
This paper is included in the Proceedings of the

2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the

2017 USENIX Annual Technical Conference

is sponsored by USENIX.

Log-Structured Non-Volatile Main Memory
Qingda Hu, Tsinghua University; Jinglei Ren and Anirudh Badam, Microsoft Research;

Jiwu Shu, Tsinghua University; Thomas Moscibroda, Microsoft Research

https://www.usenix.org/conference/atc17/technical-sessions/presentation/hu

Log-Structured Non-Volatile Main Memory

Qingda Hu* Jinglei Ren Anirudh Badam Jiwu Shu* Thomas Moscibroda
*Tsinghua University Microsoft Research

Abstract

Emerging non-volatile main memory (NVMM) unlocks

the performance potential of applications by storing per-

sistent data in the main memory. Such applications

require a lightweight persistent transactional memory

(PTM) system, instead of a heavyweight filesystem or

database, to have fast access to data. In a PTM system,

the memory usage, both capacity and bandwidth, plays a

key role in dictating performance and efficiency. Exist-

ing memory management mechanisms for PTMs gener-

ate high memory fragmentation, high write traffic and a

large number of persist barriers, since data is first written

to a log and then to the main data store.

In this paper, we present a log-structured NVMM sys-

tem that not only maintains NVMM in a compact manner

but also reduces the write traffic and the number of per-

sist barriers needed for executing transactions. All data

allocations and modifications are appended to the log

which becomes the location of the data. Further, we ad-

dress a unique challenge of log-structured memory man-

agement by designing a tree-based address translation

mechanism where access granularities are flexible and

different from allocation granularities. Our results show

that the new system enjoys up to 89.9% higher transac-

tion throughput and up to 82.8% lower write traffic than

a traditional PTM system.

1 Introduction

Emerging byte-addressable non-volatile main memory

(NVMM), e.g., 3D XPoint [23], PCM [43, 27], STT-

RAM [3, 25] and ReRAM [2], enables persistent data

to be stored in main memory. This leads to an archi-

tecture where applications directly access persistent data

via CPU load/store instructions [50, 10, 49, 37, 44, 18,

41, 55]. Such an architecture lowers latency not only due

to the significantly higher performance of NVMM com-

pared to SSDs, but also due to the fact that the system

software is removed from the critical path of persistent-

data accesses [36, 13, 9, 55]. Applications that use

NVMM typically employ a lightweight persistent trans-

actional memory (PTM) system [50, 10, 22, 56, 34, 9,

18, 24], instead of a traditional file system or database,

to have fast access to NVMM data.

Memory usage, both capacity and bandwidth, is cru-

*Work done while Q. Hu was an intern at Microsoft Research. Af-

filiated with Dept. of Computer Science and Technology, Tsinghua Na-

tional Laboratory for Information Science and Technology (TNLIST).

cial for the performance and efficiency of PTM sys-

tems. DRAM-style memory management used by ex-

isting PTM systems to manage NVMM leads to a high

amount of fragmentation that can cause wastage of over

50% space [46]. Moreover, existing transactional mecha-

nisms used by PTM systems lead to excessive write traf-

fic as they require all new data to be written twice – once

to the log, and once to the main data region, referred to

as home space of data. The redundant writes not only

increase memory bandwidth usage but also wear out the

NVMM device faster. Further, these writes need to be

persisted using expensive barriers in a synchronous man-

ner which increase the latency of transactions.

In this paper, we present a new log-structured mem-

ory management model for NVMM systems. This model

eliminates dichotomy of NVMM data in the home space

and a separate log area. We unify the home space and

the log area by organizing the whole NVMM solely in

the form of logs, which also act as the home space.

Our design effectively reduces fragmentation, incorpo-

rates wear-leveling, and optimizes for the write traffic

and persist barriers. Fragmentation is minimal because

memory allocation becomes an immediate append to the

end of a log, and freed up areas can be moved and con-

solidated [45, 46] to further reduce fragmentation. Be-

sides, NVMM bandwidth consumption, write wear and

the number of persist barriers are reduced because there

is no need to write data separately to both the traditional

home space and the log.

Applications using our system view NVMM in the

same way as the traditional systems, but a runtime ad-

dress mapping mechanism is employed to translate ap-

plication addresses to log offsets. We refer to the appli-

cations’ view of NVMM as the virtual home space. Such

address mappings are fully cached in DRAM, and can be

consistently restored from the log after a crash.

Another key contribution of this work is the design and

implementation of a practical tree data structure for the

home to log address mapping in our system. While log-

structured approaches have been explored in different do-

mains, such as filesystems [45, 52], databases [48, 46, 4]

and object stores [31, 46], log-structured NVMM faces a

unique challenge of address mapping overhead. Unlike

existing log-structured systems, we need to present a flat

address space where allocation granularities are not the

same as access granularities.

A data structure that can support creation of mappings

at access time as opposed to allocation time is required.

USENIX Association 2017 USENIX Annual Technical Conference 703

This is because memory stores can target arbitrary ad-

dresses and lengths that may not be indicated at alloca-

tion time. We show in this paper that a tree structure is

well suited for such a requirement. Meanwhile, NVMM

is orders of magnitude faster than SSDs, so that address

mapping performance could become a bottleneck if not

designed well. For SSDs, data access latencies dwarf ad-

dress translation overhead, but that is not the case with

NVMM. Hence, we revisit the address mapping issue of

log-structured designs for NVMM systems.

A naive tree data structure requires O(log n) opera-

tions per memory access which can be prohibitive when

n is large. Moreover, trees require expensive balanc-

ing operations to achieve such time complexity. We de-

sign key optimizations to a tree structure for log-structure

NVMM to reduce address translation overhead: (1) Two-

layer mapping. The whole home space is first divided

into static fixed-length partitions so that data can be

routed to such a partition (or more partitions) in O(1)
time. In this way, the average number of nodes in a

partition-local tree is much smaller than a huge tree cov-

ering the whole address space. (2) Skip-list trees. We use

the skip list [42] for second-layer trees. The main ben-

efit is that they probabilistically balance at insert time

to avoid rebalancing operations, which are costly and

largely impair parallelism. (3) Group update. If con-

secutive writes target contiguous addresses, we merge

them and update the tree only once. (4) Tree node cache.

We observe that memory accesses have locality so that

caching recently visited tree nodes can avoid many full

tree lookup paths starting from the root node.

We also present mechanisms to control the overhead

of log cleaning needed for compaction, and speed up the

recovery process. NVMM logs can be processed in par-

allel on recovery, which helps rebuild address mappings

for 10 GB NVMM in 3.0 seconds.

Overall, we make the following contributions:

• A new log-structured design to eliminate the di-

chotomy between the data and the transactional log for

PTMs. We identify the crucial difference between ex-

isting log-structured systems and the kind needed for

NVMMs where access granularities are not identical

to allocation granularities.

• A novel tree-based address mapping mechanism that

meets the above requirement. To the best of our

knowledge, we are the first to demonstrate the prac-

ticality of employing such a well optimized tree struc-

ture in a log-structured NVMM system.

• An implementation of the above ideas by modify-

ing TinySTM [16]. Under various workloads, log-

structured NVMM achieves 55.3% more throughput

and 72.2% less write wear than a traditional PTM on

average, when the usage of NVMM is over 90% and

the log cleaning overhead takes place.

2 Background and Motivation

Current PTMs typically derive their memory manage-

ment design from that for DRAM. Data is referenced us-

ing load and store instructions on native virtual memory

offsets, and memory allocations are managed by an al-

locator such as Hoard [6] adopted by Mnemosyne [50],

and jemalloc [15] adopted by Intel’s NVML [22] and Or-

acle’s NVM Direct [39]. However, the following prob-

lems arise in such systems.

Fragmentation of NVMM space. There are two

sources of fragmentation in a traditional memory alloca-

tor [17, 15]. First is internal fragmentation. Take Intel’s

NVML [22] for example. It aligns any NVMM alloca-

tion size to 64 B. If 65 B of NVMM is requested, NVML

shall effectively allocate 128 B, including 63 B internal

fragmentation. Second is external fragmentation. Sup-

pose a 64-B block is freed but has surrounding blocks in

use, then it cannot serve any request beyond 64 B. Exter-

nal fragmentation is severe if allocation sizes vary [38].

Experiments [46] have demonstrated that fragmentation

can take over 50% of all memory under management.

This issue is more critical for NVMM because it holds

data for a long term even across reboots.

Garbage collection, in a managed language runtime

such as Java or C#, is capable of changing allocated ad-

dresses. It can reduce fragmentation but involves ob-

ject reference analysis and process pauses [20]. Since

NVMM is slower and larger than DRAM, the cost of ob-

ject reference analysis and pauses will be prohibitive.

In contrast, a log-structured approach easily avoids

internal fragmentation because new allocation is com-

pactly appended to the log end. It absorbs external frag-

mentation by moving allocated data and consolidating

free spaces without the need to pause the process.

Excessive NVMM write traffic and barriers. NVMM

has limitations in bandwidth and endurance [28] (104 −
109 P/E cycles compared to DRAM’s 1015 cycles). How-

ever, to maintain crash consistency, all NVMM writes

must first be logged by PTM at a separate location. Such

logging entails redundant NVMM write traffic and extra

wear, compared to naive writing.

Figure 1 shows how a log-structured approach can re-

duce the write traffic and also the number of flushes

for a representative transaction. By the pseudo func-

tion map address, all addresses within the area are

mapped to a new location in the log. Such mapping only

involves DRAM writes which are fast and incur no wear

on NVMM. This approach saves extra NVMM writes

and costly CPU flushes/persist barriers.

Furthermore, the traditional PTM systems use the

NVMM bus less efficiently than the log-structured ap-

proach, because updates to the home space tend to be

sparse and hence have poor cacheline coverage . This

704 2017 USENIX Annual Technical Conference USENIX Association

void tx_update_title(employee emp, title new_title) {

tx_begin {

emp.title = new_title;

} tx_end;

}

Transaction system behaviors: logging PTM vs. log-structured NVMM

Pseudo source code:

in_log_title = append_to_undo_log(emp.title);

flush(in_log_title);

emp.title = new_title; // extra NVMM write

flush(emp.title); // one more flush

in_log_title = append_to_nvmm_log(new_title);

flush(in_log_title);

map_address(emp->title, in_log_title);

Figure 1: In a traditional PTM, objects have to be first logged and the log has to be persisted in NVM using a CPU flush

before the transaction can edit the objects. Another CPU flush is needed after the edits complete. In log-structured

NVMM, one flush is enough. Since the log entry becomes the new location of data, the extra write is eliminated.

leads to more bus bandwidth consumption when com-

pared to sequentially appending them to the log.

A unique challenge in log-structured NVMM. The

challenge of tree-based address mapping is a unique one

for log-structured NVMM. It has not been seen in exist-

ing log-structured systems. Those systems manage data

in a form of well-defined elements such as blocks in a

filesystem [45, 52], tuples in a database [48, 4] or ob-

jects in a key-value store [31, 46], where allocation gran-

ularities are the same as access granularities. Such well

defined access granularities facilitate a high performance

design. For instance, an in-memory hash table can be

employed to map elements to their locations in the log,

which offers O(1) lookup. In addition, a bloom filter can

be applied to improve mapping/index performance in the

case that a slow search path exists (e.g., log-structured

merge trees [48]).

Unfortunately, such a convenience is missing for

NVMM systems. There is no concept of data elements

or IDs in bare memory. It is hard to define one in sys-

tems that employ a flat address space where accesses

can be targeted at any offset with any length. Restrct-

ing block/object-granular accesses lacks flexibility and

incurs high costs [51, 16]. Simply setting a fixed and

small block size (e.g., tens of bytes) is not viable ei-

ther, because the metadata to maintain such blocks can

be prohibitively large [30, 19]. Furthermore, NVMM

is orders of magnitude faster than SSDs, so the address

mapping overhead, though traditionally negligible, now

stands out. Therefore, we design a more flexible but

highly performant scheme, which fragments the address

space on demand based on the executed store instruc-

tions rather than defining the granularity statically or at

data allocation time.

3 Design

This section describes the design of log-structured

NVMM (LSNVMM), a user-space library for accessing

and managing NVMM.

3.1 Overview

The high-level architecture of LSNVMM is shown in

Figure 2. From bottom up, LSNVMM uses DAX [32]

through a filesystem that allows direct access to physical

NVMM device via a memory map. In LSNVMM, the

NVMM region is organized into logs (§3.3), and an ad-

dress mapping mechanism translates virtual home-space

addresses to log positions (§3.2). Applications access

the NVMM region via our library that interposes all the

memory accesses to the region using the address map-

ping mechanism.

Applications

Transactional memory

(concurrency control)

Lock-based con-
currency control

Log-structured NVMM

Filesystem

OS

NVMM

(Direct access for files)

Figure 2: The architecture and system stack of log-

structured NVMM.

Interface. Our library offers two main functionalities.

One is memory management, with semantics similar to

that of C library: pmalloc and pfree for NVMM al-

location and deallocation, respectively1. The other func-

tionality of our library is the transaction abstraction that

provides crash-consistent data persistence. All NVMM

data operations are performed via this abstraction, re-

ferred to as an NVMM transaction. Within an NVMM

transaction, memory loads and stores are instrumented

at compile time and treated differently: all stores of

the transaction are persisted atomically to the log on

NVMM; every load address has to be translated to a

1Note that our current design assumes that the persistent region is

fixed to a static base address [50, 35]. Doing so enables use of native

pointers that remain valid across crashes and reboots. However, special

pointer types [10] can be supported easily.

USENIX Association 2017 USENIX Annual Technical Conference 705

proper position in the log to access the data. Concur-

rency control of data operations is left to an upper-layer

transactional memory (TM) system. It is also possible to

use explicit locks for such concurrency control.

Recovery. To achieve efficient address translation, ad-

dress mappings are stored in DRAM. On a normal pro-

cess shutdown, we compact the in-DRAM address map-

pings and other necessary metadata, and flush them to

NVMM, so that they can be quickly restored when the

process restarts. However, if a system crash happens,

the DRAM data is lost. Therefore, we have to rebuild

the in-DRAM data structures. To speed up this process,

the recovery is performed using thread-level parallelism

(more details in §4.5).

3.2 Address Mapping

Using our address mapping mechanism, applications in-

teract with NVMM in much the same way as DRAM to

build data structures. They need not change their mem-

ory access model that uses flexible regular virtual mem-

ory addresses and pointers. However, they have to adopt

the transaction interface to make atomic changes to the

data structures similar to existing PTM systems. We re-

fer to addresses in applications’ view as home addresses,

and log positions that are hidden from applications as log

addresses.

We use a tree structure to maintain mappings from

home addresses to log addresses. Logically, one node

in the tree holds a pair {home address, length} denoting

an area in the home space, and the log address that the

area is mapped to. The rationale for using a tree instead

of a hash table is that, in flat address space based sys-

tems, allocation granularities are not identical to access

granularities. For instance, an application may allocate

a large structure using pmalloc but only read/write a

small portion of that within transactions. Therefore, we

need address translation support for arbitrary accesses

that are not aligned with allocated objects.

The efficiency of address mapping is crucial for our

system. The latency of traditional log-structured sys-

tems is dominated by the disk/SSD latency of data ac-

cesses. Also, the granularity of such data accesses is

large (e.g., the block size of 512 B) and the frequency

is low. However, in our case, NVMM is much faster and

more frequently accessed in granularities as small as a

few bytes. Hence, it warrants careful design of the ad-

dress mapping. The time complexity of an operation on

the tree is O(log n). We use several optimizations to re-

duce the practical cost of such an operation. Figure 3 de-

picts main data structures to support these optimizations

as described below.

Two layers of mapping. The average cost of a tree op-

eration is proportional to the tree height, so our first opti-

mization targets at largely reducing the tree height. This

Skiplist per partition

stack

heap

static

code

Home Space

N
V

M
M

 re
g

io
n

 +
 a

llo
ca

to
r

Address Mapping

Log Space

0 1 2 …
Partition index

0

1

…

n

Node cache per thread

…

…

…

...

NIL

NIL

NIL

head tail

1

0

0

0 1

miss

Chunk Chunk

0

hit

Figure 3: The spaces and address mappings in

LSNVMM. Access to 0© is a hit in the tree node cache,

and access to 1© is a miss. Both examples are single ad-

dresses, but a tree node contains a range of addresses and

a range lookup across nodes is supported as well.

can be realized if a huge tree is split into numerous small

ones. We do so by having two layers of address mapping.

In the first layer, we divide the home space into fixed-

length partitions, so that a home address can be simply

divided by the partition length, costing as low as one

CPU cycle, to determine which partition the address lo-

cates in. In the second layer, each partition holds a small

tree for further address lookup (Figure 3). Our approach

can reduce the tree height by several times. With real

world workloads, this optimization improves transaction

throughput by 39.6% on average (§5.2).

Group update. Opportunistically merging tree nodes

is another way to further reduce the number of nodes

and thus the height of a tree. When two sibling nodes

contain contiguous home addresses and map to contigu-

ous log addresses, they can be merged. Spatially local

writes within a transaction can exploit this optimization.

Within each NVMM transaction, we first buffer all writes

in DRAM, and combine those with contiguous home ad-

dresses on transaction commit. A group of combined

writes is appended to the log and the address mapping

tree is updated the minimal number of times. Overall,

this optimization realizes 42.3% transaction throughput

improvement according to our evaluation (§5.2).

Skip lists and locking. We choose the skip list [42], a

probabilistic alternative to balanced trees, as our tree data

structure (Figure 3). The main reason for our choice is

that, while supporting O(log n) operations on average,

the skip list does not need a complex rebalancing opera-

tion as a strictly balanced tree such as B-tree does.

Such an optimization is crucial for multi-threaded sce-

narios. A typical balanced tree requires a readers-writer

706 2017 USENIX Annual Technical Conference USENIX Association

lock to protect concurrent operations2. Lock contention

due to heavy reads and writes can deteriorate throughput

of such systems. In contrast, by leveraging skip lists, we

get rid of locking for read-only operations. Particularly,

an update of the skip list involves only simple pointer

manipulations on singly linked lists. Taking advantage of

CPU’s atomic word write (aligned 64 bits for x86), such

an update is implemented in a way that is atomic to lock-

free read-only operations. By avoiding such lock con-

tention, we can see 48.9% higher transaction throughput

with four threads in our experiments (§5.2).

Tree node caches. We equip each working thread with a

thread-local cache that stores recently accessed home ad-

dresses and pointers to their nodes in the trees (Figure 3).

When the program accesses an address, our library first

searches the cache. If it is hit, the library directly gets

the pointer to the tree node that contains the requested

address mapping; otherwise, a full tree lookup is neces-

sary and the resulting node is added to the cache. Such a

caching mechanism is effective because of inherent tem-

poral and spatial locality among memory accesses. As

our experiments show, some memory areas are hot and

frequently accessed, and memory accesses tend to clus-

ter within 64 B areas. The hit ratio is 92.2% on average,

and introduction of tree node caches leads to 30.1% in-

crease in transaction throughput on average (§5.2).

We tweak a regular hash table design to meet a special

requirement of our tree node cache. That is, once a node

is cached, addresses within its mapped area tend to be a

cache hit. A plain hash table does not give such a feature

as cached addresses are randomly distributed. For exam-

ple, a node for a 64 B area starting at 0x1000 is cached.

If an access to the address 0x1008 falls into a different

bucket, it would lose the chance to be checked with this

node and hence be a miss. To solve the issue, we deliber-

ately increase certain collision by using set-associativity.

Based on the observation above, we try to route addresses

within a 64 B scope to the same bucket so that nearby ad-

dresses can be checked with chained tree nodes that may

cover them. To realize that, we pick high-order bits of

an address as its hash value. Consequently, sequential

addresses have a good chance of falling into one bucket.

3.3 NVMM Organization

The goal of our NVMM organization is to allow each

thread to allocate NVMM with minimal overhead. To-

wards that end, the NVMM region is physically orga-

nized into static chunks, atop which we build logical logs.

Multiple chunks can be linked into a list. We choose a

relatively small chunk size (e.g., 32 KB), because typical

NVMM writes are small; moreover, an individual chunk

2There are carefully crafted lock-free balanced tree designs [8, 14]

but they involve extra complexity and overhead. In contrast, our ap-

proach is simple and performs well in practice.

with a small size can be more quickly cleaned and recy-

cled in an incremental manner.

Chunks help reduce contention among the multiple

threads. We maintain a global pool of free chunks, and

each thread has its own list(s) of chunks in use. A thread

is allowed to buffer some free chunks when it requests

one from the global pool, or after it obtains them from

local log cleaning. This can avoid frequent manipulation

of the global pool and its lock contention.

3.4 Log Structure

A log in the NVMM region consists of a list of chunks.

Multiple logs coexist in our system. It is different from

a conventional disk-based log-structure system which

tends to have a single log per disk because the disk has

only one disk header and sequential access is the first pri-

ority. With fast random access instead, NVMM warrants

a different design, which favors thread-level parallelism

by using thread-local logs. Furthermore, each thread has

multiple logs to improve log cleaning efficiency, as we

describe later in this section. LSNVMM employs a num-

ber of log cleaners to collect free space accumulated in

chunks. The free spaces come from pfree operations

or old data that has been updated. We use a background

thread to run a cleaner.

Log entry. A log entry holds two kinds of metadata.

First, a mapping for a modified or allocated memory

area. When a log cleaner scans the chunk, it checks live-

ness of each log entry by looking up the home address

from the address mapping tree. Second, a tombstone for

each freed area. A tombstone is never accessed within

transactions, but used on the recovery path to filter out

freed areas. Atop log entries, we build transactions. A

transaction consists of all log entries that it produces, by

memory stores and (de)allocations.

Cleaning policy. The log cleaner moves sparse live data

from several chunks to a new chunk in a compact man-

ner, and recycles the cleaned chunks. Chunks with the

amount of live data below a threshold (20% by default in

our setup) are selected for cleaning.

We design three optimizations for log cleaning.

(1) Fast cleaning: When all log entries in a chunk are

stale, the chunk can be safely reclaimed. This can be

done fast because we only need to modify a few list

pointers to move the chunk to a free chunk list, with-

out data copying. (2) Separate logs: We observe that

memory stores always have better locality than memory

allocations. It implies that mixing them in one log may

increase the log cleaning cost and decrease the chance

of fast cleaning. So we design separate logs for each

thread, the update log serving memory stores, the allo-

cation log serving memory allocations and the dealloca-

tion log storing only tombstones. (3) Parallel cleaning:

In order to have sufficient log cleaning throughput, we

USENIX Association 2017 USENIX Annual Technical Conference 707

perform log cleaning with multiple background threads

for different chunks.

4 Implementation

This section describes the implementation of LSNVMM.

We start with the home space management mechanisms

in §4.1, then elaborate log space management in §4.2 and

address mapping between the two spaces in §4.3. Log

cleaning and recovery procedures are described in §4.4

and §4.5, respectively.

4.1 Home Space Management

Memory allocation and access are two main functional-

ities of home space management. We draw upon exist-

ing implementation of transactional memory systems to

realize such functionalities3. But we add persistence to

transactional memory: (1) necessary allocation metadata

is stored in NVMM so that the home address space can

be rebuilt after a crash, and (2) committed transactions

are stored in NVMM so that data updates are persistent.

Next, we detail the underlying mechanisms.

Home space allocation. Considering that the 64-bit

home address space is virtual and sufficiently large, frag-

mentation is not a severe issue there. Thus, we choose

current memory allocators Hoard [6] and dlmalloc [26]

to implement home space allocation. Hoard serves mem-

ory allocations smaller than 8 KB, while dlmalloc deals

with larger ones [50].

The state of both allocators is consistently rebuilt upon

crashes using metdata stored with data and therefore,

no runtime effort is spent in ensuring persistence of the

state. Take Hoard for example. It organizes home space

into superblocks, and each superblock serves allocation

requests of a certain size (e.g., a 8 KB superblock con-

tains an array of 16 B allocations). The metadata of

superblocks (location and allocation size) is stored in

NVMM. With such information, we simply rely on the

logs to infer allocation state after crashes. Therefore,

home-space allocations do not incur any persistent op-

erations.

Transactional memory. Applications’ access to home-

space data is protected by transactions. Intel STM com-

piler [1] is used to instrument regular C/C++ code with

transaction annotations. Programmers place the keyword

tm atomic and a pair of braces to specify the scope

of a transaction. The compiler automatically generates

calls into our transaction system when a transaction be-

gins, issues memory loads and stores, and commits.

We employ TinySTM [16], a lightweight software

transactional memory implementation, to intercept these

calls and implement concurrency control of transactions.

3LSNVMM is not bound to transactional memory. We choose the

interface because it is easy to use for applications.

Each transaction holds a temporary private write set con-

taining all written values and their addresses, which are

not visible to concurrent transactions. When a transac-

tion allocates memory, the system quickly allocates the

requested size in the home space, and returns its home

address. After that, all writes to the newly allocated

space are buffered in the volatile write set.

Allocated memory, writes to old data are all persisted

into logs when the transaction is committed. Likewise,

deallocations are also logged to ensure that memory does

not leak. A TinySTM transaction may receive mem-

ory writes to both volatile regions and NVMM. The

LSNVMM library takes the responsibility to filter out

writes to volatile memory and persist those to NVMM in

a crash consistent manner when the transaction is com-

mitted. The group update optimization is performed to

merge NVMM writes that have contiguous home ad-

dresses. Afterwards, a single log entry is generated for

each NVMM write and flushed to logs in NVMM. Then

each NVMM write obtains its log address, and the library

inserts into global address mapping trees the mappings

from home addresses to log addresses.

4.2 Log Space Management

From top down, the hierarchy of log storage is as follows:

(1) a log is stored in a number of fixed-length chunks;

(2) within one or more chunks, transactions that consti-

tute the log are stored in transaction blocks; (3) within

a transaction block, memory allocations and updates of

the transaction are stored in log entries. We now describe

these components in a bottom up order.

Log entry. Each log entry has a header and data. The

header consists of (1) a 47-bit home address to record

the start home address of the data, (2) one bit to denote

whether the entry is a tombstone, and (3) a 16-bit size to

record the data length. 47 bits are enough to hold a home

address because we record the offset of the address in the

NVMM region. Immediately after the header is the data

whose location is its log address. This entry structure is

used for both update and allocation logs.

Transaction block. A group of log entries belonging to

a transaction make the payload of a transaction block. A

preamble contains the following fields: (1) A 64-bit ver-

sion number to record the commit time of the transaction.

In our implementation, it is the monotonically increas-

ing, globally unique timestamp generated by TinySTM

for each transaction4. (2) A 48-bit peer pointer that

points to another transaction block (e.g., in a different

chunk as the current chunk is filled up), or in an allo-

cation log if the current log is an update log, or vice

versa. As a result, all blocks of a transaction form a

4It is an optimization to reuse the timestamp, but LSNVMM is not

necessarily bound to any TM implementation. We can also simply use

a global atomic counter to generate the version number.

708 2017 USENIX Annual Technical Conference USENIX Association

cyclic singly-linked list. (3) A 16-bit entry number to

record the number of log entries in the current transac-

tion block. If the number is not enough to count all en-

tries of a transaction, more block(s) can be linked to the

current block. (4) A 32-bit checksum using CRC32 error-

detecting code, which is calculated against the whole

transaction block.

Since a logical transaction may contain multiple trans-

action blocks across both update and allocation logs,

consistency among the blocks becomes an issue. We

have to handle the issue in two cases. The first case is

when a crash interrupts a transaction commit. LSNVMM

can detect this case by checking the checksum of each

transaction block on recovery, and discard the transac-

tion if any of its block is invalid or lost. The second case

is when a transaction block is moved to another chunk

due to log cleaning. As a result, peer pointers referenc-

ing moved blocks are no longer valid. However, such

inconsistency brings no problem as long as the contain-

ing transactions are safely committed, because the peer

pointers are only used for detecting uncommitted trans-

actions as in the first case. Therefore, we only need to

divert log cleaning from log ends that contain uncom-

mitted transactions.

Chunk. The payload of a chunk is a sequence of trans-

action blocks that make part of a log. Chunks are doubly

linked by their headers. Besides, the header holds a flag

to denote whether the chunk belongs to an update log or

an allocation log. If a transaction block contains a log en-

try larger than the remaining space of a chunk, the entry

can be split into more, and stored in linked peer blocks

in other chunks.

4.3 Skip List

An address mapping tree is implemented as a concurrent

skip list. By using insertion as an example, we show how

our skip list operates in a concurrent manner. In a skip

list, insertion of a node involves inserting the node to a

number of levels. For each level, the insertion is identi-

cal to that of a singly linked list, which can be atomically

realized by feat of atomic pointer updates. We do inser-

tion from the bottom level up. Once the node is inserted

to the bottom level, the insertion is effective. Inserting

to upper levels only influences lookup performance. So,

the insertion is logically atomic to concurrent reads.

While reads are lock-free, any tree structure update

(e.g., insert or delete) has to hold a lock controlling the

whole tree, because concurrent updates may corrupt each

other. But we can still maintain high update concurrency,

thanks to the large number of such trees in our design.

The tree node cache also needs a careful concurrency

control. We have to check if the hit node still holds the

requested home address, because it is possible the node

has been removed and recycled. Accordingly, we check

the home address of a node twice – before and after read-

ing the log address of the node. If both checks match, the

log address must be valid.

4.4 Log Cleaning

When memory utilization is beyond a threshold, a few

background cleaner threads begin to work, in parallel

with transaction threads. Cleaning steps are as follows:

(1) A set of victim chunks are identified according to the

policy in §3.3. For each victim chunk, a scan of all its

log entries is performed to determine liveness of the data

in each entry by checking its latest version in the address

mapping tree, vt. If vt is higher than the current transac-

tion version, the entry is discarded. (2) For a transaction

block that has live entries left, the preamble is recalcu-

lated (entry number and checksum), and the entire block

appended to a new chunk. (3) For the moved transac-

tion block, a quasi TinySTM transaction is run to up-

date global mappings with the new log addresses of the

live entries. The quasi transaction is just for enforcing

concurrency control. (4) After all transaction blocks are

moved out of a victim chunk, the chunk is reclaimed by

adding it to the global free chunk pool.

4.5 Recovery

Our recovery works in two phases to maximize thread

parallelism in a manner similar to map-reduce. In the

first phase, we dispatch all log chunks to the recovery

threads for parallel processing. The main task of each

thread is to scan the assigned chunks and group valid

log entries by the partition of their home addresses. Af-

ter this phase, each thread holds an array indexed by the

home partition, and each element of the array has a list of

log entries belonging to the partition. Note that this tem-

porary log entry structure only contains pointers to data

in NVMM and necessary metadata (version number).

In the second phase, each recovery thread takes charge

of different home partitions, and the task is to replay log

entries belonging to the partitions. To do so, the above

lists of log entries are shuffled among threads, so that

each thread holds the lists whose partitions are in the

charge of the thread. Then, for each partition, the sin-

gle thread in charge sorts all log entries of the partition

by their home address and version number, then pick up

entries with latest versions and insert their address map-

pings to the global address mapping tree for that parti-

tion. The approach, similar to map-reduce, avoids most

thread contention.

5 Evaluation

To evaluate the performance of log-structure NVMM, we

answer three questions as follows.

• How effective are the individual optimizations we de-

sign for LSNVMM? (§5.2)

USENIX Association 2017 USENIX Annual Technical Conference 709

• How does LSNVMM perform against traditional PTM

systems? (§5.3)

• What are the costs of log cleaning, recovery, and

DRAM footprint? (§5.4)

5.1 Experiment Setup

All the experiments are performed on a computer with 8-

core Intel Xeon CPU E5-2637 v3 (3.5 GHz) and 64 GB

DRAM, running 64-bit Linux kernel version 4.2.3. All

results are average of five runs.

NVM simulation. As real NVMM products are not

available yet, we use a simulation method akin to that

in Mnemosyne [50]. We focus on effects of slow

NVMM writes instead of reads, as many prior works

do [35, 9, 18, 40], because the read latency of NVMM

is similar to DRAM and most memory reads are effec-

tively served by CPU caches. For a standalone NVMM

write required to be immediately persisted, we introduce

an extra latency. For sequential NVMM writes that are

executed together, we consider both write latency and

bandwidth of NVMM. The added delay is the max of

the above write latency and total write size/NVMM band-

width. By default, we set the write latency to 500 ns and

the sustainable write bandwidth to 1 GB/s. We imple-

ment any delay by a loop reading the CPU timestamp

counter (TSC) until required time has elapsed.

Benchmarks. We run five transactional benchmarks

atop our systems for evaluation. The benchmarks cover

both commonly used data structures and a real applica-

tion: SPS randomly swaps elements in a large array; RB-

Tree, B+Tree and HashTable (HT) perform operations on

a red-black tree, a B+ tree and a hash table, respectively;

KVStore runs a key-value store, Tokyo Cabinet [21].

For benchmarks BTree, B+Tree, HashTable and KV-

Store, we perform two workloads with different access

patterns: the insert workload (Ins) inserts a number of

key-value pairs, where keys are uniformly random; the

update workload (Upd) looks up a key, and deletes it if it

is found or inserts one otherwise. Keys of these pairs fol-

low the Zipfian distribution [5, 11] so that 90% updates

happen on 15% of the data. In all workloads, the value

size is 128 B by default unless otherwise noted. The total

number of elements/pairs in each benchmark is 10 mil-

lion, resulting in 2∼4 GB of logical NVMM footprint.

5.2 Effect of Optimizations

We demonstrate the effect of every optimization pro-

posed in §3.2. Comparing the library against itself pro-

vides valuable reference for other systems/implementa-

tions as such a control experiment reveals what benefit

each mechanism can bring.

Evaluated systems. We add optimizations one by one

to the address mapping structure, resulting in four imple-

mentations as below.

• Base is the baseline using a global, single skip list for

whole-space address mapping.

• 2L enhances Base with two-layer mapping. The home

space is divided into 4-KB partitions, and each parti-

tion is served by a skip list for address mapping.

• 2L-GU enhances 2L by performing group update.

• 2L-GU-C adds thread-local tree node caches with

FIFO replacement. Each cache is up to 4 M entries.

At last, we show results of LSNVMM, which is more

optimized for multiple threads. 2L-GU-C uses a readers-

writer lock per partition to protect a skip list from concur-

rency issues, while LSNVMM avoids locking for read-

only operations on a skip list. So far, all optimizations

are incorporated. In this experiment, we leave out log

cleaning which is orthogonal to these comparisons.

Results. Figure 4 shows performance of the four im-

plementations running the benchmarks. We make four

observations. (1) 2L constantly outperforms Base for

all workloads, by 39.6% on average, due to two-layer

mapping. (2) 2L-GU performs 42.3% better than 2L on

average, due to group update. (3) 2L-GU-C improves

transaction throughputs by 30.1% on average, compared

to 2L-GU, thanks to the tree node caches. (4) Over-

all, the above optimizations show strong performance in

various benchmarks/workloads, achieving up to 268.6%

(157.9% on average) performance improvement over the

baseline system.

 0

 50

 100

 150

 200

 250

SPS RBTree B+Tree HT KVStore

T
h
ro

u
g
h
p
u
t
(K

T
P

S
)â

��

Base/Ins
2L/Ins
2L-GU/Ins
2L-GU-C/Ins

Base/Upd
2L/Upd
2L-GU/Upd
2L-GU-C/Upd

Figure 4: Transaction throughputs of the benchmarks

with different optimizations, in a single thread.

Particularly, to give direct evidence of the effect of

tree node caches, we plot average cache hit ratios un-

der different benchmarks in Figure 5. A tree node cache

achieves 92.2% hit ratio on average, which leads to sig-

nificant performance improvement in all benchmarks.

 60

 70

 80

 90

 100

SPS RBTree B+Tree HT KVStore

H
it
 r

a
ti
o

 (
%

)â
�� insert update

Figure 5: Access hit ratios of tree node caches under dif-

ferent benchmarks/workloads.

At last, our multi-thread optimization is justified by

comparing 2L-GU-C and LSNVMM running the update

710 2017 USENIX Annual Technical Conference USENIX Association

workload of a multi-threaded version of the data struc-

ture benchmarks, as shown in Figure 6. Removing lock

overhead from read-only operations, LSNVMM achieves

good scalability, and provides 48.9% higher throughput

than 2L-GU-C when running four threads.

 0

 100

 200

 300

 400

 500

 600

SPS RBTree B+Tree HT

T
h
ro

u
g
h
p
u
t

(K
T

P
S

)â
�� 2L-GU-C (1)

2L-GU-C (2)
2L-GU-C (4)

LSNVMM (1)
LSNVMM (2)
LSNVMM (4)

Figure 6: Multi-threaded throughputs of data structure

benchmarks. “(n)” indicates the number of threads.

5.3 Comparison to Current Systems

Evaluated systems. We compare LSNVMM (LS) to

redo and undo logging in the traditional memory man-

agement. In the same way as LSNVMM, both log-

ging systems integrate with TinySTM [16]. Particu-

larly, Mnemosyne (Mnm) [50] is the combination of redo

logging and TinySTM with traditional memory man-

agement, and we also make Mnmsyn-Undo (MU) by

replacing the redo logging mechanism in Mnemosyne

with undo logging. Moreover, we deliberately introduce

cleaning overhead to LSNVMM in LSNVMM-Cleaning

(LSC), which triggers cleaning of chunks with over 50%

stale data every around 1000 transactions.

Performance. We show performance results of the

four PTM systems running the benchmarks. From

Figure 7 (a), we observe that LSNVMM outperforms

Mnemosyne and Mnmsyn-Undo by 37.3% and 66.1%

with one thread on average, respectively. Especially

for HashTable and SPS, LSNVMM achieves 89.6%

and 89.9% (118.2% and 125.9%) speedup beyond

Mnemosyne (Mnmsyn-Undo), respectively. These two

benchmarks turn out to issue less memory loads than oth-

ers. In contrast, LSNVMM does not perform well with

KVStore running the update workload, mainly because

it has intensive memory loads. As for scalability, Fig-

ure 7 (b) shows the performance of the PTM systems

running the benchmarks in four threads. We can see that

LSNVMM scales well. It performs 44.7% and 80.8%

better than Mnemosyne and Mnmsyn-Undo on average,

respectively. Finally, log cleaning incurs minimal over-

head in this setting. Compared to LSNVMM without log

cleaning, LSNVMM-Cleaning reduces the throughput of

benchmarks by 4.1% and 7.8%, with one thread and four

threads, respectively. More evaluation of log cleaning

follows in §5.4.1.

In conclusion, LSNVMM remarkably outperforms

logging PTMs even with log cleaning overhead, and

shows scalability with multiple threads. LSNVMM is

especially suitable for write-intensive workloads.

 0

 50

 100

 150

 200

 250

SPS RBTree B+Tree HT KVStore

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)â

�� LS/Ins
LSC/Ins

Mnm/Ins
MU/Ins

LS/Upd
LSC/Upd

Mnm/Upd
MU/Upd

(a) One thread.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

SPS RBTree B+Tree HT

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)â

�� LS/Ins
LSC/Ins

MNM/Ins
MU/Ins

LS/Upd
LSC/Upd

MNM/Upd
MU/Upd

(b) Four threads.

Figure 7: Transaction throughputs of the benchmarks

with different memory management systems.

NVMM write traffic and wear. We calculate NVMM

write traffic, i.e., the cache line size multiplied by the

total number of cache lines written back to NVMM.

This metric reflects the NVMM bandwidth consump-

tion. Among the write traffic, only modified data actu-

ally wears NVMM [57, 12], we estimate NVMM wear

in terms of total dirty bytes ever written to NVMM. Fig-

ure 8 shows that part in breakdown of write traffic. We

make two observations. (1) LSNVMM saves 82.8% and

82.0% write traffic of Mnemosyne and Mnmsyn-Undo

on average, respectively. Besides the fact that redo/undo

logging logically writes twice what LSNVMM does, we

can clearly see the influence of cache line granularity.

As home-space updates in Mnemosyne and Mnmsyn-

Undo are typically sparse and fine-grained, they waste

lots of NVMM traffic on flushing entire cache lines.

(2) LSNVMM reduces dirty bytes by 80.1% and 65.1%

compared to Mnemosyne and Mnmsyn-Undo on aver-

age, respectively. Thanks to the group update technique,

LSNVMM merges a large number of sequential and re-

peated writes. On the contrary, Mnemosyne persists ev-

ery write of the transaction in the log, even if it can be

merged or coalesced with others.

NVMM fragmentation. In this experiment, we test

different memory allocators under three typical work-

loads [46] that emulate variation of data value sizes. All

workloads consist of two phases with different individ-

ual allocation sizes. W1 first allocates collectively 1 GB

in randomly 100 - 150 bytes, and then repeats so in ran-

domly 200 - 250 bytes. W2 is different with W1 only

in that it frees 90% of the memory allocated in the first

USENIX Association 2017 USENIX Annual Technical Conference 711

0
1000
2000
3000
4000
5000
6000
7000

L
S

M
nm

M
U

L
S

M
nm

M
U

L
S

M
nm

M
U

L
S

M
nm

M
U

L
S

M
nm

M
U

W
ri

te
tr

af
fi

c
(b

y
te

s/
tx

)
Dirty bytes

Write traffic excluding dirty bytes

KVStoreHTB+TreeRBTreeSPS

(a) The insert workload.

0
1000
2000
3000
4000
5000
6000
7000

L
S

M
nm

M
U

L
S

M
nm

M
U

L
S

M
nm

M
U

L
S

M
nm

M
U

L
S

M
nm

M
U

W
ri

te
tr

af
fi

c
(b

y
te

s/
tx

)

Dirty bytes

Write traffic excluding dirty bytes

KVStoreHTB+TreeRBTreeSPS

(b) The update workload.

Figure 8: NVMM write traffic and wear of different

memory management systems running the benchmarks

(in a single thread).

phase before it goes to the second phase. W3 has the

same behavior as W2 except that its individual alloca-

tion size in the first phase is random 1,000 - 2,000 bytes

and in the second phase random 1,500 - 2,500 bytes.

Figure 9 depicts the results. We make two obser-

vations. (1) Typical DRAM-oriented memory alloca-

tors hardly manage memory efficiently in these work-

loads. Mnemosyne (Hoard) produces 25.3% memory

fragmentation on average, and NVML (jemalloc) pro-

duces 35.0%. In contrast, LSNVMM keeps it as low as

4.5% by virtue of log cleaning. (2) The memory frag-

mentation of LSNVMM is inversely proportional to the

allocation size, because each allocation has its own meta-

data cost. For example, LSNVMM incurs 7.3% frag-

mentation in W1 but only 0.6% in W3.

 0

 20

 40

 60

 80

 100

W1 W2 W3

F
ra

g
m

e
n

t
(%

)â
��

LSNVMM Hoard jemalloc

Figure 9: NVMM fragmentation ratios of LSNVMM

and two other representative traditional memory alloca-

tors, Hoard [6] adopted by Mnemosyne [50], and jemal-

loc [15] adopted by Intel’s NVML [22].

5.4 Log-Induced Costs

5.4.1 Log Cleaning

We first evaluate the effect of separate logs on fast clean-

ing (§3.4). Figure 10 depicts the amount of log data

that is reclaimed by fast cleaning as the number of up-

date operations increases. In the experiment, we firstly

insert 10 million elements to the corresponding bench-

marks. We make two observations from this figure. (1)

Beyond initial 10 million updates, the fast cleaning can

effectively clean around more than 200 MB memory per

million updates. (2) The separate log design can clean

more chunks than the baseline. Their gap is bigger in the

RBTree benchmark, because it has more clustered mem-

ory stores than HashTable so that a separate update log is

apt to fast cleaning.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40

C
le

a
n
e
d
 a

m
o
u
n
t

(M
B

)

updates in millions

HashTable-Base
HashTable-Sep

RBTree-Base
RBTree-Sep

Figure 10: Fast cleaning performance with baseline

(“Base”) or separate logs (“Sep”) with a random 1 KB

update workload on HashTable or RBTree.

When all cleaning overhead walks in, Figure 11 shows

the resulting performance of the benchmark as well as

the throughput of the cleaner. In the experiment, we

preload B+Tree to occupy a certain fraction of NVMM,

and then run the update workload with four working

threads and two cleaning threads. We test two cases

where the value size is 128 B and 1 KB, respectively.

We draw a major conclusion from this figure: LSNVMM

does not lose much performance under high NVMM

pressure. The performance degradation due to cleaning

was 8% or less, even at 90% memory utilization.

 120
 130
 140
 150
 160
 170
 180
 190
 200

 30 40 50 60 70 80 90
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

T
ra

n
s
a
c
ti
o
n
 (

K
T

P
S

)

C
le

a
n
in

g
 (

M
B

/s
)

% memory utilization (home space)
Txn-128B
Txn-1KB

Cln-128B
Cln-1KB

Figure 11: Transaction (“txn”) and cleaning (“cln”)

throughputs of the B+Tree benchmark with random key

distribution and different value sizes (128B vs. 1KB) as

a function of memory utilization.

5.4.2 Recovery

Figure 12 shows the required time to recover from

a 10 GB of logs in NVMM. We rebuild the whole

LSNVMM in multiple threads. We make two ob-

servations from this figure: (1) The recovery process

quickly speeds up with more threads. For 128 B values,

LSNVMM needs 19.2 seconds to recover in one thread,

712 2017 USENIX Annual Technical Conference USENIX Association

but only 3.0 seconds in eight threads. (2) The recov-

ery latency is inversely proportional to the data allocation

size, because the number of address mappings decreases

as the allocation size increases.

 0

 4

 8

 12

 16

 20

 1 2 4 8

T
im

e
 (

s
)

threads

128B
1024B

Figure 12: Recovery time of 10-GB NVMM logs, with

different numbers of threads and different value sizes

(128B vs. 1KB).

5.4.3 DRAM footprint

We evaluate the DRAM footprints using the real appli-

cation KVStore under the insert workload with different

value sizes. Figure 13 illustrates the amount of DRAM

required. It is around 16.9% of NVMM when the value

size is as small as 128 B, and drops quickly as the value

size increases.

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700 800 900 1000 1100

D
R

A
M

 f
o
o
tp

ri
n
t
(M

B
)

Value Size (B)

KVStore

Figure 13: DRAM footprint of the address mapping

structures and thread cache in KVStore for 1 GB NVMM

data as a function of the value size.

6 Related Work

Persistent memory systems. They can be classified

into three categories by their interfaces. One category

is PTM. For example, Mnemosyne [50], SoftWrAP [18]

and DudeTM [33] are redo logging based PTMs, while

NV-Heaps [10], NVML [22] and DCT [24] are undo log-

ging based ones. Our work is built on many PTM tech-

niques, but follows a different, log-structured way to ad-

dress the memory management issue.

The second category provides data structure inter-

faces, such as CDDS [49] and NV-Tree [53]. Their in-

terfaces to applications are not as flexible as transactions.

The third category is software transparent. WSP [37] and

ThyNVM [44] are two representatives. They either have

a strong assumption on hardware or involve advanced

hardware features. In contrast, LSNVMM is a general

solution and requires no customized hardware.

Memory allocators. Makalu [7] and nvm malloc [47]

are NVMM allocators that aim at collecting garbage in a

failure-safe manner. WAlloc [54] proposes a wear-aware

memory allocator to improve the wear leveling. These

works address other aspects of memory management,

while we focus on the memory fragmentation problem.

RAMCloud [46] shares the same goal as our work

to reduce memory fragmentation. It also uses a log-

structured approach. But it is a key-value store of well-

defined data objects, without the need for a tree-based ad-

dress mapping mechanism as in LSNVMM. LSNVMM

supports general transactions for arbitrary data.

Log-structured systems. The log-structure approach

was early designed in LFS [45], which buffers random

writes in DRAM and makes best use of sequential I/O of

hard disk drives. F2FS [29] proposes a well optimized

file system on flash storage devices, which adopts sep-

arate metadata and data logs, and uses adaptive logging

to avoid frequent garbage collection. It is similar to our

separate log design. NOVA [52] is a file system opti-

mized for hybrid memory systems, providing strong con-

sistency guarantees. It maintains independent logs for

each inode to improve scalability. Some databases [4]

implement log-structured data management, and take ad-

vantage of NVMM to simplify traditional DBMS. Over-

all, the log-structured approach is widely used in those

systems, but their designs hardly apply to LSNVMM

whose unique challenge is tree-based address translation

as discussed in §2.

7 Conclusion

The log-structured NVMM eliminates the dichotomy

between data home and data logs in current logging

PTMs. This solves the vital NVMM fragmentation is-

sue, and lowers NVMM write wear and persistence over-

head. To that end, we create four key optimizations to

tackle the performance challenge in tree-based address

mapping. Our experiments show that the log-structured

NVMM can outperform Mnemosyne and Mnmsyn-Undo

by 44.7% and 80.8% on average in terms of transaction

throughput. Our work reveals how a software tree struc-

ture can be optimized to a level that can efficiently serve

address mapping for NVMM load/store instructions.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Yu

Hua, for their valuable feedback. This work was partially

supported by the National Natural Science Foundation

of China (Grant No. 61502266, 61433008, 61232003),

the Beijing Municipal Science and Technology Com-

mission of China (Grant No. D151100000815003), and

the China Postdoctoral Science Foundation (Grant No.

2016T90094, 2015M580098).

USENIX Association 2017 USENIX Annual Technical Conference 713

References

[1] Intel C++ STM compiler prototype edition.

https://software.intel.com/en-

us/forums/intel-c-stm-compiler-

prototype-edition, 2012.

[2] AKINAGA, H., AND SHIMA, H. Resistive random

access memory (ReRAM) based on metal oxides.

Proc. IEEE 98, 12 (2010).

[3] APALKOV, D., KHVALKOVSKIY, A., WATTS, S.,

NIKITIN, V., TANG, X., LOTTIS, D., MOON, K.,

LUO, X., CHEN, E., ONG, A., DRISKILL-SMITH,

A., AND KROUNBI, M. Spin-transfer torque mag-

netic random access memory (STT-MRAM). ACM

J. Emerg. Technol. Comput. Syst. 9, 2 (May 2013),

13:1–13:35.

[4] ARULRAJ, J., PAVLO, A., AND DULLOOR, S. R.

Let’s talk about storage & recovery methods for

non-volatile memory database systems. In Pro-

ceedings of the 2015 ACM SIGMOD International

Conference on Management of Data (2015), SIG-

MOD ’15, pp. 707–722.

[5] ATIKOGLU, B., XU, Y., FRACHTENBERG, E.,

JIANG, S., AND PALECZNY, M. Workload analy-

sis of a large-scale key-value store. In Proceedings

of the 12th ACM SIGMETRICS/PERFORMANCE

Joint International Conference on Measurement

and Modeling of Computer Systems (2012), SIG-

METRICS ’12, pp. 53–64.

[6] BERGER, E. D., MCKINLEY, K. S., BLUMOFE,

R. D., AND WILSON, P. R. Hoard: A scalable

memory allocator for multithreaded applications.

In Proceedings of the Ninth International Confer-

ence on Architectural Support for Programming

Languages and Operating Systems (2000), ASP-

LOS IX, pp. 117–128.

[7] BHANDARI, K., CHAKRABARTI, D. R., AND

BOEHM, H.-J. Makalu: Fast recoverable alloca-

tion of non-volatile memory. In Proceedings of

the 2016 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Lan-

guages, and Applications (2016), OOPSLA ’16,

pp. 677–694.

[8] BRAGINSKY, A., AND PETRANK, E. A lock-free

B+tree. In Proceedings of the Twenty-fourth An-

nual ACM Symposium on Parallelism in Algorithms

and Architectures (2012), SPAA ’12, pp. 58–67.

[9] CHATZISTERGIOU, A., CINTRA, M., AND VI-

GLAS, S. D. REWIND: Recovery Write-ahead sys-

tem for In-memory Non-volatile Data-structures.

Proc. VLDB Endow. 8, 5 (Jan. 2015), 497–508.

[10] COBURN, J., CAULFIELD, A. M., AKEL, A.,

GRUPP, L. M., GUPTA, R. K., JHALA, R., AND

SWANSON, S. NV-heaps: Making persistent

objects fast and safe with next-generation, non-

volatile memories. In Proceedings of the Sixteenth

International Conference on Architectural Support

for Programming Languages and Operating Sys-

tems (2011), ASPLOS XVI, pp. 105–118.

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-

MAKRISHNAN, R., AND SEARS, R. Benchmark-

ing cloud serving systems with YCSB. In Proceed-

ings of the 1st ACM Symposium on Cloud Comput-

ing (2010), SoCC ’10, pp. 143–154.

[12] DU, Y., ZHOU, M., CHILDERS, B. R., MOSSÉ,

D., AND MELHEM, R. Bit mapping for balanced

PCM cell programming. In Proceedings of the 40th

Annual International Symposium on Computer Ar-

chitecture (2013), ISCA ’13, pp. 428–439.

[13] DULLOOR, S. R., KUMAR, S., KESHAVA-

MURTHY, A., LANTZ, P., REDDY, D.,

SANKARAN, R., AND JACKSON, J. System

software for persistent memory. In Proceedings

of the Ninth European Conference on Computer

Systems (2014), EuroSys ’14, pp. 15:1–15:15.

[14] ELLEN, F., FATOUROU, P., HELGA, J., AND

RUPPERT, E. The amortized complexity of non-

blocking binary search trees. In Proceedings of the

2014 ACM Symposium on Principles of Distributed

Computing (2014), PODC ’14, pp. 332–340.

[15] EVANS, J. A scalable concurrent malloc(3) imple-

mentation for FreeBSD. In Proceedings of the BS-

DCan Conference (2006).

[16] FELBER, P., FETZER, C., AND RIEGEL, T. Dy-

namic performance tuning of word-based soft-

ware transactional memory. In Proceedings of

the 13th ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming (2008),

PPoPP ’08, pp. 237–246.

[17] FREE SOFTWARE FOUNDATION, INC. The GNU

C Library, 2.24 ed., Aug. 2016. https://www.

gnu.org/software/libc/manual/.

[18] GILES, E. R., DOSHI, K., AND VARMAN, P. Soft-

WrAP: A lightweight framework for transactional

support of storage class memory. In Proceedings of

the 31st Symposium on Mass Storage Systems and

Technologies (May 2015), MSST ’15, pp. 1–14.

714 2017 USENIX Annual Technical Conference USENIX Association

https://software.intel.com/en-us/forums/intel-c-stm-compiler-prototype-edition
https://software.intel.com/en-us/forums/intel-c-stm-compiler-prototype-edition
https://software.intel.com/en-us/forums/intel-c-stm-compiler-prototype-edition
https://www.gnu.org/software/libc/manual/
https://www.gnu.org/software/libc/manual/

[19] GUO, F., AND EFSTATHOPOULOS, P. Build-

ing a high-performance deduplication system. In

Proceedings of the 2011 USENIX Conference

on USENIX Annual Technical Conference (2011),

USENIX ATC ’11, pp. 271–284.

[20] HERTZ, M., AND BERGER, E. D. Quantifying

the performance of garbage collection vs. explicit

memory management. In Proceedings of the 20th

Annual ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and

Applications (2005), OOPSLA ’05, pp. 313–326.

[21] HIRABAYASHI, M. Tokyo cabinet: a modern im-

plementation of DBM. http://1978th.net/

tokyocabinet/, 2010.

[22] INTEL. The NVM Library. http://pmem.io/,

2016.

[23] INTEL NEWSROOM. Introducing Intel Op-

tane technology – bringing 3D XPoint

memory to storage and memory products.

https://newsroom.intel.com/press-

kits/introducing-intel-optane-

technology-bringing-3d-xpoint-

memory-to-storage-and-memory-

products/, July 2015.

[24] KOLLI, A., PELLEY, S., SAIDI, A., CHEN, P. M.,

AND WENISCH, T. F. High-performance transac-

tions for persistent memories. In Proceedings of the

Twenty-First International Conference on Architec-

tural Support for Programming Languages and Op-

erating Systems (2016), ASPLOS ’16, pp. 399–

411.

[25] KLTRSAY, E., KANDEMIR, M., SIVASUBRAMA-

NIAM, A., AND MUTLU, O. Evaluating STT-RAM

as an energy-efficient main memory alternative. In

Proceeding of the 2013 IEEE International Sympo-

sium on Performance Analysis of Systems and Soft-

ware (Apr. 2013), ISPASS ’13, pp. 256–267.

[26] LEA, D. A memory allocator. http://g.

oswego.edu/dl/html/malloc.html.

[27] LEE, B., ZHOU, P., YANG, J., ZHANG, Y., ZHAO,

B., IPEK, E., MUTLU, O., AND BURGER, D.

Phase-change technology and the future of main

memory. IEEE Micro 30 (Jan. 2010), 131–141.

[28] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER,

D. Architecting phase change memory as a scal-

able DRAM alternative. In Proceedings of the 36th

Annual International Symposium on Computer Ar-

chitecture (2009), ISCA ’09, pp. 2–13.

[29] LEE, C., SIM, D., HWANG, J., AND CHO, S.

F2FS: A new file system for flash storage. In 13th

USENIX Conference on File and Storage Technolo-

gies (2015), FAST ’15, pp. 273–286.

[30] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D.,

DEOLALIKAR, V., TREZISE, G., AND CAMBLE,

P. Sparse indexing: Large scale, inline deduplica-

tion using sampling and locality. In Proccedings of

the 7th Conference on File and Storage Technolo-

gies (2009), FAST ’09, pp. 111–123.

[31] LIM, H., FAN, B., ANDERSEN, D. G., AND

KAMINSKY, M. SILT: A memory-efficient, high-

performance key-value store. In Proceedings of the

Twenty-Third ACM Symposium on Operating Sys-

tems Principles (2011), SOSP ’11, pp. 1–13.

[32] LINUX KERNEL ORGANIZATION, INC. Direct

access for files. https://www.kernel.org/

doc/Documentation/filesystems/dax.

txt, 2016.

[33] LIU, M., ZHANG, M., CHEN, K., QIAN, X.,

WU, Y., AND REN, J. DudeTM: Building durable

transactions with decoupling for persistent mem-

ory. In Proceedings of the Twenty-Second Inter-

national Conference on Architectural Support for

Programming Languages and Operating Systems

(2017), ASPLOS ’17, pp. 329–343.

[34] LIU, R.-S., SHEN, D.-Y., YANG, C.-L., YU, S.-

C., AND WANG, C.-Y. M. NVM Duet: Uni-

fied working memory and persistent store architec-

ture. In Proceedings of the 19th International Con-

ference on Architectural Support for Programming

Languages and Operating Systems (2014), ASP-

LOS ’14, pp. 455–470.

[35] LU, Y., SHU, J., AND SUN, L. Blurred persis-

tence in transactional persistent memory. In Pro-

ceedings of the 31st Symposium on Mass Storage

Systems and Technologies (May 2015), MSST ’15,

pp. 1–13.

[36] MORARU, I., ANDERSEN, D. G., KAMIN-

SKY, M., TOLIA, N., RANGANATHAN, P., AND

BINKERT, N. Consistent, durable, and safe mem-

ory management for byte-addressable non volatile

main memory. In Proceedings of the First ACM

SIGOPS Conference on Timely Results in Operat-

ing Systems (2013), TRIOS ’13, pp. 1:1–1:17.

[37] NARAYANAN, D., AND HODSON, O. Whole-

system persistence. In Proceedings of the Seven-

teenth International Conference on Architectural

Support for Programming Languages and Operat-

ing Systems (2012), ASPLOS XVII, pp. 401–410.

USENIX Association 2017 USENIX Annual Technical Conference 715

http://1978th.net/tokyocabinet/
http://1978th.net/tokyocabinet/
http://pmem.io/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt

[38] NISHTALA, R., FUGAL, H., GRIMM, S.,

KWIATKOWSKI, M., LEE, H., LI, H. C., MCEL-

ROY, R., PALECZNY, M., PEEK, D., SAAB, P.,

STAFFORD, D., TUNG, T., AND VENKATARA-

MANI, V. Scaling memcache at Facebook. In

Proceedings of the 10th USENIX Conference on

Networked Systems Design and Implementation

(2013), NSDI ’13, pp. 385–398.

[39] ORACLE. NVM Direct. https://github.

com/oracle/nvm-direct, 2016.

[40] OU, J., SHU, J., AND LU, Y. A high performance

file system for non-volatile main memory. In Pro-

ceedings of the Eleventh European Conference on

Computer Systems (2016), EuroSys ’16, pp. 12:1–

12:16.

[41] PELLEY, S., CHEN, P. M., AND WENISCH, T. F.

Memory persistency. In Proceeding of the 41st

Annual International Symposium on Computer Ar-

chitecuture (2014), ISCA ’14, pp. 265–276.

[42] PUGH, W. Skip lists: A probabilistic alternative to

balanced trees. Commun. ACM 33, 6 (June 1990),

668–676.

[43] RAOUX, S., BURR, G. W., BREITWISCH, M. J.,

RETTNER, C. T., CHEN, Y.-C., SHELBY, R. M.,

SALINGA, M., KREBS, D., CHEN, S.-H., LUNG,

H.-L., AND LAM, C. H. Phase-change random

access memory: A scalable technology. IBM J. Res.

Dev. 52, 4 (July 2008), 465–479.

[44] REN, J., ZHAO, J., KHAN, S., CHOI, J., WU, Y.,

AND MUTLU, O. ThyNVM: Enabling software-

transparent crash consistency in persistent mem-

ory systems. In Proceedings of the 48th Inter-

national Symposium on Microarchitecture (2015),

MICRO-48, pp. 672–685. http://persper.

com/thynvm/.

[45] ROSENBLUM, M., AND OUSTERHOUT, J. K. The

design and implementation of a log-structured file

system. ACM Trans. Comput. Syst. 10, 1 (Feb.

1992), 26–52.

[46] RUMBLE, S. M., KEJRIWAL, A., AND OUSTER-

HOUT, J. Log-structured memory for DRAM-

based storage. In Proceedings of the 12th USENIX

Conference on File and Storage Technologies

(2014), FAST ’14, pp. 1–16.

[47] SCHWALB, D., BERNING, T., FAUST, M.,

DRESELER, M., AND PLATTNER, H. nvm malloc:

memory allocation for NVRAM. In In Sixth Inter-

national Workshop on Accelerating Data Manage-

ment Systems Using Modern Processor and Storage

Architectures (in conjunction with VLDB) (2015).

[48] SEARS, R., AND RAMAKRISHNAN, R. bLSM: A

general purpose log structured merge tree. In Pro-

ceedings of the 2012 ACM SIGMOD International

Conference on Management of Data (2012), SIG-

MOD ’12, pp. 217–228.

[49] VENKATARAMAN, S., TOLIA, N., RAN-

GANATHAN, P., AND CAMPBELL, R. H. Con-

sistent and durable data structures for non-volatile

byte-addressable memory. In Proceedings of

the 9th USENIX Conference on File and Stroage

Technologies (2011), FAST ’11, pp. 61–75.

[50] VOLOS, H., TACK, A. J., AND SWIFT, M. M.

Mnemosyne: Lightweight persistent memory. In

Proceedings of the Sixteenth International Confer-

ence on Architectural Support for Programming

Languages and Operating Systems (2011), ASP-

LOS XVI, pp. 91–104.

[51] WANG, C., CHEN, W.-Y., WU, Y., SAHA, B.,

AND ADL-TABATABAI, A.-R. Code generation

and optimization for transactional memory con-

structs in an unmanaged language. In Proceedings

of the International Symposium on Code Genera-

tion and Optimization (2007), CGO ’07, pp. 34–48.

[52] XU, J., AND SWANSON, S. NOVA: A log-

structured file system for hybrid volatile/non-

volatile main memories. In Proceedings of the 14th

Usenix Conference on File and Storage Technolo-

gies (2016), FAST ’16, pp. 323–338.

[53] YANG, J., WEI, Q., CHEN, C., WANG, C.,

YONG, K. L., AND HE, B. NV-Tree: Reducing

consistency cost for NVM-based single level sys-

tems. In Proceedings of the 13th USENIX Con-

ference on File and Storage Technologies (2015),

FAST ’15, pp. 167–181.

[54] YU, S., XIAO, N., DENG, M., XING, Y., LIU,

F., CAI, Z., AND CHEN, W. Walloc: An ef-

ficient wear-aware allocator for non-volatile main

memory. In 2015 IEEE 34th International Per-

formance Computing and Communications Confer-

ence (IPCCC) (2015), IPCCC ’15, pp. 1–8.

[55] ZHANG, Y., AND SWANSON, S. A study of appli-

cation performance with non-volatile main mem-

ory. In Proceedings of the 31st Symposium on Mass

Storage Systems and Technologies (May 2015),

MSST ’15, pp. 1–10.

716 2017 USENIX Annual Technical Conference USENIX Association

https://github.com/oracle/nvm-direct
https://github.com/oracle/nvm-direct
http://persper.com/thynvm/
http://persper.com/thynvm/

[56] ZHAO, J., LI, S., YOON, D. H., XIE, Y., AND

JOUPPI, N. P. Kiln: Closing the performance

gap between systems with and without persis-

tence support. In Proceedings of the 46th Annual

IEEE/ACM International Symposium on Microar-

chitecture (2013), MICRO-46, pp. 421–432.

[57] ZHOU, P., ZHAO, B., YANG, J., AND ZHANG,

Y. A durable and energy efficient main memory

using phase change memory technology. In Pro-

ceedings of the 36th Annual International Sympo-

sium on Computer Architecture (2009), ISCA ’09,

pp. 14–23.

USENIX Association 2017 USENIX Annual Technical Conference 717

