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Abstract: Let M be a pinched negatively curved Riemannian manifold, whose unit
tangent bundle is endowed with a Gibbs measure m  associated with a potential F.
We compute the Hausdorff dimension of the conditional measures of mr. We study
the m p-almost sure asymptotic penetration behaviour of locally geodesic lines of M
into small neighbourhoods of closed geodesics, and of other compact (locally) convex
subsets of M. We prove Khintchine-type and logarithm law-type results for the spiraling
of geodesic lines around these objects. As an arithmetic consequence, we give almost
sure Diophantine approximation results of real numbers by quadratic irrationals with
respect to general Holder quasi-invariant measures.

1. Introduction

Let M be a complete connected Riemannian manifold with pinched sectional curvature
at most —1, and let (g");cr be its geodesic flow. In this paper, we consider for instance a
closed geodesic Dg in M, and we want to study the spiraling of geodesics lines around
Dy. Given an ergodic probability measure m invariant under (g’);cr, whose support is
the nonwandering set 2 of the geodesic flow, m-almost every orbit is dense in 2. Two
geodesic lines, having at some time their unit tangent vectors very close, remain close
for a long time. Hence m-almost every geodesic line will stay for arbitrarily long periods
of time in a given small neighbourhood of Dy. In what follows, we make this behaviour
quantitative when m is any equilibrium state.

Let F:T'M — Rbea potential, that is, a Holder-continuous function. Let .# be
the set of probability measures m on T'! M invariant under the geodesic flow, for which
the negative part of F is m-integrable, and let A,, (gl) be the (metric) entropy of the
geodesic flow with respect to m. The pressure of the potential F is

P =P(F)= sup (hm(gl) +/ de). (D)
meH T'M
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Let m r be a Gibbs measure on 71 M associated with the potential F (see [PPS] and Sect.
2). When finite and normalised to be a probability measure (and if the negative part of F is
m p-integrable and the sectional curvature of M has bounded first order derivatives), it is
the unique equilibrium state, that is, it attains the upper bound defining the pressure P (F')
(see [PPS, Theo. 6.1], improving [OP] when F' = 0). For instance, m ¢ is (up to a constant
multiple) the Bowen—Margulis measure mpy if F = 0, and is the Liouville measure if
F is the strong unstable Jacobian v — — % =0 log Jac (gtlwsu(v)) (v) and M is compact
(see [PPS, Theo. 7.2] for a more general situation). We will use the construction of
mp by Paulin et al. [PPS] (building on work of Ledrappier [Ledl,Led2], Hamenstiddt
[Ham1,Ham?2] especially for the harmonic measures, Coudene [Cou], Mohsen [Moh])
via Patterson densities (,uf )rei7 on the boundary at infinity 9o M of a universal cover
M of M associated with the potential F.

We first prove (see Sect. 3) the following result relating measure theoretic invariants
of mp and uf , which extends Ledrappier’s result [Led4, § 4] when F' = 0.

Theorem 1.1. [fmF is finite and F is m p-integrable, if the sectional curvature of M has
bounded first order derivatives, then the Hausdorff dimension of the Patterson measure
% f (with respect to the Gromov—Bourdon visual distance on d-c M) is equal to the metric
entropy of the Gibbs measure m g (for the geodesic flow).

Let Dy be a closed geodesic in M of length £¢. If vy € T'M is tangent to Dy, let

max{ [1° F(g'vo) d1, [1° F(g'(—vo)) dt}

PO:P(FlTlDO)Z ZO

2)

We will prove that Py < P if mp is finite. Let €9 > 0 and let ¢ : [0, +oo[ — [0, +o0o[
be a Lipschitz map. As introduced in [HP2], let E(yr) be the set of (eq, ¥)-Liouville
vectors around Dy, that is, the set of v € T1M such that there exists a sequence (#;),eN
in [0, +oo[ converging to +o0o such that for every ¢ € [t,, t, + ¥ (#,)], the footpoint of
g"v belongs to the ep-neighbourhood 4¢, Dy of Dy.

The Khintchine-type result describing the spiraling around the closed geodesic Dy
is the following (simplified version of the) main result of this paper (see Sect. 4).

Theorem 1.2. Assume that M is compact. If the integral f0+°° eV OP=P) gt diverges
(resp. converges) then m p-almost every (resp. no) point of T'M belongs to E (V).

When F = 0 (that is, when m ¢ is the Bowen—Margulis measure), this result is due
to Hersonsky and Paulin [HP2]. As m can be taken to be the Liouville measure, this
theorem answers a question raised in loc. cit. This result, in this particular case when Dy
is a closed geodesic, can be restated as a well-approximation type of result of points in
the limit set of the fundamental group of I' by an orbit of a loxodromic fixed point, see
for instance [FSU] for very general results (their measure on the limit set corresponds
to F = 0, though an extension might be possible), and the references of [FSU] for
historical motivation and partial results. This result is a shrinking target problem type,
and our main tool is the mixing property of the geodesic flow of M for Gibbs measure
(see [PPS]).

We stated this result as such to emphasize its novelty even in the compact case, but
it is true in a much more general setting, both from M and Dg (see Theorem 4.1). For
instance, when M is a geometrically finite locally symmetric orbifold, when F' has finite
pressure P(F) and finite Gibbs measure mr, when Dg is a compact totally geodesic
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suborbifold (of positive dimension and codimension), the result still holds. When M
is the quotient of the real hyperbolic 3-space by a geometrically finite Kleinian group
I', when F has finite pressure P(F) and finite Gibbs measure m g, and when Dy is
the convex hull of the limit set of a precisely invariant quasi-fuschian closed surface
subgroup I'g of T, the result still holds. See Sect. 4 for more examples.

When F = 0, the following logarithm law for the almost sure spiraling of geodesic
lines around Dy is due to Hersonsky and Paulin [HP2]. Let 7 : T'M — M be the unit
tangent bundle. Define the penetration map p : 7'M x R — [0, +00] of the geodesic
lines inside .4, Do by p(v, 1) = 0 if w(¢,v) ¢ ¢, Do, and otherwise p(v, 1) is the
maximal length of an interval 7 in R containing ¢ such that 7 (¢sv) € A¢, Dy for every
sel.

Corollary 1.3. Under the assumptions of Theorem 1.2, for m p-almost every v € T'M,
we have

. p(v, t) 1
lim sup = .
t—>+00 logt P — Py

In Sect. 5, we will give arithmetic applications of Theorem 1.2. We will in particular
generalise to a huge class of measures on R the Khintchine-type result of approximation
of real numbers by quadratic irrationals over Q, which was proved in [PaP2] for the
Lebesgue measure, and prove other 0-1-laws of approximations of real numbers by
arithmetically defined points. To conclude this introduction, we give one example of
such a result.

Let a, b € N — {0} be positive integers such that the equation x> —a y> —bz> =0
has no nonzero integer solution (for instance @ = 2 and b = 3). Let ', be

x+tyJa z—tJay 4 2 2 42 2_}
{(b(z+tﬁ)x—yﬁ) sy €2 and xT—ayt —bzitabt” =1y,

which is a discrete subgroup of SL>(IR), whose action by homographies on P;(R) =
R U {00} is denoted by - . If « € R is a solution of the equation y - X = X for some
y € T4 p, then « is quadratic over Q(4/a), and if furthermore o ¢ Q(/a), we denote
by « its Galois conjugate over Q(y/a). Given y € T, , with trace try # 0, £2, we
denote by y* and y ~ the attractive and repulsive fixed points of y in R U {oo}.

Given a continuous action of a discrete group G on a compact metric space (X, d),
recall that a Holder quasi-invariant measure (see for instance [Led3,Ham?2]) on X (for
the action of G) is a probability measure p such that for every g € G, the measure g, i
is absolutely continuous with respect to u, and the Radon-Nykodim derivative df—*”

coincides p-almost everywhere with a Holder-continuous map on X, which we will still
denote by df—;“.

The next result is a Khintchine-type of result, under a huge class of measures, for
the Diophantine approximation of real numbers by quadratic irrationals over Q(y/a) in

a (dense) orbit under the arithmetic group I'y, , (extended by the Galois conjugation).

Corollary 1.4. Let 1 be a Holder quasi-invariant measure on R U {oo} for the action
by homographies of Ty, p. Let yy be a primitive element in T, with tr(yog) # 0, £2.
For p-almost every x € R, we have

lx — «af

lim inf — =0 (resp. = +00)
a€ly, p-{yy vy ) la—a”|—=0 loe — a?|(— IOg lo — )¢
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. 1 1
ifs < =5 (resp. s > m), where

d(iy~H,
log Z (Vd—u)'u()ﬁ)

v€la b, 2<|tr(y)|<s

6 = lim sup
§—>+00 lo

maX{d(VO )*/’“( (-)F) d(VO)*M(VO*)}'

and 8y =
0= 2 axcosh( L yo‘ )

We refer to Sect. 5 for more general results, in particular for approximations with
congruence properties and for the approximation of complex numbers by quadratic

irrationals over an imaginary quadratic extension of Q.

2. A Summary of the Patterson—Sullivan Theory for Gibbs States

Most of the content of this section is extracted from [PPS], to which we refer for the
proofs of the claims and for more details.

Let M be a complete simply connected Rlemannlan manifold with (dimension at
least 2 and) pinched negative sectional curvature —b> < K < —1, and let xo € M be
a fixed basepoint. For every € > 0 and every subset A of M, we denote by A A the
closed e- nelghbourhood of Ain M.

We denote by 77 : T'! M — M the unit tangent bundle of M, where T'! M is endowed
with Sasaki’s Riemannian metric. Let d, M be the boundary at infinity of M. We denote
by AG the limit set of any discrete group of isometries G of M, and by ¢ AG the convex
hull in M of AG, if AG has at least two elements.

LetI"bea nonelementary (not virtually nilpotent) discrete group of isometries of M.
Let M and T' M be the quotient Riemannian orblfolds F\M and [\ 7! M, and let again

:T'M - M be the map induced by 7 : T'M — M We denote by (g");cr the
geodesm flow on 7' M, as well as its quotient flow on T'' M.

For every v € T'! M, letv_ € oM and v, € BOOM respectively, be the endpoints
at —oo and +oo of the geodesic line g, : R — M defined by v (that is, such that
gv(0) = v). Let 82 M be the subset of dsc M x 9ooM which consists of pairs of distinct
points at 1nﬁn1ty of M. Hopf’s parametrisation of T'M is the homeomorphism which
identifies 7'M with 82 M x R, by the map v + (v—, v4,1), where 7 is the signed
dlstance of the closest point to xg on g, (R) to 7 (v). Let QT be the T-invariant set of
v € T'M such that v_, vy € AT, whose image in 7! M is the nonwandering set of the
geodesic ﬂow of T'M.

Let ¢ : T'M — T'M be the (Hlder-continuous) antipodal (ﬂzp) map of T'M
defined by (v = —v. We denote the quotient map of ¢ again by ¢ : T'M - T'M.

Let F : T! A/i — R be a fixed Holder-continuous I'- 1nvar1ant function, called a
potential on T'M. It induces a Holder- contmuous function F : T'M — R, called a
potential on T' M. Two potentials F and F* on T'M (or their induced maps on T'M)
are cohomologous if there exists a Holder-continuous I'-invariant map G : T'! M — R,
differentiable along every flow line, such that

- - d -
F*(v) — F(v) = E|;=0G(¢’v)' 3)

For any two distinct points x, y € M, let Uyy € TXIM be the initial tangent vector of
the oriented geodesic segment [x, y] in M that connects x to y; define
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y o d(x,y) _
/ F =/ F(g'vyy) dt
X 0

and |, ;C F =0forall x € M. Given a hyperbolic element y € I" with translation axis
Ay, the period of y for F is,forany x € A,

yx _
Perr(y) =/ F.
X

The critical exponent of (I', F) is

. 1 vy
or, r = lim sup — log E el F,
n
n>+00 yel,n—1<d(x,yy)<n

When F = 0, then dr, r is the standard critical exponent dr of I". Note that

y x
/F:/ Fou, 4)
x y

that 6y p = dr, Fo, > —00 and that dr p4. = ér, F + ¢ for every constant ¢ > 0 (see
[PPS, Lern 3.3]). We assume that dr, p < +00 (this is for instance satisfied if F is
bounded, see [PPS, Lem. 3.3]). By [PPS, Theo. 6.1], if the sectional curvature of M has
bounded first order derivatives, then the critical exponent dr, r is equal to the pressure
P(F) of F on T'M, defined in Eq. (1). The Poincaré series

Or, F,x(s) = Z el =

yell

of (I', F) converges if s > dr, r and diverges if s < dr r. We say that (I', F) is of
divergence type if Qr, F, x,(s) diverges at s = dr, r.

The (normalised) Gibbs cocycle of F is the function CF : BOOM xMxM— R
defined by

& &
E x> Cfx.y)= lim [ (F=érp)— [ (F—=6rp),
1—+00 y

X

where ¢ — & is any geodesic ray with endpoint & € 3o M. We have CF+¢ = CF for
every constant ¢ € R. If F = 0, then C¥' = 818, where f is the Busemann cocycle.

By [PPS, Lem. 3.2, 3.4], there exists a constant ¢c; > 0 (depending only on the
Holder constants of F and on the bounds of the sectional curvature of M ) such that for
allx,y,z € M, we have

Z~ Z~ -
‘/F—/ F‘fq AN pdey)  max  |F), (5)
X y

71 (B(x,d(x, y)))
and, for every & € 3001\7 )

| CEGy) | <ere®™ Y +d(x,y)  max |F|. (6)
7N (B(x,d(x, y)))
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A family (uf ) e 7 of finite measures on 00 M, whose support is the limit set A" of
', is a Patterson density for the pair (I, F) if

F F
y*l’Lx = I’Lyx

forally e I'and x € M, and if the following Radon-Nikodym derivatives exist for all
X,y € M and satisfy for almost all £ € doo M

duf

duf

F
§) = Y,

A Gibbs measure on T' M for (', F) is the measure /i  on T' M given by the density
i (v) = = 00T COTOD gy Fery ) T (v,) di )

in Hopf’s parametrisation. Patterson densities (uf )reir and (u,f ) ez €xist (see [PPS,
§3.6], their construction, whence the existence of mp, requires only I' to be nonele-
mentary and r, 7 < +00). The Gibbs measure /nr is independent of xy, its support
is QI', and it is invariant under the actions of the group I' and of the geodesic flow.
Thus (see [PPS, §2.6]), it defines a measure m r on T M which is invariant under the
quotient geodesic flow, called a Gibbs measure on T'M. For every constant ¢ > 0,
note that (,uf)xe[g, is also a Patterson density for the pair (I, F + ¢), thus m g is also
a Gibbs measure for (T, F+ ¢). If mp is finite, then the Patterson densities are unique
up to a common multiplicative constant (see [PPS, §5.3]); hence the Gibbs measure
mrF is uniquely defined, up to a multiplicative constant, and, when normalised to be a
probability measure, it is the unique equilibrium state for the potential F, if the negative
part of F is m p-integrable and if the sectional curvature of M has bounded first order
derivatives, see [PPS, Theo. 6.1].

By its definition as a quasi-product, the Gibbs measure 7 satisfies the following
property, used without mention in what follows: for every x € M, the preimage by
v > vy of a set of measure 0 (respectively > 0) for 1/ has measure 0 (respectively
> 0) formp.

We refer to [PPS, §8] for finiteness criteria of m g, in particular satisfied if M is
compact. Babillot [Bab, Thm. 1] showed that if m g is finite, then it is mixing for the
geodesic flow on 7'! M if the length spectrum of I is nonarithmetic (that is, if the set of
translation lengths of the elements of I" is not contained in a discrete subgroup of R).
This condition, conjecturally always true, is known, for example, if I' has a parabolic
element, if AT is not totally disconnected (hence if M is compact), or if M is a surface
or a (rank-one) symmetric space, see for instance [Dall,Dal2].

For every subset A of M and every point x in M U d5c M, the shadow of A seen from
x is the set O A of points at infinity of the geodesic rays or lines starting from x_and
meeting A. By Mohsen’s shadow lemma (see [PPS, Lem. 3.10]), for every x, y € M, if
R > 0 is large enough, there exists ¢ = c¢(R) > 0 such that for every y € I', we have

1 Y7 . Y(F .
el < (0 (B(yy, RY) < e e T, ®)
Here is a new consequence of Mohsen’s shadow lemma which will be useful in this
paper. Recall that a discrete group G of isometries of M is convex-cocompact if its limit
set AG contains at least two points, and if the action of G on the convex hull ¥ AG in
M of AG has compact quotient.
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Lemma 2.1. Let F0~ be a convex-cocompact subgioup of I' such that ér,, r, < or, F,
where Fy : To\T'M — R is the map induced by F. Then /LQ) (ATg) =0.

Proof. Since I'g is convex-cocompact, if R is big enough, for every n € N, we have

ATy C U Oxy(B(yxo. R)).
y€lo, d(xo, yxo)=n

Hence, by Eq. (8), there exists ¢ > 0 such that for every n € N,

V0 (F—§
uh (AT) < > 1l (O (Byxo, R)) <c > O (F—br. )
v€lo, d(x0, yxo)zn y€lo, d(xo, yxo)=n

The Poincar§’ series. Ory, Fo, xOr, F') converges, as dr,, f, < dr, r. Since the remainder
of a converging series tends to 0, this proves the result. O

A parabolic subgroup of I' is a maximal infinite subgroup I'g of I whose limit set
AT is a singleton. It is bounded if T'o\(AT" — AT() is compact. For every bounded
parabolic subgroup I'g, if AT'g = {&o}, there exists (see for instance [Bow]) a unique
I"-equivariant family (%s,)aer/r, of maximal closed horoballs in M with pairwise
disjoint interiors and with ZZ, centred at &. The horoball JZ, is precisely invariant

o ~
under I, that is, its stabiliser in I" is I'g and the inclusion /2%, C M induces an injection

Co\ 7%, — '\ M. Note that if ['g is a parabolic subgroup of I' and if m r is finite, then
we also have ;Lfo (AT¢) = 0 (see [PPS, Prop. 5.13 (1)]).

3. Hausdorff Dimension of Patterson Measures of Potentials

Let M be a complete simply connected Riemannian manifold with pinched negative
sectional curvature at most —1 having bounded first order derivatives. Let I" be a nonele-
mentary discrete group of isometries of M.Let F : T'M — R be a Holder-continuous
I- 1eranant function. Assume that § = 8r, ¢ is finite. Let m ¢ be the Gibbs measure on
T' M associated with a pair of Patterson densities ((15°) .57, (1), 57) for (T, F o)
and (T, F). We use the notation introduced in Sect. 2.

We fix in this section a point x in M. We denote by d, the Gromov-Bourdon visual
distance on d5c M seen from x, defined (see [Bou]) by

1
dy(E, 1) = tlirfloo 2 (@&, n)—d(x, &) —d(x, 'h))’ 9)

where ¢ — &, n; are any geodesic rays ending at &, n respectively. We endow from now
on 0o M with the distance d.

The aim of this section is to compute the Hausdorff dimension of the Patterson
measure ,uf associated with the potential F (which will be independent of x). Recall
that the Hausdorff dimension dim g (v) of a finite nonzero measure v on a locally compact
metric space X is the greatest lower bound of the Hausdorff dimensions dimg (Y) of the
Borel subsets Y of X with v(Y) > 0.

Let us give a motivation for such a computation. As mentioned in the introduction,
we are interested in this paper in studying whether the set E (1) of vectors of 7! M that
are well-spiraling, as quantified by ¥, around a given closed geodesic Dy has full or zero
measure for the Gibbs measure m r. Varying the potential F may be useful to estimate the
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Hausdorff dimension of E (y/): if f +00 GV OPEr1pg)=PED 4y diverges, as we will prove

in Sect. 4, the set E (y) has full measure for mp,and hence dimgy (E(y)) > dimy (mp).
Note that the Hopf parametrisation of T'M is Holder-continuous (though usually not
Lipschitz, except in particular when Misa symmetrlc space), and m g is in the same
measure class as the product measure d ,uF ' ® d/,L ® dt. Hence dimy (m ) may be
estimated using dim H(Mx ) (that we will prove to be equal to dim H(Mx °4)), and is in
fact equal to 2 dimpy (uf) + 1 if Misa symmetrlc space.

The main result of this section, proving Theorem 1.1 in the introduction, is the
following one. To simplify the notation, let h(m) = h (g ) be the (metric) entropy of

the geodesic flow with respect to a finite nonzero (g*) [GR—lnvarlant measure m on T'' M
normalised to be a probability measure.

Theorem 3.1. If the Gibbs measure mp is finite and if F' is mp-integrable, then the
Hausdorff dimension of the Patterson measure /,LX on (3o M, dy) associated with F
satisfies

dimp (uf) = dimp (ul ) = h(mp) < dr. (10)

If M is convex-cocompact, then the last inequality is an equality if and only if F — P (F)
is cohomologous to the zero potential.

We think that the convex-cocompact assumption in the last claim could be improved
(see the comment at the end of this section).

The first claim is a generalisation of a result of Ledrappier [Led4], who proved the
theorem in the particular case F = 0. Then ¥ is the standard Patterson measure of
I and the associated Gibbs measure mp is the Bowen-Margulis measure mpm. Let
AT denote the conical (or radial) limit set, that is, the set of £ € d,oM for which
liminf,_, 1 d(p(t), ['x) < 400, where p is any geodesic ray with point at infinity &.
Let htop(gl) be the topological entropy of the geodesic flow on 7' M. If mpy is finite,
then Ledrappier [Led4, Theo. 4.3] proves furthermore that

dimpy (1) = h(mpm) = hiop(g') = dimp (A:T) = 5r.

The second equality is due to Otal and Peigné [OP]. The last equality, which does not
require the assumption that mpy is finite, is due to Bishop-Jones in constant curvature,
to Hamenstidt and to the first author (see [Pau]) in general.

Proof. Upto normahslng uf + » which does not change its Hausdorff dimension nor = H nr ” ,

we may assume that [,Lx is a probability measure. The proof will follow from a series of
claims. The following is a well known useful alternative characterisation of the dimension
of the measure, which was also used by Ledrappier [Led4, Prop. 2.5].

Lemma 3.2. For any finite nonzero measure v on a compact metric space X, the Haus-
dorff dimension dimg (v) is the v-essential greatest lower bound on x' € X of

.. . logv(B(x', €))
hm 1nf _—
e—0 loge

Forevery & € doo M., let pg : [0, +o0[ — M be the geodesic ray with p (0) = x and
pg(+00) = &. The next lemma compares shadows of balls in M with (visual) balls in
0o M
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Lemma 3.3 (Bourdon [Bou)). For sufficiently large R > 0, there exists D = D(R) such
that, foralle > 0and & € 0o M,

Oy (B(pg(log(1/€) + D), R)) C By, (§,€) C Ox(B(pg(log(l/€) — D), R)).
Our first step in proving the theorem is the following result.

Proposition 3.4.(1) If (T, F) is of divergence type then dimy (,u ) < dimyg(A.T) =
dr;
(2) If mF is finite and if F is m p-integrable, then

1

dimy (uf) < P(F) -
lmell Jriyg

Proof. By [PPS, Theo. 5.12], if (T", F) is of divergence type, then the set A I" has full
nF-measure, and thus the inequality in Part (1) follows immediately from the definition
of the Hausdorff dimension of measures. The equality in Part (1) has already been
mentioned.

In order to prove Part (2), note that (I', F) is of divergence type if mp is finite, by
[PPS, Coro. 5.15]. It hence suffices by Lemma 3.2 to show that for ,uf -almost every &
in the full ,uf -measure subset A I', we have

. loguf(Bg, (&, €)
lim inf
€e—0 loge

< P(F) -

Fdmp.
lmell Jrim

Let & € A I". By the definition of A.I", there exist K > 0, a sequence (¥,)eN in '
and a sequence (#,),eN converging to +oo in [0, +oo[ such that d (g (t,), ynx) < K. By
the triangle inequality, we have d(x, y,x) < t, + K and the ball B(pg(t,), R) contains
the ball B(y,x, R — K), for every R > K. Let us apply the inclusion on the left in
Lemma 3.3 with €, = e *P® which tends to 0 as n — +00 (hence in particular may
be assumed to be in ]0, 1]). We have

log nf (Ba, (£, €n)) logux (Ox(B(ps(ta), R))) logu (Ox(B(Ynx, R — K)))
loge, loge, loge,

11
By Mohsen’s shadow lemma (see Eq. (8)) and by [PPS, Theo. 6.1] which says that
P(F) = ér, r, if R is large enough, there exists ¢ > 0 such that, for every n € N,

1 e
1 (O (Byux, R — K))) > — el (F=PED,
C

By Eq. (5), we have [1"* F= fot” F(pg(s)) ds+O(1) asn — +oc. Thus Eq. (11) gives,
as n — 400,

log 11 (B, (£, €n)) fxy”%f — P(F)) —logc
loge, - —t, + D(R)

s
< (P(F) -~ /0 F(pe(s)) ds) (1 + o(1)).

n
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By [PPS, Theo. 5.4], since (T, F) is of divergence type, the geodesic flow in 7'M is
ergodic for m . Since F is m p-integrable on T M, since m r is finite and by the quasi-
product structure of 77z in Hopf’s parametrisation, for u -almost every &, we have by
Birkhoff’s ergodic theorem

1

I
lim — F(g*p:(0))ds =
=100 1, Jo ¢ mell Jriu

Fdmp.

This proves Proposition 3.4. 0O
We next want to show that the reverse inequality holds.

Proposition 3.5. If mp is a finite measure and if F is m g-integrable, then dimpy (11 xF ) >
1
P(F) = pumq Jpiy F dmp.

Proof. To prove the result, by Proposition 3.2, we only need to show that for 1/ -almost
every &, we have

F
liminf 28 BaE ) p gy

meg.
e—>0 loge ||mF|| T'M

As in the proof of [Led4, Prop. 4.6], since mF is finite and by the quasi-product
structure of m g, by Poincaré’s recurrence theorem and Birkhoff’s ergodic theorem, for
wk-almost every &, there exist K > 0, a sequence (y,),en in I' and an increasing
sequence (#;),eN, converging to +oo in [0, +oo[, such that d(pg (1), yox) < K, and
such that the limit lim,,_ 4+ #, /7 exists and is positive.

Let R be big enough and let ¢ = ¢(R + K) be as in Mohsen’s shadow lemma (see
Eq. (8)), so that, for every n € N,

1F (O (B(yax, R+ K))) < ¢ e F=PE),

By the triangle inequality, the ball B(y,x, R + K) contains the ball B(pz(t,), R). For
every n € N, let €, = e PR which decreases to 0. For every € € 0, 1] small
enough, let n = n(e) € N be such that ¢, > € > ¢,4+1. By the inclusion on the right
in Lemma 3.3 and by the same arguments as in the end of the proof of the previous
proposition, we have

log 1y (Ba, (. €)) _ logpuy (Ba, (§. €n)) _ log i (Ox(B(pe(tn). R)))

loge - log €541 - log €541
_ —logui (Ox(B(ps(tn). R))) _ —logpi (Ox(B(yax. R + K)))
tw+1 + D(R) B tas1 + D(R)
— [I"(F — P(F)) —logc
- In+l + D(R)
_ WP - ) [y Fodmp +0(1)
- tn+1 + D(R)

Taking the inferior limit as € — 0, since lim;,— 400 In — 1, the result follows. O

Intl

Now, by the Variational Principle [PPS, Theo. 6.1], since m is finite and since F is
m p-integrable, we have P(F) = h(mp) + m Jpiy Fdmp.Sincet: T'M — T'M
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conjugates (g");cr t0 (g7");cr, and since mpo, = g, we have h(mpo) = h(mp).
Hence Eq. (10) in Theorem 3.1 follows from Propositions 3.4 and 3.5 applied to both F'
and F o .

If I is convex-cocompact, then mr and mpy = mg are finite and F is integrable
for mr and mg. By the uniqueness in the Variational Principle (see [PPS, Theo. 6.1]),
if h(mp) = ér = h(mg), then ”’m"—H = HmoH By the Hamenstidt-Ledrappier cor-
respondence (see [Led3,Ham2,Sch] and the following proposition) saying that if I" is
convex-cocompact, the cohomology class of a potential with zero pressure is determined
by its associated Gibbs measure, the last claim of Theorem 3.1 follows. O

We end this section by a comment on the correspondence between the potentials and
their associated Patterson measures, which will be used at the end of this paper.

Proposmon 3.6 (Hamenstddt—Ledrappier). If I' is convex-cocompact, the map_ F
u = uxo induces a bijection from the set of I'-invariant Holder maps F : QI' —
R with zero pressure P(F) = 0, up to cohomologous maps, to the set of measure
classes of Holder quasi-invariant measures i on (AT, dy) endowed with the action of
. Furthermore, for every hyperbolic element y € T with attractive fixed point y* € AT,
the period of y for F satisfies

d(y Han

m ™). (12)

Perp(y) = log

Proof. The reader who is not interested in seeing how this result can be deduced from
[Led3] (whose arguments extend from the cocompact to the convex-cocompact case, as
observed in [Sch]) may skip this proof.

Recall that 8OOM has a unique Holder structure such that for every x € M, the map
v — v, from T M to docM (whose inverse will be denoted by & > v, ¢) is a Holder
homeomorphlsm

The following definitions are taken from [Led3]. A Holder cocycle for the action of I
ondoMisamapc: I' x AT — R, which is Holder-continuous in the second variable,
such thatc(yy’, &) = c(y, y'&)+c(y’, &) forall y, y’ € T and & € AT. The period for
¢ of a hyperbolic element y of T is ¢(y, y*), where y™ is the attractive fixed point of
y. Two Holder cocycles ¢ and ¢’ are cohomologous if there exists a Holder-continuous
map U : AT — R such that c(y, &) — '(y, &) = U(y&) — U(&) forall y € T and
& € AT'. Given a Holder quasi-invariant measure u, its associated Holder cocycle is

¢yt (¥, 6) — —log W@). The verification that this is indeed a Holder cocycle
is immediate. o

Fix xo € QI'. Given a potential (that is, a I'-invariant Holder map) F : QI' — R, the
map cr : (¥, &) — CgF(y_lxo, Xo) is a Holder cocycle (see [PPS, Prop. 3.5 (ii)] for its
Holder-continuity, F being bounded since F\QF is compact). Hence by the definition
of a Patterson density, given a potential F : QT — R, the measure “xo is a Holder quas1—

invariant measure, whose associated Holder cocycle is cr. If two potentials F and F*
are cohomologous, then their associated Holder cocycles ¢ r and ¢ g+ are cohomologous:
it is easy to check that if G : QI — R is H6lder-continuous, I'-invariant, differentiable
along every flow line, and satisfies Eq. (3), then the map U : AI' — R defined by
& > G(vy, ¢) is Holder-continuous and satisfies cp«(y, §) —cp(y, &) = U(y§)—U(§)
forally e 'and &€ € AT.
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Let us relate the periods of a potential F to the periods of the Holder cocycle cr. Let
v be a hyperbolic element of I', with translation axis A, translation length £(y) and
attractive fixed point ;. By the I'-invariance and the cocycle property of C¥, if p is the
closest point to xp on A, we have Cf; (y 'x0, x0) = C;; (y~'p, p). Hence, by the

definition of C¥', with t > &, the geodesic ray from p to y*, we have (note that there
are sign differences with [Led3])

-1

cr(y,y") = CL(y ™ x0, x0) = CLey ' p, p)

t

g N
= lim [ (F— P(F)) —/ (F — P(F))
14

—>+00 )/_1[7
p ~
= —/ (F— P(F)) = P(F)£(y) — Perp(y). (13)
y~lp

By [Led3, Théo. 1.c], two Holder quasi-invariant measures have the same measure
class if and only if their associated Holder cocycles are cohomologous, and this holds if
and only if the periods of these Holder cocycles are the same. By LivSic’s theorem (see
[PPS, Rem. 3.1]), two potentials F and F* are cohomologous if and only they have the
same periods. By Eq. (13), the periods of two potentials F' and F* with zero pressure
are the same if and only if the periods of the associated Holder cocycles ¢ and cp=
are the same. Hence the map which associates to the cohomology class of a potential
F the measure class of the Holder quasi-invariant measure ,ux is well-defined, and is
injective. To prove that it is surjective, we start with a Holder quasi-invariant measure
1, we consider its associated Holder cocycle ¢, the proof of [Led3, Théo. 3] shows that
there exists a potential F such that the Holder cocycle cr is cohomologous to ¢, and
we apply again [Led3, Théo. 1.c] to get that u 50 and p have the same measure class.

In order to prove Eq. (12), if Fisa potential with P(F) = 0, we have, by Eq. (13),

d(y_l)*MxO( +) _
dpk

It would be interesting to know if one could remove the assumption that I' is convex-
cocompact, up to adding the requirements on F that ér, r is finite and (I', F) is of
divergence type, and on pu that w is ergodic. This would improve correspondingly the
last claim of Theorem 3.1 and simplify the statement of the requirement on the class of
measures under consideration in Theorem 5.1.

log —cr(y,y") =Perp(y). 0

4. Almost Sure Spiraling for Gibbs States

We will study in this section the generic asymptotic penetration properties of the geodesic
lines, in a negatively curved simply connected manifold, under a discrete group of
isometries, inside a tubular neighbourhood of a convex subset with cocompact stabiliser,
not only as in [HP2] for the Bowen-Margulis measure, but for any Gibbs measure.

Let (M I, F, (,uF"‘)xeM, (ux )ycii> MF) be as in the beginning of Sect. 3, with
8 = or, r finite. We again use the notation introduced in Sect. 2.

Recall that a subgroup H of a group G is almost malnormal if, for every gin G — H,
the subgroup g Hg~' N H is finite. Let Iy be an almost malnormal and convex-cocompact
subgroup of I', of infinite index in I, let Co = ¥ AT'g be the convex hull of the limit set
of I'g. For instance, Cy could be the translation axis of a loxodromic element of I", and
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I the stabiliser of Co in I" (see [HP2, §4] for an explanation and for more examples). Up
to adding assumptions on the behaviour of the potential and on growth properties in cusp
neighbourhoods (including a gap property for the pressures), our result should extend
when I'p is assumed to be only geometrically finite instead of convex-cocompact, or
when I'g is a bounded parabolic group (in which case I'g is also malnormal with infinite
index in I") and Cj is a precisely invariant closed horoball centred at the singleton AT'.
We restrict to the above case for simplicity.

Let Fy : FO\T M — R be the map induced by F and let 8o = 8r,, F, be the critical
exponent of (I'g, Fp). Note that —oo < §p < § < +o0 by [HP2, Lem. 3.3 (iii)].

Let ¢ : [0, +00[ — [0, +oo[ be a measurable map, such that there exist ¢z, ¢z > 0
such that forevery s, t > ¢,i1f s < t+cp, then Y (s) < ¥ () +c3. Recall (see for instance
[HP1, § 5]) that this condition is for instance satisfied if 1 is Holder-continuous; it implies
that e¥ is locally bounded, hence it is locally integrable; and for every a > 0, the series
> en €V converges if and only if the integral [, ¢*¥(®) dt converges. Note that
the constants ¢, and c¢3 are unchanged by replacing ¥ by ¥ + ¢ for any ¢ € R.

Fix €g > 0. With the termlnology of [HP2], let E () be the set of (e, ¥)-Liouville
vectors for (I', ['p) in T'M, that is, the set of v € T'' M such that there exist a sequence
(ta)nen in [0, +oo[ converging to +00 and a sequence (¥;)neN in I' such that for every
t € [ty, ty + ¥ (t,)], we have g, (1) € y,4¢,Co. Note that E (1) is invariant under the
geodesic flow and under I'.

If Eisasetand f, g : E — ]0, +oo[ are maps, we write f < g if there exists ¢ > 0
such that % f < g < c f. The aim of this section is to prove the following result.

Theorem 4.1. Assume that the measure m is finite, and that there exists k > 0 such

VY = s @ F = ¢

that Zyer, t<d(x,yy)<t+k e[x e'® and Zaer‘o, t<d(x,ay)<t+x efX e, If
f0+°° eV O0=9 gt diverges (resp. converges) then in p-almost every (resp. no) point of
T'M belongs to E ().

Remarks (1) If the length spectrum of I' is nonarithmetic, then as said in Sect. 2, the
measure mr is mixing for t}le geodesic flow on T1M, hence by [PPS, Coro. 9.7], we
have 3 cr i yy)<r eli"F ~ ¢ e ast — +o0, for some ¢ > 0, a stronger
requirement than the first asymptotic hypothesis. Similarly, if the length spectrum of
"o is nonarithmetic (this implies that I'g is nonelementary), then the Gibbs measure
mp, of (I'g, Fp), being finite since ' is convex-cocompact, is mixing, and the second
asymptotic hypothesis holds. The fact that the second asymptotic hypothesis holds when
'y is elementary (that is, when Cj is the translation axis of a loxodromic element of I")
is given by [PPS, Lem. 3.3 (ix)].

(2) The above theorem implies Theorem 1.2 in the introduction. Indeed, M being
compact, the measure m r is finite and the length spectrum of I" is nonarithmetic. Hence
the two asymptotic hypotheses of Theorem 4.1 (which, up to changing ¥ > 0, does
not depend on the choice of x,y € M) hold by the previous remark. Note that if Cy
is the translation axis of a loxodromic element of T, if Dy is its image by M — M,
then §p = P(F|T|DO) by [PPS, Lem. 3.3 (ix)]. We have § = P (F) by [PPS, Theo. 6.1].
Hence the conclusion of Theorem 4.1 does imply Theorem 1.2.

Proof of Theorem 4.1. Before starting this proof, let us give more informations on I'p.
Recall that Cy is a non-compact, closed convex subset of M such that:

(1) Cy is I'p-invariant and g\ Cy is compact; up to replacing I'g by Stabr Cy, in which
"o has finite index and which remains almost malnormal (see the characterisation
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[HP2, Prop. 2.6 (3)]), so that g and the validity of the second asymptotic hypothesis
of Theorem 4.1 are unchanged, we may and we will assume that I'g = Stabr Cp;

(2) by [HP2, Prop. 2.6 (2),(4)], the limit set AT'q is precisely invariant (that is, we have
yATg N ATg = @ for every y € T' — I'g), and there exists kg > 0 such that for
every y € I' — I, the diameter of .#¢,Co N y A¢,Co is at most k.

Lemma 4.2. If Ty is a convex-cocompact subgroup of T', then §y < 4.

Proof. Since the Gibbs measure m r, is finite, by [PPS, Theo. 6. 1] the probability mea-

W is an equilibrium state for the potential Fy on o\ 7'! M, whose support is

contamed in the compact nonwandering set QI'g = [o\QTp of the geodes1c ﬂow on
To\T"! M. Since T is malnormal in T, the canonical map p : To\T'M — I'\T'! M,
when restricted on the nonwandering sets, is a finite-to- one map, by the above prop-
erty (2). Hence if for a contradiction 69 = 4, then p*( T ”) is an equilibrium state

for F on F\TIM . But by [PPS, Theo. 6.1], this equlhbnum state is unique, hence
MRy \ _ _mp
P*(nmpou) Tl

Since I'g is convex-cocompact and has infinite index in I, its limit set ATy is a
precisely invariant (by the above property (2)) nonempty closed subset with empty
interior in AT". Hence I'AT'¢ is a proper subset of AI' by Baire’s theorem Therefore
the support of p.m f,, which is the image by p of Fo\QF() = Fo\{v eT'M : V_,V; €
AT}, is a proper subset of the support F\QF =I\{fveT! M:v_ v, € AT} of mp,
a contradiction. 0O

sure

We start the proof of Theorem 4.1 by two reductions of the statement.

(i) Up to adding a big enough constant to F, which does not change m p, nor 8y — 8,
nor the asymptotics of the series in the above statement, we assume that o > 0. In
particular, § is finite and positive.

(ii) Let xo € Cp be a basepoint. Let Ro > 0 and let Uo = 7~ Y(B(xp, Rp)) be the set
of the unit tangent vectors in T M based at a point at distance less that Rg of xg.
If Ry is big enough, then mF(Uo) > (. Since mp is finite, it is ergodic under the
action of the geodesic flow on T'M (see [PPS, Coro. 5.15]). Hence the result is
equivalent to proving that, when Ry is big enough, if f0+°° eV OC0=9) g diverges
(resp. converges) then m p-almost every (resp. no) point of fJ\(’) belongs to E WHn f]\(’).

We now define the various subsets of Up that we will study during the proof of
Theorem 4.1.

Let Eq be the setof [y] € I'/ I'g such that d (xg, y Co) < Ry +¢€p. Since I' is discrete,
and since I'g acts cocompactly on Cy, only finitely many distinct images of Co under I
meet a given compact subset of M. In particular, the set Ey is finite.

Since I'g\ Cp is compact, let Ay > 0 be such that the restriction to the ball B(xq, Ao)
of the canonical projection Co — I'¢\Cyp is onto. Choose and fix once and for all a
representative y of [y] € I'/ I'g — Eo such that if p,, is the closest point to xo on y Cp,
then d(p,, yx0) < Ao. We will use this representative whenever a coset is considered.
For every [y] € I'/ g — Ey, define

= d(xo, yCo) = d(xg, py) > 0.

Remark 4.3. Note that by an argument similar to [HP2, Lem. 4.1], for every A € R, there
are only finitely many [y] € I'/ I'g — Ep such that D,, < A.
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Lemma 4.4. Assume that there exists k > 0 such that

Y50 F axy f
Z o = " and E o = oMt
yel, t<d(xq, yxo)<t+k aely, t<d(xq, axg)<t+k
., Y0 F st
X ~—
Then there exists k" > 1 such that ZD/]EF/ Fo. <Dy <t+x’ € 0 = e°’.

Proof. We start by proving that there exist c4, c5 > 0 such that for every ([y],«) €
I'/To x 'y, we have
D, < d(xq, yx0) < Dy + Ao, (14)

d(xq, yxo) +d(xo, axo) — c4 < d(xo, yaxo) < d(xo, yxo) +d(xo, cxp), (15)

yoaxo yxo _ axo
/ F —/ F —/ F( <. (16)
X0 X0 X0

Equation (14), as well as the inequality on the right hand side of Eq. (15), follow by
the triangle inequality:

D, =d(xo, yCo) < d(xo, yx0) < d(xo, py) +d(py,yx0) < D, + Ao.

By the convexity of yCo, the angle at p, of the geodesic segments [p,, xo] and
[py. yaxo] (if they are non-trivial) is at least 7. By hyperbolicity, the point p,, is hence
at distance at most log(1 + V/2) from a point in [xg, yaxo]. Thus yxo is at distance at
most Ag + log(1 + +/2) from a point u in [xq, yaxo]. By the triangle inequality, the
inequality on the left hand side of Eq. (15) follows with ¢4 = 2(A¢ + log(1 + ﬁ)).

Let us apply Eq. (5) twice, withx = u, y = yx¢ and with either z = xg or z = yaxo.
Since d(yxo, u) < Ag +log(1 ++/2), Eq. (16) follows with

cs =2(ci eBotlog(1+V2) | (Ao +1log(1 ++/2)) max |F| ).
7=V (B(xo, Ag+log(1++/2)))

We are now going to use the following lemma.

Lemma 4.5 [HP1, Lem. 3.3]. Forall A, §y, 5 > 0, there exists N € Nand B > 0 such

that for all sequences (ay)ren and (by)gen such that a, < Ae®", b, < Ae®" and

Do arkbn—i > %e‘s”for every n € N big enough, we have Z,](V:O anik = B e for

everyn € N.

By the first asymptotic assumption in Lemma 4.4, there exists ¢ > 0 such that, for
every ¢t >k,

3 JoF L L i
y'el, t—k<d(xq, y'x0)<t ¢
We will use Lemma 4.5 by taking, for every k € N,

Y3 ax) f
ar = Z €70 and by = Z efXO .

[ylel'/To, k<D, <k+1 aely, k—k—c4=<d(xg, axg)<k
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By Eq. (14) and by the first asymptotic assumption in Lemma 4.4, there exists ¢’ > 0
such that, for every k € N,

X0 |
a < > o' F < ¢ K (17)
yel, k<d(xg, yxo)<k+1+Ag

By the second asymptotic assumption in Lemma 4.4, there exists ¢” > 0 such that, for
every k € N,

b < " eaok.

Letn > k+cqand ([y], @) € T/ Ty x Tp satisfy n —x — ¢4 < d(x0, y'x0) <n—cy
where y’ = ya. Let k = [ D, | be the integral part of D,,. By Eq. (15), we hence have

0 <k <D, <d(xo, yxo) < d(x0, yaxg) —d(xo, axg) +c4 < n,
and

n—k—c4—k <d(xg, yaxe) — d(xo, yxo) < d(xo, axp)
< d(xo, yaxg) — d(xo, yxo) +c4 <n —k.

Therefore, respectively by the definition of a; and b, _, and by Eq. (16), we have

n

URES JED > S R
k=0

k=0 [y]el'/To, k<D, <k+1 aely, n—k—k—c4=d(xp, axo)<n—k

-y/xo f 1
> e 65 2 ej’fo > e~ Z 68 (n—C4).
C
y'el’, n—k—c4=d(xp, y'x0)<n—c4

Applying Lemma 4.5 with A = max{c’, ¢”’, ¢ e“5*%¢4} gives the lower bound required to
prove Lemma 4.4. The upper bound follows from Eq. (17). O

Foreveryr > 0and 8 € T, let
Ag(r) = {v € Up : g,([0, +00) N B(Bxo, ) # B).

Let us fix a positive constant ¢ > « (depending only on €y, Ag, Ro, k and ¥) to be
made precise later on. For every k € N, define I} to be the set of [y] € '/ I'g such that
k < D, < k+1,andlet J; = Ji(¥) be the set of pairs ([y], @) € I'/T'g x I'g such that
k < D, < k+«'(where k’is given by Lemma 4.4) and ¥ (k) < d(xo, axo) < ¥ (k)+ce.
For every k € N, let

A= | Ay

([y], e)edi

These sets are related to the set £ () that we want to study by the following result.
Recall that if (By)ien is a sequence of subsets of a given set, one defines lim sup, By =

nneN Ukzn By.
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Proposition 4.6. Ifr > eo+A, there exist ci, c/s’ > 0 such that, up to sets of m g-measure
zero,

lim sup Ag (r, ¥ + ¢Z) € E(¥) N U,
k

and if  (t) > ci for t big enough,

E(Y) NUp C limsup Ag(r, ¥ — ).
k

Proof. Let us first prove the second inclusion. Let ¢ = € + 2 arsinh(coth €p). Let
¢y = 63[21?%—‘, with ¢, c3 the constants appearing in the assumption on . Let
c5 = €0 +2A0 + Ro + co + (. Assume that ¥ (r) > c5 for ¢ big enough.

Letv € E(I/f) N f]\(’). For every n € N, there exist sequences (#,),eN in [0, +00[
converging to +00 and ([y,,]),en in I'/ T such that for every ¢ € [t,, t,, + ¥ (£,)], we
have g,(t) € y,4¢,Co. Let n € N. The geodesic line g, enters in y,.4¢,Co at a time
t, at most t,. Up to extracting a subsequence, we may assume, by Remark 4.3, that
[yn] ¢ Eo, so that Dy, > Ry +¢€pandz, > 0.

Letk, = | Dy, ]. Letus prove that k, — +00 as n — +00, up to sets of M p-measure
zero of elements v € E (W¥)n Uy. Otherwise, up to extracting a subsequence, (¥,),eN
is constant by Remark 4.3. Hence v, belongs to the set y)d-,Co of accumulation points
of y9Cp in doocM. By Lemma 2.1, the ufo-measure of 0,0Co = AT is zero. Hence,

since the action of I" preserves the sets of ufo-measure zero by the properties of the
Patterson densities, we have /,Lfo ( U ger Biso Co) = 0. By the decomposition of m r in

Hopf’s parametrisation (see Eq. (7)), the m p-measure of the set of v € E (¥) such that
vy e Y ger B0 Co is zero. This proves the above claim.

Let g, be the closest point to 7 (v) on ¥, Cy. It satisfies d (p,, , g,) < Ry, since closest
point maps do not increase the distances. Note that the point g, is at distance €y from
the entry point in y, .4, Co of the geodesic segment from 7 (v) to g,,. By the penetration
properties of geodesic rays in €g-neighbourhoods of convex subsets of CAT(—1) metric
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spaces (see [PaP1, Lem. 2.3]), we have d(g,, g,(t,)) < co = € + 2 arsinh(coth €p).
Hence, by the triangle inequality,

d(YnXx0, 8o (1, ) < d(¥nX0, Py,) +d(Py,, qn) +d(qn, 8u(t,)) < Ao+ Ro+co. (18)
Again by the triangle inequality, we have

ky < Dy,, = d(xo, Py,,) < d(xo, H(U))+l; +d(gv(t;)v qn)+d(qn, pyn) < tha+2Rp+cy.

(19)
Up to extracting a subsequence, we may assume that ¥ (k,,) > c/5 and that 1,,, k,, > c».
By the assumption on ¥ and since ¢{, = c3 [ZRS%], we have by Eq. (19),

ty + Y kn) <ty + Y (tn) + g

Let t; =t + ¥ (k,) — c(,, which belongs to [t,", t, + ¥ (t,)], since ¥ (k,) > ¢ > c;.
By convexity, the point g, (#,,) belongs to .4, Co. Let o, be an element of I'g such that

d(8u(1,), YntnX0) < €0 + Ao, (20)

which exists by the definition of Ag. By the triangle inequality, and by Eq. (18), we have

| d(Ynx0. Ynonxo) — d(gu(ty ). v (1)) | < d(gu(ty). Yaanxo) +d(vnxo, gu(t; )
<e€o+2A0+ Ry + cp.

Hence

/

| d(x0, anxo) — ¥ (kn) | = |d(ynX0, Yactnxo) — |t — 1, | — c{|
560+2A0+R0+C0+06=C/5. 21

Define ¢s = max{2cj, x} (which only depends on €p, Ag, Ro. « and ). Assume that
r > € + Ag. For every n € N, we hence have v € A, 4, (r) by Eq. (20). Besides,
(Iynl, an) € Ji, (Y — c/s) since k, = |D,,] and «’ > 1, and by Eq. (21). Therefore
v € Ay, (r, ¥ — c). This proves the second inclusion in Proposition 4.6.

Let us now prove the first inclusion. By hyperbolicity and an argument of (strict)
convexity (see for instance [PaP1, Lem. 2.2]), there exists co = c0 '(€0, Ro, r) such that
if a geodesic segment has endpoints at dlstance at most max{Ry, r} +log(1 + +/2) from
two points in Cp at distance at least c; one from the other, then this geodesic segment

enters ¢, Co. Let ¢ = max {c + Ao, Ao+ Ro +2co +r +c3 |_2R°+C0+1 1}

Letv € 170 and let (k,),cN be a sequence in N converging to +o0o. Assume that v €
A, (r, ¥ + - ) forevery nin N. Let ([y,], o) € Ji, (¥ +cg) be such thatv € Ay, 4, (r):
there exists t,, > 0 such that gy(t,) € B(ynonxo,r). Since d(mw(v), x0) < Ro, by
the properties of closest point projections in CAT(—1)-space, there exists 7, € [0, 7,]

such that d (g, (t), Dy,) < max{Ro, r}+log(1+ «/5). By the definition of c(’)’ and since
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d(Py,s YnonX0) = d(YnX0, YnanXo) — Ao > ¥ (k) + ¢ — Ag > ¢, the geodesic line
gy enters v, ¢, Co.

Let ¢, be the entry time of g, inside y,,.#¢,Co, which satisfies, by Eq. (18),
d(gv(t,), ynx0) < Ag + Ro + co.

Let ;7 be either 7, if g, () € Yu-4¢,Co or the exit time of g, out of .4#¢,Cp otherwise.
Again by [PaP1, Lem. 2.3] and since closest point maps do not increase the distances,
if g, is the closest point to g, (t,) on Co, we have

d(gv(t;)v YnOnXo) < d(gu(t;[), q;;) +d(q;,, YnlpXo) < o +7.

Asin Eq. (19), we have k, > D, — 1 > 1, — 2Ry — c¢p — 1. Hence

2R 1
Pk = (1) — e .

By the triangle inequality and since ([y,], @,) € Ji, (¥ + c. ) we have

+

t, —t, = d(YnXx0, YnQnXo) — d(gv(t;)v YnX0) — d(gv(t;)s VnOpX0)
> Y (ky) +¢5 — Ao — Ry —2co — 1

> ().

Hence v belongs to E (), which proves the result. O

In a series of claims, we now state the required properties of the sets A, (r) for
([yl,a) e '/ T x I'g and Ag(r, ) for k € N.

We start by the following estimate on the mass of the A, (r)’s. Before stating it, let
us motivate it. Let d’ be the distance on T'M induced by Sasak1 ’s Riemannian metric
on TM (when T is cocompact, any Riemannian distance on T'! M is allowed) Recall
that, for € > 0 and T > 0, the dynamical (¢, T)-ball centred at a point v € T' M is

Ber(w)={weT'M:Viel0,T], d(g'w, gv) <e)
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We proved in [PPS, Prop. 3.16] (which was in fact written after the first version of
this paper), using a minor modification of these dynamical balls, that Gibbs measures
satisfy the Gibbs property (when I' is torsion free and cocompact, see for instance [BR,
Theo. 3.3] for the lower bound, and [KH, Lem. 20.3.4] in the discrete time case): for
every € > 0, forall v € T'M and T > 0 such that v, g7 (v) map to a given compact
subset of I‘\TlM, we have

T~
I’}”VlF(Be, T(U)) = efo F(g'v)dr —T P(F).

Now, A, (r) is almost such a dynamical ball. Indeed, let v, be the unit tangent vector
at xo of the geodesic segment from x¢o to yaxo, and let T, = d(xo, yaxp) (see the
figure below). Our set A, (r) contains Be 1,,(Vya) and is contained in Be, .1, (Vya)
for some positive constants €1 depending only on Ry, r. The following result (or rather
Eq. (29)) is hence closely related to this Gibbs property.

Proposition 4.7. If r and Ry are big enough, there exists c; = c¢7(r) > 0 such that for
all but finitely many ([y], @) € I'/ g x Ty, we have

L - foodF-s _
c7 -

P VXQ (T g
mF(Aya(r)) <y ejm (F-5) eJXo (F-8)

Proof. Forevery Ry > Oand 8 € T', define Bg, g = ﬂZ/GB(ﬂXO’r) O, B(xo, %), which

is contained in (and is a perturbation of) the shadow Og,, B (xo, %) (see the picture
below). Since I is nonelementary, the support of the Patterson measures is not reduced

to one point, hence m = inf, ., 5 Ikl — ko ({€}) is positive. By hyperbolicity

(as first remarked by Sullivan), for every & € dso M, the family (Cﬁg B(xo, R)) R=0 18
a fundamental system of neighbourhoods of £. By compactness and discreteness, there
exists hence Ry > 0 such that for all but finitely many 8 € I', we have

i (Bry,p) = (22)

l\.).| 3

By the definition of Ag(r), the set of points vy for v in Ag(r) is exactly

Aprye=|J O:BBxo, 1),
z€B(xg, Ro)

which is a bit larger than the shadow &, B(Bxo, r) (see the picture below). By a minor
modification of Mohsen’s shadow lemma (see Eq. (8)), we have, if r is big enough,

B0 (F_
i (Ap(r)e) = el (23)
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ﬁﬁxoB(:CO? R0/3> /!

s
~ N

BRO,IB \

Let us first prove, using Hopf’s parametrisation defined by the point xo and the
definition of Ag(r), that for all but finitely many g € I', we have

BRry, g x Ag(r/2); x [=Ro/3, Ro/3] C Ag(r) C BOOM x Ag(r)x X [—Ro, Ro]. (24)

The inclusion on the right hand side is immediate. To prove the other one, let v € T'! M
be such that if p is the closest point to xo on the geodesic line gy, then v_ € Bg,, g,
vy € Ag(r/2); and d(m(v), p) < Ro/3 (see the picture below). Let us prove that
v e Ag(r).

By the definition of Ag(r/2),,letz € B(xo, Ro) be such that the geodesic ray [z, vy [
meets B(Bxo, r/2) at a point z’. By the definition of Bg,, g, the geodesic ray [z’, v_[
meets B(xg, Ro/3) atapoint z”. Since d(z, z””) < 2Ry, and since by discreteness, for all
but finitely many 8 in T, the distance d(z, ') is big, the angle at 7’ between the geodesic
segments [7/, z] and [/, z”] is small, hence the angle at z’ between the geodesic rays
[z, v_[and [Z/, v4+[ is close to r. Hence the geodesic line g, between v_ and v, is close
to the union of these two rays. In particular, since g, passes close to z’ € B(Bxo, r/2),
it enters the ball B(yxo, r), and since it passes close to z” € B(xo, %), the point p
belongs to B(xy, %) and hence 7 (v) belongs to B(xp, Rp), which proves the result.

Now, for every v € Ag(r), since d(m(v), xo) < Ro, the point xo is at distance at
most Ry from a point on the geodesic line between the endpoints v_, v,. Hence by Eq.
(6), there exists c; > 0 (depending only on Ry, on maxg, |F| < +o0, on the Holder

constants of F and on the bounds of the sectional curvature of M) such that, for every
v € Ag(r), we have

—cg < CI(x0, m(v)), C (x0, T(v)) < cj.
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Therefore, by definition of the Gibbs measure m g, we have, using Egs. (22) and (24),

2% 2 > My (Ap(r/2)4) 2Ro/3) < iip (Ap(r) < 6 ket uk (Ap(r)+) 2Ro).

Hence, by Eq. (23), for some constant cg > 1, we have

fﬂXO (F 5)
“
6

0(F— 5)

mp(Ap(r)) < cg e o (25)

Forall [y] e I'/Tg and o € I'g, by Egs. (15) and (16), if 8 = y«, we have

Bxo _ yxo axo
/ (F—8)—/ (F—(S)—/ (F—8)‘565+864.
X0 X0 X0

The result follows. O

Note, as it will be important later on, that the contributions of y and of « are decoupled
in this Proposition 4.7.

The sets A, (r) satisfy the following almost disjointness property in shells.

Lemma 4.8. For every r > 0, there exists cg = cg(r) > 0 such that for every k € N,
for every subset P of Jx = Ji({),

1

— > wr(Aem) <iir( | Ay®) = D ir(A),

c
8 (Iyl.e)epP (Iyl.0)epP ([yl,0)epP

and for every subset Q of I

— Z mFA (r) <m1: U A (") = Z ’ﬁF(AV(V))'

8 y1co [vleQ lvleQ

Proof. The inequality on the right hand side of the first claim is immediate. In order to
obtain the one on the left hand side, let us prove that there exists cg € N — {0} such that
forallk e Nandv € T M the number of ([y], a) € Jiy such that v € A, (r) is at
most cg, which implies the result.

Let ([y], @), ([y'], ') € Ji be such that v € A, (r) N Ay (r). By Egs. (14) and
(15), and by the definition of Ji, we have
k+¥ (k) —cq < Dy + (k) —cq < d(xo, yxo) +d(xo, axo) — c4 < d(x0, yoxo)

and

d(xg, yaxo) < d(xo, yxo) +d(xo, axo) < Dy, + Ao+ ¥ (k) + ¢
<k+k'+Ay+ k) +cs.
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Similarly k + 4 (k) — c4 < d(x0, y'a’x0) < k+ ¥ (k) + k" + Ag + c6.

. <R Taxo 9.
Zo 0 , / <
X s p-_ ,/ : \\

m(v) / LI]:g\r .
N

| <

Let p and p’ be the closest points on g, ([0, +00[) to yaxg and y'a’xg respectively.
They satisfy d(p, yaxo).d(p’, y'a’xo) < r since v € Ay(r) N Ayg(r). We may
assume, up to permuting y o and y’o’, that p” belongs to the geodesic segment [ (v), p].
Since closest point maps do not increase the distances, by the triangle inequality, and
since v € Uy, we have

d(p, p") =d(p,n(v)) —d(x(v), p') < d(yaxo, 7(v)) —d(w(v), p)
< d(yaxo, xo) +d(xo, m(v)) —d(y'a'xq, x0) + d(7 (v), x0) +d(p’, y'o'x0)
<(k+yk)+x +Ag+cg)+ Ry — (k+ (k) —ca) + Ry +7.
Hence, again by the triangle inequality,
d(yaxg, y'a'xp) <k’ + Ag+ce+2Ro+cq+3r.
Now the first claim follows from the discreteness of I', which implies that there are only
finitely many elements $ in I" such that Bxo belongs to a ball of centre xo with given

radius.
The second claim is proven similarly. O

The two results above allow to estimate the mass of the Ay (r, ¥)’s, as follows.

Proposition 4.9. Assume that there exists k > 0 such that

Z e < 1 and Z e < ot
yel,t<d(x,yy)<t+k aely, t<d(x, ay)<t+k
If r is big enough, there exists cg > 0 such that, for every k € N, we have
1 ~
g eV k) (60—3) < mF(Ak(V, w)) < ¢ eV (k) (80—5)

It follows from this proposition and the assumption on the function v that the series
> en 7 F (Ak(r, ¥)) converges if and only if the integral [ eV (®=9 gt converges.

Proof. ByEq. (14) and by the first asymptotic assumption in the statement of Proposition
4.9, there exists ¢ > 0 such that for every k € N,

> ot F < > 0 <k (26)

[ylel'/To, k<D) <k+«’ yeF, k<d(xo, yxo)<k+k'+Ao
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By the second asymptotic assumption in Proposition 4.9, since cg > «, there exists
¢’ > 0 such that, for every t € [0, +ool,

l/ el < > ' F <t @7
c
aely, t<d(xg, yxo)<t+ce
Let us first prove the inequality on the right hand side in Proposition 4.9. Let r be
big enough and k € N. Respectively by Lemma 4.8 with P = J; and the definition of
Ay (r, ), by Proposition 4.7, by the definition of Jj, by Egs. (26) and (27), we have

mp(Anr ) < D ir(Aya() < ¢ Z JIOF=8) [0 (F=s)

([y], @) e Jk (ly], @)edi

VA0 (F— 8
—o 3k

[ylel'/To, k<D, <k+k’

ox() ‘"7
> S
aely, ¥ (k)<d(xo, axo) <y (k)+ce
<c7(c e’ k) e k(c’ % 1//(k)) e SV — crec eV k) (60—3)

This proves the inequality on the right hand side in Proposition 4.9.
Let us now prove similarly the inequality on the left hand side in Proposition 4.9. By
Lemma 4.4, there exists ¢”” > 0 such that, for every ¢ € [0, +oo[,

¥x0 1
> eh’ Tz e, (28)
c
y1el/To, t<D) <t+k’
Respectively by Lemma 4.8 with P = J; and the definition of A (r, ¥), by Proposition
4.7, by the definition of Ji, by Egs. (28), (14) and (27), we have

1 1 X x|
mp(Akr ) = — D r(Aye) = — ] STOF=0) [0 (=)

cs c7cs
([y], @)k ([y], @)eJk

_ b 3 SO F-s)

Cc7C
78 [y1el'/To, k<D) <k+x’

X))
>
ael, 1//(k)<d(xo axp) <y (k)+ce

1
> ( ; Sk)e—S (k+x' +A0)(_ 680 1//(k))e—8(1/f(k)+c6)

~ cyjcyg ¢

— 1 PLALICN
c7 g c ¢ eS(K’+A0+c‘6)

\

This proves Proposition 4.9. 0O
The following result is a quasi-independence property of the sets Ax(r, ) fork € N.

Proposition 4.10. Under the hypotheses of Proposition 4.9, there exists a constant c1g >
0 such that for every k # k' in N, if ¥ > c19, we have

mp(Ar(r, ) N A (r, ) < cro mp(Ax(r, ) mp(Ap(r, ¥)).
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Proof. The proof has two parts, a geometric one and a measure-theoretic one. We state
the geometric one as a lemma.

Lemma 4.11. There exist ¢, > 0 and r' > r such that for every k < k' in N, for every
([y), o) € Jrand ([y'], ') € Jp, if ¢ = ¢|qandif Ao (r) meets Ay (r), then A, (r)
is contained in Ay q (r').

Proof. Letk < k"inNand ([y], o) € Jy and ([y'], &) € Ju. If Ao (r) N Ay (r) is
non empty, there exists v € Up such that gv(R) meets B(yaxg, r) and B(y'a’x, r). Let
q, q' be the closest points to 77 (v) on the convex sets y Cy, ' Co. Let p, p’ be the closest
points to ¢, ¢' on the geodesic ray g, ([0, +00[). Let x, x’ be the closest points to y axp
and y’a’xg on g, ([0, +o0)

We have d(yaxg, x) < r and d(y'a’xg, x’) < r. By the properties of geodesic
triangles in CAT (—1)-spaces and by the convexity of Cy, we have d(p, q),d(p’,q’") <
r +1og(1 + +/2). By the choice of the representatives of elements in I'/ I'g, the closest
point p, to xo on yCy is at distance at most Ao from yxo. Hence, since closest point
maps do not increase the distances and by the triangle inequality,

d(p, yxo) < d(p,q) +d(q, py) +d(p,, yxo) <r+log(1+~2)+ Ro+Ag. (29)

Hence, by Eq. (14) and the definition of Ji, with ¢ = k' + 2Ry +2A¢ +r +log(1 + V2),
we have

d(m(v), p) < d(mw(v), x0) +d(xo, yx0) + d(yx0, p)
< Ro+(Dy +Ap) +d(yxo, p) <k+c,
and d (7 (v), p) > k — ¢ by the inverse triangle inequality. Similarly,
K —c<d@m®Ww),p) <k +c.
By similar arguments, if ¢’ = Ry + Ag + 2r +log(1 + V2) + c6, we have
Y(k) —c <d(p,x) <y (k) +c and (k') —c" <d(p',x") =y *k)+c. (30)

Assume first that 77 (v), x, p’ are in this order on g, ([0, +00[). Any geodesic ray, with
origin at distance at most R from xg and passing at distance at most r from ' x(, passes
at distance at most 2r +log(1 ++/2) + Ry + Ag from p’ by the analog for y’ of Eq. (29),
hence by convexity passes at distance at most ¢ = max{2Rg, 2r+log(l +\/§)+R0+A0}
from x, thus passes at distance at most ¢’ + r from yaxg. Therefore, if r' > ¢ +r > r,
then A,/(r) is contained in A, (r").
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Assume now that 7w (v), p’, x are in this order on g, ([0, +o0[) (see the picture above).
There exists a constant ¢}, > 0 (depending only the hyperbolicity constant log(1 + V2)
and on r) such that if ¢ > ¢/, then 7 (v), p, x and 7 (v), p’, x" are in this order on
&v([0, +ool).

Since k' > k, either 7 (v), p, p’ are in this order on g, ([0, +oo[), or p’ € [ (v), p]
is at distance at most 2¢ from p, since then

dip,p)=d(p,x)—d(p',x) < (k+c)— (k' —¢) <2c.

In both cases, by convexity, p’ is at distance at most 2¢ + r + log(1 + +/2) from a point
y in y Cyp. Similarly, by Eq. (30) and since 1 satisfies ¥ (s) < ¥ (¢) + c3 if s < ¢, either
7 (v), x, x" are in this order on g, ([0, +00[), or x’ € [7(v), x] is at distance at most
2¢+2¢’ +c¢3 from x. In both cases, x is at distance at most 2¢ +2¢’ +¢3 +r +log(1 ++/2)
from a point y” in y'C.

If for a contradiction d(p’, x) > R for arbitrarily large constants R, then the geodesic
segments [y, yaxo] and [¢’, y'], have endpoints at bounded distance from the long
geodesic segment [p’, x]. Hence they have their endpoints at bounded distance while
being long, if R is large. By hyperbolicity, this implies that .4, (y Co) N A, (y'Co)
contains a long segment if R is large. Taking R large enough, this contradicts the fact
that the diameter of this intersection, since ¥’ # y in I'/ T'g, is at most the constant k),
as explained in the beginning of the proof of Theorem 4.1.

Therefore d(p’, x) < R for some R > 0. Any geodesic ray, with origin at distance
at most Ry from x and passing at distance at most r from y’xg, passes at distance from
yoxp at most

r+d(y'xo, yaxo) < r+d(y'xo, p) +d(p’, x) +d(x, yaxo)
< R+3r +log(1 ++/2) + Ry + Ao,

by the analog for y’ of Eq. (29). Therefore, if /' > R +3r +log(1 ++/2) + Ry + Ao > r,
then A,/ (r) is contained in A, (r). O

Now, let us use Lemma 4.11 to prove Proposition 4.10. Let k, k" be elements of N
withk < k'

For every ([y], @) € Ji, let I}y, o, & C I be the set of [y'] € T/ Ty such that there
exists a’ € T'g with ([y'], ') € Jy such that the intersection A, (r) N A,y (r) is non
empty. Then respectively by Proposition 4.7, by the second part of Lemma 4.8 with
Q = Iy}, > by Lemma 4.11 and the definition of /[, o, «, and by Proposition 4.7
(twice), we have

2 e'f:"y()xo(ﬁ_a) < Z c7(r) ip (A, ()

1€l o 1€l an
< e7(r) es(r') fﬁF( U A),/(r’))
1y an
<7 es(r) mp(Aya ()

< c7(r) e70r)? es(r') g (Aya (). 31)
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By the assumptions of Proposition 4.10, there exists ¢ > 0 such that for every t € R,
-0/)(0 i:
> o < ¢ ot 32)
o’'elg, d(xp,a’xp) <t

To simplify the notation, let Ay = Ax(r, V). Respectively by the definition of Ay, by
Proposition 4.7, by Eq. (32), by Eq. (31) with ¢/ = ¢ ¢7(r)? ¢7(r')? cg (') €6%, and by
Proposition 4.9 and Lemma 4.8 with P = J, we have

mp(Ax N Ap)

< Z Z mr(Aye(r))

Iyl eyede (vl a)edyr, Aya(NA, 1 (r) #0

< Z Z c7(r) efxyo/xo(ﬁfa) Z ef;xt;xo(ﬁfa)

(vl @&l [y,]EI[y],a, K o' el
Yk < d(xg, o'xg) < Y (K') +cq
o =~
< ¢ er(r) eV EDre)do=dy () Z Z oo T F=S

([y], @) ek [V/]El[y],a, K

< V0D S (A6 ()
([y], )edx

< ¢ ¢y c3(r) mp(Ap) mr(Ag).
This proves Proposition 4.10. O

Let us now conclude the proof of Theorem 4.1. The following version of the Borel—
Cantelli Lemma is well-known (see for instance [Spr]).

Proposition 4.12. Let (Z,v) be a measured space with finite nonzero measure. Let
(Ap)neN be a sequence of measurable subsets of Z such that there exists ¢ > 0 with
V(A, N Ay) < c v(Ay) v(Ap) for all distinct n, m in N. Then v(limsup,, A,) > 0 if
and only if the series D, . V(Ay) diverges.

We apply this result with (Z, v) = (Uo, n~1|l70), which satisfies the hypothesis if Ry
is big enough as in the reductions at the beginning of the proof of Theorem 4.1. Let
r =€y + Ag and let cg, ¢ be given by Proposition 4.6.

Assume first that the integral [, ¥ ®0=%) gt diverges, which is still true if a con-
stant is added to v. The quasi-independence assumption of Proposition 4.12 is satisfied
if A, = A, (r, Vv +c10 +cg’ ) C Uy, by Proposition 4.10. As claimed after the statement of
Proposition 4.9, the series >, . 7 r (Ay) diverges. Hence by the above Borel-Cantelli
argument, lim sup, Ay has positive measure. Since A, (r, ¥ +c1o + cg ) C Ap(r, ¥ + cg
and by the first claim of Proposition 4.6, the set E () has positive m p-measure. Since it
is invariant under the geodesic flow and under I', and by ergodicity of the Gibbs measure
mf, it has full measure.

Conversely, assume that the integral f0+ eV W®0=3 gt converges, which is still
true if a constant is subtracted from 1. Then () > c§ whenever ¢ is large enough.
Let Ay = Ay(r, ¢ —c5) C Uo. Again by the assertion following the statement of
Proposition 4.9, the series ZkeN mp(Ay) converges. By the standard Borel-Cantelli
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Lemma, lim supy Ak (r v— c5) has zero m p-measure. By the second claim of Proposition

4.6, the set E@)N Uo has zero m p-measure. Up to taking Ry big enough, this implies
that E (¥) has zero m p-measure. O

Remark Let us comment on the range of the numerical constant § — &g, crucial for the
dichotomy in Theorem 4.1, as the potential F' varies. We only consider the case when
Cy is the translation axis of a loxodromic element of I', so that by Remark (2) following
the statement of Theorem 4.1, we have, with Cy the i image of Coin M =T'\T',

8 —80 = P(F)— P(Fpiz).

Proposition 4.13.(1) The map F +— P(F) — P(Flrla) is 1-Lipschitz for the uniform
norm on bounded potentials. _
(2) The set of real numbers P(F) — P(F|TIFO)’ as F varies in the set of T'-invariant

bounded Holder functions on TIM, is equal to 10, +o0] .

Proof. For the first observation, the 1-Lipschitz dependence of P (F, \T‘CT)) on F isimme-
diate by Eq. (2), and so it suffices to prove it for P(F). This is a direct consequence
of our definition of the pressure in Eq. (1). More precisely, given Fp, F> two bounded
[-invariant Holder-continuous functions on T'!M, for every € > 0, we can choose
mi, my € A satistying

h(m])+/F1 dmy > P(F)) —e¢ and h(m2)+/F2dm22P(F2)—6.
Using the definition of pressure again, we have that
P(Fy) > h(m2) +/ Fidmy and P(F;) > h(m) +/ Fydm;.
Comparing these four inequalities gives that
/(Fl—Fz)dml > P(Fi)—P(F2)—¢ and /(Fz—Fl)dmzzp(Fz)—P(Fl)—E,

from which we deduce |P(F1) — P(F2)| < || F1 — F>]lco + €. Letting € — 0, this proves
that F — P(F) is 1-Lipschitz.

For the second observation, first note that P(F) — P(Fr1¢;) = 6 — o is positive by
Lemma 4.2. It now suffices to find two potentials F, F’ for which P(F) — P(FITICT))
can be arbitrarily large and P(F’) — P(F’ \T‘CT)) can be arbitrarily close to 0.

Given any L > 0 and a second distinct closed geodesic C_1 (which exists since I" is
nonelementary), we can choose a bounded potential F on 7! M which is constant with
values L and 0 on T1C| and T'! Co, respectively. If mc, denotes a probability measure

supported on 7''Cy and invariant under the geodesic flow, then by the definition of the
pressure, we have that P(F‘Tlcj)) = 0and P(F) > th1 (gh) + f Fdmc, = L, as
required.

Finally, givenany 5 > 0, we want to construct abounded potential " on T'! M satisfy-
ing P(F') — P(F/|T'CT)) <n.Foreverye > 0,let Ag={v e T'M :d(v, T'Cp) < €}.
We choose € € |0, %[small enough, sothat —(1—¢) log(1—€)—2¢loge+4€elog2 < n.
We choose K > htop(gl)/ez, and we define a bounded potential F’ on T'M by
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F'(v) = —K min{d (v, T'Cy), 1} < 0. Given any m € .#, we can consider two cases:
Either (a) m(T'M — Ag) > € or (b) m(Ag) > 1 — €. In case (a), we have that

h(m)+/F’dm < hiop(g") +m(T'M — Ag) max  F'(v)
veTlM—Ag

< hiop(g') — Ke* < 0.

In case (b), we can choose a measurable partition o = {A,},en of T M, such that:

e « is generating, that is, the Borel o-algebra is the smallest o-algebra containing
g"A;, N---NgA; , forallk, iy, -+, iy e Nandr, -, 1 € R;
e forn > 1, we have m(A,) < €/2"~! (note that m( U;C’:ol A,,) =1—-—m(Ag) < e).

If M were compact, then a sufficient condition for the partition to be generating would
be that each element A,,, for n > 1, has diameter smaller than the injectivity radius of M.
(At the level of the geodesic flow, this is related to choosing the diameter smaller than
the expansivity constant). More generally, we can assume that each A,, is the union of
suitably separated components, each of which has diameter smaller than the injectivity
radius of points in that component. In particular, with H,, («) the entropy of the partition
o with respect to m, we can then bound

h(m) +/F’du < hm) < Hn(@)

+00
< —m(Ag) logm(Ag) — D> m(A,)logm(Ay,)
n=1
+00
€ €

n=1

=—(1—¢€)log(l —€) —2¢€loge +4e€log2 < n.

In either case, we have that h(m) + f F' dm < n and from the definition, P(F’) —
P(F'\;15;) = P(F') < n, as required. a

Let us now give the main corollary of Theorem 4.1, our logarithm law for Gibbs
measures. _

Define the penetration map p : 7'M x R — [0, +00] of the geodesic lines inside
LA, Cobyp(v, 1) = 0ifw(¢;v) ¢ T' ¢, Co, and otherwise p(v, 7) is the maximal length
of aninterval / in R containing 7 such that there exists y € I" with 7 (¢sv) € y A¢,Co for
every s € I. The next result implies Corollary 1.3 using Remark (2) following Theorem
4.1.

Corollary 4.14. Under the assumptions of Theorem 4.1, for in p-almost every v € T'! M,
we have

p(v, 1) 1
t—>+00 logt _5—50'

Proof. The proof is a standard deduction from Theorem 4.1 using the Lipschitz func-
tions ¥, : t — klog(l +1¢) for k = ﬁ + %, see for instance the proof of
[HP2, Theo. 5.6]. O
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__ We end this section by giving a corollary of Theorem 4.1 in the special case when
M has constant sectional curvature, in a form which is suitable for the arithmetic appli-
cations in the next section. We will use the upper halfspace model of the real hyperbolic
n-space H, whose boundary at infinity is dcH = R"~1 U {00}, and we endow R"~!
with the usual Euclidean norm || - || and its associated distance. We denote by x( the
point (0, 1) € R"~!x 10, +oo[. If « is a fixed point of a hyperbolic element y of a given
discrete group of isometries of H,, we denote by «? its other fixed point, which does
not depend on y.

Corollary 4.15. Let I" be a nonelementary discrete group of isometries of Hf,, with non

arithmetic length spectrum. Let F: TIH’YR — R be a I'-invariant Holder-continuous
map, with § = ér g and mp finite. Let yy be a hyperbolic element of T, let T'y be the
stabiliser in T of its translation axis, let Fy : T'o\M — R be the map induced by F, and
let 80 = 8ry, Fy- Let %y, be the set of fixed points in R~ U {00} of the conjugates in T
of vo. Let ¢ : 10, 1] — 10, 1] be a measurable map, such that there exist c’2, cg €10, 1[
such that for every s, t € 10,5, if s > cht, then ¢(s) = ¢ p(1). Iffo1 ¢P%0(s) /s ds
diverges (respectively converges), then p,fo—almost every (respectively no) point in R~

belongs to infinitely many Euclidean balls of centre a and radius ||l — o ||¢ (o —a? |]),
as o ranges over Ky,.

Proof. Recall that the hyperbolic distance between the horizontal horosphere at Euclid-
ean height 1 in Hf and a disjoint geodesic line with endpoints x and y is —log M,
by a standard hyperbolic distance computation. By the triangle inequality and the dis-
creteness of I', for every compact subset K of R"~L there exists ¢ > 0 such that for
every o € %y, N K except finitely many of them, we have |j@ — || < 1 and, with C,

the geodesic line with endpoints o, @,

o — |
d(x0, Co) = [log =—— || = (33)
Let ¢ : t — —log¢(e") which is a map from [0, +oo[ to [0, +oo[ satisfying the
assumption of the beginning of Sect. 4 (with ¢; = —logc} > Oand c3 = —logcy > 0).

As in [HP2, Lem. 5.2] (and since the Hamenstédt distance on 9 Hi — {oo} = R-1
is a multiple of the Euclidean distance), there exists a constant ¢’ > 1 such that for every
v e T'M such that v, € K — (%, N K), we have
e ifvis (g, ¥)-Liouville for (T", I'g), then v, belongs to infinitely many balls of centre

« and radius ¢’ e =40, Ca)=¥(d(x0. Ca)) 4q ¢ ranges over %y, .
e if v, belongs to infinitely many balls of centre « and radius % e~ 400, Ca) =Y (d(x0, Ca)) |
as o ranges over %y, then v is (e, y)-Liouville for (T', T'p).

By Eq. (33), there exists ¢’ > 1 such that, for every o € %, N K,
1 _ _
e —allg(la —a”l) < e 400 Clmvdx0. Ca) < " flow — &% || @ ([lor — 27 []).

Since f0+°o eV 06— qp — fol ¢*=%(s)/s ds, the result follows from Theorem 4.1,
whose hypotheses on sum asymptotics are satisfied by the first remark following its
statement (since the curvature of M is constant). O

Remark As in [PaP2], replacing H, by the Siegel domain model of the complex hyper-

bolic space H'-, replacing R”~! endowed with the Euclidean distance ||x — y|| by the
Heisenberg group endowed with the Cygan distance dcyg(x, y), the same result holds.
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5. Arithmetic Applications

Let K be either the field Q or an imaginary quadratic extension of Q, and correspondingly,
let K be either R or C. Let Ok be the ring of integers of K. By quadratic irrational, we
mean an element in K which is quadratic irrational over K . For every quadratic irrational
a € K, leta? be its Galois conjugate over K.

The group PSL,(K) acts on P1(K) = KU {oo} by homographies, and its subgroup
PSL;,(Ok) preserves the set K and the set of quadratic irrationals. Though it acts transi-
tively on the former set, it does not act transitively on the latter one. Note that, for every
quadratic irrational « and every y € PSL,(0k), we have (y - «)? =y - («?).

Letus fix a finite index subgroup I" of PSL> (&k ), for instance a congruence subgroup.
We are interested in the approximation of elements of K by elements in the orbit under
I" of a fixed quadratic irrational and of its Galois conjugate.

For every quadratic irrational o € K let &, r be the (countable, dense in K ) set
I' - {a, °}, endowed with its Fréchet filter, and let

2

oo — |

ha) =

We refer to [PaP2, §6.1] and [PaP3, §4.1] for motivations on this complexity /() of
a quadratic irrational «, as well as for other algebraic expressions and comparisons to
other algebraic heights. For instance, if K = Q, I' = PSL,(Z) and « is the Golden

Ratio %, then & r is the set of real numbers whose continued fraction expansion
ends with an infinite string of 1’s.

Recall thatamap f : [0, +oo[ — ]0, +o0[ is slowly varying if it is measurable and if
there exist constants B > 0 and A > 1 such that forevery x, y in Ry, if |x —y| < B, then
f(y) < A f(x). Recall that this implies that f is locally bounded, hence it is locally
integrable; also, if log f is Lipschitz, then f is slowly varying.

Theorem 5.1. Let o € K bea fixed quadratic lrratzonal and let yp € T be a primitive
element of T fixing ay with |y0((x0)| > 1. Let [,Lx be a Patterson measure on K U {oo}
associated with a potentlal F for T such that 6 = 6t p and mF are finite. Let & be the
critical exponent ofy forF Let ¢ : [0, +oo[ — 10, +oo[ be a map such thatt — @(e')
is slowly varying. If the lntegral f ®(t)57% /1 dt diverges (resp. converges), then for
,ux -almost every x € K,

liminf ———— h(r)

pont (p(h( ) |x —r|] =0 (resp. = +00).

When F = 0, this result is due to [PaP2, Theo. 6.4 (4)].

Proof. Let us first give some details on the notation of this theorem. Recall (see for
instance [PaP2, Lem. 6.2]), that the quadratic irrationals in K are exactly the fixed
points of the loxodromic elements of PSL, (0 ), hence of T', since I' has finite index
in PSL,(0k). Hence an element yq as in the statement exists, it is the unique (up to
multiplication by an element of I'g pointwise fixing the translation axis of yg) primitive
loxodromic element of I" with attractive fixed point .

Let M be the real hyperbolic plane H if K = R and the real hyperbolic space H3

if K = C. We fix a point x¢ in M. Note that 9o M = = KU {oo},and " is a dlscrete
group of isometries (actually an arithmetic lattice) of M, so that a I"-invariant potential
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Fon T'M with § = dr, r does define a Patterson measure “m seen from xq (unique
up to scalar multiple if m r is finite) on KU {00}, see Sect. 2. Let 'y be the stabiliser of
{ag, 20} in I (that is of the translation axis of yp), and let Fy : To\ 7! M — R be the
map induced by F. Since VO has finite index in g, the critical exponent &g is equal to
81y, Fy- Note that &, - is exactly the set of fixed points of the conjugates of yp in I

We may assume that ¢ < 1. Define ¢ : s — go(%), which is a measurable map from
10, 17 to 10, 1[. The result then follows from Corollary 4.15. O

To conclude, let us give a proof of the last statement of the Introduction.

Proof of Corollary 1.4. Itis well known that I, 5, is a uniform lattice in SL, (R) (see for
instance [Kat, §5.2] or [BeP, §8.5]): it is a Fuschian group derived from the quaternion
algebra (%) over Q, which is a division algebra by the nonexistence of nonzero integer
solutions to x2 — a y> — bz?> = 0, hence to x> —ay* — bz* +abt* = 0 by [BeP,
Lem. 8.17]. Let I' = m be the image of I'; 5 in PSLy(R), which is a cocompact
group of isometries of M = HZ, whose action on BOOH%R = P;(R) is the action by
homographies. If y = (b)(cz++yt \é—i) j B ;1//_%) with (x, y, z, 1) € Z*, then tr yp = 2x.
Hence | tr yp| > 2 by the assumptions, that is, the image of yy in ', that we again denote
by yp, is hyperbolic. It is well known that its translation length £(yg) satisfies (see for
instance [Bea, page 173])

p o) _ [yl
— =

Let us fix xg € Hﬂé. By Proposition 3.6, let F : T'M — R be a I'-invariant Holder-

continuous map such that p and y,fo have the same measure class. Since the conclusion
-1

of Corollary 1.4 depends only on the measure class of i, and since (y )*M“’ y* =

W(y*} for every hyperbolic element y € I' by [Led3, Théo. 1.c], as seen in the

proof of Proposition 3.6, we may assume that © = ,ufo. Since I' is cocompact, both

8 = ér, r and mp are finite. Let Fp : FO\TIM — R be the map induced by f, and let
80 = dr,, r,- By Remark (2) following the statement of Theorem 4.1 and by Eq. (12),
we have

max { Perp(y), Perp(y ™1}
£(y0)

1 ()/0 )*M d(VO)*M
2arcosh(%) { "o 2 o )}

5o =
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Since I is cocompact, by Bowen’s period counting theorem (see for instance [PPS,
Theo. 4.7]), again by Eq. (12), and by the change of variable s = 2 cosh %, we have

1
§=24 S _ Perp(y)
=9dr.F [11r+n tlog E e
yell, 0<t(y)=<t

. 1 d(yil)*ﬂv +
= Jim_ ¢ log 2 o v
y€la, b, tr(y)#0,£2, 2arcosh(15x) <

. 1 diy Dap
= 1 1 _ .
im og > A

s—>+oo 2logs
y€la,p, 2<|tr(y)|=s

Foralls > 0Oande > 0,let¢ : 10, 1] — ]0, 1] be the map ¢ — min{l, € (—log?)™*},
so that fol $°%(1)/t dt diverges if and only if s < ﬁ

By Corollary 4.15, we hence have thatif s < ﬁ (resp.s > ﬁ),then, for p-almost
every x € R,

.. [x — of 1 1
lim inf — < — (resp. > -).
€l p{yy Vi) le—a® |0 lo —a?|(—logla —a®|)~* € €

By taking € = k (resp. € = %) for k € N tending to +00, this proves the result. O
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