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Abstract. In this paper we introduced and analyzed the Log-Sigmoid (LS) multipliers method for con-
strained optimization. The LS method is to the recently developed smoothing technique as augmented
Lagrangian to the penalty method or modified barrier to classical barrier methods. At the same time the
LS method has some specific properties, which make it substantially different from other nonquadratic
augmented Lagrangian techniques.

We established convergence of the LS type penalty method under very mild assumptions on the input
data and estimated the rate of convergence of the LS multipliers method under the standard second order
optimality condition for both exact and nonexact minimization.

Some important properties of the dual function and the dual problem, which are based on the LS
Lagrangian, were discovered and the primal–dual LS method was introduced.
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1. Introduction

Recently Chen and Mangasarian used the integral of the scaled sigmoid function
S(t, k) = (1 + exp(−kt))−1 as an approximation for x+ = max{0, x} to develop the
smoothing technique for solving convex system of inequalities and linear complemen-
tarity problems [6].

Later Auslender et al. analyzed the smoothing technique for constrained optimiza-
tion [1].

The smoothing method for constrained optimization employs a smooth approxi-
mation of x+ to transform a constrained optimization problem into a sequence of uncon-
strained optimization problems. The convergence of the correspondent sequence of the
unconstrained minimizers to the primal solution is due to the unbounded increase of the
scaling parameter. So the smoothing technique is in fact a penalty type method with a
smooth penalty function and can be considered as a particular case of SUMT [7].

There are few well known difficulties associated with the penalty type approach:
rather slow convergence, the Hessian of the penalty function became ill conditioned and
the area where Newton method is “well” defined shrinks to a point when the scaling
parameter k → ∞.

∗ This paper is dedicated to Professor Anthony V. Fiacco on the occasion of his 70th birthday.∗∗ Partially supported by NSF under Grant DMS-9705672.



428 POLYAK

It motivates an alternative approach. We use the Log-Sigmoid (LS) function

ψ(t) = 2 ln 2S(t, 1)

to transform the constraints of a given constrained optimization problem into an equiv-
alent one. The transformation ψ(t) is parametrized by a positive scaling parameter.
Simultaneously we tranform the objective function with log-sigmoid type transforma-
tion. The classical Lagrangian for the equivalent problem – the Log-Sigmoid Lagrangian
(LSL) is our basic instrument.

There are three basic reasons for using the LS transformation and the correspond-
ing Lagrangian:

(1) ψ ∈ C∞ on (−∞,∞);
(2) the LSL is as smooth as the initial functions in the entire primal space;

(3) ψ ′ and ψ ′′ are bounded on (−∞,∞).
Sequential unconstrained minimization of the LSL in primal space followed by

explicit formula for the Lagrange multipliers update forms the LS multipliers method.
Our first contribution is the convergence proof of the LS multipliers method. It is proven
that for inequality constrained optimization problem, which satisfies the standard second
order optimality conditions the LS method converges withQ-linear rate for any fixed but
large enough scaling parameter. If one changes the scaling parameter from step to step
as it takes place in the smoothing methods then the rate of convergence isQ-superlinear.
It is worth to mention that such substantial improvement of the rate of convergence is
possible to achieve without increase computational efforts per step as compare with the
smoothing technique.

Our second contribution is the proof that a particular modification of the LS method
retains the up to Q-superlinear rate of convergence if instead of the exact primal min-
imizer one uses its approximation. It makes the LS multipliers method practical and
together with the properties (1)–(3) of the transformation ψ increases the efficiency of
the Newton method for constrained optimization.

We also discovered that the dual function and the dual problem, which are based
on LSL have some extra important properties on the top of those which are typical for
the classical dual function and the corresponded dual problem.

The new properties of the dual function allow to use Newton type methods for
solving the dual problem, which leads to the second order multipliers methods with up
to quadratic rate of convergence.

Finally we introduced the primal–dual LS method, which has been tested numer-
ically on a number of LP and NLP problems. The numerical results obtained clearly
indicate that the primal–dual LS method can be very efficient in the final phase of the
computational process.

The paper is organized as follows. The problem formulation and the basic assump-
tions are given in the next section. In section 3, we consider the LS transformation
and its properties. In section 4 we consider the equivalent problem and correspondent
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Lagrangian. The LS multiplier method is introduced in section 5. In section 6 we estab-
lish the convergence and estimate the rate of convergence of the LS multipliers method.
In section 7 we consider the modification of the LS method and show that the rate of
convergence of LS methods can be retained for inexact minimization. The primal–dual
LS method is introduced in section 8. Duality issues related to the LSL are considered
in section 9. We conclude the paper with some remarks related to the future research.

2. Statement of the problem and basic assumptions

Let f : Rn → R1 be convex and all ci : Rn → R1, i = 1, . . . , p, be concave and smooth
functions. We consider a convex set � = {x ∈ Rn+: ci(x) � 0, i = 1, . . . , p} and the
following convex optimization problem.

x∗ ∈ X∗ = arg min
{
f (x) | x ∈ �}. (P)

We will assume that:

(A) The optimal set X∗ is not empty and bounded.

(B) The Slater’s condition holds, i.e., there exists x̂ ∈ Rn++: ci(x̂) > 0, i = 1, . . . , p.

To simplify consideration we will include the nonnegativity constraints xi � 0,
i = 1, . . . , n, into the set ci(x) � 0, i.e.,

�= {
x ∈ R

n: ci(x) � 0, i = 1, . . . , p, cp+1(x) = x1 � 0, . . . , cp+n(x) = xn � 0
}

= {
x ∈ R

n: ci(x) � 0, i = 1, . . . , m
}
, m = p + n.

If (B) holds and f (x), ci(x), i = 1, . . . , m, are smooth, then the Karush–
Kuhn–Tucker’s (KKT’s) conditions hold true, i.e., there exists a nonnegative vector
λ∗ = (λ∗

1, . . . , λ
∗
m) such that

∇xL
(
x∗, λ∗) = ∇f (x∗)−

m∑
i=1

λ∗
i∇ci

(
x∗) = 0, (2.1)

λ∗
i ci
(
x∗) = 0, i = 1, . . . , m, (2.2)

where L(x, λ) = f (x)−∑m
i=1 λici(x) is the Lagrangian for the primal problem (P).

Also due to (B), the optimal dual set

L∗ =
{
λ ∈ R

m
+: ∇f (x∗)−

m∑
i=1

λi∇ci
(
x∗) = 0, x∗ ∈ X∗

}
(2.3)

is bounded.
Along with the primal problem (P) we consider the dual problem

λ∗ ∈ L∗ = Arg max
{
d(λ) | λ ∈ Rm

+
}
, (D)

where d(λ) = infx L(x, λ) is the dual function.
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Later we will use the standard second order optimality condition. Let us assume
that the active constraint set at x∗ is I ∗ = {i: ci(x∗) = 0} = {1, . . . , r}. We consider
the vector-functions cT(x) = (c1(x), . . . , cm(x)), cT

(r)(x) = (c1(x), . . . , cr (x)) and their
Jacobians

∇c(x) = J (c(x)) =
∇c1(x)

...

∇cm(x)

 , ∇c(r)(x) = J (c(r)(x)) =
 ∇c1(x)

...

∇c(r)(x)

 .
The sufficient regularity conditions

rank ∇c(r)
(
x∗) = r, λ∗

i > 0, i ∈ I ∗, (2.4)

together with the sufficient condition for the minimum x∗ to be isolated(∇2
xxL

(
x∗, λ∗)y, y) � ρ(y, y), ρ > 0, ∀y �= 0: ∇c(r)

(
x∗)y = 0 (2.5)

comprise the standard second order optimality sufficient conditions.
We conclude the section with an assertion, which will be used later. The following

assertion is a slight modification of Debreu theorem (see, for example, [11]).

Assertion 2.1. LetA be a symmetric n×nmatrix, let B an r×nmatrix,� = diag(λi)ri=1
and λi > 0.

(Ay, y) � ρ(y, y), ρ > 0, ∀y: By = 0 (2.6)

then there exists k0 > 0 large enough such that for any 0 < µ < ρ we have((
A+ kBT�B

)
x, x

)
� µ(x, x), ∀x ∈ R

n, (2.7)

whenever k � k0.

3. Log-sigmoid transformation

The Log-Sigmoid Transformation (LST) ψ : R → (−∞, 2 ln 2) we define by the for-
mula

ψ(t) = 2 ln 2S(t, 1) = 2 ln 2
(
1 + e−t)−1 = 2

(
ln 2 + t − ln

(
1 + et

))
. (3.1)

For the scaled log-sigmoid transformation we have

k−1ψ(kt) = 2k−1 ln 2S(t, k) = 2k−1
(
ln 2 − ln

(
1 + e−kt)), k > 0.

Let us consider the following function:

v(t, k) =
{

2t + 2k−1 ln 2, t � 0,
2k−1 ln 2, t � 0.
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It is easy to see that

v(t, k)− k−1ψ(kt) =
{

2k−1 ln
(
1 + ekt

)
, t � 0,

2k−1 ln
(
1 + e−kt), t � 0.

Therefore the following estimation is taking place

0 � v(t, k)− k−1ψ(kt) � 2k−1 ln 2, −∞ < t <∞.
The assertion below states the basic LST properties.

Assertion 3.1. The LST ψ has the following properties:

(A1) ψ(0) = 0;

(A2) ψ ′(t) = 2(1 + et )−1 > 0, ∀t ∈ (−∞,+∞) and ψ ′(0) = 1;

(A3) ψ ′′(t) = −2et (1 + et )−2 < 0, ∀t ∈ (−∞,+∞) and ψ ′′(0) = −1/2;

(A4) limt→∞ψ ′(t) = limt→∞ 2(1 + et )−1 = 0;

(A5) (a) 0 < ψ ′(t) < 2;

(b) −0.5 � ψ ′′(t) < 0, −∞ < t <∞.

One can check properties (A1)–(A5) directly. The substantial difference between
ψ(t) and the shifted log-barrier function, which leads to the MBF theory and meth-
ods [11], is that ψ(t) is defined on (−∞,+∞) together with its derivatives of any order.

The properties (A5) distinguish ψ(t) not only from shifted barrier and exponen-
tial transformation (see [9,17]), but also from classes of nonquadratic augmented La-
grangians PI and P̂I (see [4, p. 309]) as well as transformations which have been con-
sidered lately (see [3,8,13,16]).

The properties (A5) have substantial impact on both global and local behavior of
the LS multiplier as well as on its dual equivalents – interior prox method with entropy
like ϕ-divergence distance.

Entropy like ϕ-divergence distance function and correspondent interior prox
method for the dual problem have been considered in [15].

The LS transformation and the correspondent LS multipliers method, which we
consider in section 5 is equivalent to a prox method with entropy like ϕ-divergence
distance for the dual problem. The ϕ-divergence distance is based on Fermi–Dirac kernel
ϕ = −ψ∗, because the Fenchel conjugate of LS

ψ∗(s) = inf
{
st − ψ(t) | t ∈ R

} = (s − 2) ln(2 − s)− s ln s

is in fact the Fermi–Dirac entropy type function.
The issues related to LS multipliers method and its dual equivalent we are going to

consider in the upcoming paper.
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4. Equivalent problem and log-sigmoid Lagrangian

We use ln(1 + et ) to transform the objective function and ψ(t) to transform the con-
straints. For the objective function we obtain

f (x) := ln
(
1 + ef (x)

)
> 0. (4.1)

The constraints transformation is scaled by the parameter k > 0, i.e.,

ci(x) � 0 ⇐⇒ 2k−1 ln 2
(
1 + e−kci (x))−1 � 0, i = 1, 2, . . . , m.

Therefore for any given k > 0 the problem

x∗ ∈ X∗ = arg min
{
f (x) | 2k−1(ln 2 − ln

(
1 + e−kci (x))) � 0, i = 1, . . . , m

}
(4.2)

is equivalent to the original problem (P).
The boundness of f (x) from below is important for our further considerations.
The Lagrangian for the equivalent problem (4.2) – log-sigmoid Lagrangian is the

main tool in our analysis

L(x, λ, k) = f (x)+ 2k−1
m∑
i=1

λi ln
(
1 + e−kci (x))− 2k−1

(
m∑
i=1

λi

)
ln 2. (4.3)

The LSL can be rewritten as follows

L(x, λ, k)= f (x)− 2
m∑
i=1

λici(k)+ 2k−1
m∑
i=1

λi ln
(
1 + ekci (x)

)− 2k−1

(
m∑
i=1

λi

)
ln 2

= f (x)−
m∑
i=1

λici(x)+ 2k−1
m∑
i=1

λi ln e−kci (x)/2 + 2k−1
m∑
i=1

λi ln
(1 + ekci (x))

2

=L(x, λ)+ 2k−1
m∑
i=1

λi ln
ekci (x)/2 + e−kci (x)/2

2

=L(x, λ)+ 2k−1
m∑
i=1

λi ln ch

(
kci(x)

2

)
.

The following lemma establishes the basic LSL properties at any KKT’s pair (x∗, λ∗).

Lemma 4.1. For any KKT’s pair (x∗, λ∗) the following LSL properties are taking place
for any k > 0.

(1◦) L(x∗, λ∗, k) = f (x∗);

(2◦) ∇xL(x∗, λ∗, k) = ∇xL(x∗, λ∗) = ∇f (x∗)−∑m
i=1 λ

∗
i∇ci(x∗) = 0;

(3◦) ∇2
xxL(x∗, λ∗, k) = ∇2

xxL(x
∗, λ∗)+ 0.5k∇c(x∗)T�∗∇c(x∗).



LOG-SIGMOID MULTIPLIERS 433

Proof. In view of the complementarity condition we have

L
(
x∗, λ∗, k

) = f (x∗)− 2k−1
m∑
i=1

λ∗
i

(
ln 2 − ln

(
1 + e−kci (x∗))) = f (x∗)

for any k > 0.
For the LSL gradient in x we have

∇xL(x, λ, k) = ∇f (x)−
m∑
i=1

2λi e−kci (x)

1 + e−kci (x) ∇ci(x) = ∇f (x)−
m∑
i=1

2λi
1 + ekci(x)

∇ci(x).

Again due to (2.2) we obtain

∇xL
(
x∗, λ∗, k

) = ∇xL
(
x∗, λ∗) = ∇f (x∗)−

m∑
i=1

λ∗
i∇ci

(
x∗) = 0.

For the LSL Hessian in x we obtain

∇2
xxL(x, λ, k) = ∇2

xxL(x, λ)+ 2k∇c(x)T�(I + ekc(x)
)−2∇c(x),

where ekc(x) = diag(ekci (x))mi=1, � = diag(λi)mi=1 and I is the identical matrix in Rm.
Again due to (2.2) for any k > 0 we have

∇2
xxL

(
x∗, λ∗, k

) = ∇2
xxL

(
x∗, λ∗)+ 0.5k∇c(x∗)T

�∗∇c(x∗). (4.4)

�

The local LSL properties (1◦)–(3◦) are similar to those of the logarithmic MBF
function [11]. Globally the LSL has some extra important features due to the proper-
ties (A5). These features effect substantially the behavior of the correspondent multipli-
ers method, which we consider in the next section. The following lemma characterizes
the convexity properties of LSL.

Lemma 4.2. If f (x) and all ci(x) ∈ C2 then for any fixed λ ∈ Rn++ and k > 0 the LSL
Hessian is positive definite for any x ∈ Rn, i.e., L(x, λ, k) is strictly convex in Rn and
strongly convex on any bounded set in Rn.

Proof. The proof follows directly from the formula of the LSL Hessian

∇2
xxL(x, λ, k)= ∇2

xxL(x, λ)+ 2k∇c(p)(x)T�(p)
(
Ip + ekc(p)(x)

)−2∇c(p)(x)
+ 2k�(n)

(
In + ekx

)−2

and the convexity of f (x) and all −ci(x). �

The following lemma 4.3 is a consequence of property (3◦) and assertion 1.1.
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Lemma 4.3. If conditions (2.4), (2.5) are satisfied then there exits k0 > 0 and M0 >

µ0 > 0 that the following estimation

M0k(y, y) �
(∇2

xxL
(
x∗, λ∗, k

)
y, y

)
� µ0(y, y), ∀y ∈ Rn, (4.5)

takes place for any fixed k � k0.

Proof. We obtain the right inequality (4.5) as a consequence of (2.5), (2.7) and (3◦) by
taking

A = ∇2
xxL

(
x∗, λ∗) and B = ∇c(r)

(
x∗).

The left inequality follows from the formula (4.4) for ∇2
xxL(x∗, λ∗, k) if k � k0 and

k0 > 0 is large enough. �

Corollary. If f (x) and all ci(x) are twice continuous differentiable and ε > 0 is small
enough then for any fixed k � k0 there exist a pair M > µ > 0 such that for any
primal–dual pair

w = (x, λ) ∈ S(w∗, ε
) = {

w:
∥∥w − w∗∥∥ � ε

}
the following inequalities

µ(x, y) �
(∇2

xxL(x, λ, k)y, y
)

� M(y, y), ∀y ∈ R
n, (4.6)

hold true.

In other words in the neighborhood of the KKT’s pair (x∗, λ∗) the condition num-
ber cond ∇2

xxL(x, λ, k) � µM−1 is stable for any fixed k � k0.

Remark 4.1. Lemma 4.3 is true whether f (x) and all −ci(x), i = 1, . . . , m, are convex
or not.

Lemma 4.4. If X∗ is bounded, then for any λ ∈ Rm++ and k > 0 there exists

x̂ = x̂(λ, k) = arg min
{
L(x, λ, k) | x ∈ Rn

}
.

Proof. If X∗ is bounded then by adding one extra constraint cm+1(x)= −f (x) +
M � 0, where M > 0 is large enough we obtain due to corollary 20 (see [7, p. 94]),
that the feasible set� is bounded. Therefore without restriction of generality we assume
from the very beginning that � is bounded. We start by establishing that LSL L(x, λ, k)
has no direction of recession in x, i.e., for any nontrivial direction z ∈ Rn

lim
t→∞L(x + tz, λ, k) = ∞, ∀λ ∈ Rn

++, k > 0.

Let x ∈ int�, i.e., ci(x) > 0. Due to the boundness of � for any z �= 0 one can
find i0: ci0(x+ t̄ z) = 0, t̄ > 0, in fact, if ci(x + tz) > 0 ∀t > 0, i = 1, . . . , m, then � is
unbounded.
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Let x̄ = x + t̄z, using concavity of ci0(x) we obtain

ci0(x)− ci0(x̄) �
(∇ci0(x̄), x − x̄)

or

0 < α = ci0(x) � −(∇ci0(x̄), z)t̄ ,
i.e., (∇ci0(x), z) � −αt̄−1 = β < 0. (4.7)

Again using the concavity of ci0(x) we obtain

ci0(x + tz) � ci0(x̄)+
(∇ci0(x̄), z)(t − t̄ )

or

−ci0(x + tz) � −β(t − t̄ ), ∀t > 0. (4.8)

Hence in view of (4.8) we obtain

L(x+ tz, λ, k)= f (x + tz)+ 2k−1
∑

λi ln
(
1 + e−kci (x+tz))− 2k−1

∑
λi ln 2

� f (x + tz)− 2k−1
∑

λi + 2k−1λi0 ln
(
1 + e−kci0 (x+tz)

)
= f (x+ tz)− 2k−1

∑
λi + 2k−1λi0 ln

(
1 + e−kci0 (x+tz)

)− 2λi0ci0(x+ tz)
� f (x + tz)− 2k−1

∑
λi − 2βλi0(t − t̄ ).

Taking into account (4.1) and (4.6) we obtain,

lim
t→∞L(x + tz, λ, k) = +∞, ∀z ∈ Rn,

so the set

X̂(λ, k) =
{
x̂ | L(x̂, λ, k) = inf

x∈Rn
L(x, λ, k)

}
is not empty and bounded (Rockafellar [4, theorem 27.1d]). �

Moreover, for (λ, k) ∈ R
m+1++ due to lemma 4.2 the set X̂(λ, k) contains only one

point x̂(λ, k) = arg min{L(x, λ, k) | x ∈ Rn}. The uniqueness of x̂(λ, k) means that
in contrast to the dual function d(λ) = inf{L(x, λ) | x ∈ Rn} which is based on the
Lagrangian for the initial problem (P), the dual function dk(λ) = min{L(x, λ, k) |
x ∈ Rn}, which is based on LSL, is as smooth as the initial functions for any λ ∈ Rn++.

Remark 4.2. Due to (A5(a)) we have limt→−∞ψ ′(t) = 2 < ∞, therefore the existence
of x̂(λ, k) does not follow from standard considerations [4, p. 329], see also [1]. In fact
let us consider the following LP min{3x | x � 0}. We have X∗ = {0} and L∗ = {3}. For
λ = 1 and k = 1 the LSL L(x, 1, 1) = 3x + 2 ln(1 + e−x)− 2 ln 2 and infL(x, 1, 1) =
−∞. The transformation of the objective function is critical for the existence of x̂(λ, k).
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Remark 4.3. The convex in x ∈ Rn LSL L(x, λ, k) has a bounded level set in x for any
λ ∈ Rn++ and k > 0. It does not follow from lemma 12 (see [7, p. 95]), because ψ(t)
does not satisfy the assumption (a).

5. Log-sigmoid multipliers method

We consider the following method. For a chosen λ0 ∈ Rn++ and k > 0 we generate
iteratively the sequence {xs} and {λs} according to the following formulas:

xs+1 = arg min
{
L(x, λ, k) | x ∈ Rn

}
, (5.1)

λs+1
i = λsiψ ′(kci(xs+1

)) = 2λsi
(
1 + ekci (x

s+1)
)−1
, i = 1, . . . , m. (5.2)

Along with multipliers method (5.1), (5.2) we consider a version of this method
when the parameter k > 0 is not fixed but one can change it from step to step. For a
given positive sequence {ks}: ks+1 > ks , lims→∞ ks = ∞, we find the primal {xs} and
the dual {λs} sequences by formulas

xs+1 = arg min
{
L(x, λ, ks) | x ∈ R

n
}
, (5.3)

λs+1
i = λsiψ ′(ksci(xs+1)) = 2λsi

(
1 + eksci (x

s+1)
)−1
, i = 1, . . . , m. (5.4)

First of all we have to guarantee that the multipliers method (5.1), (5.2) is well
defined, i.e., that xs+1 exists for any given λs ∈ Rm++ and k > 0.

Due to lemma 4.4 for any λs ∈ Rm++ there exist x̂(λs, k) = arg min{L(x, λs, k) |
x ∈ Rn} and due to the formulas (5.2) and (5.4) we have λs ∈ Rm++ ⇒ λs+1 ∈ Rm++.
Therefore if the starting vector of Lagrange multipliers λ0 ∈ Rn++ then all vectors λs ,
s = 1, 2, . . . , will remain positive, so the LS method is executable.

The critical part of any multipliers method is the formula for the Lagrange multipli-
ers update. It follows from (5.2) and (5.4) that λs+1

i > λsi if c(xs+1) < 0 and λs+1
i < λsi

if c(xs+1) > 0. In this respect the LS method is similar to other multipliers method,
however due to (A5(a)) the LS method has some very specific properties. In particular
the Lagrange multipliers cannot be increased more than twice independent on the con-
straint violation and the value of the scaling parameter k > 0. It means, for instance,
if λ0 = e = (1, . . . , 1) ∈ Rm is the starting Lagrange multipliers vector then for any
k > 0 large enough and any constraint violation the new Lagrange multipliers cannot be
more than two. Therefore in contrast to the exponential [17] or MBF methods [11] it is
impossible to find approximation close enough to λ∗ by using

L(x, e, k) = f (x)+ 2k−1
m∑
i=1

ln 0.5
(
1 + e−kci (x))

no matter how large k > 0 we are ready to use. Therefore to guarantee convergence
when k → ∞ we modified L(x, e, k). The convergence and the rate of convergence of
the LS multipliers methods we consider in the next section.
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6. Convergence and rate of convergence

We start with a modification of L(x, e, k). For a chosen 0 < α < 1 we define the penalty
LS function P : Rn × R++ → R++ by formula

P(x, k) = f (x)+ 2k−1+α
m∑
i=1

ln 0.5
(
1 + e−kci(x)). (6.1)

The existence and uniqueness of the minimizer

x(·) = x(k) = arg min
{
P(x, k) | x ∈ Rn

}
follows from lemmas 4.2 and 4.4. For the minimizer x(·) we have

∇xP
(
x(·), ·) = ∇f (x(·)) −

m∑
i=1

2kα
(
1 + ekci (x)

)−1∇ci
(
x(·)) = 0. (6.2)

By introducing

λi(·) ≡ λi(k) = 2kα
(
1 + ekci (x)

)−1
, i = 1, . . . , m, (6.3)

we obtain

∇xP
(
x(·), ·) = ∇f (x(·))−

m∑
i=1

λi(·)∇ci
(
x(·)) = ∇xL

(
x(·), λ(·)) = 0. (6.4)

The following theorem establishes the convergence of {x(k)}∞
k>0 and {λ(k)}∞

k>0
to X∗ and L∗.

Theorem 6.1.

(1) If conditions (A) and (B) hold then the primal and dual trajectories {x(k)}∞
k>0 and

{λ(k)}∞
k>0 are bounded and their limit points belong to X∗ and L∗.

(2) If the standard second order optimality conditions (2.4), (2.5) are satisfied then
limk→∞ x(k) = x∗ and limk→∞ λ(k) = λ∗. If, in addition, f (x) and all ci(x) ∈ C2,
then the following bound

0 � f
(
x∗)− f (x(k)) �

(
0.5k−αf

(
x∗)+ k−1m ln 2

)( m∑
i=1

λ∗
)

(6.5)

holds true for any k � k0, where k0 > 0 is large enough.

Proof. (1) As we mentioned in the proof of lemma 4.4 if X∗ is bounded then by adding
an extra constraint we can assume that the feasible set � is bounded. Also due to
lemma 4.2 the minimizer x(k) is unique, therefore λ(k) is uniquely defined by (6.3).
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For the vector x(k) we define two sets of indexes I+ = I+(k) = {i: ci(x(k)) � 0}
and I− = I−(k) = {i: ci(x(k)) < 0}. Then

P
(
x(k), k

)
= P(·, k) = f (·)+ 2k−1+α

[
m∑
i=1

ln
(
1 + e−kci (·))−m ln 2

]

= f (·)+ 2k−1+α
[∑
i∈I+

ln
(
1 + e−kci (·))+

∑
i∈I−

ln
(
1 + ekci (·)

)− k
∑
i∈I−

ci(·)−m ln 2

]
.

Therefore

P(·, k) � f (·)− 2kα
∑
i∈I−

c(·)− 2k−1+αm ln 2.

On the other hand

P(·, k) � P
(
x∗, k

) = f (x∗)+ 2k−1+α
m∑
i=1

ln 0.5
(
1 + e−kci (x∗)).

In view of 0.5(1 + e−kci (x∗)) � 1, i = 1, . . . , m, we have P(·, k) � f (x∗). Therefore
keeping in mind f (x(k)) > 0 we obtain

−2kα
∑
i∈I−

ci(·) � f
(
x∗)+ 2k−1+αm ln 2

or ∑
i∈I−

∣∣ci(·)∣∣ � 0.5k−αf
(
x∗)+ k−1m ln 2.

In other words, for the maximum constraint violation at x(k) we have

max
i∈I−

∣∣ci(x(k))∣∣ � 0.5k−αf
(
x∗)+ k−1m ln 2 = v(k). (6.6)

Therefore due to corollary 20 (see [7, p. 94]), the boundness {x(k)}∞
k>0 follows from the

boundness of �.
The boundness of the dual trajectory {λ(k)}∞

k>0 follows from Slater’s condition (B),
(6.4) and the boundness of the primal trajectory {x(k)}∞

k>0.
Let {x(ks)}∞

s=1 and {λ(ks)}∞
s=1 be the primal and dual converging subsequences and

x̄ = lims→∞ x(ks) and λ̄ = lims→∞ λ(ks), then by passing to the limit in (6.4) we obtain

∇xL
(
x̄, λ̄

) = ∇f (x̄)−
m∑
i=1

λ̄i∇ci(x̄) = 0

and from (6.3) and (6.6) we have λ̄ ∈ Rm+ and

ci(x̄) � 0, i = 1, . . . , m, λ̄i = 0, i /∈ I (x̄) = {
i: ci(x̄) = 0

}
hence (x̄, λ̄) is a KKT’s pair, i.e., x̄ ∈ X∗, λ̄ ∈ �∗.
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(2) If the standard second order optimality conditions (2.4), (2.5) are satisfied, then
the pair (x∗, λ∗) is unique, therefore x∗ = limk→∞ x(k) and λ∗ = limk→∞ λ(k).

To obtain the bound (6.5) we consider the enlarged feasible set�(k) = {x: ci(x) �
−v(k), i = 1, . . . , m}, which is bounded because � is bounded. Therefore f ∗

k =
arg min{f (x) | x ∈ �(k)} exists and f ∗

k � f (x(k)), hence f (x∗) − f (x(k)) �
f (x∗)−f ∗

k . Due to the conditions (2.4), (2.5) and keeping in mind that f (x), ci(x) ∈ C2

we can use theorem 6 (see [7, p. 34]), to estimate f (x∗)− f ∗
k for any k � k0 and k0 > 0

large enough we obtain

f
(
x∗)− f (x(k)) � f

(
x∗)− f ∗

k � v(k)
m∑
i=1

λ∗
i .

Using (6.6) we obtain the bound (6.5). �

Convergence results for general classes of smoothing methods have been consid-
ered in [1].

Before we establish the rate of convergence for the LS multipliers method we
would like to discuss one intrinsic property of the smoothing methods.

Let us consider the penalty LS function’s Hessian. We have

H
(
x(·), ·)= ∇2

xxP
(
x(·), ·)

= ∇2
xxL

(
x(·), λ(·)) + 2k∇c(x(·))T

�(·) ekc(x(·))
(
I + ekc(x(·))

)−2∇c(x(·)),
where �(·) = diag(λ(·))mi=1 and ekc(x(·)) = diag(ekci(x(·)))mi=1. In view of (6.5) for k > 0
large enough the pair (x(·), λ(·)) is close to (x∗, λ∗), therefore

H
(
x(·), ·) ≈ ∇2

xxL
(
x∗, λ∗)+ 0.5k∇c(x∗)T

�∗∇c(x∗).
Due to assertion 2.1 for k > 0 large enough the min eigvalH(x(·), ·) = µ > 0,

while the max eigvalH(x(·), ·) = Mk,M > 0. Therefore

condH
(
x(·), ·) = µ(Mk)−1 = O

(
k−1).

Hence the condH(x(·), ·) converges to zero faster than f (x(k)) converges to
f (x∗). The infinite increase of the scaling parameter k > 0 is the only way to insure
the convergence of the smoothing method. Therefore from some point on the smooth
unconstrained minimization methods and in particular the Newton method might loose
its efficiency.

The method (5.1), (5.2) allows to speed up the rate of convergence substantially
and at the same time keeps stable the condition number of the LS Hessian.

Now we will prove that under the standard second order optimality conditions the
primal–dual sequence {xs, λs} generated by the LS multipliers method (5.1), (5.2) con-
verges to the primal–dual solution with Q-linear rate under a fixed but large enough
scaling parameter k > 0.
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In our analysis we follow the scheme [11], in which the quadratic augmented
Lagrangian proof (see [4, p. 109]) for equality constraints has been generalized for non-
quadratic augmented Lagrangians applied to inequality constrained optimization.

In the course of our analysis we will estimate the threshold k0 > 0 for the scaling
parameter when the Q-linear rates occurs. First, we specify the extended dual feasible
domain in Rm+ × [k0,∞), where the Q-linear convergence takes place.

Let ‖x‖ = ‖x‖∞ = max1�i�n |xi |, we choose a small enough

0 < δ < min
1�i�r

λ∗
i .

We will split the dual optimal vector λ∗ on active λ∗
(r) = (λ∗

1, . . . , λ
∗
r ) ∈ Rr++ and passive

λ∗
(m−r) = (λ∗

r+1, . . . , λ
∗
m) = 0 parts. The neighborhood of λ∗ we define as follows:

D(·)≡D(λ∗, k0, δ
)

= {
(λ, k)∈R

m+1
++ : λi � δ > 0,

∣∣λi − λ∗
i

∣∣� δk, i= 1, . . . , r,

0 � λi � δk, k � k0, i= r + 1, . . . , m
}
.

By introducing the vector t = (ti, i = 1, . . . , m) = (t(r), t(m−r)) with ti = (λi −
λ∗
i )k

−1, k � k0, i = 1, . . . , m, we transform the dual set D(·) into the neighborhood of
the origin in the extended dual space

S(δ, k0)=
{
(t, k): (t1, . . . , tm; k): ti �

(
δ − λ∗

i

)
k−1, i = 1, . . . , r,

ti � 0, i = r + 1, . . . , m, ‖t‖ � δ, k � k0
}
.

Then for LSL we obtain

L(x, t, k) = f (x)+ 2k−1
m∑
i=1

(
kti + λ∗

i

)
ln 0.5

(
1 + e−kci (x)).

For each λ ∈ D(·) and k � k0 we can find the correspondent (t, k) ∈ S(δ, k0), the
minimizer

x̂ = x̂(t, k) = arg min
{
L(x, t, k) | x ∈ Rn

}
and the new vector of the Lagrange multipliers

λ̂ = λ̂(t, k) = (
λ̂i(t, k) = 2

(
kti + λ∗

i

)(
1 + ekci (x̂)

)−1
, i = 1, . . . , m

)
.

Let us split the vector λ̂ = (λ̂(r), λ̂(m−r)) on the active λ̂(r) = (λ̂i, i = 1, . . . , r)
and the passive

λ̂(m−r) ≡ λ̂(m−r)
(
x̂, t, k

) = (
λi
(
x̂, t, k

) = 2kti
(
1 + ekci (x̂)

)−1
, i = r + 1, . . . , m

)
parts. We consider the vector-function

h(x, t, k) =
m∑

i=r+1

λ̂i (x, t, k)∇ci(x),

which correspond to the passive set of constraints.
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Let

a ∈ Rn, b ∈ Rn, θ(τ) : R → R, θ(b) = (
θ(b1), . . . , θ(bn)

)
,

aθ(b) = (
a1θ(b1), . . . , anθ(bn)

)
, a + θ(b) = (

a1 + θ(b1), . . . , an + θ(bn)
)
.

Now we are ready for the basic statement in this section. We would like to em-
phasize that results of the following theorem remain true if neither f (x) nor −ci(x),
i = 1, . . . , m, are convex.

Theorem 6.2. If f (x) and all ci(x) ∈ C2 and the conditions (2.4) and (2.5) hold, then
there exists such a small δ > 0 and large k0 > 0 that for any λ ∈ D(·) and k � k0:

(1) there exist x̂ = x̂(λ, k) = arg min{L(x, λ, k) | x ∈ Rn}: ∇xL(x̂, λ, k) = 0 and
λ̂ = λ̂(λ, k) = 2λ(1 + ekc(x̂))−1;

(2) for the pair (x̂, λ̂) the estimate

max
{∥∥x̂ − x∗∥∥, ∥∥λ̂− λ∗∥∥} � ck−1

∥∥λ− λ∗∥∥ (6.7)

holds and c > 0 is independent on k � k0;

(3) the LS function L(x, λ, k) is strongly convex in a neighborhood of x̂.

Proof. For any x ∈ Rn, any k > 0 and t ∈ Rm the vector-function h(x, t, k) is smooth
in x, also

h
(
x∗, 0, k

) = 0 ∈ R
n, ∇xh

(
x∗, 0, k

) = 0n,n, ∇λ(r)h
(
x∗, 0, k

) = 0n,r ,

where 0p,q is p × q matrix with zero elements.
Let σ = min{ci(x∗) | i = r + 1, . . . , m} > 0.
We consider the following map 8 : Rn+r+m+1 → Rn+r , which is defined by

8
(
x, λ̂(r), t, k

) =
[ ∇f (x)−∑r

i=1 λ̂i∇ci(x)− h(x, t, k)
2k−1

(
kt(r) + λ∗

(r)

)(
1 + ekc(r)(x)

)−1 − k−1λ̂(r)

]
. (6.8)

Taking into account (2.1), (2.2) we obtain

8
(
x∗, λ∗

(r), 0, k
) = 0n+r , ∀k > 0. (6.9)

Let ∇xλ̂(r)8 = ∇xλ̂(r)8(x∗, λ∗
(r), 0, k), I

r – identical matrix in Rr ,

�∗
(r) = diag

(
λ∗
i

)r
i=1, ∇xxL = ∇xxL

(
x∗, λ∗), ∇c = ∇c(x∗), ∇c(r) = ∇c(r)

(
x∗).

In view of ∇xh(x∗, 0, k) = 0n,n and ∇λ̂(r)h(x∗, 0, k) = 0n,r we obtain

8k ≡ ∇xλ̂(r)8 =
[ ∇xxL −∇cT

(r)

− 1
2�

∗
(r)∇c(r) −k−1I r

]
.



442 POLYAK

Using reasoning similar to those in [11] we obtain that 8−1
k exists and there is a number

9 > 0, which is independent on k � k0 that∥∥8−1
k

∥∥ � 9. (6.10)

By applying the second implicit function theorem (see [3, p. 12]) to the map (6.8)
we find that on the set

S(δ, k0, k1)=
{
(t, k): ti �

(
δ − λ∗

i

)
k−1, i = 1, . . . , r, ti � 0, i = r + 1, . . . , m,

‖t‖ � δk−1, k0 � k � k1
}

there exists two vector-functions

x(·) = x(t, k) = (
x1(t, k), . . . , xm(t, k)

)
and

λ̂(r)(·) = λ̂(r)(t, k) = (
λ̂1(t, k), . . . , λ̂r (t, k)

)
such that

8
(
x(t, k), λ̂r (t, k), t, k

) ≡ 8(x(·), λ̂(·), ·) ≡ 0. (6.11)

One can rewrite system (6.11) as follows:

∇f (x(·)) −
r∑
i=1

λ̂i(·)∇ci
(
x(·)) − h(x(·), ·) = 0, (6.12)

λ̂i(·) = 2
(
kti + λ∗

i

)(
1 + ekci(x(·))

)−1
, i = 1, . . . , r. (6.13)

We also have λ̂i(·) = 2λi(1 + ekci (x̂(·)))−1, i = r + 1, . . . , m. Recalling that
λ∗
(m−r) = (λ∗

r+1, . . . , λ
∗
m) = 0 ∈ Rm−r we first estimate ‖λ̂(m−r) − λ∗

(m−r)‖.
For any small ε > 0 we can find δ > 0 small enough that ‖x(t, k) − x∗(0, k)‖ =

‖x(·) − x∗‖ � ε for any t ∈ S(δ, k0). Taking into account ci(x∗) � σ > 0 we obtain

ci
(
x(t, k)

)
� σ

2
, i = r + 1, . . . , m for t ∈ S(δ, k0).

Therefore in view of ex � x + 1 we obtain

0 < λ̂i(t, k) � 2λi
1 + e0.5kσ

� 2λi
2 + 0.5kσ

� 4

σ

λi

k
. (6.14)

Therefore ∥∥λ̂(m−r) − λ∗
(m−r)

∥∥ � 4

σ
k−1

∥∥λ(m−r) − λ∗
(m−r)

∥∥. (6.15)

Now we will consider the vector-functions x(t, k) = x(·) and λ̂(r)(t, k) = λ̂(r)(·).
By differentiating (6.12) and (6.13) in t we find the Jacobians ∇t x(·) ≡ ∇t x(t, k) and
∇t λ̂(r)(·) = ∇t λ̂(r)(t, k) from the following system:[ ∇t x(·)

∇t λ̂(r)(·)

]
= (∇xλ̂(r)8(·))−1

[ ∇th
(
x(·), ·)

−2 diag
((

1 + ekci(x(·))
)−1)r

i=1; 0r,m−r

]
. (6.16)
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Considering the system (6.16) for t = 0 ∈ Rm, we obtain[ ∇t x(0, k)
∇t λ̂(r)(0, k)

]
= (∇xλ̂(r)8)−1

[
∇th

(
x(0, k), 0, k

)
−I r; 0r,m−r

]
= (8k)−1

[
∇th

(
x(0, k), 0, k

)
−I r; 0r,m−r

]
.

In view of (6.10) and estimation∥∥∇th(x∗, 0, k
)∥∥ � 2k

(
1 + ekσ/2

)−1∥∥∇c(m−r)
(
x∗)∥∥ � 4σ−1

∥∥∇c(m−r)
(
x∗)∥∥

which holds true for any k � k0, we obtain

max
{∥∥∇t x(0, k)∥∥, ∥∥∇t λ̂(r)(0, k)∥∥}� 9

(∥∥∇c(m−r)
(
x∗)∥∥+ ∥∥I r∥∥)

= 9(4σ−1
∥∥∇c(m−r)

(
x∗)∥∥+ 1

) = c0. (6.17)

Therefore

max
{∥∥∇t x(t, k)∥∥, ∥∥∇t λ̂(r)(t, k)∥∥} � 2c0 (6.18)

for any (t, k) ∈ S(δ, k0) and δ > 0 small enough.
Keeping in mind that x(0, k) = x∗ and λ̂(r)(0, k) = λ̂∗

(r) and using arguments
similar to those in [11], we obtain

max
{∥∥x(t, k)− x∗∥∥, ∥∥λ̂(r)(t, k)− λ̂∗

(r)

∥∥} � 2c0k
−1
∥∥λ− λ∗∥∥. (6.19)

Let

x̂(λ, k) = x
(
λ− λ∗

k
, k

)
, λ̂(λ, k) =

(
λ̂(r)

(
λ− λ∗

k
, k

)
, λ̂(m−r)

(
λ− λ∗

k
, k

))
then taking c = max{2c0, 4/σ } from (6.15) and (6.19) we obtain (6.7).

To prove the final part of the theorem we consider the LS Hessian ∇xxL(x, λ, k) at
the point x̂ = x̂(λ, k). We have

∇xL(x, λ, k) = ∇f (x)−
m∑
i=1

2λi
1 + ekci (x)

∇ci(x)

and for the Hessian ∇2
xxL(x, λ, k) we obtain

∇2
xxL(x, λ, k)

= ∇2
xxf (x)−

m∑
i=1

2λi
1 + ekci (x)

∇2
xxci(x)+ 2k

(∇c(x))T(
I + ekc(x)

)−2
�∇c(x),

where I – identical matrix in Rm and ekc(x) = diag(ekci (x))mi=1, � = diag(λi)mi=1.
Therefore

∇2
xxL

(
x̂, λ, k

) = ∇2
xxL

(
x̂, λ̂

)+ k(∇c(x̂))T(
I + ekc(x̂)

)−1
�̂∇c(x̂).
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Using the estimation (6.1) for any (λ, k) ∈ D(·) we obtain

∇2
xxL

(
x̂, λ, k

)≈ ∇2
xxL

(
x∗, λ∗)+ k(∇c(x∗))T(

I + ekc(x
∗))−1

�∗∇c(x∗)
= ∇2

xxL
(
x∗, λ∗)+ 1

2
k
(∇c(x∗))T

�∗∇c(x∗).
The strong convexity of LS L(x, λ, k) in x in the neighborhood of x̂ follows from

continuity of ∇2
xxL(x, λ, k) in x and assertion 2.1. The proof of theorem is completed. �

Corollary 6.1. The Q-linear rate of convergence for the method (5.1), (5.2) and
Q-superlinear convergence for (5.3), (5.4) follows directly from the estimation (6.7)
because c > 0 is independent on k > k0.

7. Modification of the LS method

The LS method (5.1), (5.2) requires solving unconstrained optimization problem at each
step. To make the method practical we have to replace the unconstrained minimizer
by an approximation that retains the convergence and the rate of convergence of LS
method.

In this section we establish the conditions for the approximation and prove that
such an approximation allows to retain for the modified LS method the rate of conver-
gence (6.7).

For a given positive Lagrange multipliers vector λ ∈ Rm++, a large enough penalty
parameter k > 0 and a positive scalar τ > 0 we find an approximation x̃ for the primal
minimizer x̂ from the inequality

x̃ ∈ Rn:
∥∥∇xL(x̃, λ, k)∥∥ � τk−1

∥∥2
(
I + ekc(x̃)

)−1
λ− λ∥∥ (7.1)

and the approximation for the Lagrange multipliers by formula

λ̃ = 2
(
I + ekc(x̃)

)−1
λ. (7.2)

It leads to the following modification of the LS multipliers method (5.1), (5.2).
We define the modified primal–dual sequence by the following formulas:

x̃s+1 ∈ R
n:
∥∥∇xL(x̃s+1, λs, k

)∥∥ � τk−1
∥∥2
(
1 + ekci (x̃

s+1)
)−1
λ̃s − λ̃s∥∥, (7.3)

λ̃s+1 = 2
(
I + ekc(x̃

s+1)
)−1
λ̃s . (7.4)

It turns out that the modification (7.3), (7.4) of the LS method (5.1), (5.2) keeps the
basic property of the LS method, namely theQ-linear rate of convergence as soon as the
second order optimality conditions hold and the functions f (x) and ci(x), i = 1, . . . , m,
are smooth enough.
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Theorem 7.1. If the standard second order optimality conditions (2.4), (2.5) hold and
the Hessians ∇2f (x) and ∇2ci(x), i = 1, . . . , m, satisfy the Lipschitz condition∥∥∇2f (x1)− ∇2f (x2)

∥∥ � L0‖x1 − x2‖,∥∥∇2ci(x1)− ∇2ci(x2)
∥∥ � Li‖x1 − x2‖

(7.5)

then there is k0 > 0 that for any λ ∈ D(·) and k � k0 the following bound holds true:

max
{∥∥x̃ − x∗∥∥, ∥∥λ̃− λ∗∥∥} � c(5 + τ)k−1

∥∥λ− λ∗∥∥ (7.6)

and c > 0 is independent on k � k0.

Proof. Let us assume that ε > 0 is small enough and

x̃ ∈ S(x∗, ε
) = {

x ∈ R
n:
∥∥x − x∗∥∥ � ε

}
,

λ̃ = (
1 + ekc(x̃)

)−1
λ ∈ S(λ∗, ε

) = {
λ ∈ Rm

++:
∥∥λ− λ∗∥∥ � ε

}
.

We consider vectors

:x = x̃ − x∗, :λ = λ̃− λ∗ = (
:λ(r),:λ(m−r)

)
, :λ(r) = λ̃(r) − λ∗

(r),

:λ(m−r) = λ̃(m−r) − λ∗
(m−r) = λ(m−r), :y(r) = (:x,:λ(r)) and :y = (:x,:λ).

Due to (7.5) we have

∇f (x̃)= ∇f (x∗)+ ∇2f
(
x∗):x + r0(:x), (7.7)

∇ci(x̃)= ∇ci
(
x∗)+ ∇2ci

(
x∗):x + ri(:x), i = 1, . . . , m, (7.8)

and r0(0) = 0, ri(0) = 0. Also due to (7.5) we have ‖∇r0(:x)‖ � L0‖:x‖,
‖∇ri(:x)‖ � Li‖:x‖. Then

∇xL(x̃, λ, k)= ∇f (x̃)−
m∑
i=1

2λi
1 + ekci(x̃)

∇ci(x̃)

= ∇f (x̃)−
m∑
i=1

λ̃i∇ci(x̃)

= ∇f (x̃)−
r∑
i=1

(
:λi + λ∗

i

)∇ci(x̃)+ h(x̃, λ(m−r), k
)
,

where h(x̃, λ(m−r), k) = ∑m
i=r+1 2λi(1 + ekci(x̃))−1∇ci(x̃).

Using (7.7), (7.8) we obtain

∇xL(x̃, λ, k)= ∇f (x∗)+ ∇2f
(
x∗):x + r0(:x)

−
r∑
i=1

(
:λi + λ∗

i

)(∇ci(x∗)+ ∇2ci
(
x∗):x + ri(:x)

) + h(x̃, λ(m−r), k
)
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= ∇f (x∗)−
r∑
i=1

λ∗
i∇ci

(
x∗)+

(
∇2f

(
x∗)−

r∑
i=1

λ∗
i∇2ci

(
x∗)):x

−
r∑
i=1

:λi∇ci
(
x∗)+ r0(:x)−

r∑
i=1

:λi∇2ci
(
x∗):x

−
r∑
i=1

(
:λi + λ∗

i

)
ri(:x)+ h

(
x̃, λ(m−r), k

)
.

Let

r(1)(:y) = r0(:x)−
r∑
i=1

:λi∇2ci
(
x∗):x +

r∑
i=1

(
:λi + λ∗

i

)
ri(:x)

then keeping in mind the KKT’s condition we can rewrite the expression above as

∇xL(x̃, λ, k) = ∇xxL
(
x∗, λ∗):x−∇c(r)

(
x∗)T

:λ(r)+h
(
x̃, λ(m−r), k

)+r(1)(:y), (7.9)

where r(1)(0) = 0 and there is L(1) > 0 that ‖∇rx(:y)‖ � L(1)‖:y‖.
Then :λi = λ̃i − λ∗

i = λ̃i − λi + λi − λ∗
i , i.e., (λ̃i − λi) − :λi = λ∗

i − λi ,
i = 1, . . . , r, or

�(r)e(r)(x̃, k)−:λ(r) = λ∗
(r) − λ(r), (7.10)

where eT
(r)(x̃, k) = (e1(x̃, k), . . . , er(x̃, k)) and ei(x̃, k) = (1 − ekci(x))(1 + ekci(x))−1,

i = 1, . . . , r.
Further,

ei(x̃, k) = ei
(
x∗, k

)+ k∇eT
i

(
x∗, k

)
:x + rei (:x), i = 1, . . . , r, and

rei (0) = 0,
∥∥∇rei (:x)∥∥ � Lei ‖:x‖.

In view of ei(x∗, k) = 0 and

∇ei
(
x∗, k

) = −2k e2kci (x∗)(1 + ekci(x
∗))−2∇ci

(
x∗) = −k

2
∇ci

(
x∗), i = 1, . . . , r,

we have

ei(x̃, k) = −1

2
k∇ci

(
x∗)+ rei (:x), i = 1, . . . , r. (7.11)

Therefore the system (7.10) can be rewritten as

�∗
(r)e(r)(x̃, k)−:λ(r) = (

I r + E(r)(x̃, k)
)(
λ∗
(r) − λ(r)

)
,

where E(r)(x, k) = diag(ei(x, k))ri=1. Using (7.11) we obtain

−1

2
�∗
(r)∇c(r)

(
x∗):x − k−1:λ(r)

= k−1(I r + E(r)(x̃, k)
)(
λ∗
(r) − λ(r)

)− k−1�∗
(r)r

e
(r)(:x)
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or

−�∗
(r)∇c(r)

(
x∗):x−2k−1:λ(r) = 2k−1

(
I r+E(r)(x̃, k)

)(
λ∗
(r)−λ(r)

)−rλ(:x), (7.12)

where

r(2)(:x) = 2k−1�∗
(r)r

e
(r)(:x), re(r)(:x)

T = (
re1(:x), . . . , r

e
r (:x)

)
,

r(2)(0) = 0, and there is L(2) > 0 that ‖∇r(2)(:x)‖ � L(2)‖:x‖.
Combining (7.9) and (7.12) we obtain

∇2
xxL:x − ∇c(r):λ(r)
= ∇xL(x̃, λ, k)− h

(
x̃, λ(m−r), k

)− rx(:y)−�∗
(r)∇c(r):x − 2k−1:λ(r)

= 2k−1
(
I r + E(r)(x̃, k)

)(
λ∗
(r) − λ(r)

)− r(2)(:x)
or

ϕ̄k:y(r) = a(x̃, λ, k)+ b(x̃, λ, k)+ r(:y(r)), (7.13)

where

ϕ̄k =
[ ∇xxL −∇c(r)

−�∗
(r)∇c(r) −2k−1

]
, a(x̃, λ, k) =

[∇xL(x̃, λ, k)− h
(
x̃, λ(m−r), k

)
0

]
,

b
(
x̃, λ(r), k

) =
[

0

2k−1
(
I r + E(r)(x̃, k)

)(
λ(r) − λ∗

(r)

)], r(:y(r)) =
[−r(1)(:y(r))

−r(2)(:x)

]
,

r(0) = 0, and there is L > 0 that ‖∇r(:y(r))‖ � L‖:y(r)‖.
As we know already for k0 > 0 large enough and any k > k0 the inverse matrix

ϕ̄−1
k exists and there is 9̄ > 0 independent on k � k0 that ‖ϕ̄−1

k ‖ � 9̄. Therefore we can
solve the system (7.13) for :y(r).

:y(r) = ϕ̄−1
k

[
a(x̃, λ, k)+ b(x̃, λ, k)+ r(:y)] = ϕ̄−1

k

[
a(·)+ b(·)+ r(:y(r))

]
=C(:y(r)). (7.14)

Therefore

∇C(:y(r)) = ϕ̄−1
k ∇r(:y(r))

and ∥∥∇C(:y(r))∥∥ �
∥∥ϕ̄−1

k

∥∥ ∥∥∇r(:y(r))∥∥ � 9̄L‖:y(r)‖.
So, for ‖:y(r)‖ small enough we have∥∥∇C(:y(r))∥∥ � q < 1.

In other words the operator C(:y(r)) is a contractive operator for ‖:y(r)‖ small
enough.
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Let us estimate the contractibility at the operator C(:y(r)) with more details. First
of all we shall estimate ‖a(·)‖ and ‖b(·)‖. We have∥∥a(·)∥∥ �

∥∥∇xL(x̃, λ, k)∥∥+ ∥∥h(x̃, λ(m−r), k
)∥∥.

Note that for ε > 0 small enough and x̃ ∈ S(x∗, ε) we obtain

λ̃i = 2λi
(
1 + ekci (x̃)

)−1 � 4λi
(
1 + ekci (x

∗))−1 � 4λi
(
1 + ekσ/2

)−1
, i = r + 1, . . . , m.

Hence for k0 > 0 large enough and k � k0 one can find a small enough η > 0 that

λ̃i � ηk−1λi = ηk−1
(
λi − λ∗

i

)
, i = r + 1, . . . , m,

i.e.,

‖:λ(m−r)‖ = ∥∥λ̃(m−r) − λ∗
(m−r)

∥∥ � ηk−1
∥∥λ(m−r) − λ∗

(m−r)
∥∥ (7.15)

and ∥∥h(x̃, λ(m−r), k
)∥∥=

∥∥∥∥∥
m∑

i=r+1

2λi
(
1 + ekci (x̃)

)−1∇ci(x̃)
∥∥∥∥∥

�
m∑

i=r+1

8λi
(
1 + ekσ/2

)−1∥∥∇ci(x∗)∥∥.
For k0 > 0 large enough and any k � k0 we have 4(1 + ekσ/2)−1‖∇ci(x∗)‖ � 2k−1,
i = r + 1, . . . , m. Therefore∥∥h(x̃, λ(m−r), k

)∥∥ � 2k−1
∥∥λ(m−r) − λ∗

(m−r)
∥∥ � 2k−1

∥∥λ− λ∗∥∥.
Further, from (7.11) we obtain∥∥∇xL(x̃, λ, k)∥∥ � τk−1

∥∥λ̃− λ∥∥ � τk−1
∥∥λ̃− λ∗∥∥+ τk−1

∥∥λ− λ∗∥∥. (7.16)

Therefore ∥∥a(·)∥∥ � τk−1
∥∥λ̃− λ∗∥∥+ (2 + τ)k−1

∥∥λ− λ∗∥∥. (7.17)

Further

I r + E(r)(x̃, k) = diag

(
1 + 1 − ekci (x̃)

1 + ekci (x̃)

)
= diag

(
2
(
1 + ekci (x̃)

)−1)r
i=1.

Hence ∥∥b(·)∥∥� 2k−1
∥∥λ(r) − λ∗

(r)

∥∥ � 2k−1
∥∥λ− λ∗∥∥. (7.18)

From (7.14), (7.15) we obtain∥∥:y(r)∥∥�
∥∥ϕ̄−1

k

∥∥[∥∥a(·)∥∥+ ∥∥b(·)∥∥+ ∥∥r(:y(r))∥∥]
� 9̄

(
τk−1

∥∥λ̃(r) − λ∗
(r)

∥∥+ τk−1‖:λ(m−r)‖ + (4 + τ)k−1
∥∥λ− λ∗∥∥

+ ∥∥r(:y(r))∥∥).
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Then in view of∥∥λ̃(r) − λ∗
(r)

∥∥ � ‖:y(r)‖, ‖:λ(m−r)‖ � k−1
∥∥λ(m−r) − λ∗

(m−r)
∥∥ � k−1

∥∥λ− λ∗∥∥
and ‖r(:y(r))‖ � L

2 ‖:y(r)‖2 we obtain

‖:y(r)‖ � 9̄
(
τk−1‖:y(r)‖ + (5 + τ)k−1

∥∥λ− λ∗∥∥+ L

2
‖:y(r)‖2

)
or

9̄L

2
‖:y(r)‖2 − (

1 − 9̄τk−1
)‖:y(r)‖ + (5 + τ)9̄k−1

∥∥λ− λ∗∥∥ � 0

and

‖:y(r)‖ � 1

9̄L

[(
1 − 9̄τ

k

)
−
((

1 − 9̄τ

k

)2

− 2L9̄2

k
(5 + τ)∥∥λ− λ∗∥∥)1/2]

.

If k0 > 0 is large enough then for any k � k0 we have[(
1 − 9̄τ

k

)2

− 2L9̄2(5 + τ)
k

∥∥λ− λ∗∥∥]1/2

�
(

1 − 9̄τ

k

)
− 2L9̄2(5 + τ)

k

∥∥λ− λ∗∥∥.
Therefore

‖:y(r)‖ � 29̄(5 + τ)
k

∥∥λ− λ∗∥∥.
So in view of (7.14) for c = max{29̄, η} we have

max
{∥∥x̃ − x∗∥∥, ∥∥λ̃− λ∗∥∥} � c(5 + τ)

k

∥∥λ− λ∗∥∥.
The proof is completed. �

Remark 7.1. The results of theorem 7.1 remain true whenever f (x) and all −ci(x) are
convex or not.

8. Primal–dual LS method

The numerical realization of the LS method (5.1), (5.2) leads to finding an approxima-
tion x̃ from (7.1) and updating the Lagrange multipliers by formula (7.2). To find x̃ one
can use Newton method. The Newton LS method has been described in [12]. In this sec-
tion we consider another approach to numerical realization of the LS multipliers method
(5.1), (5.2). Instead of using Newton method to find x̃ and then to update the Lagrange
multipliers we will use Newton method for solving the following primal–dual system

∇xL
(
x̂, λ̂

)= ∇f (x̂)−
∑

λ̂i∇ci
(
x̂
) = 0, (8.1)

λ̂=ψ ′(kc(x̂))λ (8.2)
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for x̂ and λ̂ under the fixed k > 0 and λ ∈ Rm++, whereψ ′(kc(x̂)) = diag(ψ ′(kci(x̂)))mi=1.
After finding an approximation (x̃, λ̃) for the primal–dual pair (x̂, λ̂) we replace λ for λ̃
and take (x̃, λ̃) as a starting point for the new system.

We apply the Newton method for solving (8.1), (8.2) using (x, λ) as a starting
point. By linearizing (8.1), (8.2) we obtain the following system for the Newton direction
(:x,:λ)

∇f (x)+ ∇2f (x):x −
m∑
i=1

(λi +:λi)
(∇ci(x)+ ∇2ci(x):x

) = 0, (8.3)

λ+:λ = ψ ′(k(c(x)+ ∇c(x):x))λ. (8.4)

The system (8.3) we can rewrite as follows:

∇2
xxL(x, λ):x − ∇c(x)T:λ+ ∇xL(x, λ)−

m∑
i=1

:λi∇2ci(x):x = 0. (8.5)

By ignoring the last term we obtain

∇2
xxL(x, λ):x − ∇c(x)T:λ = −∇xL(x, λ). (8.6)

By ignoring the second order components in the representation of ψ ′(kc(x) +
k∇c(x):x) we obtain

ψ ′(kc(x)+ k∇c(x):x) = ψ ′(kc(x))+ kψ ′′(kc(x)):c(x):x.
So we can rewrite the system (8.4) as follows

−kψ ′′(kc(x))�∇c(x):x +:λ = λ̄− λ, (8.7)

where ψ ′′(kc(x)) = diag(ψ ′′(kci(x)))mi=1, � = diag(λi)mi=1, λ̄ = ψ ′(kc(x))λ. Combin-
ing (8.6), (8.7) we obtain

∇2
xxL(x, λ):x − ∇c(x)T:λ = −∇xL(x, λ), (8.8)

−∇c(·):x + (
kψ ′′(kc(x))�)−1

:λ = (
kψ ′′(kc(x))�)−1(

λ̄− λ). (8.9)

We find :λ from (8.9) and substitute to (8.8). We obtain the following system for :x

M(·):x = −∇xL
(
x, λ̄

)
, (8.10)

where

M(x, λ) = ∇2
xxL(x, λ)− k∇c(x)Tψ ′′(kc(x))�∇c(x)

is a symmetric and positive definite matrix. Moreover, the condM(x, λ, k) is stable
in the neighborhood of (x∗, λ∗) for any fixed k � k0, see lemma 4.3. By solving the
system (8.10) for :x we find the primal direction. The next primal approximation x̃
for x̂ we obtain as

x̃ = x +:x. (8.11)
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The next dual approximation for λ̂ we find by formula

λ̃ = λ+:λ = λ̄+ kψ ′′(kc(x))�∇c(x):x. (8.12)

So the method (8.11), (8.12) one can view as dual–primal predictor–corrector. The
vector λ̄ = ψ ′(kc(x̂))λ, is the predictor for λ̂. Using this dual predictor we find the
primal direction :x from (8.10) and use it to find the dual corrector :λ by formula

:λ = kψ ′′(kc(x))�∇c(x):x.
The next dual approximation λ̃ for λ̂ we find by (8.12).

The primal–dual LS is fast and numerically stable in the neighborhood of (x∗, λ∗).
To make the LS method converge globally one can combine the primal–dual method with
Newton LS using the scheme [10]. Such approach produced very encouraging results on
a number of LP and NLP problems [12]. We will show some recently obtained results
in section 10.

9. Log-sigmoid Lagrangian and duality

We have seen already that LS Lagrangian L(x, λ, k) has some important properties,
which the classical Lagrangian L(x, λ) does not possess. Therefore one can expect that
the dual function

dk(λ) = inf
{
L(x, λ, k) | x ∈ Rn

}
(9.1)

and the dual problem

λ∗ = arg max
{
dk(λ) | λ ∈ R

m
+
}

(9.2)

might have some extra properties as compared to the dual function d(λ) and the dual
problem (D), which are based on L(x, λ).

First of all due to the lemmas 4.2 and 4.4 for any λ ∈ Rm++ and any k > 0 there
exists a unique minimizer

x̂ = x̂(λ, k) = arg min
{
L(x, λ, k) | x ∈ R

n
}

for any convex programming problem with a bounded optimal set.
The uniqueness of the minimizer x̂(λ, k) together with smoothness of f (x) and

ci(x) provide smoothness for the dual function dk(λ) which is always concave whether
the primal problem (P) is convex or not.

So the dual function dk(λ) is smooth under reasonable assumption about the primal
problem (P). Also the dual problem (9.2) is always convex.

Let us consider the properties of the dual function and the dual problem (9.2) with
more details.

Assuming smoothness f (x) and ci(x) and uniqueness x̂(λ, k) we can compute the
gradient ∇dk(λ) and the Hessian ∇2dk(λ). For the gradient ∇dk(λ) we obtain

∇dk(λ) = ∇xL
(
x̂, λ, k

)∇λx̂(λ, k)+ ∇λL(x, λ, k),
where ∇λx̂(λ, k) = Jλ(x̂(λ, k)) is the Jacobian of the vector-function x̂(λ, k).
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In view of ∇xL(x̂, λ, k) = 0 we have

∇dk(λ)= ∇λL
(
x̂(λ, k), λ, k

) = ∇λL
(
x̂(·), ·)

= 2k−1(ln 0.5
(
1 + e−kci (x̂)), . . . , ln 0.5

(
1 + e−kcm(x̂)))T

= 2k−1 ln 0.5
(
1 + e−kc(x̂)), (9.3)

where ln 0.5(1 + e−kc(x)) is a column vector with components ln 0.5(1 + e−kci (x)), i =
1, . . . , m.

Since ∇2
xxL(x̂(λ, k), λ, k) is positive definite the system

∇xL(x, λ, k) = 0

yields a unique vector-function x̂(λ, k) such that x̂(λ∗, k) = x∗ and

∇xL
(
x̂(λ, k), λ, k

) ≡ ∇xL
(
x̂(·), ·) = 0. (9.4)

By differentiating (9.4) in λ we obtain

∇2
xxL

(
x̂(·), ·)∇λx̂(·)+ ∇2

xλL
(
x̂(·), ·) = 0

therefore

∇λx̂(λ, k) = ∇λx̂(·) = −(∇2
xxL

(
x̂(·), ·))−1∇2

xλL
(
x̂(·), ·). (9.5)

Let us consider the Hessian for the dual function. Using (9.3) and (9.5) we obtain

∇2dk(λ)= ∇λ
(∇λdk(λ)) = 2k−1∇λ ln 0.5

(
1 + e−kc(x̂(λ,k))) = ∇2

λxL
(
x̂, λ, k

)∇λx̂(λ, k)
= −∇2

λxL
(
x̂(·), ·)(∇2

xxL
(
x̂(·), ·))−1∇2

xλL
(
x̂(·), ·). (9.6)

To compute ∇λxL(x̂(·), ·) let us consider

∇λL
(
x(·), ·) = 2k−1

 ln
(
1 + e−kc1(x̂(·)))− ln 2

...

ln
(
1 + e−kcm(x̂(·)))− ln 2

 .
Then for the Jacobian ∇x(∇λL(x(·), ·)) = ∇2

λxL(x(·), ·) we obtain

∇2
λxL

(
x̂(·), ·) = −2


(
1 + ekc1(x̂(·)))−1∇c1

(
x̂(·))

...(
1 + ekcm(x̂(·))

)∇cm(x̂(·))
 = ψ ′(kc(x̂(·)))∇c(x̂(·)),

where ψ ′(kc(x̂(·))) = −2 diag[(1 + ekci(x̂(·)))−1]mi=1. Therefore

∇2
xλL

(
x̂(·), ·) = ∇T

λxL
(
x̂(·), ·) = ∇c(x̂(·))T

ψ ′(kc(x̂(·)))∇c(x̂(·)).
By substituting ∇2

xλL(x̂(·), ·) and ∇2
λxL(x̂(·), ·) into (9.6) we obtain the following for-

mula for the Hessian of the dual function.

∇2dk(λ) = ψ ′(kc(x̂(·)))∇c(x̂(·))(∇2
xxL

(
x̂(·), ·))−1∇c(x̂(·))T

ψ ′(kc(x̂(·))). (9.7)
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Note that

∇2dk
(
λ∗) = ψ ′(kc(x∗))∇c(x∗)(∇2

xxL
(
x∗, λ∗, k

))−1∇c(x∗)T
ψ ′(kc(x∗)). (9.8)

We proved the following lemma.

Lemma 9.1. If f (x) and all ci(x) ∈ C2 then

(1) if (P) is a convex programming problem and (A) is true then the dual function
dk(λ) ∈ C2 for any λ ∈ Rm++ and any k > 0;

(2) if (P) is a convex programming problem and f (x) is strongly convex then the dual
function dk(λ) ∈ C2 for any λ ∈ Rm+ and any k > 0;

(3) if the standard second order optimality conditions (2.4), (2.5) are satisfied then
dk(λ) ∈ C2 for any pair λ ∈ D(·) and k � k0 whether the problem (P) is con-
vex or not. The gradient ∇dk(λ) is given by (9.3) and the Hessian ∇2dk(λ) is given
by (9.7).

Theorem 9.1 (Duality).

(1) If Slater condition (B) holds then the existence of the primal solution implies the
existence of the dual solution and

f
(
x∗) = dk

(
λ∗) (9.9)

for any k > 0.

(2) If f (x) is strictly convex, f (x) and all ci(x) are smooth and the dual solution exists,
then the primal exists and (9.9) holds for any k > 0.

(3) If f (x) and all ci(x) ∈ C2 and (2.4), (2.5) are satisfied then the second order opti-
mality conditions hold true for the dual problem for any k � k0 if k0 is large enough.

Proof. (1) The primal solution x∗ is at the same time a solution for the equivalent prob-
lem (4.1). Therefore keeping in mind the Slater condition (B) we obtain such λ∗ ∈ Rm+
such that

λ∗
i ci
(
x∗) = 0, i = 1, . . . , m, L

(
x∗, λ∗, k

)
� L

(
x, λ∗, k

)
, ∀x ∈ R

n, k > 0.

Therefore

dk
(
λ∗)= min

x∈Rn
L
(
x, λ∗, k

) = L
(
x∗, λ∗, k

) = f (x∗)
�L

(
x∗, λ, k

)
� min
x∈Rn

L(x, λ, k) = dk(λ), ∀λ ∈ R
m
+.

Hence λ∗ ∈ Rm+ is the solution for the dual problem and (9.9) holds.
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(2) Let us assume that λ̄ ∈ Rm+ is the solution for the dual problem. If f (x) is
strictly convex then the function L(x, λ, k) is strictly convex too in x ∈ Rn. Therefore
the gradient ∇dk(λ) exists. Consider the optimality condition for the dual problem

λ̄i = 0 ⇒ ∇λi dk(λ̄) � 0, (9.10)

λ̄i > 0 ⇒ ∇λi dk(λ̄) = 0. (9.11)

Let x̄ = arg min{L(x, λ̄, k) | x ∈ Rn}, then

∇λi dk(λ̄) = 2k−1 ln 0.5
(
1 + e−kci (x̄)).

From (9.10) we obtain

λ̄i = 0 ⇒ 2k−1 ln 0.5
(
1 + e−kci (x̃)) � 0 ⇒ 0.5

(
1 + e−kci (x̄)) � 1 ⇒ e−kci (x̄) � 1

⇒ ci(x̄) � 0.

From (9.11) we have

λ̄i > 0 ⇒ ln 0.5
(
1 + e−kci (x̄)) = 0 ⇒ e−kci (x̄) = 1 ⇒ ci(x̄) = 0.

Therefore (x̄, λ̄) is the primal–dual feasible pair for which the complementary conditions
hold, i.e., x̄ = x∗, λ̄ = λ∗.

(3) To prove that for the dual problem the standard second order optimality condi-
tions hold true we consider the Lagrangian for the dual problem

λ∗ = arg max
{
dk(λ) | λi � 0, i = 1, . . . , m

}
.

We have

L(λ, v, k) = dk(λ)+
m∑
i=1

viλi.

Then

∇2
λλL(λ, v, k) = ∇2

λλdk(λ). (9.12)

The active dual constraints are λi = 0, i = r + 1, . . . , m, and the vectors ei =
(0, . . . , 0, 0, . . . , 1, . . . , 0), i = r + 1, . . . , m, are the gradients of the active dual con-
straints.

Therefore the tangent subspace to the dual active set at the point λ∗ is

Y = {
y ∈ R

m: (y, ei ) = 0, i = r + 1, . . . , m
}

= {
y ∈ R

m: y = (y1, . . . , yr , 0, . . . , 0)
}
.

It is clear that the gradients ei , i = r + 1, . . . , m, of the dual active constraints are
linear independent. So, to prove that for the dual problem the second order optimality
conditions hold true we have to show(∇2

λλL
(
λ∗, v∗, k

)
y, y

)
� −µ‖y‖2

2, µ > 0, ∀y ∈ Y.
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Using (9.8) and (9.12) we obtain(∇2
λλL

(
λ∗, v∗, k

)
y, y

) = (∇λλdk(λ∗)y, y)
= (
ψ ′(kc(x∗))∇c(x∗)(∇2

xxL
(
x∗, λ∗, k

))−1∇c(x∗)T
ψ ′(kc(x∗))y, y)

= −(∇c(x∗)(∇2
xxL

(
x∗, λ∗, k

))−1∇c(x∗)T
ȳ, ȳ

)
,

where

ȳ =ψ ′(kc(x∗))y = (
ψ ′(kc1

(
x∗))y1, . . . , ψ

′(kc(x∗))yr, 0, . . . , 0)
= (y1, . . . , yr , 0, . . . , 0) = (y(r), 0) = y.

In other words(∇2
λλL

(
λ∗, v∗, k

)
y, y

) = (−(∇2
xxL

(
x∗, λ∗, k

))−1∇c(x∗)T
y,∇c(x∗)T

y
)
.

Using (4.4) we obtain

(M0k)
−1(y, y) �

((∇2
xxL

(
x∗, λ∗, k

))−1
y, y

)
� µ−1

0 (y, y)

i.e.,

−(M0k)
−1(y, y) �

(−(∇2
xxL

(
x∗, λ∗, k

))−1
y, y

)
� −µ−1

0 (y, y).

Hence (∇2
λλL

(
λ∗, v∗, k

)
y, y

)
� −(M0k)

−1(∇cT
(r)

(
x∗)y(r)∇cT

(r)

(
x∗)y(r))

= −(M0k)
−1(∇c(r)(x∗)∇cT

(r)

(
x∗)y(r), y(r)). (9.13)

Due to (2.4) the Gram matrix ∇c(r)∇cT
(r) is positive definite, therefore there is µ̄ > 0 that

(∇c(r)∇cT
(r)y(r), y(r)) � µ̄‖y(r)‖2

2.
Therefore in view of (9.13) we obtain(∇2

λλL
(
λ∗, v∗, k

)
y, y

)
� −µ‖y‖2

2, ∀y ∈ Y, (9.14)

where µ = (M0k)
−1µ̄.

So the standard second order optimality condition holds true for the dual prob-
lem. �

Corollary 9.1. If (2.4), (2.5) hold and k0 > 0 is large enough then for any k � k0 the
restriction d̄k(λ(r)) = dk(λ)|λr+1 = 0,...,λm=0 of the dual function to the manifold of the dual
active constraints is strongly concave.

The properties of d̄k(λ(r)) allow to use smooth unconstrained optimization tech-
nique, in particular Newton method for solving the dual problem. It leads to the second
order LS multipliers method.

Remark 9.1. The part (3) of theorem 9.1 holds true even for nonconvex optimization
problems. It is not true if instead of L(x, λ, k) one uses the classical Lagrangian L(x, λ).
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10. Numerical results

The primal–dual LS method we described in section 8 generally speaking does not con-
verge globally. However locally it converges very fast. Therefore in the first stage of the
computation we used the path following type approach with LS penalty function (6.1),
i.e., we find an approximation for x(k) and increase k > 0 from step to step. For the un-
constrained minimization P(x, k) in x we used Newton method with step-length. When
the duality gap becomes reasonably small 10−1 ÷10−2 we use the primal approximation
x̄ for x(k) to compute approximation λ̄ for the Lagrange multipliers λ(k) and then the
primal–dual vector (x̄, λ̄) is used as a starting point in the primal–dual method (8.11),
(8.12).

The first stage consumes the most of the computational time, while the primal–
dual method (8.11), (8.12) requires only a few steps to reduce the duality gap and the
infeasibility from 10−1 ÷10−2 to 10−8 ÷10−10. For all problems which have been solved
we observed the “hot” start phenomenon (see [10,11]), when few and from some point
on only one Newton step is required for finding an approximation with high accuracy
for the solution of the primal–dual system (8.1), (8.2).

In the following tables we show numerical results obtained by using the NR multi-
pliers method for several problems, which we downloaded from Dr. R. Vanderbei web-
page.

Name: catenary n = 198, m = 298, p = 100;

# Objective: linear
# Constraints: convex quadratic
# Feasible set: convex

# This model finds the shape of a hanging chain
# The solution is known to be y = cosh(a*x) + b
# for appropriate a and b.

Path following...

it f |g| gap inf step
1 -3.642e+03 2.0199e-01 1.823027e+03 3.296342e+00 3
2 -1.815e+03 1.4758e-01 9.849452e+02 7.518446e-01 3
3 -8.597e+02 7.6270e-02 4.644297e+02 1.631766e-01 3
4 -4.032e+02 1.5686e-02 2.137841e+02 3.509197e-02 3
5 -1.905e+02 4.1326e-03 9.598980e+01 7.457490e-03 3
6 -9.466e+01 3.0647e-03 3.848685e+01 1.509609e-03 3
7 -5.659e+01 1.6690e-03 1.021444e+01 2.538015e-04 3
8 -4.699e+01 4.4405e-05 1.415691e+00 3.058176e-05 3

Primal-Dual algorithm...

0 6.009e+02 1.3909e+04 1.415691e+00 3.058176e-05 0
1 -4.556e+01 1.9293e-05 2.154078e-04 3.814845e-09 6
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2 -4.556e+01 2.5129e-07 2.457058e-08 1.175767e-12 2
3 -4.556e+01 2.0630e-10 7.838452e-13 6.960578e-17 1

Name: esfl_socp n = 1002, m = 2002, p = 1000;

Pathfollowing...

it f |g| gap inf step
1 -6.807e+02 4.8419e-03 4.378594e+02 3.469734e-03 3
2 -4.902e+02 6.0727e-03 1.305438e+02 2.517168e-03 3
3 -7.101e+01 8.5318e-03 2.892838e+01 1.865576e-03 3
4 1.288e+02 8.8694e-03 5.795068e+00 1.459469e-03 3
5 1.738e+02 9.9911e-03 1.183240e+00 1.172302e-03 3
6 1.887e+02 2.2467e-02 2.208563e-01 8.762780e-04 3

Primal-Dual algorithm...

0 1.964e+02 6.7414e+03 2.208563e-01 8.762780e-04 0
1 1.939e+02 9.5765e-03 2.415700e-03 5.177679e-06 2
2 1.939e+02 1.3120e-03 2.783116e-04 2.500009e-06 2
3 1.939e+02 1.6533e-04 1.514309e-05 6.249994e-07 1
4 1.939e+02 9.5390e-06 2.054630e-08 3.906232e-08 1
5 1.939e+02 3.7161e-08 2.221649e-11 1.525858e-10 1

Name: fekete n = 150, m = 200, p = 50

# Objective: nonconvex nonlinear
# Constraints: convex quadratic

Pathfollowing...

it f |g| gap inf step
1 -1.485e+02 3.7060e+00 1.667138e+02 5.547542e+00 13
2 -4.631e+02 5.4162e+00 6.017736e+02 4.650966e+00 13
3 -9.168e+02 5.0260e+00 3.302206e+01 2.641380e-01 13
4 -1.064e+03 6.9358e+00 9.589543e+01 2.098166e-01 13
5 -1.279e+03 6.5917e+00 5.954351e+00 3.569369e-02 13
6 -1.427e+03 8.6109e+00 1.037654e+01 2.883360e-02 13
7 -1.464e+03 7.7080e+00 3.049917e-03 3.698170e-05 13

Primal-Dual algorithm...

0 -1.440e+03 1.1562e+03 3.049917e-03 3.698170e-05 0
1 -1.442e+03 7.6695e+00 2.296847e-03 0.000000e+00 3
2 -1.442e+03 7.6694e+00 2.322743e-05 0.000000e+00 2
3 -1.442e+03 7.6694e+00 2.353873e-07 0.000000e+00 2
4 -1.442e+03 7.6694e+00 2.386449e-09 0.000000e+00 2
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Name: fir_socp n = 12, m = 319, p = 307;

Pathfollowing...

it f |g| gap inf step
1 -1.720e+03 1.3242e+00 1.650751e+02 1.234151e-01 3
2 -3.244e+02 5.1078e-03 3.754727e+01 3.207064e-02 3
3 -1.380e+01 2.3305e-01 8.242217e+00 1.987763e-02 3

Primal-Dual algorithm...

0 1.672e+01 5.9047e+02 8.242217e+00 1.987763e-02 0
1 9.707e-01 1.9810e-03 7.764040e-02 1.591197e-02 12
2 1.044e+00 2.6651e-03 1.467758e-03 4.177845e-04 5
3 1.046e+00 4.7845e-05 9.810459e-06 2.525622e-05 5
4 1.046e+00 6.0862e-04 1.095905e-07 2.867097e-06 4
5 1.046e+00 2.3531e-06 2.021246e-09 1.473551e-07 5
6 1.046e+00 1.3218e-05 1.046812e-08 4.219660e-08 3
7 1.046e+00 2.3915e-05 3.806949e-09 1.210397e-08 4
8 1.046e+00 1.3860e-05 2.821480e-10 8.391990e-10 4

Name: hydrothermal n = 46, m = 55, p = 9;

# Objective: nonconvex nonlinear
# Constraints: nonconvex nonlinear

Pathfollowing...

it f |g| gap inf step
1 -1.732e+04 1.4540e-01 4.277996e+04 9.834250e+01 13
2 1.788e+04 6.7404e-01 6.928106e+04 5.649293e+01 2
3 7.654e+04 5.5557e-02 2.559329e+04 1.527546e+01 1
4 9.689e+04 2.1795e-02 8.946096e+03 3.294818e+00 1
5 1.015e+05 3.6403e-03 1.691519e+04 2.456099e+00 1
6 1.132e+05 9.0428e-05 5.242193e+04 2.019004e+00 4
7 1.626e+05 2.6742e+01 2.548234e+04 6.156682e-01 25
8 1.818e+05 3.8606e+01 5.081058e+03 1.229012e-01 25
9 1.859e+05 2.5459e-02 1.034586e+03 2.480066e-02 21
10 1.867e+05 3.7396e-01 2.076472e+02 4.968390e-03 1

Primal-Dual algorithm...

0 1.910e+05 9.7227e+02 2.076472e+02 4.968390e-03 0
1 1.909e+05 6.1491e-04 9.300815e-02 2.583264e-06 3
2 1.909e+05 2.5799e-03 4.112739e-05 3.269179e-09 1
3 1.909e+05 1.5829e-04 9.339780e-06 1.001445e-08 2
4 1.909e+05 7.6930e-04 1.196375e-08 4.407354e-10 1
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5 1.909e+05 4.0202e-05 5.318109e-08 2.343114e-09 2
6 1.909e+05 2.1153e-04 1.352623e-09 5.428547e-11 1

11. Concluding remarks

This paper presents a part of our work the purpose of which was to develop an alternative
to the smoothing technique approach for constrained optimization.

Different strategies for the scaling parameter update remain an important issue
as well as the global convergence of the LS multipliers method. In this respect the
equivalence of the LS multipliers method to the interior prox method with ϕ-divergence
Fermi–Dirac distance will play an important role.

The convergence analysis of the primal–dual LS method is another important issue.
One of the most important quality of the LS multipliers method is the opportunity

to use the Newton method for primal optimization in the entire primal space without
using the extrapolation technique, see [2,3,5,13]. The number of Newton steps required
per the Lagrange multipliers update decreases drastically after very few updates. On the
other hand in most cases we need only few Lagrange multipliers update to guarantee up
to ten digits of accuracy, see [12].

Finding the upper bound for the number of Newton steps required to obtain the
primal–dual approximation with a given accuracy remains an important issue.

All these issues as well as a number of questions related to the numerical realization
of the LS multipliers method are left for future research.
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