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Log Summarization and Anomaly Detection for
Troubleshooting Distributed Systems

Dan Gunter, Brian L. Tierney: Lawrence Berkeley National Laboratory;
Aaron Brown, Martin Swany: University of Delaware;

John Bresnahan, Jennifer M. Schopf: Argonne National Laboratory

Abstract— Today’s system monitoring tools are capable of
detecting system failures such as host failures, OS errors, and
network partitions in near-real time. Unfortunately, the same
cannot yet be said of the end-to-end distributed software stack.
Any given action, for example, reliably transferring a directory of
files, can involve a wide range of complex and interrelated actions
across multiple pieces of software: checking user certificates and
permissions, getting details for all files, performing third-party
transfers, understanding re-try policy decisions, etc. We present
an infrastructure for troubleshooting complex middleware, a
general purpose technique for configurable log summarization,
and an anomaly detection technique that works in near-real
time on running Grid middleware. We present results gathered
using this infrastructure from instrumented Grid middleware and
applications running on the Emulab testbed. From these results,
we analyze the effectiveness of several algorithms at accurately
detecting a variety of performance anomalies.

I. INTRODUCTION

Many of today’s Grids have ongoing performance and
reliability problems that have yet to be addressed. Grid2003,
now Open Science Grid (OSG) [1], saw a 30% job submission
failure rate[2], with 90% of the failures caused by problems
such as disk filling errors, gatekeeper overloading, and network
interruptions. This error rate has reduced in the past three
years to around 15%, with the current goal of attaining a
90% success rate this year. Yet clearly having one of every
ten job submissions fail is not acceptable in a production
setting. Similar results have been seen on other Grids and
Grid testbeds. For example the GrADS testbed [3] found that
20% of runs failed due to NFS problems at one site [4]. These
data points only mention hard failures. The numbers for soft
failures (performance reductions) may well be much higher,
and likely go unnoticed.

Troubleshooting Grid middleware is made more difficult by
the large number of interconnected components. For example,
a single action, such as reliably transferring a directory of
files, can result in the coordination of a wide suite of loosely
coupled software tools. These include security software to
handle the certificates, check permissions, perform delegation,
and possibly encrypt the message streams, file transfer tools
to check the disk space, set up the connections, and transfer
data between resources, and reliability software that must
understand re-try policies, track transfer status behavior, and
react to failures. Each of these systems may suffer from
various forms of failure, which may or may not be reported. If
failures are reported, it is typically via a log file with various
styles of logging. Combining log information from several

components in order to understand what caused a given failure
can be challenging. However this is exactly what is needed to
troubleshoot a problem as it cascades from one component
into the next.

Sufficiently detailed log data is often not available in any
form. For real-time debugging of interleaved and interrelated
software stacks, we often need a function-level execution
trace, but logging at that level of detail can easily become
unmanageable. For example, a full trace of the I/O operations
performed by a single GridFTP server [5] capable of saturating
a 10 Gigabit network will generate O(20,000) log events per
second, or over 70 million per hour. If Grid middleware
components generally ran this level of detailed monitoring,
the perturbation would be unacceptable. And yet logging only
coarse-grained information and asynchronous status messages,
as is the common practice today, makes debugging failures a
heroic effort.

Due to its complexity and heterogeneity, Grid middleware
lags behind stand-alone system tools in terms of anomaly
detection, where an anomaly is defined as an unexpected
degradation in behavior that adversely affects application
performance. Detecting failures is made more difficult by fault
tolerance mechanisms, such as retries in GridFTP transfers
and most workflow engines, which may mask more serious
errors. Detecting performance degradation is also complicated
by high system variance and periodic patterns that last days
or weeks.

The contributions of this paper include:
• A general purpose technique for configurable summariza-

tion of time-series data that scales to high event rates,
detailed in Section III.

• An anomaly detection technique that and can adapt to
changing performance baselines, detailed in Section IV.

An additional contribution of this paper is the description
of an scalable infrastructure for collecting and normalizing
log data for troubleshooting of complex distributed systems,
detailed in Section II.

Our anomaly detector is targeted at middleware and appli-
cations with consistent expected performance. This includes
large file transfers, predictable user computations, and many
streaming data analysis and visualization services, all common
on today’s Grids.

We show experimental results for our log summarization
demonstrating it can provide detailed real-time information
without perturbing the systems being monitored.



We also explore several anomaly detection methods, and
show that in our experiments no single method was optimal.
In practical deployments a collection of anomaly detection
methods is likely the best strategy.

While there are several projects related to distributed system
performance monitoring and anomaly detection such as Pablo
[6], TAU [7], and Paradyn [8], none of these projects are fo-
cused on the near real-time detection of performance problems
that are due to transient system and middleware performance
faults. We review related work in more detail in Section VII.

II. DISTRIBUTED TROUBLESHOOTING INFRASTRUCTURE

Our log summarization and anomaly detection components
must, to be useful, integrate into an overall Grid troubleshoot-
ing infrastructure. This section lays out the components needed
for end-to-end distributed systems troubleshooting.

A. Background

We assume an environment in which the monitored com-
ponents, including long-running services and applications, are
managed under separate administrative domains. For security,
privacy, and manageability reasons, the logs of these compo-
nents may only be partially shared off-site. Networks between
the monitored components and the outside world may also be
slow, unreliable, or both.

An example of one such large distributed system is the
Open Science Grid (OSG) [1], a Grid infrastructure currently
comprised of over 75 international sites. Services can have up-
times measured in days or weeks, and application developers
regularly use tens of sites at a time. Failure rates can be quite
high, and debugging a system problem can take days due to
inaccessible logs or lack of detailed information.

B. Approach

We are working with the Open Science Grid to define,
implement, and deploy this troubleshooting infrastructure. The
key elements of our approach are to instrument applications
following a set of logging best practices, aggregate and filter
logs with syslog-ng (described below), and then analyze the
streaming data while archiving it to a relational database. We
believe this provides a logging infrastructure that allows for
scalable analysis of the distributed logs. Each component is
described in more detail below.

In logging, the old adage applies: Garbage In, Garbage Out.
The best analysis system in the world cannot do much with
bad input. So, we have written a recommendations guide for
Logging Best Practices [9] that combines good instrumentation
practices with log format guidelines.
• Practices. All logs should contain a unique event name

and an ISO-format timestamp [10]. All system opera-
tions that might fail or experience performance variations
should be wrapped with start and end events. All logs
from a given execution thread must be tagged with a
globally unique ID (or GUID) [11], such as a Universal
Unique Identifier (UUID) [12] that allows a set of related
logs from a given execution to be grouped together.

• Log format. Logs should be composed of lines of ASCII
name=value pairs; this format is highly portable, human-
readable, and works well with line-oriented tools.

Troubleshooting analysis often requires detailed comparison
of distributed logged information. A distributed query across
administrative domains can be difficult to deploy in production
Grids such as OSG. Instead, we aggregate the data using the
open source tool syslog-ng [13], which provides us the ability
to filter logs based on program name, log level, and even a
regular expression on message contents.

Loading a subset of logs into a relational database enables
sophisticated data mining. Historical queries can be used to
provide baseline performance information, allowing the com-
parison of current performance against a historical baseline.

Streaming analysis of the data is more amenable to online
anomaly detection. syslog-ng can redirect a subset of the
events (based on program name, etc.) to an analysis engine,
such as a simple missing event detector. If all important actions
are wrapped with start and end events as recommended,
then a large class of troubleshooting problems can easily be
found by simply looking for missing end events, which can
indicate that something failed without generating an error,
or that something is taking too long to complete. Baseline
performance information is needed to determine how long to
wait before deciding that an event is in fact missing.

The infrastructure described so far provides a foundation
for higher level troubleshooting tools. We focus on two new
components of this infrastructure, the data summarizer and
anomaly detector:

• Data Summarizer: As described in § I , detailed logging
for many distributed services may result in delivery of
many thousands of log events per second. Logging at this
level will affect application performance and potentially
fill up disk with unneeded log data. It will also put
stress on components that process log data, such as an
anomaly detection tool. Therefore we have implemented
a log summarization module for the NetLogger Toolkit
[14] that can reduce the amount of log data generated
by several orders of magnitude, while still capturing key
information. By using the summarization module sites
will be able to do performance analysis at a very fine
granularity and yet scalably collect and manage their logs.
This component is described in detail in Section III.

• Anomaly Detector: For long-lived services such as large
file transfers or long running jobs, we want to be informed
of dramatic performance anomalies while the job is still
running. For this we have developed an anomaly detection
tool that operates on incoming streams of log data, as
described in Section IV.

An example of this full system being used for a GridFTP
third-party transfer is shown in Fig. 1. Logs are summarized,
and forwarded to a central location using syslog-ng, where
they are analyzed for anomalies.

These components will also form the basis of higher-level
services. In general a Grid user or administrator will not wish



Fig. 1. Log generation and collection process.

to know about each and every minor perturbation. They would
prefer to specify something like: “Let me know if performance
falls below 50% of the expected value for more than 30
minutes”. To be useful for both Grid users and administrators,
there needs to be an easy way to subscribe to error and
anomaly events of interest, and to be able to specify anomaly
thresholds. Our longer term vision includes a web services
front end to the anomaly detection component that can handle
these types of subscription requests.

III. TRACE SUMMARIZATION

We have implemented a log summarization extension to the
NetLogger Toolkit. Our NetLogger toolkit [14] provides an
integrated set of tools for creating sensors and for collect-
ing, archiving, and analyzing sensor data. Using NetLogger,
distributed application components are modified to produce
timestamped traces of “interesting” events at critical points.
This log summarization extension to the NetLogger client
library can handle thousands of calls per second without
perturbing the application. We present here the underlying
model, features, and limitations of the library.

A. Data Model

We model application activity as a time-series of named,
timestamped objects we call events. In addition to name and
timestamp, each event has set of attributes with a primitive
numeric or string-valued data value. In this work, we deal with
three types of events: markers at the entry or exit to an activity,
called respectively start events and end events; and derived
events summarizing a number of start event and end event
pairs, called summary events. The start and end events must
have a GUID (as discussed in § II.B) so they can be matched.
In addition, the end event carries a numeric value (in a user-
selected attribute) that we call the event value. For example, in
the GridFTP end event the event value is the number of bytes
read or written, and in a user job the event value may be the
number of iterations per unit time. All three event types have
a GUID.

Fig. 2. Tracing API example
for (i=0; i < 1e9; i++) {

nl_write(log,"foo.start","guid=s",guid);
double v = foo();
nl_write(log,"foo.end",

"guid=s value=d",guid,v); }

B. Summarization Features

Detailed logging is generally avoided in production envi-
ronments because it can generate too much log data and, at
high frequencies, perturb the system. However, log data can be
essential for understanding interactions in a complex system.
For example, detailed logging of GridFTP events as shown
in Table II was needed to debug errors in parallel streaming
performance [15]. To solve this dilemma, we have written a
logging library that can be configured, at run-time, to produce
anything from detailed logs all the way down to a single event
per run – for the same logging statement in the code – with
virtually no application perturbation at the rate of thousands
of log events per second. The API is simple and printf-like,
as shown in Figure 2.

Our implementation of summarization is, currently, tailored
to our focus on the start and end of activities (such as loops).
The effect is that many repetitions of a pair of start and end
events can be compressed into a single derived event. We focus
here on summarizing events (of the same type and identity)
over a user-provided time period. So, every N seconds, all
corresponding repetitions of the start and end event pair are
combined into one summary event, for which the following
statistics are reported (remember, in this model each start/end
event pair is also associated with a numeric value):
• min, max, and sum of eventend − eventstart

• min, max, and sum of event value
• sum of event value/(eventend − eventstart)
• last eventend - first eventstart

From these statistics, we can easily calculate several addi-
tional values, including (a) the proportion of total time was
spent in this activity, (b) the rate at which the value changed
inside the activity itself (instantaneous rate of change), and (c)
the rate at which the value changed during the entire summary
period (average rate of change).

C. Log Generation Overhead

Detailed logs have two performance impacts. The first is the
performance effects during log generation, primarily perturba-
tion of the process being traced. The second is performance
effects after generation, including the time to process, store,
or transport the logs themselves. This subsection examines
the perturbation caused by log generation, and the following
subsection discusses the log management issues.

In order to understand the perturbation caused by logging,
we ran a series of tests on an Emulab [16] pc3000 host, which
is a 3GHz Intel Xeon, running Linux 2.6.12. The tests were
written in C and compiled using gcc 4.0.0 with optimization
level -O2. The disk had an average write performance of



TABLE I
TRACE THROUGHPUT IN EVENTS/SECOND

Log Destination Full Summarized
disk 202,000 588,000

/dev/null 331,000 588,000

roughly 60MB/s and only disk writes were performed during
the test.

The throughput of the summarized instrumentation using a
1 second summarization interval is shown in Table I. The logs
were written to the locally mounted disk or the null device, and
each logged event was approximately 100 bytes. The reported
number is the mean number of events per second, rounded to
the nearest thousand, across 10 runs (the standard deviations
were always below 1% of mean).

These results show that summarized logs can be generated
more than twice as fast as the raw logs. Summarization is
even faster than logging to /dev/null because most of
the summarized events do not have to be serialized. This
is significant, as a quick calculation using the /dev/null
and disk I/O numbers for the ”full” logging shows that about
60% of the time is spent serializing the event. And because
the summarized instrumentation only writes to disk once
per second, the I/O performance doesn’t change the average
summarizer throughput.

From these results, a back-of-the-envelope calculation, as-
suming that the average latency per call is just the inverse
of throughput, gives the summarizer’s perturbation of an
application that had 10,000 start/end events per second to be
3.4%.

To get a more precise estimate of the amount of pertur-
bation caused by the summarization library, we also ran a
microbenchmark with instrumentation of both I/O (disk write)
and computations. The microbenchmark had an outer loop
that we ran from 200 to 40,000 iterations per second. Each
iteration of the loop was wrapped with a start/end event pair.
The program first estimated parameters (a fixed number of
inner loops) to attain the desired rate of outer loop iterations
per second. Then the microbenchmark was run with the same
parameters and three different levels of logging: no logging
(baseline), full logging, and summarized logging. The results
of 10 runs, with the logging levels in random order were
averaged (the standard deviation was always below 0.7% of
the mean, so is not shown). Percent perturbation was computed
as:

Timeinstrumented − Timebaseline

Timebaseline
∗ 100

for both the full and summary logs. The results are shown in
Figure 3.

The ratio between the percentage overhead for the full and
summarized logs agrees with the log generation throughput
measurements (e.g., within ±1% of the estimate for 10,000
iterations per second). Since the graph is on roughly a log/log
scale, the linear trend in both lines indicates a linear change
in perturbation. We note that the summarizer perturbation of
the I/O microkernel is roughly flat (at under 1%) up to 2,000
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Fig. 3. Perturbation caused by log generation. Full logs and summarization
logs compared to a baseline without any logging.

iterations per second, whereas the full logging perturbation of
the I/O, and all perturbation of the computational microkernel,
increases steadily. This is likely due to overlapping of the
computational work of performing the summarization, such
as data structure manipulations and computing the statistics,
with the disk writes in the I/O microkernel.

Testing this in a more realistic setting, we examined the
perturbation of GridFTP servers in Emulab using the default
256KB GridFTP data block size on a 1Gb/s network. The
maximum event rate at either server is 1000 start/end event
pairs per second, and at this rate the microbenchmark results
indicated I/O perturbation to be less than 1%. Independent
tests also confirmed that even on LAN networks this much
perturbation of the transfer rates was lost in the measurement
noise.

D. Log Management Overhead

While it is important that log generation does not perturb
the application, it is also important that the resulting data does
not overwhelm subsequent processing steps, such as storing
the data locally on disk, forwarding it to syslog, or loading
it into a relational database. Put another way, you can’t just
create the data and forget about it; you also need to manage it.
Time-based summarization has the property that the volume of
log data, given roughly constant sizes for each logged event,
depends only on the summarization interval. This makes the
log volume much easier to predict, and thus provision for.

IV. ANOMALY DETECTOR

Our approach to detecting anomalies is to apply simple and
intuitive techniques that are inexpensive enough to run in near
real time. Our goal is to provide a system that can provide
indications of anomalous behavior in a general case, while
supporting customization to allow sites to adapt the sensitivity
as needed. Our results show that certain algorithms are more
likely to find certain classes of anomalies, and we illustrate a
variety of approaches to address this.

A. Anomaly Detection Algorithms

The input to our anomaly detector is a time-series of values
from the log summarizer, as discussed in Section III.B. Each
value represents the performance of a particular component,
e.g., a stream of disk I/O events for a GridFTP transfer or
performance data from an inner loop of a computation.



We use two families of anomaly detection algorithms, the
mean ±N standard deviations, MSD, and the cumulative dis-
tribution function, CDF. The CDF family of algorithms is non-
parametric and generally more robust to outliers than MSD,
since it is simply a step function describing the distribution of
a sample. In both cases, the current value of the event stream
is compared to a set of historical data, and if the current value
is above or below a threshold then we classify that value as
an anomaly.

The historical data set can be formed in a variety of ways
as well. We use two different approaches: Static, which uses
the first N values in a run and does not change over time, and
Heuristic, which updates the historical data set with the current
value if it is not an anomaly, thereby preventing extreme values
from being added but still allowing the data set to evolve.

In order to dampen the effect of outliers, we add the option
of smoothing using the exponential weighted moving average
(EWMA) function, which takes a single parameter, α. For each
new value, xi, the smoothed value is calculated as: α ∗ xi +
(1−α)∗xi−1. Thus, an α of 1 is no smoothing at all, and an α
very close to 0 is a large amount of smoothing. The accepted
rule-of-thumb value, in absence of further evidence, is to use
α = 0.2 [17].

We therefore have eight basic algorithms that we compare:
MSD Static history Unsmoothed (MSD-su), MSD Static his-
tory Smoothed (MSD-ss), MSD Heuristic history Unsmoothed
(MDS-hu), and so on for MSD-hs, CDF-su, CDF-ss, CDF-hu,
and CDF-hs.

B. Parameters

The threshold value determines a distance from a mean or
median, outside of which a value is considered an anomaly.
Typically, the MSD family uses a number of standard devi-
ations from the mean and the CDF family uses a percent of
the tail of the cumulative distribution function. A value of 2
for MSD would correspond to a value of 5% for the CDF, if
the data were normally distributed. On real performance data,
which is not normally distributed, these settings may yield
quite different results.

The window size for the heuristic approaches, or the number
of initial values for static, determines how much past history
to consider when evaluating the current environment.

V. FILE TRANSFER ANOMALY EXPERIMENTS

In this section we evaluate which of the anomaly detection
methods described in Section IV works best for detecting
anomalies in GridFTP performance.

We ran experiments looking for anomalies during GridFTP
transfers in Emulab. Data from the log summarization compo-
nent was used to look for anomalies, and we used a one second
summarization interval. The experiments had two settings: a
controlled environment where we could easily dictate which
periods should be counted as anomalous, and a longer 5 hour
run that was more randomized, noisy, and thus realistic.

These experiments show us that for anomalies that affect
file transfer performance, smoothing makes a large difference.

TABLE II
GRIDFTP LOG EVENTS

sender receiver
disk.read.start network.read.start
disk.read.end network.read.end
network.write.start disk.write.start
network.write.end disk.write.end

Fig. 4. Emulab Configuration.

They also show that the static approach to augmenting the
historical data set can easily detect long term shifts in the
baseline performance, but that the heuristic approach is better
for finding intermittent anomalies.

A. Configuration

We performed bulk data transfers between two hosts using
GridFTP. The servers at each host were instrumented with
NetLogger so that every network and disk read and write
was wrapped with a start and end event. Each 256KB data
block transferred from sender to receiver produced the eight
log events shown in Table II.

The Emulab testbed, shown in Figure 4, had a single link
connecting two routers that allowed us to vary the latency of
the connections between two subclusters. Each subcluster had
one host running a GridFTP server and two hosts injecting
perturbations, as described below. All links were Gigabit
Ethernet, and all hosts were Emulab pc3000 machines running
a Linux 2.6.19 kernel (which uses BIC TCP). We configured
the routers to introduce a one-way latency of 10ms between
the GridFTP servers. All file transfers read and wrote from
local disk, which we benchmarked at roughly 60MB/s write
and 100MB/s read.

Figure 5 shows a typical GridFTP single stream transfer of
a 10 GByte file across a 10 ms latency network in Emulab.
It shows the typical TCP “sawtooth” performance pattern,
peaking around 400 Mbits/s. This plot shows that unperturbed
behavior had high short-term variability, so it is important that
an anomaly detector not be too sensitive to these local peaks.
Although parallel GridFTP, which has smoother behavior, is
commonly used for real transfers, we chose to use single
stream GridFTP for these tests. We did so precisely because
the performance is more variable, and we wished to ensure
that our anomaly detection approach was not too sensitive to
these variations.

We set our threshold parameters to the standard 2 standard
deviations, for the MSD family, and 5% for the CDF family.
For the historical data set we used 1800 initial values for
the Static approaches and the full data set for the Heuristic
approaches.
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Fig. 5. Typical throughput of a 1 stream GridFTP on 10ms path. Note the
typical TCP sawtooth performance pattern, demonstrating that one must be
careful to not flag this type of performance variance as an anomaly.

B. Injected Perturbations

Anomalies do not occur naturally in our Emulab testbed so
we simulate them by injecting perturbations into the system.
We injected three types of perturbations:
• An disk injection competed with GridFTP for disk I/O

resources. We used a simple program based on the Unix
dd command. The program ran for 2 minutes for the
controlled data, and for a random value between 1 second
and 1 minute for the 5 hour run.

• A network injection competed with GridFTP for net-
work bandwidth by running iperf TCP tests. This
category is further broken down into one-stream and
four-stream network injections, which we will call weak
and strong network injections, respectively. These lasted
5 minutes for the controlled run and a random value
between 1 second and 2 minutes for the 5 hour run.

• A latency perturbation modified our Emulab network
topology to quadruple the latency on the link connecting
the GridFTP servers. This had the affect of decreasing the
throughput of a one-stream GridFTP transfers by almost
50%.

C. Controlled Data Results

The controlled data run was 90 minutes in length, during
which we injected three types of perturbations at 5 minute
intervals: strong network, weak network, and I/O. These
injections are summarized in the left column of Table IV.
One hour into the run, we injected a latency perturbation,
which continued until the end of the run. Figure 6 shows
the GridFTP performance during the controlled run, and two
different anomaly detection algorithms, MSD-su and CDF-hs.
The symbols along the bottom of the plot show the start of
various injected performance anomalies. Note that the MSD-
su detects the latency shift, unlike the CDF approach, but even
by eye has a much higher false positive rate.

To compare the results of the different algorithms, we
(arbitrarily) decided that both the strong network and disk
perturbation should be considered anomalies, but not the weak
injections. We defined a metric to maximize the correctly
detected anomalies while minimizing false positives (FP), and
false negatives (FN), by using the following formula:

(False Positives + False Negatives)
Correctly F lagged Anomalies

We call this metric the badness of the algorithm because a
higher value corresponds to a less effective approach. Table VI

TABLE III
ANOMALIES DETECTED IN THE CONTROLLED RUN FOR THE EIGHT

ALGORITHMS.

Algorithm Correct FP FN Badness
MSD-ss 9 4 0 0.44
MSD-su 9 3 0 0.33
MSD-hs 8 0 1 0.125
MSD-hu 7 0 2 0.29
CDF-ss 9 4 0 0.44
CDF-su 9 3 0 0.33
CDF-hs 8 0 1 0.125
CDF-hu 5 0 4 0.8

TABLE IV
NUMBER OF I/O AND NETWORK INJECTIONS IN THE RUNS.

Type Controlled Run 5 Hour Run
Disk I/O Injection 4 35
Weak Network Injection 4 25
Strong Network Injection 4 45
Overlapped Injections 0 8

shows the number of false positives, false negatives, and the
badness metric for all 8 algorithms, with the best scores
highlighted.

The static approaches, despite high badness scores, had
one clear advantage: they detected the latency injection. The
heuristic approaches probably missed it because at this point
in the run, the historical data contains many anomalies more
severe than the transition to lower latency. Thus, an effective
use of the static approach might be as a specialized method
of discovering this type of fundamental change in behavior,
instead of using it to discover transient anomalies. However,
the two heuristic smoothed approaches had the best badness
score overall and the fewest false positives, showing that
algorithmic adaptations to avoid outliers give these approaches
an advantage.

D. Five Hour Run Results

Our second set of experiments, the 5 hour run, examined
these 8 algorithms in a system with randomized, and possibly
overlapping, perturbations. We used the same Emulab config-
uration and repeatedly ran GridFTP transfers. Every two to
three minutes, we would randomly choose to initiate a disk
or network injection. Unlike the previous run, however, the
length and degree of the disk and network injections were
randomized to so that it was possible for one injected anomaly
to overlap with the next. Partially overlapping weak injections
had a cumulative effect on performance that was similar to,
but not the same as, a strong injection. In addition, we split the
injections into two classes: more than three iperf streams or
one disk injection stream was considered a strong network or
I/O injection, everything else was considered a weak injection.
The resulting number weak, strong, and overlapping injections
over the course of the whole run is shown in the rightmost
column of Table IV.

The number of anomalies reported by each of the 8 algo-
rithms are shown in Table V. Due to the randomness of this
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Fig. 6. GridFTP Performance with injected performance perturbations and detected anomalies.
TABLE V

EXPERIMENTAL ANOMALIES DETECTED.

Algorithm File Transfer Anomalies
MSD-ss 153
MSD-su 136
MSD-hs 37
MSD-hu 18
CDF-ss 145
CDF-su 152
CDF-hs 64
CDF-hu 39

experiment, there is no consistent basis for determining which
perturbations are anomalies. Partially overlapping injections
may or may not be anomalies according to the criteria used in
the control data. Therefore, we simply compare the algorithms
against each other.

All of the static approaches seemed over-sensitive, detecting
approximately twice the number of non-overlapped anomalies
injected into the system, and up to seven times as much as
other approaches.

The higher variation in the data seemed to increase the
false negative rate for the MSD–heuristic algorithms, with
and without smoothing, with only 18 or 37 anomalies de-
tected, or less than 1/3 the total number of disk and strong
network injections (minus overlaps). The best approach in
this environment, as it was in the controlled environment,
appears to be CDF Heuristic with Smoothing (CDF-hs), with
64 anomalies detected. We believe that the non-parametric
estimator outperforms the parametric one due to the non-
normal nature of the data.

In summary, no single algorithm works best for all types
of anomalies. This leads us to assert that robust anomaly de-
tection of GridFTP should use multiple algorithms in parallel.
Some higher level component can then customize the reported
results for a given user or administrator. For example, if one
want to know about baseline changes such as the latency shift
shown in Figure 6, any of the static algorithms(CDF-ss, CDF-
su, MSD-ss, MSD-su) should be selected, while if one wishes
to detect the types of random anomalies in our 5-hour test, the

CDF Heuristic with Smoothing (CDF-hs) method will work
better.

E. Experimental Summary

We have seen that an appropriate algorithm can do a good
job of appropriate anomaly detection. These algorithms are
not only lightweight enough to be run online, they are fast
enough to process batches of historical data. For example,
for the results above the CDF algorithm takes approximately
10 seconds to process 5 hours worth of data and the MSD
algorithm takes 5 seconds. This is about 1800 to 3600 faster
than “real time”, providing plenty of headroom to scale up to
a system with many input streams.

VI. RESULTS FOR A CPU-BOUND GRID JOB

We next evaluated whether the results for GridFTP carried
over to a simple CPU-intensive job. We found that in fact the
results were quite different, as described below.

A. Experiment Configuration

Using one Emulab pc3000 node, we ran a NetLogger-
instrumented program that performs FFT computations using
the popular FFTW [18] library. Once a minute, we ran a
CPU injection. Over the one-hour test, 53 CPU injections
were performed. Each of these injections was considered an
anomaly, so we can again apply our badness metric to evaluate
the results.

B. Results

The results of these tests are shown in Table VI, with the
best scores highlighted. We can see that the static approach
with smoothed input performs optimally. The heuristic ap-
proaches, which did well for the network data, suffer from
many false negatives. This shows that in certain environ-
ments (like single machine CPU usage) the baseline can be
effectively set and adaptation simply lowers the detector’s
sensitivity.

Although the CPU ”job” presented here was trivial, we
believe that its consistent performance profile is typical of
a significant class of real applications. For these kinds of



TABLE VI
ANOMALIES DETECTED IN CPU-BOUND JOB DATA USING THE VARIOUS

APPROACHES (OUT OF 53 POSSIBLE).

Algorithm Correct FP FN Badness
MSD-ss 53 0 0 0
MSD-su 53 1 0 0.019
MSD-hs 34 0 19 0.5588
MSD-hu 34 0 19 0.5588
CDF-ss 53 0 0 0
CDF-su 53 9 0 0.17
CDF-hs 32 0 21 0.656
CDF-hu 32 1 21 0.688

processes, a well-established baseline can lead to simple
anomaly detection, e.g. a static baseline with mean and stan-
dard deviation. This further supports our belief that different
algorithms are appropriate for different sorts of data.

VII. PREVIOUS AND RELATED WORK

In this section we review some related work on monitoring
and data reduction, and anomaly prediction and identification.

A. Monitoring and Data Reduction

We have been involved in instrumenting and understanding
application and Grid behavior for over 10 years. Our previous
papers have described NetLogger performance [14], the need
for dynamic instrumentation [19], and a NetLogger component
to detect workflow anomalies [20]. This paper extends this
work by introducing a NetLogger summarization component.

Sampling and clustering have been used by other monitoring
tools to reduce the overhead of monitoring, mostly in the
context of parallel computing. The Pablo monitoring system
uses event throttling [6] to replace event tracing with counts
by monitoring the observed event rate and comparing it to
user-specified high and low water marks. Although throttling
prevents generation of large data volumes, it sacrifices a
consistent view of application behavior. TAU [7] includes an
option to automatically eliminate monitoring of the smallest
(thus, most perturbed) routines. However, this requires a
training run, and unlike summarization or sampling removes
all information about those routines. dynSIGMA [21] uses
Dyninst’s ability to dynamically activate instrumentation for
sub-sampling of memory traces. The technique is interesting,
but memory traces are too fine-grained for distributed com-
puting, and current work doesn’t extend to traces of arbitrary
application events.

Data management and reduction have been widely studied
in many areas, including medical data analysis [22], financial
time series prediction [23], and biological data sampling [24].
Data reduction strategies chiefly rely on statistical techniques
such as averaging, variance, covariance matrices, sampling,
and principal component analysis. In previous work, we
examined correlation elimination to diminish the volume of
performance data [25] [26].

B. Prediction and Identification of Anomalies

Anomaly prediction and analysis is a core statistical pursuit,
and its application to ongoing process control goes back at
least to Shewhart’s work on control charts in the 1930’s
[27]. Anomaly detection applied to intrusion detection and
computer security has been an active area of research since it
was originally proposed by Denning [28]. These approaches
typically build a profile over the normal data and then check
to see how well new data fits that profile [29].

Cottrell, et al. present a study comparing a number of
techniques for detecting anomalies in network data [30].
While their techniques are effective, all are computationally
quite expensive by comparison to our approach. The Network
Weather Service efforts have explored forecasting poor net-
work performance based on active network probing[31].

Application-level performance anomaly detection has been
pursued by Allen et al. [32] to detect performance contract
violations using a window average based method on the
execution time of an application. Zhang et al. [33] show
how to detect compliance with service-level objectives in a
dynamic environment by managing an ensemble of Bayesian
network models. Kelly [34] proposes how to use queuing
theory observations to distinguish performance faults from
overload. All of these are heavy weight approaches that are
not generally applicable to near real-time detection.

Yang et al. [35] examine techniques for modeling cyclical
performance variation. Mirgorodskiy and Miller [36] describe
a method for dynamic instrumentation of executables that can
be used to detect anomalies based on unusual control flow as
opposed to unusual performance.

VIII. CONCLUSIONS

In this paper we present an infrastructure for troubleshooting
performance problems in a large distributed system such as a
Grid. We introduce a new component, an application library
which performs application log summarization with minimal
overhead, dramatically reducing the amount of log information
while still preserving key performance information. We ex-
plore a variety of statistical methods to do anomaly detection,
and conclude that no single method works for all types of
anomalies. A Grid anomaly detection system should likely use
multiple statistical methods in parallel, and combine and filter
the results based the types of anomalies one is interested in
learning about.
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