positive for every non-isotrivial family with N > 3.

We consider now the case of N = 2. Since C/B in 5.5.3 has no generic elliptic bridges (nodally
or tacnodally attached), we must have ¢ = 1 and n+ b = 1. Let £ be the corresponding cuspidal
transform and 7 be either a marked smooth section (if n = 1) or an outer nodal transform (if b = 1).
We trivially have dipner = 1n(B) = 0tqen = red = 0. Using iy = 12X and the inequality ¢(B) < 49cysp
from Lemma 5.18, we obtain:

39 1 1 1 5 1
Z)\ -6+ Q,Z) - Zéinner - Zn(B) - ZC(B) + Z cusp gétacn
39 1 5! 39 1
= Z}\ -0+ P — ZC(B) + chusp = Z)\ — 122+ + Zlbcusp

39 1
=—A—-12X+22+ -2 =0.
1 + +4 0

Moreover, equality holds only if equality holds in Lemma 5.18. This happens if and only if 2§ ~ 27
and implies that V/B in 5.5.4 is a generically cuspidal family of A;-attached Weierstrass genus 2
tails. We are done with the analysis in the case g =1 and a # 1.

If (g,a) = (0,1), we proceed exactly as above, but without normalizing the inner node.

5.5.9. Case D: Relative geometric genus 0. Suppose Z/B is a family as in 5.5.5 of relative geometric
genus 0 and with a generic inner nodes, where either ¢ > 3 or a = 0. We consider the case a > 3
first. Let W be the family obtained from Z by the following operations:

(1) Normalize Z along all generic inner nodes to obtain inner nodal pairs {171Jr My i

(2) Blow-up all cuspidal and inner nodal transforms to make them Cartier divisors. This opera-
tion introduces cuspidal or nodal bridges as in 5.5.8.

(3) Blow-up points of nl-i N nj-E forall 1 <i<j<a.
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(4) Blow-up points of (; N ¢j for all 1 <i < j < b.

(5) Blow-up points of n;" Nn; for all 1 <i < a.

(6) Blow-down all rational tails marked by a single section (such tails are necessarily adjacent
either to cuspidal or inner nodal bridges).

As a result, W/B is a family in MQN, where N =n+2a+ b+ cand a > 3. On W/B, we define

Oinner = Zl 5{77;*‘7771_—}, Otacn = Z 5{17?[,774[} + Z 6{(@'1@}’

J

i#j i#j
a C
NB . CB .__
057 :=3 " D sy 05T =D sy
=1 getnt m; i=1 B#E;

and let n(B) (resp., ¢(B)) be the sum of the indices of all inner nodal (resp., cuspidal) bridges. Then

39 ) 1 7

7)\_5 - WYeusp T B *5acn

R s LR I
)

5 1 1
Lou(B) + e(B) + 8B 1 65B) - 5) .
W/B

= (d)"_ cusp_(s_Zéz'nner_4 3

4

We are going to prove that a (strict!) inequality

) 5 1 1
¢ + chusp - 5 - Z(smner - *(n(B) + C(B) + 5;];\]3 + 5QCB) - gétacn > 0

4
always holds on W/B. In doing so, we will use the following standard relation on My y:
r(N —r)
5.17 = ——0p.
(5.17) v ; N-1”

First we deal with the case of a family with 3 inner nodal pairs and no other marked sections, i.e.,
a =3 and N = 6. The desired inequality in this case simplifies to

5 1 1
¥ =0 = JBinner — 7(n(B) +057) — 5 (02 = dinner) > 0.

We have an obvious inequality 2n(B) < d2. Thus we reduce to proving
5

9 1
(518) Q;Z) > 152 + géinner + 53 + ZééVB

For a > 3, Lemma 5.19 gives
¥ = A0inner + Otacn + 3088 = 30inner + 02 + 365 5.
Combining this with the standard relation 57 = 89 4+ 993 gives
8¢ = 90inner + 1102 + 953 + 9535,

This clearly implies (5.18) as desired.
Next, we consider the case of N > 7. In this case, every inner nodal or cuspidal bridge is
adjacent to a node from ) - 50,. As a result, we have n(B) + ¢(B) < 2}_,.36,. Furthermore,
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%520 By %c&am + idinnm« < iég (because a node from d5 can contribute only to one of the d;nner, dtacn,
or 520 B). Hence we reduce to proving

) 5 3 1
(519) 77[} + Z¢cusp - 152 - 6inner - 5 Z 57" - ZééVB >0
r=3
We combine the inequality of Lemma 5.19 with the standard relation (5.17), and the obvious

) 2 Yinner to obtain

N —
3 (dj - Z H&“) + (winner - 467Lnner - 35éVB) + (¢ - ¢inner) = 0.
r>=2

This gives the estimate

6(N—2). 9(N—3)
4¢>451nner+ N—l 52“‘ N—l TZ>357~+3(5£]3VB

Using N = 7 and 9cyusp = 0, we finally get

) 5 3 3
~Weusp 2 6inne7‘ —0 5 67’ *(5NB.
¥t Peusp +42+2§ + 703

Moreover, the equality could be achieved only if N = 7 and 9 — ¥ipner = 0 which is impossible
because ¥ = Yinner implies that all sections are inner nodal transforms and so N must be even.
Hence we have established (5.19) as desired.

At last, we consider the case of a = 0. Because the family WW/B is non-isotrivial, we must have
N > 4. In addition, if N = 4, then there exists a unique family of 4-pointed Deligne-Mumford stable
rational curves. The requisite inequality is easily verified for this family by hand. If N > 5, then
using the inequality 2¢(B) < 6, we reduce to proving

5 9 1 1
¢ + chusp - gé - 15203 - gétacn > O‘
The standard relation (5.17) gives

3 11 9 9 1

>SN s 0+ 2N 0, > 26+ =0y,

¥ QZ’" 82+SZT g0t 1%
r>=2 r=3

Finally, the inequality do > (520 B 4 §i4en gives the desired result.

This completes the proof of Theorem 5.5 (b).

APPENDIX A.

In this appendix, we give examples of algebraic stacks including moduli stacks of curves which
fail to have a good moduli space owing to a failure of conditions (1a), (1b), and (2) in Theorem 4.1.
Note that there is an obviously necessary topological condition for a stack to admit a good moduli
space, namely that every C-point has a unique isotrivial specialization to a closed point, and each of
our examples satisfies this condition. The purpose of these examples is to illustrate the more subtle
kinds of stacky behavior that can obstruct the existence of good moduli spaces.
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Failure of condition (1a) in Theorem j.1.

Example A.1. Let X = [X/Z3] be the quotient stack where X is the non-separated affine line and
Z4 acts on X by swapping the origins and fixing all other points. The algebraic stack clearly satisfies
condition (1b) and (2). Then there is an étale, affine morphism A! — X which is stabilizer preserving
at the origin but is not stabilizer preserving in an open neighborhood. The algebraic stack X does
not admit a good moduli space.

While the above example may appear entirely pathological, we now provide two natural moduli
stacks similar to this example.

Example A.2. Consider the Deligne-Mumford locus X C [Sym*P!/PGLy] of unordered tuples
(p1, 2, p3, pa) where at least three points are distinct. Consider the family (0,1, A, 00) with A € P
When X\ ¢ {0,1,00}, Aut(0,1,\,00) = Z/27 x Z/2Z; indeed, if 0 € PGLg is the unique element
such that o(0) = 0o, o(o0) = 0 and o(1) = A, then o([z,y]) = [y, Az] so that o(\) = 1 and therefore
o € Aut(0,1, A\, 00). Similarly, there is an element 7 which acts via 0 &1, A& oo and an element o
which acts via 0 & X, 1 & oo. However, if A € {0, 1,00}, Aut(0,1,\, 00) = Z/27Z.

Therefore if = (0,1, 00,00), any étale morphism f: [Spec A/Z3] — X, where Spec A is a Zs-
equivariant algebraization of the deformation space of x, will be stabilizer preserving at x but not
in any open neighborhood. This failure of condition (1a) here is due to the fact that automorphisms
of the generic fiber do not extend to the special fiber. The algebraic stack X does not admit a good
moduli space but we note that if one enlarges the stack X' to [(Sym?* P1)*/ PGLy] by including the
point (0,0, 00, c0), there does exist a good moduli space.

Example A.3. Let V, be the stack of all reduced, connected curves of genus 2, and let [C] € Vs
denote a cuspidal curve whose pointed normalization is a generic 1-pointed smooth elliptic curve
(E,p). We will show that any Deligne-Mumford open neighborhood M C Vs of [C] is non-separated
and fails to satisfy condition (1a).

Note that Aut(C) = Aut(E,p) = Z/2Z. Thus, to show that no étale neighborhood
[Def(C)/ Aut(C)] - M

can be stabilizer preserving where Def(C') = Spec A is an Aut(C)-equivariant algebraized miniversal
deformation space, it is sufficient to exhibit a family C — A whose special fiber is C, and whose
generic fiber has automorphism group Z/2Z x Z/2Z. To do this, let C’ be the curve obtained by
nodally gluing two identical copies of (F, p) along their respective marked points. Then C” admits an
involution swapping the two components, and a corresponding degree 2 map C' — F ramified over
the single point p. We may smooth C’ to a family C’ — A of smooth double covers of E, simply by
separating the ramification points. By [Smylla, Lemma 2.12], there exists a birational contraction
C" — C contracting one of the two copies of F in the central fiber to a cusp. The family C — A now
has the desired properties; the generic fiber has both a hyperelliptic and bielliptic involution while
the central fiber is C.

Failure of condition (1b) in Theorem 4.1.

Example A.4. Let X = [A%2 \ 0/G,,] where G, acts via t - (z,y) = (x,ty). Let U = {y #
0} = [SpecC[z,y],/Cy] € X. Observe that the point (0,1) is closed in ¢ and X. Then the open
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immersion f: U — X has the property that f(0,1) € X is closed while for x # 0, (x,1) € U is closed
but f(z,1) € X is not closed. In other words, f: U — X does not send closed points to closed points
and, in fact, there is no étale neighborhood W — X of (0,1) which sends closed points to closed
points. The algebraic stack X does not admit a good moduli space.

Example A.5. Let M = ﬂg UM U M2, where M! consists of all curves of arithmetic genus g
with a single cusp and smooth normalization, and M? consist of all curves of the form DU Ey, where
D is a smooth curve of genus g — 1 and Ej is a rational cuspidal curve attached to C' nodally.

We observe that M has the following property: If C = D U E, where D is a curve of genus g — 1
and E is an elliptic tail, then [C] € M is a closed point if and only if D is singular. Indeed, if D is
smooth, then C admits an isotrivial specialization to D U Ey, where FEj is a rational cuspidal tail.
Now consider any curve of the form C' = DU E where D is a singular curve of genus g — 1 and E is a
smooth elliptic tail, and, for simplicity, assume that D has no automorphisms. We claim that there
is no étale neighborhood of the form [Def(C)/ Aut(C)] — M, which sends closed points to closed
points. Indeed, curves of the form D’ U E where D’ is smooth will appear in any such neighborhood
and will obviously be closed in [Def(C')/ Aut(C)| (since this is a Deligne-Mumford stack), but are
not closed in M.

Failure of condition (2) in Theorem /.1.

Example A.6. Let X = [X/C,,] where X is the nodal cubic curve with the G,-action given by
multiplication. Observe that X is an algebraic stack with two points — one open and one closed. But
X does not admit a good moduli space; if it did, X would necessarily be cohomologically affine and
consequently X would be affine, a contradiction. However, there is an étale and affine (but not finite)
morphism W = [Spec (C[z,y]/2y)/Cpn] — X where G,, = Spec C[t,t~!] acts on Spec C[x,y]/zy via
t-(x,y) = (tz,t~'y) which is stabilizer preserving and sends closed points to closed points; however,
the two projections W xx W = W do not send closed points to closed points.

To realize this étale local presentation concretely, we may express X = Y/Zs where Y is the union
of two P1’s with coordinates [r1,41] and [z2, 2] glued via nodes at p = 0; = 03 and ¢ = co; = 009
by the action of Z/2Z where —1 acts via [x1,y1] <> [y2,22]. There is a G,,-action on Y given by
t-[x1,y1] = [tz1,y1] and t-[z2, y2] = [z1, ty1] which descends to the G,,-action on X. There is a finite
étale morphism [Y/G,,] — &, but [Y/G,,] is not cohomologically affine. If we instead, consider the
open substack W = [(Y \ {p})/G,,], then W = [Spec (Clz, y]/xy)/Cy] is cohomologically affine and
there is an étale representable morphism f: W — X. It is easy to see that

W xa W= (Y N A{p}h)/C] [TIY ~ {p,4})/Cun]

But [(Y ~ {p,q})/G] = SpecC ] Spec C and the projections p1,p2: W xx W — W correspond to
the inclusion of the two open points into W which clearly don’t send closed points to closed points.

Example A.7. Consider the algebraic stack Mzs’l of Deligne-Mumford semistable curves C' where
any rational subcurve connected to C' at only two points is smooth. Let Dg be the Deligne-Mumford
semistable curve D’ U P!, obtained by gluing a P! to a smooth genus g — 1 curve D’ at two points
p,q. For simplicity, let us assume that Aut(D’,p,q) = 0, so Aut(Dg) = G,,. There is a unique
isomorphism class of curves which isotrivially specializes to Dy, namely the nodal curve D; obtained
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by gluing D at p and ¢q. Thus, {[D;]} has two points — one open and one closed. In fact, {[D;]} is
isomorphic to the quotient stack [X/G,,] considered in Example A.6.
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