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ABSTRACT. This article aims to review a selection of central topics and examples in logarithmic conformal field theory.
It begins with the remarkable observation of Cardy that the horizontal crossing probability of critical percolation may
be computed analytically within the formalism of boundary conformal field theory. Cardy’s derivation relies on certain
implicit assumptions which are shown to lead inexhorably toindecomposable modules and logarithmic singularities in
correlators. For this, a short introduction of the fusion algorithm of Nahm, Gaberdiel and Kausch is provided.

While the percolation logarithmic conformal field theory isstill not completely understood, there are several exam-
ples for which the formalism familiar from rational conformal field theory, including bulk partition functions, correlation
functions, modular transformations, fusion rules and the Verlinde formulae, has been successfully generalised. Thisis
illustrated for three examples: The singlet modelM

(
1,2

)
, related to the triplet modelW

(
1,2

)
, symplectic fermions

and the fermionicbc ghost system; the fractional level Wess-Zumino-Witten model based on̂sl(2) at k=− 1
2 , related to

the bosonicβγ ghost system; and the Wess-Zumino-Witten model for the Lie supergroupGL(1|1), related toSL(2|1) at

k =− 1
2 and 1, the Bershadsky-Polyakov algebraW(2)

3 and the Feigin-Semikhatov algebrasW(2)
n . These examples have

been chosen because they represent the most accessible, andmost useful, members of the three best-understood families
of logarithmic conformal field theories: The logarithmic minimal modelsW

(
q, p

)
, the fractional level Wess-Zumino-

Witten models, and the Wess-Zumino-Witten models on Lie supergroups (excludingOSP(1|2n)).
In this review, the emphasis lies on the representation theory of the underlying chiral algebra and the modular data

pertaining to the characters of the representations. Each of the archetypal logarithmic conformal field theories is studied
here by first determining its irreducible spectrum, which turns out to be continuous, as well as a selection of natural
reducible, but indecomposable, modules. This is followed by a detailed description of how to obtain character formulae
for each irreducible, a derivation of the action of the modular group on the characters, and an application of the Verlinde
formula to compute the Grothendieck fusion rules. In each case, the (genuine) fusion rules are known, so comparisons
can be made and favourable conclusions drawn. In addition, each example admits an infinite set of simple currents, hence
extended symmetry algebras may be constructed and a series of bulk modular invariants computed. The spectra of the
extended theories is typically discrete and this is how the triplet modelW

(
1,2

)
arises, for example. Moreover, simple

current technology admits a derivation of the extended algebra fusion rules from those of its continuous parent theory.
Finally, each example is concluded by a brief description ofthe computation of some bulk correlators, a discussion of
the structure of the bulk state space, and remarks concerning more advanced developments and generalisations.

The final part gives a very short account of the theory of staggered modules, the (simplest class of) representations
that are responsible for the logarithmic singularities in correlators which distinguish logarithmic conformal field theory
from its rational cousin. Staggered modules are discussed in a generality suitable to encompass all the examples met in
this review and some of the very basic structure theory is proven. Then, the important quantities known as logarithmic
couplings are reviewed for Virasoro staggered modules and their role as fundamentally important parameters, akin to the
three-point constants of rational conformal field theory, is discussed. An appendix is also provided in order to introduce
some of the necessary, but perhaps unfamiliar, language of homological algebra.
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LOGARITHMIC CONFORMAL FIELD THEORY 3

1. INTRODUCTION

Ever since the pioneering work of Belavin, Polyakov and Zamolodchikov [1], two-dimensional conformal field
theory has been at the forefront of much of the progress in modern mathematical physics. Its application to the
study of critical statistical models and string theory is well known, see [2–5] for example, but it also provides the
basic inspiration for the mathematical theory of vertex operator algebras [6–8]. The simplest conformal field theo-
ries are constructed mathematically from irreducible representations of an infinite-dimensional symmetry algebra.
However, recent attention to non-local observables for statistical models and string theories with fermionic degrees
of freedom has led to the conclusion that the corresponding field-theoretic models require, in addition, certain re-
ducible, but indecomposable, representations. Such models have come to be known aslogarithmic conformal field
theoriesbecause the type of indecomposability required leads to logarithmic singularities in correlation functions.

As a field of study, logarithmic conformal field theory dates back to the works of Rozansky and Saleur on
the U(1|1) (or perhapsGL(1|1)) Wess-Zumino-Witten model [9, 10] and that of Gurarie on a fermionic ghost
system [11] related to the theory now known as symplectic fermions. Since then, things have progressed rather
rapidly with many of the standard features of rational conformal field theory now understood in the logarithmic
setting. In particular, there are two fine reviews of the subject [12,13] which focus on, among other things, modular
transformations and module structure, mostly for a family of theories related to symplectic fermions.

Both reviews are accounts of lectures given at a workshop in 2001. The present review aims to build upon
the state of knowledge summarised there, introducing the reader to some of the recent advances that seem to
be converging towards a more unified picture of logarithmic conformal field theory. Unfortunately, a detailed
overview would require a rather lengthy book, hence we will restrict ourselves to foundational material and in-
depth examples which we believe, hopefully without controversy, are “archetypes” for the discipline. We hope that
our choice will give the reader a good overview of what structures logarithmic conformal field theory relies upon
and what one can do with it.

In particular, we work almost entirely in the continuum, expecting that the reader is familiar with rational
conformal field theory as described (for example) in [14], eschewing approaches based on statistical lattice models
and conjectured scaling limits (see [15–18]). We also work,for the most part, with chiral algebras, even though it
is well known that the holomorphic factorisation principleof rational conformal field theory fails in the logarithmic
setting. Instead, we will see how a natural proposal allows one to construct physically satisfactory non-chiral fields,
even when logarithmic behaviour is present. For other approaches to logarithmic conformal field theory, as well
as condensed matter physics and string-theoretic applications, discussions of logarithmic vertex operator algebras
and other relations to mathematics, we refer to the other articles that constitute this special issue of the Journal of
Physics A.

We will outline what we cover in this review shortly. First however, we quickly remind the reader how loga-
rithmic singularities arise in correlation functions as consequences of a non-diagonalisable action of the Virasoro
zero-modeL0. Then, we digress slightly in recalling the (non-logarithmic) theory known as the free boson, in
particular, its characters, their modular transformations and the relation between these and the fusion rules (the
Verlinde formula [19]). This is in order to set the scene for the analysis of the “archetypal” logarithmic theories
that follow. We also mention simple currents for the free boson and the corresponding extended algebra theories
as these ideas are also going to play an important role for us.

1.1. Correlators and Logarithmic Singularities. Conformal field theory is relatively tractable among physical
models due to its infinite-dimensional algebra of symmetries. As is well-known, this always includes the Virasoro
algebra, the infinite-dimensional Lie algebra spanned by modesLn, n∈ Z, andC with commutation relations

[
Lm,Ln

]
= (m−n)Lm+n+

m3−m
12

δm+n=0C,
[
Lm,C

]
= 0. (1.1)

The central modeC will act on all representations as a fixed multiple of the identity, known as the central charge
c. We will identify C with c in what follows. The field-theoretic version of these commutation relations is the
operator product expansion

T(z)T(w)∼ c/2

(z−w)4
+

2T(w)

(z−w)2
+

∂T(w)
z−w

, (1.2)

in which the energy-momentum tensor is related to the Virasoro modes byT
(
z
)
= ∑n∈ZLnz−n−2.

In this section, we recall how the global conformal invariance of the vacuum
∣∣0
〉
, meaning its annihilation by

L−1, L0 andL1, fixes the two-point functions of (chiral) fields and gives rise to logarithmic singularities when the
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corresponding Virasoro representations admit a non-diagonalisable action ofL0. Given any chiral fieldφ
(
z
)
, the

natural action of the Virasoro modes is given by
[
Ln,φ(w)

]
=

∮

w
T(z)φ(w)zn+1 dz

2π i
. (1.3)

If φ
(
z
)

is a chiral primary field of conformal weighth, then this action gives
[
L−1,φ(w)

]
= ∂φ(w),

[
L0,φ(w)

]
= hφ(w)+w∂φ(w),

[
L1,φ(w)

]
= 2hwφ(w)+w2∂φ(w) (1.4)

and the invariance of
∣∣0
〉

then leads to the following differential equations for the two-point functions:

(∂z+ ∂w)
〈
φ(z)φ(w)

〉
= 0, (z∂z+w∂w+2h)

〈
φ(z)φ(w)

〉
= 0,

(
z2∂z+w2∂w+2h(z+w)

)〈
φ(z)φ(w)

〉
= 0.

(1.5)

It is a straight-forward exercise to show that the general solution of these equations has the form
〈
φ(z)φ(w)

〉
=

A

(z−w)2h , (1.6)

for some constantA (which could be zero). We may identifyA with
〈
φ
∣∣φ
〉
.

So far, we have repeated a standard textbook computation (see [14] for example). We now ask what happens if
the primary fieldφ

(
z
)

corresponds to a state
∣∣φ
〉

which has aJordan partner
∣∣Φ

〉
under theL0-action:L0

∣∣Φ
〉
=

h
∣∣Φ

〉
+
∣∣φ
〉
. Then, the constantA in (1.6) is

A=
〈
φ
∣∣φ
〉
=

〈
φ
∣∣L0−h

∣∣Φ
〉
= 0, (1.7)

sinceL0
∣∣φ
〉
= h

∣∣φ
〉
. Moreover, the partner fieldΦ

(
z
)

has the operator product expansion1

T(z)Φ(w)∼ hΦ(w)+φ(w)
(z−w)2

+
∂Φ(w)
z−w

, (1.8)

so that the Virasoro modes act as[
L−1,Φ(w)

]
= ∂Φ(w),

[
L0,Φ(w)

]
= hΦ(w)+w∂Φ(w)+φ(w),

[
L1,Φ(w)

]
= 2hwΦ(w)+w2∂Φ(w)+2wφ(w).

(1.9)

We therefore obtain a set of inhomogeneous differential equations for the two-point functions:

(∂z+ ∂w)
〈
φ(z)Φ(w)

〉
= 0, (z∂z+w∂w+2h)

〈
φ(z)Φ(w)

〉
=−

〈
φ(z)φ(w)

〉
,

(
z2∂z+w2∂w+2h(z+w)

)〈
φ(z)Φ(w)

〉
=−2w

〈
φ(z)φ(w)

〉
,

(∂z+ ∂w)
〈
Φ(z)Φ(w)

〉
, (z∂z+w∂w+2h)

〈
Φ(z)Φ(w)

〉
=−

〈
Φ(z)φ(w)

〉
−
〈
φ(z)Φ(w)

〉
,

(
z2∂z+w2∂w+2h(z+w)

)〈
Φ(z)Φ(w)

〉
=−2z

〈
φ(z)Φ(w)

〉
−2w

〈
Φ(z)φ(w)

〉
.

(1.10)

If we assume thatφ
(
z
)

andΦ
(
z
)

are mutually bosonic, meaning that
〈
φ(z)Φ(w)

〉
=

〈
Φ(z)φ(w)

〉
, then solving

these equations leads to two-point functions of the form

〈
φ(z)φ(w)

〉
= 0,

〈
φ(z)Φ(w)

〉
=

B

(z−w)2h ,
〈
Φ(z)Φ(w)

〉
=

C−2Blog(z−w)

(z−w)2h , (1.11)

whereB andC are constants. This demonstrates that combining global conformal invariance with a non-diagonalisable
L0-action leads to logarithmic singularities in correlationfunctions.

We remark thatΦ(z) is not uniquely specified because we may, for example, add a multiple of φ(z) to Φ(z)
without affecting the latter’s defining properties. However, adding such a multiple will change the constantC in
(1.11), thoughB will remain invariant. Because of this,C may be tuned to any desired value, so is not expected to
be physical. The constantB=

〈
φ
∣∣Φ

〉
, on the other hand, is expected to be physically meaningful.

1.2. The Free Boson. The free boson is ac= 1 conformal field theory with chiral algebrâgl(1) = û(1) generated
by modesan, n∈ Z, and a central elementK:

[
am,an

]
= mδm+n,0K. (1.12)

As usual,K is identified with a real numberk times the identity when acting on representations and the Virasoro
modesLn then follow from the standard Sugawara construction. Moreover, when a highest weight state in such a

1Here, we assume for simplicity thatLn
∣∣Φ

〉
= 0 for all n> 0. See Sections 2.4 and 6.3 for a more general discussion.
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representation has weight (a0-eigenvalue)λ , its conformal dimension isλ 2/2k. Note that the algebra fork 6= 0 is
almost always rescaled viaam → am/

√
k so as to setk to 1.2

The irreducible (k= 1) highest weight modulesFλ , called Fock spaces, have characters given by

ch
[
Fλ

](
q
)
= tr

Fλ
qL0−c/24=

qλ 2
/2

η(q)
. (1.13)

It is well known (see [20] for example) that the S-transformations of these characters amount to a Fourier transform
and that one can recover non-negative integer fusion multiplicities from them using a continuum version of the
Verlinde formula. The only problem with this is that the characters (1.13) do not completely distinguish the
irreducible modules: ch

[
Fλ

]
and ch

[
F−λ

]
are identical. Consequently, the application of the Verlinde formula

cannot, strictly speaking, reproduce the structure constants of the fusion ring, but only of a quotient of the fusion
ring by an action of the two-element groupZ2.

The obvious fix is to include the affine weightλ in the character. Of course, then the S-transformation will
produce an unwanted factor for which the standard remedy is to includek in the character. In this way, we arrive
at the full character (for generalk):

ch
[
Fλ

](
y;z;q

)
= tr

Fλ
ykza0qL0−c/24 =

ykzλ qλ 2/2k

η(q)
. (1.14)

Writing y= e2πit , z= e2πiu andq= e2πiτ , the modular S-transformation of the characters (1.14) acts viaS : (t|u|τ)→(
t −u2/2τ

∣∣u/τ
∣∣−1/τ

)
, leading to

ch
[
Fλ

]∣∣∣
S
=

∫ ∞

−∞
Sλ µch

[
Fµ

] dµ√
k
, Sλ µ = e

−2πiλ µ/k. (1.15)

This follows from a standard gaussian integration, convergent for k > 0 (whenk < 0, we have to assume the
standard result through an analytic continuation):

∫ ∞

−∞
Sλ µch

[
Fµ

] dµ√
k
=

e2πikt

η(τ)

∫ ∞

−∞
e
iπτµ2/k+2πi(u−λ/k)µ dµ√

k
=

e2πikt−iπk(u−λ/k)2/τ
√
−iτη(τ)

= ch
[
Fλ

]∣∣∣
S
. (1.16)

We remark that the measure dµ/
√

k is natural given the rescaling property of thean.
ForT : (t|u|τ)→ (t|u|τ +1), the transformation is

ch
[
Fλ

]∣∣∣
T
=

∫ ∞

−∞
Tλ µch

[
Fµ

] dµ√
k
, Tλ µ = e

iπ(λ 2/k−1/12)δ
(

λ√
k
=

µ√
k

)
. (1.17)

It is straight-forward to check thatS2 and(ST)3 are the conjugation permutationλ →−λ , hence that the characters
span a representation of the modular groupSL

(
2;Z

)
(of uncountably-infinite dimension).

The S-matrix (or S-density) is symmetric and unitary with respect to the rescaled weightsλ/
√

k:
∫ ∞

−∞
Sλ µS

†
µν

dµ√
k
=

∫ ∞

−∞
e
−2πi(λ−ν)µ/k dµ√

k
= δ

(
λ√
k
=

ν√
k

)
. (1.18)

It immediately follows that the diagonal partition function Zdiag.=
∫ ∞
−∞ ch

[
Fλ

]
ch
[
Fλ

]
dλ/

√
k is a modular in-

variant (T-invariance is manifest). Similarly, the invariance of the charge conjugation partition functionZc.c. =∫ ∞
−∞ ch

[
Fλ

]
ch
[
F−λ

]
dλ/

√
k follows from unitarity and the symmetrySλ ,µ = S−λ ,−µ .

The continuum Verlinde formula states that the fusion coefficients are given by

N
ν

λ µ =
∫ ∞

−∞

Sλ ρSµρS
∗
νρ

S0ρ

dρ√
k
=

∫ ∞

−∞
e
−2πi(λ+µ−ν)ρ/k dρ√

k
= δ

(
ν√
k
=

λ√
k
+

µ√
k

)
, (1.19)

where we recognise that the vacuum module isF0. The predicted fusion rules are therefore

Fλ ×Fµ =
∫ ∞

−∞
N

ν
λ µ Fν

dν√
k
= Fλ+µ , (1.20)

agreeing perfectly with the known fusion rules. Actually, what the Verlinde formula computes is the fusion rules
at the level of the characters. However, the free boson theory has the property that its irreducible modules have
linearly independent characters, if we use (1.14), and every module in the spectrum is completely reducible. It
follows that character fusion and module fusion coincide for this theory.

2If we wish to preserve the adjoint (reality condition)a†
m = a−m, then we may only rescalek to ±1. Free bosons withk > 0 are often called

euclideanwhereas those withk< 0 are calledlorentzian.
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An important feature of the spectrum of the free boson is thatevery irreducible module is a simple current,
meaning that they have inverses in the fusion ring [21, 22]. Moreover, if we exclude the fusion identityF0, then
the simple currentFr has no (irreducible) fixed points.3 We can use the group generated by a simple currentFr

to construct extended algebras in a canonical fashion (see [23, 24] for example): The extension is obtained by
promoting the fields associated to the fusion orbit

⊕
j∈ZF jr to symmetry generators. In other words, this direct

sum ofĝl(1)-irreducibles becomes the (irreducible) vacuum module of the extended algebra. We restrict attention
to extended algebras which are integer-moded (hence bosonic). Comparing conformal dimensions of the states of
F jr shows that this is equivalent to demanding thatr2 ∈ 2Z (we have scaledk to 1 for simplicity).4

The irreducible modules of the extended algebra are also obtained as fusion orbits. We denote them by

F[λ ] =
⊕

j∈Z
Fλ+ jr , (1.21)

where[λ ] = λ mod r. Requiring that the extended algebra act with integer moding leads to a finite set of (un-
twisted) extended algebra modules labelled byλ = m/r, with m∈

{
0,1, . . . , r2−1

}
. The S-transformations of the

characters of these modules follow readily from (1.15):

ch
[
F[m/r]

]∣∣∣
S
= ∑

j∈Z
ch
[
Fm/r+ jr

]∣∣∣
S
=

∫ ∞

−∞
e
−2πimµ/r ∑

j∈Z
e
−2πi jr µch

[
Fµ

]
dµ

=
1
r

r2−1

∑
n=0

∑
j∈Z

e
−2πimn/r2

ch
[
Fn/r+ jr

]
=

1
r

r2−1

∑
n=0

e
−2πimn/r2

ch
[
F[n/r]

]
. (1.22)

Here, we have applied the following summation formula:

∑
j∈Z

e
−2πi jr µ = ∑

ℓ∈Z
δ
(
rµ = ℓ

)
=

1
r ∑
ℓ∈Z

δ
(
µ =

ℓ

r

)
=

1
r

r2−1

∑
n=0

∑
j∈Z

δ
(
µ =

n
r
+ jr

)
. (1.23)

The extended algebra’s S-matrix is therefore given by

S
(r)
mn=

1
r
e
−2πimn/r2

, m,n∈
{

0,1, . . . , r2−1
}
. (1.24)

This is again symmetric and unitary, so one can construct a diagonal modular invariant partition functionZr =

∑
r2−1
m=0 ch

[
F[m/r]

]
ch
[
F[m/r]

]
and its charge conjugate version. Expressing this in terms of Fock space characters,

one obtains an infinite set of non-diagonal modular invariants for ĝl(1) with discrete spectra. Finally, it is easy
to check that the (standard) Verlinde formula for the extended algebra gives non-negative integer coefficients:

N
(r) [p/r]
[m/r][n/r] = δp=m+n modr2.
Thus far, we have seen that the modular S-transformations ofthe free boson characters may be used to compute

the S-transformations of those of the extended algebras. These in turn can then be used to compute the Verlinde
formula for the extended theories. In a sense though, this isoverkill because simple current technology makes it
possible to reproduce the extended algebra fusion rules from those of the free boson. Naı̈vely, one might try

F[λ ] “×” F[µ] =
⊕

i, j∈Z

(
Fλ+ir ×Fµ+ jr

)
=

⊕

i∈Z

⊕

j∈Z
Fλ+µ+(i+ j)r =

⊕

j∈Z
F[λ+µ]. (1.25)

However, this gives an overall multiplicity of infinity, even whenλ = µ = 0. The reason is that each of the
Fλ+ir are in the same module for the extended algebra, hence each ofthese Fock spaces gives exactly the same
contribution to the fusion product. It is therefore necessary to choose a single representativeFλ+ir , a convenient
one hasi = 0, to avoid multiply counting the same information. This “renormalisation” leads to

F[λ ]×F[µ] =
⊕

j∈Z

(
Fλ ×Fµ+ jr

)
=

⊕

j∈Z
Fλ+µ+ jr = F[λ+µ], (1.26)

fixing the multiplicity issue. We therefore arrive at a very powerful strategy to compute the fusion rules of extended
theories which may be summarised as follows:

• Compute the modular S-transformation of the (non-rational) theory with continuous spectrum.
• Deduce fusion rules using the continuum Verlinde formula.
• Use these fusion rules to identify simple current extensions with discrete (finite) spectrum.

3A fixed point of a simple current is a module for which fusion with the simple current reproduces itself.
4The extended algebra constructed fromFr is, of course, the symmetry algebra of the free boson compactified on a circle of radiusr .
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• Extract the fusion rules of the extended theory from those ofthe non-rational theory.

We conclude this exercise by checking these extended algebra results at the self-dual radiusr =
√

2, for which
it is well known that the extended algebra isŝl(2) at level 1. There arer2 = 2 extended algebra modulesF[0] and
F[1/

√
2] which are easily checked to have 1 and 2 ground states of dimensions 0 and 1/4, respectively. The S-matrix

and fusion matrices are found to be

S
(
√

2) =
1√
2

(
1 1
1 −1

)
; N

(
√

2)
[0] =

(
1 0
0 1

)
, N

(
√

2)
[1/

√
2]
=

(
0 1
1 0

)
, (1.27)

which does indeed reproduce the correct data forŝl(2)1.

1.3. Outline. Our review commences in Section 2 with an overview of thec = 0 logarithmic conformal field
theory that describes the critical point of the statisticallattice model known as percolation. We describe enough
of the underlying lattice theory to introduce Cardy’s celebrated formula [25] for a non-local observable known
as the horizontal crossing probability. While it is clear that Cardy’s derivation cannot be accommodated within a
unitary theory (the only unitaryc= 0 conformal field theory is the trivial minimal modelM

(
2,3

)
), we show that

his derivation actually implies a logarithmic theory, following [26]. This necessitates a brief introduction to the
famous fusion algorithm of Nahm, Gaberdiel and Kausch [27, 28]. We compute a few fusion products explicitly
before describing the results of more involved calculations that detail the structures of the indecomposable modules
so constructed. We then use the results to derive a couple of logarithmic correlators, generalising the analysis of
Section 1.1, before briefly discussing other non-local percolation observables and otherc= 0 models.

Section 3 introduces the first of our “archetypal” logarithmic conformal field theories, the symplectic fermions
of Kausch [29]. More precisely, we discuss a family ofc = −2 theories which include symplectic fermions,
the triplet modelW

(
1,2

)
studied in [30–32], and the corresponding singlet modelM

(
1,2

)
, itself a special case

of Zamolodchikov’s original W-algebra [33]. We begin with the symplectic fermion algebra, constructing its
irreducible and indecomposable (twisted) representations and verifying the non-diagonalisability ofL0 on the
latter, before decomposing its representation into those of the subalgebrasW

(
1,2

)
andM

(
1,2

)
. For the singlet,

the spectrum is continuous and it is here that we derive character formulae and deduce modular transformations.
The S-matrix is found to be symmetric and unitary, so we applya continuous version of the Verlinde formula and
find that the resulting (Grothendieck) fusion coefficients are positive integers.

As far as we are aware, the modular properties of the singlet model’s characters are new (the generalisation
to M

(
1, p

)
will be reported in [34]). Assuming that the continuous Verlinde formula does give the correct

(Grothendieck) fusion coefficients, we also deduce many fusion rules, in particular concluding that the singlet
model possesses a countable infinity of simple currents. We identify the maximal simple current extension as sym-
plectic fermions and the maximal bosonic simple current extension as the triplet model. This also seems to be new.
We moreover use our singlet results to determine what the (Grothendieck) fusion rules for the triplet model should
be, finding agreement with the fusion computations of [32]. This then provides a stringent consistency check of the
continuous Verlinde formula. We also conjecture the existence of certain singlet indecomposable modules before
briefly discussing the known issue with obtaining an S-matrix for the triplet model (the S-matrix entries are not
constant) and how this is manifested in the simple current extension formalism we have developed.

Finally, we discuss the bulk (non-chiral) aspects of thesec = −2 theories. Bulk logarithmic conformal field
theories are not as well understood as their chiral counterparts, though progress has been steady [35–41]. For this,
it has proven useful to study analogous situations in mathematics. For example, the representation of a semisim-
ple finite-dimensional associative algebra, acting on itself by left-multiplication, decomposes as a direct sum of
irreducibles, where every irreducible appears with multiplicity equal to its dimension (Wedderburn’s theorem).
However, the non-semisimple case gives a direct sum of projectives, where the multiplicity of each is now the
dimension of the irreducible it covers. The semisimple caseis also the result for compact Lie groupsG acting
on the Hilbert spaceL2(G,µ) (with µ the Haar measure), whereas the non-semisimple case seems tobe roughly
correct for Lie supergroups and many non-compact groups (this is theminisuperspace limit[36,42]).

This is relevant because the modular invariant partition functions that have been constructed for logarithmic
conformal field theories often have the form

Z = ∑
i

ch
[
Li
]
ch
[
Pi
]
= ∑

i

ch
[
Pi
]
ch
[
Li
]
, (1.28)

wherei labels the irreduciblesLi in the spectrum andPi denotes an indecomposable cover ofLi which one expects
to be projective in some category. (In the rational case, each Pi andLi coincide and this reduces to the standard
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diagonal invariant.) Because of this, the state space of a logarithmic theory seems likely to decompose, upon
restricting to the chiral or antichiral algebra, into a direct sum of projectives (each with infinite multiplicity).

Digressions over, we conclude our discussion of this familyof c = −2 logarithmic conformal field theories
by noting the well known structure for the bulk state space ofthe symplectic fermions theory and discuss the
structure one obtains by restricting to the triplet algebra[35]. We then indicate how one could have guessed this
structure, withouta priori knowledge of the symplectic fermions structure, based on the form of the diagonal
modular invariant partition function and the above analogy. This leads to a simple proposal for constructing bulk
module structures from chiral ones which we stress automatically satisfies the physical locality requirement (that
bulk correlators are single-valued). Algebraically, thiswill be met if the chiral and antichiral states have conformal
dimensions that differ by an integer and, in a logarithmic theory, if the spin operatorL0−L0 acts diagonalisably.
We conclude by computing some correlation function and briefly mentioning what is known about the more general
W

(
1, p

)
andW

(
q, p

)
theories that have received so much attention in the literature.

Section 4 considers an example of a fractional level Wess-Zumino-Witten model, specifically one whose sym-
metry algebra iŝsl(2) at levelk = − 1

2. The existence of such fractional level theories was first suggested by
Kent [43] in order to provide a unified coset construction of all Virasoro minimal models, unitary and non-
unitary. They began to be studied seriously once Kac and Wakimoto discovered [44] that the levels required
for Kent’s cosets, theadmissible levels, were the only ones which admitted modules whose characterscarried a
finite-dimensional representation of the modular groupSL

(
2;Z

)
. Assuming, naturally enough, that this meant that

admissible level models were rational, Koh and Sorba computed the fusion rules given by the Verlinde formula,
noting that this sometimes resulted in negative integer fusion coefficients [45]. This puzzle was subsequently ad-
dressed by many groups [46–55], without any real progress, before Gaberdiel pointed out [56] that the assumption
of rationality was in error (see also [57]). He constructed enough fusion products for̂sl(2) at levelk = − 4

3 to
conclude that the theory was logarithmic, but was unable to solve the puzzle of negative fusion multiplicities. The
level k = − 1

2 was subsequently argued to be logarithmic using a free field realisation [58, 59], but a complete
picture including indecomposable module structure, characters, modular properties and the Verlinde formula has
only recently emerged [60–64]. The purpose of Section 4 is toexplain this progress fork=− 1

2.

We start by introducing the closely relatedβ γ ghost system and derive the current algebraŝl(2)−1/2 as an orb-
ifold. Instead of considering the representation theory ofthe ghost algebra, as we did for Section 3, we determine
the spectrum of̂sl(2)−1/2 directly. As before, we find a continuum of generically irreducible modules, but this
time they are neither highest nor lowest weight. At the parameter values where the continuum modules become
reducible, four highest weight modules are constructed (these are the admissible modules of Kac and Wakimoto).
The characters of these admissibles can be meromorphicallycontinued using Jacobi theta functions, leading to a
four-dimensional representation of the modular group. We then illustrate the paradox of negative Verlinde fusion
coefficients before indicating its resolution [60] using spectral flow automorphisms.

A very important point here is that one must be careful with regions of convergenceof characters. Indeed, certain
non-isomorphic modules, related by spectral flow, have (up to a sign) exactly the same meromorphically-continued
character. However, the regions where these characters converge are disjoint, being separated by a common pole.
We then interpret the sum of these characters as a distribution supported at this pole. With this formalism, we
obtain modular properties, Verlinde formula and a discreteseries of modular invariants. Here, the story is very
similar to the previous section and we are again able to propose the structure of the local bulk modules. Finally, we
use a free field realisation to compute correlation functions and give an example of a three-point correlator which
exhibits singularities at certain module parameters. As inthe previous section, this result can be regularised to
obtain logarithmic correlators. We conclude with a brief discussion of how all this generalises to the levelk=− 4

3.
Section 5 contains the last of our “archetypal” examples, the Wess-Zumino-Witten theory on the Lie super-

groupGL(1|1). As usual, supergroup models depend upon a levelk and the symmetry algebra is an affine Lie
superalgebra. But, in contrast to (integer level) bosonic Wess-Zumino-Witten models, our understanding of these
superanalogues is still rather rudimentary. Aside from therational theories associated withOSP(1|2n), see [65]
for example, only the theories associated to the Lie supergroupsGL(1|1) andPSL(1|1) (which is just symplectic
fermions) are completely understood. Indeed, these were the first logarithmic conformal field theories investigated
over two decades ago: By Rozansky and Saleur [9,10] forGL(1|1) and by Gurarie [11] for the fermionicbcghosts
that are closely related to symplectic fermions.

We structure this section so as to bring out the analogy with the previous two examples. We start with the
algebra and representation theory, then continue with modular data and correlation functions following [36,37,66].
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This example, like the two that preceded it, exhibit all the features of the simplest known logarithmic conformal
field theories. There are certainly many more logarithmic theories that should be considered, some with similar
indecomposable structures to our examples, and some which are more complicated. We mention that there are
many applications which involve supergroup theories of thelatter class as e.g. in statistical physics [67, 68] and
the AdS/CFT correspondence [69] — these therefore need a detailed investigation in the near future.

Section 6 aims to briefly outline a reasonably general approach to understanding the mathematical structures that
underlie logarithmic conformal field theory. It commences with a somewhat technical discussion which introduces
the important idea of astaggered module, familiar from Virasoro studies [70, 71], for a large class of associative
algebras. Some very basic results are proven at this level ofgenerality (these results have not before been published)
before restricting to a discussion of thelogarithmic couplingsthat parametrise the isomorphism classes of staggered
modules for the Virasoro algebra. We emphasise that these numbers are as important to logarithmic conformal field
theory as the three-point constants are to rational theories and we detail how they arise when computing two-point
functions. We conclude with a brief analysis of an example ofa Virasoro indecomposable whose structure is more
complicated than that of a staggered module becauseL0 acts with arank3 Jordan block.

Section 7 then summarises what we have presented, describing what we believe is a reasonably general ap-
proach to understanding logarithmic conformal field theories. Finally, there is a short appendix in which we have
collected some of the necessary basic information about homological algebra, a very useful tool (and language)
for describing the structure of indecomposable but reducible representations.

2. PERCOLATION AS A LOGARITHMIC CONFORMAL FIELD THEORY

Percolation may be loosely defined as a collection of closelyrelated probabilistic models whose observed be-
haviour is believed to be reasonably typical for more general classes of statistical theories. In particular, these
models exhibit phase transitions as their defining parameters pass through certain critical values [72]. Moreover,
percolation is particularly easy to simulate numerically,so it is a popular choice for testing predictions such as con-
formal invariance and universality [73,74]. In this section, we discuss how the hypothesis of conformal invariance,
which led Cardy to his celebrated formula [25] for the horizontal crossing formula, can be accommodated within
the standard framework of (boundary) conformal field theory. It has long been suspected (see [15] for example)
that the conformal invariance of percolation requires a logarithmic theory. Here, we follow [26] to deduce from the
assumptions underlying Cardy’s derivation that the spectrum of percolation contains indecomposable modules on
which the Virasoro modeL0 acts non-diagonalisably, hence that critical percolationis described by a logarithmic
conformal field theory.

2.1. Critical Percolation and the Crossing Formula. As with many other statistical models, the primary con-
sideration of percolation is the degree to which a very largenumber of identical objects tend to cluster together
when distributed in a random fashion. The setup for one of thebasic percolation models is as follows: Consider a
square lattice with a given edge length and choose a fixed rectangular subdomain whose sides are a union of lattice
edges. A percolation configuration is then obtained by declaring that each edge within the subdomain is open with
probability p and closed with probability 1− p. The idea is that the subdomain represents a porous materialand
that open edges permit the flow of a liquid medium whereas closed edges do not. Whenp= 0, all edges are closed
and material is impermeable to the liquid. Whenp= 1, all edges are open and there is no obstruction to the liquid’s
flow. For 0< p< 1, one is then led to question whether the liquid is able to percolate through the material, whence
the model’s name.

To be more precise, we may ask for the probability that a randomly chosen configuration of edges in our
rectangular subdomain contains a path of open edges connecting a chosen side of the rectangle with the opposite
side. Such a path is called acrossingand Figure 1 shows an example of a configuration in which one (of the many)
crossings has been drawn. Computing this crossing probability analytically is a hopeless task, though simulation
can approximate it extremely well. However, one can ask the question again in the continuum limit where the
edge length tends to 0 while the size and shape of the rectangular subdomain is kept fixed. In this case, one has
the result [72] that the limit of the crossing probabilitiesis 0 if p is less than a critical value, which turns out to
be pc =

1
2 for a square lattice, and is 1 ifp is greater thanpc. The only interesting value is then the limit of the

crossing probabilities whenp is precisely this critical value.5

5Curiously, it seems that the existence of this limit whenp = pc was not known until Cardy’s crossing formula (see (2.1)) wasrigorously
proven [75, 76].
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FIGURE 1. A typical percolation configuration (left) for a rectangular subdomain of a square lattice showing
only the open edges (closed edges are omitted). This latticehas several crossings from left to right, one of
which is indicated in bold (right).

This probability of a crossing being present whenp = pc was famously derived by Cardy [25] within the
formalism of boundary conformal field theory and his result is generally recognised as one of the most striking
confirmations of the conjecture that the continuum limit of astatistical model is conformally invariant at its critical
points. Cardy combined the well known description of percolation as theQ→ 1 limit of the Q-state Potts model
with an inspired identification of certain boundary-changing operators in these Potts models to write the crossing
probability as the four-point correlation function of a Virasoro primary fieldφ1,2, where the subscript indicates the
field’s Kac labels. To apply the machinery of conformal field theory, one now maps the rectangular subdomain
conformally onto (a compactification of) the upper half-plane so that the fields’ insertion points (the corners of the
rectangle) are mapped to pointszi , i = 1, . . . ,4, lying on the real axis (or to∞).

The central chargec of the continuum limit of theQ-state Potts model is well known [77], assuming of course
that the limit is conformally invariant. For percolation (Q→ 1), one obtainsc= 0 and it therefore follows thatφ1,2

has conformal dimension 0. Moreover,φ1,2 will have a singular descendant field at grade 2 and so, according to
standard conformal field theory dogma, the four-point correlator representing the crossing probability will satisfy
a second-order linear differential equation. The obvious behaviour of the crossing probability as the aspect ratio of
the rectangle tends to 0 and∞ then picks out a unique solution:

Pr=
Γ
( 2

3

)

Γ
(

1
3

)
Γ
(

4
3

)η1/3
2F1

(
1
3
,
2
3

;
4
3

;η
)
, where η =

(z1− z2)(z3− z4)

(z1− z3)(z2− z4)
. (2.1)

The agreement between this computation and numerical data from simulations [73] is impressive.
The precise formula for the crossing probability is not important for what follows. Rather, what we wish to

emphasise is that the derivation is performed with the aid ofa limit Q → 1 which hides a remarkable amount of
subtlety. Indeed, one might guess that the percolation conformal field theory is a minimal model, based on the
usual identification of theQ-state Potts models forQ= 2 and 3 withM

(
3,4

)
andM

(
5,6

)
, respectively. However,

the minimal model withc = 0 isM
(
2,3

)
which is trivial in the sense that its field content is limitedto constant

multiples of the identity. Obviously, four-point functions in M
(
2,3

)
will be constant, so this model cannot ac-

commodate Cardy’s derivation. On the other hand, it would bedistressing if Cardy’s derivation turned out to be
inconsistent with the principles of conformal field theory.We will therefore assume that a description of critical
percolation can be accommodated within conformal field theory. This will require the consideration of reducible,
yet indecomposable, representations.

2.2. The Necessity of Indecomposability. Before embarking on our explorations, let us pause to recallsome
useful facts concerning Virasoro modules. This will also serve to introduce our notation. Verma modules will be
denoted byVh, whereh is the conformal dimensional of the highest weight state, and their irreducible quotients by
Lh. Forc= 0, we recall that the Verma module is itself irreducible unlessh= hr,s for somer,s∈ Z+, where

hr,s=
(3r −2s)2−1

24
. (2.2)

In the latter case,Vh = Vhr,s will have a submodule generated by a singular vector at graders (its conformal
dimension will behr,s+ rs). If r is even ors is a multiple of 3, then the maximal proper submodule ofVhr,s is
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0 0 1
3 1 2 10

3 5 7 28
3 12 · · ·

5
8

1
8

−1
24

1
8

5
8

35
24

21
8

33
8

143
24

65
8 · · ·

2 1 1
3 0 0 1

3 1 2 10
3 5 · · ·

33
8

21
8

35
24

5
8

1
8

−1
24

1
8

5
8

35
24

21
8 · · ·

...
...

...
...

...
...

...
...

...
...

. . .

TABLE 1. A part of the extended Kac table forc = 0, displaying the conformal dimensionshr,s for which
the Verma modulesVhr,s are reducible. The rows of the table are labelled byr = 1,2,3, . . . and the columns
by s= 1,2,3, . . ..

generated by the singular vector of lowest (positive) grade.6 Otherwise, it is generated by the two singular vectors
of lowest and next-to-lowest grades. It is convenient to collate thehr,s with r,s∈ Z+ into anextended Kac table, a
part of which we reproduce in Table 1. Finally, we introduce notation for certain Verma module quotients that will
frequently arise in what follows:Qr,s = Vhr,s/Vhr,s+rs.

We begin by postulating that the conformal field theory describing the continuum limit of critical percolation
contains a vacuum

∣∣0
〉
. Equivalently, by the state-field correspondence, the identity field I is present in the theory.

As h1,1 = h1,2 = 0, the vacuum Verma moduleV0 has singular vectors at grades 1 and 2 and these turn out to be
independent in the sense that the latter is not descended from the former.7 In fact, the maximal proper submodule
of V0 is generated by these two singular vectors. SinceL−1

∣∣0
〉

corresponds to the field∂ I = 0, we have to
setL−1

∣∣0
〉
= 0 (by quotientingV0 by the submodule it generates). However, the grade 2 singular vector then

corresponds to the energy-momentum tensorT(z). If this is set to 0, then each of its modes, the Virasoro generators
Ln, must all act as the zero operator on the states of the theory,and this leads us to the (trivial) minimal model
M
(
2,3

)
(or a direct sum of copies of this model).

To get a non-trivialc= 0 theory, we must abandon the idea that singular vectors are always set to 0. Instead of
assuming that the vacuum

∣∣0
〉

generates the irreducible Virasoro moduleL0, we are led to propose that the vacuum
module is the reducible, but indecomposable, quotientQ1,1 = V0/V1. This is, in fact, the only remaining option
because the only singular vector to survive inQ1,1 is of grade 2 (it corresponds toT) and setting it to 0 leads back
to the irreducible vacuum moduleL0. In the language of Appendix A.1, our proposed vacuum moduleQ1,1 is an
extension ofL0 by the submodule generated by

∣∣T
〉
= L−2

∣∣0
〉
, which is itself irreducible and isomorphic toL2.

This is summarised by the exact sequence

0−→ L2 −→ Q1,1 −→ L0 −→ 0. (2.3)

This argument shows that there is a unique choice for the vacuum module which leads to a non-trivial theory.
Moreover, this choice is reducible, but indecomposable. Toaccommodate Cardy’s derivation, there should also
exist in the theory a primary fieldφ1,2 with a vanishing grade 2 descendant. This last requirement stems from the
fact that the crossing probability is derived as a solution to a second order differential equation and this equation is
derived from the vanishing of a grade 2 descendant. Becauseh1,2 = 0, the corresponding Verma module is againV0

with singular vectors at grades 1 and 2. This time, we cannot set the grade 1 singular vector to 0 because it would
lead to a first order differential equation for Cardy’s crossing probability (one can check that the solutions to this
equation are all constant). We therefore conclude that the reducible, but indecomposable, moduleQ1,2 = V0/V2 is
present. Again, this is the only possibility compatible with Cardy’s derivation; the corresponding exact sequence
is

0−→ L1 −→ Q1,2 −→ L0 −→ 0. (2.4)

This concludes the basic setup for a conformal field theory which is consistent with Cardy’s derivation of the
crossing formula (2.1). One can therefore declare with confidence that the percolation (boundary) conformal field
theory, whatever it may be, must include the indecomposablevacuum moduleQ1,1 and the indecomposable module
Q1,2 in appropriate boundary sectors. It remains to explore the consequences of this conclusion. As usual, one can

6We will often use the term “singular vector” to indicate a highest weight state which is a proper descendant. Similarly, the term “highest
weight state” will often be used to indicate the one of lowestconformal dimension in a given module.
7There are also singular vectors at grades 5,7,12,15, . . . which are each descended from both the grade 1 and grade 2 singular vectors.
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try to generate new field content through fusion. It is natural to expect that the identity fieldI will act as the fusion
identity (I × I = I andI ×φ1,2 = φ1,2) and this is indeed the case. One also expects that the vanishing of the grade
2 singular descendant ofφ1,2 will imply that

φ1,2×φ1,2 = I +φ1,3, (2.5)

whereφ1,3 is a Virasoro primary field of conformal dimensionh1,3 =
1
3. This also turns out to be true. However,

the natural sequel to this computation,
φ1,2×φ1,3 = φ1,2+φ1,4, (2.6)

whereφ1,4 is primary of dimensionh1,4 = 1, is falseas we shall see.

2.3. The Nahm-Gaberdiel-Kausch Fusion Algorithm. In standard conformal field theory, where the modules
are completely reducible, it is permissible to regard fusion as an operation on primary fields, remembering that
the fusion rules in fact also apply to the entire family of fields descended from the respective primaries. However,
we have already surmised that there are reducible, but indecomposable, modules in the percolation spectrum.
Therefore, one needs to be much more precise about fusion andregard it not as an operation on primaries, but
rather as an operation on the modules themselves. We also need to be more careful about how fusion rules are
computed. The usual method of examining the effect of setting singular vectors to zero on three-point functions
might not be practical if we do not know what type of fields to insert in the three-point functions (as we shall see,
primary fields do not suffice in general).

The standard method of computing fusion rules when reducible, but indecomposable, modules are involved is
known as theNahm-Gaberdiel-Kauschalgorithm. This was originally introduced by Nahm [27] in a limited setting
and was extended (and applied to indecomposable Virasoro modules atc = −2) by Gaberdiel and Kausch [28].
The key insight behind this algorithm is the realisation that one can concretely realise the fusion product of two
modulesM andN as a quotient of the vector space tensor productM⊗C N. To demonstrate this, one needs to know
how the action of the symmetry algebra (here, the Virasoro algebra) onM ×N is derived from the actions onM
and onN. This takes the form of coproduct formulae [78]:

∆(Ln) =
n

∑
m=−1

(
n+1
m+1

)
Lm⊗ id+ id⊗Ln (n>−1), (2.7a)

∆(L−n) =
∞

∑
m=−1

(−1)m+1
(

n+m−1
m+1

)
Lm⊗ id+ id⊗L−n (n> 2), (2.7b)

L−n⊗ id =
∞

∑
m=n

(
m−2
m−n

)
∆(L−m)+ (−1)n

∞

∑
m=−1

(
n+m−1

m+1

)
id⊗Lm (n> 2). (2.7c)

Actually, one derives two distinct coproducts which shouldcoincide — (2.7c) is then deduced by imposing this
equality. Of course, there are generalisations of these formulae for other symmetry algebras [79].

Practically, one does not compute explicitly with the entire fusion moduleM×N. Rather, one restricts attention
to a subspace by setting all states of sufficiently high gradeto 0. More precisely, ifg is the cutoff grade, then
any state which can be written as a linear combination of states of the formL−n1 · · ·L−nk

∣∣v
〉
, with n1+ · · ·nk > g,

is set to 0. We will denote the result of this gradeg truncation of a Virasoro moduleN by N(g). This truncation
not only replaces the infinite-dimensional fusion product by a finite-dimensional subspace, thereby facilitating
explicit computation, but it also renders the first sum in (2.7c) finite (the other sums in (2.7) are already effectively
finite if we assume that the conformal dimensions of the states of M andN are bounded below). The point is that
this truncation is compatible with fusion computations because (2.7) may be used to prove that(M×N)(g) can
be realised as a quotient ofM′⊗C N(g) [28]. Here,M′ denotes thespecial subspace, a truncation ofM in which
any state of the formL−n1 · · ·L−nk

∣∣v
〉
, with max{n1, . . . ,nk} > 1, is set to 0. Finally, the quotient ofM′ ⊗C N(g)

which realises the truncated fusion product may be identified by determining those elements of the tensor space,
the so-calledspurious states, that we are forced to set to 0 as a consequence of setting singular vectors to 0 when
formingM andN.

It is always best to illustrate an algorithm with examples. Let us consider the fusion of the percolation (c= 0)
moduleQ1,2 of (2.4) with itself, setting the cutoff grade to 0. Then,Q′

1,2 is spanned by
∣∣v
〉

(the highest weight state

of Q1,2) andL−1
∣∣v
〉
, becauseL2

−1

∣∣v
〉
= 2

3L−2
∣∣v
〉
, andQ(0)

1,2 is spanned by
∣∣v
〉
. There are no spurious states to find,
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so(Q1,2×Q1,2)
(0) is two-dimensional. Applying (2.7a) withn= 0, we obtain

∆(L0)
(∣∣v

〉
⊗
∣∣v
〉)

= L−1
∣∣v
〉
⊗
∣∣v
〉
+L0

∣∣v
〉
⊗
∣∣v
〉
+
∣∣v
〉
⊗L0

∣∣v
〉
= L−1

∣∣v
〉
⊗
∣∣v
〉
, (2.8a)

∆(L0)
(
L−1

∣∣v
〉
⊗
∣∣v
〉)

= L2
−1

∣∣v
〉
⊗
∣∣v
〉
+L0L−1

∣∣v
〉
⊗
∣∣v
〉
+L−1

∣∣v
〉
⊗L0

∣∣v
〉

= L−1
∣∣v
〉
⊗
∣∣v
〉
+ 2

3L−2
∣∣v
〉
⊗
∣∣v
〉
= L−1

∣∣v
〉
⊗
∣∣v
〉
+ 2

3

∣∣v
〉
⊗L−1

∣∣v
〉

= 1
3L−1

∣∣v
〉
⊗
∣∣v
〉
. (2.8b)

In the course of this calculation, we have combined∆(L−1) = ∆(L−2) = 0 with (2.7a) and (2.7c) to obtain

L−2
∣∣v
〉
⊗
∣∣v
〉
=

∣∣v
〉
⊗L−1

∣∣v
〉
=−L−1

∣∣v
〉
⊗
∣∣v
〉
. (2.9)

It follows from (2.8) that∆(L0) is diagonalisable with eigenvaluesh1,1 = 0 andh1,3 =
1
3. From this, we deduce that

the fusion productQ1,2×Q1,2 decomposes as the direct sum of two highest weight modules whose highest weight
states have conformal dimensions 0 and1

3, respectively.
To identify the highest weight modules appearing in this decomposition unambiguously, we need to compute to

higher cutoff grades. At grade 1,Q′
1,2⊗CQ

(1)
1,2 is four-dimensional, spanned by

∣∣v
〉
⊗
∣∣v
〉
, L−1

∣∣v
〉
⊗
∣∣v
〉
,
∣∣v
〉
⊗L−1

∣∣v
〉

andL−1
∣∣v
〉
⊗L−1

∣∣v
〉
, and one uncovers a spurious state as follows:

0= ∆
(
L2
−1

)(∣∣v
〉
⊗
∣∣v
〉)

= L2
−1

∣∣v
〉
⊗
∣∣v
〉
+2L−1

∣∣v
〉
⊗L−1

∣∣v
〉
+
∣∣v
〉
⊗L2

−1

∣∣v
〉

= 2
3L−2

∣∣v
〉
⊗
∣∣v
〉
+2L−1

∣∣v
〉
⊗L−1

∣∣v
〉
+ 2

3

∣∣v
〉
⊗L−2

∣∣v
〉

= 2
3

∣∣v
〉
⊗L−1

∣∣v
〉
+2L−1

∣∣v
〉
⊗L−1

∣∣v
〉
− 2

3L−1
∣∣v
〉
⊗
∣∣v
〉
. (2.10)

This time, we have used∆
(
L2
−1

)
= ∆(L−2) = 0, (2.7a) and (2.7c) to obtain the relations

L−2
∣∣v
〉
⊗
∣∣v
〉
=

∣∣v
〉
⊗L−1

∣∣v
〉

and
∣∣v
〉
⊗L−2v=−L−1

∣∣v
〉
⊗
∣∣v
〉
. (2.11)

There are no other spurious states, so the truncated fusion product is three-dimensional. Computing∆(L0) as
before, we find that it is diagonalisable with eigenvalues 0,1

3 and 4
3. This refines the grade 0 conclusion in that we

now know that the highest weight module of conformal dimension 0 has its singular vector at grade 1 set to 0, a
fact which may be confirmed by checking that∆(L−1) annihilates the eigenstate with eigenvalue 0. This highest
weight module is therefore eitherL0 orQ1,1.

To decide which, we compute to grade 2, finding no spurious states in the six-dimensional truncated product

Q′
1,2⊗CQ

(2)
1,2. Calculating as before gives∆(L0) as diagonalisable with eigenvalues 0, 2,1

3, 4
3, 7

3 and 7
3. The grade

2 state may be checked to be obtained by acting with∆(L−2) on the eigenvalue 0 state, thereby identifying one of
the direct summands of the fusion product asQ1,1. Identifying the other summand requires computing to grade
3. This time, there is a single spurious state and∆(L0) is diagonalisable with eigenvalues 0, 2, 3,1

3, 4
3, 7

3, 7
3, 10

3
and 10

3 . We see that the grade 3 singular descendant of the eigenvalue 1
3 state has been set to 0, so the remaining

summand is the irreducible highest weight moduleQ1,3 = L1/3.
To summarise, we have used the Nahm-Gaberdiel-Kausch algorithm to compute the fusion rule

Q1,2×Q1,2 = Q1,1⊕L1/3. (2.12)

The computations beyond grade 1 quickly become tedious and are best done using an computer (we implemented
the algorithm in MAPLE). Nevertheless, this example shows that fusion products can be identified from a finite
amount of computation (although this would not be true if theresult involved modules with infinitely many com-
position factors, Verma modules for instance). On the otherhand, the Virasoro modeL0 acts diagonalisably on this
fusion product, so the result is not particularly interesting so far as logarithmic conformal field theory is concerned.

A more interesting computation is the fusion ofQ1,2 with the newly discovered percolation moduleL1,3. At
grade 0,∆(L0) is diagonalisable with eigenvalues 0 and 1. Because these eigenvalues differ by an integer, we cannot
conclude that the result decomposes as a direct sum of two highest weight modules. Our wariness in this matter is
justified by the grade 1 computation in which a new feature is uncovered:∆(L0) is seen to have eigenvalues 0, 1,
1 and 2, but isnot diagonalisable— the eigenspace of eigenvalue 1 corresponds to a Jordan block of rank 2. This
is the sign of logarithmic structure that we have been looking for.

To clarify this structure, note that the eigenvalue 0 state
∣∣ξ
〉

is necessarily a highest weight state. We can check
that∆(L−1)

∣∣ξ
〉

is non-zero and is (necessarily) the∆(L0)-eigenstate of the Jordan block. Its Jordan partner
∣∣θ
〉

is then uniquely determined by
(
∆(L0)− id

)∣∣θ
〉
= ∆(L−1)

∣∣ξ
〉
, up to adding multiples of∆(L−1)

∣∣ξ
〉
. Finally, the

eigenvalue 2 state is realised by∆(L−1)
∣∣θ
〉
. All this amounts to defining (and normalising) the states appearing at
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L1

L0 L7

L1

L2

L0 L5

L2

S1,4 S1,5

FIGURE 2. Loewy diagrams illustrating the socle series (see Appendix A.4) for the indecomposable Virasoro
modulesS1,4 andS1,5 constructed using the Nahm-Gaberdiel-Kausch fusion algorithm.

grade 1. What remains to be determined is the action ofL1:8

∆(L1)
∣∣θ
〉
=− 1

2

∣∣ξ
〉
. (2.13)

Because∆(L−1)
∣∣ξ
〉

is a singular vector, this equation holds foranychoice of Jordan partner state
∣∣θ
〉
.

This grade 1 fusion calculation shows that the productQ1,2×L1,3 is an indecomposable non-highest weight
module which we shall denote byS1,4. The highest weight state

∣∣ξ
〉

of dimension 0 generates a highest weight
submodule ofS1,4 whose singular vector of dimension 1,L−1

∣∣ξ
〉
, is non-vanishing. Using the fusion algorithm at

grade 2, we find that the singular dimension 2 descendant of
∣∣ξ
〉

vanishes, thereby identifying this highest weight
submodule asQ1,2. In the quotient moduleS1,4/Q1,2, the equivalence class

∣∣θ
〉
+Q1,2 is a highest weight state of

dimension 1. Checking its singular descendants of dimensions 5 and 7 therefore requires fusing to grade 6 and
examining theQ1,2-quotient.9 The results — the first singular descendant is found to vanishwhereas the second
does not — indicate that the corresponding highest weight module is isomorphic toQ1,4 = V1/V5. This then
establishes the exactness of the sequence

0−→ Q1,2 −→ S1,4 −→ Q1,4 −→ 0. (2.14)

The Loewy diagram for the indecomposableS1,4 is given in Figure 2 (left). The bottom composition factorL1

(the socle) is generated by∆(L−1)
∣∣ξ
〉
. By taking appropriate quotients, theL0 and the topL1 may be similarly

associated with (equivalence classes of)
∣∣ξ
〉

and
∣∣θ
〉
, respectively. TheL7 corresponds to the non-vanishing

singular descendant of
∣∣θ
〉
+Q1,2.

This demonstrates that the percolation conformal field theory necessarily contains indecomposable modules (in
some boundary sectors) on which the Virasoro zero-mode actsnon-diagonalisably. As we saw in Section 1.1, this
leads to logarithmic singularities in correlation functions. Before discussing this in more detail, let us pause to
explore further what fusion can tell us about the spectrum ofmodules. The Nahm-Gaberdiel-Kausch algorithm
may be applied to the fusion ofL1/3 with itself and computing to grade 5 establishes that the result is the direct
sum ofL1/3 and a new indecomposableS1,5 whose structure is described by the exact sequence

0−→ Q1,1 −→ S1,5 −→ Q1,5 −→ 0. (2.15)

Its Loewy diagram is illustrated in Figure 2 (right). The highest weight submodule is the (indecomposable) vacuum
module containing the vacuum

∣∣0
〉

and
∣∣T

〉
= L−2

∣∣0
〉
. The latter state (corresponding to the energy-momentum

tensor) has a Jordan partner, unique up to adding multiples of
∣∣T

〉
, which we will denote by

∣∣t
〉
. If we normalise

this partner by
(
∆(L0)−2id

)∣∣t
〉
=

∣∣T
〉
, then explicit computation gives

∆(L2)
∣∣t
〉
=− 5

8

∣∣0
〉
. (2.16)

Again, this equation is independent of the choice of
∣∣t
〉
.

8There is a subtlety to this computation worth mentioning. The action of∆(Ln), n> 0, at gradeg should be understood to map into the grade
g−n fusion space. However, the latter is always a subspace (quotient) of the former. We may therefore compute∆(L1)

∣∣θ
〉

in the grade 1 fusion
product and project onto the grade 0 subspace by setting all terms with∆(L0)-eigenvalue 1 to zero.
9This requires finding two spurious states in a 46-dimensional vector space.
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It is possible to identify the result of many more fusion rules including [26,80]

Q1,2×S1,4 = 2L1/3⊕S1,5,

Q1,2×S1,5 = S1,4⊕L10/3,

L1/3×S1,4 = 2S1,4⊕L10/3,

L1/3×S1,5 = 2L1/3⊕S1,7,

S1,4×S1,4 = 4L1/3⊕2S1,5⊕S1,7,

S1,4×S1,5 = 2S1,4⊕2L10/3⊕S1,8,

S1,5×S1,5 = L1/3⊕2S1,5⊕S1,7⊕L28/3.

(2.17)

Here, the modulesS1,7 andS1,8 are new indecomposables with exact sequences

0−→ Q1,5 −→ S1,7 −→ Q1,7 −→ 0, 0−→ Q1,4 −→ S1,8 −→ Q1,8 −→ 0. (2.18)

We remark that fusingS1,4 or S1,5 with another module requires knowing the explicit form of the (generalised)
singular vectors which have been set to 0. This will be discussed in Section??. Fusion computations with the new
modules generated here have met with only partial success, chiefly because the computational intensity of the algo-
rithm increases very quickly as the grade required to completely identify the fusion product grows. Nevertheless,
all such computations are consistent with the following conjecture for the fusion rules, presented algorithmically
for simplicity:10

(1) The spectrum includes the irreduciblesQ1,3k =L(3k−1)(3k−2)/6 and the indecomposablesS1,3k−1 andS1,3k−2,
for k∈ Z+ (we letS1,1 = Q1,1 andS1,2 = Q1,2.) To fuse any of these modules, first break any indecompos-
ables into their constituent highest weight modules (Q1,−2 = Q1,−1 ≡ {0}):

S1,3k−1 −→ Q1,3k−1⊕Q1,3k−5, S1,3k−2 −→ Q1,3k−2⊕Q1,3k−4. (2.19)

(2) Compute the “fusion” using distributivity and

Q1,s “×” Q1,s′ = Q1,|s−s′|+1⊕Q1,|s−s′|+3⊕·· ·⊕Q1,s+s′−3⊕Q1,s+s′−1. (2.20)

(We have enclosed the fusion operation in quotes to emphasise that this is not a true fusion rule).
(3) In the result, reverse (2.19) by replacing the combinationsQ1,3k−1 ⊕Q1,3k−5 andQ1,3k−2 ⊕Q1,3k−4 by

S1,3k−1 andS1,3k−2, respectively. There is always a unique way of doing this.

For example, if we wished to fuseS1,5 with L10/3 = Q1,6, we would instead compute that

(Q1,1⊕Q1,5) “×” Q1,6 = Q1,6⊕ (Q1,2⊕Q1,4⊕Q1,6⊕Q1,8⊕Q1,10) (2.21)

from which we read off that
S1,5×L10/3 = S1,4⊕2L10/3⊕S1,10. (2.22)

2.4. Logarithmic Correlators Again. Consider first the structure of the indecomposable moduleS1,5. It has a
submodule generated by the vacuum

∣∣0
〉
, whileS1,5 is itself generated by the state

∣∣t
〉

satisfying

L0
∣∣t
〉
= 2

∣∣t
〉
+
∣∣T

〉
, L1

∣∣t
〉
= 0, L2

∣∣t
〉
=− 5

8

∣∣0
〉
, Ln

∣∣t
〉
= 0 for n> 2. (2.23)

We recall that
∣∣T

〉
= L−2

∣∣0
〉
. The operator product expansion of the corresponding fieldsT(z) andt(w) is therefore

slightly different to those considered in Section 1.1:

T(z)t(w)∼−5
8

1

(z−w)4
+

2t(w)+T(w)

(z−w)2
+

∂ t(w)
z−w

. (2.24)

Normalising so that
〈
0
∣∣0
〉
= 1, we note that

〈
T(z)T(w)

〉
= 0 because

∣∣T
〉

is singular. The global invariance of the
vacuum then leads to the usual three partial differential equations for

〈
T(z)t(w)

〉
whose solution is

〈
T(z)t(w)

〉
=

B

(z−w)4
, B=

〈
0
∣∣L2

∣∣t
〉
=− 5

8

〈
0
∣∣0
〉
=− 5

8. (2.25)

As T(z) andt(w) can be shown to be mutually bosonic [82, App. B], we also obtain

〈
t(z)t(w)

〉
=

A+ 5
4 log(z−w)

(z−w)4
, (2.26)

confirming the existence of logarithmic singularities in percolation correlators. We emphasise that, unlikeB in
(2.25), the value of the constantA depends upon the precise choice we make for

∣∣t
〉
.

10One can convert this into a general formula, see [81] for example. However, the result seems cumbersome and not particularly illuminating
to us.
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As a second example, we consider the other module with non-diagonalisableL0-action that we have studied:
S1,4. This module is generated by a state

∣∣θ
〉

satisfying

L0
∣∣θ
〉
=

∣∣θ
〉
+L−1

∣∣ξ
〉
, L1

∣∣θ
〉
=− 1

2

∣∣ξ
〉
, Ln

∣∣θ
〉
= 0 for n> 1. (2.27)

Here,
∣∣ξ
〉

is a dimension 0 highest weight state generating a submoduleisomorphic toQ1,2. The fieldθ (w)
corresponding to

∣∣θ
〉

therefore has operator product expansion

T(z)θ (w)∼−1
2

ξ (w)
(z−w)3

+
θ (w)+ ∂ξ (w)

(z−w)2
+

∂θ (w)
z−w

. (2.28)

Again, we take
〈
ξ
∣∣ξ
〉
= 1 and arrive at

〈
∂x(z)θ (w)

〉
=

B

(z−w)2
. (2.29)

The determination ofB is, however, subtle [82]. Naı̈vely, we might expect that
∣∣∂ξ

〉
= L−1

∣∣ξ
〉

implies that
B=

〈
∂ξ

∣∣θ
〉
=
〈
ξ
∣∣L1

∣∣θ
〉
=− 1

2

〈
ξ
∣∣ξ
〉
=− 1

2, but this turns out to be incorrect. To see why, recall that the standard
definition of the outgoing state corresponding to aprimary field φ(z) = ∑n φnz−n−h is

〈
φ
∣∣ = lim

z→∞
z2h〈0

∣∣φ(z) ⇐⇒ φ†
n = φ−n. (2.30)

We certainly want this definition to apply toξ (z), a dimension 0 primary field. But then,

B=
〈
0
∣∣(∂ξ )1

∣∣θ
〉
=−

〈
0
∣∣ξ1

∣∣θ
〉
=−

〈
0
∣∣ξ0L1

∣∣θ
〉
=−

〈
ξ
∣∣L1

∣∣θ
〉
= 1

2

〈
ξ
∣∣ξ
〉
= 1

2. (2.31)

This is the correct conclusion (see Section 6.3 for a more general discussion). In any case, onceB is correctly
determined, the computation of

〈
θ (z)θ (w)

〉
proceeds as before and one obtains

〈
θ (z)θ (w)

〉
=

A− log(z−w)

(z−w)2
. (2.32)

Once again,A depends upon the precise choice of
∣∣θ
〉

whereasB does not.

2.5. Further Developments. We have seen that the boundary conformal field theory describing critical perco-
lation is logarithmic and that the spectrum includes the modulesQ1,1, Q1,2, L(3k−1)(3k−2)/6, S3k+1 andS3k+2, for
k ∈ Z+. A natural question to ask now is whether there is more to the spectrum. One way to look for additional
modules is to consider other measurable quantities in percolation. The most famous generalisation of Cardy’s
crossing probability is that which asks for the probabilitythat a random configuration of edges (withp= pc) con-
tains a connected cluster of open edges connecting all four sides of the rectangular subdomain. In [83], Watts notes
that the four-point functions that solve the second order differential equations that lead to Cardy’s formula (2.1) do
not satisfy the properties one expects for this more generalcrossing probability. However, a field of dimension 0
has, atc= 0, a singular descendant of grade 5 and the corresponding fifth order differential equation not only has a
unique solution satisfying Watts’ properties, but it also beautifully interpolates the numerical data known [73] for
this crossing probability. Watts’ proposed solution has since been rigorously proven by Dubédat [84].

Given what we have learned in Section 2.2, the natural interpretation to propose [85] is that the field appearing
in Watts’ four-point function corresponds to the highest weight state of the moduleV0/V5.11 It is rather interesting
to note that this quotient module does not have the formQr,s for any positive integersr ands. Instead, one may
identify it usingfractional Kac labels:V0/V5 = Q2,5/2 = Q5/3,3. Perhaps surprisingly, denoting this module by
Q2,5/2 is convenient for discussing the modules one subsequently generates by fusing withQ1,2. For example, one
finds [85] that

Q1,2×Q2,5/2 = Q2,3/2⊕Q2,7/2; Q2,3/2 = V1/3/V10/3 = L1/3, Q2,7/2 = V0/V7. (2.33)

Unfortunately, fusingQ2,5/2 with itself leads to indecomposable modules which have significantly more compli-
cated structures and are rather poorly characterised (see [85] for further details). We remark that more general
percolation crossing probabilities are considered in [86]from a different perspective.

From a more abstract point of view, we have seen that Cardy’s crossing probability leads to indecomposable
modules which may be associated with the first row of the (extended) Kac table (Table 1), so one is led to ask

11The discussion makes it clear that the singular vector at grade 5 must be set to zero, but it is nota priori clear why its grade 7 partner should
not be set to zero. It is straight-forward, but tedious, to check that the seventh order differential equation that wouldresult from setting this
partner to zero does not admit Watts’ crossing formula as a solution.
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whether there is a complementary observable quantity that can be associated to the first column. In percolation,
this is not so clear. However, the statistical model known asdilute polymers(or the self-avoiding walk) also
has a continuum limit that is (believed to be) described by ac = 0 conformal field theory. An old proposal of
Gurarie and Ludwig [87] associates this latter conformal field theory with modules from the first column of the
extended Kac table.12 We will not detail this polymer theory or its observables here, instead mentioning only that
a field corresponding to the moduleQ2,1 = L5/8 is relevant and that fusing this module with itself leads to an
indecomposable module which we denote byS3,1:

L5/8×L5/8 = S3,1, 0−→ Q1,1 −→ S3,1 −→ Q3,1 −→ 0. (2.34)

The Loewy diagram ofS3,1 is identical to that ofS1,5 (illustrated in Figure 2) except that the composition factor
L5 is replaced byL7. If we regard the submoduleQ1,1 as being generated by the vacuum, then

∣∣T
〉

has a Jordan
partner

∣∣t ′
〉
∈ S3,1 which can be distinguished from

∣∣t
〉
∈ S1,5 by

L2
∣∣t
〉
=− 5

8

∣∣0
〉
, L2

∣∣t ′
〉
= 5

6

∣∣0
〉
. (2.35)

We remark that these coefficientsb1,5 = − 5
8 andb3,1 =

5
6, calledanomaly numbersin [89], have recently been

measured directly in the respective lattice theories (through numerical simulation) [90]. This confirms experimen-
tally that percolation corresponds to first row modules and dilute polymers to first column modules, at least in their
formulation as boundary conformal field theories.

One thing worth mentioning here is the observation (see [88,App. A]) that the otherwise reasonable-looking
two-point function

〈
t(z)t ′(w)

〉
is inconsistent with conformal invariance. More precisely, the three inhomogeneous

partial differential equations for this correlator that are derived from the global conformal invariance of the vacuum
admit no simultaneous solution. This appears [26,88] to rule out the possibility that bothS1,5 andS3,1 can belong
to the spectrum. However, a more careful conclusion [85] is that the presence of one of these indecomposables in
a boundary sector labelled by boundary conditionsB1 andB2 precludes the presence of the other in any boundary
sector with labelB1 or B2. This does not prove thatS1,5 andS3,1 can coexist in a boundary conformal field theory,
but it does provide a loophole whereby inconsistent two-point functions may be avoided. Such a loophole appears
to be at work in the results of [81] in which boundary conditions corresponding to all the extended Kac labels(r,s)
are constructed for a loop model variant of critical percolation.13 An extremely important open problem, in our
opinion, is to determine if the conformal invariance of the vacuum leads to further, more stringent, constraints on
the boundary (and bulk) spectra of logarithmic conformal field theories.

3. SYMPLECTIC FERMIONS AND THE TRIPLET MODEL

The triplet theoriesW
(
q, p

)
, with p,q∈ Z+, p> q and gcd{p,q}= 1, form a family of logarithmic extensions

of the minimal Virasoro models. Whenq= 1, the minimal model is empty, but the logarithmic theory is non-trivial
(these are the original triplet models of [30]). We will concentrate on the simplest of these models, that with
q= 1 andp= 2,14 which has a free field realisation known as symplectic fermions. We start with this free theory
before turning to the triplet algebraW

(
1,2

)
and then to its subalgebra, the singlet algebraM

(
1,2

)
. The theories

associated to these algebras are extremely closely relatedas we illustrate in Figure 3. We also note thatM
(
1,2

)

is, in fact, a special case of Zamolodchikov’s original higher-spin algebraW(2,3) [33]. We then detail the modular
transformations of the singlet characters and compute Grothendieck fusion rules forM

(
1,2

)
using a continuum

Verlinde formula (see Section 1.2). This is then lifted to the triplet model and symplectic fermions and compared
with their known fusion rules [32].

3.1. Symplectic Fermions. Symplectic fermions were first introduced by Kausch [29] in order to study the
fermionic ξ η ghost system of central chargec = −2. They also describe the Wess-Zumino-Witten model on
the abelian supergroupPSL(1|1) and should be regarded as the simplest fermionic analogue ofthe free boson. The
action involves two non-chiral fermionic fieldsθ±(z,z

)
:

S
[
θ±(z,z)

]
=

1
4π

∫ [
∂θ+(z,z)∂ θ−(z,z)− ∂θ−(z,z)∂ θ+(z,z)

]
dzdz. (3.1)

12Actually, the proposal of [87] was that percolation should be associated to the first column and dilute polymers to the first row, though this
statement is not repeated in the sequel [88]. This was corrected in [26] for the boundary theory relevant here.
13Interestingly, the so-calledKac modulesKr,s which appear here generalise theQr,1 andQ1,s as quotients of Feigin-Fuchs modules, rather
than quotients of Verma modules, see [91, 92].
14The model withp= q= 1 is justŝl(2) at level 1.
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FIGURE 3. The symplectic fermion algebra, the triplet algebraW
(
1,2

)
and the singlet algebraM

(
1,2

)
are

all related by simple current extensions and orbifolds.

This action is invariant under shifts by holomorphic and anti-holomorphic fields, and this implies, as with the free
boson, the operator product expansion

θ+(z,z)θ−(w,w) = A+ log|z−w|2+ · · · , (3.2)

whereA is a constant of integration.
The equations of motion state thatJ±

(
z
)
= ∂θ±(z,z

)
andJ

±(
z
)
= ∂ θ±(z,z

)
are holomorphic and antiholo-

morphic, respectively, and we will take the former to generate the chiral algebra. These are the symplectic fermion
currents and their operator product expansions are

J+(z)J−(w)∼ 1
(z−w)2 , J±(z)J±(w)∼ 0. (3.3)

Their modes then satisfy the anticommutation relations of the affine Lie superalgebrâpsl(1|1) at levelk= 1 (as in
the case of the free boson, any non-zero level may be rescaledto 1):

{
J+m,J−n

}
= mδm+n=0,

{
J±m,J±n

}
= 0. (3.4)

The Virasoro field isT
(
z
)
= : J−

(
z
)
J+

(
z
)

: and its central charge isc=−2.
Let us turn to representations. As usual, we start with highest weight modules and these can be quickly analysed

by expanding the double integral
∮

0

∮

w
J+(z)J−(w)zm+1wn(z−w)−1 dz

2π i
dw
2π i

in the usual fashion, so as to obtain the generalised commutation relation
∞

∑
j=0

[
J+m− jJ

−
n+ j − J−n−1− jJ

+
m+1+ j

]
=

1
2

m(m+1)δm+n=0−Lm+n. (3.5)

From this, we see that the mode indicesmandn must satisfym+n∈ Z so that the Virasoro algebra will be integer-
moded. For now, we will assume that the moding forJ+ is the same as that ofJ−. Then,m andn must be either
both integers or both half-integers.

We apply (3.5), withm= n= 0, to a state
∣∣φ
〉

which is annihilated by positive modes, obtaining

L0
∣∣φ
〉
=−J+0 J−0

∣∣φ
〉

⇒ L2
0

∣∣φ
〉
= 0. (3.6)

It follows that
∣∣φ
〉

belongs to a Jordan block forL0 with eigenvalue 0 and rank at most 2. Repeating this, with
m= − 1

2 andn= 1
2, givesL0

∣∣φ
〉
=− 1

8

∣∣φ
〉
, hence the only half-integer moded highest weight state hasconformal

dimension− 1
8. It follows that we have only one module15 in the half-integer moded sector, necessarily irreducible,

that we shall denote byL1/2, the label corresponding to the moding. In the integer-moded sector, we have an
irreducibleL0 (the vacuum module) as well as an indecomposableS0 generated by a dimension 0 generalised

15Technically, there are two (graded) modules according as tothe parity of its generating state. We shall usually ignore this distinction.
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L0

L0 L0

L0

S0

W0

W1 W1

W0

W1

W0 W0

W1

S0 S1

FIGURE 4. The Loewy diagrams for the socle series of the indecomposable symplectic fermion module
S0 (left) and the indecomposableW

(
1,2

)
-modulesS0 andS1 (right). In each case, the non-diagonalisable

action ofL0 maps the top factor (the head) onto the bottom factor (the socle).

eigenvector
∣∣Ω

〉
of L0.16 Its Loewy diagram is given in Figure 4, where we remark that the four composition factors

may be associated to the states
∣∣Ω

〉
, J+0

∣∣Ω
〉
, J−0

∣∣Ω
〉

andJ−0 J+0
∣∣Ω

〉
=

∣∣0
〉
. Finally, we note that ifJ−0 is regarded

as a creation operator andJ+0 as an annihilation operator, thenJ+0
∣∣Ω

〉
generates the vacuum Verma moduleV0

(the Verma module for half-integer moding is already irreducible: V1/2 = L1/2) and the indecomposableS0 is
characterised by the exact sequence

0−→ V0 −→ S0 −→ V0 −→ 0. (3.7)

The fusion ring generated by the irreducibles is particularly easy to work out using (a variant [94] of) the
Nahm-Gaberdiel-Kausch algorithm. The vacuum moduleL0 is the fusion identity and one finds that

L1/2×L1/2 = S0, L1/2×S0 = 4L1/2, S0×S0 = 4S0. (3.8)

The characters ch
[
Lλ

](
q
)
= tr

Lλ
qL0−c/24 of the irreducibles are likewise easily obtained:

ch
[
L0

]
= q1/12

∞

∏
n=1

(1+qn)2 =
ϑ2

(
1;q

)

2η(q)
, ch

[
L1/2

]
= q−1/24

∞

∏
n=1

(
1+qn−1/2

)2
=

ϑ3
(
1;q

)

η(q)
. (3.9a)

Note that the factor of 2 forL0 would disappear if we instead considered its Verma coverV0. As symplectic
fermions are described by an affine Lie superalgebra, it is natural to also consider the supercharacters in which
fermionic states are counted with negative multiplicity (we assume a bosonic ground state):

sch
[
L0

]
= q1/12

∞

∏
n=1

(1−qn)2 = η(q)2, sch
[
L1/2

]
= q−1/24

∞

∏
n=1

(
1−qn−1/2

)2
=

ϑ4
(
1;q

)

η(q)
. (3.9b)

Excluding sch
[
L0

]
, whose S-transformation involves factors ofτ (we writeq= e2πiτ as usual), these characters

and supercharacters have good modular properties. However, the S-matrix one obtains has no strictly positive row
or column, hence the Verlinde formula is inapplicable.

Finally, we consider general modings for the currentsJ+ andJ−. Representations on which the algebra acts
with modings different to that of the vacuum module, for exampleL1/2, are said to betwisted.17 For symplectic
fermions, the general twisted moduleVλ = Lλ is the irreducible generated by a highest weight state

∣∣µλ
〉

upon
which the symplectic fermion currents act with mode decomposition

J±(z) = ∑
n∈Z∓λ

J±n z−n−1. (3.10)

Taking 0< λ < 1 and applying (3.5), the conformal dimension of
∣∣µλ

〉
is found to be∆λ = − 1

2λ (1−λ ). The
corresponding primary fieldµλ (z) is called atwist field[95]. The character ofLλ is given by

ch
[
Lλ

]
= q−λ (1−λ )/2+1/12

∞

∏
n=0

(
1+qn−λ

)(
1+qn−1+λ

)
=

1
η(q) ∑

m∈Z
q(m+λ−1/2)2/2 (3.11)

and the supercharacter is obtained by inserting a factor of(−1)m into the sum. We will return to twisted modules
when we consider the singlet algebraM

(
1,2

)
in Section 3.3.

16The existence of this indecomposable module follows upon realising that it may be obtained from the universal enveloping algebra of
psl(1|1), considered as a four-dimensionalpsl(1|1)-module, through the induced module construction. Other indecomposables with integer
moding may similarly be constructed [93].
17Strictly speaking, these are only modules for an orbifold ofthe chiral algebra by some cyclic group, but there is usuallylittle harm in
neglecting this.
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3.2. The Triplet Algebra W
(
1,2

)
. The triplet algebra is defined to be the bosonic subalgebra ofthe symplectic

fermion algebra. It is generated by the three fields

W±(z) = : J±(z)∂J±(z) : , W0(z) = : J+(z)∂J−(z) : − : ∂J+(z)J−(z) : (3.12)

and the energy-momentum tensorT(z). The triplet fieldsW±(z) andW0(z) are Virasoro primaries (with respect to
T
(
z
)
) and the conformal dimension of each is 3. Their operator product expansions are rather unpleasant and may

be found, for example, in [29]. A complete set of (untwisted)irreducibleW
(
1,2

)
-modules [96] may be obtained

by decomposing the symplectic fermion irreduciblesL0 andL1/2 into their bosonic and fermionic subspaces:

L0 =W0⊕W1, L1/2 =W−1/8⊕W3/8. (3.13)

Here, we have labelled the triplet modules by the conformal dimension of their ground states. The space of ground
states is one-dimensional forW0 andW−1/8, but two-dimensional forW1 andW3/8. The indecomposableS0 also
becomes a direct sum of two indecomposables when viewed as aW

(
1,2

)
-module:

S0 = S0⊕S1. (3.14)

The Loewy diagrams ofS0 andS1 are given in Figure 4.
The fusion ring generated by the irreducibles was first determined in [32]. The vacuum moduleW0 is again the

fusion identity and the other rules are

W1×W1 =W0,

W−1/8×W−1/8 = S0,

W1×W−1/8 =W3/8,

W−1/8×W3/8 = S1,

W1×W3/8 =W−1/8,

W3/8×W3/8 = S0,

W1×S0 = S1, W1×S1 = S0,

W−1/8×S0 =W3/8×S0 =W−1/8×S1 =W3/8×S1 = 2W−1/8⊕2W3/8,

S0×S0 = S0×S1 = S1×S1 = 2S0⊕2S1.

(3.15)

We note thatW1 is a simple current of order 2. The corresponding extended algebra is, of course, the symplectic
fermion algebra (the ground states ofW1 correspond to the currentsJ±(z)). It is easy to check that the symplectic
fermion fusion rules (3.8) are consistent with (3.15) and this observation. The irreducible triplet characters were
first obtained in [29, 31], but follow easily from averaging the characters and supercharacters of the symplectic
fermions irreducibles, given in (3.9):

ch
[
W0

]
=

1
2

(
ch
[
L0

]
+ sch

[
L0

])
=

ϑ2
(
1;q

)

4η(q)
+

η(q)2

2
,

ch
[
W1

]
=

1
2

(
ch
[
L0

]
− sch

[
L0

])
=

ϑ2
(
1;q

)

4η(q)
− η(q)2

2
,

ch
[
W−1/8

]
=

1
2

(
ch
[
L1/2

]
+ sch

[
L1/2

])
=

ϑ3
(
1;q

)
+ϑ4

(
1;q

)

2η(q)
,

ch
[
W3/8

]
=

1
2

(
ch
[
L1/2

]
− sch

[
L1/2

])
=

ϑ3
(
1;q

)
−ϑ4

(
1;q

)

2η(q)
.

(3.16)

The modular properties ofW−1/8 andW3/8 are seen to be good, but those ofW0 andW1 are not as satisfactory

because theη(q)2 gives rise to coefficients involving logq= 2π iτ. For example,

ch
[
W0

]∣∣∣
S
=

ϑ4
(
1;q

)

4η(q)
− iτη(q)2

2
=

1
4

(
ch
[
W−1/8

]
− ch

[
W3/8

])
− iτ

2

(
ch
[
W0

]
− ch

[
W1

])
. (3.17)

Attempts have been made to interpret this, see [31,97] for example.

3.3. The Singlet Algebra M
(
1,2

)
. To define the singlet algebra atc = −2, it is convenient to extend theZ2-

grading of the symplectic fermion algebra, given by parity,to aZ-grading. This may be regarded as the ghost
number in theξ η ghost system realisation or as the eigenvalue of a derivation N extendingp̂sl(1|1). In any case,
acting with J±n increases this grade by±1. We can now define the singlet algebraM

(
1,2

)
as the subalgebra

of symplectic fermions whoseZ-grade matches that of the vacuum. This is therefore a subalgebra of the triplet
algebra and it is generated byT

(
z
)

andW0
(
z
)
. In contrast to the symplectic fermion currentsJ±(z) and the

triplet fieldsW±(z), the singlet generators act with integer moding on every twisted symplectic fermion module.
Decomposing the symplectic fermion’s twisted Verma modulesVλ , which coincide with the irreduciblesLλ when
λ 6= 0, intoZ-graded subspaces shows that the singlet algebra possessesan uncountable set of non-isomorphic
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(untwisted) modulesFµ , µ ∈ R:
Vλ =

⊕

m∈Z
Fλ+m (06 λ < 1). (3.18)

The minimal conformal dimension for states ofFµ is ∆µ = 1
2µ(µ −1).

Forλ 6= 0, it turns out that theFλ+m so obtained are irreducible. By analogy with the case of superalgebras [98],
theFµ with µ /∈ Z will therefore be referred to astypical. Whenλ = 0, irreducibleM

(
1,2

)
-modules are obtained

by decomposing the irreducible vacuum moduleL0 6= V0 instead:

L0 =
⊕

r∈Z
Mr . (3.19)

These irreducibles will be referred to asatypical. Note that the singlet vacuum module isM0 and that the minimal
conformal dimension for states ofMr is 1

2|r|(|r|+1). We also remark that theFµ with µ /∈ Z and theMr with
r ∈ Z exhaust the irreducibleM

(
1,2

)
-modules [96,99].

The characters of the typical irreduciblesFµ , µ /∈ Z, are easily extracted from the twisted symplectic fermion
characters (3.11) once theZ-charge is taken into account:

ch
[
Fµ

]
=

q(µ−1/2)2/2

η(q)
. (3.20)

This formula also applies to the indecomposablesFr , r ∈ Z. Note that up to shiftingµ by − 1
2, these characters

coincide with the free boson characters (1.13) discussed inSection 1.2. It is also straight-forward to obtain the
characters of the atypical irreduciblesMr , r ∈ Z. However, we will not need their explicit form in what follows
and we only mention that these forms involve an interesting number theoretical object called a false theta function.

Instead, we study the structure of the indecomposable modulesFr , for r ∈Z. These are defined as the subspaces
of V0 of constantZ-grade. It follows from (3.7) thatFr is an indecomposable sum of two atypicals and a little
thought leads us to the (non-split) exact sequence

0−→Mr+1 −→ Fr+1 −→Mr −→ 0. (3.21)

Splicing the short exact sequence forMr with that forMr+1 and iterating (see Appendix A.2), we arrive at resolu-
tions of the atypical irreducible modules:

· · · −→ Fr+5 −→ Fr+4 −→ Fr+3 −→ Fr+2 −→ Fr+1 −→Mr −→ 0. (3.22)

These imply that the characters of the irreducible atypicalmodules may be expressed as infinite alternating sums
over the typical characters:

ch
[
Mr

]
=

∞

∑
j=0

(
ch
[
Fr+2 j+1

]
− ch

[
Fr+2 j+2

])
=

∞

∑
j=0

(−1) jch
[
Fr+ j+1

]
. (3.23)

In particular, we conclude that the characters of theFµ — the irreducible typicals as well as the indecomposable
atypicals — form a (topological) basis for the vector space spanned by the characters. We will use this to apply
the Verlinde formula to irreducibleM

(
1,2

)
-modules and thereby deduce the (unknown) fusion rules of the singlet

theory.

3.4. Modular Transformations and the Verlinde Formula. Before deriving the modular transformations, we
remark that the typical singlet characters (3.20) suffer from the same deficiency as the standard free boson charac-
ters (1.13) in that they do not completely distinguish the representations: ch

[
Fµ

]
= ch

[
F1−µ

]
. As in Section 1.2,

the fix is to include theZ-grading and thêpsl(1|1) levelk:

ch
[
Fµ

]
= tr

Fµ
ykzµ−1/2qL0−c/24 =

ykzµ−1/2q(µ−1/2)2/2k

η(q)
. (3.24)

Here, we have finally fixed our choice for theZ-grading used to define singlet modules:Fµ is assigned the grade
µ − 1

2 in Vµ ′ (whereµ ′ = µ mod 1). We do this because the typical singlet character (3.24) then takes the same
form as the free boson character (1.14), up to the shifts by− 1

2.
Writing y= e2πit , z= e2πiu andq= e2πiτ , as in Section 1.2, the modular S-transformation for the typical (and

indecomposable atypical) characters is then immediate from (1.15):

ch
[
Fλ

]∣∣∣
S
=

∫ ∞

−∞
Sλ µch

[
Fµ

]
dµ , Sλ µ = e

−2πi(λ−1/2)(µ−1/2) (3.25)
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(we have setk back to 1 for convenience here). This S-matrix is again symmetric and unitary. Moreover, with
the T-matrixTλ µ = eiπ(λ (λ−1)+1/6)δ (λ = µ), it defines a representation ofSL

(
2;Z

)
in which the conjugation

permutation isλ → 1−λ .
By analogy with Section 1.2, we expect that a continuum version of the Verlinde formula will be valid. However,

we must now take into account the fact that the vacuumM
(
1,2

)
-module is theatypical irreducibleM0. As there

is no “atypicality” with the free boson’s representations,our story now deviates from that of Section 1.2. Using
the character formula (3.23) for atypical irreducibles, weeasily obtain their S-transformations expressed in terms
of the topological basis

{
ch
[
Fµ

]
: µ ∈ R

}
:

ch
[
Mr

]∣∣∣
S
=

∞

∑
j=0

(−1) jch
[
Fr+ j+1

]∣∣∣
S
=

∞

∑
j=0

(−1) j
∫ ∞

−∞
e
−2πi(r+ j+1/2)(µ−1/2)ch

[
Fµ

]
dµ

=

∫ ∞

−∞

e
−2πi(r+1/2)(µ−1/2)

1+e−2πi(µ−1/2)
ch
[
Fµ

]
dµ =

∫ ∞

−∞

e
−2πir(µ−1/2)

2cos[π(µ −1/2)]
ch
[
Fµ

]
dµ . (3.26)

The corresponding S-matrix entry is therefore

Srµ =
e−2πir(µ−1/2)

2cos[π(µ −1/2)]
, (3.27)

where we have indicated when a label corresponds to an atypical irreducible by underlining it.
We can now apply the continuum Verlinde formula to compute fusion coefficients. Actually, because characters

cannot distinguish an indecomposable from the direct sum ofits composition factors, what the Verlinde formula
gives is the structure constants of theGrothendieckfusion ring (Appendix A.3). The easiest computation is that
for the fusion of an atypical and a typical:

N
ν

rµ =

∫ ∞

−∞

SrρSµρS
∗
νρ

S0ρ
dρ =

∫ ∞

−∞
e
−2πi(r+µ−ν)(ρ−1/2) dρ = δ (ν = µ + r). (3.28)

Fusing two typicals is only slightly more involved because the denominator ofS0ρ no longer cancels:

N
ν

λ µ =

∫ ∞

−∞
e
−2πi(λ+µ−ν−1/2)(ρ−1/2)

(
e
iπ(ρ−1/2)+ e

−iπ(ρ−1/2)
)

dρ

= δ (ν = λ + µ)+ δ (ν = λ + µ −1). (3.29)

Fusing two atypicals is a little more subtle however. Computing naı̈vely, one quickly arrives at a divergent integral.
The problem here may be traced back to the derivation of (3.27) in which we summed a geometric series at its
radius of convergence. The fix is obvious: Expand the geometric series once again (in the right region) as continue
to integrate. From this perspective, the dubious summationmay be simply regarded as a placeholder that simplifies
some computations. With this proviso, we quickly obtain

N
ν

rs =
∫ ∞

−∞

e−2πi(r+s−ν+1/2)(ρ−1/2)

2cos[π(ρ −1/2)]
dρ =

∞

∑
j=0

∫ ∞

−∞
(−1) j

e
−2πi(r+s+ j+1−ν)σ dσ

=
∞

∑
j=0

(−1) jδ (ν = r + s+ j +1). (3.30)

This seems to say that the fusion of two atypicals leads to negative multiplicities (for j odd), but in fact, this infinite
alternating sum corresponds to an atypical with positive multiplicity.

The Grothendieck ring of characters is now obtained by integrating these coefficients as in (1.20):

ch
[
Mr

]
×̇ch

[
Fµ

]
= ch

[
Fµ+r

]
, ch

[
Fλ

]
×̇ch

[
Fµ

]
= ch

[
Fλ+µ

]
+ ch

[
Fλ+µ−1

]
,

ch
[
Mr

]
×̇ch

[
Ms

]
=

∞

∑
j=0

(−1) jch
[
Fr+s+ j+1

]
= ch

[
Mr+s

]
.

(3.31)

When one is sure that the characters cannot describe indecomposable modules, these Grothendieck fusion rules
may be lifted to genuine fusion rules. In particular, we deduce that

Mr ×Ms =Mr+s, Mr ×Fµ = Fµ+r , Fλ ×Fµ = Fλ+µ ⊕Fλ+µ−1 (λ ,µ ,λ + µ /∈ Z), (3.32)

the last constraint arising because the conformal dimensions of the states ofFλ andFλ−1 differ by λ mod 1. This
means that the fusion of two irreducibles is known in every case exceptFλ ×Fµ whenλ + µ ∈ Z.
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Mr

Mr+1 Mr−1

Mr

Pr

FIGURE 5. Conjectured Loewy diagram for the proposed indecomposableM
(
1,2

)
-modulePr .

Observe now that (3.32) identifies theMr as simple currents of infinite order (with no fixed points). Itis easy to
show that the maximal simple current extension, meaning thealgebra generated byM1 andM−1, is precisely the
symplectic fermion algebrâpsl(1|1) (indeed, the generators ofM1 andM−1 have conformal dimension 1). From
this, we may conclude that the extension byM3 andM−3 is the triplet algebraW

(
1,2

)
. It is therefore the maximal

bosonicsimple current extension.
Let us now perform a consistency check on the continuum Verlinde formula by deriving (some of) theW

(
1,2

)

fusion rules from (3.32). Our identification of the triplet algebra as a simple current extension of the singlet algebra
leads to the restriction rules

W0 =
⊕

m∈Z
M2m, W1 =

⊕

m∈Z
M2m+1, W−1/8 =

⊕

m∈Z
F2m+1/2, W3/8 =

⊕

m∈Z
F2m−1/2. (3.33)

As in Section 1.2, we can use these rules to compute fusion, remembering to take a singleM
(
1,2

)
-representative

for one of theW
(
1,2

)
-modules being fused. To illustrate:

W0×W0 =M0×
(⊕

m∈Z
M2m

)
=

⊕

m∈Z
(M0×M2m) =

⊕

m∈Z
M2m =W0. (3.34)

This procedure therefore correctly normalises the extended algebra fusion. Applying this, we can reproduce all the
triplet fusion rules (3.15) except for those ofW−1/8 andW3/8 with one another. For these latter rules, we can only
compute the Grothendieck fusion, for example

ch
[
W−1/8

]
×̇ch

[
W3/8

]
= ch

[
F2ℓ+1/2

]
×̇
(

∑
m∈Z

ch
[
F2m−1/2

])
= ∑

m∈Z

(
ch
[
F2(ℓ+m)

]
+ ch

[
F2(ℓ+m)−1

])

= ∑
m∈Z

(
ch
[
M2(ℓ+m)

]
+2 ch

[
M2(ℓ+m)−1

]
+ ch

[
M2(ℓ+m)−2

])

= 2 ch
[
W0

]
+2 ch

[
W1

]
, (3.35)

where we have used (3.21). We note that this is consistent with W−1/8×W3/8 = S1 because (see Figure 4)

ch
[
S0
]
= ch

[
S1
]
= 2 ch

[
W0

]
+2 ch

[
W1

]
. (3.36)

Of course, the Grothendieck fusion of theM
(
1,2

)
-typicalsFλ andFµ , λ + µ ∈ Z, gives us the composition

factors of the fusion product:

ch
[
Fλ ×Fµ

]
= ch

[
Fλ

]
×̇ch

[
Fµ

]
= ch

[
Mλ+µ

]
+2 ch

[
Mλ+µ−1

]
+ ch

[
Mλ+µ−2

]
. (3.37)

Because the corresponding fusion products for the triplet and symplectic fermion algebras are indecomposable, we
propose that this is true for the singlet algebra as well. We therefore conjecture that

Fλ ×Fr+1−λ = Pr (r ∈ Z), (3.38)

wherePr is an indecomposableM
(
1,2

)
-module whose Loewy diagram is given in Figure 5. To prove this, one

would have to either construct the fusion product explicitly (which seems very demanding), or deduce the existence
of such indecomposables abstractly and show that they describe the restriction of theW

(
1,2

)
-indecomposables

S0 andS1 to M
(
1,2

)
. Either approach is beyond the scope of this review.

3.5. Bulk Modular Invariants. Because of the symmetries of the S-matrix, the singlet theory has two obvious
bulk modular invariants, corresponding to the diagonal andcharge-conjugate partition functions:

Zdiag.(q,q) =
∫ ∞

−∞
ch
[
Fλ

]
ch
[
Fλ

]
dλ , Zc.c.(q,q) =

∫ ∞

−∞
ch
[
F1−λ

]
ch
[
Fλ

]
dλ . (3.39)
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As usual, simple current extensions allow one to construct more. Specifically, we have seen that each atypical
M

(
1,2

)
-moduleMn is a simple current, so an extended algebraW(n) may be constructed by promoting all the

fields in the fusion orbit of the vacuum module to symmetry generators:

W
(n) =

⊕

m∈Z
Mmn. (3.40)

We have already remarked thatW(1) is the symplectic fermion algebra andW(2) is the triplet algebra. The other
extended algebras likewise give rise to rational logarithmic conformal field theories and may be described as
orbifolds of the symplectic fermion theory [29]. The fusionorbits through otherM

(
1,2

)
-modules likewise give

rise to (twisted)W(n)-modules, for example

M
(n)
r =

⊕

m∈Z
Mr+mn, F

(n)
λ =

⊕

m∈Z
Fλ+mn. (3.41)

The untwisted extended algebra modules are precisely theM
(n)
r and theF(n)

λ with λ ∈ 1
nZ. By restricting to these,

we arrive at new modular invariants.
The modular S-transformation of an untwisted typical extended algebra module is easy to calculate:

ch
[
F
(n)
j/n

]∣∣∣
S
= ∑

m∈Z
ch
[
F j/n+mn

]∣∣∣
S
= ∑

m∈Z

∫ ∞

−∞
e
−2πi( j/n+mn−1/2)(µ−1/2)ch

[
Fµ

]
dµ

=
∫ ∞

−∞
∑

m∈Z
e
−2πimn(µ−1/2)

e
−2πi( j/n−1/2)(µ−1/2)ch

[
Fµ

]
dµ

=
1
n

∫ ∞

−∞
∑
ℓ∈Z

δ (µ −1/2= ℓ/n)e−2πi( j/n−1/2)(µ−1/2)ch
[
Fµ

]
dµ

=
1
n ∑
ℓ∈Z

e
−2πi( j/n−1/2)ℓ/nch

[
Fℓ/n+1/2

]

=
1
n ∑

m∈Z

n2−1

∑
k=0

e
−2πi( j/n−1/2)(k/n+mn)ch

[
Fk/n+mn+1/2

]
. (3.42)

Here, we pause to note that ifn is even, then the exponential factor in the above sum is independent ofm. We may
therefore perform them-summation and then shiftk to k− 1

2n, obtaining

ch
[
F
(n)
j/n

]∣∣∣
S
=

n2−1

∑
k=0

S
(n)
jk ch

[
F
(n)
k/n

]
, S

(n)
jk =

1
n
e
−2πi( j/n−1/2)(k/n−1/2) (n even). (3.43)

The typical extended characters, forn even, therefore carry a finite-dimensional representationof the modular
group. Ifn is odd however, then the exponential factor includes a factor (−1)m and theFλ do not combine to give
an untwisted extended algebra module. One is instead forcedto consider supercharacters and twisted modules, the
final result being that the modular invariant one constructsfromW(n), with n odd, is equivalent to that constructed
from W(2n). This is consistent with the observation that the extended algebra generators are fermionic forn odd
and bosonic forn even.

As the (n even) S-matrix of (3.43) is unitary, the diagonal and charge-conjugate partition functions are modular
invariants:

Z(n)
diag.=

n2−1

∑
j=0

ch
[
F
(n)
j/n

]
ch
[
F
(n)
j/n

]
, Z(n)

c.c.=
n2−1

∑
j=0

ch
[
F
(n)
j/n

]
ch
[
F
(n)
1− j/n

]
. (3.44)

Expressing these in terms of singlet characters finally gives new modular invariants forM
(
1,2

)
. We will not write

them out in generality, noting only that for the triplet algebraW
(
1,2

)
=W(2), the diagonal and charge conjugate

modular invariant coincide. Since ch
[
F
(2)
0

]
= ch

[
F
(2)
1

]
= ch

[
W0

]
+ ch

[
W1

]
, they are

Z(2)
diag.=

∣∣ch
[
W−1/8

]∣∣2+
∣∣ch

[
W3/8

]∣∣2+2
∣∣ch

[
W0

]
+ ch

[
W1

]∣∣2. (3.45)

Note that the obvious candidate for the non-chiral vacuum moduleW0⊗W0 contributes with multiplicity 2. We
will see that this is explained by the bulk vacuum

∣∣0
〉
⊗
∣∣0
〉

having a non-chiral logarithmic partner
∣∣Ω

〉
.

Finally, we remark that the modular transformations of the atypical extended characters are problematic. Re-
peating the calculation that led to the typical extended S-matrix (3.43), assuming again thatn is even, leads to the
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L0⊗L0

L0⊗L0 L0⊗L0

L0⊗L0

B

Ω(z, z̄)

θ+(z, z̄) θ−(z, z̄)

1

B

FIGURE 6. On the left, the Loewy diagram of the bulk indecomposable moduleB (over the direct sum of
two copies of the symplectic fermion algebra). On the right,the same diagram but with the bulk composition
factors replaced by the fields naturally associated to them.

sum

ch
[
M

(n)
r

]∣∣∣
S
=

1
n

n2−1

∑
k=0

e−2πirk/n

2cos[πk/n]
ch
[
F
(n)
k/n+1/2

]
. (3.46)

The pole atk = 1
2n cannot be swept aside in this summation as it was when we were integrating. Of course, we

know for the casen = 2 (W
(
1,2

)
) that the S-transformation of the atypical characters involves factors of logq,

so we should not expect that the above approach will work. This can be traced back to the fact that the atypical
extended characters can, unlike their singlet counterparts, no longer be written as an (infinite) linear combination
of the typical extended characters. The extended version ofthe resolution (3.22) is periodic in the typical labels
and, consequently, the character formula (3.23) is divergent.

3.6. Bulk State Spaces. Let us consider the symplectic fermions once again. Recall that the action (3.1) is defined
in terms of (non-chiral) fermionsθ±(z,z). From these, we can construct the following field:

Ω(z,z) = : θ+(z,z)θ−(z,z) : . (3.47)

The symplectic fermion currents, both holomorphic and antiholomorphic, act onΩ as follows:

J±(z)Ω(w,w)∼∓θ±(w,w)
z−w

,

J
±
(z)Ω(w,w)∼∓θ±(w,w)

z−w
,

J±(z)θ∓(w,w)∼ 1
z−w

,

J
±
(z)θ∓(w,w)∼ 1

z−w
.

(3.48)

From this, we deduce the structure of the bulk indecomposable symplectic fermion moduleB, see Figure 6. We
remark that its character is twice the atypical contribution to theW

(
1,2

)
modular invariant (3.45).

The symplectic fermion bulk module is graded by the (total) fermion number, hence it decomposes into the
direct sum of two bulk modules overW

(
1,2

)
(or rather over two copies of it). Only one of these modulesB

contains the triplet vacuum moduleW0 ⊗W0 as a submodule. We illustrate its structure in Figure 7. As its
character coincides with the atypical contribution to the partition function (3.45), we conclude that the bulk space
of states corresponding to this modular invariant is

Hbulk =
(
W−1/8⊗W−1/8

)
⊕
(
W3/8⊗W3/8

)
⊕B. (3.49)

This conclusion essentially defines the bulk triplet theoryas the bosonic subtheory of the bulk symplectic fermions
theory in which the only non-local fields admitted are those on which the fermions act with half-integer moding.
This confirms the triplet model as theZ2-orbifold of symplectic fermions.

It is worth thinking for a few moments how one could have arrived at the triplet model’s bulk state space
structure (3.49) if the non-chiral information concerningsymplectic fermions was not so readily available. First,
the modular invariant in (3.45) is very suggestive, especially when we may rewrite the atypical contribution, using
the character identity (3.36), as

2
∣∣ch

[
W0

]
+ ch

[
W1

]∣∣2 = ch
[
W0

]
ch
[
S0
]
+ ch

[
W1

]
ch
[
S1
]
= ch

[
S0
]
ch
[
W0

]
+ ch

[
S1
]
ch
[
W1

]
. (3.50)

This ties in nicely with the idea discussed in the introduction that natural representations often decompose in a
manner whereby each irreducible is paired with its projective cover. Indeed, it is known [100] that the irreducibles
W−1/8 andW3/8 are projective and that the projective covers of the irreduciblesW0 andW1 are S0 andS1,
respectively (in an appropriate category of vertex algebramodules).
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W1⊗W1W0⊗W0

W1⊗W1W0⊗W0

W1⊗W0W1⊗W0W0⊗W1W0⊗W1

FIGURE 7. The Loewy diagram for the indecomposable bulk moduleB of W
(
1,2

)
⊕W

(
1,2

)
. The

solid/dotted arrows indicate the action of the holomorphic/antiholomorphic triplet algebra. It is clear that
restricting to each chiral subalgebra results inB decomposing as(W0⊗S0)⊕ (W1⊗S1) and(S0⊗W0)⊕
(S1⊗W1), respectively.

A simple guess, which works in this case, is therefore to drawthe Loewy diagram of the tensor product
(W0⊗S0)⊕ (W1⊗S1). This gives a holomorphic module structure to the bulk moduleB. Then, complete the
diagram by adding (dotted) arrows representing the antiholomorphic module structure so that they trace out the
Loewy diagram of(S0⊗W0)⊕ (S1⊗W1). One quickly finds that there is a unique way to do this. Moreover, one
can check that the resulting diagram is manifestlylocal, meaning that the corresponding bulk correlation functions
will all be single-valued. For this, we recall [35] that fieldlocality has an algebraic reformulation which requires
thatL0−L0 be diagonalisable with integer eigenvalues. The second constraint is clearly met and the first follows
from the locality of the non-diagonalisable action for symplectic fermions (see (3.5) and (3.48)):

L0
∣∣Ω

〉
= J−0 J+0

∣∣Ω
〉
=−J−0

∣∣Ω
〉
=−

∣∣0
〉
, L0

∣∣Ω
〉
= J

−
0 J

+
0

∣∣Ω
〉
=−J

−
0

∣∣Ω
〉
=−

∣∣0
〉
. (3.51)

3.7. Correlation Functions. Correlation functions and operator product expansions forsymplectic fermions, in-
cluding twist fields, were computed by Kausch [95]. The operator product expansion of the logarithmic partner
Ω
(
z,z

)
of the vacuum with itself is logarithmic,

Ω(z,z)Ω(w,w) =−
(

A+ log|z−w|2
)2

−2
(

A+ log|z−w|2
)

Ω(w,w)+ · · · , (3.52)

and the same is true for the twist fieldµ1/2
(
z,z

)
with itself:

µ1/2(z,z)µ1/2(w,w) =−|z−w|1/2
(

Ω(w,w)+ log|z−w|2+ const
)
+ · · · (3.53)

In the triplet theory, the twist field generates the bulk triplet moduleW−1/8⊗W−1/8, while the logarithmic partner
of the identity is associated to the top composition factorW0⊗W0 of the bulk staggered module. These operator
product expansions are, of course, consistent with the fusion rules and the bulk state space explained in last section.
We will now outline an efficient means of computing the correlation function that implies (3.53) (using a different
approach to Kausch).

Viewing symplectic fermions as the Wess-Zumino-Witten model of the Lie supergroupPSL(1|1), it is natural
to describe the theory by passing to a first order formulationas in, for example, [101]. For symplectic fermions,
this idea has been applied in [102]. The picture is sketched as follows:

∂θ+∂θ− 1st order−−−−→ b+∂θ++b−∂θ−+b+b−
bosonisation−−−−−−→−∂ϕ∂ ϕ + e

−ϕ + linear dilaton. (3.54)

The first order formulation, or equivalently its bosonisation, is best used to compute correlation functions pertur-
batively. The symplectic fermion fields are recovered by decomposinge±ϕ(z,z) = e±ϕL(z)e±ϕR(z) with

eϕL(z)e−ϕL(w) ∼ 1
(z−w)

(3.55)

and so on. The fieldsJ+
(
z
)
= eϕL(z) andJ−

(
z
)
= ∂e−ϕL(z) commute with the zero-mode ofe−ϕL(z) and they have

the same operator product expansion as symplectic fermions. The (holomorphic) Virasoro field is

T(z) =
1
2

: ∂ϕ(z,z)∂ϕ(z,z) : +
1
2

∂ 2ϕ(z,z). (3.56)
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The twist fieldsµλ are identified with theeλ ϕL(z) because the corresponding states have dimension−λ (1−λ )/2
and theJ± act on them with moding inZ±λ . The corresponding bulk field will be denoted byVλ

(
z,z

)
= eλ ϕ(z,z).

In this formalism, correlation functions are defined by
〈
Vα1(z1,z1) · · ·Vαn(zn,zn)

〉
=

〈
Vα1(z1,z1) · · ·Vαn(zn,zn)e

−Q〉
0, (3.57)

where

Q=

∫

C

e
−ϕ(z,z) dzdz

2π
(3.58)

and the correlators in the free theory, denoted with the subscript 0, are standard free boson correlators subject to
the charge conservation condition

〈
Vα1(z1,z1) · · ·Vαn(zn,zn)

〉
0 =−δ (α1+ · · ·+αn = 1)∏

i< j

∣∣zi − zj
∣∣2αiα j . (3.59)

In this manner, we obtain the non-zero one-point and two-point functions
〈
V1(z1,z1)

〉
=−1,

〈
Vα(z1,z1)V1−α(z2,z2)

〉
=−|z1− z2|2α(1−α). (3.60)

The logarithmic partner of the identityV0
(
z,z

)
is the fieldΩ

(
z,z

)
= V1(z,z). This can be verified by computing

three-point functions involving this field. For this, consider first a three-point function of the form

Cαβ γ(z,z) =
〈
Vα(z,z)Vβ (1,1)Vγ(0,0)

〉
, (3.61)

with α +β + γ = 2. The famous Fateev-Dotsenko integral [103] gives

Cαβ γ(z,z) =−|z|2αγ |z−1|2αβ
∫

C

|z−w|−2α |1−w|−2β |w|−2γ dzdz
2π

=−|z|2(αγ+β−1)|1− z|2(αβ+γ−1)Γ(1−α)Γ(1−β )Γ(1− γ)
Γ(α)Γ(β )Γ(γ)

. (3.62)

We see that the three-point function diverges if one or more of its fields coincide withΩ
(
z, z̄

)
and that, if this

happens, then a regularisation will be required. The correct regularisation mimics the addition of the identity to its
logarithmic partner:

Cα ,1−α ,1(z,z)reg.=− lim
ε→0

(
Cα ,1−α−ε,1+ε(z,z)−Γ(−ε)Cα ,1−α−ε,ε(z,z)

)

=− lim
ε→0

(
|z|2αε |1− z|2α(1−α−ε)

( Γ(1−α)Γ(α + ε)Γ(−ε)
Γ(α)Γ(1−α − ε)Γ(1+ ε)

|1− z|2ε

|z|2ε −Γ(−ε)
))

=− lim
ε→0

(
|1− z|2α(1−α)εΓ(−ε)

(
ψ(α)+ψ(1−α)−ψ(1)+ (α −1) log|z|2

+(1−α) log|1− z|2−α log|z|2+α log|1− z|2
))

=−|1− z|2α(1−α)
(

ψ(α)+ψ(1−α)−ψ(1)− log|z|2+ log|1− z|2
)
. (3.63)

Here,ψ(x) = Γ′(x)/Γ(x) is the logarithmic derivative ofΓ(x). Settingα to 1
2, we recover the correlator which

gives the coefficient of the identity in the operator productexpansion (3.53).

3.8. Further Developments. The singlet algebrasM
(
1, p

)
and triplet algebrasW

(
1, p

)
, with p = 2,3, . . . and

central chargec = 1−6(p−1)2/p, were first discovered by Kausch [30]. They are generated by 1and 3 fields
of dimension 2p−1, respectively (along with the energy-momentum tensor). The singlet, being a subalgebra of
the triplet, has received relatively little attention, buttheW

(
1, p

)
-models have been considered by a variety of

groups [38, 104–109]. In particular, we now have a complete picture of theW
(
1, p

)
spectrum, characters and

fusion rules [100, 110, 111]: There are two projective irreducibles as well as 2(p−1) non-projective irreducibles
whose projective covers have Loewy diagrams similar to those in Figure 4. These projective covers carry a non-
diagonalisable action ofL0, so theW

(
1, p

)
-models are logarithmic conformal field theories.

The representations of the singlet algebrasM
(
1, p

)
were considered in [112, 113]. Here, the results are a

little less comprehensive: There is a continuum of irreducibles whose characters are known, but fusion rules and
indecomposable structures do not seem to have been settled.Some modules with non-diagonalisableL0-actions
have been constructed, so theM

(
1, p

)
-models are also logarithmic. The modular properties of thesinglet models

will appear elsewhere [34].
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The (1, p) triplet algebras were generalised toW
(
q, p

)
, with p,q ∈ Z+, p > q > 2, gcd{p,q} = 1 andc =

1− 6(p−q)2/pq, in [114]. This is the central charge of the minimal modelM
(
q, p

)
andW

(
q, p

)
has, unlike

W
(
1, p

)
, a reducible but indecomposable vacuum module. Indeed, theunique irreducible quotient of the triplet

vacuum module is the minimal model vacuum module. This is appropriate for these central charges, as we have
seen in Section 2. Perhaps because of this indecomposable structure, these triplet models have been intensively
studied [39,115–121]. Again, there are two projective irreducibles, but now the (conjectured) projective covers of
the other irreducibles can have Loewy diagrams which are significantly more complicated than the diamonds we
have seen here, see [39, App. A.1] for example. One interesting feature here is that fusion rules involving certain
irreducibles, notably the irreducible quotient of the vacuum, do not behave as expected [118] (fusing with these
does not define an “exact functor”). This means that the fusion operation does not define a ring structure on the
Grothendieckgroupgenerated by the irreducible characters. Instead, it seemsthat one can quotient this group by
the ideal of minimal model irreducibles and only then imposefusion. It would be interesting to try to reconstruct
this Grothendieck ring (or group) using the continuum Verlinde approach advocated here.

4. THE FRACTIONAL LEVEL WESS-ZUMINO-WITTEN MODEL ŝl(2)−1/2

Our next example is based on an affine Kac-Moody symmetry. As is well known, affine algebras give rise to
rational conformal field theories when the levelk is a non-negative integer. To get a logarithmic theory, we turn
to non-integer levels. In particular, we consider the Kac-Moody algebrâsl(2) at fractional levelk = − 1

2. This is
one of the simplest of the admissible levels introduced by Kac and Wakimoto [44] and, like the triplet model of
Section 3, the theory may be described as a subalgebra of a ghost theory. We will start from these ghosts before
turning to the relevant representations ofŝl(2)−1/2 and their characters. Modular transformations are derived,
leading once more to Grothendieck fusion rules which are compared to the known fusion rules computed using the
Nahm-Gaberdiel-Kausch algorithm in [62].

4.1. The β γ Ghost System and its Z2-Orbifold ŝl(2)−1/2. The β γ ghost system is generated by four bosonic

fieldsβ , γ, β andγ whose action takes the form

S
[
β ,γ;β ,γ

]
= g

∫ (
β ∂γ +β∂γ

)
dzdz. (4.1)

The equations of motion requireβ andγ to be holomorphic, whileβ andγ become antiholomorphic. The usual
symmetries under shifting by (anti)holomorphic fields leadto the operator product expansions

β (z)β (w)∼ 0, β (z)γ(w)∼ 1
z−w

, γ(z)γ(w)∼ 0 (4.2)

and their antiholomorphic analogues (which we shall mostlyignore for now). The (holomorphic)energy-momentum
tensor is given by

T(z) =
1
2
[ : β (z)∂γ(z) : − : ∂β (z)γ(z) : ] (4.3)

and the central charge isc=−1.
The affine algebrâsl(2) is recovered as theZ2-orbifold of the ghost theory. We define

e(z) =
1
2

: β (z)β (z) : , h(z) =− : β (z)γ(z) : , f (z) =
1
2

: γ(z)γ(z) : (4.4)

and note that these composite fields obey the operator product expansions

e(z)e(w)∼ 0,

f (z) f (w)∼ 0,

h(z)e(w)∼ 2e(w)
z−w

,

h(z) f (w)∼ −2 f (w)
z−w

,

h(z)h(w)∼ −1

(z−w)2 ,

e(z) f (w)∼ 1/2

(z−w)2 −
h(w)
z−w

.

(4.5)

This indeed corresponds tôsl(2) at levelk = − 1
2, but with respect to a basis{e,h, f} of sl

(
2
)

which differs from
the standard basis in that

[
e, f

]
=−h andκ

(
e, f

)
=−1 (whereκ

(
·, ·
)

denotes the Killing form in the fundamental
representation).18 Whereas the standard basis defines a triangular decomposition ofsl

(
2
)

with the adjoint induced
by the real formsu

(
2
)
, this basis corresponds tosl

(
2;R

)
[60].

The automorphisms of̂sl(2) which preserve the Cartan subalgebra spanned byh0, k and the Virasoro zero-mode
L0 are generated by the conjugation automorphismw and thespectral flowautomorphismσ . The former is the

18We also note that the energy-momentum tensor (4.3) may be recovered from the standard Sugawara construction and (4.4).
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lift of the non-trivial Weyl reflection ofsl
(
2
)
, whereas the latter is a square root of the translation subgroup of the

affine Weyl group (it corresponds to translating by a dual root rather than a coroot). Both leave the levelk = − 1
2

invariant and the action on the generators ofŝl(2) is as follows:

w(en) = fn,

σ ℓ(en) = en−ℓ,

w(hn) =−hn,

σ ℓ(hn) = hn+
1
2ℓδn,0,

w( fn) = en,

σ ℓ( fn) = fn+ℓ,

w(L0) = L0,

σ ℓ(L0) = L0− 1
2ℓh0− 1

8ℓ
2 (4.6)

(σ is referred to as spectral flow because it does not preserve conformal dimensions). We remark thatσ is induced
from the spectral flow of theβ γ ghost algebra:σ2(βn) = βn−1, σ2(γn) = γn+1. The mapσ would take the ghost
algebra to a twisted sector, consistent withŝl(2)−1/2 being an orbifold.

Twisting the action of̂sl(2) on a moduleM by w or σ ℓ, we obtain new modules denoted byM⋆ andM(ℓ),
respectively. The first is precisely the module conjugate toM and we shall refer to the second as a “spectral flow”
of M. Explicitly, the twisted algebra action definingM⋆ andM(ℓ) is given by defining new statesw

(∣∣v
〉)

and

σ ℓ
(∣∣v

〉)
, for each

∣∣v
〉
∈M, and lettingŝl(2) act via

J ·w
(∣∣v

〉)
= w

(
w
−1(J)

∣∣v
〉)
, J ·σ ℓ

(∣∣v
〉)

= σ ℓ
(

σ−ℓ(J)
∣∣v
〉)

(J ∈ ŝl(2)). (4.7)

4.2. Representation Theory of ŝl(2)−1/2. The vacuum module of the theory is taken to be the irreduciblehighest

weight module of̂sl(2)−1/2 with highest weight (h0-eigenvalue) 0. The other highest weight states consistentwith

this may be found using the singular vectors of the corresponding Verma module [122]. One such isf0
∣∣0
〉

which
never constrains the spectrum. The only other singular vector which is not a descendant off0

∣∣0
〉

turns out to have
weight 4 and conformal dimension 4. It is given explicitly by

∣∣χ
〉
=

(
156e−3e−1−71e2

−2+44e−2h−1e−1−52h−2e
2
−1+16f−1e

3
−1−4h2

−1e
2
−1

)∣∣0
〉
. (4.8)

Because we insist upon the irreducibility of the vacuum module, the corresponding field and its modes must
therefore decouple from the theory (vanish identically on physical states). For the calculation to follow, it is
convenient to consider instead the descendantf 2

0

∣∣χ
〉

for which the corresponding field is

64 :ee f f : +16 :ehh f : −136 :eh∂ f : +128 :e∂h f : −12 :e∂ 2 f : −8 : hhhh:

+200 :∂eh f : −108 :∂e∂ f : +8 : ∂hhh: −38 :∂h∂h : +156 :∂ 2e f : +24 :∂ 2hh : − ∂ 3h. (4.9)

Acting with the zero-mode of this field on a highest weight state
∣∣vλ

〉
of weightλ , we arrive at a constraint on

such states to be physical:
h0(h0−1)(2h0+1)(2h0+3)

∣∣vλ
〉
= 0. (4.10)

It follows that a physical highest weight must be one ofλ = 0, 1, − 1
2 or − 3

2. As this analysis also applies to
singular vectors, one can conclude that the physical highest weight modules must also be irreducible.

The physical highest weight modules are therefore characterised by thesl
(
2
)
-module spanned by their ground

states. This ground state module has dimension 1 and 2 forλ = 0 and 1, respectively. We denote the corre-
sponding irreduciblêsl(2)−1/2-modules byL0 andL1. For λ = − 1

2 and− 3
2, the ground states span an infinite-

dimensional (irreducible) module ofsl
(
2
)
, a discrete series representation in fact, hence we will denote the

ŝl(2)−1/2-irreducibles byD−1/2;+ andD−3/2;+, with the “+” serving to indicate that the space of ground states is

generated by a highest weight state (forsl
(
2
)
). We remark that the four irreduciblesL0, L1, D−1/2;+ andD−3/2;+

exhaust theadmissiblemodules of Kac and Wakimoto [44] fork=− 1
2. The conformal dimensions of their ground

states are 0,12, − 1
8 and− 1

8, respectively.
There are several reasons to be dissatisfied with this spectrum of physical highest weight modules. The first

is that while the characters of these admissible modules have good modular properties [123], an application of
the Verlinde formula leads to negative fusion coefficients [45] (see Section 4.4). The second, which is far more
elementary, is that this spectrum is not closed under conjugation. Indeed, whileL0 andL1 are readily seen to be
self-conjugate, the application ofw to D−1/2;+ andD−3/2;+ leads to new modules:

D⋆
−1/2;+ =D1/2;−, D⋆

−3/2;+ =D3/2;−. (4.11)

These new modules are labelled with “−” symbols to indicate that their ground states span lowest weight discrete
series representations. A third reason for dissatisfaction is that, as we shall see in Section 4.3, the spectrum of
admissible highest weight modules is not closed under fusion.
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To check the physicality of the highest weight modulesD1/2;− andD3/2;−, we should let the zero-mode of the
null field (4.9) act on their ground states. In fact, we may as well analyse this constraint for a general space of
ground states, allowing the possibility of principal series sl

(
2
)
-representations as well.19 For this, we parametrise

the ground states representation byµ ∈ R and label its states byλ ∈ R. The action of the zero-modes on these
states is given by

e0
∣∣vµ

λ
〉
= 1

2(λ − µ)
∣∣vµ

λ+2

〉
,

f0
∣∣vµ

λ
〉
= 1

2(λ + µ)
∣∣vµ

λ−2

〉
,

h0
∣∣vµ

λ
〉
= λ

∣∣vµ
λ
〉
,

L0
∣∣vµ

λ
〉
= 1

6µ(µ +2)
∣∣vµ

λ
〉
.

(4.12)

We remark that ground states withλ = µ are highest weight, whereas those withλ = −µ are lowest weight. It
follows that if λ 6= ±µ mod 2, then the

∣∣vµ
λ
〉
, with µ fixed andλ fixed modulo 2, span an irreducible principal

series representation ofsl
(
2
)
. It is not hard to verify that for a givenλ 6=±µ mod 2, the parametersµ and−2−µ

define isomorphic representations. Thus, principal seriesirreducibles are distinguished by the value ofλ mod 2
and the eigenvalue ofL0 (or the quadratic Casimir).

Applying the zero-mode of the null field (4.9) to the state
∣∣vµ

λ
〉

now gives

0=
(
64f 2

0 e2
0+16f0h2

0e0−192f0h0e0+180f0e0−8h4
0−8h3

0+10h2
0+6h0

)∣∣vµ
λ
〉

= (2µ +1)(2µ +3)
(
µ(µ +2)−3λ 2)∣∣vµ

λ
〉
. (4.13)

If 3λ 2 = µ(µ +2), we note that each choice forµ yields at most two consistent possibilities forλ . The space
of ground states is therefore one-dimensional, in which case λ = 0 andµ = 0 or −2, or two-dimensional, in
which caseλ = ±1 and µ = 1 or −3. The conformal dimensions are 0 and1

2, respectively. Ifµ = − 1
2 or

− 3
2, thenλ ∈ R/2Z is unconstrained while the conformal dimension of each of the ground states is fixed to be

1
6µ(µ +2) =− 1

8.

In this way, we recover the admissiblêsl(2)−1/2-irreduciblesL0 andL1. We also deduce the physicality ofany

irreducible module whose ground states have conformal dimension− 1
8. This includes the admissiblesD−1/2;+

andD−3/2;+ as well as their conjugatesD1/2;− andD3/2;−. However, we also obtain an uncountable family
of physical relaxed highest weight modules whose ground states form a principal seriessl

(
2
)
-representation of

conformal dimension− 1
8. These modules are characterised byλ ∈ R/2Z and will be denoted byEλ . They are

irreducible whenλ 6= µ =± 1
2 mod 2, so we will refer to theEλ with this range of parametersλ as beingtypical.

The remainingEλ , along with the other physical̂sl(2)−1/2-modulesL0,L1,D−1/2;+,D−3/2;+,D1/2;− andD3/2;−,
are defined to beatypical.

Finally, we remark that the atypicalEλ (with λ = ± 1
2 mod 2) are indecomposable and their structure is not

completely fixed byλ and the conformal dimension of their ground states. This deficiency may be overcome by
affixing a label “+” or “−” to communicate whether the indecomposable has a highest orlowest weightsl

(
2
)
-

state among its ground states. In this way, we arrive at four distinct atypical indecomposables whose structures are
specified by the following exact sequences:

0−→D−1/2;+ −→ E−1/2;+ −→D−
+3/2 −→ 0, 0−→D−3/2;+ −→ E+1/2;+ −→D−

+1/2 −→ 0,

0−→D−
+1/2 −→ E+1/2;− −→D−3/2;+ −→ 0, 0−→D−

+3/2 −→ E−1/2;− −→D−1/2;+ −→ 0.
(4.14)

4.3. Spectral Flow and Fusion. At positive-integer levelk, the spectral flow automorphismσ acts on the set of
integrable modules as the involutionλ → k−λ . This is no longer true for fractional levels as we shall see.For
k=− 1

2, one can check that the atypical irreducibles are related byspectral flow as follows:

L
(1)
0 =D−1/2;+, L

(1)
1 =D−3/2;+, L

(−1)
0 =D1/2;−, L

(−1)
1 =D3/2;−. (4.15)

This is most easy checked by computing the action ofσ±1 on theextremalstates of a module, though one can also
use the character formulae discussed in Section 4.4. These are defined to be the states whose conformal dimension
is minimal among those sharing their weight. For example,ej

−1

∣∣0
〉

and f j
−1

∣∣0
〉

are the extremal states ofL0 and
(4.6) and (4.7) give

h0σ±1
(

ej
−1

∣∣0
〉)

= σ±1
((

h0∓ 1
2

)
ej
−1

∣∣0
〉)

=
(
2 j ∓ 1

2

)
σ±1

(
ej
−1

∣∣0
〉)

,

L0σ±1
(

ej
−1

∣∣0
〉)

= σ±1
((

L0± 1
2h0− 1

8

)
ej
−1

∣∣0
〉)

=
(

j ± j − 1
8

)
σ±1

(
ej
−1

∣∣0
〉)

.
(4.16)

19The correspondinĝsl(2)-modules are sometimes known asrelaxedhighest weight modules [124,125]. We will see that these relaxed modules
are essential to the consistency of the theory. For now, we only remark that relaxed modules are natural for (twisted)βγ representations because
the ghost zero-modesβ0 andγ0 are bosonic, hence do not square to 0.
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)
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8
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(2,−1)

(
λ ,− 1

8

) (
λ− 1

2 ,
λ
2− 1

4
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8

)

FIGURE 8. Depictions of the physical irreduciblêsl(2)−1/2-modules. Each labelled state declares its weight

and conformal dimension (in that order). Conformal dimensions increase from top to bottom andsl
(
2
)
-

weights increase from right to left.

Thus,σ±1 shifts the weight uniformly by∓ 1
2, whereasσ increases the conformal dimension ofej

−1

∣∣0
〉

by 2j − 1
8

andσ−1 increases it by− 1
8. A similar calculation describes the spectral flow of the states f j

−1

∣∣0
〉
.

More interesting is the question of what happens if we iterate the spectral flow. For example,

L0σ2
(

f j
−1

∣∣0
〉)

=−
(

j + 1
2

)
σ2

(
f j
−1

∣∣0
〉)

(4.17)

shows that the conformal dimensions of the states ofL
(2)
0 areunbounded below. The same is true forL(ℓ)

0 and

L
(ℓ)
1 , whenℓ 6= 0,±1, andE(ℓ)

λ , whenℓ 6= 0. Because algebra automorphisms map physical modules to physical

modules, we conclude that almost all of the physical modulesof ŝl(2)−1/2 have the property that the conformal
dimensions of their states have no lower bound. We illustrate the weights and conformal dimensions of the states
of these modules in Figure 8.

The full spectrum of irreducible modules then consists of the spectral flow imagesL(ℓ)
0 , L(ℓ)

1 andE(ℓ)
λ , where

ℓ∈Z andλ 6=± 1
2 ∈R/2Z. We extend the notion of typicality and atypicality so that it is preserved by spectral flow.

We then also have four families of atypical indecomposablesE
(ℓ)
±1/2;±. As twisting by automorphisms preserves

module structure, the members of these families are described by applyingσ ℓ to each module in the appropriate
exact sequence of (4.14). This is a rather large collection of modules, but it is still not quite complete.

We turn now to the fusion of the irreduciblêsl(2)−1/2-modules identified above. Because there are uncountably
many of these, this seems a rather daunting undertaking. However, two things work in our favour: First, fusion and
spectral flow are strongly believed to play nicely together in the sense that

M
(ℓ1)×N

(ℓ2) = (M×N)(ℓ1+ℓ2) (4.18)

for all (physical) modulesM andN. We know of no proof for this relation despite much evidence in its favour, but
we will assume it in the following, so that we may restrict thefusion rules to the “untwisted” sectorℓ1 = ℓ2 = 0.
The second boon is that the singular vectors of the typical modulesEλ are expressible as polynomial functions of
λ . This allows us to compute their fusion decompositions as functions ofλ .
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L0

L
(−2)
1 L

(2)
1

L0

L1

L
(−2)
0 L

(2)
0

L1

S0 S1

L

L(−2) L(2)

L

S

FIGURE 9. Loewy diagrams for the indecomposableŝl(2)−1/2-modulesS0 andS1 (left) and the indecom-
posableβ γ ghost moduleS (right).

The fusion rules of the untwisted irreducibles were computed in [62] using the Nahm-Gaberdiel-Kausch algo-
rithm. As expected,L0 is the fusion identity and the other products are

L1×L1 = L0, L1×Eλ = Eλ+1,

Eλ ×Eµ =

{
Sλ+µ if λ + µ = 0,1 mod 2,

E
(1)
λ+µ+1/2⊕E

(−1)
λ+µ−1/2 otherwise.

(4.19)

Here, the labels on the typicalsEλ and the new atypicalsSλ must be taken modulo 2. These two additional modules
S0 andS1 are indecomposables whose Loewy diagrams are given in Figure 9. Their fusion rules are

L1×Sλ = Sλ+1,
Eλ ×Sµ = E

(−2)
λ+µ+1⊕2Eλ+µ ⊕E

(2)
λ+µ+1,

Sλ ×Sµ = S
(−2)
λ+µ+1⊕2Sλ+µ ⊕S

(2)
λ+µ+1.

(4.20)

This shows that the fusion ring generated by the irreducibles closes upon adding the indecomposablesS0 andS1

(and their spectral flows).
We remark thatS0 has the vacuum moduleL0 as its socle. One can check from Figure 8 that the composition

factorsL(∓2)
1 (which lie immediately aboveL0 in the Loewy diagram ofS0) have states

∣∣θ±〉 of weight ±2
and conformal dimension−1. Indeed, the explicit construction ofS0 as a fusion product allows us to choose
normalisations for states so thatf−1

∣∣θ+
〉
= e−1

∣∣θ−〉 =
∣∣0
〉
. We also note from this construction that the vacuum∣∣0

〉
is part of a rank 2 Jordan block forL0. We denote the generalised eigenvector in this block by

∣∣Ω
〉
, normalising

it so thatL0
∣∣Ω

〉
=

∣∣0
〉
. One can show that this fixes the structure of the indecomposable S0 uniquely [62]. In

particular, one derives thate1
∣∣Ω

〉
= − 1

4

∣∣θ+
〉

and f1
∣∣Ω

〉
= − 1

4

∣∣θ−〉. In any case, the non-diagonalisable action
of L0 onS0 leads to logarithmic singularities in the two-point function ofΩ(z). L0 is similarly non-diagonalisable
when acting uponS1. This confirms that the fractional level Wess-Zumino-Witten modelŝl(2)−1/2 is a logarithmic
conformal field theory.

Note thatL1, with its two ground states of dimension12, is observed to be a simple current of order 2. The

corresponding simple current extension ofŝl(2)−1/2 is, of course, theβ γ ghost algebra [60]. Combining fusion
orbits underL1, we deduce that the ghost vacuum moduleL = L0⊕L1 has an indecomposable coverS = S0⊕S1

upon which the ghosts act with half-integer moding (this is the untwisted sector). This is analogous to the case
of symplectic fermions analysed in Section 3.1 and we give the Loewy diagram ofS in Figure 9. Again,L0 acts
non-diagonalisably onS, hence theβ γ ghost theory is also logarithmic.

However, the untwisted sector forβ γ ghosts also contains other modules thanks to the existence of spectral flow.

In fact, it containsL(2m), S(2m) andE(2m+1)
λ , for λ ∈ R/Z andm∈ Z (andEλ = Eλ ⊕Eλ+1). Similarly, the twisted

sector with integer moding containsL(2m+1), S(2m+1) andE(2m)
λ , again forλ ∈ R/Z andm∈ Z. If one allows

more general moding, then there is a continuum of sectors, each with a similar spectrum obtained by relaxing the
constraint onm.

4.4. Modular Transformations and the Verlinde Formula. Theβ γ ghost theory is free, so it is easy to write
the characters of its modules using a Poincaré-Birkhoff-Witt basis. Indeed, the vacuum character is

ch
[
L
]
= tr

L
ykzh0zL0−c/24= y−1/2

∞

∏
n=1

1(
1− z−1qn−1/2

)(
1− zqn−1/2

) = y−1/2 η(q)
ϑ4

(
z;q

) , (4.21)
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where we have included thêsl(2)-weight and level in preparation for deriving the corresponding affine characters.
The characters of its images under spectral flow may be obtained from

ch
[
M

(ℓ)
](

y;z;q
)
= ch

[
M
](

yzℓqℓ
2/4;zqℓ/2;q

)
, (4.22)

which holds for an arbitrary moduleM. Combining this with the identifications (4.15) and the assertion that
ŝl(2)−1/2 is theZ2-orbifold of theβ γ ghosts, we obtain the characters of the admissibleŝl(2)−1/2-modules:

ch
[
L0

]
=

y−1/2

2

[
η(q)

ϑ4
(
z;q

) + η(q)
ϑ3

(
z;q

)
]
,

ch
[
L1

]
=

y−1/2

2

[
η(q)

ϑ4
(
z;q

) − η(q)
ϑ3

(
z;q

)
]
,

ch
[
D−1/2;+

]
=

y−1/2

2

[
−iη(q)
ϑ1

(
z;q

) + η(q)
ϑ2

(
z;q

)
]
,

ch
[
D−3/2;+

]
=

y−1/2

2

[
−iη(q)
ϑ1

(
z;q

) − η(q)
ϑ2

(
z;q

)
]
.

(4.23)

Unlike the triplet algebra characters studied in Section 3.2, these characters have good modular properties.
Indeed, withy = e2πit , z = e2πiu and q = e2πiτ as usual, the S-matrix with respect to the (ordered) basis{

ch
[
L0

]
,ch

[
L1

]
,ch

[
D−1/2;+

]
,ch

[
D−3/2;+

]}
is found to be symmetric and unitary:

S=
1
2




1 −1 1 −1
−1 1 1 −1
1 1 i i

−1 −1 i i


. (4.24)

However, when one computes the conjugation matrixC= S2 and the fusion matrices (using the standard Verlinde
formula), trouble arises in the form of negative multiplicities [45]:

C=




1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0


, ND−1/2;+

=




0 0 1 0
0 0 0 1
0 −1 0 0
−1 0 0 0


 ND−3/2;+

=




0 0 0 1
0 0 1 0
−1 0 0 0
0 −1 0 0


. (4.25)

To understand this paradox of negative multiplicities, oneshould first recall that the fusion ring generated by the

admissibles and their conjugates contains all their spectral flowsL(ℓ)
0 andL(ℓ)

1 as well. However, the well known
periodicities of theta functions lead to the following character identities:

ch
[
L
(ℓ−1)
0

]
+ ch

[
L
(ℓ+1)
1

]
= ch

[
L
(ℓ−1)
1

]
+ ch

[
L
(ℓ+1)
0

]
= 0. (4.26)

The characters of theL(ℓ)
λ are therefore linearly dependent [58] and a basis for the span of these characters is

precisely given by the characters of the admissibles. The resolution to the paradox [60] is then that the characters
do not completely specify the module, because of (4.26), hence the map from modules to characters is a projection.
For example, the conjugate ofD−1/2;+ isD1/2;−, but we have

ch
[
D1/2;−

]
= ch

[
L
(−1)
0

]
=−ch

[
L
(1)
1

]
=−ch

[
D−3/2;+

]
, (4.27)

which explains whyC asserts that the conjugate toD−1/2;+ is −D−3/2;+ (it is, as far as the characters are con-

cerned). Similarly, the fusion ruleD−3/2;+×D−3/2;+ = L
(2)
0 translates into the Grothendieck rule

ch
[
D−3/2;+

]
×̇ch

[
D−3/2;+

]
= ch

[
L
(2)
0

]
=−ch

[
L1

]
, (4.28)

which explains why the Verlinde formula givesN L1
D−3/2;+D−3/2;+

=−1.

Having recognised the source of negative multiplicities (the characters are not linearly independent), we can turn
to fixing it. As the reader may have guessed, this will involvethe typical modulesEλ introduced in Section 4.2.
The characters of these may be computed [61] from those of theβ γ ghost modulesEλ which are, again, easily
deduced from Poincaré-Birkhoff-Witt bases:

ch
[
Eλ

]
=

y−1/2zλ

η(q)2 ∑
n∈Z

z2n ⇒ ch
[
E
(ℓ)
λ
]
=

y−1/2zλ−ℓ/2qℓ(λ−ℓ/4)/2

η(q)2 ∑
n∈Z

z2nqℓn. (4.29)
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It is important to note that this character is not convergentfor anyz 6= 0, hence it does not define a meromorphic
function. Instead, we shall treat it as a distribution in thevariablest, u andτ:

ch
[
E
(ℓ)
λ
]
=

e
−iπt

e
2πi(λ−ℓ/2)u

e
iπℓ(λ−ℓ/4)τ

η(τ)2 ∑
n∈Z

e
2πi(2u+ℓτ)n

=
e−iπteiπℓ

2τ/4

η(τ)2 ∑
m∈Z

e
iπ(λ−ℓ/2)mδ (m= 2u+ ℓτ). (4.30)

This has a rather satisfying interpretation [63]: The character ofL(ℓ)
λ is, as a meromorphic function ofz, only

convergent in the annulus|q|−ℓ+1 < |z|< |q|−ℓ−1 (we also need|q|< 1) because of poles at the annulus’ boundaries
[58]. One therefore realises that the linear dependencies (4.26) amount to summing characters which are defined
ondisjointannuli of convergence and obtaining 0. On the other hand, applying spectral flow to the exact sequences
(4.14) gives the character relations

ch
[
L
(ℓ−1)
0

]
+ ch

[
L
(ℓ+1)
1

]
= ch

[
E
(ℓ)
+1/2;±

]
,

ch
[
L
(ℓ−1)
1

]
+ ch

[
L
(ℓ+1)
0

]
= ch

[
E
(ℓ)
−1/2;±

]
,

(4.31)

from which we deduce that, in the distributional setting, summing these characters does not give 0, but rather gives
a distribution whose support is precisely the pole separating the two annuli of convergence.

In any case, (4.31) shows that the atypical irreducible characters are not linearly dependent when treated as
distributions. To obtain distributional formulae for these characters, we splice the exact sequences (4.14) together

to obtain resolutions for the atypical irreduciblesL
(ℓ)
0 andL(ℓ)

1 in terms of the atypical indecomposablesE
(ℓ)
±1/2;+.

As with the singlet algebraM
(
1,2

)
in Section 3.3, these resolutions translate into alternating sums for the atypical

characters:

ch
[
L
(ℓ)
λ
]
=

∞

∑
ℓ′=0

(−1)ℓ
′
ch
[
E
(ℓ+2ℓ′+1)
λ+ℓ′+1/2;+

]
(λ = 0,1). (4.32)

Our (topological) basis for the space of characters will therefore be chosen to consist of those of the typical

irreduciblesE(ℓ)
λ , λ 6=± 1

2 mod 2, supplemented by those of the atypical indecomposablesE(ℓ)
±1/2;+.

We therefore turn to S-transforming the characters (4.30) of theE(ℓ)
λ . We find that

ch
[
E
(ℓ)
λ
]∣∣∣

S
= ∑

ℓ′∈Z

∫ 1

−1
S(ℓ,λ )(ℓ′,λ ′)ch

[
E
(ℓ′)
λ ′

]
dλ ′, S(ℓ,λ )(ℓ′,λ ′) =

1
2
|τ|
−iτ

e
iπ(ℓℓ′/2−ℓλ ′−ℓ′λ), (4.33)

which is easily verified by expanding both sides, integrating and then summing. Once again, the S-matrix is seen to
be symmetric and unitary. Theτ-dependent factor in the S-matrix entries originates from the homogeneity of delta
functions,δ (ax= 0) = |a|−1δ (x= 0), and is not particularly worrisome because it will cancel when transforming
bulk characters (partition functions) and when applying the Verlinde formula. Mathematically, it signifies that the
space of characters carries aprojectiverepresentation of the modular groupSL

(
2;Z

)
rather than a genuine one.

The modular S-transformation of the atypical irreducible characters is now computed from (4.32) exactly as we
did for the atypical singlet modules in Section 3.4. The resulting S-matrix entries take the form

S(ℓ,λ )(ℓ′,λ ′) =
∞

∑
ℓ′=0

(−1)ℓ
′
S(ℓ+2ℓ′+1)(λ+ℓ′+1/2) =

1
2
|τ|
−iτ

e
iπ(ℓℓ′/2−ℓλ ′−ℓ′λ)

2cos(πλ ′)
. (4.34)

Here, as before, we distinguish atypical from typical labels by underlining the former (so(ℓ,λ ) stands forL(ℓ)
λ

with λ = 0,1). Applying the continuous Verlinde formula, we can now easily obtain the Grothendieck fusion
coefficients. The calculations are straight-forward and very similar to those presented in Section 3.4, so we only
report the resulting Grothendieck fusion rules:

ch
[
L
(ℓ)
λ
]
×̇ch

[
L
(m)
µ

]
= ch

[
L
(ℓ+m)
λ+µ

]
,

ch
[
L
(ℓ)
λ
]
×̇ch

[
E
(m)
µ

]
= ch

[
E
(ℓ+m)
λ+µ

]
,

ch
[
E
(ℓ)
λ
]
×̇ch

[
E
(m)
µ

]
= ch

[
E
(ℓ+m+1)
λ+µ+1/2

]
+ ch

[
E
(ℓ+m−1)
λ+µ−1/2

]
.

(4.35)

These agree perfectly with the Grothendieck versions of thefusion rules (4.19) for the irreducibles and may be
checked to imply the Grothendieck versions of those (4.20) of the indecomposables. We remark that these decom-
positions also confirm the Grothendieck version of the conjectured relation (4.18).
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L
(ℓ−2)
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λ ⊗L

(ℓ)
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· · ·

· · ·

· · ·

FIGURE 10. A part of the (proposed) Loewy diagrams for the atypical bulk modules. Takingλ = 0 mod 2
andℓ= 0,1,2,3 mod 4 gives the diagrams forB0, B−1/2;+, B1 andB−3/2;+, respectively.

4.5. Bulk Modular Invariants and State Spaces. The symmetries of the S-matrix imply, as usual, that the diag-
onal partition function (and its charge-conjugate variant) is modular invariant:

Zdiag.(q,q) = ∑
ℓ∈Z

∫ 1

−1
ch
[
E
(ℓ)
λ
]
ch
[
E
(ℓ)
λ
]

dλ . (4.36)

At the level of the quantum state space, this suggests a splitting into typical and atypical sectors:

Hbulk =

[
⊕

ℓ∈Z
⊖
∫ 1

−1
λ 6=±1/2

(
E
(ℓ)
λ ⊗E

(ℓ)
λ

)
dλ

]
⊕Batyp. (4.37)

Once again, the character of the atypical contributionBatyp may be put in the suggestive form

ch
[
Batyp

]
= ∑

ℓ∈Z

(
ch
[
L
(ℓ)
0

]
ch
[
S
(ℓ)
0

]
+ ch

[
L
(ℓ)
1

]
ch
[
S
(ℓ)
1

])

= ∑
ℓ∈Z

(
ch
[
S
(ℓ)
0

]
ch
[
L
(ℓ)
0

]
+ ch

[
S
(ℓ)
1

]
ch
[
L
(ℓ)
1

])
, (4.38)

but, unlike the bulk triplet module of Section 3.6,Batyp = B0⊕B1⊕B−1/2;+⊕B−3/2;+ is decomposable. This
follows immediately from considering the weights, modulo 2, and conformal dimensions, modulo 1, of the atypical
states. We have chosen to label the bulk atypicals as we did the admissible irreduciblesL0, L1, D−1/2;+ and
D−3/2;+ because the bulk modules are distinguished by which of the four admissibles has its character squared
contributing to the bulk character.

A natural proposal for the structure of these bulk atypical modules is then to draw the Loewy diagrams of the

contributing indecomposablesS(ℓ)λ , tensoring each factor (on the left) withL(ℓ)
λ . This defines the holomorphic

structure of the bulk atypical and the antiholomorphic structure is added by identifying factors which combine to

give S
(ℓ)
λ ⊗L

(ℓ)
λ . The resulting bulk Loewy diagram differs from that of the triplet model, pictured in Figure 7,

in that there are now infinitely many composition factors (ŝl(2)−1/2 behaves more like the singlet model in this
respect). We illustrate a part of it in Figure 10. Note that the proposed structure suggests that spectral flow acts
periodically on the atypical sector:

· · · σ−→B0
σ−→ B−1/2;+

σ−→ B1
σ−→B−3/2;+

σ−→ B0
σ−→ ·· · . (4.39)

We further remark that these bulk modules are manifestly local (L0−L0 may be diagonalised).

There are, of course, many simple currents with which we can try to construct additional modular invariants.

Indeed, the fusion rules (4.19), coupled with (4.18), show that every atypical irreducibleL(ℓ)
λ is a simple current.

Requiring that the simple currents have fields of integer dimension restricts this to two families,L(4m)
0 andL(4m+2)

1 ,
for m∈ Z. However, the latter family is generated by the spectral flows of the bosonic ghost fields. Because the
ghost fields have dimension12 and their spectral flows have integer dimension, these flowedfields will bemutually
fermionic. We do not therefore expect them to give rise to modular invariants.

The construction of the extended algebras proceeds as with the singlet algebra (Section 3.5). For eachn∈ Z,

there is an extended algebraW(n) =
⊕

m∈ZL
(4mn)
0 and its untwisted typical modules are theE

(n;ℓ)
λ =

⊕
m∈ZE

(4mn+ℓ)
λ
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with 2nλ ∈ Z andℓ= 0,1, . . . ,4m−1. The extended S-matrix is then

ch
[
E
(n;ℓ)
j/2n

]∣∣∣
S
=

4n−1

∑
j ′,ℓ′=0

S
(n)
( j ,ℓ)( j ′,ℓ′)ch

[
E
(n;ℓ′)
j ′/2n

]
, S

(n)
( j ,ℓ)( j ′,ℓ′) =

1
4n

|τ|
−iτ

e
iπ(ℓℓ′n− j ′ℓ− jℓ′)/2n, (4.40)

and its evident symmetries immediately imply the modular invariance of the extended partition function

Z(n)
diag.=

4n−1

∑
j=0

4n−1

∑
ℓ=0

ch
[
E
(n;ℓ)
j/2n

]
ch
[
E
(n;ℓ)
j/2n

]
. (4.41)

Unfortunately, the modular properties of the atypical extended characters again remain out of reach.
We conclude by mentioning that these extended partition functions may describe the level− 1

2 Wess-Zumino-
Witten models on the non-compact simple Lie groupSL

(
2;R

)
. More precisely, we recall that this group has centre

Z2 and fundamental groupZ, so there is an infinite number of Lie groups havingsl
(
2;R

)
as their Lie algebra. This

includes the simply-connected universal cover ofSL
(
2;R

)
, often referred to asAdS3, and the centreless adjoint

groupPSL
(
2;R

)
. We propose that the partition functionZdiag. of (4.36) describes strings onAdS3 with level− 1

2,

whereasZ(1)
diag. describes strings onPSL

(
2;R

)
(or SL

(
2;R

)
).

Whether this proposal is true or not, we remark that we can arrive at a consistent structure for the atypical sector
of the quantum state space of these extended theories by identifying factors in Figure 10 which are identical except
that their spectral flow indices differ by a multiple of 4n. This imposes a periodicity on the infinitely wide bulk
Loewy diagrams so that the resulting diagrams have a finite number of composition factors. Forn= 1, it is easy to
check that each extended atypical diagram has eight factorsand that the structure looks identical to the triplet bulk
atypical pictured in Figure 7.

4.6. Correlation Functions. Correlation functions for̂sl(2)−1/2 may be computed using a strategy that is almost

identical to that used for symplectic fermions. We start by recalling the bosonisation of the ghost fieldsβ
(
z
)

and
γ
(
z
)
. Let ϕL

(
z
)

andyL
(
z
)

be free bosons with operator product expansions

ϕL(z)ϕL(w)∼ log(z−w), yL(z)yL(w)∼− log(z−w). (4.42)

Then, the bosonisation amounts to the identifications

β (z) = : e−
(

ϕL(z)+yL(z)
)

: , γ(z) = : ∂ϕL(z)eϕL(z)+yL(z) : . (4.43)

We observe that these fields commute with the zero-mode ofe−ϕL(z), so we conclude that we can use the same
screening charge as for symplectic fermions:

Q=

∫

C

e
−ϕ(z,z) dzdz

2π
. (4.44)

Theŝl(2)−1/2 currents now take the bosonised form

e(z) =
1
2

: β (z)β (z) : =
1
2

: e−2
(

ϕL(z)+yL(z)
)

: , h(z) =
1
2

: β (z)γ(z) : = ∂yL(z),

f (z) =
1
2

: γ(z)γ(z) : =
1
2

:
(
∂ϕ(z)∂ϕ(z)− ∂ 2ϕ(z)

)
e

2
(

ϕL(z)+yL(z)
)

: .
(4.45)

We will neglect the antiholomorphic currents which are constructed similarly. In this free field realisation, it is
natural to consider the following bulk fields:

Vℓ,λ ;n(z,z) = : e(−λ+1/2)ϕ(z,z)+(−λ+ℓ/2)y(z,z)−n
(

ϕL(z)+yL(z)
)

: . (4.46)

Here we have chosen a convenient labelling which requiresℓ ∈ Z andn∈ 2Z. We compute the following operator
product expansions with the currents:

e(z)Vℓ,λ ;0(w,w) =
1
2Vℓ,λ ;2(w,w)

(z−w)1−ℓ
+ · · · , h(z)Vℓ,λ ;0(w,w) =

(λ − ℓ/2)Vℓ,λ ;0(w,w)

z−w
+ · · · ,

f (z)Vℓ,λ ;0(w,w) =
1
2

(
−λ + 1

2

)(
−λ + 3

2

)
Vℓ,λ ;−2(w,w)

(z−w)1+ℓ
+ · · · ,

T(z)Vℓ,λ ;0(w,w) =
− 1

8

(
1+ ℓ2−4ℓλ

)
Vℓ,λ ;0(w,w)

(z−w)2 +
∂Vℓ,λ ;0(w,w)

z−w
+ · · · .

(4.47)
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This means that the fieldVℓ,λ ;0
(
w,w

)
transforms as a ground state in the representationE

(ℓ)
λ . In general,n

parametrises the ground states of these representations, but we will restrict ton= 0 for simplicity.
Correlation functions are defined exactly as in the symplectic fermion case,

〈
Vℓ1,λ1;0(z1,z1) · · ·Vℓn,λn;0(zn,zn)

〉
=

〈
Vℓ1,λ1;0(z1,z1) · · ·Vℓn,λn;0(zn,zn)e

−Q〉
0, (4.48)

and correlators in the free theory are standard free boson correlators, subject to the charge conservation condition
〈
Vℓ1,λ1;0(z1,z1) · · ·Vℓn,λn;0(zn,zn)

〉
0

=−δ
(
λ1+ · · ·+λn =

1
2(n−2)

)
δℓ1+···+ℓn=n−2∏

i< j

∣∣zi − zj
∣∣2
(
(λi−1/2)(λ j−1/2)−(λi−ℓi/2)(λ j−ℓ j/2)

)
. (4.49)

In this way, we arrive at the following non-zero one- and two-point functions:
〈
Vℓ,λ ;0(z,z)

〉
=−δ

(
λ =− 1

2

)
δℓ=−1,

〈
Vℓ,λ ;0(z,z)Vℓ′,λ ′;0(w,w)

〉
=−δ

(
λ +λ ′ = 0

)
δℓ+ℓ′=0|z−w|2((λ−ℓ/2)2−λ 2+1/4),

(4.50)

where

hℓ,λ =
(λ − 1

2)((λ + 1
2))

2
− (λ − ℓ

2)
2

2
=

1
2

(
ℓλ − ℓ2

4
− 1

4

)
(4.51)

is the conformal dimension of the ground state of weightλ − ℓ/2 of E(ℓ)
λ . We remark that this one-point function

is consistent with the vacuum appearing as a composition factor of the indecomposablesE(−1)
−1/2;± and that the

two-point function is in line with our notion of conjugation. For the three-point function, we again need the
Fateev-Dotsenko integral formula to obtain

〈
Vℓ,λ ;0(z,z)Vm,µ;0(1,1)Vn,ν;0(0,0)

〉
=

−1

|z−1|2(hℓ,λ+hm,µ−hn,ν)|z|2(hℓ,λ−hm,µ+hn,ν)

·
[

δ (λ + µ +ν = 1/2)δℓ+m+n=1+
Γ
(

1
2 +λ

)
Γ
(

1
2 + µ

)
Γ
(

1
2 +ν

)

Γ
(

1
2 −λ

)
Γ
(

1
2 − µ

)
Γ
(

1
2 −ν

)δ
(
λ + µ +ν =− 1

2

)
δℓ+m+n=−1

]
. (4.52)

We observe that there are singularities in the three-point function wheneverλ ∈ Z+ 1
2. Regularising as in the case

of symplectic fermions would give logarithmic correlators, thus confirming the presence of the indecomposable

modulesS(ℓ)0 andS(ℓ)1 . These correlation functions may be checked to be consistent with the fusion rules (4.19).

4.7. Further Developments. Unlike the triplet theories discussed in Section 3.8 and thesuperalgebra theories that
we will consider in Section 5.7, the logarithmic conformal field theories with admissible level affine algebra sym-
metries remain relatively unexplored. Aside from̂sl(2)−1/2, reviewed above, the only other admissible theory to

have received comparable treatment isŝl(2)−4/3 [56,63]. Here, there are three admissible highest weight modules,
all irreducible, which we denote (with the same conventionsas used above) byL0, D−2/3;+ andD−4/3;+. Again,

spectral flow acts and we obtain two infinite families becauseD−4/3;+ = L
(1)
0 . There are also typical irreducibles

Eλ , with λ 6= ± 2
3 mod 2, and atypical indecomposablesE±1/2;±, both of whose ground states have conformal

dimension− 1
3, as well as their spectral flows.

The Nahm-Gaberdiel-Kausch algorithm gives (untwisted) fusion rules including [56]

D2/3;−×D−2/3;+ = L0⊕E0, D−2/3;+×E0 = S−2/3;+, E0×E0 = E0⊕S0, (4.53)

with the vacuum moduleL0 acting again as the fusion identity. Here,S0 and S−2/3;+ are indecomposables
with respective soclesL0 andD−2/3;+ and the familiar diamond-shaped Loewy diagrams. Both exhibit a non-
diagonalisable action ofL0. The modular properties of the characters of the typicals and atypicals are derived as
for k=− 1

2 with the resulting S-matrix entries being [63]

S(ℓ,λ )(ℓ′,λ ′) =
1
2
|τ|
−iτ

e
iπ(4ℓℓ′/3−ℓλ ′−ℓ′λ),

S(ℓ,0)(ℓ′,λ ′) =
1
2
|τ|
−iτ

e
iπℓ(4ℓ′/3−λ ′)

1+2cos(πλ ′)
, S(ℓ,−2/3)(ℓ′,λ ′) =

|τ|
−iτ

e
iπ(ℓ+1/2)(4ℓ′/3−λ ′) cos(πλ ′/2)

1+2cos(πλ ′)
.

(4.54)

Applying the Verlinde formula then leads to

Eλ ×Eµ = E
(−1)
λ+µ−4/3⊕Eλ+µ ⊕E

(1)
λ+µ+4/3 (λ + µ 6= 0,± 2

3 mod 2). (4.55)
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At the atypical points 0 and± 2
3, the natural prediction is instead that

Eλ ×E−λ = E0⊕S0, Eλ ×E−λ+2/3 = E
(1)
0 ⊕S2/3;−, Eλ ×E−λ = E

(−1)
0 ⊕S−2/3;+, (4.56)

whereS2/3;− = S
(−1)
−2/3;+ = S⋆−2/3;+. Moreover, it also suggests the fusion rule

D−2/3;+×S0 = E
(−1)
0 ⊕S−2/3;+⊕E

(2)
0 , (4.57)

from which the remaining rules follow by using associativity.
The fact that Verlinde formulae for̂sl(2)−1/2 and ŝl(2)−4/3 have been successfully derived using the above

formalism suggests that this will generalise to all admissible levels. This will be detailed in [64]. Other affine
algebras at admissible levels have not yet received much attention, thougĥsl(3) was briefly addressed [126] in
the days before spectral flow and indecomposability were realised to be critical and some structure theory for
admissible level̂sl(2|1) may be found in [127–129]. The link with the Wess-Zumino-Witten model onSL

(
2;R

)
is

interesting because it suggests that these theories may be logarithmic for general values of the level. The famous
articles [42,130,131] of Maldacena and Ooguri suggest no logarithmic structure for this model, though it could be
argued that they did not look for any (see also [132]). Indeed, recent mathematical work [133] suggests that there
may be more to this picture than was previously realised.

5. WESS-ZUMINO-WITTEN MODELS WITH ĝl(1|1) SYMMETRY

The Wess-Zumino-Witten model onGL(1|1) is by far the best understood conformal field theory associated
to Lie supergroups. It was first studied by Rozansky and Saleur two decades ago [9, 10] in two of the original
landmark logarithmic conformal field theory papers. More recently, this model was reconsidered by Saleur and
Schomerus [36] who were able to compute correlation functions and propose a structure for the full bulk theory.
Their computations revealed a striking similarity to the twist field correlators of the symplectic fermion theory, an
observation that was explained in [102], which in turn was motivated by [134]. The correlation functions of Saleur
and Schomerus implicitly suggested fusion rules, which were then confirmed in [66]. This theory is also one of the
few for which the boundary theory is thoroughly studied [135–137], meaning that D-branes have been classified
and boundary three-point correlation functions and bulk-boundary two-point functions are known. We follow [66]
in reviewing this example.

5.1. gl(1|1) and its Representations. The Lie superalgebragl(1|1) is generated by two bosonic elementsN and
E and by two fermionic onesψ± subject to the relations

[
N,ψ±] =±ψ±,

{
ψ+,ψ−} = E. (5.1)

It naturally acts on the super vector spaceC1|1 and its elements are identified with supermatrices as follows:

N =
1
2

(
1 0
0 −1

)
, E =

(
1 0
0 1

)
, ψ+ =

(
0 1
0 0

)
, ψ− =

(
0 0
1 0

)
. (5.2)

The Killing form, corresponding to the supertrace form in the adjoint representation, is degenerate forgl(1|1). To
obtain a non-degenerate bilinear formκ

(
·, ·
)
, one instead takes the supertrace in the defining representation (5.2):

κ
(
N,E

)
= κ

(
E,N

)
= 1, κ

(
ψ+,ψ−)=−κ

(
ψ−,ψ+

)
= 1. (5.3)

Verma modulesVn,e are constructed from highest weight states
∣∣vn,e

〉
satisfying

E
∣∣vn,e

〉
= e

∣∣vn,e
〉
, N

∣∣vn,e
〉
=

(
n+ 1

2

)∣∣vn,e
〉
, ψ+

∣∣vn,e
〉
= 0 (5.4)

in the usual manner. However, asψ− squares to 0, all Verma modules are two-dimensional.20 Moreover, as
ψ+ψ−∣∣vn,e

〉
= e

∣∣vn,e
〉
, the Verma moduleVn,e is reducible if and only ife= 0. Once again, irreducibility is the

generic situation and hence modules withe 6= 0 are referred to as being typical. In the atypical case wheree= 0,
there is an irreducible one-dimensional submodule spannedby ψ−∣∣vn,0

〉
— we shall denote it byAn−1/2 — and

the quotientAn+1/2 is also one-dimensional and irreducible:

0−→A
′
n−1/2 −→ Vn,0 −→An+1/2 −→ 0. (5.5)

20We remark at this point that the labeln of the Verma moduleVn,e refers to theaverageof the N-eigenvalues for this representation. This
average labelling convention forn will be adhered to for allgl(1|1)-modules.
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∣∣wn
〉

ψ+
∣∣wn

〉
ψ−∣∣wn

〉

ψ−ψ+
∣∣wn

〉

An

An+1 An−1

An

Pn Pn

FIGURE 11. The projective coverPn of thegl(1|1)-moduleAn, illustrated by its states on the left and by its
Loewy diagram on the right.

Here, the prime attached to the submoduleAn−1/2 serves to remind us that its highest weight state has the opposite
parity to the highest weight generators of the other modulesappearing in this sequence.

Typical irreducibles turn out to be projective in the category of all finite-dimensional modules upon whichN
andE act diagonalisably. The atypical irreducibles have projective coversPn which are generated by a vector

∣∣wn
〉

satisfyingE
∣∣wn

〉
= 0 andN

∣∣wn
〉
= n

∣∣wn
〉
. The fermionic generatorsψ+ andψ− act freely on

∣∣wn
〉
, resulting

in the four-dimensional representation illustrated in Figure 11. These atypical projectives naturally appear in the
representation ring generated by the irreducibles under the (graded) tensor product:

An⊗An′ =An+n′ , An⊗Vn′,e′ = Vn+n′,e′ , An⊗Pn′ = Pn+n′ ,

Vn,e⊗Vn′,e′ =

{
P
′
n+n′ if e+e′ = 0,

Vn+n′+1/2,e+e′ ⊕V
′
n+n′−1/2,e+e′ otherwise,

Vn,e⊗Pn′ = V
′
n+n′+1,e⊕2Vn+n′,e⊕V

′
n+n′−1,e, Pn⊗Pn′ = P

′
n+n′+1⊕2Pn+n′ ⊕P

′
n+n′−1.

(5.6)

The prime on the indecomposablesPn refers to the relative parity of the generating state
∣∣wn

〉
. We remark that the

CasimirQ= NE+ψ−ψ+ acts non-diagonalisably onPn: Q
∣∣wn

〉
= ψ−ψ+

∣∣wn
〉
.

5.2. The GL(1|1) Wess-Zumino-Witten Model. Wess-Zumino-Witten models on compact reductive Lie groups
give rise to a natural family of rational conformal field theories. The model on a Lie supergroup may be con-
structed in the same manner. One starts with a supergroup-valued fieldg and parametrises it using a “Gauss-like”
decomposition. ForGL(1|1), this corresponds to

g= e
c−ψ−

e
XE+YN

e
−c+ψ+

, (5.7)

so the fields of the theory are the two bosonic fieldsX(z,z) andY(z,z) and the two fermionic fieldsc±(z,z). The
standard Wess-Zumino-Witten action is then reduced, usingthe Polyakov-Wiegmann identity, to

SWZW[g] =
k

4π

∫ (
−∂X∂Y− ∂Y∂X+2eY∂c+∂ c−

)
dzdz, (5.8)

wherek is the level. Varying this action leads to the expected equations of motion:

∂ J(z,z) = 0, ∂J(z,z) = 0. (5.9)

Here,J = k∂gg−1 andJ =−kg−1∂ g are Lie superalgebra-valued currents. In component form, they become

JE =−k∂Y, JN =−k∂X+ kc−∂c+e
Y, J− = keY∂c+, J+ =−k∂c−− kc−∂Y, (5.10)

and similarly for the anti-holomorphic currentJ.
Upon quantising, the modes of the holomorphic current satisfy the relations of the affine Kac-Moody super-

algebraĝl(1|1) at levelk (we will mostly ignore the antiholomorphic sector as usual):
[
JE

r ,J
N
s

]
= rδr+s=0k,

[
JN

r ,J
±
s

]
=±J±r+s,

{
J+r ,J−s

}
= JE

r+s+ rδr+s=0k. (5.11)

As in the case of the free boson (Section 1.2), any non-zero level k can be rescaled to 1. We will assume in what
follows that such a rescaling has been made.
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The energy-momentum tensorT(z) has central charge zero and is given by a variant of the Sugawara construc-
tion21

T(z) =
1
2

: JNJE + JEJN − J+J−+ J−J+ : (z)+
1
2

: JEJE : (z). (5.12)

We note that, as in the case ofŝl(2) discussed in Section 4,̂gl(1|1) possesses a family of spectral flow automor-
phismsσ ℓ which are indispensable to understanding its representation theory:

σ ℓ
(
JN

r

)
= JN

r , σ ℓ
(
JE

r

)
= JE

r − ℓδr,0, σ ℓ
(
J±r

)
= J±r∓ℓ, σ ℓ(L0) = L0− ℓJN

0 . (5.13)

As before, these automorphisms may be used to construct new modulesM(ℓ) from an arbitrarŷgl(1|1)-moduleM
by twisting the action on the states as in (4.7).

5.3. Representation Theory of ĝl(1|1). The representation theory of the affine algebraĝl(1|1) is very similar to
that of its horizontal subalgebragl(1|1). We define affine Verma modulesVn,e and their irreducible quotients, as
before, by defining a highest weight state

∣∣vn,e
〉

to be one satisfying22

JN
0

∣∣vn,e
〉
=

(
n+ 1

2

)∣∣vn,e
〉
, JE

0

∣∣vn,e
〉
= e

∣∣vn,e
〉
, J+0

∣∣vn,e
〉
= J±r

∣∣vn,e
〉
= 0 (r > 0). (5.14)

The conformal dimension of the highest weight state
∣∣vn,e

〉
is then (recalling thatk has been set to 1)

L0
∣∣vn,e

〉
= ∆n,e

∣∣vn,e
〉
=

(
ne+ 1

2e2)∣∣vn,e
〉
. (5.15)

It follows that every singular vector ofVn,0 has dimension 0, leading to the non-split exact sequence

0−→A′
n−1/2,0 −→ Vn,0 −→An+1/2,0 −→ 0, (5.16a)

where the prime again indicates that the submodule’s highest weight state has parity opposite to those of the other
modules. A simple counting argument [66] now shows that theVn,e with 0< |e|< 1 are irreducible. By employing
the spectral flow automorphisms of (5.13), one concludes that the Verma modulesVn,e with e /∈ Z are irreducible
(typical) and that the (atypical) casee∈ Z yields reducible Verma modules. Along with (5.16a), the (non-split)
exact sequences turn out to be

0−→A
′
n−1,e −→ Vn,e −→An,e −→ 0 (e∈ Z−),

0−→A′
n+1,e −→ Vn,e −→An,e −→ 0 (e∈ Z+).

(5.16b)

Note that, once again, the vacuum moduleA0,0 is atypical.
We remark that, in contrast with the action of spectral flow onŝl(2)-modules, spectral flows of̂gl(1|1)-modules

do not have states whose conformal dimensions are unboundedbelow. This can be traced back to the fact that
each of the modesJ±r squares to 0.23 Indeed, character methods and some analysis of Verma modules and their
contragredient duals allow one to identify the result of applying σ :

V
(1)
n,e = V′

n−1,e+1, if e /∈ Z, A
(1)
n,e =





A′
n−1/2,0, if e=−1,

An−1/2,1, if e= 0,

A′
n−1,e+1, otherwise.

(5.17)

Note that this immediately explains how the irreducibilityof the Verma modules withe /∈ Z could be deduced from
that of those with 0< |e|< 1.

21The Lie superalgebragl(1|1) is not simple and the space of invariant bilinear forms turnsout to be two-dimensional. However, there is a
unique choice that leads to a Virasoro field [9].
22As with gl(1|1)-modules, the labeln parametrising modules refers to the averageJN

0 -eigenvalue of the ground states.
23The corresponding statement for integrableĝ-modules, witĥg a Kac-Moody algebra, may similarly be traced back to the special form of the
singular vectors of the Verma covers of these modules.
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An,e

A′
n+1,e A′

n−1,e

An,e

Pn,e

FIGURE 12. The Loewy diagram of the indecomposableĝl(1|1)-modulePn,e.

Finally, the fusion rules follow readily from the principles behind the Nahm-Gaberdiel-Kausch algorithm and
the tensor product rules (5.6) ofgl(1|1) (we ignore parity here to avoid an overabundance of cases):

An,e×An′,e′ =An+n′−ε(e,e′),e+e′ , An,e×Vn′,e′ = Vn+n′−ε(e),e+e′ ,

Vn,e×Vn′,e′ =

{
Pn+n′+ε(e+e′),e+e′ , if e+e′ ∈ Z,

Vn+n′+1/2,e+e′ ⊕Vn+n′−1/2,e+e′ otherwise,

An,e×Pn′,e′ = Pn+n′−ε(e,e′),e+e′ ,

Vn,e×Pn′,e′ = Vn+n′+1−ε(e′),e+e′ ⊕2Vn+n′−ε(e′),e+e′ ⊕Vn+n′−1−ε(e′),e+e′ ,

Pn,e×Pn′,e′ = Pn+n′+1−ε(e,e′),e+e′ ⊕2Pn+n′−ε(e,e′),e+e′ ⊕Pn+n′−1−ε(e,e′),e+e′ .

(5.18)

Here, we have defined
ε
(
e
)
= 1

2 sgn
(
e
)
, ε

(
e,e′

)
= ε

(
e
)
+ ε

(
e′
)
− ε

(
e+e′

)
, (5.19)

with the convention that the sign function satisfies sgn
(
0
)
= 0.

The modulesPn,e, with e∈ Z, generated by the above fusion rules may be constructed by inducing thegl(1|1)-
modulePn and applying spectral flow. They are indecomposable and, just asPn carries a non-diagonalisable action
of the CasimirQ, so the action ofL0 onPn,e is non-diagonalisable. The Loewy diagrams are given in Figure 12.
It is often stated that thePn,e are the projective covers of theAn,e, presumably in the category of vertex algebra
modules upon whichJN

0 andJE
0 act diagonalisably, but we are not aware of a proof of this statement.

5.4. Modular Transformations and the Verlinde Formula. For superalgebras, it is natural to work with super-
characters rather than characters. Those of the Verma modulesVn,e are given by

sch
[
Vn,e

](
x;y;z;q

)
= str

Vn,ℓ
xyJE

0 zJN
0 qL0−c/24= xyezn+1/2q∆n,e

∞

∏
i=1

(
1− zqi

)(
1− z−1qi−1

)

(1−qi)2

= ixyeznq∆n,e
ϑ1

(
z;q

)

η(q)3
, (5.20)

where we recall that the levelk (of whichx is supposed to keep track) has been set to 1. Withx= e2πit , y= e2πiu, z=
e2πiv andq= e2πiτ and the S-transformationS : (t|u|v|τ)→ (t −uv/τ|u/τ|v/τ|−1/τ), the induced transformation
of the supercharacters may be computed as (the analytic continuation of) a double Gaussian integral. The resulting
S-matrix coefficients are

sch
[
Vn,e

]∣∣∣
S
=

∫ ∞

−∞

∫ ∞

−∞
S(n,e),(n′,e′)sch

[
Vn′,e′

]
dn′de′, S(n,e),(n′,e′) =−iωe

−2πi(ne′+n′e+ee′), (5.21)

whereω is a square root of minus one that depends upon how the analytic continuation is performed. We note that
the sign−iω will cancel in bulk modular invariants and the Verlinde formula.

The exact sequences (5.16) may now be used to construct resolutions for the atypicals in terms of Verma
modules. We consider only the vacuum module for brevity:

· · · −→ V
′
−7/2,0 −→ V−5/2,0 −→ V

′
−3/2,0 −→ V−1/2,0 −→A0,0 −→ 0. (5.22)

Because the relative parities of the Verma modules alternate, the vacuum supercharacter is not an alternating sum
of Verma characters. The vacuum S-matrix entries are therefore

S(0,0),(n′,e′) =
∞

∑
j=0

S(− j−1/2,0),(n′,e′) =−iω
∞

∑
j=0

e
2πi( j+1/2)e′ =

iω
eiπe′ − e−iπe′ =

ω
2sin[πe′]

. (5.23)
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An−1,ℓ⊗A−n+1,−ℓAn,ℓ⊗A−n,−ℓAn+1,ℓ⊗A−n−1,−ℓ

An−1,ℓ⊗A−n+1,−ℓAn,ℓ⊗A−n,−ℓAn+1,ℓ⊗A−n−1,−ℓ

· · ·

· · ·

· · ·

An,ℓ⊗A−n+1,−ℓAn−1,ℓ⊗A−n,−ℓAn+1,ℓ⊗A−n,−ℓAn,ℓ⊗A−n−1,−ℓ

· · ·

· · ·

· · ·

FIGURE 13. A part of the Loewy diagrams for the atypical bulk modulesJn,e corresponding to the charge-
conjugate modular invariant partition function. We have neglected to indicate relative parities because the
conjugate of an atypicalAn,e changes parity unlesse= 0.

From this, and the continuous Verlinde formula, we can compute the Grothendieck fusion of the typicals:

N
(n′′,e′′)

(n,e),(n′,e′) =−
∫ ∞

−∞

∫ ∞

−∞
e
−2πi

(
(n+n′−n′′)E+(e+e′−e′′)(N+E)

)(
e
iπE − e

iπE
)

dNdE

= δ
(
n′′ = n+n′+1/2

)
− δ

(
n′′ = n+n′−1/2

)
(5.24)

⇒ sch
[
Vn,e

]
×̇sch

[
Vn′,e′

]
= sch

[
Vn+n′+1/2,e+e′

]
− sch

[
Vn+n′−1/2,e+e′

]
. (5.25)

The minus sign appearing in this result indicates that the parity of Vn+n′−1/2,e+e′ is opposite to that ofVn+n′+1/2,e+e′ ,
hence we would affix a prime to the former module. This is therefore in perfect agreement with the genuine typical
fusion rule reported in (5.18), the case whene+e′ ∈ Z following from the character identity

sch
[
Vn+n′+1/2,e+e′

]
+ sch

[
V′

n+n′−1/2,e+e′
]
= sch

[
Pn+n′+ε(e+e′),ℓ+ℓ′

]
, (5.26)

which may be checked using the exact sequences (5.16) and theLoewy diagram in Figure 12. The other Grothendieck
fusion products may be checked in a similar fashion. We remark that one can also use the modular properties of
the characters, rather than the supercharacters, to compute Grothendieck fusion rules. However, closure under the
(projective) modular group action then requires the consideration of the characters and supercharacters of twisted
ĝl(1|1)-modules on which the generators act with half-integer moding.

5.5. Bulk Modular Invariants and State Spaces. The bulk state space of theGL(1|1) Wess-Zumino-Witten
model was first proposed by Saleur and Schomerus in [36]. The result is

Hbulk =

[
⊖
∫

R2

e/∈Z

[(
Vn,e⊗V′

−n,−e

)]
dnde

]
⊕Batyp, (5.27)

where the atypical contributions further decompose as

Batyp=
⊕

e∈Z
⊖
∫ 1

0
Jn,edn. (5.28)

We illustrate the structure of the indecomposable bulk atypicalsJn,e in Figure 13, noting that this proposal corre-
sponds to the charge-conjugate partition function, ratherthan the diagonal one.

The modular invariance of the corresponding bulk super partition function is now straightforward to verify:

Zc.c.

∣∣∣
S
=

∫

R2

(
sch

[
V′
−n,−e

]∣∣∣
S
sch

[
Vn,e

]∣∣∣
S

)
dnde

=

∫

R2

∫

R2

∫

R2
S(n,e),(n′,e′)S(−n,−e),(n′′,e′′)

(
sch

[
V′

n′′,e′′
]
sch

[
Vn′,e′

])
dndedn′de′dn′′de′′

=
∫

R2

∫

R2

∫

R2
(−ω2)e−2πi(ne′+n′e+ee′+ne′′+n′′e+ee′′)

(
sch

[
V′

n′′,e′′
]
sch

[
Vn′,e′

])
dndedn′de′dn′′de′′

=

∫

R2

∫

R2
δ
(
e′+e′′ = 0

)
δ
(
n′+e′+n′′+e′′ = 0

)(
sch

[
V′

n′′,e′′
]
sch

[
Vn′,e′

])
dn′de′dn′′de′′

=

∫

R2

(
sch

[
V′
−n,−e

]
sch

[
Vn,e

])
dn′de′

= Zc.c..

(5.29)
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The diagonal super partition function is also modular invariant. We remark that constructing an ordinary (non-
super) partition function that is modular invariant requires the introduction of half-integer moded sectors [66] and
the result is the invariant associated to the bosonic subtheory (orbifold) ofGL(1|1).

Other super partition functions which are modular invariant can be found using extended algebras. Every
atypical irreducibleAn,e is a simple current, by (5.18). One can therefore construct alarge variety of extended
algebras, among the most interesting being [66, 138] the tensor product of theβ γ ghost algebra and that of a pair
of free fermions, the affine Kac-Moody superalgebraŝl(2|1) at levels− 1

2 and 1, as well as an infinite series of
(non-Lie) superalgebras containing, as subalgebras, theN = 2 superconformal algebra, the Bershadsky-Polakov

algebraW(2)
3 , and its generalisations, the Feigin-Semikhatov algebrasW

(2)
n .

One very interesting observation is that the supercharacters of the atypical irreducibles of these extended al-
gebras turn out to bemock modular forms. These are familiar, but mysterious, objects in number theory whose
modular transformations may be expressed in terms of an integral, the Mordell integral [139]. One can evaluate the
Verlinde formula directly by using this Mordell integral [140]. It would therefore be extremely interesting if one
could rederive this using the method of atypical resolutions. We note that mock modular forms in general seem to
be closely tied to atypical characters of affine Lie superalgebras, see [141–143].

5.6. Correlation Functions. The three-point functions of theGL(1|1) Wess-Zumino-Witten model were com-
puted in [36]. The results bear a striking resemblance to those of symplectic fermions, an observation which was
explained in [102]. We briefly summarise the computations, generalising the method used for both symplectic
fermions and̂sl(2)−1/2. First, consider a set of three free bosonsϕ

(
z, z̄

)
,y
(
z, z̄

)
andx

(
z, z̄

)
whose non-regular

operator product expansions take the form

ϕ(z,z)ϕ(w,w) = log|z−w|2+ · · · , y(z,z)x(w,w) = log|z−w|2+ · · · . (5.30)

As before, we denote the chiral part of fields by a subscriptL. Define four holomorphic fields

JE(z) =−∂y(z), JN(z) =−∂x(z), J−(z) =− : eyL(z)−ϕL(z) : , J+(z) =− : ∂ϕ(z)e−yL(z)+ϕL(z) : , (5.31)

and their antiholomorphic analogues similarly. The non-regular operator product expansions of these fields are

JE(z)JN(w)∼ 1
(z−w)2 , JN(z)J±(w)∼ ±J±(w)

z−w
, J+(z)J−(w)∼ 1

(z−w)2 +
±JE(w)

z−w
, (5.32)

so we have a free field realisation of the currents ofĝl(1|1). As these fields again commute with the zero-mode of
e−ϕL(z), we can use the same screening charge as before:

Q=

∫

C

e
−ϕ(z,z) dzdz

2π
. (5.33)

In this free field realization, one can identify interestingbulk fields, namely

V−−
−e,−n+1/2 = : ee(ϕ+x)+ny : ,

V−+
−e,−n+1/2 = : ee(ϕ+x)+ny+ϕR−yR : ,

V+−
−e,−n+1/2 = : ee(ϕ+x)+ny+ϕL−yL : ,

V++
−e,−n+1/2 = : ee(ϕ+x)+ny+ϕ−y : .

(5.34)

We find the following non-regular operator product expansions with the currents:

JE(z)V−±
−e,−n+1/2(w,w)∼

−eV−±
−e,−n+1/2(w,w)

z−w
,

JN(z)V−±
−e,−n+1/2(w,w)∼

−nV−±
−e,−n+1/2(w, w̄)

z−w
,

J+(z)V−±
−e,−n+1/2(w,w)∼

eV+±
−e,−n+1/2(w,w)

z−w
,

JE(z)V+±
−e,−n+1/2(w,w)∼

−eV+±
−e,−n+1/2(w,w)

z−w
,

JN(z)V+±
−e,−n+1/2(w,w)∼

−(n−1)V+±
−e,−n+1/2(w,w)

z−w
,

J−(z)V+±
−e,−n+1/2(w,w)∼

V−±
−e,−n+1/2(w,w)

z−w
,

(5.35)

which imply that these fields correspond to the primaries ofV−n+1/2,−e.
Correlation functions are now defined in almost exactly the same manner as for symplectic fermions and

ŝl(2)−1/2. The only difference is that there are now two free bosons in addition to the screened bosonϕ
(
z, z̄

)
.

The results for the three-point functions include, for example,
〈
V−−
−e1,−n1+1/2(z,z)V

++
−e2,−n2+1/2(1,1)V

++
−e3,−n3+1/2(0,0)

〉

=−Γ(1−e1)Γ(−e2)Γ(−e3)

Γ(e1)Γ(1+e2)Γ(1+e3)

δ (n1+n2+n3 = 2)δ (e1+e2+e3 = 0)

|z−1|2(e2(1−e1−n1)+e1(1−n2))|z|2(e3(1−e1−n1)+e1(1−n3))
, (5.36)
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from which we again observe singularities at the atypical pointse∈ Z. As before, regularising leads to logarithms
signifying the presence of the indecomposablesPn,e and the results are consistent with the fusion rules (5.18).

5.7. Further Developments. Conformal field theories associated to affine Kac-Moody superalgebras provide a
rich source of interesting new logarithmic conformal field theories. Unfortunately, the only examples that are
understood in great detail are those witĥpsl(1|1) andĝl(1|1) symmetries. However, this does not mean that no
progress has been made on more sophisticated superalgebra models.

As with ĝl(1|1), the spectrum of the the bulk theory may be conjectured usinga combination of harmonic
analysis and a first order formulation. By the latter, one means a perturbative description of the Wess-Zumino-
Witten model in terms of its bosonic subtheory coupled to free bc-ghosts. One can then compute correlation
functions and so on as above. This approach has been considered, with varying degrees of detail, for the bulk
theories corresponding to the Wess-Zumino-Witten models on SL(2|1) [37], PSL(2|2) [144] and for general type
I supergroups in [101]. A different approach determines, and then exploits, correspondences with super-Liouville
theories [145, 146]. Both methods appear to generalise to the boundary conformal field theory, but there is an
obstacle amounting to identifying the appropriate boundary screening charges. This has so far only been achieved
for GL(1|1) [136] andOSP(1|2) [147]. In both cases, the boundary screening charge was found to be essentially
given by the square root of the bulk screening charge. This behaviour is very similar to that observed for ma-
trix factorization in Landau-Ginzburg theories [148] where the boundary and bulk screening charges seem to be
similarly related, at least forGL(n|n) [149].

Some supergroup Wess-Zumino-Witten theories and their cosets have remarkable properties that lead to interest-
ing applications in physics. The key point is the rather innocent-seeming observation that the Killing form, the su-
pertrace in the adjoint representation, vanishes identically for the simple Lie superalgebraspsl(n|n), osp(2n+2|2n)
andd

(
2,1;α

)
. The corresponding Wess-Zumino-Witten models have been argued to possess exactly marginal

perturbations [150–152] including, as a special case, theprincipal chiral model. In the case ofPSU(1,1|2), this
describes (the target space supersymmetric part of) superstring theory onAdS3×S3×X, whereX is some four-
dimensional manifold [69]. One prediction of the celebrated AdS/CFT correspondenceis that this string theory
is dual to the two-dimensional conformal field theory associated with certain symmetric orbifolds of the four-
manifoldX. The superstring theory dual to four-dimensional conformal gauge theory is likewise described by the
conformal field theory associated to the coset [153]

PSU(2,2|4)
SU

(
2,2

)
×SU

(
4
) . (5.37)

This coset differs from the gauged Wess-Zumino-Witten model, but it can still be argued to be conformally invariant
due to the fact that the Killing form of the numerator vanishes [152,154,155].

Conformal field theories with superalgebra symmetries alsoappear in statistical physics. Supersymmetric dis-
ordered systems are described by perturbations ofn pairs of free fermions andβ γ ghosts. The bilinears in these
fields are well known to define the currents ofĝl(n|n) at levelk = 1. The associated disordered system is given
by the corresponding current-current perturbation [68] (although in this case it seems that the perturbed theory is
not quite conformal). One of the important open questions inthis area is finding an effective field theory for the
transition of plateaux of the integer quantum Hall effect. Such a theory might haveGL(n|n) symmetry and sigma
models related toPSL(2|2) have also been argued to appear in this context [67].

6. STAGGEREDMODULES

We have seen in the previous sections that logarithmic conformal field theories all have certain types of re-
ducible, but indecomposable, modules in their spectra. Theaction of the Virasoro zero-modeL0 is not diagonal-
isable on these modules, leading to logarithmic singularities in appropriate correlators. In this section, we shall
discuss the mathematical structure of the simplest class ofmodules on whichL0 cannot be diagonalised, thestag-
gered modules. These were so named by Rohsiepe in his study [70] of indecomposable Virasoro modules formed
by glueing several highest weight modules together.24 Here, we will discuss indecomposables formed by glueing
modules from more general, but still structurally well-understood, classes. However, we will restrict to glueing

24The “staggering” presumably derives from a useful pictorial representation (see Figure?? for example) in which the vertical positions of the
highest weight states are ordered according as to their conformal dimensions. The result bears a passing similarity to the staggered starting
positions customarily used for runners racing around a track.
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only two of these well-understood modules together. These are the most common types of indecomposables en-
countered in logarithmic conformal field theory and the majority of the best understood examples of these theories
feature only this type of reducible indecomposable (those studied in Sections 3, 4 and 5 for example). A further
advantage is that we expect a classification of such staggered modules to be feasible, see [70, 71] for the Virasoro
case.

6.1. Staggered Modules. In preparation for defining staggered modules in some generality, we first declare that
for a given Lie algebra (or more generally, associative algebra25), we will choose a collection ofstandard modules
whose structure is reasonably well-understood: Forĝl(1|1), the standard modules are the Verma modules; for
ŝl(2)−1/2, standard means the spectral flows of the relaxed highest weight modules which we have denoted by

E
(ℓ)
λ ; for M

(
1,2

)
, standard means the Feigin-Fuchs modulesFµ . These are the modules whose characters have

the most satisfactory modular transformation properties.We remark that these notions of being “standard” may be
lifted to the respective simple current extensions by declaring that an extended module is standard whenever it is
the orbit, under fusing with the simple current, of a standard module. In this sense,W−1/8 andW3/8 are standard
W

(
1,2

)
-modules, whileW0 andW1 are not.

Note that this notion is more general than logarithmic conformal field theory. For example, we may choose the
standard modules of a (type I) Lie superalgebra likegl(1|1) to be its Kac modules [98].26 Similarly, a good choice
for quantum groups likeUq

(
sl
(
2
))

is that standard means highest weight. Even the diagram algebras, such as the
Temperley-Lieb algebra, which crop up in statistical lattice models have standard modules, in this case the right
choices are the cell modules of Graham and Lehrer [156] (alsoknown as standard modules; we have borrowed the
nomenclature from this example).

The feature that these collections have in common is that standard modules are always indecomposable and,
moreover, are naturally parametrised so that they are generically irreducible. In this review, we have referred to
irreducible standard modules as typical and reducible onesas atypical. Furthermore, and this is crucial for the
next definition, the central elements of the associative algebra all act diagonalisably on standard modules. We now
define a staggered moduleS to be one which is (isomorphic to) an extension of a standard module by another upon
which there is a central elementQ acting non-diagonalisably:

0−→HL ι−→ S
π−→HR −→ 0. (6.1)

In other words,S has a submodule isomorphic to a standard moduleHL , which we shall refer to as theleft module,
and the quotientS/ι

(
HL

)
is isomorphic to another standard moduleHR, which we shall refer to as theright

module. For gl(1|1) andUq
(
sl
(
2
))

, we may takeQ to be quadratic Casimir; for the Temperley-Lieb algebra,Q
can be taken to be the “braid transfer matrix” [157]. For the algebras arising in logarithmic conformal field theory,
it is L0 which acts non-diagonalisably — to get a central element, one can act withe2πiL0 instead. It is not hard to
see thatL0 ande2πiL0 may be interchanged with only minor modifications to the arguments that follow.27

The first result to note about staggered modules is that they only exist if Q acts on both the left and right
modules as the same multipleλ of the identity (Appendix A.1). The second result to note is that the non-trivial
Jordan blocks ofQ all have rank 2. This follows directly from the exactness of (6.1): If

∣∣v
〉
∈ S is an arbitrary

element of a non-trivial Jordan block forQ of (generalised) eigenvalueλ , then(Q−λ )
∣∣v
〉

need not be 0, but
π(Q−λ )

∣∣v
〉
= (Q−λ )π

∣∣v
〉
= 0, sinceQ is diagonalisable onHR. Exactness then gives(Q−λ )

∣∣v
〉
= ι

∣∣w
〉
, for

some
∣∣w

〉
∈ HL of Q-eigenvalueλ , whence(Q−λ )2

∣∣v
〉
= (Q−λ )ι

∣∣w
〉
= ι(Q−λ )

∣∣w
〉
= 0, becauseQ is also

diagonalisable onHL .
To further investigate these staggered modules, we introduce some more notation. Let

∣∣θ
〉
∈ S be a generalised

eigenvector ofQ of eigenvalueλ , so that
∣∣χ

〉
= (Q−λ )

∣∣θ
〉
6= 0. Then,π

∣∣θ
〉
∈HR is non-zero becauseπ

∣∣θ
〉
= 0

implies that
∣∣θ
〉
∈ ι

(
HL

)
, by exactness, hence thatθ is a genuine eigenvector ofQ. Now, suppose that there is an

elementU of our associative algebra such thatUπ
∣∣θ
〉
= 0. Then,πU

∣∣θ
〉
= 0, henceU

∣∣θ
〉
∈ ι

(
HL

)
. Because of

25It is more convenient to consider the universal enveloping algebra of the Lie algebra in what follows.
26Actually, we would have liked to refer to standard modules ingeneral as “Kac modules”. However, this term is already in use for logarithmic
conformal field theories with Virasoro algebra symmetries [81]. It is not clear to us at present if these Kac modules for the Virasoro algebra are
good candidates for standard modules in the sense we wish. Moreover, a theory of Virasoro staggered modules, with standard meaning highest
weight, has already been developed [71].
27One could also imagine conformal field theories on which other zero-modes act non-diagonalisably, however very few examples appear to
be known (see [158] for one).
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this, the centrality ofQ now gives

U
∣∣χ

〉
=U(Q−λ )

∣∣θ
〉
= (Q−λ )U

∣∣θ
〉
= 0, (6.2)

the last equality again following from the fact that elements of ι
(
HL

)
are genuine eigenvectors ofQ. In other

words, anyU annihilatingπ
∣∣θ
〉
∈HR also annihilates

∣∣χ
〉
∈ ι

(
HL

)
.

This is a bit abstract, so let us consider an important specialisation that occurs when standard means highest
weight and

∣∣θ
〉

is chosen to project onto the highest weight state ofHR. Then,
∣∣χ

〉
= (Q−λ )

∣∣θ
〉

is necessarily
non-zero becauseQ would be diagonalisable on all ofS otherwise. But,

∣∣θ
〉

is annihilated by all positive modes
U , hence we can conclude that

∣∣χ
〉

is too. It follows that in a staggered module over a Lie (super)algebra,
∣∣χ

〉
is a

non-zero singular vectorof HL . Similarly, if π
∣∣θ
〉

is a relaxed highest weight state, then so is
∣∣χ

〉
(we might call

it a relaxed singular vector).
Taking this a step further, we may suppose thatHR is generated by a set

{∣∣Θ j
〉}

j∈J and then choose elements∣∣θ j
〉
∈ S so thatπ

∣∣θ j
〉
=
∣∣Θ j

〉
. For eachj ∈ J, the elements of our associative algebra which annihilate

∣∣Θ j
〉

form

an ideal whose generators we denote byU j
i , i ∈ I . We now define

∣∣ω j
i

〉
∈HL by

ι
∣∣ω j

i

〉
=U j

i

∣∣θ j〉 (6.3)

(applyingπ shows thatU j
i

∣∣θ j
〉
∈ ι

(
HL

)
). Because there is an ambiguity in our choice of each

∣∣θ j
〉

up to adding

arbitrary elements
∣∣η j

〉
∈HL , there is a similar ambiguity in our definition of

∣∣ω j
i

〉
:

∣∣θ j〉−→
∣∣θ j〉+ ι

∣∣η j〉 ⇒
∣∣ω j

i

〉
−→

∣∣ω j
i

〉
+U j

i

∣∣η j〉. (6.4)

With this setup, we can prove that the
∣∣ω j

i

〉
determine the isomorphism class of a staggered module, generalising

the Virasoro result given in [71, Prop. 3.6].

Theorem. LetS andS be staggered modules with the same left moduleHL and the same right moduleHR. Then,
there exists an isomorphismψ : S → S making the diagram

0 −−−−→ HL ι−−−−→ S
π−−−−→ HR −−−−→ 0

∥∥∥
xψ

∥∥∥

0 −−−−→ HL ι−−−−→ S
π−−−−→ HR −−−−→ 0

(6.5)

commute if and only if there exist
∣∣η j

〉
∈HL , for each j∈ J, such that

∣∣ω j
i

〉
=

∣∣ω j
i

〉
+U j

i

∣∣η j〉, (6.6)

for all i ∈ I.

Proof. If we have such an isomorphismψ , then

π
(
ψ
∣∣θ j〉−

∣∣θ j〉) = π
∣∣θ j〉−π

∣∣θ j〉 =
∣∣Θ j〉−

∣∣Θ j〉 = 0, (6.7)

henceψ
∣∣θ j〉−

∣∣θ j
〉
= ι

∣∣η j
〉

for some
∣∣η j

〉
∈HL . ApplyingU j

i now gives (6.6), as required.
Conversely, if (6.6) holds for some

∣∣η j
〉
∈HL , then defineψ to beι ◦ ι−1 on ι

(
HL

)
and by

ψ
∣∣θ j〉

=
∣∣θ j〉+ ι

∣∣η j〉, ψU
∣∣θ j〉

=Uψ
∣∣θ j〉

(6.8)

otherwise. Now,ψ is clearly a homomorphism and it is easy to invert. All we needto check is that it is well-

defined because it may happen thatU
∣∣θ j〉 ∈ ι

(
HL

)
, in which case the two definitions forψ must agree. But,

U
∣∣θ j〉 ∈ ι

(
HL

)
leads toU

∣∣Θ j〉
= 0, henceU belongs to the (left) ideal that annihilates

∣∣Θ j〉
. Thus, we may write

U = ∑i V
j

i U j
i . The first definition forψ now gives

ψU
∣∣θ j〉

= ιι−1∑
i

V j
i ι
∣∣ω j

i

〉
= ι ∑

i

V j
i

(∣∣ω j
i

〉
+U j

i

∣∣η j〉) = ι ∑
i

V j
i

∣∣ω j
i

〉
+ ιU

∣∣η j〉, (6.9)

while the second yields

ψU
∣∣θ j〉

=U
(∣∣θ j〉+ ι

∣∣η j〉)= ∑
i

V j
i ι
∣∣ω j

i

〉
+ ιU

∣∣η j〉, (6.10)

completing the proof.

We illustrate this theorem with staggered Virasoro modulesfor which standard means Verma. Then,HR is
generated by its highest weight state

∣∣Θ
〉

(so |J| = 1) and the annihilator of this state is generated byL1, L2 and
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L0−h, whereh is the conformal dimension of
∣∣Θ

〉
. We therefore obtain three vectors

∣∣ω0
〉
= (L0−h)

∣∣θ
〉
,

∣∣ω1
〉
= L1

∣∣θ
〉
,

∣∣ω2
〉
= L2

∣∣θ
〉
, (6.11)

whereπ
∣∣θ
〉
=

∣∣Θ
〉
. Up to the ambiguity in choosing

∣∣θ
〉
, these three vectors completely specify the isomorphism

class of a staggered module. In fact, because
∣∣ω0

〉
is (a rescaling of)

∣∣χ
〉

and Virasoro singular vectors of a given
conformal dimension are unique, this vector is already determined byHL andHR, so the staggered module is
characterised by

∣∣ω1
〉

and
∣∣ω2

〉
.28

This theorem therefore allows us to reduce the problem of deciding if two staggered modules are isomorphic
to computing a set of vectors

∣∣ω j
i

〉
∈ HL and seeing if there exist

∣∣η j
〉
∈ HL such that (6.6) holds. If one can

determine which sets of
∣∣ω j

i

〉
do actually correspond to a staggered module — this is the existence problem and it

is decidedly difficult in general — then the question of counting the number of isomorphism classes of staggered
modules with given left and right modules becomes an exercise in linear algebra. We remark that this is not
quite the same as computing Ext1

(
HR,HL

)
(see Appendix A.1) because we are restricting to extensionswith a

non-diagonalisable action of the centre.

6.2. Logarithmic Couplings. Because the counting of staggered module isomorphism classes may be reduced,
modulo the existence problem, to a question of linear algebra, it seems plausible that the space of isomorphism
classes will be a vector space (or affine space). It seems reasonable to ask if there is a natural means to parametrise
this space. This is the idea behind logarithmic couplings: Instead of characterising a staggered module by a
collection of vectors

∣∣ω j
i

〉
, subject to the ambiguities (6.6), we try to find a collectionof numbers which likewise

characterise the staggered module but which areinvariantunder (6.6).
This programme has only been studied in any detail for the Virasoro algebra (related computations forŝl(2)−1/2

were detailed in [62] and for̂sl(2)−4/3 in [56, 63]). When standard means Verma, it turns out [71, Thm. 6.4 and

Thm. 6.14] that the vector space of isomorphism classes of staggered modules has dimension 0 when
∣∣χ

〉
is

the (generating) highest weight state ofHL (staggered modules are unique) and has dimension 1 when
∣∣χ

〉
is a

principal singular vector, meaning that it is descended from no other proper singular vector. These are the most
useful cases, though it is also possible for the dimension tobe 2, and we shall consider the second case exclusively
in the remainder of this section.

We therefore need a single number to identify a staggered Virasoro module, up to isomorphism, when
∣∣χ

〉
is

principal. A method to compute this number was originally proposed by Gaberdiel and Kausch [28] in the course
of explicitly constructing certainc=−2 andc=−7 staggered modules using the Nahm-Gaberdiel-Kausch fusion
algorithm. They chose

∣∣θ
〉

to satisfyLn
∣∣θ
〉
= 0, for all n> 1, and then definedβ ∈ C by Lℓ

1

∣∣θ
〉
= β

∣∣ξ
〉
, where∣∣ξ

〉
denotes the highest weight state ofHL andℓ is the difference in conformal dimensions of

∣∣θ
〉

and
∣∣ξ
〉
.29 One

can check thatβ does not depend upon the choice of
∣∣θ
〉
, assuming that we only choose among the

∣∣θ
〉

which are
annihilated by theLn with n> 1. It follows that isomorphic staggered modules will have the sameβ .

More recently, these numbersβ were generalised to other staggered modules, most notably in [80] where it was
realised that Gurarie and Ludwig’s anomaly numbers (see Equation (2.35)) for percolation and dilute polymers
were just (differently normalised versions of) theβ for thec= 0 staggered modulesS1,5 andS3,1 (see Sections 2.3
and 2.5). Unfortunately, attention was not always paid to the crucial requirement thatβ not depend upon the
choice of

∣∣θ
〉
. In particular, when one considers staggered modules more general than those considered in [28], it

is not usually possible to find any
∣∣θ
〉

satisfyingLn
∣∣θ
〉
= 0 for all n> 1. It follows that the proposed recipe for

computingβ does not make sense for general staggered modules.
This was corrected in [26] where a definition ofβ was given for any staggered Virasoro module with

∣∣χ
〉

principal (see [71] for the general case). First, we normalise [159] the singular vector
∣∣χ

〉
so that

∣∣χ
〉
=U

∣∣ξ
〉
, U = Lℓ

−1+ · · · , (6.12)

where the omitted terms are Virasoro monomials involving the L−n with n > 1 and at least onen > 1. We then
defineβ by

U†
∣∣θ
〉
= β

∣∣ξ
〉
, (6.13)

28This remains true if standard means, instead, highest weight because the additional generators of the annihilating ideal lead to additional
states

∣∣ωi
〉

which can be computed given the
∣∣ω1

〉
and

∣∣ω2
〉

defined in the Verma case [71, Prop. 3.4].
29We remark that

∣∣θ
〉

is naturally restricted to being a generalised eigenvalue of L0 in this development.
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whereL†
n = L−n is the usual adjoint (lifted to the universal enveloping algebra). If

∣∣ξ
〉

is given norm 1, then
applying

〈
ξ
∣∣ to both sides of this definition leads to

β =
〈
ξ
∣∣U†

∣∣θ
〉
=

〈
χ
∣∣θ
〉
, (6.14)

which is obviously invariant under
∣∣θ
〉
→

∣∣θ
〉
+ ι

∣∣η
〉
,
∣∣η

〉
∈HL , because

∣∣χ
〉

is singular inι
(
HL

)
. The quantities

β were christenedlogarithmic couplingsin [26], though the termsbeta-invariants[71] and indecomposability
parameters[90] have also been used since.

The logarithmic coupling defined in (6.13) has the property that two staggered modules with the same left and
right modules will be non-isomorphic if their couplings aredifferent. The converse is also true [71, Thm. 6.15]: If
the logarithmic couplings of such staggered modules coincide, then the modules are isomorphic. In other words,
β is a complete invariant of the space of isomorphism classes of staggered Virasoro modules. The same is true for
staggered Virasoro modules with standard meaning highest weight, though it is then no longer true that everyβ
need correspond to a staggered module.

A downside to this theory is thatβ is not particularly easy to compute in general. One can explicitly construct
the staggered module, for example using the Nahm-Gaberdiel-Kausch algorithm [26,28,80] (or as a space of local
martingales for a Schramm-Loewner evolution process [160]). In this way, the logarithmic couplingsβr,s of the
c= 0 staggered modulesSr,s considered in Section 2 may be computed:30

β1,4 =− 1
2, β1,5 =− 5

18, β1,7 =−420, β1,8 =− 10780000
243 , β3,1 =

10
27. (6.15)

A slightly more efficient method [82] is to check if the existence of singular vectors in staggered modules fixes
β . However, the most efficient known seems to be the proposal of[161] in which a limit formula is obtained
for β as a byproduct of cancelling divergences in Virasoro primary operator product expansions as the conformal
dimensions and central charges tend to their required values in a controlled manner. Surprisingly, the logarithmic
couplings of certain classes of staggered modules withhR−hL small can be computed as a function of the central
charge [82,160,162,163]. These functions are reasonably simple and conjectures for more general formulae have
been made. However, there appears to have been no progress asyet on resolving these conjectures.

6.3. More Logarithmic Correlation Functions. We now briefly reconsider the (chiral) two-point function calcu-
lations of Sections 1.1 and 2.4.31 Given the states

∣∣θ
〉

and
∣∣χ

〉
= (L0−h)

∣∣θ
〉
, the global invariance of the vacuum

always leads to the following form for the two-point functions of the corresponding fields:

〈
χ(z)χ(w)

〉
= 0,

〈
χ(z)θ (w)

〉
=

B

(z−w)2h
,

〈
θ (z)θ (w)

〉
=

A−2Blog(z−w)

(z−w)2h
, (6.16)

whereA andB are constants. Ifℓ = 0, so
∣∣θ
〉

has the same conformal dimension as
∣∣ξ
〉
, then

∣∣χ
〉
=

∣∣ξ
〉

and
B=

〈
ξ
∣∣θ
〉
. In this case,

∣∣ξ
〉

has norm zero, so we are free to normalise the hermitian form so thatB= 1. Note that
B does not depend upon the choice of

∣∣θ
〉
, whereasA does. We remark that if the vacuum

∣∣0
〉

has a logarithmic
partner

∣∣Ω
〉
, soL0

∣∣Ω
〉
=

∣∣0
〉
, then this analysis shows that the one-point function of theidentity field vanishes

whereas that of its partner will be constant.
Whenℓ= 1,

∣∣χ
〉

can only beL−1
∣∣ξ
〉

which is only singular when
∣∣ξ
〉

has dimension 0 and
∣∣θ
〉

has dimension
1. It follows that the hermitian form may be normalised via

〈
ξ (z)ξ (w)

〉
=

〈
ξ
∣∣ξ
〉
= 1. Because

∣∣ω1
〉
= L1

∣∣θ
〉
=

β
∣∣ξ
〉
, we can computeB using the partial differential equation derived from theL1-invariance of the vacuum.

This equation has inhomogeneous terms proportional to the logarithmic couplingβ of the staggered module which
determine the constant of integration in

〈
ξ (z)θ (w)

〉
:

〈
ξ (z)θ (w)

〉
=

β
z−w

⇒
〈

χ(z)θ (w)
〉
=

−β
(z−w)2 ⇒ B=−β . (6.17)

The constantA appearing in
〈
θ (z)θ (w)

〉
again varies with the choice of

∣∣θ
〉
, unlessβ = 0.

For ℓ > 1, computing the proportionality constant betweenB andβ is a little more cumbersome. As above,
one way is to determine

〈
χ(z)θ (w)

〉
from

〈
ξ (z)θ (w)

〉
. For this, we derive in the usual fashion, forn> 2 and an

30We remark that the discrepancy between the logarithmic couplings β1,5 = − 5
18, β3,1 = 10

27 and the anomaly numbersb1,5 = − 5
8 , b3,1 = 5

6
of Gurarie and Ludwig (see Equation (2.35)) is just a matter of normalisation. We have chosen to (canonically) normalise

∣∣χ
〉

as(
L2
−1− 2

3L−2
)∣∣ξ

〉
. Identifying

∣∣ξ
〉

with the vacuum
∣∣0
〉
, we find that

∣∣T
〉
= − 3

2

∣∣χ
〉

and
∣∣t
〉
= − 3

2

∣∣θ
〉
, hence the anomaly numbers are

obtained from the logarithmic couplings by multiplying by
(
− 3

2

)2
.

31Three-point correlators may likewise be computed, assuming that one has already determined the three-point coupling constants between
primary fields.
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arbitrary fieldφ(z), the following relation:

〈
(L−nφ)(z)θ (w)

〉
=

(−1)n

(z−w)n−1

[
∂w+

h(n−1)
z−w

]〈
φ(z)θ (w)

〉
+(−1)n

ℓ

∑
k=1

(
k+n−1

n−2

)〈
φ(z)ωk(w)

〉

(z−w)n+k . (6.18)

Here, we have defined
∣∣ωk

〉
= Lk

∣∣θ
〉
. Moreover, we note that whenℓ > 1, we may always choose

∣∣θ
〉

so
that

∣∣ω1
〉
= 0.32 For this choice of

∣∣θ
〉
, we deduce (from the global conformal invariance of the vacuum) that〈

ξ (z)θ (w)
〉
= 0. (This is certainly not true whenℓ= 1 — see (6.17).)

To illustrate the method, consider thec = 0 staggered moduleS1,7 that was briefly considered in Section 2.3.
Recalling (2.18) and (6.15), we note that

∣∣ξ
〉

has dimension 2,
∣∣θ
〉

has dimensionh= 5, β = −420, and
∣∣χ

〉
=(

L3
−1−6L−2L−1+6L−3

)∣∣ξ
〉
. Setting

∣∣ω1
〉
= 0 forces

∣∣ω2
〉
=− 1

48βL−1
∣∣ξ
〉

and
∣∣ω3

〉
= 1

12β
∣∣ξ
〉
. From

〈
ξ (z)θ (w)

〉
=

0 and (6.18), we now obtain

〈
(L−3ξ )(z)θ (w)

〉
=−4

〈
ξ (z)ω2(w)

〉

(z−w)5
−5

〈
ξ (z)ω3(w)

〉

(z−w)6 =
−β/12

(z−w)10 ,

〈
(L−2L−1ξ )(z)θ (w)

〉
=

〈
(L−1ξ )(z)ω2(w)

〉

(z−w)5 =
5β/12

(z−w)10 ,

(6.19)

and
〈(

L3
−1ξ

)
(z)θ (w)

〉
= 0. Therefore,

〈
χ(z)θ (w)

〉
=

−3β
(z−w)10 (6.20)

andB=−3β = 1260. Unfortunately, we are not aware of any general resultsconcerning the ratioB/β . However,
the limit formula forβ given in [161] has a variant which givesB directly [164].

Whether one prefersβ or B, it is clear that such a parameter is mathematically important and physically relevant.
For example, the logarithmic couplings for thec = 0 staggered modules containing the vacuum distinguish the
percolation and dilute polymers theories. In this case, thestaggered modules have different right modules, but
this might be too difficult to check explicitly in a more general physical situation. Another example occurs in the
symplectic fermions theory in which one can identifyc=−2 staggered Virasoro modules where

∣∣ξ
〉

and
∣∣θ
〉

have
dimensions 0 and 1, respectively. For each such module, one example being

∣∣θ
〉
= J+−1

∣∣Ω
〉

and
∣∣ξ
〉
= −J+0

∣∣Ω
〉

(see Section 3.1 for notation),β is found to be−1. However, there is anotherc= −2 theory, theabelian sandpile
model(see [165] for example), in which a staggered module with

∣∣ξ
〉

dimension 0 and
∣∣θ
〉

dimension 1 is present.
However, the logarithmic coupling here has been measured asβ = 1

2 [166], indicating that this theory is not
equivalent to symplectic fermions.

6.4. Further Developments. As noted at the beginning, the staggered modules which have occupied us through-
out this section are among the simplest, structurally, which give rise to logarithmic singularities in two-point
functions. However, more complicated structures may arise: Examples of indecomposable Virasoro modules on
whichL0 acts with Jordan blocks of rank 3 were first discovered in [80]through fusion. These appear structurally
as a glueing of four highest weight modules and their existence was posited more generally in [81, 167] using a
(conjectured) means of analysing Virasoro representations using lattice techniques. Moreover, indecomposables
formed by glueing three highest weight modules, but with only rank 2 Jordan blocks, have been shown to arise in
the percolation conformal field theory [85]. More recent lattice computations [163] suggest that indecomposables
with Jordan blocks of arbitrary rank are physically relevant. Unfortunately, there is almost nothing known about
the finer mathematical structure of these more complicated indecomposables.

We conclude with an example illustrating a Virasoro indecomposable with a rank 3 Jordan block forL0. It
may be realised as the fusion product of thec = 0 irreduciblesL1/8 andL−1/24, but has only been explicitly
constructed to grade 6 [80], so its deeper structure remainsunknown (see [81] for a conjectured character). There
are two ground states of dimension 0 and they form a Jordan block for L0. We denote the eigenvector by

∣∣ξ
〉

and
its partner by

∣∣θ
〉
, normalised so thatL0

∣∣θ
〉
=

∣∣ξ
〉
. At dimension 1, one finds four states with all but one forming

a rank 3 Jordan block.L−1
∣∣ξ
〉

is found to be non-zero, hence is theL0-eigenstate belonging to the Jordan block;
the other eigenstate will be denoted by

∣∣ξ ′〉. The generator of the Jordan block will be denoted by
∣∣ζ
〉

and, along
with L−1

∣∣θ
〉
, this completes a basis for the dimension 1 subspace.

32This follows from counting arguments. Ifp(ℓ) denotes the number of partitions ofℓ, then
∣∣ω1

〉
belongs to a space of dimension

p
(
hR−hL −1

)
, whereas one hasp

(
hR−hL

)
− 1 effective independent shifts

∣∣θ
〉
→

∣∣θ
〉
+
∣∣η

〉
. Becausep(ℓ)− p(ℓ−1) > 1 whenever

ℓ > 2, we conclude that
∣∣θ

〉
may always be shifted so that

∣∣ω1
〉
= 0. Strictly speaking, we should also allow for the possibility thatHL has a

vanishing singular vector of dimension less than that of
∣∣ω0

〉
, but this turns out not to change the result.
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The states
∣∣ζ
〉

and
∣∣ξ ′〉 must satisfy the following relations:

(L0−1)
∣∣ζ
〉
= a1L−1

∣∣θ
〉
+a2

∣∣ξ ′〉+a3L−1
∣∣ξ
〉
, L1

∣∣ζ
〉
= b1

∣∣ξ
〉
+b2

∣∣θ
〉
, L1

∣∣ξ ′〉 = c1
∣∣ξ
〉
+ c2

∣∣θ
〉
. (6.21)

However,a1 6= 0 as
∣∣ζ
〉

generates a rank 3 block, hence we may scale
∣∣ζ
〉

so thata1 = 1. Moreover,
∣∣ξ ′〉 is

anL0-eigenvector, hence 0= L1(L0−1)
∣∣ξ ′〉 = L0L1

∣∣ξ ′〉 = c1L0
∣∣ξ
〉
+ c2L0

∣∣θ
〉
= c2

∣∣ξ
〉
, hencec2 = 0. One can

check explicitly thatc1 is non-zero, hence we may normalise
∣∣ξ ′〉 so thatc1 = 1. We now make use of the freedom

we have in defining
∣∣ζ
〉
: Shifting by multiples ofL−1

∣∣θ
〉

and
∣∣ξ ′〉 allows us to tunea3 andb1 to 0. Finally,

b2
∣∣ξ
〉
= L0L1

∣∣ζ
〉
= L1(L0−1)

∣∣ζ
〉
= (a2+2)

∣∣ξ
〉

reduces us to a single unknown:

(L0−1)
∣∣ζ
〉
= L−1

∣∣θ
〉
+(b2−2)

∣∣ξ ′〉, L1
∣∣ζ
〉
= b2

∣∣θ
〉
, L1

∣∣ξ ′〉=
∣∣ξ
〉
. (6.22)

This result may be checked explicitly with the result that the fusion product hasb2 = − 1
12. It is now straight-

forward to calculate the corresponding two-point correlators:
〈
ξ (z)ξ (w)

〉
=

〈
ξ (z)ξ ′(w)

〉
= 0,

〈
ξ (z)θ (w)

〉
= 1,

〈
θ (z)θ (w)

〉
= A−2log(z−w),

〈
θ (z)ξ ′(w)

〉
=

1
z−w

,
〈
ξ ′(z)ξ ′(w)

〉
=

1

(z−w)2 ,
〈
ξ (z)ζ (w)

〉
=

b2

z−w
,

〈
θ (z)ζ (w)

〉
=

B−2b2 log(z−w)
z−w

,
〈
ξ ′(z)ζ (w)

〉
=

C− (b2−3) log(z−w)

(z−w)2 ,

〈
ζ (z)ζ (w)

〉
=

D+E log(z−w)− (b2−1)(b2−6) log2(z−w)

(z−w)2 .

(6.23)

The constantsA, B, C, D andE are all dependent upon the precise choices that we have made for the fields. We
remark that a log2 term in correlators is indicative of a rank 3 Jordan block forL0.

7. DISCUSSION ANDCONCLUSIONS

In this review, we covered various aspects of logarithmic conformal field theory. We have started with a discus-
sion of a logarithmic theory describing the crossing probability for percolation at the critical point. We then have
discussed three well-understood examples of logarithmic conformal field theory. Our approach of study consists
of two essential steps.

First, one needs to thoroughly understand the representation theory of the chiral algebra. The pattern is that
there is a large set of typical (standard) modules with few non-generic (atypical) points at which modules cease to
be irreducible. It is then crucial to understand the structure of projective modules that can be constructed from the
atypical irreducibles.

The second step is the modular data. Here, we have a procedureto compute the Verlinde formula and bulk
modular invariants which then can be combined to identify extended algebras. This procedure has been outlined
already in the introduction in the example of the free boson.As we are convinced of its future usefullness, we
summarize it now for logarithmic theories.

(1) Start with a logarithmic conformal field theory with continous spectrum
(2) Compute the modular S-transformation for characters oftypical representations.
(3) Splice short exact sequences to obtain a long exact sequence that resolves atypical irreducible modules in

terms of typicals. This allows to express atypical characters as infinite sums of typicals.
(4) Use these sums to deduce the S-matrix of characters of atypical irreducible modules.
(5) Apply the natural continuum version of the Verlinde formula.
(6) Use the modular properties to compute bulk modular invariants corresponding to extended algebras.
(7) Use fusion of the parent theory to deduce the fusion rulesof the extended theory.

We stress that our method of applying the Verlinde formula requires to have non-periodic resolutions of atypical
modules in terms of typical representations. The extended theories usually only have discrete or even finite spec-
trum and resolutions are usually periodic. In such examples, modular transformations depend on the modular pa-
rameterτ, especially one obtains a representation of the modular group with non-diagonalizable T-transformation.
In such a case the application of the Verlinde formula is not clear, see however [104] for a proposed generalized
Verlinde formula. As we can immediately deduce fusion of theextended theory by its continuous parent, we have
a straight forward method that circumvents a generalized Verlinde formula. Nonetheless it is an apparent question
whether one can derive the proposal of [104] using our methods.
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The three examples of this review are closely related, namely a û(1)-coset algebra of an extension ofĝl(1|1) is
ŝl(2) at level−1/2 [102], while the singletM

(
1,2

)
-algebra and tripletW

(
1,2

)
-algebra arêu(1)-coset algebras of

ŝl(2) at level−1/2 and its maximal extended algebra [61]. The generalizationis that the singletM
(
1, p

)
-algebra

and tripletW
(
1, p

)
-algebra arêu(1)-coset algebras of certain fractional levelW-algebras [168].

In this article we only partialy emphasized the power of freefield realizations. All three examples allowed for
a free field realization inside a certain lattice theory, where the chira; algebra was the kernel of a screening charge.
Such a description is a powerful tool in understanding the representation theory and also as explained in the present
article it provides an explicit integral for correlation functions.

Presently, the simplest class of logarithmic conformal field theory is finally under control. Hopefully the near
future will bring insights into more sophisticated theories. Having applications in both string theory and statistical
physics in mind, it seems worth to turn to the theories associated toĝl(2|2) andp̂sl(2|2).
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APPENDIX A. HOMOLOGICAL ALGEBRA: A (V ERY BASIC) PRIMER

The quantum state space of a (bulk) conformal field theory is amodule (representation space) over a symmetry
algebra which must contain two commuting copies of the Virasoro algebra (one copy in the boundary case). The
raison d’̂etre of logarithmic conformal field theory is that there are occasions for which this module cannot be
written as a direct sum of irreducible submodules over the symmetry algebra, but rather that one must include,
in the direct sum, some submodules which are reducible but indecomposable. When discussing reducible but
indecomposable modules, the language of homological algebra and category theory becomes very convenient,
indeed almost unavoidable. In this appendix, we will introduce some of the basic concepts and terminology that
are used freely throughout the text.

A.1. Exact Sequences and Extensions. First, recall that a module is said to bereducibleif it contains a non-
trivial proper submodule anddecomposableif it may be written as the direct sum of two non-trivial submodules:
M = M1⊕M2 with M1,M2 6= {0}. We remark that in the latter case,M1 andM2 are calleddirect summandsof
the decomposable moduleM. An irreducible (or simple) module is then one which has only the trivial module
and itself as submodules. A direct sum of irreducible modules is said to becompletely reducible(or semisimple).
Similarly, anindecomposablemodule is one for whichM =M1⊕M2 implies that eitherM1 or M2 is trivial. Finally,
we define apropersubmodule ofM to be one which is not all ofM. A maximalproper submodule ofM is then a
proper submoduleN for whichN ⊂ M′ ⊆ M (with M′ a submodule) implies thatM′ = M.

The structure-preserving maps between modulesM andN, themodule homomorphisms(or intertwiners), are
defined to be those linear mapsf : M → N which commute with the action of the symmetry algebraA:

a · f (m) = f (a ·m) for all a∈ A andm∈ M. (A.1)

Canonical examples include the identity map id :M → M, the inclusion mapι : M → N of a submoduleM of N,
and the canonical projectionπ : N → N/M onto the quotient by a submodule. We note that both the kerneland
image of a module homomorphismf : M → N are submodules (ofM andN, respectively).

One of the central notions of homological algebra is theexact sequence. This is a chain of modules connected
by module homomorphisms,

· · · −→ M−2
f−2−→ M−1

f−1−→ M0
f0−→ M1

f1−→ M2 −→ ·· · , (A.2)

which isexact: At each positionn of the chain, the kernel of the outgoing homomorphismfn coincides with the
image of the incoming onefn−1, that is, kerfn = im fn−1. One may also consider chains which terminate at either
end, in which case one does not require exactness at the endpoints. As examples, note that the identity, inclusion
and quotient maps give rise to the following exact sequences:

0−→ M
id−→ M −→ 0, 0−→ M

ι−→ N, N
π−→ N/M −→ 0. (A.3)

Conversely, the first sequence says that id is bijective, thesecond thatι is injective and the third thatπ is surjective.
We remark that it is standard to abbreviate the trivial module{0} by just 0.
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A short exact sequenceis an exact sequence of the form

0−→ M
ι−→ N

π−→ Q−→ 0 (A.4)

(note thatι is automatically an injection andπ is automatically a surjection). This concisely summarisesthe
common situtation in whichM is a submoduleN and the quotientN/M is isomorphic toQ. An obvious question
that arises now is whether there is a submodule ofN isomorphic toQ such thatN ∼= M⊕Q — if so, then we say
that the short exact sequencesplits. Certainly, if N is such a direct sum, then the sequence (A.4) is exact. We
are therefore asking if a direct sum is the only possibility.In the very important case in which bothM andQ are
indecomposable, this amounts to asking ifM andQ can be “glued together” to form a new indecomposableN, or
whether they may only be combined asM⊕Q.

Answering this question is a very subtle and difficult business in general. The general machinery of homological
algebra reduces this to the computation of the firstextension groupExt1(Q,M) (when (A.4) is exact,N is said to be
anextensionof Q by M). In particular, Ext1(Q,M) = 0 guarantees that (A.4) always splits, hence thatN ∼= M⊕Q
is the only possibility. We will not need to concern ourselves with the formal machinery required to compute
extension groups in general. Instead, we only remark that there is one easy test for deciding when a short exact
sequence must split: If somecentralelement of the symmetry algebraA acts as a multiple of the identity onM and
as adifferentmultiple of the identity onQ, then it acts onN as a linear transformation with two distinct eigenspaces
which may be easily checked to be submodules isomorphic toM andQ. In other words, it follows thatN splits as
M⊕Q.

We will typically apply this test on modules that are graded by the (generalised) eigenvalues of a zero-mode
such as that of the Virasoro algebraL0. In this case, the central element should be identified withe2πiL0 and the
test reduces to the remark that if the states of the indecomposable modulesMi , i = 1,2, have conformal dimensions
(L0-eigenvalues) inZ+hi, then Ext1(M1,M2) = 0 will follow if h1 6= h2 modZ.

We also note that there may exist modulesQ for which Ext1(Q,M) = 0 for all modulesM (in the category under
consideration). SuchQ are said to beprojective. These modules give a rough measure of maximal complexity
among indecomposable modules. More precisely, they have the property that if they appear as a quotient of
any module, then that module decomposes as the direct sum ofQ and something else. We mention that if an
irreducible moduleQ is a quotient of an indecomposable projective moduleP, then we say thatP is theprojective
coverof Q (projectivity guarantees that these covers are unique whenthey exist). This is a remarkably useful
concept. Unfortunately, progress in rigorously identifying projective covers for the module categories of interest
in logarithmic conformal field theory is lamentably slow.

A.2. Splicing Exact Sequences. One construction that we will take advantage of is that ofsplicing two short
exact sequences together. This procedure starts from two short exact sequences of the forms

0−→ M1
ι1−→ N1

π1−→ M0 −→ 0, 0−→ M2
ι2−→ N2

π2−→ M1 −→ 0 (A.5)

and produces the sequence

0−→ M2
ι2−→ N2

ι1◦π2−−−→ N1
π1−→ M0 −→ 0. (A.6)

It is a simple exercise to check that the resulting sequence is also exact. Moreover, if one has a short exact sequence
with M2 in the third position, 0→ M3 → N3 → M2 → 0 say, then the splicing process may be repeated to obtain a
new, longer exact sequence. The most interesting case occurs when one can splice infinitely many times, thereby
obtaining a long exact sequence called aresolutionof M0 in terms of theNi :

· · · −→ N5
ι4◦π5−−−→ N4

ι3◦π4−−−→ N3
ι2◦π3−−−→ N2

ι1◦π2−−−→ N1
π1−→ M0 −→ 0. (A.7)

This is useful when theNi belong to a class of well-behaved modules and one wishes to understand the behaviour
of M0.

A.3. Grothendieck Groups and Rings. One point that deserves emphasising is that the indecomposable struc-
tures that modules may exhibit become irrelevant when modules are replaced by their underlying vector spaces.
This is because exact sequences of vector spaces always split. It follows that quantities attached to modules which
only depend upon their vector space structure, characters being prime examples, will be blind to any indecom-
posable structure. One is therefore motivated to consider the effect of forgetting the indecomposable structure of
modules such as the quantum state space. Certainly, it will usually be easier to ignore questions of whether a
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FIGURE 14. An example of a Loewy diagram (left) and its annotated version (right).

module is completely reducible or not and for some applications, computing modular invariant partition functions
for example, maintaining such ignorance is perfectly justified.

This “forgetting” may be formalised through the notion of aGrothendieck group. Here, one starts with a
collection (category) of modules, preferably finitely-generated, and forms an abelian groupGr whose generators
are formal elements

[
M
]
, whereM is a module from the collection, and whose relations are

[
M
]
−
[
N
]
+
[
Q
]
= 0, whenever 0−→ M −→ N −→ Q−→ 0 is exact. (A.8)

The point of these relations is to ensure that all extensionsof Q by M are identified withM⊕Q in Gr. In favourable
circumstances, such as when the characters of the irreducible modules are linearly independent, then the abelian
group generated by the characters will be isomorphic to the Grothendieck group. Note that the collections of
modules that we will be considering will always carry a tensor product structure (fusion) and that this structure
will always induce a well-defined product onGr. We will therefore usually refer toGr as aGrothendieck ringor
Grothendieck fusion ring.

A.4. Socle Series and Loewy Diagrams. Finally, it is often convenient to go beyond the formalism ofexact se-
quences in order to visualise the structure of an indecomposable module. One way to do this is throughcomposition
series. This is a filtration of a moduleM by submodules,

0= M0 ⊂ M1 ⊂ ·· ·Mℓ−1 ⊂ Mℓ = M, (A.9)

such that thesubquotients Ci = Mi/Mi−1 of M are all irreducible. Composition series are not unique, butif M does
possess a composition series, then thelengthℓ and thecomposition factors Ci are common to every composition
series ofM (only the ordering of theCi may change).

A common variation on this theme is thesocle series. Here, one again has a filtration (A.9) by modules, but the
condition thatMi/Mi−1 be irreducible is replaced by the requirement thatMi/Mi−1 be thesocleof M/Mi−1. The
socle of a moduleM is defined to be its maximal completely reducible submodule.Equivalently, it is the (direct)
sum of the irreducible submodules ofM. As the socle is unique (if it exists), the same is true of socle series. In
essence, composition series describe how irreducible modules are glued together to formM, whereas socle series
describe how completely reducible modules are glued and so are usually more efficient. The dual notion to the
socle is the maximal semisimple quotient, sometimes calledthehead.

We conclude with an abstract example illustrating an indecomposable structure which commonly arises in
logarithmic conformal field theory (and elsewhere). The socle series is

0= M0 ⊂ M1 ⊂ M2 ⊂ M3 = M, with M1
∼=C1, M2/M1

∼=C2⊕C3 andM3/M2
∼=C4, (A.10)

where theCi are irreducible subquotients (composition factors) ofM. A common way of visualising this in-
formation is through the associatedLoewy diagram. This is constructed by “layering” with thei-th layer con-
sisting of the direct summands comprising thei-th filtration quotientMi/Mi−1. In the example at hand, the
bottom layer is socM = M1

∼= C1, the middle layer is soc(M/M1) = M2/M1 = C2 ⊕C3, and the top layer is
soc(M/M2) = M/M2 =C4. This is illustrated in Figure 14 (left).

It is often convenient to annotate Loewy diagrams with arrows detailing the finer structure of the indecompos-
able module as in Figure 14 (right). Such an arrow will alwayspoint down from a composition factorCj at layer
i to anotherCk at layeri −1. Roughly speaking, bothCj andCk may be associated to certain states ofM and the
arrow indicates that the action of the algebra can take a state associated withCj to a state associated withCk, but
not vice-versa. More precisely, it is possible to isolateCj andCk by canonically constructing a length 2 subquotient
of M whose composition factors are preciselyCj andCk. If this subquotient is indecomposable, then we draw an
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arrow fromCj to Ck (if Ext1(Cj ,Ck) has dimension greater than 1, we should also affix a label to the arrow to pre-
cisely identify the subquotient). We will not try to demonstrate or verify this precise criterion for drawing arrows
on Loewy diagrams here. Suffice to say that it will be clear in the examples considered how composition factors
are associated to states and arrows will be drawn on this rough basis.
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[132] W Baron and C Núñez. On Modular Properties of theAdS3 CFT.Phys. Rev., D83:106010, 2011.arXiv:1012.2359 [hep-th].
[133] J Fjelstad. On Duality and Extended Chiral Symmetry intheSL(2,R) WZW Model.J. Phys., A44:235404, 2011.arXiv:1102.4196

[hep-th].
[134] A LeClair. Thegl(1|1) Super-Current Algebra: The Role of Twist and Logarithmic Fields.Adv. Theor. Math. Phys., 13:259–291, 2009.

arXiv:0710.2906 [hep-th].
[135] T Creutzig, T Quella, and V Schomerus. Branes in theGL(1|1) WZNW-Model.Nucl. Phys., B792:257–283, 2008.arXiv:0708.0583

[hep-th].
[136] T Creutzig and V Schomerus. Boundary Correlators in Supergroup WZNW Models.Nucl. Phys., B807:471–494, 2009.

arXiv:0804.3469 [hep-th].
[137] T Creutzig.Branes in Supergroups. PhD thesis, DESY, 2009.arXiv:0908.1816 [hep-th].
[138] T Creutzig and D Ridout. W-Algebras Extending Affineĝl(1|1). arXiv:1111.5049 [hep-th].
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