
This paper is included in the Proceedings of the
12th USENIX Conference on File and Storage Technologies (FAST ’14).

February 17–20, 2014 • Santa Clara, CA USA

ISBN 978-1-931971-08-9

Open access to the Proceedings of the
12th USENIX Conference on File and Storage

Technologies (FAST ’14)
is sponsored by

Log-structured Memory for DRAM-based Storage
Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout, Stanford University

https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble

USENIX Association 12th USENIX Conference on File and Storage Technologies 1

Log-structured Memory for DRAM-based Storage
Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout

{rumble, ankitak, ouster}@cs.stanford.edu
Stanford University

Abstract
Traditional memory allocation mechanisms are not

suitable for new DRAM-based storage systems because
they use memory inefficiently, particularly under chang-
ing access patterns. In contrast, a log-structured approach
to memory management allows 80-90% memory utiliza-
tion while offering high performance. The RAMCloud
storage system implements a unified log-structured mech-
anism both for active information in memory and backup
data on disk. The RAMCloud implementation of log-
structured memory uses a two-level cleaning policy,
which conserves disk bandwidth and improves perfor-
mance up to 6x at high memory utilization. The cleaner
runs concurrently with normal operations and employs
multiple threads to hide most of the cost of cleaning.

1 Introduction
In recent years a new class of storage systems has

arisen in which all data is stored in DRAM. Examples
include memcached [2], Redis [3], RAMCloud [30], and
Spark [38]. Because of the relatively high cost of DRAM,
it is important for these systems to use their memory ef-
ficiently. Unfortunately, efficient memory usage is not
possible with existing general-purpose storage allocators:
they can easily waste half or more of memory, particularly
in the face of changing access patterns.

In this paper we show how a log-structured approach to
memory management (treating memory as a sequentially-
written log) supports memory utilizations of 80-90%
while providing high performance. In comparison to non-
copying allocators such as malloc, the log-structured ap-
proach allows data to be copied to eliminate fragmenta-
tion. Copying allows the system to make a fundamen-
tal space-time trade-off: for the price of additional CPU
cycles and memory bandwidth, copying allows for more
efficient use of storage space in DRAM. In comparison
to copying garbage collectors, which eventually require a
global scan of all data, the log-structured approach pro-
vides garbage collection that is more incremental. This
results in more efficient collection, which enables higher
memory utilization.

We have implemented log-structured memory in the
RAMCloud storage system, using a unified approach that
handles both information in memory and backup replicas
stored on disk or flash memory. The overall architecture
is similar to that of a log-structured file system [32], but
with several novel aspects:
• In contrast to log-structured file systems, log-structured

memory is simpler because it stores very little metadata
in the log. The only metadata consists of log digests to
enable log reassembly after crashes, and tombstones to
prevent the resurrection of deleted objects.

• RAMCloud uses a two-level approach to cleaning, with
different policies for cleaning data in memory versus
secondary storage. This maximizes DRAM utilization
while minimizing disk and network bandwidth usage.

• Since log data is immutable once appended, the log
cleaner can run concurrently with normal read and
write operations. Furthermore, multiple cleaners can
run in separate threads. As a result, parallel cleaning
hides most of the cost of garbage collection.

Performance measurements of log-structured memory
in RAMCloud show that it enables high client through-
put at 80-90% memory utilization, even with artificially
stressful workloads. In the most stressful workload, a
single RAMCloud server can support 270,000-410,000
durable 100-byte writes per second at 90% memory uti-
lization. The two-level approach to cleaning improves
performance by up to 6x over a single-level approach
at high memory utilization, and reduces disk bandwidth
overhead by 7-87x for medium-sized objects (1 to 10 KB).
Parallel cleaning effectively hides the cost of cleaning: an
active cleaner adds only about 2% to the latency of typical
client write requests.

2 Why Not Use Malloc?
An off-the-shelf memory allocator such as the C li-

brary’s malloc function might seem like a natural choice
for an in-memory storage system. However, existing allo-
cators are not able to use memory efficiently, particularly
in the face of changing access patterns. We measured a
variety of allocators under synthetic workloads and found
that all of them waste at least 50% of memory under con-
ditions that seem plausible for a storage system.

Memory allocators fall into two general classes: non-
copying allocators and copying allocators. Non-copying
allocators such as malloc cannot move an object once it
has been allocated, so they are vulnerable to fragmen-
tation. Non-copying allocators work well for individual
applications with a consistent distribution of object sizes,
but Figure 1 shows that they can easily waste half of mem-
ory when allocation patterns change. For example, ev-
ery allocator we measured performed poorly when 10 GB
of small objects were mostly deleted, then replaced with
10 GB of much larger objects.

Changes in size distributions may be rare in individual

2 12th USENIX Conference on File and Storage Technologies USENIX Association

 0

 5

 10

 15

 20

 25

 30

 35

glibc 2.12 malloc Hoard 3.9 jemalloc 3.3.0 tcmalloc 2.0 memcached 1.4.13 Java 1.7
OpenJDK

Boehm GC 7.2d

G
B

 U
se

d

Allocators

W1
W2
W3
W4
W5
W6
W7
W8

Live

Figure 1: Total memory needed by allocators to support 10 GB of live data under the changing workloads described in Table 1
(average of 5 runs). “Live” indicates the amount of live data, and represents an optimal result. “glibc” is the allocator typically used
by C and C++ applications on Linux. “Hoard” [10], “jemalloc” [19], and “tcmalloc” [1] are non-copying allocators designed for
speed and multiprocessor scalability. “Memcached” is the slab-based allocator used in the memcached [2] object caching system.
“Java” is the JVM’s default parallel scavenging collector with no maximum heap size restriction (it ran out of memory if given less
than 16 GB of total space). “Boehm GC” is a non-copying garbage collector for C and C++. Hoard could not complete the W8
workload (it overburdened the kernel by mmaping each large allocation separately).

Workload Before Delete After
W1 Fixed 100 Bytes N/A N/A
W2 Fixed 100 Bytes 0% Fixed 130 Bytes
W3 Fixed 100 Bytes 90% Fixed 130 Bytes
W4 Uniform 100 - 150 Bytes 0% Uniform 200 - 250 Bytes
W5 Uniform 100 - 150 Bytes 90% Uniform 200 - 250 Bytes
W6 Uniform 100 - 200 Bytes 50% Uniform 1,000 - 2,000 Bytes
W7 Uniform 1,000 - 2,000 Bytes 90% Uniform 1,500 - 2,500 Bytes
W8 Uniform 50 - 150 Bytes 90% Uniform 5,000 - 15,000 Bytes

Table 1: Summary of workloads used in Figure 1. The workloads were not intended to be representative of actual application
behavior, but rather to illustrate plausible workload changes that might occur in a shared storage system. Each workload consists
of three phases. First, the workload allocates 50 GB of memory using objects from a particular size distribution; it deletes existing
objects at random in order to keep the amount of live data from exceeding 10 GB. In the second phase the workload deletes a
fraction of the existing objects at random. The third phase is identical to the first except that it uses a different size distribution
(objects from the new distribution gradually displace those from the old distribution). Two size distributions were used: “Fixed”
means all objects had the same size, and “Uniform” means objects were chosen uniform randomly over a range (non-uniform
distributions yielded similar results). All workloads were single-threaded and ran on a Xeon E5-2670 system with Linux 2.6.32.

applications, but they are more likely in storage systems
that serve many applications over a long period of time.
Such shifts can be caused by changes in the set of appli-
cations using the system (adding new ones and/or remov-
ing old ones), by changes in application phases (switching
from map to reduce), or by application upgrades that in-
crease the size of common records (to include additional
fields for new features). For example, workload W2 in
Figure 1 models the case where the records of a table are
expanded from 100 bytes to 130 bytes. Facebook encoun-
tered distribution changes like this in its memcached stor-
age systems and was forced to introduce special-purpose
cache eviction code for specific situations [28]. Non-
copying allocators will work well in many cases, but they
are unstable: a small application change could dramat-
ically change the efficiency of the storage system. Un-
less excess memory is retained to handle the worst-case
change, an application could suddenly find itself unable
to make progress.

The second class of memory allocators consists of
those that can move objects after they have been created,
such as copying garbage collectors. In principle, garbage
collectors can solve the fragmentation problem by moving

live data to coalesce free heap space. However, this comes
with a trade-off: at some point all of these collectors (even
those that label themselves as “incremental”) must walk
all live data, relocate it, and update references. This is
an expensive operation that scales poorly, so garbage col-
lectors delay global collections until a large amount of
garbage has accumulated. As a result, they typically re-
quire 1.5-5x as much space as is actually used in order
to maintain high performance [39, 23]. This erases any
space savings gained by defragmenting memory.

Pause times are another concern with copying garbage
collectors. At some point all collectors must halt the
processes’ threads to update references when objects are
moved. Although there has been considerable work on
real-time garbage collectors, even state-of-art solutions
have maximum pause times of hundreds of microseconds,
or even milliseconds [8, 13, 36] – this is 100 to 1,000
times longer than the round-trip time for a RAMCloud
RPC. All of the standard Java collectors we measured ex-
hibited pauses of 3 to 4 seconds by default (2-4 times
longer than it takes RAMCloud to detect a failed server
and reconstitute 64 GB of lost data [29]). We ex-
perimented with features of the JVM collectors that re-

USENIX Association 12th USENIX Conference on File and Storage Technologies 3

duce pause times, but memory consumption increased by
an additional 30% and we still experienced occasional
pauses of one second or more.

An ideal memory allocator for a DRAM-based storage
system such as RAMCloud should have two properties.
First, it must be able to copy objects in order to elimi-
nate fragmentation. Second, it must not require a global
scan of memory: instead, it must be able to perform the
copying incrementally, garbage collecting small regions
of memory independently with cost proportional to the
size of a region. Among other advantages, the incremen-
tal approach allows the garbage collector to focus on re-
gions with the most free space. In the rest of this paper
we will show how a log-structured approach to memory
management achieves these properties.

In order for incremental garbage collection to work, it
must be possible to find the pointers to an object with-
out scanning all of memory. Fortunately, storage systems
typically have this property: pointers are confined to in-
dex structures where they can be located easily. Tradi-
tional storage allocators work in a harsher environment
where the allocator has no control over pointers; the log-
structured approach could not work in such environments.

3 RAMCloud Overview
Our need for a memory allocator arose in the context

of RAMCloud. This section summarizes the features of
RAMCloud that relate to its mechanisms for storage man-
agement, and motivates why we used log-structured mem-
ory instead of a traditional allocator.

RAMCloud is a storage system that stores data in the
DRAM of hundreds or thousands of servers within a dat-
acenter, as shown in Figure 2. It takes advantage of low-
latency networks to offer remote read times of 5μs and
write times of 16μs (for small objects). Each storage
server contains two components. A master module man-
ages the main memory of the server to store RAMCloud
objects; it handles read and write requests from clients. A
backup module uses local disk or flash memory to store
backup copies of data owned by masters on other servers.
The masters and backups are managed by a central coor-
dinator that handles configuration-related issues such as
cluster membership and the distribution of data among the
servers. The coordinator is not normally involved in com-
mon operations such as reads and writes. All RAMCloud
data is present in DRAM at all times; secondary storage
is used only to hold duplicate copies for crash recovery.

RAMCloud provides a simple key-value data model
consisting of uninterpreted data blobs called objects that
are named by variable-length keys. Objects are grouped
into tables that may span one or more servers in the clus-
ter. Objects must be read or written in their entirety.
RAMCloud is optimized for small objects – a few hun-
dred bytes or less – but supports objects up to 1 MB.

Each master’s memory contains a collection of objects
stored in DRAM and a hash table (see Figure 3). The

Coordinator

Master

Backup
Disk

Master

Backup
Disk

Master

Backup
Disk

Master

Backup
Disk

. . .

Client Client Client Client. . .

Datacenter Network

Figure 2: RAMCloud cluster architecture.

Log-structured Memory

Master

Hash Table

. . .

Backup

Buffered Segment

Backup

Buffered Segment

. . .

Disk Disk

<table, key>

Segments

Figure 3: Master servers consist primarily of a hash table and
an in-memory log, which is replicated across several backups
for durability.

hash table contains one entry for each object stored on that
master; it allows any object to be located quickly, given
its table and key. Each live object has exactly one pointer,
which is stored in its hash table entry.

In order to ensure data durability in the face of server
crashes and power failures, each master must keep backup
copies of its objects on the secondary storage of other
servers. The backup data is organized as a log for max-
imum efficiency. Each master has its own log, which is
divided into 8 MB pieces called segments. Each segment
is replicated on several backups (typically two or three).
A master uses a different set of backups to replicate each
segment, so that its segment replicas end up scattered
across the entire cluster.

When a master receives a write request from a client, it
adds the new object to its memory, then forwards informa-
tion about that object to the backups for its current head
segment. The backups append the new object to segment
replicas stored in nonvolatile buffers; they respond to the
master as soon as the object has been copied into their
buffer, without issuing an I/O to secondary storage (back-
ups must ensure that data in buffers can survive power
failures). Once the master has received replies from all
the backups, it responds to the client. Each backup accu-
mulates data in its buffer until the segment is complete.
At that point it writes the segment to secondary storage
and reallocates the buffer for another segment. This ap-
proach has two performance advantages: writes complete
without waiting for I/O to secondary storage, and backups
use secondary storage bandwidth efficiently by perform-
ing I/O in large blocks, even if objects are small.

4 12th USENIX Conference on File and Storage Technologies USENIX Association

RAMCloud could have used a traditional storage allo-
cator for the objects stored in a master’s memory, but we
chose instead to use the same log structure in DRAM that
is used on disk. Thus a master’s object storage consists of
8 MB segments that are identical to those on secondary
storage. This approach has three advantages. First, it
avoids the allocation inefficiencies described in Section 2.
Second, it simplifies RAMCloud by using a single unified
mechanism for information both in memory and on disk.
Third, it saves memory: in order to perform log cleaning
(described below), the master must enumerate all of the
objects in a segment; if objects were stored in separately
allocated areas, they would need to be linked together by
segment, which would add an extra 8-byte pointer per ob-
ject (an 8% memory overhead for 100-byte objects).

The segment replicas stored on backups are never read
during normal operation; most are deleted before they
have ever been read. Backup replicas are only read during
crash recovery (for details, see [29]). Data is never read
from secondary storage in small chunks; the only read op-
eration is to read a master’s entire log.

RAMCloud uses a log cleaner to reclaim free space that
accumulates in the logs when objects are deleted or over-
written. Each master runs a separate cleaner, using a basic
mechanism similar to that of LFS [32]:
• The cleaner selects several segments to clean, using the

same cost-benefit approach as LFS (segments are cho-
sen for cleaning based on the amount of free space and
the age of the data).

• For each of these segments, the cleaner scans the seg-
ment stored in memory and copies any live objects
to new survivor segments. Liveness is determined by
checking for a reference to the object in the hash ta-
ble. The live objects are sorted by age to improve
the efficiency of cleaning in the future. Unlike LFS,
RAMCloud need not read objects from secondary stor-
age during cleaning.

• The cleaner makes the old segments’ memory available
for new segments, and it notifies the backups for those
segments that they can reclaim the replicas’ storage.

The logging approach meets the goals from Section 2:
it copies data to eliminate fragmentation, and it operates
incrementally, cleaning a few segments at a time. How-
ever, it introduces two additional issues. First, the log
must contain metadata in addition to objects, in order to
ensure safe crash recovery; this issue is addressed in Sec-
tion 4. Second, log cleaning can be quite expensive at
high memory utilization [34, 35]. RAMCloud uses two
techniques to reduce the impact of log cleaning: two-level
cleaning (Section 5) and parallel cleaning with multiple
threads (Section 6).

4 Log Metadata
In log-structured file systems, the log contains a lot of

indexing information in order to provide fast random ac-

cess to data in the log. In contrast, RAMCloud has a sep-
arate hash table that provides fast access to information in
memory. The on-disk log is never read during normal use;
it is used only during recovery, at which point it is read in
its entirety. As a result, RAMCloud requires only three
kinds of metadata in its log, which are described below.

First, each object in the log must be self-identifying:
it contains the table identifier, key, and version number
for the object in addition to its value. When the log is
scanned during crash recovery, this information allows
RAMCloud to identify the most recent version of an ob-
ject and reconstruct the hash table.

Second, each new log segment contains a log digest
that describes the entire log. Every segment has a unique
identifier, and the log digest is a list of identifiers for all
the segments that currently belong to the log. Log digests
avoid the need for a central repository of log information
(which would create a scalability bottleneck and introduce
other crash recovery problems). To replay a crashed mas-
ter’s log, RAMCloud locates the latest digest and loads
each segment enumerated in it (see [29] for details).

The third kind of log metadata is tombstones that iden-
tify deleted objects. When an object is deleted or mod-
ified, RAMCloud does not modify the object’s existing
record in the log. Instead, it appends a tombstone record
to the log. The tombstone contains the table identifier,
key, and version number for the object that was deleted.
Tombstones are ignored during normal operation, but they
distinguish live objects from dead ones during crash re-
covery. Without tombstones, deleted objects would come
back to life when logs are replayed during crash recovery.

Tombstones have proven to be a mixed blessing in
RAMCloud: they provide a simple mechanism to prevent
object resurrection, but they introduce additional prob-
lems of their own. One problem is tombstone garbage
collection. Tombstones must eventually be removed from
the log, but this is only safe if the corresponding objects
have been cleaned (so they will never be seen during crash
recovery). To enable tombstone deletion, each tombstone
includes the identifier of the segment containing the ob-
solete object. When the cleaner encounters a tombstone
in the log, it checks the segment referenced in the tomb-
stone. If that segment is no longer part of the log, then it
must have been cleaned, so the old object no longer ex-
ists and the tombstone can be deleted. If the segment still
exists in the log, then the tombstone must be preserved.

5 Two-level Cleaning
Almost all of the overhead for log-structured memory

is due to cleaning. Allocating new storage is trivial; new
objects are simply appended at the end of the head seg-
ment. However, reclaiming free space is much more ex-
pensive. It requires running the log cleaner, which will
have to copy live data out of the segments it chooses for
cleaning as described in Section 3. Unfortunately, the
cost of log cleaning rises rapidly as memory utilization in-

USENIX Association 12th USENIX Conference on File and Storage Technologies 5

creases. For example, if segments are cleaned when 80%
of their data are still live, the cleaner must copy 8 bytes
of live data for every 2 bytes it frees. At 90% utiliza-
tion, the cleaner must copy 9 bytes of live data for every
1 byte freed. Eventually the system will run out of band-
width and write throughput will be limited by the speed of
the cleaner. Techniques like cost-benefit segment selec-
tion [32] help by skewing the distribution of free space,
so that segments chosen for cleaning have lower utiliza-
tion than the overall average, but they cannot eliminate
the fundamental tradeoff between utilization and cleaning
cost. Any copying storage allocator will suffer from in-
tolerable overheads as utilization approaches 100%.

Originally, disk and memory cleaning were tied to-
gether in RAMCloud: cleaning was first performed on
segments in memory, then the results were reflected to the
backup copies on disk. This made it impossible to achieve
both high memory utilization and high write throughput.
For example, if we used memory at high utilization (80-
90%) write throughput would be severely limited by the
cleaner’s usage of disk bandwidth (see Section 8). On
the other hand, we could have improved write bandwidth
by increasing the size of the disk log to reduce its aver-
age utilization. For example, at 50% disk utilization we
could achieve high write throughput. Furthermore, disks
are cheap enough that the cost of the extra space would
not be significant. However, disk and memory were fun-
damentally tied together: if we reduced the utilization of
disk space, we would also have reduced the utilization of
DRAM, which was unacceptable.

The solution is to clean the disk and memory logs in-
dependently – we call this two-level cleaning. With two-
level cleaning, memory can be cleaned without reflecting
the updates on backups. As a result, memory can have
higher utilization than disk. The cleaning cost for mem-
ory will be high, but DRAM can easily provide the band-
width required to clean at 90% utilization or higher. Disk
cleaning happens less often. The disk log becomes larger
than the in-memory log, so it has lower overall utilization,
and this reduces the bandwidth required for cleaning.

The first level of cleaning, called segment compaction,
operates only on the in-memory segments on masters and
consumes no network or disk I/O. It compacts a single
segment at a time, copying its live data into a smaller re-
gion of memory and freeing the original storage for new
segments. Segment compaction maintains the same logi-
cal log in memory and on disk: each segment in memory
still has a corresponding segment on disk. However, the
segment in memory takes less space because deleted ob-
jects and obsolete tombstones were removed (Figure 4).

The second level of cleaning is just the mechanism de-
scribed in Section 3. We call this combined cleaning be-
cause it cleans both disk and memory together. Segment
compaction makes combined cleaning more efficient by
postponing it. The effect of cleaning a segment later is
that more objects have been deleted, so the segment’s uti-

Compacted and Uncompacted Segments in Memory

Corresponding Full-sized Segments on Backups

. . .

. . .

Figure 4: Compacted segments in memory have variable
length because unneeded objects and tombstones have been
removed, but the corresponding segments on disk remain full-
size. As a result, the utilization of memory is higher than that
of disk, and disk can be cleaned more efficiently.

lization will be lower. The result is that when combined
cleaning does happen, less bandwidth is required to re-
claim the same amount of free space. For example, if
the disk log is allowed to grow until it consumes twice
as much space as the log in memory, the utilization of
segments cleaned on disk will never be greater than 50%,
which makes cleaning relatively efficient.

Two-level cleaning leverages the strengths of memory
and disk to compensate for their weaknesses. For mem-
ory, space is precious but bandwidth for cleaning is plenti-
ful, so we use extra bandwidth to enable higher utilization.
For disk, space is plentiful but bandwidth is precious, so
we use extra space to save bandwidth.

5.1 Seglets

In the absence of segment compaction, all segments are
the same size, which makes memory management simple.
With compaction, however, segments in memory can have
different sizes. One possible solution is to use a stan-
dard heap allocator to allocate segments, but this would
result in the fragmentation problems described in Sec-
tion 2. Instead, each RAMCloud master divides its log
memory into fixed-size 64 KB seglets. A segment con-
sists of a collection of seglets, and the number of seglets
varies with the size of the segment. Because seglets are
fixed-size, they introduce a small amount of internal frag-
mentation (one-half seglet for each segment, on average).
In practice, fragmentation should be less than 1% of mem-
ory space, since we expect compacted segments to aver-
age at least half the length of a full-size segment. In addi-
tion, seglets require extra mechanism to handle log entries
that span discontiguous seglets (before seglets, log entries
were always contiguous).

5.2 When to Clean on Disk?

Two-level cleaning introduces a new policy question:
when should the system choose memory compaction over
combined cleaning, and vice-versa? This choice has an
important impact on system performance because com-
bined cleaning consumes precious disk and network I/O
resources. However, as we explain below, memory com-
paction is not always more efficient. This section explains
how these considerations resulted in RAMCloud’s current

6 12th USENIX Conference on File and Storage Technologies USENIX Association

policy module; we refer to it as the balancer. For a more
complete discussion of the balancer, see [33].

There is no point in running either cleaner until the sys-
tem is running low on memory or disk space. The reason
is that cleaning early is never cheaper than cleaning later
on. The longer the system delays cleaning, the more time
it has to accumulate dead objects, which lowers the frac-
tion of live data in segments and makes them less expen-
sive to clean.

The balancer determines that memory is running low
as follows. Let L be the fraction of all memory occu-
pied by live objects and F be the fraction of memory in
unallocated seglets. One of the cleaners will run when-
ever F ≤ min(0.1, (1 − L)/2) In other words, cleaning
occurs if the unallocated seglet pool has dropped to less
than 10% of memory and at least half of the free mem-
ory is in active segments (vs. unallocated seglets). This
formula represents a tradeoff: on the one hand, it delays
cleaning to make it more efficient; on the other hand, it
starts cleaning soon enough for the cleaner to collect free
memory before the system runs out of unallocated seglets.

Given that the cleaner must run, the balancer must
choose which cleaner to use. In general, compaction is
preferred because it is more efficient, but there are two
cases in which the balancer must choose combined clean-
ing. The first is when too many tombstones have ac-
cumulated. The problem with tombstones is that mem-
ory compaction alone cannot remove them: the com-
bined cleaner must first remove dead objects from disk
before their tombstones can be erased. As live tombstones
pile up, segment utilizations increase and compaction be-
comes more and more expensive. Eventually, tombstones
would eat up all free memory. Combined cleaning ensures
that tombstones do not exhaust memory and makes future
compactions more efficient.

The balancer detects tombstone accumulation as fol-
lows. Let T be the fraction of memory occupied by
live tombstones, and L be the fraction of live objects (as
above). Too many tombstones have accumulated once
T/(1 − L) ≥ 40%. In other words, there are too many
tombstones when they account for 40% of the freeable
space in a master (1−L; i.e., all tombstones and dead ob-
jects). The 40% value was chosen empirically based on
measurements of different workloads, object sizes, and
amounts of available disk bandwidth. This policy tends
to run the combined cleaner more frequently under work-
loads that make heavy use of small objects (tombstone
space accumulates more quickly as a fraction of freeable
space, because tombstones are nearly as large as the ob-
jects they delete).

The second reason the combined cleaner must run is
to bound the growth of the on-disk log. The size must be
limited both to avoid running out of disk space and to keep
crash recovery fast (since the entire log must be replayed,
its size directly affects recovery speed). RAMCloud im-
plements a configurable disk expansion factor that sets the

maximum on-disk log size as a multiple of the in-memory
log size. The combined cleaner runs when the on-disk log
size exceeds 90% of this limit.

Finally, the balancer chooses memory compaction
when unallocated memory is low and combined cleaning
is not needed (disk space is not low and tombstones have
not accumulated yet).

6 Parallel Cleaning
Two-level cleaning reduces the cost of combined clean-

ing, but it adds a significant new cost in the form of seg-
ment compaction. Fortunately, the cost of cleaning can be
hidden by performing both combined cleaning and seg-
ment compaction concurrently with normal read and write
requests. RAMCloud employs multiple cleaner threads
simultaneously to take advantage of multi-core CPUs.

Parallel cleaning in RAMCloud is greatly simplified by
the use of a log structure and simple metadata. For exam-
ple, since segments are immutable after they are created,
the cleaner need not worry about objects being modified
while the cleaner is copying them. Furthermore, the hash
table provides a simple way of redirecting references to
objects that are relocated by the cleaner (all objects are
accessed indirectly through it). This means that the basic
cleaning mechanism is very straightforward: the cleaner
copies live data to new segments, atomically updates ref-
erences in the hash table, and frees the cleaned segments.

There are three points of contention between cleaner
threads and service threads handling read and write re-
quests. First, both cleaner and service threads need to add
data at the head of the log. Second, the threads may con-
flict in updates to the hash table. Third, the cleaner must
not free segments that are still in use by service threads.
These issues and their solutions are discussed in the sub-
sections below.

6.1 Concurrent Log Updates
The most obvious way to perform cleaning is to copy

the live data to the head of the log. Unfortunately, this
would create contention for the log head between cleaner
threads and service threads that are writing new data.

RAMCloud’s solution is for the cleaner to write sur-
vivor data to different segments than the log head. Each
cleaner thread allocates a separate set of segments for
its survivor data. Synchronization is required when al-
locating segments, but once segments are allocated, each
cleaner thread can copy data to its own survivor segments
without additional synchronization. Meanwhile, request-
processing threads can write new data to the log head.
Once a cleaner thread finishes a cleaning pass, it arranges
for its survivor segments to be included in the next log di-
gest, which inserts them into the log; it also arranges for
the cleaned segments to be dropped from the next digest.

Using separate segments for survivor data has the addi-
tional benefit that the replicas for survivor segments will
be stored on a different set of backups than the replicas

USENIX Association 12th USENIX Conference on File and Storage Technologies 7

of the head segment. This allows the survivor segment
replicas to be written in parallel with the log head repli-
cas without contending for the same backup disks, which
increases the total throughput for a single master.

6.2 Hash Table Contention

The main source of thread contention during cleaning
is the hash table. This data structure is used both by ser-
vice threads and cleaner threads, as it indicates which ob-
jects are alive and points to their current locations in the
in-memory log. The cleaner uses the hash table to check
whether an object is alive (by seeing if the hash table cur-
rently points to that exact object). If the object is alive,
the cleaner copies it and updates the hash table to refer
to the new location in a survivor segment. Meanwhile,
service threads may be using the hash table to find ob-
jects during read requests and they may update the hash
table during write or delete requests. To ensure consis-
tency while reducing contention, RAMCloud currently
uses fine-grained locks on individual hash table buckets.
In the future we plan to explore lockless approaches to
eliminate this overhead.

6.3 Freeing Segments in Memory

Once a cleaner thread has cleaned a segment, the seg-
ment’s storage in memory can be freed for reuse. At
this point, future service threads will not use data in the
cleaned segment, because there are no hash table entries
pointing into it. However, it could be that a service thread
began using the data in the segment before the cleaner up-
dated the hash table; if so, the cleaner must not free the
segment until the service thread has finished using it.

To solve this problem, RAMCloud uses a simple mech-
anism similar to RCU’s [27] wait-for-readers primitive
and Tornado/K42’s generations [6]: after a segment has
been cleaned, the system will not free it until all RPCs cur-
rently being processed complete. At this point it is safe to
reuse the segment’s memory, since new RPCs cannot ref-
erence the segment. This approach has the advantage of
not requiring additional locks for normal reads and writes.

6.4 Freeing Segments on Disk

Once a segment has been cleaned, its replicas on back-
ups must also be freed. However, this must not be
done until the corresponding survivor segments have been
safely incorporated into the on-disk log. This takes two
steps. First, the survivor segments must be fully repli-
cated on backups. Survivor segments are transmitted to
backups asynchronously during cleaning, so at the end of
each cleaning pass the cleaner must wait for all of its sur-
vivor segments to be received by backups. Second, a new
log digest must be written, which includes the survivor
segments and excludes the cleaned segments. Once the
digest has been durably written to backups, RPCs are is-
sued to free the replicas for the cleaned segments.

20 11 16 20

13

11

utilization = 75 / 80

80

19 11 15 16 14

18 17 19 15

18 20 20 17

14

Cleaned Segments Survivor Segments

Figure 5: A simplified situation in which cleaning uses more
space than it frees. Two 80-byte segments at about 94% uti-
lization are cleaned: their objects are reordered by age (not
depicted) and written to survivor segments. The label in each
object indicates its size. Because of fragmentation, the last
object (size 14) overflows into a third survivor segment.

7 Avoiding Cleaner Deadlock
Since log cleaning copies data before freeing it, the

cleaner must have free memory space to work with be-
fore it can generate more. If there is no free memory,
the cleaner cannot proceed and the system will deadlock.
RAMCloud increases the risk of memory exhaustion by
using memory at high utilization. Furthermore, it delays
cleaning as long as possible in order to allow more objects
to be deleted. Finally, two-level cleaning allows tomb-
stones to accumulate, which consumes even more free
space. This section describes how RAMCloud prevents
cleaner deadlock while maximizing memory utilization.

The first step is to ensure that there are always free
seglets for the cleaner to use. This is accomplished by
reserving a special pool of seglets for the cleaner. When
seglets are freed, they are used to replenish the cleaner
pool before making space available for other uses.

The cleaner pool can only be maintained if each clean-
ing pass frees as much space as it uses; otherwise the
cleaner could gradually consume its own reserve and then
deadlock. However, RAMCloud does not allow objects to
cross segment boundaries, which results in some wasted
space at the end of each segment. When the cleaner re-
organizes objects, it is possible for the survivor segments
to have greater fragmentation than the original segments,
and this could result in the survivors taking more total
space than the original segments (see Figure 5).

To ensure that the cleaner always makes forward
progress, it must produce at least enough free space to
compensate for space lost to fragmentation. Suppose that
N segments are cleaned in a particular pass and the frac-
tion of free space in these segments is F ; furthermore, let
S be the size of a full segment and O the maximum object
size. The cleaner will produce NS(1 − F) bytes of live
data in this pass. Each survivor segment could contain as
little as S−O+1 bytes of live data (if an object of size O
couldn’t quite fit at the end of the segment), so the max-
imum number of survivor segments will be � NS(1−F)

S − O + 1�.
The last seglet of each survivor segment could be empty
except for a single byte, resulting in almost a full seglet of

8 12th USENIX Conference on File and Storage Technologies USENIX Association

CPU Xeon X3470 (4x2.93 GHz cores, 3.6 GHz Turbo)
RAM 24 GB DDR3 at 800 MHz
Flash 2x Crucial M4 SSDs
Disks CT128M4SSD2 (128 GB)
NIC Mellanox ConnectX-2 Infiniband HCA

Switch Mellanox SX6036 (4X FDR)

Table 2: The server hardware configuration used for bench-
marking. All nodes ran Linux 2.6.32 and were connected to
an Infiniband fabric.

fragmentation for each survivor segment. Thus, F must
be large enough to produce a bit more than one seglet’s
worth of free data for each survivor segment generated.
For RAMCloud, we conservatively require 2% of free
space per cleaned segment, which is a bit more than two
seglets. This number could be reduced by making seglets
smaller.

There is one additional problem that could result in
memory deadlock. Before freeing segments after clean-
ing, RAMCloud must write a new log digest to add the
survivors to the log and remove the old segments. Writ-
ing a new log digest means writing a new log head seg-
ment (survivor segments do not contain digests). Unfor-
tunately, this consumes yet another segment, which could
contribute to memory exhaustion. Our initial solution was
to require each cleaner pass to produce enough free space
for the new log head segment, in addition to replacing the
segments used for survivor data. However, it is hard to
guarantee “better than break-even” cleaner performance
when there is very little free space.

The current solution takes a different approach: it re-
serves two special emergency head segments that contain
only log digests; no other data is permitted. If there is no
free memory after cleaning, one of these segments is allo-
cated for the head segment that will hold the new digest.
Since the segment contains no objects or tombstones, it
does not need to be cleaned; it is immediately freed when
the next head segment is written (the emergency head
is not included in the log digest for the next head seg-
ment). By keeping two emergency head segments in re-
serve, RAMCloud can alternate between them until a full
segment’s worth of space is freed and a proper log head
can be allocated. As a result, each cleaner pass only needs
to produce as much free space as it uses.

By combining these techniques, RAMCloud can guar-
antee deadlock-free cleaning with total memory utiliza-
tion as high as 98%. When utilization reaches this limit,
no new data (or tombstones) can be appended to the log
until the cleaner has freed space. However, RAMCloud
sets a lower utilization limit for writes, in order to reserve
space for tombstones. Otherwise all available log space
could be consumed with live data and there would be no
way to add tombstones to delete objects.

8 Evaluation
All of the features described in the previous sections

are implemented in RAMCloud version 1.0, which was

released in January, 2014. This section describes a series
of experiments we ran to evaluate log-structured memory
and its implementation in RAMCloud. The key results
are:
• RAMCloud supports memory utilizations of 80-90%

without significant loss in performance.
• At high memory utilizations, two-level cleaning im-

proves client throughput up to 6x over a single-level
approach.

• Log-structured memory also makes sense for other
DRAM-based storage systems, such as memcached.

• RAMCloud provides a better combination of durabil-
ity and performance than other storage systems such as
HyperDex and Redis.

Note: all plots in this section show the average of 3 or
more runs, with error bars for minimum and maximum
values.

8.1 Performance vs. Utilization

The most important metric for log-structured memory
is how it performs at high memory utilization. In Sec-
tion 2 we found that other allocators could not achieve
high memory utilization in the face of changing work-
loads. With log-structured memory, we can choose any
utilization up to the deadlock limit of about 98% de-
scribed in Section 7. However, system performance will
degrade as memory utilization increases; thus, the key
question is how efficiently memory can be used before
performance drops significantly. Our hope at the begin-
ning of the project was that log-structured memory could
support memory utilizations in the range of 80-90%.

The measurements in this section used an 80-node clus-
ter of identical commodity servers (see Table 2). Our pri-
mary concern was the throughput of a single master, so
we divided the cluster into groups of five servers and used
different groups to measure different data points in par-
allel. Within each group, one node ran a master server,
three nodes ran backups, and the last node ran the co-
ordinator and client benchmark. This configuration pro-
vided each master with about 700 MB/s of back-end band-
width. In an actual RAMCloud system the back-end
bandwidth available to one master could be either more
or less than this; we experimented with different back-
end bandwidths and found that it did not change any of
our conclusions. Each byte stored on a master was repli-
cated to three different backups for durability.

All of our experiments used a maximum of two threads
for cleaning. Our cluster machines have only four cores,
and the main RAMCloud server requires two of them,
so there were only two cores available for cleaning (we
have not yet evaluated the effect of hyperthreading on
RAMCloud’s throughput or latency).

In each experiment, the master was given 16 GB of log
space and the client created objects with sequential keys
until it reached a target memory utilization; then it over-

USENIX Association 12th USENIX Conference on File and Storage Technologies 9

 0

 10

 20

 30

 40

 50

 60

 0

 100

 200

 300

 400

 500

 600
M

B
/s

O
bj

ec
ts

/s
 (x

1,
00

0)

Two-level (Zipfian)
One-level (Zipfian)

Two-level (Uniform)
One-level (Uniform)

Sequential

100-byte Objects

 0

 50

 100

 150

 200

 250

 0

 50

 100

 150

 200

 250

M
B

/s

O
bj

ec
ts

/s
 (x

1,
00

0)

1,000-byte Objects

 0

 50

 100

 150

 200

 250

 300

30 40 50 60 70 80 90
 0

 5

 10

 15

 20

 25

 30

M
B

/s

O
bj

ec
ts

/s
 (x

1,
00

0)

Memory Utilization (%)

10,000-byte Objects

Figure 6: End-to-end client write performance as a func-
tion of memory utilization. For some experiments two-level
cleaning was disabled, so only the combined cleaner was
used. The “Sequential” curve used two-level cleaning and
uniform access patterns with a single outstanding write re-
quest at a time. All other curves used the high-stress work-
load with concurrent multi-writes. Each point is averaged
over 3 runs on different groups of servers.

wrote objects (maintaining a fixed amount of live data
continuously) until the overhead for cleaning converged
to a stable value.

We varied the workload in four ways to measure system
behavior under different operating conditions:

1. Object Size: RAMCloud’s performance depends
on average object size (e.g., per-object overheads versus
memory copying overheads), but not on the exact size dis-
tribution (see Section 8.5 for supporting evidence). Thus,
unless otherwise noted, the objects for each test had the
same fixed size. We ran different tests with sizes of 100,
1000, 10000, and 100,000 bytes (we omit the 100 KB
measurements, since they were nearly identical to 10 KB).

2. Memory Utilization: The percentage of DRAM
used for holding live data (not including tombstones) was
fixed in each test. For example, at 50% and 90% utiliza-
tion there were 8 GB and 14.4 GB of live data, respec-
tively. In some experiments, total memory utilization was
significantly higher than the listed number due to an ac-
cumulation of tombstones.

3. Locality: We ran experiments with both uniform
random overwrites of objects and a Zipfian distribution in

 0

 1

 2

 3

 4

 5

C
le

an
er

 /
N

ew
 B

yt
es

One-level (Uniform)
Two-level (Uniform)
One-level (Zipfian)
Two-level (Zipfian)

100-byte Objects

 0

 1

 2

 3

 4

 5

C
le

an
er

 /
N

ew
 B

yt
es

1,000-byte Objects

 0

 1

 2

 3

 4

 5

30 40 50 60 70 80 90

C
le

an
er

 /
N

ew
 B

yt
es

Memory Utilization (%)

10,000-byte Objects

Figure 7: Cleaner bandwidth overhead (ratio of cleaner
bandwidth to regular log write bandwidth) for the workloads
in Figure 6. 1 means that for every byte of new data written
to backups, the cleaner writes 1 byte of live data to backups
while freeing segment space. The optimal ratio is 0.

which 90% of writes were made to 15% of the objects.
The uniform random case represents a workload with no
locality; Zipfian represents locality similar to what has
been observed in memcached deployments [7].

4. Stress Level: For most of the tests we created an
artificially high workload in order to stress the master
to its limit. To do this, the client issued write requests
asynchronously, with 10 requests outstanding at any given
time. Furthermore, each request was a multi-write con-
taining 75 individual writes. We also ran tests where the
client issued one synchronous request at a time, with a
single write operation in each request; these tests are la-
beled “Sequential” in the graphs.

Figure 6 graphs the overall throughput of a RAMCloud
master with different memory utilizations and workloads.
With two-level cleaning enabled, client throughput drops
only 10-20% as memory utilization increases from 30% to
80%, even with an artificially high workload. Throughput
drops more significantly at 90% utilization: in the worst
case (small objects with no locality), throughput at 90%
utilization is about half that at 30%. At high utilization the
cleaner is limited by disk bandwidth and cannot keep up
with write traffic; new writes quickly exhaust all available
segments and must wait for the cleaner.

10 12th USENIX Conference on File and Storage Technologies USENIX Association

These results exceed our original performance goals for
RAMCloud. At the start of the project, we hoped that
each RAMCloud server could support 100K small writes
per second, out of a total of one million small operations
per second. Even at 90% utilization, RAMCloud can sup-
port almost 410K small writes per second with some lo-
cality and nearly 270K with no locality.

If actual RAMCloud workloads are similar to our
“Sequential” case, then it should be reasonable to run
RAMCloud clusters at 90% memory utilization (for 100
and 1,000B objects there is almost no performance degra-
dation). If workloads include many bulk writes, like most
of the measurements in Figure 6, then it makes more sense
to run at 80% utilization: the higher throughput will more
than offset the 12.5% additional cost for memory.

Compared to the traditional storage allocators mea-
sured in Section 2, log-structured memory permits signif-
icantly higher memory utilization.

8.2 Two-Level Cleaning
Figure 6 also demonstrates the benefits of two-level

cleaning. The figure contains additional measurements in
which segment compaction was disabled (“One-level”);
in these experiments, the system used RAMCloud’s orig-
inal one-level approach where only the combined cleaner
ran. The two-level cleaning approach provides a consider-
able performance improvement: at 90% utilization, client
throughput is up to 6x higher with two-level cleaning than
single-level cleaning.

One of the motivations for two-level cleaning was to
reduce the disk bandwidth used by cleaning, in order to
make more bandwidth available for normal writes. Fig-
ure 7 shows that two-level cleaning reduces disk and net-
work bandwidth overheads at high memory utilizations.
The greatest benefits occur with larger object sizes, where
two-level cleaning reduces overheads by 7-87x. Com-
paction is much more efficient in these cases because
there are fewer objects to process.

8.3 CPU Overhead of Cleaning
Figure 8 shows the CPU time required for cleaning in

two of the workloads from Figure 6. Each bar represents
the average number of fully active cores used for com-
bined cleaning and compaction in the master, as well as
for backup RPC and disk I/O processing in the backups.

At low memory utilization a master under heavy load
uses about 30-50% of one core for cleaning; backups ac-
count for the equivalent of at most 60% of one core across
all six of them. Smaller objects require more CPU time
for cleaning on the master due to per-object overheads,
while larger objects stress backups more because the mas-
ter can write up to 5 times as many megabytes per sec-
ond (Figure 6). As free space becomes more scarce, the
two cleaner threads are eventually active nearly all of the
time. In the 100B case, RAMCloud’s balancer prefers to
run combined cleaning due to the accumulation of tomb-

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

30 40 50 60 70 80 90 30 40 50 60 70 80 90

A
ve

ra
ge

 N
um

be
r o

f
A

ct
iv

e
C

or
es

Memory Utilization (%)

Combined
Compaction

Backup User
Backup Kern

100-byte 1,000-byte

Figure 8: CPU overheads for two-level cleaning under the
100 and 1,000-byte Zipfian workloads in Figure 6, measured
in average number of active cores. “Backup Kern” repre-
sents kernel time spent issuing I/Os to disks, and “Backup
User” represents time spent servicing segment write RPCs
on backup servers. Both of these bars are aggregated across
all backups, and include traffic for normal writes as well
as cleaning. “Compaction” and “Combined” represent time
spent on the master in memory compaction and combined
cleaning. Additional core usage unrelated to cleaning is not
depicted. Each bar is averaged over 3 runs.

 1e-07
 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

 1
 10

 100

 10 100 1000 10000

%
 o

f W
rit

es
 T

ak
in

g
Lo

ng
er

Th
an

 a
 G

iv
en

 T
im

e
(L

og
 S

ca
le

)

Microseconds (Log Scale)

No Cleaner
Cleaner

Figure 9: Reverse cumulative distribution of client write
latencies when a single client issues back-to-back write re-
quests for 100-byte objects using the uniform distribution.
The “No cleaner” curve was measured with cleaning dis-
abled. The “Cleaner” curve shows write latencies at 90%
memory utilization with cleaning enabled. For example,
about 10% of all write requests took longer than 18μs in both
cases; with cleaning enabled, about 0.1% of all write requests
took 1ms or more. The median latency was 16.70μs with
cleaning enabled and 16.35μs with the cleaner disabled.

stones. With larger objects compaction tends to be more
efficient, so combined cleaning accounts for only a small
fraction of the CPU time.

8.4 Can Cleaning Costs be Hidden?

One of the goals for RAMCloud’s implementation of
log-structured memory was to hide the cleaning costs so
they don’t affect client requests. Figure 9 graphs the la-
tency of client write requests in normal operation with
a cleaner running, and also in a special setup where
the cleaner was disabled. The distributions are nearly
identical up to about the 99.9th percentile, and cleaning
only increased the median latency by 2% (from 16.35 to
16.70μs). About 0.1% of write requests suffer an addi-
tional 1ms or greater delay when cleaning. Preliminary

USENIX Association 12th USENIX Conference on File and Storage Technologies 11

 0

 0.2

 0.4

 0.6

 0.8

 1

70% 80% 90% 90%
(Sequential)

R
at

io
 o

f P
er

fo
rm

an
ce

 w
ith

an
d

w
ith

ou
t C

le
an

in
g

Memory Utilization

W1
W2
W3
W4
W5
W6
W7
W8

Figure 10: Client performance in RAMCloud under the same
workloads as in Figure 1 from Section 2. Each bar measures
the performance of a workload (with cleaning enabled) rela-
tive to the performance of the same workload with cleaning
disabled. Higher is better and 1.0 is optimal; it means that the
cleaner has no impact on the processing of normal requests.
As in Figure 1, 100 GB of allocations were made and at most
10 GB of data was alive at once. The 70%, 80%, and 90%
utilization bars were measured with the high-stress request
pattern using concurrent multi-writes. The “Sequential” bars
used a single outstanding write request at a time; the data size
was scaled down by a factor of 10x for these experiments to
make running times manageable. The master in these experi-
ments ran on the same Xeon E5-2670 system as in Table 1.

experiments both with larger pools of backups and with
replication disabled (not depicted) suggest that these de-
lays are primarily due to contention for the NIC and RPC
queueing delays in the single-threaded backup servers.

8.5 Performance Under Changing Workloads

Section 2 showed that changing workloads caused
poor memory utilization in traditional storage alloca-
tors. For comparison, we ran those same workloads on
RAMCloud, using the same general setup as for earlier
experiments. The results are shown in Figure 10 (this
figure is formatted differently than Figure 1 in order to
show RAMCloud’s performance as a function of memory
utilization). We expected these workloads to exhibit per-
formance similar to the workloads in Figure 6 (i.e. we
expected the performance to be determined by the aver-
age object sizes and access patterns; workload changes
per se should have no impact). Figure 10 confirms this
hypothesis: with the high-stress request pattern, perfor-
mance degradation due to cleaning was 10-20% at 70%
utilization and 40-50% at 90% utilization. With the “Se-
quential” request pattern, performance degradation was
5% or less, even at 90% utilization.

8.6 Other Uses for Log-Structured Memory

Our implementation of log-structured memory is tied to
RAMCloud’s distributed replication mechanism, but we
believe that log-structured memory also makes sense in
other environments. To demonstrate this, we performed
two additional experiments.

First, we re-ran some of the experiments from Fig-
ure 6 with replication disabled in order to simulate a
DRAM-only storage system. We also disabled com-

 0

 100

 200

 300

 400

 500

 600

 30 40 50 60 70 80 90
 0

 100

 200

 300

 400

 500

 600

M
B

/s

O
bj

ec
ts

/s
 (x

1,
00

0)

Memory Utilization (%)

Zipfian R = 0
Uniform R = 0

Zipfian R = 3
Uniform R = 3

Figure 11: Two-level cleaning with (R = 3) and without
replication (R = 0) for 1000-byte objects. The two lower
curves are the same as in Figure 6.

Allocator Fixed 25-byte Zipfian 0 - 8 KB
Slab 8737 982
Log 11411 1125

Improvement 30.6% 14.6%

Table 3: Average number of objects stored per megabyte of
cache in memcached, with its normal slab allocator and with
a log-structured allocator. The “Fixed” column shows sav-
ings from reduced metadata (there is no fragmentation, since
the 25-byte objects fit perfectly in one of the slab allocator’s
buckets). The “Zipfian” column shows savings from eliminat-
ing internal fragmentation in buckets. All experiments ran on
a 16-core E5-2670 system with both client and server on the
same machine to minimize network overhead. Memcached
was given 2 GB of slab or log space for storing objects, and
the slab rebalancer was enabled. YCSB [15] was used to gen-
erate the access patterns. Each run wrote 100 million objects
with Zipfian-distributed key popularity and either fixed 25-
byte or Zipfian-distributed sizes between 0 and 8 KB. Results
were averaged over 5 runs.

paction (since there is no backup I/O to conserve) and had
the server run the combined cleaner on in-memory seg-
ments only. Figure 11 shows that without replication, log-
structured memory supports significantly higher through-
put: RAMCloud’s single writer thread scales to nearly
600K 1,000-byte operations per second. Under very high
memory pressure throughput drops by 20-50% depending
on access locality. At this object size, one writer thread
and two cleaner threads suffice to handle between one
quarter and one half of a 10 gigabit Ethernet link’s worth
of write requests.

Second, we modified the popular memcached [2]
1.4.15 object caching server to use RAMCloud’s log and
cleaner instead of its slab allocator. To make room for
new cache entries, we modified the log cleaner to evict
cold objects as it cleaned, rather than using memcached’s
slab-based LRU lists. Our policy was simple: segments

Allocator Throughput (Writes/s x1000) % CPU Cleaning
Slab 259.9 ± 0.6 0%
Log 268.0 ± 0.6 5.37 ± 0.3 %

Table 4: Average throughput and percentage of CPU used
for cleaning under the same Zipfian write-only workload as
in Table 3. Results were averaged over 5 runs.

12 12th USENIX Conference on File and Storage Technologies USENIX Association

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

A B C D F

A
gg

re
ga

te
 O

pe
ra

tio
ns

/s
 (M

ill
io

ns
)

YCSB Workloads

HyperDex 1.0rc4
Redis 2.6.14

RAMCloud 75%
RAMCloud 90%

RAMCloud 75% Verbs
RAMCloud 90% Verbs

Figure 12: Performance of HyperDex, RAMCloud, and
Redis under the default YCSB [15] workloads B, C, and D
are read-heavy workloads, while A and F are write-heavy;
workload E was omitted because RAMCloud does not sup-
port scans. Y-values represent aggregate average through-
put of 24 YCSB clients running on 24 separate nodes (see
Table 2). Each client performed 100 million operations on
a data set of 100 million keys. Objects were 1 KB each
(the workload default). An additional 12 nodes ran the stor-
age servers. HyperDex and Redis used kernel-level sockets
over Infiniband. The “RAMCloud 75%” and “RAMCloud
90%” bars were measured with kernel-level sockets over In-
finiband at 75% and 90% memory utilisation, respectively
(each server’s share of the 10 million total records corre-
sponded to 75% or 90% of log memory). The “RAMCloud
75% Verbs” and “RAMCloud 90% Verbs” bars were mea-
sured with RAMCloud’s “kernel bypass” user-level Infini-
band transport layer, which uses reliably-connected queue
pairs via the Infiniband “Verbs” API. Each data point is aver-
aged over 3 runs.

were selected for cleaning based on how many recent
reads were made to objects in them (fewer requests indi-
cate colder segments). After selecting segments, 75% of
their most recently accessed objects were written to sur-
vivor segments (in order of access time); the rest were
discarded. Porting the log to memcached was straight-
forward, requiring only minor changes to the RAMCloud
sources and about 350 lines of changes to memcached.

Table 3 illustrates the main benefit of log-structured
memory in memcached: increased memory efficiency.
By using a log we were able to reduce per-object meta-
data overheads by 50% (primarily by eliminating LRU list
pointers, like MemC3 [20]). This meant that small ob-
jects could be stored much more efficiently. Furthermore,
using a log reduced internal fragmentation: the slab allo-
cator must pick one of several fixed-size buckets for each
object, whereas the log can pack objects of different sizes
into a single segment. Table 4 shows that these benefits
also came with no loss in throughput and only minimal
cleaning overhead.

8.7 How does RAMCloud compare to other systems?

Figure 12 compares the performance of RAMCloud to
HyperDex [18] and Redis [3] using the YCSB [15] bench-
mark suite. All systems were configured with triple repli-
cation. Since HyperDex is a disk-based store, we config-
ured it to use a RAM-based file system to ensure that no

operations were limited by disk I/O latencies, which the
other systems specifically avoid. Both RAMCloud and
Redis wrote to SSDs (Redis’ append-only logging mecha-
nism was used with a 1s fsync interval). It is worth noting
that Redis is distributed with jemalloc [19], whose frag-
mentation issues we explored in Section 2.

RAMCloud outperforms HyperDex in every case, even
when running at very high memory utilization and de-
spite configuring HyperDex so that it does not write to
disks. RAMCloud also outperforms Redis, except in
write-dominated workloads A and F when kernel sock-
ets are used. In these cases RAMCloud is limited by
RPC latency, rather than allocation speed. In particular,
RAMCloud must wait until data is replicated to all back-
ups before replying to a client’s write request. Redis, on
the other hand, offers no durability guarantee; it responds
immediately and batches updates to replicas. This unsafe
mode of operation means that Redis is much less reliant
on RPC latency for throughput.

Unlike the other two systems, RAMCloud was opti-
mized for high-performance networking. For fairness,
the “RAMCloud 75%” and “RAMCloud 90%” bars de-
pict performance using the same kernel-level sockets as
Redis and HyperDex. To show RAMCloud’s full poten-
tial, however, we also included measurements using the
Infiniband “Verbs” API, which permits low-latency ac-
cess to the network card without going through the ker-
nel. This is the normal transport used in RAMCloud; it
more than doubles read throughput, and matches Redis’
write throughput at 75% memory utilisation (RAMCloud
is 25% slower than Redis for workload A at 90% uti-
lization). Since Redis is less reliant on latency for per-
formance, we do not expect it to benefit substantially if
ported to use the Verbs API.

9 LFS Cost-Benefit Revisited
Like LFS [32], RAMCloud’s combined cleaner uses

a cost-benefit policy to choose which segments to
clean. However, while evaluating cleaning techniques for
RAMCloud we discovered a significant flaw in the orig-
inal LFS policy for segment selection. A small change
to the formula for segment selection fixes this flaw and
improves cleaner performance by 50% or more at high
utilization under a wide range of access localities (e.g.,
the Zipfian and uniform access patterns in Section 8.1).
This improvement applies to any implementation of log-
structured storage.

LFS selected segments to clean by evaluating the fol-
lowing formula for each segment and choosing the seg-
ments with the highest ratios of benefit to cost:

benefit

cost
=

(1 − u) × objectAge

1 + u

In this formula, u is the segment’s utilization (fraction of
data still live), and objectAge is the age of the youngest
data in the segment. The cost of cleaning a segment is

USENIX Association 12th USENIX Conference on File and Storage Technologies 13

 0

 4

 8

 12

 16

 20

 24

 0 10 20 30 40 50 60 70 80 90 100

W
rit

e
C

os
t

Disk Utilization (%)

New Simulator (Youngest File Age)
Original Simulator

New Simulator (Segment Age)

Figure 13: An original LFS simulation from [31]’s Figure
5-6 compared to results from our reimplemented simulator.
The graph depicts how the I/O overhead of cleaning under a
particular synthetic workload (see [31] for details) increases
with disk utilization. Only by using segment age were we
able to reproduce the original results (note that the bottom
two lines coincide).

determined by the number of bytes that must be read or
written from disk (the entire segment must be read, then
the live bytes must be rewritten). The benefit of cleaning
includes two factors: the amount of free space that will
be reclaimed (1− u), and an additional factor intended to
represent the stability of the data. If data in a segment is
being overwritten rapidly then it is better to delay cleaning
so that u will drop; if data in a segment is stable, it makes
more sense to reclaim the free space now. objectAge was
used as an approximation for stability. LFS showed that
cleaning can be made much more efficient by taking all
these factors into account.

RAMCloud uses a slightly different formula for seg-
ment selection:

benefit

cost
=

(1 − u) × segmentAge

u

This differs from LFS in two ways. First, the cost has
changed from 1 + u to u. This reflects the fact that
RAMCloud keeps live segment contents in memory at all
times, so the only cleaning cost is for rewriting live data.

The second change to RAMCloud’s segment selection
formula is in the way that data stability is estimated; this
has a significant impact on cleaner performance. Using
object age produces pathological cleaning behavior when
there are very old objects. Eventually, some segments’
objects become old enough to force the policy into clean-
ing the segments at extremely high utilization, which is
very inefficient. Moreover, since live data is written to
survivor segments in age-order (to segregate hot and cold
data and make future cleaning more efficient), a vicious
cycle ensues because the cleaner generates new segments
with similarly high ages. These segments are then cleaned
at high utilization, producing new survivors with high
ages, and so on. In general, object age is not a reliable
estimator of stability. For example, if objects are deleted
uniform-randomly, then an objects’s age provides no in-
dication of how long it may persist.

To fix this problem, RAMCloud uses the age of the seg-
ment, not the age of its objects, in the formula for segment

selection. This provides a better approximation to the sta-
bility of the segment’s data: if a segment is very old, then
its overall rate of decay must be low, otherwise its u-value
would have dropped to the point of it being selected for
cleaning. Furthermore, this age metric resets when a seg-
ment is cleaned, which prevents very old ages from ac-
cumulating. Figure 13 shows that this change improves
overall write performance by 70% at 90% disk utilization.
This improvement applies not just to RAMCloud, but to
any log-structured system.

Intriguingly, although Sprite LFS used youngest object
age in its cost-benefit formula, we believe that the LFS
simulator, which was originally used to develop the cost-
benefit policy, inadvertently used segment age instead.
We reached this conclusion when we attempted to repro-
duce the original LFS simulation results and failed. Our
initial simulation results were much worse than those re-
ported for LFS (see Figure 13); when we switched from
objectAge to segmentAge, our simulations matched
those for LFS exactly. Further evidence can be found
in [26], which was based on a descendant of the original
LFS simulator and describes the LFS cost-benefit policy
as using the segment’s age. Unfortunately, source code is
no longer available for either of these simulators.

10 Future Work
There are additional opportunities to improve the per-

formance of log-structured memory that we have not yet
explored. One approach that has been used in many other
storage systems is to compress the data being stored. This
would allow memory to be used even more efficiently, but
it would create additional CPU overheads both for reading
and writing objects. Another possibility is to take advan-
tage of periods of low load (in the middle of the night,
for example) to clean aggressively in order to generate as
much free space as possible; this could potentially reduce
the cleaning overheads during periods of higher load.

Many of our experiments focused on worst-case syn-
thetic scenarios (for example, heavy write loads at very
high memory utilization, simple object size distributions
and access patterns, etc.). In doing so we wanted to stress
the system as much as possible to understand its limits.
However, realistic workloads may be much less demand-
ing. When RAMCloud begins to be deployed and used
we hope to learn much more about its performance under
real-world access patterns.

11 Related Work
DRAM has long been used to improve performance in

main-memory database systems [17, 21], and large-scale
Web applications have rekindled interest in DRAM-based
storage in recent years. In addition to special-purpose sys-
tems like Web search engines [9], general-purpose storage
systems like H-Store [25] and Bigtable [12] also keep part
or all of their data in memory to maximize performance.

RAMCloud’s storage management is superficially sim-

14 12th USENIX Conference on File and Storage Technologies USENIX Association

ilar to Bigtable [12] and its related LevelDB [4] li-
brary. For example, writes to Bigtable are first logged to
GFS [22] and then stored in a DRAM buffer. Bigtable
has several different mechanisms referred to as “com-
pactions”, which flush the DRAM buffer to a GFS file
when it grows too large, reduce the number of files on
disk, and reclaim space used by “delete entries” (anal-
ogous to tombstones in RAMCloud and called “dele-
tion markers” in LevelDB). Unlike RAMCloud, the pur-
pose of these compactions is not to reduce backup I/O,
nor is it clear that these design choices improve mem-
ory efficiency. Bigtable does not incrementally remove
delete entries from tables; instead it must rewrite them en-
tirely. LevelDB’s generational garbage collection mech-
anism [5], however, is more similar to RAMCloud’s seg-
mented log and cleaning.

Cleaning in log-structured memory serves a function
similar to copying garbage collectors in many common
programming languages such as Java and LISP [24, 37].
Section 2 has already discussed these systems.

Log-structured memory in RAMCloud was influenced
by ideas introduced in log-structured file systems [32].
Much of the nomenclature and general techniques are
shared (log segmentation, cleaning, and cost-benefit se-
lection, for example). However, RAMCloud differs in
its design and application. The key-value data model,
for instance, allows RAMCloud to use simpler metadata
structures than LFS. Furthermore, as a cluster system,
RAMCloud has many disks at its disposal, which reduces
contention between cleaning and regular log appends.

Efficiency has been a controversial topic in log-
structured file systems [34, 35]. Additional techniques
were introduced to reduce or hide the cost of cleaning [11,
26]. However, as an in-memory store, RAMCloud’s use
of a log is more efficient than LFS. First, RAMCloud need
not read segments from disk during cleaning, which re-
duces cleaner I/O. Second, RAMCloud may run its disks
at low utilization, making disk cleaning much cheaper
with two-level cleaning. Third, since reads are always
serviced from DRAM they are always fast, regardless of
locality of access or placement in the log.

RAMCloud’s data model and use of DRAM as the loca-
tion of record for all data are similar to various “NoSQL”
storage systems. Redis [3] is an in-memory store that sup-
ports a “persistence log” for durability, but does not do
cleaning to reclaim free space, and offers weak durability
guarantees. Memcached [2] stores all data in DRAM, but
it is a volatile cache with no durability. Other NoSQL sys-
tems like Dynamo [16] and PNUTS [14] also have simpli-
fied data models, but do not service all reads from mem-
ory. HyperDex [18] offers similar durability and consis-
tency to RAMCloud, but is a disk-based system and sup-
ports a richer data model, including range scans and effi-
cient searches across multiple columns.

12 Conclusion
Logging has been used for decades to ensure durabil-

ity and consistency in storage systems. When we began
designing RAMCloud, it was a natural choice to use a log-
ging approach on disk to back up the data stored in main
memory. However, it was surprising to discover that log-
ging also makes sense as a technique for managing the
data in DRAM. Log-structured memory takes advantage
of the restricted use of pointers in storage systems to elim-
inate the global memory scans that fundamentally limit
existing garbage collectors. The result is an efficient and
highly incremental form of copying garbage collector that
allows memory to be used efficiently even at utilizations
of 80-90%. A pleasant side effect of this discovery was
that we were able to use a single technique for managing
both disk and main memory, with small policy differences
that optimize the usage of each medium.

Although we developed log-structured memory for
RAMCloud, we believe that the ideas are generally appli-
cable and that log-structured memory is a good candidate
for managing memory in DRAM-based storage systems.

13 Acknowledgements
We would like to thank Asaf Cidon, Satoshi Mat-

sushita, Diego Ongaro, Henry Qin, Mendel Rosenblum,
Ryan Stutsman, Stephen Yang, the anonymous review-
ers from FAST 2013, SOSP 2013, and FAST 2014, and
our shepherd, Randy Katz, for their helpful comments.
This work was supported in part by the Gigascale Sys-
tems Research Center and the Multiscale Systems Cen-
ter, two of six research centers funded under the Fo-
cus Center Research Program, a Semiconductor Research
Corporation program, by C-FAR, one of six centers of
STARnet, a Semiconductor Research Corporation pro-
gram, sponsored by MARCO and DARPA, and by the
National Science Foundation under Grant No. 0963859.
Additional support was provided by Stanford Experimen-
tal Data Center Laboratory affiliates Facebook, Mellanox,
NEC, Cisco, Emulex, NetApp, SAP, Inventec, Google,
VMware, and Samsung. Steve Rumble was supported by
a Natural Sciences and Engineering Research Council of
Canada Postgraduate Scholarship.

References
[1] Google performance tools, Mar. 2013. http://goog-

perftools.sourceforge.net/.

[2] memcached: a distributed memory object caching system, Mar.
2013. http://www.memcached.org/.

[3] Redis, Mar. 2013. http://www.redis.io/.

[4] leveldb - a fast and lightweight key/value database library
by google, Jan. 2014. http://code.google.com/p/
leveldb/.

[5] Leveldb file layouts and compactions, Jan. 2014. http:
//leveldb.googlecode.com/svn/trunk/doc/
impl.html.

[6] APPAVOO, J., HUI, K., SOULES, C. A. N., WISNIEWSKI, R. W.,
DA SILVA, D. M., KRIEGER, O., AUSLANDER, M. A., EDEL-

USENIX Association 12th USENIX Conference on File and Storage Technologies 15

SOHN, D. J., GAMSA, B., GANGER, G. R., MCKENNEY, P.,
OSTROWSKI, M., ROSENBURG, B., STUMM, M., AND XENI-
DIS, J. Enabling autonomic behavior in systems software with hot
swapping. IBM Syst. J. 42, 1 (Jan. 2003), 60–76.

[7] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S.,
AND PALECZNY, M. Workload analysis of a large-scale
key-value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Mea-
surement and Modeling of Computer Systems (New York, NY,
USA, 2012), SIGMETRICS ’12, ACM, pp. 53–64.

[8] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time
garbage collector with low overhead and consistent utilization.
In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (New York, NY, USA,
2003), POPL ’03, ACM, pp. 285–298.

[9] BARROSO, L. A., DEAN, J., AND HÖLZLE, U. Web search for
a planet: The google cluster architecture. IEEE Micro 23, 2 (Mar.
2003), 22–28.

[10] BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D., AND
WILSON, P. R. Hoard: a scalable memory allocator for multi-
threaded applications. In Proceedings of the ninth international
conference on Architectural support for programming languages
and operating systems (New York, NY, USA, 2000), ASPLOS IX,
ACM, pp. 117–128.

[11] BLACKWELL, T., HARRIS, J., AND SELTZER, M. Heuristic
cleaning algorithms in log-structured file systems. In Proceedings
of the USENIX 1995 Technical Conference (Berkeley, CA, USA,
1995), TCON’95, USENIX Association, pp. 277–288.

[12] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: A distributed storage system for struc-
tured data. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (Berkeley, CA, USA, 2006),
OSDI ’06, USENIX Association, pp. 205–218.

[13] CHENG, P., AND BLELLOCH, G. E. A parallel, real-time garbage
collector. In Proceedings of the ACM SIGPLAN 2001 conference
on Programming language design and implementation (New York,
NY, USA, 2001), PLDI ’01, ACM, pp. 125–136.

[14] COOPER, B. F., RAMAKRISHNAN, R., SRIVASTAVA, U., SIL-
BERSTEIN, A., BOHANNON, P., JACOBSEN, H.-A., PUZ, N.,
WEAVER, D., AND YERNENI, R. Pnuts: Yahoo!’s hosted data
serving platform. Proc. VLDB Endow. 1 (August 2008), 1277–
1288.

[15] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM symposium on Cloud comput-
ing (New York, NY, USA, 2010), SoCC ’10, ACM, pp. 143–154.

[16] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly
available key-value store. In Proceedings of twenty-first ACM
SIGOPS symposium on operating systems principles (New York,
NY, USA, 2007), SOSP ’07, ACM, pp. 205–220.

[17] DEWITT, D. J., KATZ, R. H., OLKEN, F., SHAPIRO, L. D.,
STONEBRAKER, M. R., AND WOOD, D. A. Implementation
techniques for main memory database systems. In Proceedings
of the 1984 ACM SIGMOD international conference on manage-
ment of data (New York, NY, USA, 1984), SIGMOD ’84, ACM,
pp. 1–8.

[18] ESCRIVA, R., WONG, B., AND SIRER, E. G. Hyperdex: a dis-
tributed, searchable key-value store. In Proceedings of the ACM
SIGCOMM 2012 conference on Applications, technologies, archi-
tectures, and protocols for computer communication (New York,
NY, USA, 2012), SIGCOMM ’12, ACM, pp. 25–36.

[19] EVANS, J. A scalable concurrent malloc (3) implementation for
freebsd. In Proceedings of the BSDCan Conference (Apr. 2006).

[20] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Memc3:
compact and concurrent memcache with dumber caching and
smarter hashing. In Proceedings of the 10th USENIX conference
on Networked Systems Design and Implementation (Berkeley, CA,
USA, 2013), NSDI’13, USENIX Association, pp. 371–384.

[21] GARCIA-MOLINA, H., AND SALEM, K. Main memory database
systems: An overview. IEEE Trans. on Knowl. and Data Eng. 4
(December 1992), 509–516.

[22] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google
file system. In Proceedings of the nineteenth ACM symposium on
Operating systems principles (New York, NY, USA, 2003), SOSP
’03, ACM, pp. 29–43.

[23] HERTZ, M., AND BERGER, E. D. Quantifying the perfor-
mance of garbage collection vs. explicit memory management.
In Proceedings of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applica-
tions (New York, NY, USA, 2005), OOPSLA ’05, ACM, pp. 313–
326.

[24] JONES, R., HOSKING, A., AND MOSS, E. The Garbage Col-
lection Handbook: The Art of Automatic Memory Management,
1st ed. Chapman & Hall/CRC, 2011.

[25] KALLMAN, R., KIMURA, H., NATKINS, J., PAVLO, A., RASIN,
A., ZDONIK, S., JONES, E. P. C., MADDEN, S., STONE-
BRAKER, M., ZHANG, Y., HUGG, J., AND ABADI, D. J. H-store:
a high-performance, distributed main memory transaction process-
ing system. Proc. VLDB Endow. 1 (August 2008), 1496–1499.

[26] MATTHEWS, J. N., ROSELLI, D., COSTELLO, A. M., WANG,
R. Y., AND ANDERSON, T. E. Improving the performance of
log-structured file systems with adaptive methods. SIGOPS Oper.
Syst. Rev. 31, 5 (Oct. 1997), 238–251.

[27] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-copy update:
Using execution history to solve concurrency problems. In Paral-
lel and Distributed Computing and Systems (Las Vegas, NV, Oct.
1998), pp. 509–518.

[28] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling memcache at facebook. In Proceedings of the 10th
USENIX conference on Networked Systems Design and Implemen-
tation (Berkeley, CA, USA, 2013), NSDI’13, USENIX Associa-
tion, pp. 385–398.

[29] ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTERHOUT,
J., AND ROSENBLUM, M. Fast crash recovery in ramcloud. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2011), SOSP ’11, ACM,
pp. 29–41.

[30] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D., KOZYRAKIS,
C., LEVERICH, J., MAZIÈRES, D., MITRA, S., NARAYANAN,
A., ONGARO, D., PARULKAR, G., ROSENBLUM, M., RUM-
BLE, S. M., STRATMANN, E., AND STUTSMAN, R. The case
for ramcloud. Commun. ACM 54 (July 2011), 121–130.

[31] ROSENBLUM, M. The design and implementation of a log-
structured file system. PhD thesis, Berkeley, CA, USA, 1992. UMI
Order No. GAX93-30713.

[32] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and im-
plementation of a log-structured file system. ACM Trans. Comput.
Syst. 10 (February 1992), 26–52.

[33] RUMBLE, S. M. Memory and Object Management in RAMCloud.
PhD thesis, Stanford, CA, USA, 2014.

[34] SELTZER, M., BOSTIC, K., MCKUSICK, M. K., AND STAELIN,
C. An implementation of a log-structured file system for unix.
In Proceedings of the 1993 Winter USENIX Technical Conference
(Berkeley, CA, USA, 1993), USENIX’93, USENIX Association,
pp. 307–326.

16 12th USENIX Conference on File and Storage Technologies USENIX Association

[35] SELTZER, M., SMITH, K. A., BALAKRISHNAN, H., CHANG,
J., MCMAINS, S., AND PADMANABHAN, V. File system log-
ging versus clustering: a performance comparison. In Proceedings
of the USENIX 1995 Technical Conference (Berkeley, CA, USA,
1995), TCON’95, USENIX Association, pp. 249–264.

[36] TENE, G., IYENGAR, B., AND WOLF, M. C4: the continuously
concurrent compacting collector. In Proceedings of the interna-
tional symposium on Memory management (New York, NY, USA,
2011), ISMM ’11, ACM, pp. 79–88.

[37] WILSON, P. R. Uniprocessor garbage collection techniques. In
Proceedings of the International Workshop on Memory Manage-
ment (London, UK, UK, 1992), IWMM ’92, Springer-Verlag,
pp. 1–42.

[38] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA,
J., MCCAULEY, M., FRANKLIN, M., SHENKER, S., AND STO-
ICA, I. Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implemen-
tation (Berkeley, CA, USA, 2012), NSDI’12, USENIX Associa-
tion.

[39] ZORN, B. The measured cost of conservative garbage collection.
Softw. Pract. Exper. 23, 7 (July 1993), 733–756.

