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Abstract: Let M be a pinched negatively curved Riemannian manifold, whose unit
tangent bundle is endowed with a Gibbs measure m F associated with a potential F .
We compute the Hausdorff dimension of the conditional measures of m F . We study
the m F -almost sure asymptotic penetration behaviour of locally geodesic lines of M

into small neighbourhoods of closed geodesics, and of other compact (locally) convex
subsets of M . We prove Khintchine-type and logarithm law-type results for the spiraling
of geodesic lines around these objects. As an arithmetic consequence, we give almost
sure Diophantine approximation results of real numbers by quadratic irrationals with
respect to general Hölder quasi-invariant measures.

1. Introduction

Let M be a complete connected Riemannian manifold with pinched sectional curvature
at most −1, and let (gt )t∈R be its geodesic flow. In this paper, we consider for instance a
closed geodesic D0 in M , and we want to study the spiraling of geodesics lines around
D0. Given an ergodic probability measure m invariant under (gt )t∈R, whose support is
the nonwandering set � of the geodesic flow, m-almost every orbit is dense in �. Two
geodesic lines, having at some time their unit tangent vectors very close, remain close
for a long time. Hence m-almost every geodesic line will stay for arbitrarily long periods
of time in a given small neighbourhood of D0. In what follows, we make this behaviour
quantitative when m is any equilibrium state.

Let F : T 1 M → R be a potential, that is, a Hölder-continuous function. Let M be
the set of probability measures m on T 1 M invariant under the geodesic flow, for which
the negative part of F is m-integrable, and let hm(g1) be the (metric) entropy of the
geodesic flow with respect to m. The pressure of the potential F is

P = P(F) = sup
m∈M

(
hm(g1) +

∫

T 1 M

F dm
)
. (1)
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Let m F be a Gibbs measure on T 1 M associated with the potential F (see [PPS] and Sect.
2). When finite and normalised to be a probability measure (and if the negative part of F is
m F -integrable and the sectional curvature of M has bounded first order derivatives), it is
the unique equilibrium state, that is, it attains the upper bound defining the pressure P(F)

(see [PPS, Theo. 6.1], improving [OP] when F = 0). For instance, m F is (up to a constant
multiple) the Bowen–Margulis measure mBM if F = 0, and is the Liouville measure if
F is the strong unstable Jacobian v �→ − d

dt |t=0 log Jac
(
gt

|W su(v)

)
(v) and M is compact

(see [PPS, Theo. 7.2] for a more general situation). We will use the construction of
m F by Paulin et al. [PPS] (building on work of Ledrappier [Led1,Led2], Hamenstädt
[Ham1,Ham2] especially for the harmonic measures, Coudène [Cou], Mohsen [Moh])
via Patterson densities (μF

x )x∈M̃ on the boundary at infinity ∂∞M̃ of a universal cover
M̃ of M associated with the potential F .

We first prove (see Sect. 3) the following result relating measure theoretic invariants
of m F and μF

x , which extends Ledrappier’s result [Led4, § 4] when F = 0.

Theorem 1.1. If m F is finite and F is m F -integrable, if the sectional curvature of M has

bounded first order derivatives, then the Hausdorff dimension of the Patterson measure

μF
x (with respect to the Gromov–Bourdon visual distance on ∂∞M̃) is equal to the metric

entropy of the Gibbs measure m F (for the geodesic flow).

Let D0 be a closed geodesic in M of length ℓ0. If v0 ∈ T 1 M is tangent to D0, let

P0 = P(F|T 1 D0
) =

max{
∫ ℓ0

0 F(gtv0) dt,
∫ ℓ0

0 F(gt (−v0)) dt}
ℓ0

. (2)

We will prove that P0 < P if m F is finite. Let ǫ0 > 0 and let ψ : [0, +∞[ → [0, +∞[
be a Lipschitz map. As introduced in [HP2], let E(ψ) be the set of (ǫ0, ψ)-Liouville

vectors around D0, that is, the set of v ∈ T 1 M such that there exists a sequence (tn)n∈N

in [0, +∞[ converging to +∞ such that for every t ∈ [tn, tn + ψ(tn)], the footpoint of
gtv belongs to the ǫ0-neighbourhood Nǫ0 D0 of D0.

The Khintchine-type result describing the spiraling around the closed geodesic D0
is the following (simplified version of the) main result of this paper (see Sect. 4).

Theorem 1.2. Assume that M is compact. If the integral
∫ +∞

0 eψ(t)(P0−P) dt diverges

(resp. converges) then m F -almost every (resp. no) point of T 1 M belongs to E(ψ).

When F = 0 (that is, when m F is the Bowen–Margulis measure), this result is due
to Hersonsky and Paulin [HP2]. As m F can be taken to be the Liouville measure, this
theorem answers a question raised in loc. cit. This result, in this particular case when D0
is a closed geodesic, can be restated as a well-approximation type of result of points in
the limit set of the fundamental group of Ŵ by an orbit of a loxodromic fixed point, see
for instance [FSU] for very general results (their measure on the limit set corresponds
to F = 0, though an extension might be possible), and the references of [FSU] for
historical motivation and partial results. This result is a shrinking target problem type,
and our main tool is the mixing property of the geodesic flow of M for Gibbs measure
(see [PPS]).

We stated this result as such to emphasize its novelty even in the compact case, but
it is true in a much more general setting, both from M and D0 (see Theorem 4.1). For
instance, when M is a geometrically finite locally symmetric orbifold, when F has finite
pressure P(F) and finite Gibbs measure m F , when D0 is a compact totally geodesic
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suborbifold (of positive dimension and codimension), the result still holds. When M

is the quotient of the real hyperbolic 3-space by a geometrically finite Kleinian group
Ŵ, when F has finite pressure P(F) and finite Gibbs measure m F , and when D0 is
the convex hull of the limit set of a precisely invariant quasi-fuschian closed surface
subgroup Ŵ0 of Ŵ, the result still holds. See Sect. 4 for more examples.

When F = 0, the following logarithm law for the almost sure spiraling of geodesic
lines around D0 is due to Hersonsky and Paulin [HP2]. Let π : T 1 M → M be the unit
tangent bundle. Define the penetration map p : T 1 M × R → [0, +∞] of the geodesic
lines inside Nǫ0 D0 by p(v, t) = 0 if π(φtv) /∈ Nǫ0 D0, and otherwise p(v, t) is the
maximal length of an interval I in R containing t such that π(φsv) ∈ Nǫ0 D0 for every
s ∈ I .

Corollary 1.3. Under the assumptions of Theorem 1.2, for m F -almost every v ∈ T 1 M,

we have

lim sup
t→+∞

p(v, t)

log t
=

1

P − P0
.

In Sect. 5, we will give arithmetic applications of Theorem 1.2. We will in particular
generalise to a huge class of measures on R the Khintchine-type result of approximation
of real numbers by quadratic irrationals over Q, which was proved in [PaP2] for the
Lebesgue measure, and prove other 0-1-laws of approximations of real numbers by
arithmetically defined points. To conclude this introduction, we give one example of
such a result.

Let a, b ∈ N − {0} be positive integers such that the equation x2 − a y2 − b z2 = 0
has no nonzero integer solution (for instance a = 2 and b = 3). Let Ŵa, b be

{ (
x + y

√
a z − t

√
a

b(z + t
√

a) x − y
√

a

)
: (x, y, z, t) ∈ Z4 and x2 − a y2 − b z2 + ab t2 = 1

}
,

which is a discrete subgroup of SL2(R), whose action by homographies on P1(R) =
R ∪ {∞} is denoted by · . If α ∈ R is a solution of the equation γ · X = X for some
γ ∈ Ŵa, b, then α is quadratic over Q(

√
a), and if furthermore α /∈ Q(

√
a), we denote

by ασ its Galois conjugate over Q(
√

a). Given γ ∈ Ŵa, b with trace tr γ �= 0,±2, we
denote by γ + and γ − the attractive and repulsive fixed points of γ in R ∪ {∞}.

Given a continuous action of a discrete group G on a compact metric space (X, d),
recall that a Hölder quasi-invariant measure (see for instance [Led3,Ham2]) on X (for
the action of G) is a probability measure μ such that for every g ∈ G, the measure g∗μ
is absolutely continuous with respect to μ, and the Radon–Nykodim derivative d g∗μ

d μ

coincides μ-almost everywhere with a Hölder-continuous map on X , which we will still
denote by d g∗μ

d μ
.

The next result is a Khintchine-type of result, under a huge class of measures, for
the Diophantine approximation of real numbers by quadratic irrationals over Q(

√
a) in

a (dense) orbit under the arithmetic group Ŵa, b (extended by the Galois conjugation).

Corollary 1.4. Let μ be a Hölder quasi-invariant measure on R ∪ {∞} for the action

by homographies of Ŵa, b. Let γ0 be a primitive element in Ŵa, b with tr(γ0) �= 0,±2.

For μ-almost every x ∈ R, we have

lim inf
α∈Ŵa, b·{γ −

0 ,γ +
0 }, |α−ασ |→0

|x − α|
|α − ασ |(− log |α − ασ |)−s

= 0 (resp. = +∞)
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if s ≤ 1
δ−δ0

(resp. s > 1
δ−δ0

), where

δ = lim sup
s→+∞

1

2 log s
log

∑

γ∈Ŵa, b, 2<| tr(γ )|≤s

d(γ −1)∗μ

d μ
(γ +)

and δ0 = 1
2 arcosh(

| tr γ0 |
2 )

max
{ d(γ −1

0 )∗μ
d μ

(γ +
0 ),

d(γ0)∗μ
d μ

(γ −
0 )

}
.

We refer to Sect. 5 for more general results, in particular for approximations with
congruence properties and for the approximation of complex numbers by quadratic
irrationals over an imaginary quadratic extension of Q.

2. A Summary of the Patterson–Sullivan Theory for Gibbs States

Most of the content of this section is extracted from [PPS], to which we refer for the
proofs of the claims and for more details.

Let M̃ be a complete simply connected Riemannian manifold with (dimension at
least 2 and) pinched negative sectional curvature −b2 ≤ K ≤ −1, and let x0 ∈ M̃ be
a fixed basepoint. For every ǫ > 0 and every subset A of M̃ , we denote by Nǫ A the
closed ǫ-neighbourhood of A in M̃ .

We denote by π : T 1 M̃ → M̃ the unit tangent bundle of M̃ , where T 1 M̃ is endowed
with Sasaki’s Riemannian metric. Let ∂∞M̃ be the boundary at infinity of M̃ . We denote
by �G the limit set of any discrete group of isometries G of M̃ , and by C �G the convex
hull in M̃ of �G, if �G has at least two elements.

Let Ŵ be a nonelementary (not virtually nilpotent) discrete group of isometries of M̃ .
Let M and T 1 M be the quotient Riemannian orbifolds Ŵ\M̃ and Ŵ\T 1 M̃ , and let again
π : T 1 M → M be the map induced by π : T 1 M̃ → M̃ . We denote by (gt )t∈R the
geodesic flow on T 1 M̃ , as well as its quotient flow on T 1 M .

For every v ∈ T 1 M̃ , let v− ∈ ∂∞M̃ and v+ ∈ ∂∞M̃ , respectively, be the endpoints
at −∞ and +∞ of the geodesic line gv : R → M̃ defined by v (that is, such that
ġv(0) = v). Let ∂2

∞M̃ be the subset of ∂∞M̃ × ∂∞M̃ which consists of pairs of distinct
points at infinity of M̃ . Hopf’s parametrisation of T 1 M̃ is the homeomorphism which
identifies T 1 M̃ with ∂2

∞M̃ × R, by the map v �→ (v−, v+, t), where t is the signed
distance of the closest point to x0 on gv(R) to π(v). Let �̃Ŵ be the Ŵ-invariant set of
v ∈ T 1 M̃ such that v−, v+ ∈ �Ŵ, whose image in T 1 M is the nonwandering set of the
geodesic flow of T 1 M .

Let ι : T 1 M̃ → T 1 M̃ be the (Hölder-continuous) antipodal (flip) map of T 1 M̃

defined by ιv = −v. We denote the quotient map of ι again by ι : T 1 M → T 1 M .
Let F̃ : T 1 M̃ → R be a fixed Hölder-continuous Ŵ-invariant function, called a

potential on T 1 M̃ . It induces a Hölder-continuous function F : T 1 M → R, called a
potential on T 1 M . Two potentials F̃ and F̃∗ on T 1 M̃ (or their induced maps on T 1 M)
are cohomologous if there exists a Hölder-continuous Ŵ-invariant map G̃ : T 1 M̃ → R,
differentiable along every flow line, such that

F̃∗(v) − F̃(v) =
d

dt |t=0
G̃(φtv). (3)

For any two distinct points x, y ∈ M̃ , let vxy ∈ T 1
x M̃ be the initial tangent vector of

the oriented geodesic segment [x, y] in M̃ that connects x to y; define
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∫ y

x

F̃ =
∫ d(x,y)

0
F̃(gtvxy) dt

and
∫ x

x
F̃ = 0 for all x ∈ M̃ . Given a hyperbolic element γ ∈ Ŵ with translation axis

Aγ , the period of γ for F is, for any x ∈ Aγ ,

PerF (γ ) =
∫ γ x

x

F̃ .

The critical exponent of (Ŵ, F) is

δŴ, F = lim sup
n→+∞

1

n
log

∑

γ∈Ŵ, n−1<d(x,γ y)≤n

e
∫ γ y

x F̃ .

When F = 0, then δŴ, F is the standard critical exponent δŴ of Ŵ. Note that

∫ y

x

F̃ =
∫ x

y

F̃ ◦ ι, (4)

that δŴ, F = δŴ, F◦ι > −∞ and that δŴ, F+c = δŴ, F + c for every constant c > 0 (see
[PPS, Lem. 3.3]). We assume that δŴ, F < +∞ (this is for instance satisfied if F̃ is
bounded, see [PPS, Lem. 3.3]). By [PPS, Theo. 6.1], if the sectional curvature of M̃ has
bounded first order derivatives, then the critical exponent δŴ, F is equal to the pressure
P(F) of F on T 1 M , defined in Eq. (1). The Poincaré series

QŴ, F, x0(s) =
∑

γ∈Ŵ

e

∫ γ x0
x0

(F̃−s)

of (Ŵ, F) converges if s > δŴ, F and diverges if s < δŴ, F . We say that (Ŵ, F) is of

divergence type if QŴ, F, x0(s) diverges at s = δŴ, F .
The (normalised) Gibbs cocycle of F̃ is the function C F : ∂∞M̃ × M̃ × M̃ → R

defined by

(ξ, x, y) �→ C F
ξ (x, y) = lim

t→+∞

∫ ξt

y

(F̃ − δŴ, F ) −
∫ ξt

x

(F̃ − δŴ, F ),

where t �→ ξt is any geodesic ray with endpoint ξ ∈ ∂∞M̃ . We have C F+c = C F for
every constant c ∈ R. If F̃ = 0, then C F = δŴβ, where β is the Busemann cocycle.

By [PPS, Lem. 3.2, 3.4], there exists a constant c1 > 0 (depending only on the
Hölder constants of F̃ and on the bounds of the sectional curvature of M̃) such that for
all x, y, z ∈ M̃ , we have

∣∣∣
∫ z

x

F̃ −
∫ z

y

F̃

∣∣∣ ≤ c1 ed(x, y) + d(x, y) max
π−1(B(x, d(x, y)))

|F̃ |, (5)

and, for every ξ ∈ ∂∞M̃ ,

∣∣ C F
ξ (x, y)

∣∣ ≤ c1 ed(x, y) + d(x, y) max
π−1(B(x, d(x, y)))

|F̃ |. (6)
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A family (μF
x )x∈M̃ of finite measures on ∂∞M̃ , whose support is the limit set �Ŵ of

Ŵ, is a Patterson density for the pair (Ŵ, F̃) if

γ∗μ
F
x = μF

γ x

for all γ ∈ Ŵ and x ∈ M̃ , and if the following Radon–Nikodym derivatives exist for all
x, y ∈ M̃ and satisfy for almost all ξ ∈ ∂∞M̃

dμF
x

dμF
y

(ξ) = e
−C F

ξ (x, y)
.

A Gibbs measure on T 1 M̃ for (Ŵ, F̃) is the measure m̃ F on T 1 M̃ given by the density

dm̃ F (v) = e
C F◦ι

v− (x0, π(v)) + C F
v+ (x0, π(v))

dμF◦ι
x0

(v−) dμF
x0

(v+) dt (7)

in Hopf’s parametrisation. Patterson densities (μF
x )x∈M̃ and (μF◦ι

x )x∈M̃ exist (see [PPS,
§3.6], their construction, whence the existence of m̃ F , requires only Ŵ to be nonele-
mentary and δŴ, F < +∞). The Gibbs measure m̃ F is independent of x0, its support
is �̃Ŵ, and it is invariant under the actions of the group Ŵ and of the geodesic flow.
Thus (see [PPS, §2.6]), it defines a measure m F on T 1 M which is invariant under the
quotient geodesic flow, called a Gibbs measure on T 1 M . For every constant c > 0,
note that (μF

x )x∈M̃ is also a Patterson density for the pair (Ŵ, F̃ + c), thus m̃ F is also
a Gibbs measure for (Ŵ, F̃ + c). If m F is finite, then the Patterson densities are unique
up to a common multiplicative constant (see [PPS, §5.3]); hence the Gibbs measure
m F is uniquely defined, up to a multiplicative constant, and, when normalised to be a
probability measure, it is the unique equilibrium state for the potential F , if the negative
part of F is m F -integrable and if the sectional curvature of M̃ has bounded first order
derivatives, see [PPS, Theo. 6.1].

By its definition as a quasi-product, the Gibbs measure m̃ F satisfies the following
property, used without mention in what follows: for every x ∈ M̃ , the preimage by
v �→ v+ of a set of measure 0 (respectively > 0) for μF

x has measure 0 (respectively
> 0) for m̃ F .

We refer to [PPS, §8] for finiteness criteria of m F , in particular satisfied if M is
compact. Babillot [Bab, Thm. 1] showed that if m F is finite, then it is mixing for the
geodesic flow on T 1 M if the length spectrum of Ŵ is nonarithmetic (that is, if the set of
translation lengths of the elements of Ŵ is not contained in a discrete subgroup of R).
This condition, conjecturally always true, is known, for example, if Ŵ has a parabolic
element, if �Ŵ is not totally disconnected (hence if M is compact), or if M̃ is a surface
or a (rank-one) symmetric space, see for instance [Dal1,Dal2].

For every subset A of M̃ and every point x in M̃ ∪ ∂∞M̃ , the shadow of A seen from

x is the set Ox A of points at infinity of the geodesic rays or lines starting from x and
meeting A. By Mohsen’s shadow lemma (see [PPS, Lem. 3.10]), for every x, y ∈ M̃ , if
R > 0 is large enough, there exists c = c(R) > 0 such that for every γ ∈ Ŵ, we have

1

c
e
∫ γ y

x (F̃−δŴ, F ) ≤ μF
x (Ox (B(γ y, R))) ≤ c e

∫ γ y
x (F̃−δŴ, F ). (8)

Here is a new consequence of Mohsen’s shadow lemma which will be useful in this
paper. Recall that a discrete group G of isometries of M̃ is convex-cocompact if its limit
set �G contains at least two points, and if the action of G on the convex hull C �G in
M̃ of �G has compact quotient.
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Lemma 2.1. Let Ŵ0 be a convex-cocompact subgroup of Ŵ such that δŴ0, F0 < δŴ, F ,

where F0 : Ŵ0\T 1 M̃ → R is the map induced by F̃. Then μF
x0

(�Ŵ0) = 0.

Proof. Since Ŵ0 is convex-cocompact, if R is big enough, for every n ∈ N, we have

�Ŵ0 ⊂
⋃

γ∈Ŵ0, d(x0, γ x0)≥n

Ox0(B(γ x0, R)).

Hence, by Eq. (8), there exists c > 0 such that for every n ∈ N,

μF
x0

(�Ŵ0)≤
∑

γ∈Ŵ0, d(x0, γ x0)≥n

μF
x0

(Ox0(B(γ x0, R)))≤c
∑

γ∈Ŵ0, d(x0, γ x0)≥n

e

∫ γ x0
x0

(F̃−δŴ, F )
.

The Poincaré series QŴ0, F0, x0(δŴ, F ) converges, as δŴ0, F0 < δŴ, F . Since the remainder
of a converging series tends to 0, this proves the result. ⊓⊔

A parabolic subgroup of Ŵ is a maximal infinite subgroup Ŵ0 of Ŵ whose limit set
�Ŵ0 is a singleton. It is bounded if Ŵ0\(�Ŵ − �Ŵ0) is compact. For every bounded
parabolic subgroup Ŵ0, if �Ŵ0 = {ξ0}, there exists (see for instance [Bow]) a unique
Ŵ-equivariant family (Hαξ0)α∈Ŵ/Ŵ0 of maximal closed horoballs in M̃ with pairwise
disjoint interiors and with Hξ0 centred at ξ0. The horoball Hξ0 is precisely invariant

under Ŵ, that is, its stabiliser in Ŵ is Ŵ0 and the inclusion
◦

Hξ0 ⊂ M̃ induces an injection

Ŵ0\
◦

Hξ0 → Ŵ\M̃ . Note that if Ŵ0 is a parabolic subgroup of Ŵ and if m F is finite, then
we also have μF

x0
(�Ŵ0) = 0 (see [PPS, Prop. 5.13 (i)]).

3. Hausdorff Dimension of Patterson Measures of Potentials

Let M̃ be a complete simply connected Riemannian manifold with pinched negative
sectional curvature at most −1 having bounded first order derivatives. Let Ŵ be a nonele-
mentary discrete group of isometries of M̃ . Let F̃ : T 1 M̃ → R be a Hölder-continuous
Ŵ-invariant function. Assume that δ = δŴ, F is finite. Let m̃ F be the Gibbs measure on
T 1 M̃ associated with a pair of Patterson densities

(
(μF◦ι

x )x∈M̃ , (μF
x )x∈M̃

)
for (Ŵ, F ◦ ι)

and (Ŵ, F). We use the notation introduced in Sect. 2.
We fix in this section a point x in M̃ . We denote by dx the Gromov–Bourdon visual

distance on ∂∞M̃ seen from x , defined (see [Bou]) by

dx (ξ, η) = lim
t→+∞

e
1
2 (d(ξt , ηt )−d(x, ξt )−d(x, ηt )), (9)

where t �→ ξt , ηt are any geodesic rays ending at ξ, η respectively. We endow from now
on ∂∞M̃ with the distance dx .

The aim of this section is to compute the Hausdorff dimension of the Patterson
measure μF

x associated with the potential F (which will be independent of x). Recall
that the Hausdorff dimension dimH (ν) of a finite nonzero measure ν on a locally compact
metric space X is the greatest lower bound of the Hausdorff dimensions dimH (Y ) of the
Borel subsets Y of X with ν(Y ) > 0.

Let us give a motivation for such a computation. As mentioned in the introduction,
we are interested in this paper in studying whether the set E(ψ) of vectors of T 1 M that
are well-spiraling, as quantified by ψ , around a given closed geodesic D0 has full or zero
measure for the Gibbs measure m F . Varying the potential F may be useful to estimate the
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Hausdorff dimension of E(ψ): if
∫ +∞

0 e
ψ(t)(P(F|T 1 D0

)−P(F))
dt diverges, as we will prove

in Sect. 4, the set E(ψ) has full measure for m F , and hence dimH (E(ψ)) ≥ dimH (m F ).
Note that the Hopf parametrisation of T 1 M̃ is Hölder-continuous (though usually not
Lipschitz, except in particular when M̃ is a symmetric space), and m̃ F is in the same
measure class as the product measure dμF◦ι

x ⊗ dμF
x ⊗ dt . Hence dimH (m F ) may be

estimated using dimH (μF
x ) (that we will prove to be equal to dimH (μF◦ι

x )), and is in
fact equal to 2 dimH (μF

x ) + 1 if M̃ is a symmetric space.
The main result of this section, proving Theorem 1.1 in the introduction, is the

following one. To simplify the notation, let h(m) = h m
‖m‖

(g1) be the (metric) entropy of

the geodesic flow with respect to a finite nonzero (gt )t∈R-invariant measure m on T 1 M

normalised to be a probability measure.

Theorem 3.1. If the Gibbs measure m F is finite and if F is m F -integrable, then the

Hausdorff dimension of the Patterson measure μF
x on (∂∞M̃, dx ) associated with F

satisfies

dimH (μF
x ) = dimH (μF◦ι

x ) = h(m F ) ≤ δŴ. (10)

If M is convex-cocompact, then the last inequality is an equality if and only if F − P(F)

is cohomologous to the zero potential.

We think that the convex-cocompact assumption in the last claim could be improved
(see the comment at the end of this section).

The first claim is a generalisation of a result of Ledrappier [Led4], who proved the
theorem in the particular case F = 0. Then μ0

x is the standard Patterson measure of
Ŵ and the associated Gibbs measure m F is the Bowen-Margulis measure mBM. Let
�cŴ denote the conical (or radial) limit set, that is, the set of ξ ∈ ∂∞M̃ for which
lim inf t→+∞ d(ρ(t), Ŵx) < +∞, where ρ is any geodesic ray with point at infinity ξ .
Let htop(g

1) be the topological entropy of the geodesic flow on T 1 M . If mBM is finite,
then Ledrappier [Led4, Theo. 4.3] proves furthermore that

dimH (μ0
x ) = h(mBM) = htop(g

1) = dimH (�cŴ) = δŴ.

The second equality is due to Otal and Peigné [OP]. The last equality, which does not
require the assumption that mBM is finite, is due to Bishop-Jones in constant curvature,
to Hamenstädt and to the first author (see [Pau]) in general.

Proof. Up to normalising μF
x , which does not change its Hausdorff dimension nor m F

‖m F ‖ ,

we may assume that μF
x is a probability measure. The proof will follow from a series of

claims. The following is a well known useful alternative characterisation of the dimension
of the measure, which was also used by Ledrappier [Led4, Prop. 2.5].

Lemma 3.2. For any finite nonzero measure ν on a compact metric space X, the Haus-

dorff dimension dimH (ν) is the ν-essential greatest lower bound on x ′ ∈ X of

lim inf
ǫ→0

log ν(B(x ′, ǫ))

log ǫ
.

For every ξ ∈ ∂∞M̃ , let ρξ : [0, +∞[ → M̃ be the geodesic ray with ρξ (0) = x and
ρξ (+∞) = ξ . The next lemma compares shadows of balls in M̃ with (visual) balls in
∂∞M̃ .
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Lemma 3.3 (Bourdon [Bou]). For sufficiently large R > 0, there exists D = D(R) such

that, for all ǫ > 0 and ξ ∈ ∂∞M̃,

Ox (B(ρξ (log(1/ǫ) + D), R)) ⊂ Bdx (ξ, ǫ) ⊂ Ox (B(ρξ (log(1/ǫ) − D), R)).

Our first step in proving the theorem is the following result.

Proposition 3.4. (1) If (Ŵ, F) is of divergence type then dimH (μF
x ) ≤ dimH (�cŴ) =

δŴ;

(2) If m F is finite and if F is m F -integrable, then

dimH (μF
x )≤ P(F) −

1

‖m F‖

∫

T 1 M

Fdm F .

Proof. By [PPS, Theo. 5.12], if (Ŵ, F) is of divergence type, then the set �cŴ has full
μF

x -measure, and thus the inequality in Part (1) follows immediately from the definition
of the Hausdorff dimension of measures. The equality in Part (1) has already been
mentioned.

In order to prove Part (2), note that (Ŵ, F) is of divergence type if m F is finite, by
[PPS, Coro. 5.15]. It hence suffices by Lemma 3.2 to show that for μF

x -almost every ξ

in the full μF
x -measure subset �cŴ, we have

lim inf
ǫ→0

log μF
x (Bdx (ξ, ǫ))

log ǫ
≤ P(F) −

1

‖m F‖

∫

T 1 M

F dm F .

Let ξ ∈ �cŴ. By the definition of �cŴ, there exist K ≥ 0, a sequence (γn)n∈N in Ŵ

and a sequence (tn)n∈N converging to +∞ in [0, +∞[ such that d(ρξ (tn), γn x) ≤ K . By
the triangle inequality, we have d(x, γn x) ≤ tn + K and the ball B(ρξ (tn), R) contains
the ball B(γn x, R − K ), for every R ≥ K . Let us apply the inclusion on the left in
Lemma 3.3 with ǫn = e−tn+D(R), which tends to 0 as n → +∞ (hence in particular may
be assumed to be in ]0, 1]). We have

log μF
x (Bdx (ξ, ǫn))

log ǫn

≤
log μF

x (Ox (B(ρξ (tn), R)))

log ǫn

≤
log μF

x (Ox (B(γn x, R − K )))

log ǫn

.

(11)
By Mohsen’s shadow lemma (see Eq. (8)) and by [PPS, Theo. 6.1] which says that
P(F) = δŴ, F , if R is large enough, there exists c > 0 such that, for every n ∈ N,

μF
x (Ox (B(γn x, R − K ))) ≥

1

c
e
∫ γn x

x (F̃−P(F)).

By Eq. (5), we have
∫ γn x

x
F̃ =

∫ tn
0 F̃(ρ̇ξ (s)) ds +O(1) as n → +∞. Thus Eq. (11) gives,

as n → +∞,

log μF
x (Bdx (ξ, ǫn))

log ǫn

≤
∫ γn x

x
(F̃ − P(F)) − log c

−tn + D(R)

≤
(
P(F) −

1

tn

∫ tn

0
F̃(ρ̇ξ (s)) ds

)
(1 + o(1)).
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By [PPS, Theo. 5.4], since (Ŵ, F) is of divergence type, the geodesic flow in T 1 M is
ergodic for m F . Since F is m F -integrable on T 1 M , since m F is finite and by the quasi-
product structure of m̃ F in Hopf’s parametrisation, for μF

x -almost every ξ , we have by
Birkhoff’s ergodic theorem

lim
n→+∞

1

tn

∫ tn

0
F̃(gs ρ̇ξ (0)) ds =

1

‖m F‖

∫

T 1 M

F dm F .

This proves Proposition 3.4. ⊓⊔

We next want to show that the reverse inequality holds.

Proposition 3.5. If m F is a finite measure and if F is m F -integrable, then dimH (μF
x ) ≥

P(F) − 1
‖m F ‖

∫
T 1 M

F dm F .

Proof. To prove the result, by Proposition 3.2, we only need to show that for μF
x -almost

every ξ , we have

lim inf
ǫ→0

log μF
x (Bdx (ξ, ǫ))

log ǫ
≥ P(F) −

1

‖m F‖

∫

T 1 M

F dm F .

As in the proof of [Led4, Prop. 4.6], since m F is finite and by the quasi-product
structure of m̃ F , by Poincaré’s recurrence theorem and Birkhoff’s ergodic theorem, for
μF

x -almost every ξ , there exist K > 0, a sequence (γn)n∈N in Ŵ and an increasing
sequence (tn)n∈N, converging to +∞ in [0, +∞[, such that d(ρξ (tn), γn x) ≤ K , and
such that the limit limn→+∞ tn/n exists and is positive.

Let R be big enough and let c = c(R + K ) be as in Mohsen’s shadow lemma (see
Eq. (8)), so that, for every n ∈ N,

μF
x (Ox (B(γn x, R + K ))) ≤ c e

∫ γn x
x (F−P(F)).

By the triangle inequality, the ball B(γn x, R + K ) contains the ball B(ρξ (tn), R). For
every n ∈ N, let ǫn = e−tn−D(R), which decreases to 0. For every ǫ ∈ ]0, 1] small
enough, let n = n(ǫ) ∈ N be such that ǫn ≥ ǫ > ǫn+1. By the inclusion on the right
in Lemma 3.3 and by the same arguments as in the end of the proof of the previous
proposition, we have

log μF
x (Bdx (ξ, ǫ))

log ǫ
≥

log μF
x (Bdx (ξ, ǫn))

log ǫn+1
≥

log μF
x (Ox (B(ρξ (tn), R)))

log ǫn+1

=
− log μF

x (Ox (B(ρξ (tn), R)))

tn+1 + D(R)
≥

− log μF
x (Ox (B(γn x, R + K )))

tn+1 + D(R)

≥
−

∫ γn x

x
(F − P(F)) − log c

tn+1 + D(R)

≥
tn P(F) − tn+o(tn)

‖m F ‖
∫

T 1 M
F dm F + O(1)

tn+1 + D(R)
.

Taking the inferior limit as ǫ → 0, since limn→+∞
tn

tn+1
= 1, the result follows. �

Now, by the Variational Principle [PPS, Theo. 6.1], since m F is finite and since F is
m F -integrable, we have P(F) = h(m F ) + 1

‖m F ‖
∫

T 1 M
F dm F . Since ι : T 1 M → T 1 M
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conjugates (gt )t∈R to (g−t )t∈R, and since m F◦ι = ι∗m F , we have h(m F◦ι) = h(m F ).
Hence Eq. (10) in Theorem 3.1 follows from Propositions 3.4 and 3.5 applied to both F

and F ◦ ι.
If Ŵ is convex-cocompact, then m F and mBM = m0 are finite and F is integrable

for m F and m0. By the uniqueness in the Variational Principle (see [PPS, Theo. 6.1]),
if h(m F ) = δŴ = h(m0), then m F

‖m F ‖ = m0
‖m0‖ . By the Hamenstädt-Ledrappier cor-

respondence (see [Led3,Ham2,Sch] and the following proposition) saying that if Ŵ is
convex-cocompact, the cohomology class of a potential with zero pressure is determined
by its associated Gibbs measure, the last claim of Theorem 3.1 follows. ⊓⊔

We end this section by a comment on the correspondence between the potentials and
their associated Patterson measures, which will be used at the end of this paper.

Proposition 3.6 (Hamenstädt–Ledrappier). If Ŵ is convex-cocompact, the map F̃ �→
μ = μF

x0
induces a bijection from the set of Ŵ-invariant Hölder maps F̃ : �̃Ŵ →

R with zero pressure P(F) = 0, up to cohomologous maps, to the set of measure

classes of Hölder quasi-invariant measures μ on (�Ŵ, dx ) endowed with the action of

Ŵ. Furthermore, for every hyperbolic element γ ∈ Ŵ with attractive fixed point γ + ∈ �Ŵ,

the period of γ for F̃ satisfies

PerF (γ ) = log
d(γ −1)∗μ

d μ
(γ +). (12)

Proof. The reader who is not interested in seeing how this result can be deduced from
[Led3] (whose arguments extend from the cocompact to the convex-cocompact case, as
observed in [Sch]) may skip this proof.

Recall that ∂∞M̃ has a unique Hölder structure such that for every x ∈ M̃ , the map
v �→ v+ from T 1

x M̃ to ∂∞M̃ (whose inverse will be denoted by ξ �→ vx, ξ ) is a Hölder
homeomorphism.

The following definitions are taken from [Led3]. A Hölder cocycle for the action of Ŵ

on ∂∞M̃ is a map c : Ŵ ×�Ŵ → R, which is Hölder-continuous in the second variable,
such that c(γ γ ′, ξ) = c(γ, γ ′ξ) + c(γ ′, ξ) for all γ, γ ′ ∈ Ŵ and ξ ∈ �Ŵ. The period for
c of a hyperbolic element γ of Ŵ is c(γ, γ +), where γ + is the attractive fixed point of
γ . Two Hölder cocycles c and c′ are cohomologous if there exists a Hölder-continuous
map U : �Ŵ → R such that c(γ, ξ) − c′(γ, ξ) = U (γ ξ) − U (ξ) for all γ ∈ Ŵ and
ξ ∈ �Ŵ. Given a Hölder quasi-invariant measure μ, its associated Hölder cocycle is

cμ : (γ, ξ) �→ − log d(γ −1)∗μ
d μ

(ξ). The verification that this is indeed a Hölder cocycle
is immediate.

Fix x0 ∈ �̃Ŵ. Given a potential (that is, a Ŵ-invariant Hölder map) F̃ : �̃Ŵ → R, the
map cF : (γ, ξ) �→ C F

ξ (γ −1x0, x0) is a Hölder cocycle (see [PPS, Prop. 3.5 (ii)] for its

Hölder-continuity, F̃ being bounded since Ŵ\�̃Ŵ is compact). Hence, by the definition
of a Patterson density, given a potential F̃ : �̃Ŵ → R, the measure μF

x0
is a Hölder quasi-

invariant measure, whose associated Hölder cocycle is cF . If two potentials F̃ and F̃∗

are cohomologous, then their associated Hölder cocycles cF and cF∗ are cohomologous:
it is easy to check that if G̃ : �̃Ŵ → R is Hölder-continuous, Ŵ-invariant, differentiable
along every flow line, and satisfies Eq. (3), then the map U : �Ŵ → R defined by
ξ �→ G̃(vx0, ξ ) is Hölder-continuous and satisfies cF∗(γ, ξ)−cF (γ, ξ) = U (γ ξ)−U (ξ)

for all γ ∈ Ŵ and ξ ∈ �Ŵ.
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Let us relate the periods of a potential F to the periods of the Hölder cocycle cF . Let
γ be a hyperbolic element of Ŵ, with translation axis Aγ , translation length ℓ(γ ) and
attractive fixed point γ+. By the Ŵ-invariance and the cocycle property of C F , if p is the
closest point to x0 on Aγ , we have C F

γ +(γ
−1x0, x0) = C F

γ +(γ
−1 p, p). Hence, by the

definition of C F , with t �→ ξt the geodesic ray from p to γ +, we have (note that there
are sign differences with [Led3])

cF (γ, γ +) = C F
γ +(γ

−1x0, x0) = C F
γ +(γ

−1 p, p)

= lim
t→+∞

∫ ξt

p

(F̃ − P(F)) −
∫ t

γ −1 p

(F̃ − P(F))

= −
∫ p

γ −1 p

(F̃ − P(F)) = P(F) ℓ(γ ) − PerF (γ ). (13)

By [Led3, Théo. 1.c], two Hölder quasi-invariant measures have the same measure
class if and only if their associated Hölder cocycles are cohomologous, and this holds if
and only if the periods of these Hölder cocycles are the same. By Livšic’s theorem (see
[PPS, Rem. 3.1]), two potentials F̃ and F̃∗ are cohomologous if and only they have the
same periods. By Eq. (13), the periods of two potentials F̃ and F̃∗ with zero pressure
are the same if and only if the periods of the associated Hölder cocycles cF and cF∗

are the same. Hence the map which associates to the cohomology class of a potential
F̃ the measure class of the Hölder quasi-invariant measure μF

x0
is well-defined, and is

injective. To prove that it is surjective, we start with a Hölder quasi-invariant measure
μ, we consider its associated Hölder cocycle cμ, the proof of [Led3, Théo. 3] shows that
there exists a potential F̃ such that the Hölder cocycle cF is cohomologous to cμ, and
we apply again [Led3, Théo. 1.c] to get that μF

x0
and μ have the same measure class.

In order to prove Eq. (12), if F̃ is a potential with P(F) = 0, we have, by Eq. (13),

log
d(γ −1)∗μF

x0

d μF
x0

(γ +) = −cF (γ, γ +) = PerF (γ ). ⊓⊔

It would be interesting to know if one could remove the assumption that Ŵ is convex-
cocompact, up to adding the requirements on F̃ that δŴ, F is finite and (Ŵ, F) is of
divergence type, and on μ that μ is ergodic. This would improve correspondingly the
last claim of Theorem 3.1 and simplify the statement of the requirement on the class of
measures under consideration in Theorem 5.1.

4. Almost Sure Spiraling for Gibbs States

We will study in this section the generic asymptotic penetration properties of the geodesic
lines, in a negatively curved simply connected manifold, under a discrete group of
isometries, inside a tubular neighbourhood of a convex subset with cocompact stabiliser,
not only as in [HP2] for the Bowen-Margulis measure, but for any Gibbs measure.

Let (M̃, Ŵ, F̃, (μF◦ι
x )x∈M̃ , (μF

x )x∈M̃ , m̃ F ) be as in the beginning of Sect. 3, with
δ = δŴ, F finite. We again use the notation introduced in Sect. 2.

Recall that a subgroup H of a group G is almost malnormal if, for every g in G − H ,
the subgroup gHg−1∩H is finite. Let Ŵ0 be an almost malnormal and convex-cocompact
subgroup of Ŵ, of infinite index in Ŵ, let C0 = C �Ŵ0 be the convex hull of the limit set
of Ŵ0. For instance, C0 could be the translation axis of a loxodromic element of Ŵ, and
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Ŵ0 the stabiliser of C0 in Ŵ (see [HP2, §4] for an explanation and for more examples). Up
to adding assumptions on the behaviour of the potential and on growth properties in cusp
neighbourhoods (including a gap property for the pressures), our result should extend
when Ŵ0 is assumed to be only geometrically finite instead of convex-cocompact, or
when Ŵ0 is a bounded parabolic group (in which case Ŵ0 is also malnormal with infinite
index in Ŵ) and C0 is a precisely invariant closed horoball centred at the singleton �Ŵ0.
We restrict to the above case for simplicity.

Let F0 : Ŵ0\T 1 M̃ → R be the map induced by F̃ , and let δ0 = δŴ0, F0 be the critical
exponent of (Ŵ0, F0). Note that −∞ < δ0 ≤ δ < +∞ by [HP2, Lem. 3.3 (iii)].

Let ψ : [0, +∞[ → [0, +∞[ be a measurable map, such that there exist c2, c3 > 0
such that for every s, t ≥ c2, if s ≤ t +c2, then ψ(s) ≤ ψ(t)+c3. Recall (see for instance
[HP1, § 5]) that this condition is for instance satisfied if ψ is Hölder-continuous; it implies
that eψ is locally bounded, hence it is locally integrable; and for every α > 0, the series∑

n∈N eα ψ(n) converges if and only if the integral
∫ +∞

0 eα ψ(t) dt converges. Note that
the constants c2 and c3 are unchanged by replacing ψ by ψ + c for any c ∈ R.

Fix ǫ0 > 0. With the terminology of [HP2], let Ẽ(ψ) be the set of (ǫ0, ψ)-Liouville

vectors for (Ŵ, Ŵ0) in T 1 M̃ , that is, the set of v ∈ T 1 M̃ such that there exist a sequence
(tn)n∈N in [0, +∞[ converging to +∞ and a sequence (γn)n∈N in Ŵ such that for every
t ∈ [tn, tn + ψ(tn)], we have gv(t) ∈ γnNǫ0C0. Note that Ẽ(ψ) is invariant under the
geodesic flow and under Ŵ.

If E is a set and f, g : E → ]0, +∞[ are maps, we write f ≍ g if there exists c > 0
such that 1

c
f ≤ g ≤ c f . The aim of this section is to prove the following result.

Theorem 4.1. Assume that the measure m F is finite, and that there exists κ > 0 such

that
∑

γ∈Ŵ, t≤d(x,γ y)<t+κ e
∫ γ y

x F̃ ≍ et δ and
∑

α∈Ŵ0, t≤d(x,αy)<t+κ e
∫ αy

x F̃ ≍ eδ0 t . If∫ +∞
0 eψ(t)(δ0−δ) dt diverges (resp. converges) then m̃ F -almost every (resp. no) point of

T 1 M̃ belongs to Ẽ(ψ).

Remarks (1) If the length spectrum of Ŵ is nonarithmetic, then as said in Sect. 2, the
measure m F is mixing for the geodesic flow on T 1 M , hence by [PPS, Coro. 9.7], we
have

∑
γ∈Ŵ, d(x, γ y)≤t e

∫ γ y
x F̃ ∼ c eδ t as t → +∞, for some c > 0, a stronger

requirement than the first asymptotic hypothesis. Similarly, if the length spectrum of
Ŵ0 is nonarithmetic (this implies that Ŵ0 is nonelementary), then the Gibbs measure
m F0 of (Ŵ0, F0), being finite since Ŵ0 is convex-cocompact, is mixing, and the second
asymptotic hypothesis holds. The fact that the second asymptotic hypothesis holds when
Ŵ0 is elementary (that is, when C0 is the translation axis of a loxodromic element of Ŵ)
is given by [PPS, Lem. 3.3 (ix)].

(2) The above theorem implies Theorem 1.2 in the introduction. Indeed, M being
compact, the measure m F is finite and the length spectrum of Ŵ is nonarithmetic. Hence
the two asymptotic hypotheses of Theorem 4.1 (which, up to changing κ > 0, does
not depend on the choice of x, y ∈ M̃) hold by the previous remark. Note that if C0
is the translation axis of a loxodromic element of Ŵ, if D0 is its image by M̃ → M ,
then δ0 = P(F|T 1 D0

) by [PPS, Lem. 3.3 (ix)]. We have δ = P(F) by [PPS, Theo. 6.1].
Hence the conclusion of Theorem 4.1 does imply Theorem 1.2.

Proof of Theorem 4.1. Before starting this proof, let us give more informations on Ŵ0.
Recall that C0 is a non-compact, closed convex subset of M̃ such that:

(1) C0 is Ŵ0-invariant and Ŵ0\C0 is compact; up to replacing Ŵ0 by StabŴ C0, in which
Ŵ0 has finite index and which remains almost malnormal (see the characterisation
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[HP2, Prop. 2.6 (3)]), so that δ0 and the validity of the second asymptotic hypothesis
of Theorem 4.1 are unchanged, we may and we will assume that Ŵ0 = StabŴ C0;

(2) by [HP2, Prop. 2.6 (2),(4)], the limit set �Ŵ0 is precisely invariant (that is, we have
γ�Ŵ0 ∩ �Ŵ0 = ∅ for every γ ∈ Ŵ − Ŵ0), and there exists κ0 > 0 such that for
every γ ∈ Ŵ − Ŵ0, the diameter of Nǫ0 C0 ∩ γNǫ0C0 is at most κ0.

Lemma 4.2. If Ŵ0 is a convex-cocompact subgroup of Ŵ, then δ0 < δ.

Proof. Since the Gibbs measure m F0 is finite, by [PPS, Theo. 6.1], the probability mea-
sure

m F0
‖m F0 ‖ is an equilibrium state for the potential F0 on Ŵ0\T 1 M̃ , whose support is

contained in the compact nonwandering set �Ŵ0 = Ŵ0\�̃Ŵ0 of the geodesic flow on
Ŵ0\T 1 M̃ . Since Ŵ0 is malnormal in Ŵ, the canonical map p : Ŵ0\T 1 M̃ → Ŵ\T 1 M̃ ,
when restricted on the nonwandering sets, is a finite-to-one map, by the above prop-
erty (2). Hence if for a contradiction δ0 = δ, then p∗

( m F0
‖m F0 ‖

)
is an equilibrium state

for F on Ŵ\T 1 M̃ . But by [PPS, Theo. 6.1], this equilibrium state is unique, hence
p∗

( m F0
‖m F0 ‖

)
= m F

‖m F ‖ .

Since Ŵ0 is convex-cocompact and has infinite index in Ŵ, its limit set �Ŵ0 is a
precisely invariant (by the above property (2)) nonempty closed subset with empty
interior in �Ŵ. Hence Ŵ�Ŵ0 is a proper subset of �Ŵ by Baire’s theorem. Therefore
the support of p∗m F0 , which is the image by p of Ŵ0\�̃Ŵ0 = Ŵ0\{v ∈ T 1 M̃ : v−, v+ ∈
�Ŵ0}, is a proper subset of the support Ŵ\�̃Ŵ = Ŵ\{v ∈ T 1 M̃ : v−, v+ ∈ �Ŵ} of m F ,
a contradiction. ⊓⊔

We start the proof of Theorem 4.1 by two reductions of the statement.

(i) Up to adding a big enough constant to F̃ , which does not change m̃ F , nor δ0 − δ,
nor the asymptotics of the series in the above statement, we assume that δ0 > 0. In
particular, δ is finite and positive.

(ii) Let x0 ∈ C0 be a basepoint. Let R0 > 0 and let Ũ0 = π−1(B(x0, R0)) be the set
of the unit tangent vectors in T 1 M̃ based at a point at distance less that R0 of x0.
If R0 is big enough, then m F (Ũ0) > 0. Since m F is finite, it is ergodic under the
action of the geodesic flow on T 1 M (see [PPS, Coro. 5.15]). Hence the result is
equivalent to proving that, when R0 is big enough, if

∫ +∞
0 eψ(t)(δ0−δ) dt diverges

(resp. converges) then m̃ F -almost every (resp. no) point of Ũ0 belongs to Ẽ(ψ)∩Ũ0.

We now define the various subsets of Ũ0 that we will study during the proof of
Theorem 4.1.

Let E0 be the set of [γ ] ∈ Ŵ/Ŵ0 such that d(x0, γ C0) ≤ R0 + ǫ0. Since Ŵ is discrete,
and since Ŵ0 acts cocompactly on C0, only finitely many distinct images of C0 under Ŵ

meet a given compact subset of M̃ . In particular, the set E0 is finite.
Since Ŵ0\C0 is compact, let �0 > 0 be such that the restriction to the ball B(x0,�0)

of the canonical projection C0 → Ŵ0\C0 is onto. Choose and fix once and for all a
representative γ of [γ ] ∈ Ŵ/Ŵ0 − E0 such that if pγ is the closest point to x0 on γ C0,
then d(pγ , γ x0) ≤ �0. We will use this representative whenever a coset is considered.
For every [γ ] ∈ Ŵ/Ŵ0 − E0, define

Dγ = d(x0, γ C0) = d(x0, pγ ) > 0.

Remark 4.3. Note that by an argument similar to [HP2, Lem. 4.1], for every λ ∈ R, there
are only finitely many [γ ] ∈ Ŵ/Ŵ0 − E0 such that Dγ ≤ λ.
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Lemma 4.4. Assume that there exists κ > 0 such that

∑

γ∈Ŵ, t≤d(x0, γ x0)<t+κ

e

∫ γ x0
x0

F̃ ≍ eδ t and
∑

α∈Ŵ0, t≤d(x0, αx0)<t+κ

e

∫ αx0
x0

F̃ ≍ eδ0 t .

Then there exists κ ′ ≥ 1 such that
∑

[γ ]∈Ŵ/Ŵ0, t≤Dγ <t+κ ′ e

∫ γ x0
x0

F̃ ≍ eδ t .

Proof. We start by proving that there exist c4, c5 > 0 such that for every ([γ ], α) ∈
Ŵ/Ŵ0 × Ŵ0, we have

Dγ ≤ d(x0, γ x0) ≤ Dγ + �0, (14)

d(x0, γ x0) + d(x0, αx0) − c4 ≤ d(x0, γ αx0) ≤ d(x0, γ x0) + d(x0, αx0), (15)

∣∣∣
∫ γαx0

x0

F̃ −
∫ γ x0

x0

F̃ −
∫ αx0

x0

F̃

∣∣∣ ≤ c5. (16)

Equation (14), as well as the inequality on the right hand side of Eq. (15), follow by
the triangle inequality:

Dγ = d(x0, γ C0) ≤ d(x0, γ x0) ≤ d(x0, pγ ) + d(pγ , γ x0) ≤ Dγ + �0.

By the convexity of γ C0, the angle at pγ of the geodesic segments [pγ , x0] and
[pγ , γ αx0] (if they are non-trivial) is at least π

2 . By hyperbolicity, the point pγ is hence

at distance at most log(1 +
√

2) from a point in [x0, γ αx0]. Thus γ x0 is at distance at
most �0 + log(1 +

√
2) from a point u in [x0, γ αx0]. By the triangle inequality, the

inequality on the left hand side of Eq. (15) follows with c4 = 2(�0 + log(1 +
√

2)).
Let us apply Eq. (5) twice, with x = u, y = γ x0 and with either z = x0 or z = γαx0.

Since d(γ x0, u) ≤ �0 + log(1 +
√

2), Eq. (16) follows with

c5 = 2
(
c1 e�0+log(1+

√
2) + (�0 + log(1 +

√
2)) max

π−1(B(x0,�0+log(1+
√

2)))

|F̃ |
)
.

We are now going to use the following lemma.

Lemma 4.5 [HP1, Lem. 3.3]. For all A, δ0, δ > 0, there exists N ∈ N and B > 0 such

that for all sequences (ak)k∈N and (bk)k∈N such that an ≤ A eδ n , bn ≤ A eδ0 n and∑n
k=0 akbn−k ≥ 1

A
eδ n for every n ∈ N big enough, we have

∑N
k=0 an+k ≥ B eδ n for

every n ∈ N.

By the first asymptotic assumption in Lemma 4.4, there exists c′ > 0 such that, for
every t ≥ κ ,

∑

γ ′∈Ŵ, t−κ≤d(x0, γ
′x0)<t

e

∫ γ ′x0
x0

F̃ ≥
1

c
eδ t .

We will use Lemma 4.5 by taking, for every k ∈ N,

ak =
∑

[γ ]∈Ŵ/Ŵ0, k≤Dγ <k+1

e

∫ γ x0
x0

F̃ and bk =
∑

α∈Ŵ0, k−κ−c4≤d(x0, αx0)<k

e

∫ αx0
x0

F̃
.
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By Eq. (14) and by the first asymptotic assumption in Lemma 4.4, there exists c′ > 0
such that, for every k ∈ N,

ak ≤
∑

γ∈Ŵ, k≤d(x0, γ x0)<k+1+�0

e

∫ γ x0
x0

F̃ ≤ c′ eδ k . (17)

By the second asymptotic assumption in Lemma 4.4, there exists c′′ > 0 such that, for
every k ∈ N,

bk ≤ c′′ eδ0 k .

Let n ≥ κ + c4 and ([γ ], α) ∈ Ŵ/Ŵ0 ×Ŵ0 satisfy n −κ − c4 ≤ d(x0, γ
′x0) < n − c4

where γ ′ = γα. Let k = ⌊Dγ ⌋ be the integral part of Dγ . By Eq. (15), we hence have

0 ≤ k ≤ Dγ ≤ d(x0, γ x0) ≤ d(x0, γ αx0) − d(x0, αx0) + c4 ≤ n,

and

n − κ − c4 − k ≤ d(x0, γ αx0) − d(x0, γ x0) ≤ d(x0, αx0)

≤ d(x0, γ αx0) − d(x0, γ x0) + c4 ≤ n − k.

Therefore, respectively by the definition of ak and bn−k , and by Eq. (16), we have

n∑

k=0

akbn−k =
n∑

k=0

∑

[γ ]∈Ŵ/Ŵ0, k≤Dγ <k+1

∑

α∈Ŵ0, n−k−κ−c4≤d(x0, αx0)<n−k

e

∫ γ x0
x0

F̃
e

∫ αx0
x0

F̃

≥ e−c5
∑

γ ′∈Ŵ, n−κ−c4≤d(x0, γ ′x0)<n−c4

e

∫ γ ′x0
x0

F̃ ≥ e−c5
1

c
eδ (n−c4).

Applying Lemma 4.5 with A = max{c′, c′′, c ec5+δc4} gives the lower bound required to
prove Lemma 4.4. The upper bound follows from Eq. (17). ⊓⊔

For every r > 0 and β ∈ Ŵ, let

Aβ(r) = {v ∈ Ũ0 : gv([0, +∞[) ∩ B(βx0, r) �= ∅}.

Let us fix a positive constant c6 ≥ κ (depending only on ǫ0,�0, R0, κ and ψ) to be
made precise later on. For every k ∈ N, define Ik to be the set of [γ ] ∈ Ŵ/Ŵ0 such that
k ≤ Dγ < k + 1, and let Jk = Jk(ψ) be the set of pairs ([γ ], α) ∈ Ŵ/Ŵ0 × Ŵ0 such that
k ≤ Dγ < k +κ ′ (where κ ′ is given by Lemma 4.4) and ψ(k) ≤ d(x0, αx0) < ψ(k)+c6.
For every k ∈ N, let

Ak(r, ψ) =
⋃

([γ ], α)∈Jk

Aγα(r).

These sets are related to the set Ẽ(ψ) that we want to study by the following result.
Recall that if (Bk)k∈N is a sequence of subsets of a given set, one defines lim supk Bk =⋂

n∈N

⋃
k≥n Bk .
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Proposition 4.6. If r ≥ ǫ0+�0, there exist c′
5, c′′

5 > 0 such that, up to sets of m̃ F -measure

zero,

lim sup
k

Ak(r, ψ + c′′
5) ⊂ Ẽ(ψ) ∩ Ũ0,

and if ψ(t) ≥ c′
5 for t big enough,

Ẽ(ψ) ∩ Ũ0 ⊂ lim sup
k

Ak(r, ψ − c′
5).

Proof. Let us first prove the second inclusion. Let c0 = ǫ0 + 2 arsinh(coth ǫ0). Let
c′

0 = c3
⌈ 2R0+c0

c2

⌉
, with c2, c3 the constants appearing in the assumption on ψ . Let

c′
5 = ǫ0 + 2�0 + R0 + c0 + c′

0. Assume that ψ(t) ≥ c′
5 for t big enough.

Let v ∈ Ẽ(ψ) ∩ Ũ0. For every n ∈ N, there exist sequences (tn)n∈N in [0, +∞[
converging to +∞ and ([γn])n∈N in Ŵ/Ŵ0 such that for every t ∈ [tn, tn + ψ(tn)], we
have gv(t) ∈ γnNǫ0C0. Let n ∈ N. The geodesic line gv enters in γnNǫ0C0 at a time
t−n at most tn . Up to extracting a subsequence, we may assume, by Remark 4.3, that
[γn] /∈ E0, so that Dγn > R0 + ǫ0 and t−n > 0.

Let kn = ⌊Dγn ⌋. Let us prove that kn → +∞ as n → +∞, up to sets of m̃ F -measure
zero of elements v ∈ Ẽ(ψ) ∩ Ũ0. Otherwise, up to extracting a subsequence, (γn)n∈N

is constant by Remark 4.3. Hence v+ belongs to the set γ0∂∞C0 of accumulation points
of γ0C0 in ∂∞M̃ . By Lemma 2.1, the μF

x0
-measure of ∂∞C0 = �Ŵ0 is zero. Hence,

since the action of Ŵ preserves the sets of μF
x0

-measure zero by the properties of the

Patterson densities, we have μF
x0

( ⋃
β∈Ŵ β∂∞C0

)
= 0. By the decomposition of m̃ F in

Hopf’s parametrisation (see Eq. (7)), the m̃ F -measure of the set of v ∈ Ẽ(ψ) such that
v+ ∈

⋃
β∈Ŵ β∂∞C0 is zero. This proves the above claim.

gv(t
−

n )

γnx0 Dγn

γnαnx0

π(v)

x0

R0

γnN
0
C0

pγn

γnC0

qn

v

gv(tn + ψ(tn))

gv(tn)

gv(tn)r

Let qn be the closest point to π(v) on γnC0. It satisfies d(pγn , qn) ≤ R0, since closest
point maps do not increase the distances. Note that the point qn is at distance ǫ0 from
the entry point in γnNǫ0C0 of the geodesic segment from π(v) to qn . By the penetration
properties of geodesic rays in ǫ0-neighbourhoods of convex subsets of CAT(−1) metric
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spaces (see [PaP1, Lem. 2.3]), we have d(qn, gv(t
−
n )) ≤ c0 = ǫ0 + 2 arsinh(coth ǫ0).

Hence, by the triangle inequality,

d(γn x0, gv(t
−
n )) ≤ d(γn x0, pγn ) + d(pγn , qn) + d(qn, gv(t

−
n )) ≤ �0 + R0 + c0. (18)

Again by the triangle inequality, we have

kn ≤ Dγn = d(x0, pγn ) ≤ d(x0, π(v))+ t−n +d(gv(t
−
n ), qn)+d(qn, pγn ) ≤ tn +2R0 +c0.

(19)
Up to extracting a subsequence, we may assume that ψ(kn) ≥ c′

5 and that tn, kn ≥ c2.
By the assumption on ψ and since c′

0 = c3
⌈ 2R0+c0

c2

⌉
, we have by Eq. (19),

t−n + ψ(kn) ≤ tn + ψ(tn) + c′
0.

Let t ′n = t−n + ψ(kn) − c′
0, which belongs to [t−n , tn + ψ(tn)], since ψ(kn) ≥ c′

5 ≥ c′
0.

By convexity, the point gv(t
′
n) belongs to Nǫ0C0. Let αn be an element of Ŵ0 such that

d(gv(t
′
n), γnαn x0) ≤ ǫ0 + �0, (20)

which exists by the definition of �0. By the triangle inequality, and by Eq. (18), we have

∣∣ d(γn x0, γnαn x0) − d(gv(t
−
n ), gv(t

′
n))

∣∣ ≤ d(gv(t
′
n), γnαn x0) + d(γn x0, gv(t

−
n ))

≤ ǫ0 + 2�0 + R0 + c0.

Hence

∣∣ d(x0, αn x0) − ψ(kn)
∣∣ = |d(γn x0, γnαn x0) − |t ′n − t−n | − c′

0|
≤ ǫ0 + 2�0 + R0 + c0 + c′

0 = c′
5. (21)

Define c6 = max{2c′
5, κ} (which only depends on ǫ0,�0, R0, κ and ψ). Assume that

r ≥ ǫ0 + �0. For every n ∈ N, we hence have v ∈ Aγnαn (r) by Eq. (20). Besides,
([γn], αn) ∈ Jkn (ψ − c′

5) since kn = ⌊Dγn ⌋ and κ ′ ≥ 1, and by Eq. (21). Therefore
v ∈ Akn (r, ψ − c′

5). This proves the second inclusion in Proposition 4.6.
Let us now prove the first inclusion. By hyperbolicity and an argument of (strict)

convexity (see for instance [PaP1, Lem. 2.2]), there exists c′′
0 = c′′

0(ǫ0, R0, r) such that
if a geodesic segment has endpoints at distance at most max{R0, r} + log(1 +

√
2) from

two points in C0 at distance at least c′′
0 one from the other, then this geodesic segment

enters Nǫ0C0. Let c′′
5 = max

{
c′′

0 + �0,�0 + R0 + 2c0 + r + c3
⌈ 2R0+c0+1

c2

⌉}
.

Let v ∈ Ũ0 and let (kn)n∈N be a sequence in N converging to +∞. Assume that v ∈
Akn (r, ψ + c′′

5) for every n in N. Let ([γn], αn) ∈ Jkn (ψ + c′′
5) be such that v ∈ Aγnαn (r):

there exists τn ≥ 0 such that gv(τn) ∈ B(γnαn x0, r). Since d(π(v), x0) ≤ R0, by
the properties of closest point projections in CAT(−1)-space, there exists τ ′

n ∈ [0, τn]
such that d(gv(τ

′
n), pγn ) ≤ max{R0, r} + log(1 +

√
2). By the definition of c′′

0 and since



Logarithm Laws for Equilibrium States in Negative Curvature 19

d(pγn , γnαn x0) ≥ d(γn x0, γnαn x0) − �0 ≥ ψ(kn) + c′′
5 − �0 ≥ c′′

0 , the geodesic line
gv enters γnNǫ0C0.

qn

γnx0 Dγn

γnαnx0

x0

R0

γnN
0
C0

pγn

γnC0

v
gv(t

−

n )

gv(t
+
n )

gv(τn)

r

Let t−n be the entry time of gv inside γnNǫ0C0, which satisfies, by Eq. (18),

d(gv(t
−
n ), γn x0) ≤ �0 + R0 + c0.

Let t+
n be either τn if gv(τn) ∈ γnNǫ0C0 or the exit time of gv out of Nǫ0C0 otherwise.

Again by [PaP1, Lem. 2.3] and since closest point maps do not increase the distances,
if q ′

n is the closest point to gv(τn) on C0, we have

d(gv(t
+
n ), γnαn x0) ≤ d(gv(t

+
n ), q ′

n) + d(q ′
n, γnαn x0) ≤ c0 + r.

As in Eq. (19), we have kn ≥ Dγn − 1 ≥ t−n − 2R0 − c0 − 1. Hence

ψ(kn) ≥ ψ(t−n ) − c3

⌈2R0 + c0 + 1

c2

⌉
.

By the triangle inequality and since ([γn], αn) ∈ Jkn (ψ + c′′
5), we have

t+
n − t−n ≥ d(γn x0, γnαn x0) − d(gv(t

−
n ), γn x0) − d(gv(t

+
n ), γnαn x0)

≥ ψ(kn) + c′′
5 − �0 − R0 − 2c0 − r

≥ ψ(t−n ).

Hence v belongs to Ẽ(ψ), which proves the result. ⊓⊔

In a series of claims, we now state the required properties of the sets Aγα(r) for
([γ ], α) ∈ Ŵ/Ŵ0 × Ŵ0 and Ak(r, ψ) for k ∈ N.

We start by the following estimate on the mass of the Aγα(r)’s. Before stating it, let
us motivate it. Let d ′ be the distance on T 1 M̃ induced by Sasaki’s Riemannian metric
on T M̃ (when Ŵ is cocompact, any Riemannian distance on T 1 M̃ is allowed). Recall
that, for ǫ > 0 and T ≥ 0, the dynamical (ǫ, T )-ball centred at a point v ∈ T 1 M̃ is

Bǫ, T (v) = {w ∈ T 1 M̃ : ∀ t ∈ [0, T ], d ′(gtw, gtv) ≤ ǫ}.
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We proved in [PPS, Prop. 3.16] (which was in fact written after the first version of
this paper), using a minor modification of these dynamical balls, that Gibbs measures
satisfy the Gibbs property (when Ŵ is torsion free and cocompact, see for instance [BR,
Theo. 3.3] for the lower bound, and [KH, Lem. 20.3.4] in the discrete time case): for
every ǫ > 0, for all v ∈ T 1 M̃ and T ≥ 0 such that v, gT (v) map to a given compact
subset of Ŵ\T 1 M̃ , we have

m̃ F

(
Bǫ, T (v)

)
≍ e

∫ T
0 F̃(gt v) dt −T P(F).

Now, Aγα(r) is almost such a dynamical ball. Indeed, let vγα be the unit tangent vector
at x0 of the geodesic segment from x0 to γαx0, and let Tγα = d(x0, γ αx0) (see the
figure below). Our set Aγα(r) contains Bǫ−,Tγα (vγα) and is contained in Bǫ+,Tγα (vγα)

for some positive constants ǫ± depending only on R0, r . The following result (or rather
Eq. (25)) is hence closely related to this Gibbs property.

Proposition 4.7. If r and R0 are big enough, there exists c7 = c7(r) > 0 such that for

all but finitely many ([γ ], α) ∈ Ŵ/Ŵ0 × Ŵ0, we have

1

c7
e

∫ γ x0
x0

(F̃−δ)
e

∫ αx0
x0

(F̃−δ) ≤ m̃ F

(
Aγα(r)

)
≤ c7 e

∫ γ x0
x0

(F̃−δ)
e

∫ αx0
x0

(F̃−δ)
.

x0

v

R0

vγα

r

γαx0

γx0

≥ π/2
pγ

Proof. For every R0 > 0 and β ∈ Ŵ, define BR0, β =
⋂

z′∈B(βx0, r) Oz′ B(x0,
R0
3 ), which

is contained in (and is a perturbation of) the shadow Oβx0 B(x0,
R0
3 ) (see the picture

below). Since Ŵ is nonelementary, the support of the Patterson measures is not reduced
to one point, hence m = infξ∈∂∞ M̃ ‖μF◦ι

x0
‖ − μF◦ι

x0
({ξ}) is positive. By hyperbolicity

(as first remarked by Sullivan), for every ξ ∈ ∂∞M̃ , the family
(

cOξ B(x0, R)
)

R>0 is
a fundamental system of neighbourhoods of ξ . By compactness and discreteness, there
exists hence R0 > 0 such that for all but finitely many β ∈ Ŵ, we have

μF◦ι
x0

(
BR0, β

)
≥

m

2
. (22)

By the definition of Aβ(r), the set of points v+ for v in Aβ(r) is exactly

Aβ(r)+ =
⋃

z∈B(x0, R0)

Oz B(βx0, r),

which is a bit larger than the shadow Ox0 B(βx0, r) (see the picture below). By a minor
modification of Mohsen’s shadow lemma (see Eq. (8)), we have, if r is big enough,

μF
x0

(Aβ(r)+) ≍ e

∫ βx0
x0

(F̃−δ)
. (23)
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R0

3

x0

≈
Aβ(r)+

≈

rBR0, β

Oβx0
B(x0, R0/3)

βx0 Ox0
B(βx0, r)

Let us first prove, using Hopf’s parametrisation defined by the point x0 and the
definition of Aβ(r), that for all but finitely many β ∈ Ŵ, we have

BR0, β × Aβ(r/2)+ × [−R0/3, R0/3] ⊂ Aβ(r) ⊂ ∂∞M̃ × Aβ(r)+ × [−R0, R0]. (24)

The inclusion on the right hand side is immediate. To prove the other one, let v ∈ T 1 M̃

be such that if p is the closest point to x0 on the geodesic line gv , then v− ∈ BR0, β ,
v+ ∈ Aβ(r/2)+ and d(π(v), p) ≤ R0/3 (see the picture below). Let us prove that
v ∈ Aβ(r).

z
rR0

z

v
−

R0

3
x0

z

p
v+

r
2

βx0

v

By the definition of Aβ(r/2)+, let z ∈ B(x0, R0) be such that the geodesic ray [z, v+[
meets B(βx0, r/2) at a point z′. By the definition of BR0, β , the geodesic ray [z′, v−[
meets B(x0, R0/3) at a point z′′. Since d(z, z′′) ≤ 2R0, and since by discreteness, for all
but finitely many β in Ŵ, the distance d(z, z′) is big, the angle at z′ between the geodesic
segments [z′, z] and [z′, z′′] is small, hence the angle at z′ between the geodesic rays
[z′, v−[ and [z′, v+[ is close to π . Hence the geodesic line gv between v− and v+ is close
to the union of these two rays. In particular, since gv passes close to z′ ∈ B(βx0, r/2),
it enters the ball B(γ x0, r), and since it passes close to z′′ ∈ B(x0,

R0
3 ), the point p

belongs to B(x0,
R0
2 ) and hence π(v) belongs to B(x0, R0), which proves the result.

Now, for every v ∈ Aβ(r), since d(π(v), x0) ≤ R0, the point x0 is at distance at
most R0 from a point on the geodesic line between the endpoints v−, v+. Hence by Eq.
(6), there exists c′

6 ≥ 0 (depending only on R0, on maxŨ0
|F̃ | < +∞, on the Hölder

constants of F̃ and on the bounds of the sectional curvature of M̃) such that, for every
v ∈ Aβ(r), we have

−c′
6 ≤ C F◦ι

v− (x0, π(v)), C F
v+

(x0, π(v)) ≤ c′
6.
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Therefore, by definition of the Gibbs measure m̃ F , we have, using Eqs. (22) and (24),

e−2 c′
6

m

2
μF

x0
(Aβ(r/2)+) (2R0/3) ≤ m̃ F

(
Aβ(r)

)
≤ e2 c′

6 ‖μF◦ι
x0

‖ μF
x0

(Aβ(r)+) (2R0).

Hence, by Eq. (23), for some constant c′′
6 ≥ 1, we have

1

c′′
6

e

∫ βx0
x0

(F̃−δ) ≤ m̃ F

(
Aβ(r)

)
≤ c′′

6 e

∫ βx0
x0

(F̃−δ)
. (25)

For all [γ ] ∈ Ŵ/Ŵ0 and α ∈ Ŵ0, by Eqs. (15) and (16), if β = γα, we have

∣∣∣
∫ βx0

x0

(F̃ − δ) −
∫ γ x0

x0

(F̃ − δ) −
∫ αx0

x0

(F̃ − δ)

∣∣∣ ≤ c5 + δ c4.

The result follows. ⊓⊔

Note, as it will be important later on, that the contributions of γ and of α are decoupled
in this Proposition 4.7.

The sets Aγα(r) satisfy the following almost disjointness property in shells.

Lemma 4.8. For every r > 0, there exists c8 = c8(r) > 0 such that for every k ∈ N,

for every subset P of Jk = Jk(ψ),

1

c8

∑

([γ ], α)∈P

m̃ F

(
Aγα(r)

)
≤ m̃ F

( ⋃

([γ ], α)∈P

Aγα(r)
)

≤
∑

([γ ], α)∈P

m̃ F

(
Aγα(r)

)
,

and for every subset Q of Ik

1

c8

∑

[γ ]∈Q

m̃ F

(
Aγ (r)

)
≤ m̃ F

( ⋃

[γ ]∈Q

Aγ (r)
)

≤
∑

[γ ]∈Q

m̃ F

(
Aγ (r)

)
.

Proof. The inequality on the right hand side of the first claim is immediate. In order to
obtain the one on the left hand side, let us prove that there exists c8 ∈ N − {0} such that
for all k ∈ N and v ∈ T 1 M̃ , the number of ([γ ], α) ∈ Jk such that v ∈ Aγα(r) is at
most c8, which implies the result.

Let ([γ ], α), ([γ ′], α′) ∈ Jk be such that v ∈ Aγα(r) ∩ Aγ ′α′(r). By Eqs. (14) and
(15), and by the definition of Jk , we have

k + ψ(k) − c4 ≤ Dγ + ψ(k) − c4 ≤ d(x0, γ x0) + d(x0, αx0) − c4 ≤ d(x0, γ αx0)

and

d(x0, γ αx0) ≤ d(x0, γ x0) + d(x0, αx0) ≤ Dγ + �0 + ψ(k) + c6

≤ k + κ ′ + �0 + ψ(k) + c6.
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Similarly k + ψ(k) − c4 ≤ d(x0, γ
′α′x0) ≤ k + ψ(k) + κ ′ + �0 + c6.

p≤ r

≤ rx0

π(v)

≤ R0

γ α x0

p

γαx0

v

Let p and p′ be the closest points on gv([0, +∞[) to γαx0 and γ ′α′x0 respectively.
They satisfy d(p, γ αx0), d(p′, γ ′α′x0) ≤ r since v ∈ Aγα(r) ∩ Aγ ′α′(r). We may
assume, up to permuting γα and γ ′α′, that p′ belongs to the geodesic segment [π(v), p].
Since closest point maps do not increase the distances, by the triangle inequality, and
since v ∈ Ũ0, we have

d(p, p′) = d(p, π(v)) − d(π(v), p′) ≤ d(γ αx0, π(v)) − d(π(v), p′)

≤ d(γ αx0, x0) + d(x0, π(v)) − d(γ ′α′x0, x0) + d(π(v), x0) + d(p′, γ ′α′x0)

≤ (k + ψ(k) + κ ′ + �0 + c6) + R0 − (k + ψ(k) − c4) + R0 + r.

Hence, again by the triangle inequality,

d(γ αx0, γ
′α′x0) ≤ κ ′ + �0 + c6 + 2R0 + c4 + 3r.

Now the first claim follows from the discreteness of Ŵ, which implies that there are only
finitely many elements β in Ŵ such that βx0 belongs to a ball of centre x0 with given
radius.

The second claim is proven similarly. ⊓⊔

The two results above allow to estimate the mass of the Ak(r, ψ)’s, as follows.

Proposition 4.9. Assume that there exists κ > 0 such that

∑

γ∈Ŵ, t≤d(x,γ y)<t+κ

e
∫ γ y

x F̃ ≍ eδ t and
∑

α∈Ŵ0, t≤d(x, αy)<t+κ

e
∫ αy

x F̃ ≍ eδ0 t .

If r is big enough, there exists c9 > 0 such that, for every k ∈ N, we have

1

c9
eψ(k)(δ0−δ) ≤ m̃ F

(
Ak(r, ψ)

)
≤ c9 eψ(k)(δ0−δ).

It follows from this proposition and the assumption on the function ψ that the series∑
k∈N m̃ F

(
Ak(r, ψ)

)
converges if and only if the integral

∫ +∞
0 eψ(t)(δ0−δ) dt converges.

Proof. By Eq. (14) and by the first asymptotic assumption in the statement of Proposition
4.9, there exists c > 0 such that for every k ∈ N,

∑

[γ ]∈Ŵ/Ŵ0, k≤Dγ <k+κ ′

e

∫ γ x0
x0

F̃ ≤
∑

γ∈Ŵ, k≤d(x0, γ x0)<k+κ ′+�0

e

∫ γ x0
x0

F̃ ≤ c eδ k . (26)
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By the second asymptotic assumption in Proposition 4.9, since c6 ≥ κ , there exists
c′ > 0 such that, for every t ∈ [0, +∞[ ,

1

c′ eδ0 t ≤
∑

α∈Ŵ0, t≤d(x0, γ x0)<t+c6

e

∫ αx0
x0

F̃ ≤ c′ eδ0 t . (27)

Let us first prove the inequality on the right hand side in Proposition 4.9. Let r be
big enough and k ∈ N. Respectively by Lemma 4.8 with P = Jk and the definition of
Ak(r, ψ), by Proposition 4.7, by the definition of Jk , by Eqs. (26) and (27), we have

m F

(
Ak(r, ψ)

)
≤

∑

([γ ], α)∈Jk

m̃ F

(
Aγα(r)

)
≤ c7

∑

([γ ], α)∈Jk

e

∫ γ x0
x0

(F̃−δ)
e

∫ αx0
x0

(F̃−δ)

= c7

∑

[γ ]∈Ŵ/Ŵ0, k≤Dγ <k+κ ′

e

∫ γ x0
x0

(F̃−δ)×

∑

α∈Ŵ0, ψ(k)≤d(x0, αx0)<ψ(k)+c6

e

∫ αx0
x0

(F̃−δ)

≤ c7 (c eδ k) e−δ k(c′ eδ0 ψ(k)) e−δ ψ(k) = c7 c c′ eψ(k)(δ0−δ).

This proves the inequality on the right hand side in Proposition 4.9.
Let us now prove similarly the inequality on the left hand side in Proposition 4.9. By

Lemma 4.4, there exists c′′ > 0 such that, for every t ∈ [0, +∞[ ,

∑

[γ ]∈Ŵ/Ŵ0, t≤Dγ <t+κ ′

e

∫ γ x0
x0

F̃ ≥
1

c′′ eδ t . (28)

Respectively by Lemma 4.8 with P = Jk and the definition of Ak(r, ψ), by Proposition
4.7, by the definition of Jk , by Eqs. (28), (14) and (27), we have

m F

(
Ak(r, ψ)

)
≥

1

c8

∑

([γ ], α)∈Jk

m̃ F

(
Aγα(r)

)
≥

1

c7c8

∑

([γ ], α)∈Jk

e

∫ γ x0
x0

(F̃−δ)
e

∫ αx0
x0

(F̃−δ)

=
1

c7c8

∑

[γ ]∈Ŵ/Ŵ0, k≤Dγ <k+κ ′

e

∫ γ x0
x0

(F̃−δ)×

∑

α∈Ŵ0, ψ(k)≤d(x0, αx0)<ψ(k)+c6

e

∫ αx0
x0

(F̃−δ)

≥
1

c7c8
(

1

c′′ eδ k) e−δ (k+κ ′+�0)(
1

c′ eδ0 ψ(k)) e−δ(ψ(k)+c6)

=
1

c7 c8 c′ c′′ eδ(κ ′+�0+c6)
eψ(k)(δ0−δ).

This proves Proposition 4.9. ⊓⊔

The following result is a quasi-independence property of the sets Ak(r, ψ) for k ∈ N.

Proposition 4.10. Under the hypotheses of Proposition 4.9, there exists a constant c10 >

0 such that for every k �= k′ in N, if ψ ≥ c10, we have

m̃ F

(
Ak(r, ψ) ∩ Ak′(r, ψ)

)
≤ c10 m̃ F

(
Ak(r, ψ)

)
m̃ F

(
Ak′(r, ψ)

)
.
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Proof. The proof has two parts, a geometric one and a measure-theoretic one. We state
the geometric one as a lemma.

Lemma 4.11. There exist c′
10 > 0 and r ′ > r such that for every k < k′ in N, for every

([γ ], α) ∈ Jk and ([γ ′], α′) ∈ Jk′ , if ψ ≥ c′
10 and if Aγα(r) meets Aγ ′α′(r), then Aγ ′(r)

is contained in Aγα(r ′).

Proof. Let k < k′ in N and ([γ ], α) ∈ Jk and ([γ ′], α′) ∈ Jk′ . If Aγα(r) ∩ Aγ ′α′(r) is
non empty, there exists v ∈ Ũ0 such that gv(R) meets B(γ αx0, r) and B(γ ′α′x0, r). Let
q, q ′ be the closest points to π(v) on the convex sets γ C0, γ

′C0. Let p, p′ be the closest
points to q, q ′ on the geodesic ray gv([0, +∞[). Let x, x ′ be the closest points to γαx0
and γ ′α′x0 on gv([0, +∞[)

x

γαx0

r

y
r

x

γ α x0

R0

π(v)

y

v p

q
γ x0

p

γC0

γ C0

q
pγ

γx0

x0

We have d(γ αx0, x) ≤ r and d(γ ′α′x0, x ′) ≤ r . By the properties of geodesic
triangles in CAT(−1)-spaces and by the convexity of C0, we have d(p, q), d(p′, q ′) ≤
r + log(1 +

√
2). By the choice of the representatives of elements in Ŵ/Ŵ0, the closest

point pγ to x0 on γ C0 is at distance at most �0 from γ x0. Hence, since closest point
maps do not increase the distances and by the triangle inequality,

d(p, γ x0) ≤ d(p, q) + d(q, pγ ) + d(pγ , γ x0) ≤ r + log(1 +
√

2) + R0 + �0. (29)

Hence, by Eq. (14) and the definition of Jk , with c = κ ′ + 2R0 + 2�0 + r + log(1 +
√

2),
we have

d(π(v), p) ≤ d(π(v), x0) + d(x0, γ x0) + d(γ x0, p)

≤ R0 + (Dγ + �0) + d(γ x0, p) ≤ k + c,

and d(π(v), p) ≥ k − c by the inverse triangle inequality. Similarly,

k′ − c ≤ d(π(v), p′) ≤ k′ + c.

By similar arguments, if c′ = R0 + �0 + 2r + log(1 +
√

2) + c6, we have

ψ(k) − c′ ≤ d(p, x) ≤ ψ(k) + c′ and ψ(k′) − c′ ≤ d(p′, x ′) ≤ ψ(k′) + c′. (30)

Assume first that π(v), x, p′ are in this order on gv([0, +∞[). Any geodesic ray, with
origin at distance at most R0 from x0 and passing at distance at most r from γ ′x0, passes
at distance at most 2r + log(1 +

√
2) + R0 + �0 from p′ by the analog for γ ′ of Eq. (29),

hence by convexity passes at distance at most c′′ = max{2R0, 2r +log(1+
√

2)+ R0+�0}
from x , thus passes at distance at most c′′ + r from γαx0. Therefore, if r ′ ≥ c′′ + r > r ,
then Aγ ′(r) is contained in Aγα(r ′).
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Assume now that π(v), p′, x are in this order on gv([0, +∞[) (see the picture above).
There exists a constant c′

10 > 0 (depending only the hyperbolicity constant log(1 +
√

2)

and on r ) such that if ψ ≥ c′
10, then π(v), p, x and π(v), p′, x ′ are in this order on

gv([0, +∞[).
Since k′ ≥ k, either π(v), p, p′ are in this order on gv([0, +∞[), or p′ ∈ [π(v), p]

is at distance at most 2c from p, since then

d(p, p′) = d(p, x) − d(p′, x) ≤ (k + c) − (k′ − c) ≤ 2c.

In both cases, by convexity, p′ is at distance at most 2c + r + log(1 +
√

2) from a point
y in γ C0. Similarly, by Eq. (30) and since ψ satisfies ψ(s) ≤ ψ(t) + c3 if s ≤ t , either
π(v), x, x ′ are in this order on gv([0, +∞[), or x ′ ∈ [π(v), x] is at distance at most
2c + 2c′ + c3 from x . In both cases, x is at distance at most 2c + 2c′ + c3 + r + log(1 +

√
2)

from a point y′ in γ ′C0.
If for a contradiction d(p′, x) > R for arbitrarily large constants R, then the geodesic

segments [y, γ αx0] and [q ′, y′], have endpoints at bounded distance from the long
geodesic segment [p′, x]. Hence they have their endpoints at bounded distance while
being long, if R is large. By hyperbolicity, this implies that Nǫ0(γ C0) ∩ Nǫ0(γ

′C0)

contains a long segment if R is large. Taking R large enough, this contradicts the fact
that the diameter of this intersection, since γ ′ �= γ in Ŵ/Ŵ0, is at most the constant κ0,
as explained in the beginning of the proof of Theorem 4.1.

Therefore d(p′, x) ≤ R for some R ≥ 0. Any geodesic ray, with origin at distance
at most R0 from x0 and passing at distance at most r from γ ′x0, passes at distance from
γαx0 at most

r + d(γ ′x0, γ αx0) ≤ r + d(γ ′x0, p′) + d(p′, x) + d(x, γ αx0)

≤ R + 3r + log(1 +
√

2) + R0 + �0,

by the analog for γ ′ of Eq. (29). Therefore, if r ′ ≥ R + 3r + log(1 +
√

2) + R0 + �0 > r ,
then Aγ ′(r) is contained in Aγα(r ′). ⊓⊔

Now, let us use Lemma 4.11 to prove Proposition 4.10. Let k, k′ be elements of N

with k < k′.
For every ([γ ], α) ∈ Jk , let I[γ ], α, k′ ⊂ Ik′ be the set of [γ ′] ∈ Ŵ/Ŵ0 such that there

exists α′ ∈ Ŵ0 with ([γ ′], α′) ∈ Jk′ such that the intersection Aγα(r) ∩ Aγ ′α′(r) is non
empty. Then respectively by Proposition 4.7, by the second part of Lemma 4.8 with
Q = I[γ ], α, k′ , by Lemma 4.11 and the definition of I[γ ], α, k′ , and by Proposition 4.7
(twice), we have

∑

[γ ′]∈I[γ ],α,k′

e

∫ γ ′x0
x0

(F̃−δ) ≤
∑

[γ ′]∈I[γ ],α,k′

c7(r
′) m̃ F

(
Aγ ′(r ′)

)

≤ c7(r
′) c8(r

′) m̃ F

( ⋃

[γ ′]∈I[γ ],α,k′

Aγ ′(r ′)
)

≤ c7(r
′) c8(r

′) m̃ F

(
Aγα(r ′)

)

≤ c7(r) c7(r
′)2 c8(r

′) m̃ F

(
Aγα(r)

)
. (31)
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By the assumptions of Proposition 4.10, there exists c > 0 such that for every t ∈ R,

∑

α′∈Ŵ0, d(x0,α
′x0)<t

e

∫ α′x0
x0

F̃ ≤ c eδ0t . (32)

To simplify the notation, let Ak = Ak(r, ψ). Respectively by the definition of Ak , by
Proposition 4.7, by Eq. (32), by Eq. (31) with c′ = c c7(r)2 c7(r

′)2 c8(r
′) ec6δ0 , and by

Proposition 4.9 and Lemma 4.8 with P = Jk , we have

m̃ F (Ak ∩ Ak′)

≤
∑

([γ ], α)∈Jk

∑

([γ ′], α′)∈Jk′ , Aγα(r)∩Aγ ′α′ (r) �=∅
m̃ F

(
Aγ ′α′(r)

)

≤
∑

([γ ], α)∈Jk

∑

[γ ′]∈I[γ ], α, k′

c7(r) e

∫ γ ′x0
x0

(F̃−δ)
∑

α′ ∈ Ŵ0
ψ(k′) ≤ d(x0, α′x0) < ψ(k′) + c6

e

∫ α′x0
x0

(F̃−δ)

≤ c c7(r) e(ψ(k′)+c6)δ0−δψ(k′)
∑

([γ ], α)∈Jk

∑

[γ ′]∈I[γ ], α, k′

e

∫ γ ′x0
x0

(F̃−δ)

≤ c′ eψ(k′)(δ0−δ)
∑

([γ ], α)∈Jk

m̃ F

(
Aγα(r)

)

≤ c′ c9 c8(r) m̃ F (Ak′) m̃ F (Ak).

This proves Proposition 4.10. ⊓⊔

Let us now conclude the proof of Theorem 4.1. The following version of the Borel–
Cantelli Lemma is well-known (see for instance [Spr]).

Proposition 4.12. Let (Z , ν) be a measured space with finite nonzero measure. Let

(An)n∈N be a sequence of measurable subsets of Z such that there exists c > 0 with

ν(An ∩ Am) ≤ c ν(An) ν(Am) for all distinct n, m in N. Then ν(lim supn An) > 0 if

and only if the series
∑

n∈N ν(An) diverges.

We apply this result with (Z , ν) = (Ũ0, m̃|Ũ0
), which satisfies the hypothesis if R0

is big enough as in the reductions at the beginning of the proof of Theorem 4.1. Let
r = ǫ0 + �0 and let c′

5, c′′
5 be given by Proposition 4.6.

Assume first that the integral
∫ +∞

0 eψ(t)(δ0−δ) dt diverges, which is still true if a con-
stant is added to ψ . The quasi-independence assumption of Proposition 4.12 is satisfied
if An = An(r, ψ +c10 +c′′

5) ⊂ Ũ0, by Proposition 4.10. As claimed after the statement of
Proposition 4.9, the series

∑
k∈N m̃ F (Ak) diverges. Hence by the above Borel-Cantelli

argument, lim supk Ak has positive measure. Since An(r, ψ + c10 + c′′
5) ⊂ An(r, ψ + c′′

5)

and by the first claim of Proposition 4.6, the set Ẽ(ψ) has positive m̃ F -measure. Since it
is invariant under the geodesic flow and under Ŵ, and by ergodicity of the Gibbs measure
m F , it has full measure.

Conversely, assume that the integral
∫ +∞

0 eψ(t)(δ0−δ) dt converges, which is still
true if a constant is subtracted from ψ . Then ψ(t) ≥ c′

5 whenever t is large enough.
Let An = An(r, ψ − c′

5) ⊂ Ũ0. Again by the assertion following the statement of
Proposition 4.9, the series

∑
k∈N m̃ F (Ak) converges. By the standard Borel-Cantelli
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Lemma, lim supk Ak(r, ψ−c′
5)has zero m̃ F -measure. By the second claim of Proposition

4.6, the set Ẽ(ψ) ∩ Ũ0 has zero m̃ F -measure. Up to taking R0 big enough, this implies
that Ẽ(ψ) has zero m̃ F -measure. ⊓⊔

Remark Let us comment on the range of the numerical constant δ − δ0, crucial for the
dichotomy in Theorem 4.1, as the potential F varies. We only consider the case when
C0 is the translation axis of a loxodromic element of Ŵ, so that by Remark (2) following
the statement of Theorem 4.1, we have, with C0 the image of C0 in M = Ŵ\Ŵ̃,

δ − δ0 = P(F) − P(F|T 1C0
).

Proposition 4.13. (1) The map F �→ P(F) − P(F|T 1C0
) is 1-Lipschitz for the uniform

norm on bounded potentials.

(2) The set of real numbers P(F) − P(F|T 1C0
), as F̃ varies in the set of Ŵ-invariant

bounded Hölder functions on T 1 M̃, is equal to ]0, +∞[ .

Proof. For the first observation, the 1-Lipschitz dependence of P(F|T 1C0
) on F is imme-

diate by Eq. (2), and so it suffices to prove it for P(F). This is a direct consequence
of our definition of the pressure in Eq. (1). More precisely, given F1, F2 two bounded
Ŵ-invariant Hölder-continuous functions on T 1 M̃ , for every ǫ > 0, we can choose
m1, m2 ∈ M satisfying

h(m1) +
∫

F1 dm1 ≥ P(F1) − ǫ and h(m2) +
∫

F2 dm2 ≥ P(F2) − ǫ.

Using the definition of pressure again, we have that

P(F1) ≥ h(m2) +
∫

F1 dm2 and P(F2) ≥ h(m1) +
∫

F2 dm1.

Comparing these four inequalities gives that
∫

(F1−F2) dm1 ≥ P(F1)−P(F2)−ǫ and
∫

(F2 − F1) dm2 ≥ P(F2)−P(F1)−ǫ,

from which we deduce |P(F1)− P(F2)| ≤ ‖F1 − F2‖∞ + ǫ. Letting ǫ → 0, this proves
that F �→ P(F) is 1-Lipschitz.

For the second observation, first note that P(F)− P(F|T 1C0
) = δ − δ0 is positive by

Lemma 4.2. It now suffices to find two potentials F, F ′ for which P(F) − P(F|T 1C0
)

can be arbitrarily large and P(F ′) − P(F ′
|T 1C0

) can be arbitrarily close to 0.

Given any L > 0 and a second distinct closed geodesic C1 (which exists since Ŵ is
nonelementary), we can choose a bounded potential F on T 1 M which is constant with
values L and 0 on T 1C1 and T 1C0, respectively. If mC1 denotes a probability measure
supported on T 1C1 and invariant under the geodesic flow, then by the definition of the
pressure, we have that P(F|T 1C0

) = 0 and P(F) ≥ hmC1
(g1) +

∫
F dmC1 = L , as

required.
Finally, given any η > 0, we want to construct a bounded potential F ′ on T 1 M satisfy-

ing P(F ′)− P(F ′
|T 1C0

) < η. For every ǫ > 0, let A0 = {v ∈ T 1 M : d(v, T 1C0) < ǫ}.
We choose ǫ ∈ ]0, 1

e
[ small enough, so that −(1−ǫ) log(1−ǫ)−2 ǫ log ǫ+4 ǫ log 2 < η.

We choose K > htop(g
1)/ǫ2, and we define a bounded potential F ′ on T 1 M by



Logarithm Laws for Equilibrium States in Negative Curvature 29

F ′(v) = −K min{d(v, T 1C0), 1} ≤ 0. Given any m ∈ M , we can consider two cases:
Either (a) m(T 1 M − A0) > ǫ or (b) m(A0) ≥ 1 − ǫ. In case (a), we have that

h(m) +
∫

F ′ dm ≤ htop(g
1) + m(T 1 M − A0) max

v∈T 1 M−A0

F ′(v)

≤ htop(g
1) − K ǫ2 < 0.

In case (b), we can choose a measurable partition α = {An}n∈N of T 1 M , such that:

• α is generating, that is, the Borel σ -algebra is the smallest σ -algebra containing
gt1 Ai1 ∩ · · · ∩ gtk Aik

, for all k, i1, · · · , ik ∈ N and t1, · · · , tk ∈ R;
• for n ≥ 1, we have m(An) ≤ ǫ/2n−1 (note that m

(⋃+∞
n=1 An

)
= 1 − m(A0) ≤ ǫ).

If M were compact, then a sufficient condition for the partition to be generating would
be that each element An , for n ≥ 1, has diameter smaller than the injectivity radius of M .
(At the level of the geodesic flow, this is related to choosing the diameter smaller than
the expansivity constant). More generally, we can assume that each An is the union of
suitably separated components, each of which has diameter smaller than the injectivity
radius of points in that component. In particular, with Hm(α) the entropy of the partition
α with respect to m, we can then bound

h(m) +
∫

F ′ dμ ≤ h(m) ≤ Hm(α)

≤ −m(A0) log m(A0) −
+∞∑

n=1

m(An) log m(An)

≤ −(1 − ǫ) log(1 − ǫ) −
+∞∑

n=1

ǫ

2n−1 log
ǫ

2n−1

= −(1 − ǫ) log(1 − ǫ) − 2 ǫ log ǫ + 4 ǫ log 2 < η.

In either case, we have that h(m) +
∫

F ′ dm < η and from the definition, P(F ′) −
P(F ′

|T 1C0
) = P(F ′) < η, as required. ⊓⊔

Let us now give the main corollary of Theorem 4.1, our logarithm law for Gibbs
measures.

Define the penetration map p̃ : T 1 M̃ × R → [0, +∞] of the geodesic lines inside
ŴNǫ0 C0 by p̃(v, t) = 0 ifπ(φtv) /∈ ŴNǫ0 C0, and otherwise p̃(v, t) is the maximal length
of an interval I in R containing t such that there exists γ ∈ Ŵ with π(φsv) ∈ γNǫ0 C0 for
every s ∈ I . The next result implies Corollary 1.3 using Remark (2) following Theorem
4.1.

Corollary 4.14. Under the assumptions of Theorem 4.1, for m̃ F -almost every v ∈ T 1 M̃,

we have

lim sup
t→+∞

p̃(v, t)

log t
=

1

δ − δ0
.

Proof. The proof is a standard deduction from Theorem 4.1 using the Lipschitz func-
tions ψn : t �→ κ log(1 + t) for κ = 1

δ−δ0
± 1

n
, see for instance the proof of

[HP2, Theo. 5.6]. ⊓⊔
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We end this section by giving a corollary of Theorem 4.1 in the special case when
M̃ has constant sectional curvature, in a form which is suitable for the arithmetic appli-
cations in the next section. We will use the upper halfspace model of the real hyperbolic
n-space Hn

R
, whose boundary at infinity is ∂∞Hn

R
= Rn−1 ∪ {∞}, and we endow Rn−1

with the usual Euclidean norm ‖ · ‖ and its associated distance. We denote by x0 the
point (0, 1) ∈ Rn−1× ]0, +∞[. If α is a fixed point of a hyperbolic element γ of a given
discrete group of isometries of Hn

R
, we denote by ασ its other fixed point, which does

not depend on γ .

Corollary 4.15. Let Ŵ be a nonelementary discrete group of isometries of Hn
R

, with non

arithmetic length spectrum. Let F̃ : T 1Hn
R

→ R be a Ŵ-invariant Hölder-continuous

map, with δ = δŴ, F and m F finite. Let γ0 be a hyperbolic element of Ŵ, let Ŵ0 be the

stabiliser in Ŵ of its translation axis, let F0 : Ŵ0\M̃ → R be the map induced by F̃, and

let δ0 = δŴ0, F0 . Let Rγ0 be the set of fixed points in Rn−1 ∪ {∞} of the conjugates in Ŵ

of γ0. Let φ : ]0, 1] → ]0, 1] be a measurable map, such that there exist c′
2, c′

3 ∈ ]0, 1[
such that for every s, t ∈ ]0, c′

2], if s ≥ c′
2 t , then φ(s) ≥ c′

3 φ(t). If
∫ 1

0 φδ−δ0(s)/s ds

diverges (respectively converges), then μF
x0

-almost every (respectively no) point in Rn−1

belongs to infinitely many Euclidean balls of centre α and radius ‖α−ασ ‖φ(‖α−ασ ‖),
as α ranges over Rγ0 .

Proof. Recall that the hyperbolic distance between the horizontal horosphere at Euclid-
ean height 1 in Hn

R
and a disjoint geodesic line with endpoints x and y is − log ‖x−y‖

2 ,
by a standard hyperbolic distance computation. By the triangle inequality and the dis-
creteness of Ŵ, for every compact subset K of Rn−1, there exists c > 0 such that for
every α ∈ Rγ0 ∩ K except finitely many of them, we have ‖α − ασ ‖ ≤ 1 and, with Cα

the geodesic line with endpoints α, ασ ,
∣∣∣d(x0, Cα) −

∣∣ log
‖α − ασ ‖

2

∣∣
∣∣∣ ≤ c. (33)

Let ψ : t �→ − log φ(e−t ) which is a map from [0, +∞[ to [0, +∞[ satisfying the
assumption of the beginning of Sect. 4 (with c2 = − log c′

2 > 0 and c3 = − log c′
3 > 0).

As in [HP2, Lem. 5.2] (and since the Hamenstädt distance on ∂∞Hn
R

−{∞} = Rn−1

is a multiple of the Euclidean distance), there exists a constant c′ ≥ 1 such that for every
v ∈ T 1 M̃ such that v+ ∈ K − (Rγ0 ∩ K ), we have

• if v is (ǫ0, ψ)-Liouville for (Ŵ, Ŵ0), then v+ belongs to infinitely many balls of centre
α and radius c′ e−d(x0, Cα)−ψ(d(x0, Cα)), as α ranges over Rγ0 .

• if v+ belongs to infinitely many balls of centre α and radius 1
c′ e−d(x0, Cα)−ψ(d(x0, Cα)),

as α ranges over Rγ0 , then v is (ǫ0, ψ)-Liouville for (Ŵ, Ŵ0).

By Eq. (33), there exists c′′ ≥ 1 such that, for every α ∈ Rγ0 ∩ K ,

1

c′′ ‖α − ασ ‖φ(‖α − ασ ‖) ≤ e−d(x0, Cα)−ψ(d(x0, Cα)) ≤ c′′ ‖α − ασ ‖φ(‖α − ασ ‖).

Since
∫ +∞

0 eψ(t)(δ0−δ) dt =
∫ 1

0 φδ−δ0(s)/s ds, the result follows from Theorem 4.1,
whose hypotheses on sum asymptotics are satisfied by the first remark following its
statement (since the curvature of M̃ is constant). ⊓⊔
Remark As in [PaP2], replacing Hn

R
by the Siegel domain model of the complex hyper-

bolic space Hn
C

, replacing Rn−1 endowed with the Euclidean distance ‖x − y‖ by the
Heisenberg group endowed with the Cygan distance dCyg(x, y), the same result holds.



Logarithm Laws for Equilibrium States in Negative Curvature 31

5. Arithmetic Applications

Let K be either the field Q or an imaginary quadratic extension of Q, and correspondingly,
let K̂ be either R or C. Let OK be the ring of integers of K . By quadratic irrational, we
mean an element in K̂ which is quadratic irrational over K . For every quadratic irrational
α ∈ K̂ , let ασ be its Galois conjugate over K .

The group PSL2(K̂ ) acts on P1(K ) = K̂ ∪ {∞} by homographies, and its subgroup
PSL2(OK ) preserves the set K and the set of quadratic irrationals. Though it acts transi-
tively on the former set, it does not act transitively on the latter one. Note that, for every
quadratic irrational α and every γ ∈ PSL2(OK ), we have (γ · α)σ = γ · (ασ ).

Let us fix a finite index subgroup Ŵ of PSL2(OK ), for instance a congruence subgroup.
We are interested in the approximation of elements of K̂ by elements in the orbit under
Ŵ of a fixed quadratic irrational and of its Galois conjugate.

For every quadratic irrational α ∈ K̂ , let Eα, Ŵ be the (countable, dense in K̂ ) set
Ŵ · {α, ασ }, endowed with its Fréchet filter, and let

h(α) =
2

|α − ασ |
.

We refer to [PaP2, §6.1] and [PaP3, §4.1] for motivations on this complexity h(α) of
a quadratic irrational α, as well as for other algebraic expressions and comparisons to
other algebraic heights. For instance, if K = Q, Ŵ = PSL2(Z) and α is the Golden

Ratio 1+
√

5
2 , then Eα, Ŵ is the set of real numbers whose continued fraction expansion

ends with an infinite string of 1’s.
Recall that a map f : [0, +∞[ → ]0, +∞[ is slowly varying if it is measurable and if

there exist constants B > 0 and A ≥ 1 such that for every x, y in R+, if |x − y| ≤ B, then
f (y) ≤ A f (x). Recall that this implies that f is locally bounded, hence it is locally
integrable; also, if log f is Lipschitz, then f is slowly varying.

Theorem 5.1. Let α0 ∈ K̂ be a fixed quadratic irrational and let γ0 ∈ Ŵ be a primitive

element of Ŵ fixing α0 with |γ ′
0(α0)| > 1. Let μF

x0
be a Patterson measure on K̂ ∪ {∞}

associated with a potential F̃ for Ŵ such that δ = δŴ, F and m F are finite. Let δ0 be the

critical exponent of γ Z
0 for F̃ . Let ϕ : [0, +∞[ → ]0, +∞[ be a map such that t �→ ϕ(et )

is slowly varying. If the integral
∫ +∞

1 ϕ(t)δ−δ0/t dt diverges (resp. converges), then for

μF
x0

-almost every x ∈ K̂ ,

lim inf
r∈Eα0,Ŵ

h(r)

ϕ(h(r))
|x − r | = 0 (resp. = +∞).

When F = 0, this result is due to [PaP2, Theo. 6.4 (4)].

Proof. Let us first give some details on the notation of this theorem. Recall (see for
instance [PaP2, Lem. 6.2]), that the quadratic irrationals in K̂ are exactly the fixed
points of the loxodromic elements of PSL2(OK ), hence of Ŵ, since Ŵ has finite index
in PSL2(OK ). Hence an element γ0 as in the statement exists, it is the unique (up to
multiplication by an element of Ŵ0 pointwise fixing the translation axis of γ0) primitive
loxodromic element of Ŵ with attractive fixed point α0.

Let M̃ be the real hyperbolic plane H2
R

if K̂ = R and the real hyperbolic space H3
R

if K̂ = C. We fix a point x0 in M̃ . Note that ∂∞M̃ = K̂ ∪ {∞}, and Ŵ is a discrete
group of isometries (actually an arithmetic lattice) of M̃ , so that a Ŵ-invariant potential
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F̃ on T 1 M̃ with δ = δŴ, F does define a Patterson measure μF
x0

seen from x0 (unique
up to scalar multiple if m F is finite) on K̂ ∪ {∞}, see Sect. 2. Let Ŵ0 be the stabiliser of
{α0, α0

σ } in Ŵ (that is of the translation axis of γ0), and let F0 : Ŵ0\T 1 M̃ → R be the
map induced by F̃ . Since γ Z

0 has finite index in Ŵ0, the critical exponent δ0 is equal to
δŴ0, F0 . Note that Eα0,Ŵ is exactly the set of fixed points of the conjugates of γ0 in Ŵ.

We may assume that ϕ ≤ 1. Define φ : s �→ ϕ( 2
s
), which is a measurable map from

]0, 1] to ]0, 1[. The result then follows from Corollary 4.15. ⊓⊔

To conclude, let us give a proof of the last statement of the Introduction.

Proof of Corollary 1.4. It is well known that Ŵa,b is a uniform lattice in SL2(R) (see for
instance [Kat, §5.2] or [BeP, §8.5]): it is a Fuschian group derived from the quaternion
algebra

(
a, b
Q

)
over Q, which is a division algebra by the nonexistence of nonzero integer

solutions to x2 − a y2 − b z2 = 0, hence to x2 − a y2 − b z2 + ab t2 = 0 by [BeP,
Lem. 8.17]. Let Ŵ = Ŵa,b be the image of Ŵa,b in PSL2(R), which is a cocompact
group of isometries of M̃ = H2

R
, whose action on ∂∞H2

R
= P1(R) is the action by

homographies. If γ0 =
(

x + y
√

a z − t
√

a

b(z + t
√

a) x − y
√

a

)
with (x, y, z, t) ∈ Z4, then tr γ0 = 2x .

Hence | tr γ0| > 2 by the assumptions, that is, the image of γ0 in Ŵ, that we again denote
by γ0, is hyperbolic. It is well known that its translation length ℓ(γ0) satisfies (see for
instance [Bea, page 173])

cosh
ℓ(γ0)

2
=

| tr γ0 |
2

.

Let us fix x0 ∈ H2
R

. By Proposition 3.6, let F̃ : T 1 M̃ → R be a Ŵ-invariant Hölder-
continuous map such that μ and μF

x0
have the same measure class. Since the conclusion

of Corollary 1.4 depends only on the measure class of μ, and since
d(γ −1)∗μF

x0
d μF

x0
(γ +) =

d(γ −1)∗μ
d μ

(γ +) for every hyperbolic element γ ∈ Ŵ by [Led3, Théo. 1.c], as seen in the

proof of Proposition 3.6, we may assume that μ = μF
x0

. Since Ŵ is cocompact, both
δ = δŴ, F and m F are finite. Let F0 : Ŵ0\T 1 M̃ → R be the map induced by F̃ , and let
δ0 = δŴ0, F0 . By Remark (2) following the statement of Theorem 4.1 and by Eq. (12),
we have

δ0 =
max

{
PerF (γ ), PerF (γ −1)

}

ℓ(γ0)

=
1

2 arcosh(
| tr γ0|

2 )
max

{d(γ −1
0 )∗μ

d μ
(γ +

0 ),
d(γ0)∗μ

d μ
(γ −

0 )
}
.
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Since Ŵ is cocompact, by Bowen’s period counting theorem (see for instance [PPS,
Theo. 4.7]), again by Eq. (12), and by the change of variable s = 2 cosh t

2 , we have

δ = δŴ, F = lim
t→+∞

1

t
log

∑

γ∈Ŵ, 0<ℓ(γ )≤t

ePerF (γ )

= lim
t→+∞

1

t
log

∑

γ∈Ŵa, b, tr(γ ) �=0,±2, 2 arcosh(
| tr γ |

2 )≤t

d(γ −1)∗μ

d μ
(γ +)

= lim
s→+∞

1

2 log s
log

∑

γ∈Ŵa, b, 2<| tr(γ )|≤s

d(γ −1)∗μ

d μ
(γ +).

For all s ≥ 0 and ǫ > 0, let φ : ]0, 1] → ]0, 1] be the map t �→ min{1, ǫ (− log t)−s},
so that

∫ 1
0 φδ−δ0(t)/t dt diverges if and only if s ≤ 1

δ−δ0
.

By Corollary 4.15, we hence have that if s ≤ 1
δ−δ0

(resp. s > 1
δ−δ0

), then, for μ-almost
every x ∈ R,

lim inf
α∈Ŵa, b·{γ −

0 ,γ +
0 }, |α−ασ |→0

|x − α|
|α − ασ |(− log |α − ασ |)−s

≤
1

ǫ
(resp. ≥

1

ǫ
).

By taking ǫ = k (resp. ǫ = 1
k

) for k ∈ N tending to +∞, this proves the result. ⊓⊔
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[FSU] Fishman, L., Simmons, D.S., Urbański. Diophantine approximation and the geometry of limit sets in

Gromov hyperbolic metric spaces. arXiv:1301.5630v11, to appear in Memoirs of AMS
[Ham1] Hamenstädt, U.: An explicit description of harmonic measure. Math. Z. 205, 487–499 (1990)
[Ham2] Hamenstädt, U.: Cocycles, hausdorff measures and cross ratios. Erg. Theo. Dyn. Sys. 17, 1061–

1081 (1997)

http://creativecommons.org/licenses/by/4.0/
http://www.math.u-psud.fr/~paulin/notescours
http://arxiv.org/abs/1301.5630v11


34 F. Paulin, M. Pollicott

[HP1] Hersonsky, S., Paulin, F.: Counting orbit points in coverings of negatively curved manifolds and
Hausdorff dimension of cusp excursions. Erg. Theo. Dyn. Sys. 24, 803–824 (2004)

[HP2] Hersonsky, S., Paulin, F.: On the almost sure spiraling of geodesics in negatively curved manifolds. J.
Diff. Geom. 85, 271–314 (2010)

[Kat] Katok, S.: Fuchsian groups. University of Chicago Press (1992)
[KH] Katok A., Hasselblatt B.: Introduction to the modern theory of dynamical systems. Ency. Math. App.,

vol. 54. Camb. Univ. Press (1995)
[Led1] Ledrappier, F.: Ergodic properties of Brownian motion on covers of compact negatively curved

manifolds. Bol. Soc. Bras. Math. 19, 115–140 (1988)
[Led2] Ledrappier, F.: A renewal theorem for the distance in negative curvature. In: ‘Stochastic analysis’

(Ithaca, 1993), Proc. Symp. Pure Math., vol. 57, pp. 351–360. Amer. Math. Soc. (1995)
[Led3] Ledrappier, F.: Structure au bord des variétés à courbure négative. Sém. Théorie Spec. Géom. Grenoble

13, 97–122 (1994–1995)
[Led4] Ledrappier, F.: Entropie et principe variationnel pour le flot géodésique en courbure négative pincée.

In ‘Géométrie ergodique’. Mono. L’Ens. Math. F. Dal’Bo ed. L’Ens. Math. 43, 117–144 (2013)
[Moh] Mohsen, O.: Le bas du spectre d’une variété hyperbolique est un point selle. Ann. Sci. Éc. Norm.

Sup. 40, 191–207 (2007)
[OP] Otal, J.-P., Peigné, M.: Principe variationnel et groupes kleiniens. Duke Math. J. 125, 15–44 (2004)
[PaP1] Parkkonen, J., Paulin, F.: Prescribing the behaviour of geodesics in negative curvature. Geom.

Topol. 14, 277–392 (2010)
[PaP2] Parkkonen, J., Paulin, F.: Spiraling spectra of geodesic lines in negatively curved manifolds. Math.

Z. 268, 101–142 (2011)
[PaP3] Parkkonen, J., Paulin, F.: Équidistribution, comptage et approximation par irrationnels quadratiques. J.

Mod. Dyn. 6, 1–40 (2012)
[Pau] Paulin, F.: On the critical exponent of discrete group of hyperbolic isometries. Differ. Geom.

Appl. 7, 231–236 (1997)
[PPS] Paulin, F., Pollicott, M., Schapira B.: Equilibrium states in negative curvature. Astérisque vol. 373,

Soc. Math. France (2015)
[Sch] Schapira, B.: On quasi-invariant transverse measures for the horospherical foliation of a negatively

curved manifold. Erg. Theo. Dyn. Syst. 24, 227–257 (2004)
[Spr] Sprindžuk, V.G.: Mahler’s problem in metric number theory. Transl. Math. Mono., vol. 25. Amer.

Math. Soc. (1969)

Communicated by K. Khanin


	Logarithm Laws for Equilibrium States in Negative Curvature
	Abstract:
	1 Introduction
	2 A Summary of the Patterson--Sullivan Theory for Gibbs States
	3 Hausdorff Dimension of Patterson Measures of Potentials
	4 Almost Sure Spiraling for Gibbs States
	5 Arithmetic Applications
	Acknowledgments.
	References


