LOGARITHMIC CONFORMAL FIELD THEORY:
BEYOND AN INTRODUCTION

THOMAS CREUTZIG AND DAVID RIDOUT

ABSTRACT. This article aims to review a selection of central topicd examples in logarithmic conformal field theory.
It begins with the remarkable observation of Cardy that thézbntal crossing probability of critical percolation yna
be computed analytically within the formalism of boundaonpformal field theory. Cardy’s derivation relies on certain
implicit assumptions which are shown to lead inexhorablinttecomposable modules and logarithmic singularities in
correlators. For this, a short introduction of the fusiogoaithm of Nahm, Gaberdiel and Kausch is provided.

While the percolation logarithmic conformal field theorysisll not completely understood, there are several exam-
ples for which the formalism familiar from rational confoairfield theory, including bulk partition functions, coraébn
functions, modular transformations, fusion rules and teditle formulae, has been successfully generalised. i¥his
illustrated for three examples: The singlet mofi&(1,2), related to the triplet modelJ(1,2), symplectic fermions
and the fermionibc ghost system; the fractional level Wess-Zumino-Witten eldhsed osl(2) atk = f%, related to
the bosonig3y ghost system; and the Wess-Zumino-Witten model for the WeersgroupGL(1|1), related taSL(2[1) at
k= f% and 1, the Bershadsky-Polyakov algewéf'f) and the Feigin-Semikhatov aIgebn\Aléz). These examples have
been chosen because they represent the most accessibieosingseful, members of the three best-understood families
of logarithmic conformal field theories: The logarithmicnimal modelsm(q, p), the fractional level Wess-Zumino-
Witten models, and the Wess-Zumino-Witten models on Lieesgioups (excludin@SP(12n)).

In this review, the emphasis lies on the representationryhefothe underlying chiral algebra and the modular data
pertaining to the characters of the representations. Eetle @archetypal logarithmic conformal field theories isdétal
here by first determining its irreducible spectrum, whicmsuout to be continuous, as well as a selection of natural
reducible, but indecomposable, modules. This is followgd detailed description of how to obtain character formulae
for each irreducible, a derivation of the action of the madgroup on the characters, and an application of the Verlind
formula to compute the Grothendieck fusion rules. In eadecthe (genuine) fusion rules are known, so comparisons
can be made and favourable conclusions drawn. In additamh example admits an infinite set of simple currents, hence
extended symmetry algebras may be constructed and a skhatkanodular invariants computed. The spectra of the
extended theories is typically discrete and this is how tipdet modeIQU(l,Z) arises, for example. Moreover, simple
current technology admits a derivation of the extendedbaigéusion rules from those of its continuous parent theory.
Finally, each example is concluded by a brief descriptiothefcomputation of some bulk correlators, a discussion of
the structure of the bulk state space, and remarks congenmime advanced developments and generalisations.

The final part gives a very short account of the theory of steeymodules, the (simplest class of) representations
that are responsible for the logarithmic singularitiesanrelators which distinguish logarithmic conformal fieteeory
from its rational cousin. Staggered modules are discussadjenerality suitable to encompass all the examples met in
this review and some of the very basic structure theory igsgaro Then, the important quantities known as logarithmic
couplings are reviewed for Virasoro staggered moduleslagidriole as fundamentally important parameters, akingo th
three-point constants of rational conformal field theosydiscussed. An appendix is also provided in order to inttedu
some of the necessary, but perhaps unfamiliar, languagenodlogical algebra.
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1. INTRODUCTION

Ever since the pioneering work of Belavin, Polyakov and Zidchikov [1], two-dimensional conformal field
theory has been at the forefront of much of the progress inemoohathematical physics. Its application to the
study of critical statistical models and string theory idiwaown, see [2-5] for example, but it also provides the
basic inspiration for the mathematical theory of vertexrapa algebras [6—8]. The simplest conformal field theo-
ries are constructed mathematically from irreducibleespntations of an infinite-dimensional symmetry algebra.
However, recent attention to non-local observables fdissigal models and string theories with fermionic degrees
of freedom has led to the conclusion that the correspondétdrfheoretic models require, in addition, certain re-
ducible, but indecomposable, representations. Such mbdee come to be known byarithmic conformal field
theoriesbecause the type of indecomposability required leads t@rithgnic singularities in correlation functions.

As a field of study, logarithmic conformal field theory datexck to the works of Rozansky and Saleur on
the U(1/1) (or perhapsGL(1]1)) Wess-Zumino-Witten model [9, 10] and that of Gurarie on @arienic ghost
system [11] related to the theory now known as symplectimfens. Since then, things have progressed rather
rapidly with many of the standard features of rational comf@l field theory now understood in the logarithmic
setting. In particular, there are two fine reviews of the satfj12, 13] which focus on, among other things, modular
transformations and module structure, mostly for a familgheories related to symplectic fermions.

Both reviews are accounts of lectures given at a worksho®@12 The present review aims to build upon
the state of knowledge summarised there, introducing thdareto some of the recent advances that seem to
be converging towards a more unified picture of logarithmanformal field theory. Unfortunately, a detailed
overview would require a rather lengthy book, hence we weiditrict ourselves to foundational material and in-
depth examples which we believe, hopefully without contirgy, are “archetypes” for the discipline. We hope that
our choice will give the reader a good overview of what sutes logarithmic conformal field theory relies upon
and what one can do with it.

In particular, we work almost entirely in the continuum, egping that the reader is familiar with rational
conformal field theory as described (for example) in [14¢hesving approaches based on statistical lattice models
and conjectured scaling limits (see [15-18]). We also wimkthe most part, with chiral algebras, even though it
is well known that the holomorphic factorisation principferational conformal field theory fails in the logarithmic
setting. Instead, we will see how a natural proposal allomesto construct physically satisfactory non-chiral fields,
even when logarithmic behaviour is present. For other aggves to logarithmic conformal field theory, as well
as condensed matter physics and string-theoretic applsatdiscussions of logarithmic vertex operator algebras
and other relations to mathematics, we refer to the othelestthat constitute this special issue of the Journal of
Physics A.

We will outline what we cover in this review shortly. Firstwever, we quickly remind the reader how loga-
rithmic singularities arise in correlation functions amsequences of a non-diagonalisable action of the Virasoro
zero-modd_g. Then, we digress slightly in recalling the (non-logaritbjriheory known as the free boson, in
particular, its characters, their modular transformatiand the relation between these and the fusion rules (the
Verlinde formula [19]). This is in order to set the scene foe finalysis of the “archetypal” logarithmic theories
that follow. We also mention simple currents for the freedsoand the corresponding extended algebra theories
as these ideas are also going to play an important role for us.

1.1. Correlatorsand Logarithmic Singularities. Conformal field theory is relatively tractable among phgsic
models due to its infinite-dimensional algebra of symmestries is well-known, this always includes the Virasoro
algebra, the infinite-dimensional Lie algebra spanned bglesb,, n € Z, andC with commutation relations

—-m
15 Omin=oC, [Lm,.C] =0. (1.1)
The central mod€ will act on all representations as a fixed multiple of the titgnknown as the central charge
c. We will identify C with c in what follows. The field-theoretic version of these comatian relations is the
operator product expansion

[Lm,Ln] = (M=n)Lmen +

T ~ 2y 2T OTW)
(z—w)"  (z—w) Z—w
in which the energy-momentum tensor is related to the Viaswdes byT (z) = ¥,z Lnz "2,
In this section, we recall how the global conformal invadamf the vacuunﬁO), meaning its annihilation by
L_1, Lo andLy, fixes the two-point functions of (chiral) fields and giveserto logarithmic singularities when the

(1.2)
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corresponding Virasoro representations admit a non-diaiggable action of,. Given any chiral fieldp(z), the
natural action of the Virasoro modes is given by

Lo 74 T@ewWz = dz. (1.3)
If qo(z) is a chiral primary field of conformal weiglft then this action gives

[Lo1,0(W)] = 99(w), [Lo,@(W)] = hp(w) +WdpW), [L1,@(w)] = 2hwe(w) +Wop(w) (1.4)
and the invariance qD> then leads to the following differential equations for th@tpoint functions:

(024 dw){(@(2)@(W)) =0,  (20;+wWdw+ 2h)(@(2)p(W)) =0,

(1.5)
(Z0;+WPaw+2h(z+w)) (@(2) p(w)) = 0.
It is a straight-forward exercise to show that the generaitem of these equations has the form
A
2)Q(W)) = ——-, 1.6
(@(De(w)) T (1.6)

for some constank (which could be zero). We may identifywith <qo| qo).

So far, we have repeated a standard textbook computatieriidefor example). We now ask what happens if
the primary fieldp(z) corresponds to a staje) which has alordan partner|®) under thelo-action: Lo|®) =
h|®) + |@). Then, the constarin (1.6) is

= (9]9) = (¢|Lo—h|®) =0, (L.7)
sinceLo| @) = h|@). Moreover, the partner fiel#h(z) has the operator product expansion

_ ho(Ww) + o(w) N od(w)

T(2P(w) W) —t (1.8)
so that the Virasoro modes act as
[L_1,D(W)] = dP(w), [Lo, D(W) ]| = hd(W) +wdD(w) + @(w),
[Ly, D(w)] = 2hwd(w) +wPID(W) + 2we(w). (1.9)
We therefore obtain a set of inhomogeneous differentiahgqus for the two-point functions:
(Oz+ 0w)(@(DP(W)) =0, (20, +Waw+ 2h){P(2P(W)) = —(@(2)p(W)),
(20, + WAy + 2h(z+W)) (@2 D(W) ) = —2w({ () p(W) ),
(1.10)
(024 0u) (P P(W)),  (20+Wdw+ 2h)(P(2P(W)) = — (P p(W)) — (P(2)P(W)),
(20, +WPaw + 2h(z+wW)) {P(2)P(W) ) = —22(p(2) P(W) ) — 2w(P(2) qo(w))
If we assume thaip(z) and®(z) are mutually bosonic, meaning thép(z)®(w)) = (®(z)@(w)), then solving
these equations leads to two-point functions of the form
(020w) =0, (o0 = 2 (@(0W) = %jjﬁ[m (a.11)

whereB andC are constants. This demonstrates that combining glob&ooal invariance with a non-diagonalisable
Lo-action leads to logarithmic singularities in correlatfanctions.

We remark thatP(z) is not uniquely specified because we may, for example, addlgphewf ¢(z) to ®(z)
without affecting the latter's defining properties. Howewadding such a multiple will change the const&rin
(1.11), thougtB will remain invariant. Because of thi€, may be tuned to any desired value, so is not expected to
be physical. The constaBt= (qo](D), on the other hand, is expected to be physically meaningful.

1.2. TheFreeBoson. The free boson is a= 1 conformal field theory with chiral algebgd(1) = @i(1) generated
by modes,, n € Z, and a central elemekht:

[@m, an] = M n,0K. (1.12)

As usual K is identified with a real numbeéectimes the identity when acting on representations and theswio
moded., then follow from the standard Sugawara construction. Megeavhen a highest weight state in such a

1Here, we assume for simplicity thbﬁ|¢> =0 for alln> 0. See Sections 2.4 and 6.3 for a more general discussion.
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representation has weigheofeigenvalue)\, its conformal dimension i42/2k. Note that the algebra fdr# 0 is
almost always rescaled v, — am/ vk so as to seit to 12
The irreducible k = 1) highest weight modul€es, , called Fock spaces, have characters given by

AZ
ch[F,](a) = try qro—¢/24 = (:"7(—4)2 (1.13)

Itis well known (see [20] for example) that the S-transfotimas of these characters amountto a Fourier transform
and that one can recover non-negative integer fusion nfigitips from them using a continuum version of the
Verlinde formula. The only problem with this is that the cheters (1.13) do not completely distinguish the
irreducible modules: cl¥, | and cHF_,] are identical. Consequently, the application of the Velifiormula
cannot, strictly speaking, reproduce the structure caitstaf the fusion ring, but only of a quotient of the fusion
ring by an action of the two-element grofp.

The obvious fix is to include the affine weightin the character. Of course, then the S-transformation will
produce an unwanted factor for which the standard remedyiisctudek in the character. In this way, we arrive
at the full character (for generky:

ykz)\ q)‘ 2/2k

h[F,](y;zq) =tr. y<Aoq-o¢/24 =
ch[F:] (viza) =tr, yz*q @

Writing y = e2™, z= e? andq = 2’7, the modular S-transformation of the characters (1.14)\da6: (t|u|t) —
(t—u?/2t|u/T|-1/T), leading to

(1.14)

o4 d X
e :[WSMch[S"H} 7’;( Sy = e 2TAR/K (1.15)

This follows from a standard gaussian integration, coreetrdor k > 0 (whenk < O, we have to assume the
standard result through an analytic continuation):

. d du Q2mikt . ) d du e2mikt—imk(u-A /k)?/T
S, ,ch[T / imrp? ke 2mu-A flop O _ —ch[5,]] . 1.16
/ »uchlTu] —2 k@ )’ NG [ ’\Hs (1.16)

We remark that the measurg év/k is natural given the rescaling property of the
ForT: (t|u|T) — (t|u|T + 1), the transformation is

_ (" du _ oin(A%/k-1/12) A
eh[ ]| = [ Taueh[7,] T Tw=e 5 Z=5)
Itis straight-forward to check th&f and(ST)3 are the conjugation permutatidn— — A, hence that the characters

span a representation of the modular gréug2;Z) (of uncountably-infinite dimension).
The S-matrix (or S-density) is symmetric and unitary witbprect to the rescaled weighitg v/k:

® du _ du A v
SxuS! / (A —vu/k 2 5( ) 1.18
[susiviz= . kR (49

It immediately follows that the diagonal partition functi@giag. = |, ch[&")\]ch[fr",\} dA /vk is a modular in-
variant (T-invariance is manifest). Similarly, the invace of the charge conjugation partition functidg. =
J5. ch[Fx]ch[F_,] dA/Vk follows from unitarity and the symmetSy , =S_, .

The continuum Verlinde formula states that the fusion coieffits are given by

(1.17)

NA“V:/W SApupSvp d_p:/ e 2mA+p-v)p /kd—p—é( v_A +£), (1.19)
o S vk J VKT O\VK T VKK
where we recognise that the vacuum modut&gsThe predicted fusion rules are therefore
\%
%xfﬂ,_/ N, ?”\/E Frop, (1.20)

agreeing perfectly with the known fusion rules. Actuallyhat the Verlinde formula computes is the fusion rules
at the level of the characters. However, the free boson yhieas the property that its irreducible modules have
linearly independent characters, if we use (1.14), andyewerdule in the spectrum is completely reducible. It
follows that character fusion and module fusion coincidefiés theory.

21 we wish to preserve the adjoint (reality conditioa), = a_m, then we may only rescaleto +1. Free bosons witk > 0 are often called
euclidearwhereas those witk < 0 are calledorentzian
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An important feature of the spectrum of the free boson is évaty irreducible module is a simple current,
meaning that they have inverses in the fusion ring [21, 22¢rddver, if we exclude the fusion identiff, then
the simple currenf; has no (irreducible) fixed poinfsWe can use the group generated by a simple cutfent
to construct extended algebras in a canonical fashion g&e4] for example): The extension is obtained by
promoting the fields associated to the fusion o@if., Fjr to symmetry generators. In other words, this direct
sum ong[(l)-irreducibIes becomes the (irreducible) vacuum moduléefextended algebra. We restrict attention
to extended algebras which are integer-moded (hence ls@umparing conformal dimensions of the states of
Fjr shows that this is equivalent to demanding tifat 27 (we have scaletd to 1 for simplicity)*

The irreducible modules of the extended algebra are alsoraat as fusion orbits. We denote them by

Fpj =D Fasirs (1.21)
jeZ
where[A] = A modr. Requiring that the extended algebra act with integer ngtkads to a finite set of (un-
twisted) extended algebra modules labelled\by m/r, with me {0, 1,...,r°— 1}. The S-transformations of the
characters of these modules follow readily from (1.15):

Ch[F[m/rH > Ch[Foyerie] | /eizmm“/rZefzmjr“‘:h[gﬂ]d”

J€Z - JEZ
1r271 ' ) r2 1
— ? Z Zefzmmn/r Ch[ffn/rﬂr] _ Z efzmmn/r Ch[ [n/r]] (1_22)
n=0 jeZ

Here, we have applied the following summation formula:

1 .
Y e 2MH = Y §(rp=1) = 25 =Y Yo (u="2141r). (1.23)
icz ez ez n—0 jeZ r
The extended algebra’s S-matrix is therefore given by
Sith=Te2mm o2 1. (1.24)

r
This is again symmetric and unitary, so one can construcagotial modular invariant partition functidty =

2 7 . . . . ..
Y10 Ch[Fjmyr | ch[Fmys ] and its charge conjugate version. Expressing this in tefiook space characters,
one obtains an infinite set of non-diagonal modular invasidor 5[(1) with discrete spectra. Finally, it is easy

to check that the (standard) Verlinde formula for the exézhdlgebra gives non-negative integer coefficients:

Nfz/r] [n/r[]p/r] 5p m+n modr2-

Thus far, we have seen that the modular S-transformatiotiedfee boson characters may be used to compute
the S-transformations of those of the extended algebrasséel'm turn can then be used to compute the Verlinde
formula for the extended theories. In a sense though, thogaskill because simple current technology makes it
possible to reproduce the extended algebra fusion rulesthose of the free boson. Naively, one might try

Fon <" Frg = @ (Fasie x Furir) = DD Fasprtieiyr = D Frr (1.25)

i,jez i€Z Jel JEZ
However, this gives an overall multiplicity of infinity, emewhenA = = 0. The reason is that each of the
F,4ir are in the same module for the extended algebra, hence edlobsef Fock spaces gives exactly the same
contribution to the fusion product. It is therefore necegsa choose a single representatig, ;;, a convenient
one has = 0, to avoid multiply counting the same information. Thisrfoemalisation” leads to
Fip) % Flyg = D (Fn % Furir) = D Fapsir = Fprss (1.26)
JEZ JEZ

fixing the multiplicity issue. We therefore arrive at a vegmerful strategy to compute the fusion rules of extended
theories which may be summarised as follows:

e Compute the modular S-transformation of the (non-ratiptheory with continuous spectrum.
e Deduce fusion rules using the continuum Verlinde formula.
e Use these fusion rules to identify simple current extersisith discrete (finite) spectrum.

3 fixed point of a simple current is a module for which fusiorttwihe simple current reproduces itself.
4The extended algebra constructed frémis, of course, the symmetry algebra of the free boson corifigaicon a circle of radius.
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e Extract the fusion rules of the extended theory from thogh®hon-rational theory.

We conclude this exercise by checking these extended algesults at the self-dual radius= /2, for which
it is well known that the extended algebrasié2) at level 1. There are? = 2 extended algebra modulEg and
F[l/\/é] which are easily checked to have 1 and 2 ground states of diove0 and 14, respectively. The S-matrix
and fusion matrices are found to be

vz _ L (1 1), v _ (10 w2 _ (01
S f2<1 ~1)0 Np 0o 1) Nuvz=l1 o) (2.27)

which does indeed reproduce the correct data?lf(d’()l.

1.3. Outline. Our review commences in Section 2 with an overview of ¢he 0 logarithmic conformal field
theory that describes the critical point of the statistle#tice model known as percolation. We describe enough
of the underlying lattice theory to introduce Cardy’s cetgbd formula [25] for a non-local observable known
as the horizontal crossing probability. While it is cleaattiCardy’s derivation cannot be accommodated within a
unitary theory (the only unitarg = 0 conformal field theory is the trivial minimal modM(Z, 3)), we show that

his derivation actually implies a logarithmic theory, falling [26]. This necessitates a brief introduction to the
famous fusion algorithm of Nahm, Gaberdiel and Kausch [8F., 2Ve compute a few fusion products explicitly
before describing the results of more involved calculatitvat detail the structures of the indecomposable modules
so constructed. We then use the results to derive a coupteyafithmic correlators, generalising the analysis of
Section 1.1, before briefly discussing other non-local plat®on observables and other= 0 models.

Section 3 introduces the first of our “archetypal” logaritbmonformal field theories, the symplectic fermions
of Kausch [29]. More precisely, we discuss a familyamf —2 theories which include symplectic fermions,
the triplet modeRY(1,2) studied in [30-32], and the corresponding singlet moaglL, 2), itself a special case
of Zamolodchikov's original W-algebra [33]. We begin withet symplectic fermion algebra, constructing its
irreducible and indecomposable (twisted) representstand verifying the non-diagonalisability @b on the
latter, before decomposing its representation into thésieeosubalgebragd(1,2) andt(1,2). For the singlet,
the spectrum is continuous and it is here that we derive ckarrformulae and deduce modular transformations.
The S-matrix is found to be symmetric and unitary, so we apgigntinuous version of the Verlinde formula and
find that the resulting (Grothendieck) fusion coefficients gositive integers.

As far as we are aware, the modular properties of the singbetefis characters are new (the generalisation
to im(l, p) will be reported in [34]). Assuming that the continuous Vfesle formula does give the correct
(Grothendieck) fusion coefficients, we also deduce manipfuglles, in particular concluding that the singlet
model possesses a countable infinity of simple currents dérify the maximal simple current extension as sym-
plectic fermions and the maximal bosonic simple currergesion as the triplet model. This also seems to be new.
We moreover use our singlet results to determine what theti@ndieck) fusion rules for the triplet model should
be, finding agreement with the fusion computations of [32]isThen provides a stringent consistency check of the
continuous Verlinde formula. We also conjecture the eristeof certain singlet indecomposable modules before
briefly discussing the known issue with obtaining an S-médut the triplet model (the S-matrix entries are not
constant) and how this is manifested in the simple curretetreston formalism we have developed.

Finally, we discuss the bulk (non-chiral) aspects of these—2 theories. Bulk logarithmic conformal field
theories are not as well understood as their chiral couatergghough progress has been steady [35-41]. For this,
it has proven useful to study analogous situations in magttiesn For example, the representation of a semisim-
ple finite-dimensional associative algebra, acting orfitse left-multiplication, decomposes as a direct sum of
irreducibles, where every irreducible appears with mlitify equal to its dimension (Wedderburn’s theorem).
However, the non-semisimple case gives a direct sum of giegs, where the multiplicity of each is now the
dimension of the irreducible it covers. The semisimple dasaso the result for compact Lie groufisacting
on the Hilbert space?(G, 1) (with u the Haar measure), whereas the non-semisimple case sedmsdaoghly
correct for Lie supergroups and many non-compact groupsi@theminisuperspace limit36, 42]).

This is relevant because the modular invariant partitiorcfions that have been constructed for logarithmic
conformal field theories often have the form

Z =) _chLijch[R] = ) _ch[R]ch[Li], (1.28)

wherei labels the irreduciblels; in the spectrum ang denotes an indecomposable covetpfvhich one expects
to be projective in some category. (In the rational caseh ®&andL; coincide and this reduces to the standard
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diagonal invariant.) Because of this, the state space ofjaritthhmic theory seems likely to decompose, upon
restricting to the chiral or antichiral algebra, into a direum of projectives (each with infinite multiplicity).

Digressions over, we conclude our discussion of this familg = —2 logarithmic conformal field theories
by noting the well known structure for the bulk state space¢hefsymplectic fermions theory and discuss the
structure one obtains by restricting to the triplet alggBfd. We then indicate how one could have guessed this
structure, withoug priori knowledge of the symplectic fermions structure, based enfohm of the diagonal
modular invariant partition function and the above analdfyis leads to a simple proposal for constructing bulk
module structures from chiral ones which we stress auta@albtisatisfies the physical locality requirement (that
bulk correlators are single-valued). Algebraically, thif be met if the chiral and antichiral states have conforma
dimensions that differ by an integer and, in a logarithmaxtty, if the spin operatdrg — Lo acts diagonalisably.
We conclude by computing some correlation function andlignieentioning what is known about the more general
20 (1, p) and2¥(q, p) theories that have received so much attention in the lijeeat

Section 4 considers an example of a fractional level WesgiZo-Witten model, specifically one whose sym-
metry algebra isl(2) at levelk = —1. The existence of such fractional level theories was firggssted by
Kent [43] in order to provide a unified coset construction f\édrasoro minimal models, unitary and non-
unitary. They began to be studied seriously once Kac and Matki discovered [44] that the levels required
for Kent's cosets, thadmissible levelswere the only ones which admitted modules whose charactered a
finite-dimensional representation of the modular grSU()Z;Z). Assuming, naturally enough, that this meant that
admissible level models were rational, Koh and Sorba coetptite fusion rules given by the Verlinde formula,
noting that this sometimes resulted in negative integaofusoefficients [45]. This puzzle was subsequently ad-
dressed by many groups [46-55], without any real progrederé Gaberdiel pointed out [56] that the assumption
of rationality was in error (see also [57]). He constructedwgh fusion products fo?[(Z) at levelk = 7‘3‘ to
conclude that the theory was logarithmic, but was unableliteshe puzzle of negative fusion multiplicities. The
level k = —% was subsequently argued to be logarithmic using a free fedtisation [58, 59], but a complete
picture including indecomposable module structure, attara, modular properties and the Verlinde formula has
only recently emerged [60—64]. The purpose of Section 4 éxpain this progress fdc= f%.

We start by introducing the closely relatBgr ghost system and derive the current aIgeB(ﬁ)fm as an orb-
ifold. Instead of considering the representation theorthefghost algebra, as we did for Section 3, we determine
the spectrum 0:‘?[(2)71/2 directly. As before, we find a continuum of generically innietble modules, but this
time they are neither highest nor lowest weight. At the patamvalues where the continuum modules become
reducible, four highest weight modules are constructegs@lare the admissible modules of Kac and Wakimoto).
The characters of these admissibles can be meromorphémaitinued using Jacobi theta functions, leading to a
four-dimensional representation of the modular group. Némftllustrate the paradox of negative Verlinde fusion
coefficients before indicating its resolution [60] usingspal flow automorphisms.

A veryimportant point here is that one must be careful witlioes of convergence of characters. Indeed, certain
non-isomorphic modules, related by spectral flow, havequgpsign) exactly the same meromorphically-continued
character. However, the regions where these charactevergmare disjoint, being separated by a common pole.
We then interpret the sum of these characters as a distibatipported at this pole. With this formalism, we
obtain modular properties, Verlinde formula and a discseetiées of modular invariants. Here, the story is very
similar to the previous section and we are again able to @@ structure of the local bulk modules. Finally, we
use a free field realisation to compute correlation functiand give an example of a three-point correlator which
exhibits singularities at certain module parameters. Ath@previous section, this result can be regularised to
obtain logarithmic correlators. We conclude with a briefadission of how all this generalises to the ldvel —g‘.

Section 5 contains the last of our “archetypal” examples, Wess-Zumino-Witten theory on the Lie super-
groupGL(1/1). As usual, supergroup models depend upon a Ikvaid the symmetry algebra is an affine Lie
superalgebra. But, in contrast to (integer level) bosongs$Zumino-Witten models, our understanding of these
superanalogues is still rather rudimentary. Aside fromrét®nal theories associated witbSP(1|2n), see [65]
for example, only the theories associated to the Lie supamaGL(1|1) andPSL(1|1) (which is just symplectic
fermions) are completely understood. Indeed, these werfrit logarithmic conformal field theories investigated
over two decades ago: By Rozansky and Saleur [9, 10F£¢d|1) and by Gurarie [11] for the fermionloc ghosts
that are closely related to symplectic fermions.

We structure this section so as to bring out the analogy vkhiéhprevious two examples. We start with the
algebra and representation theory, then continue with faodata and correlation functions following [36,37,66].
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This example, like the two that preceded it, exhibit all thattires of the simplest known logarithmic conformal
field theories. There are certainly many more logarithméoties that should be considered, some with similar
indecomposable structures to our examples, and some wiecmare complicated. We mention that there are
many applications which involve supergroup theories ofléitier class as e.g. in statistical physics [67,68] and
the AdS/CFT correspondence [69] — these therefore needdatkinvestigation in the near future.

Section 6 aims to briefly outline a reasonably general agprtmunderstanding the mathematical structures that
underlie logarithmic conformal field theory. It commenceagva somewhat technical discussion which introduces
the important idea of ataggered moduldamiliar from Virasoro studies [70, 71], for a large clagsassociative
algebras. Some very basic results are proven at this legelradrality (these results have not before been published)
before restricting to a discussion of thgarithmic couplingshat parametrise the isomorphism classes of staggered
modules for the Virasoro algebra. We emphasise that thesbens are as important to logarithmic conformal field
theory as the three-point constants are to rational thearid we detail how they arise when computing two-point
functions. We conclude with a brief analysis of an exampla Wirasoro indecomposable whose structure is more
complicated than that of a staggered module bechgisets with arank 3 Jordan block

Section 7 then summarises what we have presented, descvithiat we believe is a reasonably general ap-
proach to understanding logarithmic conformal field thesriFinally, there is a short appendix in which we have
collected some of the necessary basic information aboublagital algebra, a very useful tool (and language)
for describing the structure of indecomposable but redec#presentations.

2. PERCOLATION AS ALOGARITHMIC CONFORMAL FIELD THEORY

Percolation may be loosely defined as a collection of clossbted probabilistic models whose observed be-
haviour is believed to be reasonably typical for more gdneesses of statistical theories. In particular, these
models exhibit phase transitions as their defining paramet&ss through certain critical values [72]. Moreover,
percolation is particularly easy to simulate numericaltyjt is a popular choice for testing predictions such as con-
formal invariance and universality [73, 74]. In this sentiove discuss how the hypothesis of conformal invariance,
which led Cardy to his celebrated formula [25] for the honitad crossing formula, can be accommodated within
the standard framework of (boundary) conformal field thediryras long been suspected (see [15] for example)
that the conformal invariance of percolation requires at@mic theory. Here, we follow [26] to deduce from the
assumptions underlying Cardy’s derivation that the spectof percolation contains indecomposable modules on
which the Virasoro modeg acts non-diagonalisably, hence that critical percolaatiescribed by a logarithmic
conformal field theory.

2.1. Critical Percolation and the Crossing Formula. As with many other statistical models, the primary con-
sideration of percolation is the degree to which a very langmber of identical objects tend to cluster together
when distributed in a random fashion. The setup for one ob#séc percolation models is as follows: Consider a
square lattice with a given edge length and choose a fixedrgatar subdomain whose sides are a union of lattice
edges. A percolation configuration is then obtained by diegahat each edge within the subdomain is open with
probability p and closed with probability &+ p. The idea is that the subdomain represents a porous matadal
that open edges permit the flow of a liquid medium whereasdeslges do not. Whegn= 0, all edges are closed
and material is impermeable to the liquid. Whea: 1, all edges are open and there is no obstruction to the lguid
flow. For O< p < 1, oneis then led to question whether the liquid is able togate through the material, whence
the model's name.

To be more precise, we may ask for the probability that a remigdahosen configuration of edges in our
rectangular subdomain contains a path of open edges campaocthosen side of the rectangle with the opposite
side. Such a path is calleccebssingand Figure 1 shows an example of a configuration in which ofghéomany)
crossings has been drawn. Computing this crossing pratyadnilalytically is a hopeless task, though simulation
can approximate it extremely well. However, one can ask thestion again in the continuum limit where the
edge length tends to 0 while the size and shape of the red@rgyibdomain is kept fixed. In this case, one has
the result [72] that the limit of the crossing probabilitie® if p is less than a critical value, which turns out to
bep: = % for a square lattice, and is 1 [fis greater thamp.. The only interesting value is then the limit of the
crossing probabilities whep s precisely this critical valu@.

5Curious|y, it seems that the existence of this limit whgr- p; was not known until Cardy’s crossing formula (see (2.1)) wgsrously
proven [75, 76].
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FIGURE 1. Atypical percolation configuration (left) for a rectahgusubdomain of a square lattice showing
only the open edges (closed edges are omitted). This l&tsiseseveral crossings from left to right, one of
which is indicated in bold (right).

This probability of a crossing being present wher= p. was famously derived by Cardy [25] within the
formalism of boundary conformal field theory and his ressilgénerally recognised as one of the most striking
confirmations of the conjecture that the continuum limit statistical model is conformally invariant at its critical
points. Cardy combined the well known description of peatioh as the) — 1 limit of the Q-state Potts model
with an inspired identification of certain boundary-chargbperators in these Potts models to write the crossing
probability as the four-point correlation function of a &oro primary fieldp, », where the subscript indicates the
field's Kac labels. To apply the machinery of conformal fidig¢ary, one now maps the rectangular subdomain
conformally onto (a compactification of) the upper halfs@ao that the fields’ insertion points (the corners of the
rectangle) are mapped to poiisi = 1,...,4, lying on the real axis (or t®).

The central charge of the continuum limit of theQ-state Potts model is well known [77], assuming of course
that the limit is conformally invariant. For percolatio@ ( 1), one obtains = 0 and it therefore follows thap »
has conformal dimension 0. Moreovei,, will have a singular descendant field at grade 2 and so, aitwptad
standard conformal field theory dogma, the four-point datoe representing the crossing probability will satisfy
a second-order linear differential equation. The obvialsdviour of the crossing probability as the aspect ratio of
the rectangle tends to 0 amdthen picks out a unique solution:

T8 L usp (124 (21— 2) (25— )
mn / 2F1<§,§,§,r]>, where nfm. (2.2)
The agreement between this computation and numerical datedimulations [73] is impressive.

The precise formula for the crossing probability is not intpot for what follows. Rather, what we wish to
emphasise is that the derivation is performed with the aid lhit Q — 1 which hides a remarkable amount of
subtlety. Indeed, one might guess that the percolationozordl field theory is a minimal model, based on the
usual identification of th€-state Potts models f@ = 2 and 3 withM (3, 4) andM (5, 6), respectively. However,
the minimal model withc = 0 is M(2,3) which is trivial in the sense that its field content is limitedconstant
multiples of the identity. Obviously, four-point functierin M(2,3) will be constant, so this model cannot ac-
commodate Cardy’s derivation. On the other hand, it wouldlis&essing if Cardy’s derivation turned out to be
inconsistent with the principles of conformal field theoWe will therefore assume that a description of critical
percolation can be accommodated within conformal field mhebhis will require the consideration of reducible,
yet indecomposable, representations.

Pr=

2.2. The Necessity of Indecomposability. Before embarking on our explorations, let us pause to recatie
useful facts concerning Virasoro modules. This will alsovedo introduce our notation. Verma modules will be
denoted by, whereh is the conformal dimensional of the highest weight statd,thrir irreducible quotients by
L. Forc =0, we recall that the Verma module is itself irreducible gsle= h, s for somer,s € Z,., where
(3r—2s)°—1
hg=——"F—.
’ 24

In the latter caseY, = Vi, , will have a submodule generated by a singular vector at gradits conformal
dimension will beh;s+rs). If r is even orsis a multiple of 3, then the maximal proper submoduléVgf; is

(2.2)
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1 10 28
ojlo|i|1|2|R|5|7]|2]|1
5 | 1| 2]1]5]35[20]33]143]e5
8 8 24 8 8 24 8 8 24 8

1 1 0
21| i ]ojo|d|1]|2|2|5
323 |51 af1]5]3|a
8 8 24 8 8 24 8 8 24 8

TABLE 1. A part of the extended Kac table for= 0, displaying the conformal dimensiohgs for which
the Verma module¥, ; are reducible. The rows of the table are labelled by1,2,3,... and the columns
bys=1,23,....

generated by the singular vector of lowest (positive) gfa@¢herwise, it is generated by the two singular vectors
of lowest and next-to-lowest grades. It is convenient téeteltheh, s with r,s € Z,. into anextended Kac tabje
part of which we reproduce in Table 1. Finally, we introduogation for certain Verma module quotients that will
frequently arise in what follows, s = Vi, o/ Vh, g1rs-

We begin by postulating that the conformal field theory dibatg the continuum limit of critical percolation
contains a vacuu¢0>. Equivalently, by the state-field correspondence, thetityeiield | is present in the theory.
As hy 1 = hy> =0, the vacuum Verma moduMy, has singular vectors at grades 1 and 2 and these turn out to be
independent in the sense that the latter is not descendedfi®former. In fact, the maximal proper submodule
of Vo is generated by these two singular vectors. Sihcg\ O> corresponds to the fieldl = 0, we have to
setL,l|0> = 0 (by quotientingVg by the submodule it generates). However, the grade 2 singakdor then
corresponds to the energy-momentum teffg@y. If this is set to 0, then each of its modes, the Virasoro geoes
Lh, must all act as the zero operator on the states of the thaodythis leads us to the (trivial) minimal model
M (2,3) (or a direct sum of copies of this model).

To get a non-triviat = 0 theory, we must abandon the idea that singular vectordwag s set to 0. Instead of
assuming that the vacuu)rﬂ) generates the irreducible Virasoro moddlg we are led to propose that the vacuum
module is the reducible, but indecomposable, quotiant= Vo/V1. This is, in fact, the only remaining option
because the only singular vector to survivédify, is of grade 2 (it corresponds 1) and setting it to O leads back
to the irreducible vacuum modul&. In the language of Appendix A.1, our proposed vacuum mo@uleis an
extension ofCo by the submodule generated ply) = L_»|0), which is itself irreducible and isomorphic .
This is summarised by the exact sequence

0— Lo — Q11— Lo —0. (2.3)

This argument shows that there is a unique choice for thewraauodule which leads to a non-trivial theory.
Moreover, this choice is reducible, but indecomposableadaommodate Cardy’s derivation, there should also
exist in the theory a primary fielgh » with a vanishing grade 2 descendant. This last requirentemtssfrom the
fact that the crossing probability is derived as a solut@ma second order differential equation and this equation is
derived from the vanishing of a grade 2 descendant. Bedayse 0, the corresponding Verma module is agéin
with singular vectors at grades 1 and 2. This time, we caretdhe grade 1 singular vector to 0 because it would
lead to a first order differential equation for Cardy’s cinggprobability (one can check that the solutions to this
equation are all constant). We therefore conclude thatatieaible, but indecomposable, mod@g, = Vo/ V> is
present. Again, this is the only possibility compatiblelw@ardy’s derivation; the corresponding exact sequence
is

0— L1 — Q10— Lo —0. (2.4)

This concludes the basic setup for a conformal field theorighvts consistent with Cardy’s derivation of the
crossing formula (2.1). One can therefore declare with denfie that the percolation (boundary) conformal field
theory, whatever it may be, must include the indecomposeatzieum modul&; ; and the indecomposable module
Q12 in appropriate boundary sectors. It remains to explore éims@quences of this conclusion. As usual, one can

Bwe will often use the term “singular vector” to indicate almgt weight state which is a proper descendant. Simildrlytérm “highest
weight state” will often be used to indicate the one of lowesiformal dimension in a given module.
"There are also singular vectors at gradeg 52,15, ... which are each descended from both the grade 1 and gradewssingctors.
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try to generate new field content through fusion. It is ndtieraxpect that the identity fieldwill act as the fusion
identity (| x I =1 andl x ¢ » = @) and this is indeed the case. One also expects that the irsgisithe grade
2 singular descendant g > will imply that

G2x@2=1+@s3, (2.5)
whereg, 3 is a Virasoro primary field of conformal dimensibtinz = % This also turns out to be true. However,
the natural sequel to this computation,

Gr2X Q3= Q2+ Pra, (2.6)
whereqy 4 is primary of dimensioy 4 = 1, isfalseas we shall see.

2.3. The Nahm-Gaberdiel-Kausch Fusion Algorithm. In standard conformal field theory, where the modules
are completely reducible, it is permissible to regard fnsdg an operation on primary fields, remembering that
the fusion rules in fact also apply to the entire family ofdedescended from the respective primaries. However,
we have already surmised that there are reducible, but amlpasable, modules in the percolation spectrum.
Therefore, one needs to be much more precise about fusionegadd it not as an operation on primaries, but
rather as an operation on the modules themselves. We alsotmé® more careful about how fusion rules are
computed. The usual method of examining the effect of ge#ingular vectors to zero on three-point functions
might not be practical if we do not know what type of fields teért in the three-point functions (as we shall see,
primary fields do not suffice in general).

The standard method of computing fusion rules when redechalt indecomposable, modules are involved is
known as tha&Nahm-Gaberdiel-Kausdilgorithm. This was originally introduced by Nahm [27] inmited setting
and was extended (and applied to indecomposable Virasodulematc = —2) by Gaberdiel and Kausch [28].
The key insight behind this algorithm is the realisatiort thi@e can concretely realise the fusion product of two
modulesM andN as a quotient of the vector space tensor prodigtz N. To demonstrate this, one needs to know
how the action of the symmetry algebra (here, the Virasagelaia) onM x N is derived from the actions oM
and onN. This takes the form of coproduct formulae [78]:

AlLn) = nzi;l (:1111) Lm@id+id®Ln n>-1), (27a)
AL_p) = m‘il(l)m <” ;TI 1) Ln@id+id@L_q (n>2), (2.7b)
L n®id= i <m2>A(L )+ (=1)" i <”+m1> id oL (n>2) (2.70)
T = \m-n -m =\ m+1 m =z '

Actually, one derives two distinct coproducts which shoctihcide — (2.7c¢) is then deduced by imposing this
equality. Of course, there are generalisations of theseutare for other symmetry algebras [79].

Practically, one does not compute explicitly with the entirsion modulé/ x N. Rather, one restricts attention
to a subspace by setting all states of sufficiently high gtad@ More precisely, ifg is the cutoff grade, then
any state which can be written as a linear combination oéstat the formL_p, - - L,nk|v>, withny +---ng > g,
is set to 0. We will denote the result of this gragleruncation of a Virasoro moduld by N@. This truncation
not only replaces the infinite-dimensional fusion produgtabfinite-dimensional subspace, thereby facilitating
explicit computation, but it also renders the first sum ir7 € finite (the other sums in (2.7) are already effectively
finite if we assume that the conformal dimensions of the stat® andN are bounded below). The point is that
this truncation is compatible with fusion computationsdese (2.7) may be used to prove tiisk x N)(g) can
be realised as a quotient b @ N9 [28]. Here,M’ denotes thepecial subspace truncation oM in which
any state of the fornh_p, - L,nk\v>, with max{ny,...,ng} > 1, is set to 0. Finally, the quotient M’ ®¢ N(©@
which realises the truncated fusion product may be idedtlie determining those elements of the tensor space,
the so-calledspurious stateshat we are forced to set to 0 as a consequence of settinglaingectors to 0 when
formingM andN.

It is always best to illustrate an algorithm with examplest us consider the fusion of the percolatiar< 0)

moduleQ; , of (2.4) with itself, setting the cutoff grade to 0. Thé:l’i,’2 is spanned bj/v> (the highest weight state

of Q1) andL_4|v), becaus¢?, |v) = %L,ZM, andQ(l?) is spanned byv). There are no spurious states to find,
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S0(Q12 % Ql,z)(o) is two-dimensional. Applying (2.7a) with= 0, we obtain
A(Lo) (V) ® [V)) =L_1|[V) @ |V) + Lo[V) @ V) + |V) @ Lo|v) = L_1|v) @ |v), (2.8a)
A(Lo) (L_q|V) @ [v)) = L21|v) @ |[v) + LoL_1|v) @ [V) + L_1|V) @ Lo|v)
—Lap)e )+ oMo ) =L i ) + v oLy

= L)@ V). (2.80)
In the course of this calculation, we have combifgH_1) = A(L_,) = 0 with (2.7a) and (2.7c) to obtain
LoV)®@|v) =|v)®L_a1|v) = —L_1]V) @ |v). (2.9)

It follows from (2.8) thatA(Lo) is diagonalisable with eigenvalukes; = 0 andh; 3 = % From this, we deduce that
the fusion produc®; » x Q1 » decomposes as the direct sum of two highest weight moduleseuhighest weight
states have conformal dimensions 0 %ndespectively.

To identify the highest weight modules appearing in thisodegosition unambiguously, we need to compute to
higher cutoff grades. Atgrade @; ,®c Q(ll% is four-dimensional, spanned by) ® |v), L_1|v) ®|Vv), |[v) @ L_1|v)
andL_1|v) ® L_1|v), and one uncovers a spurious state as follows:

0=8(L2) (V) © ) = L24V) @ ) + 2L av) © L afv) + V) @ L24]v)
— 3oV 0 ) +2L ) BLaly) + EV) oL o)

=3
=ZV)®L_q|v) +2L4|v) ® L 1|v) — ZL_1|V) @ |V). (2.10)
This time, we have usefi(L? ;) = A(L_») = 0, (2.7a) and (2.7¢) to obtain the relations
L2|V) @ |v) =|v)®L_1|v) and  |[V)®@L_ov=—L_1|V)®|v). (2.11)

There are no other spurious states, so the truncated fustmlugt is three-dimensional. ComputidglLy) as
before, we find that it is diagonalisable with eigenvalue§ Qnd%. This refines the grade 0 conclusion in that we
now know that the highest weight module of conformal dimend) has its singular vector at grade 1 setto 0, a
fact which may be confirmed by checking ths{_1) annihilates the eigenstate with eigenvalue 0. This highest
weight module is therefore eithér, or Qy ;.
To decide which, we compute to grade 2, finding no spurioussia the six-dimensional truncated product

12®c 9(12% Calculating as before give(Lo) as diagonalisable with eigenvalues 0322, £ andZ. The grade
2 state may be checked to be obtained by acting &vith ,) on the eigenvalue O state, thereby identifying one of
the direct summands of the fusion productdg. Identifying the other summand requires computing to grade
3. This time, there is a single spurious state Afit) is diagonalisable with eigenvalues 0, 2,33,3, £, £, 0
and 1—30. We see that the grade 3 singular descendant of the eigerélahate has been set to 0, so the remaining
summand is the irreducible highest weight modjg = £ 3.

To summarise, we have used the Nahm-Gaberdiel-Kauschtalgao compute the fusion rule
Q12xQ12=9116Ly3. (2.12)

The computations beyond grade 1 quickly become tedious r@nlolest done using an computer (we implemented
the algorithm in MAPLE). Nevertheless, this example shows that fusion productdeadentified from a finite
amount of computation (although this would not be true ifiagult involved modules with infinitely many com-
position factors, Verma modules for instance). On the dtlaad, the Virasoro modse, acts diagonalisably on this
fusion product, so the result is not particularly intenegso far as logarithmic conformal field theory is concerned.

A more interesting computation is the fusion@{, with the newly discovered percolation modulg 3. At
grade 0A(Lo) is diagonalisable with eigenvalues 0 and 1. Because thgeawalues differ by an integer, we cannot
conclude that the result decomposes as a direct sum of twestigveight modules. Our wariness in this matter is
justified by the grade 1 computation in which a new featurenisowrered:A(Lg) is seen to have eigenvalues 0, 1,
1 and 2, but isot diagonalisable— the eigenspace of eigenvalue 1 corresponds to a Jordandfioank 2. This
is the sign of logarithmic structure that we have been logkar.

To clarify this structure, note that the eigenvalue 0 skéi)eis necessarily a highest weight state. We can check
thatA(L,l)\E> is non-zero and is (necessarily) thélp)-eigenstate of the Jordan block. Its Jordan parﬁﬂér
is then uniquely determined y\(Lo) —id) |6) = A(L_1)|& ), up to adding multiples a(L_1)|&). Finally, the
eigenvalue 2 state is realised Ayl 1) | 9>. All this amounts to defining (and normalising) the statgsesping at
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FIGURE 2. Loewy diagramsillustrating the socle series (see Appehd) for the indecomposable Virasoro
modulesS; 4 and$1 5 constructed using the Nahm-Gaberdiel-Kausch fusion algor

grade 1. What remains to be determined is the actidn 5f
A(Ly)|6) = —3|&). (2.13)

Becausé\(L_1) \ E> is a singular vector, this equation holds farychoice of Jordan partner stdt@>.

This grade 1 fusion calculation shows that the produgcst x £1 3 is an indecomposable non-highest weight
module which we shall denote 84 4. The highest weight stadei) of dimension 0 generates a highest weight
submodule 08, 4 whose singular vector of dimensionL’L,l\ &), is non-vanishing. Using the fusion algorithm at
grade 2, we find that the singular dimension 2 descenddrﬁt)otanishes, thereby identifying this highest weight
submodule a&1 . In the quotient modul81 4/Q1 2, the equivalence cIa#Q) + Q1 is a highest weight state of
dimension 1. Checking its singular descendants of dimesstoand 7 therefore requires fusing to grade 6 and
examining theQ; ,-quotient? The results — the first singular descendant is found to vantstreas the second
does not — indicate that the corresponding highest weighduleois isomorphic t; 4 = V1/Vs. This then
establishes the exactness of the sequence

0— Qj_’z — 81’4 — Q1’4 — 0. (2.14)

The Loewy diagram for the indecomposaBlg, is given in Figure 2 (left). The bottom composition factor
(the socle) is generated M;(L,l)|f>. By taking appropriate quotients, tlg and the topl; may be similarly
associated with (equivalence classes |@f) and |@), respectively. Thel; corresponds to the non-vanishing
singular descendant 06) + Q1 ».

This demonstrates that the percolation conformal fieldheecessarily contains indecomposable modules (in
some boundary sectors) on which the Virasoro zero-modenacigliagonalisably. As we saw in Section 1.1, this
leads to logarithmic singularities in correlation funciio Before discussing this in more detail, let us pause to
explore further what fusion can tell us about the spectrumoflules. The Nahm-Gaberdiel-Kausch algorithm
may be applied to the fusion df, 3 with itself and computing to grade 5 establishes that thelrésthe direct
sum of£4,3 and a new indecomposaliigs whose structure is described by the exact sequence

0— Q11 —815— Q15—0. (2.15)

Its Loewy diagram is illustrated in Figure 2 (right). The h&gt weight submodule is the (indecomposable) vacuum
module containing the vacuutﬂ> and |T> = L,2|0>. The latter state (corresponding to the energy-momentum
tensor) has a Jordan partner, unique up to adding multifl€E Yo which we will denote byjt). If we normalise
this partner by(A(Lo) — 2id) |t) = | T, then explicit computation gives

A(Lo)[t) = —3]0). (2.16)
Again, this equation is independent of the choicetof

S8Thereis a subtlety to this computation worth mentioninge &htion ofA(Ln), n > 0, at gradeg should be understood to map into the grade
g—nfusion space. However, the latter is always a subspaceiéntioof the former. We may therefore compui 1) | 9) in the grade 1 fusion
product and project onto the grade 0 subspace by settingralstwithA(Lg)-eigenvalue 1 to zero.

%This requires finding two spurious states in a 46-dimensieector space.
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It is possible to identify the result of many more fusion gilecluding [26, 80]
Q12%x814=2L1/3D 815,
Q12 %815 =314 L10/3,
L1/3%x814=2814® Lags3,
L1/3x815=2L1/3P 817,

814%x814=4L1362815®817,
814X 815=2814® 2510/369 818, (2.17)
815 %815 ="~L1/302815081,7® Log/3.

Here, the module8; 7 and$; g are new indecomposables with exact sequences
00— Q1,5 — 81,7 — Q1,7 — O, 0— Q1,4 — 81,8 — Ql,g — 0. (2.18)

We remark that fusing 4 or 81 5 with another module requires knowing the explicit form o ftgeneralised)
singular vectors which have been set to 0. This will be diseds$n Sectior??. Fusion computations with the new
modules generated here have met with only partial succleigflychecause the computational intensity of the algo-
rithm increases very quickly as the grade required to cotalylédentify the fusion product grows. Nevertheless,
all such computations are consistent with the followingjeoture for the fusion rules, presented algorithmically
for simplicity:°

(1) The spectrumincludes the irreducib{ss = £ (3x—1)(3k-2)/6 @nd the indecomposablégzk 1 andSy sk 2,
forke Z, (weletS11 =911 and81» = Q1.) To fuse any of these modules, first break any indecompos-
ables into their constituent highest weight modul@s_(, = Q1 _1 = {0}):

S13k-1 — Q k1D 3k-5 S13k—2 > Q13k2® 1 3k—4. (2.19)

(2) Compute the “fusion” using distributivity and

Q15"%" Q¢ =915 941D Qs g+3D D Q1519-3P Q15191 (2.20)

(We have enclosed the fusion operation in quotes to emphtss this is not a true fusion rule).
(3) In the result, reverse (2.19) by replacing the combimestQy a1 & Q1 3k—5 and Q1 32 ® Q1 3k—a by
813k—1 and81 3, respectively. There is always a unique way of doing this.

For example, if we wished to fusg s with £1¢/3 = Q1 6, we would instead compute that
(Q119Q15)“x" Q16 =216 (21,20 14D Q16P Q18P 21,10) (2.21)

from which we read off that
81’5 X Llo/g, = 81,4@2610/3@81’10. (2.22)

2.4. Logarithmic Correlators Again. Consider first the structure of the indecomposable mo8lute It has a
submodule generated by the vacumm while 81 5 is itself generated by the sta@ satisfying
Lot)=2[t)+|T),  Lift)=0, Laft)=—3]0), LnJt)=0 forn>2. (2.23)
We recall thaﬂT) = L,2]0>. The operator product expansion of the corresponding fie{dsandt (w) is therefore
slightly different to those considered in Section 1.1:
5 1 2t(w)+T(w) Jt(w
T(Zt(w) ~—2 L AW FTW)  ot(w) (2.24)

8(z—w)* (z—w)?  z-w’

Normalising so tha{0|0) = 1, we note tha{T ()T (w)) = 0 becausgT ) is singular. The global invariance of the
vacuum then leads to the usual three partial differentiabéigns for( T (z)t(w) ) whose solution is

(TRwW) = —>

(z—w)*

As T (z) andt(w) can be shown to be mutually bosonic [82, App. B], we also obtai
A+ 2log(z—w)

t(t(w)) = —42—— -

(t@rw) ===

confirming the existence of logarithmic singularities irrqagation correlators. We emphasise that, unkke
(2.25), the value of the constaAitdepends upon the precise choice we makétﬁ)r

B = (0|L|t) = —3(0]0) = —2. (2.25)

, (2.26)

100ne can convert this into a general formula, see [81] for @tanHowever, the result seems cumbersome and not particillaminating
to us.
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As a second example, we consider the other module with nagedalisablé.g-action that we have studied:
814. This module is generated by a st@ satisfying
Lol6) =[0)+L_1|E), Li|6)=-3|&), Ln|6)=0 forn>1. (2.27)
Here, \E) is a dimension O highest weight state generating a submasieorphic t0Q1,. The field 6(w)
corresponding t¢9> therefore has operator product expansion
1w | W +oiw)  96(w)
2(z—w)® (z—w)? z—w’

T(2)0(w) ~ (2.28)

Again, we take(&|& ) = 1 and arrive at

B
(z—w)?*
The determination oB is, however, subtle [82]. Naively, we might expect tlha,f> = L,1\5> implies that

B=(0&|6) = (&|L1|0) = —1(¢& &) = — 1, but this turns out to be incorrect. To see why, recall thatstandard
definition of the outgoing state corresponding torenary field @(z) = ¥, @z " Mis

(0x(2)6(w)) = (2.29)

(o] = ;m£h<0]¢(z) — @ = (2.30)
We certainly want this definition to apply #(z), a dimension O primary field. But then,
8= (0](98);]6) = —(0[£1]8) = (0] &oL|6) = —(&|Ls[0) = (€)= £ (2:31)

This is the correct conclusion (see Section 6.3 for a moregmiscussion). In any case, oriBes correctly
determined, the computation ¢6(z)6(w)) proceeds as before and one obtains

_ A—log(z—w)
(6(2)6(w)) = 7(2_\,\/)2 .

Once againA depends upon the precise choice} ®F whereas does not.

(2.32)

2.5. Further Developments. We have seen that the boundary conformal field theory desgritritical perco-
lation is logarithmic and that the spectrum includes the ahe®; 1, Q1 2, £ (3k—1)(3k—2)/6) S3k+1 aNdSzky 2, for
k € Z.. A natural question to ask now is whether there is more to pleetsum. One way to look for additional
modules is to consider other measurable quantities in faien. The most famous generalisation of Cardy’s
crossing probability is that which asks for the probabilitst a random configuration of edges (wjih= pc) con-
tains a connected cluster of open edges connecting all ides sf the rectangular subdomain. In [83], Watts notes
that the four-point functions that solve the second ordiéegintial equations that lead to Cardy’s formula (2.1) do
not satisfy the properties one expects for this more geweoaking probability. However, a field of dimension 0
has, at = 0, a singular descendant of grade 5 and the correspondimgfier differential equation not only has a
unique solution satisfying Watts’ properties, but it alsabtifully interpolates the numerical data known [73] for
this crossing probability. Watts’ proposed solution hagsibeen rigorously proven by Dubédat [84].

Given what we have learned in Section 2.2, the natural inéésion to propose [85] is that the field appearing
in Watts’ four-point function corresponds to the highestghestate of the modul$y/Vs.1! It is rather interesting
to note that this quotient module does not have the f@fmfor any positive integers ands. Instead, one may
identify it usingfractional Kac labels:Vo/Vs = Q;5/» = 95/33. Perhaps surprisingly, denoting this module by
Q5 5/2 Is convenient for discussing the modules one subsequesrigrgtes by fusing witk; . For example, one
finds [85] that

Q12X Q52=9329%7/20  Q23/2=V1/3/Vioz=L13, L7/2="Vo/V7. (2.33)

Unfortunately, fusing2, 5,» with itself leads to indecomposable modules which haveifsagmtly more compli-
cated structures and are rather poorly characterised 88¢ddr further details). We remark that more general
percolation crossing probabilities are considered in {8 a different perspective.

From a more abstract point of view, we have seen that Cardgssitg probability leads to indecomposable
modules which may be associated with the first row of the (eded) Kac table (Table 1), so one is led to ask

11The discussion makes it clear that the singular vector alegbamust be set to zero, but it is reopriori clear why its grade 7 partner should
not be set to zero. It is straight-forward, but tedious, teaththat the seventh order differential equation that weekllt from setting this
partner to zero does not admit Watts’ crossing formula aduiso.
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whether there is a complementary observable quantity rabe associated to the first column. In percolation,
this is not so clear. However, the statistical model knowrdiagte polymers(or the self-avoiding walk also
has a continuum limit that is (believed to be) described ly=a0 conformal field theory. An old proposal of
Gurarie and Ludwig [87] associates this latter conformadifteeory with modules from the first column of the
extended Kac tabl& We will not detail this polymer theory or its observableséhénstead mentioning only that
a field corresponding to the module ; = £5/g is relevant and that fusing this module with itself leads ho a
indecomposable module which we denoteShy:

'55/8 X '55/8 = 83,1, 0— Ql,l — 83,1 — Q3,1 — 0. (2.34)

The Loewy diagram o83 is identical to that o8 5 (illustrated in Figure 2) except that the composition facto
L5 is replaced byC7. If we regard the submoduley ; as being generated by the vacuum, tl1ﬂébn has a Jordan
partner|t’) € 831 which can be distinguished froft) € 815 by

Loft) =—3]0),  Lo|t') = 2|0). (2.35)

We remark that these coefficiertiss = fg andbz; = %, calledanomaly number@ [89], have recently been
measured directly in the respective lattice theories (thhonumerical simulation) [90]. This confirms experimen-
tally that percolation corresponds to first row modules ahdalpolymers to first column modules, at least in their
formulation as boundary conformal field theories.

One thing worth mentioning here is the observation (see A®®, A]) that the otherwise reasonable-looking
two-point function(t(2)t’(w) ) is inconsistent with conformal invariance. More precistig three inhomogeneous
partial differential equations for this correlator thag derived from the global conformal invariance of the vacuum
admit no simultaneous solution. This appears [26, 88] te auit the possibility that botsy 5 and83 1 can belong
to the spectrum. However, a more careful conclusion [83jas the presence of one of these indecomposables in
a boundary sector labelled by boundary conditiBpgndB; precludes the presence of the other in any boundary
sector with labeB; or By. This does not prove th&t s andSz 1 can coexist in a boundary conformal field theory,
but it does provide a loophole whereby inconsistent twotphinctions may be avoided. Such a loophole appears
to be at work in the results of [81] in which boundary condis@orresponding to all the extended Kac lalfels)
are constructed for a loop model variant of critical pertiota'® An extremely important open problem, in our
opinion, is to determine if the conformal invariance of tleewum leads to further, more stringent, constraints on
the boundary (and bulk) spectra of logarithmic conformadifieeories.

3. SYMPLECTIC FERMIONS AND THE TRIPLET MODEL

The triplet theorieﬁn(q, p), with p,q € Z,, p> gand gcdp,q} = 1, form a family of logarithmic extensions
of the minimal Virasoro models. Whep= 1, the minimal model is empty, but the logarithmic theoryasitrivial
(these are the original triplet models of [30]). We will cemtrate on the simplest of these models, that with
q= 1 andp = 2,**which has a free field realisation known as symplectic femmidVe start with this free theory
before turning to the triplet aIgeme(l, 2) and then to its subalgebra, the singlet algéb“rél, 2). The theories
associated to these algebras are extremely closely redatea illustrate in Figure 3. We also note thm(l, 2)
is, in fact, a special case of Zamolodchikov’s original léglpin algebrgV(2,3) [33]. We then detail the modular
transformations of the singlet characters and computeh@natieck fusion rules fom(l, 2) using a continuum
Verlinde formula (see Section 1.2). This is then lifted te thiplet model and symplectic fermions and compared
with their known fusion rules [32].

3.1. Symplectic Fermions. Symplectic fermions were first introduced by Kausch [29] nder to study the
fermionic £n ghost system of central charge= —2. They also describe the Wess-Zumino-Witten model on
the abelian supergro}5L(1|1) and should be regarded as the simplest fermionic analoghe @fee boson. The
action involves two non-chiral fermionic fields" (z 2):

1

s[6*(z2)] = - / (06" (2206" (22 - 06" (22960 (2.2)| dzdz 3.1)

12Actua||y, the proposal of [87] was that percolation shoutddssociated to the first column and dilute polymers to therivg, though this
statement is not repeated in the sequel [88]. This was dedea [26] for the boundary theory relevant here.

13Interestingly, the so-callelac modulesk; s which appear here generalise tg; andQ; s as quotients of Feigin-Fuchs modules, rather
than quotients of Verma modules, see [91, 92].

14The model withp = q = 1 is justsi(2) at level 1.
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U(1)-orbifold
Symplectic Fermions Singletm(1,2)

Free simple current

Triplet20(1,2)

FIGURE 3. The symplectic fermion algebra, the triplet algeb#gl,2) and the singlet algebfat(1,2) are
all related by simple current extensions and orbifolds.

This action is invariant under shifts by holomorphic and-tislomorphic fields, and this implies, as with the free
boson, the operator product expansion

6% (22)0~ (W,W) = A+ logjz— w2+, (3.2)

whereA is a constant of integration.
The equations of motion state thit(z) = 96*(z,2) andJ* (2) = 6% (z2) are holomorphic and antiholo-
morphic, respectively, and we will take the former to getetlae chiral algebra. These are the symplectic fermion
currents and their operator product expansions are
1
(z—w)?’

Their modes then satisfy the anticommutation relationsefdffine Lie superalgebﬁﬂ(lu) atlevelk=1 (asin
the case of the free boson, any non-zero level may be resicalgd

{353 } =mdninzo,  {In. 3} =0 (3.4)
The Virasoro field isT (z) = : 37 (2)J" (z) : and its central charge 5= —2.
Let us turn to representations. As usual, we start with higiweight modules and these can be quickly analysed
by expanding the double integral
1 0z dw

7(4) 7€v I (23 (w2t (z—w) 22

in the usual fashion, so as to obtain the generalised contimitzlation

IT(2) 3 (W) ~ I (2) 5 (w) ~ 0. (3.3)

[

_ _ 1
Z [Jrgfj‘]nﬂ - Jnflfj‘]nt+l+j} = Em(m‘f' 1)dmin=0—Lmin (3.5)
j=0
From this, we see that the mode indiceandn must satisfym+n € Z so that the Virasoro algebra will be integer-
moded. For now, we will assume that the modingJoris the same as that df . Then,m andn must be either
both integers or both half-integers.
We apply (3.5), witthm=n=0,to a state}qo) which is annihilated by positive modes, obtaining

Lol@) = -5 % |@) = L5|@) =0. (3.6)
It follows that\(p> belongs to a Jordan block fag with eigenvalue 0 and rank at most 2. Repeating this, with
m= —3 andn = 3, givesLo|@) = —§| @), hence the only half-integer moded highest weight statebatormal
dimensiom%. It follows that we have only one moddféin the half-integer moded sector, necessarily irredugible
that we shall denote by >, the label corresponding to the moding. In the integer-rdcsketor, we have an
irreduciblelLg (the vacuum module) as well as an indecomposé&plgenerated by a dimension 0 generalised

15Technically, there are two (graded) modules according #setparity of its generating state. We shall usually ignare distinction.
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/\ /\ /\
\/ \/ \/

FIGURE 4. The Loewy diagrams for the socle series of the indeconipesymplectic fermion module
So (left) and the indecomposabm(l, 2)-modu|esSo and$; (right). In each case, the non-diagonalisable
action ofLg maps the top factor (the head) onto the bottom factor (thkesoc

eigenvectotQ) of Lo.2® Its Loewy diagram is given in Figure 4, where we remark thafitur composition factors
may be associated to the staf€¥), Jj |Q), J; |Q) andJy I3 |Q) = |0). Finally, we note that ifl; is regarded
as a creation operator adg as an annihilation operator, thég‘i]Q) generates the vacuum Verma mod¥lg
(the Verma module for half-integer moding is already irreidie: Vy,, = 11 /5) and the indecomposab is
characterised by the exact sequence
0—Vg—Sg—Vg—0. (3.7)

The fusion ring generated by the irreducibles is partidylaasy to work out using (a variant [94] of) the

Nahm-Gaberdiel-Kausch algorithm. The vacuum moduwlés the fusion identity and one finds that

Ll/ZXLl/ZZSOa L1/2X80=4Ll/2, SoXSo=4So. (38)
The characters dfi. | (q) = tr, g-o—/24 of the irreducibles are likewise easily obtained:
2 92(1;9) _1/247 _12\2_ 93(L0)
chlLo| = ¥ ?TT(1+q"2 = =22 ch[Lyp] =g YT [(1+9mY?) = =222 (3.9a)
[Lo] He+a" =0 [Le] El( ) n(a

Note that the factor of 2 fok.p would disappear if we instead considered its Verma céier As symplectic
fermions are described by an affine Lie superalgebra, ittisrabto also consider the supercharacters in which
fermionic states are counted with negative multiplicitye(@ssume a bosonic ground state):

o ® 2 94(1;
schLo] = q/[J1 -’ =n(@?  schlLyjo] =g V> (1-q"*?) = dh9) (e
n-1 -1 n(a)
Excluding scrﬁ]Lo}, whose S-transformation involves factorstofwe write q = 2T as usual), these characters
and supercharacters have good modular properties. Howteee3-matrix one obtains has no strictly positive row
or column, hence the Verlinde formula is inapplicable.

Finally, we consider general modings for the currehtsandJ~. Representations on which the algebra acts
with modings different to that of the vacuum module, for exdari, ,, are said to béwisted'’ For symplectic
fermions, the general twisted modu¥g = L, is the irreducible generated by a highest weight s’tﬂj@ upon
which the symplectic fermion currents act with mode decositjpm

Y onzt (3.10)
neZFA
Taking 0< A < 1 and applying (3.5), the conformal dimension\m}) is found to beA, = f%)\ (1—A). The
corresponding primary field, (z) is called atwist field[95]. The character dL, is given by

chlLLy | = qA(-A)/2+1/12 = 14q" M) (14 gmt) = q(m+)\—l/2)2/2 (3.11)
[ ’\] nI:[o( )( ) n(q) ngz

and the supercharacter is obtained by inserting a factor o™ into the sum. We will return to twisted modules
when we consider the singlet alget(1,2) in Section 3.3.

16The existence of this indecomposable module follows upatisiag that it may be obtained from the universal envelgpaigebra of
ps((1]1), considered as a four-dimensionail((1|1)-module, through the induced module construction. Othéeéomposables with integer
moding may similarly be constructed [93].

17Strictly speaking, these are only modules for an orbifoldhaf chiral algebra by some cyclic group, but there is usuatlg harm in
neglecting this.
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3.2. TheTriplet AIgebraQH(l, 2). The triplet algebra is defined to be the bosonic subalgebitaeafymplectic
fermion algebra. It is generated by the three fields

WE(2)= 135203 (2):, W°(2=:3"(203 (2): —:33t (23 (2): (3.12)

and the energy-momentum tenddz). The triplet fielddV*(z) andwW?(z) are Virasoro primaries (with respect to

T (z)) and the conformal dimension of each is 3. Their operatatlpcbexpansions are rather unpleasant and may
be found, for example, in [29]. A complete set of (untwist'erBducibleQﬁ(l, 2)-modu|es [96] may be obtained
by decomposing the symplectic fermion irreducidlgsandL, /, into their bosonic and fermionic subspaces:

Lo =Wod Wiy, ]Ll/z = W,l/g@WQ,/g. (3.13)

Here, we have labelled the triplet modules by the conforrimédsion of their ground states. The space of ground
states is one-dimensional f¥o andW_ /g, but two-dimensional folV; andW3/g. The indecomposabi& also
becomes a direct sum of two indecomposables when viewedla@az)-module:

So =80 81. (3.14)

The Loewy diagrams d3g and8; are given in Figure 4.
The fusion ring generated by the irreducibles was first deitezd in [32]. The vacuum moduly is again the
fusion identity and the other rules are

W1 x W1 =Wy, W1 xW_1/8="Wss, W1 xWgig=W_y,
W_1/8 X W_1/8 = 8o, W_1/8 X W3/ = 81, W35 x W38 = So,
W1X80=Sl, WlxleSo, (3.15)

W_1/8x80=WggxSo=W_1/gx81=Wzgx81=2W_1,802Wss,
Sogx80=89x81=81%x81=2834281.

We note thatWV; is a simple current of order 2. The corresponding extendgebaa is, of course, the symplectic
fermion algebra (the ground states\Wf correspond to the currends (2)). It is easy to check that the symplectic
fermion fusion rules (3.8) are consistent with (3.15) arid dbservation. The irreducible triplet characters were
first obtained in [29, 31], but follow easily from averagirtetcharacters and supercharacters of the symplectic
fermions irreducibles, given in (3.9):

ch[Wo] = 3 (chlLo] +sch{Lo]) = ’9;(’1;;) N n(;)z’
ch[W,] = %(ch[lLo} — schLo]) = Sj&;{)}) B fl(;il)z,
ch[W_y/8] = %(Ch[ﬂ-‘l/z] +schLy ] ) = 193(1?q2)n+( (;9)4(1;q) | (3.16)
ch[Ws/g] = %(Ch[Ll/Z] ~schLy]) = 193(1;q2)n((;9>4(1;(1) _

The modular properties aV_; ;g and W3¢ are seen to be good, but thoseWp andW, are not as satisfactory
because thg (q)2 gives rise to coefficients involving lag= 2mit. For example,

. : 2 .
ch[Wo] | = ’Z‘f&(’q‘;) - ”'72@ = %(ch[w,l/g} —ch[Wy;s]) — - (ch[Wo] —ch[W4]). (3.17)

Attempts have been made to interpret this, see [31, 97] famgte.

3.3. The Singlet Algebra Dﬁ(l, 2). To define the singlet algebra at= —2, it is convenient to extend thHg,-
grading of the symplectic fermion algebra, given by patitya Z-grading. This may be regarded as the ghost
number in thef n ghost system realisation or as the eigenvalue of a derivatiextendinga/s\[(1|1). In any case,
acting with J& increases this grade bizl. We can now define the singlet alge@vﬁ(l, 2) as the subalgebra
of symplectic fermions whosg-grade matches that of the vacuum. This is therefore a sebedgf the triplet
algebra and it is generated By(z) andW°(z). In contrast to the symplectic fermion curredts(z) and the
triplet fieldsW*(z), the singlet generators act with integer moding on evergted symplectic fermion module.
Decomposing the symplectic fermion’s twisted Verma mosilg, which coincide with the irreduciblds, when

A # 0, into Z-graded subspaces shows that the singlet algebra possessesountable set of non-isomorphic
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(untwisted) module§,, u € R:
Vi=@PFrim (0<A<). (3.18)
meZ
The minimal conformal dimension for states®f is A, = %u(u —1).

ForA # 0, it turns out that thé, |, So obtained are irreducible. By analogy with the case ofisigebras [98],
theJ, with i ¢ Z will therefore be referred to agpical. WhenA =0, irreducible)ﬁ(l, 2)-modu|es are obtained
by decomposing the irreducible vacuum moduge# V instead:

Lo =EPM;. (3.19)
rez
These irreducibles will be referred to atypical Note that the singlet vacuum moduléN and that the minimal
conformal dimension for states df; is %|r|(|r| +1). We also remark that th&, with p ¢ Z and theM; with
r € Z exhaust the irreducib®t(1, 2)-modules [96, 99].

The characters of the typical irreducibt&g, u ¢ Z, are easily extracted from the twisted symplectic fermion

characters (3.11) once tifecharge is taken into account:

qH-1/2%/2
n(a)

This formula also applies to the indecomposabiigsr € Z. Note that up to shifting: by —%, these characters
coincide with the free boson characters (1.13) discuss&kation 1.2. It is also straight-forward to obtain the
characters of the atypical irreducib®&, r € Z. However, we will not need their explicit form in what foll@w
and we only mention that these forms involve an interestinglmer theoretical object called a false theta function.

Instead, we study the structure of the indecomposable rasdiuylforr € Z. These are defined as the subspaces
of Vg of constantZ-grade. It follows from (3.7) thaff; is an indecomposable sum of two atypicals and a little
thought leads us to the (non-split) exact sequence

ch[Fy] = (3.20)

0— Miy1 — Fri1 — M, — 0. (3.21)

Splicing the short exact sequence fdy with that forM, 1 and iterating (see Appendix A.2), we arrive at resolu-
tions of the atypical irreducible modules:

"'H&r’r+5*>:}-r+44):}-r+34)3}+2—)S'r’r+j_*>Mr—)0. (322)

These imply that the characters of the irreducible atypizadlules may be expressed as infinite alternating sums
over the typical characters:

[ [

Ch[Mr] = Z(Ch[§r+2j+l} —Ch[?r+2j+2]) = Z(_l)jCh[?rﬂJrl}- (3.23)
j=0 j=0
In particular, we conclude that the characters offhe— the irreducible typicals as well as the indecomposable
atypicals — form a (topological) basis for the vector spguansed by the characters. We will use this to apply
the Verlinde formula to irreduciblﬁn(l, 2)-modu|es and thereby deduce the (unknown) fusion rulesedditiglet
theory.

3.4. Modular Transformations and the Verlinde Formula. Before deriving the modular transformations, we
remark that the typical singlet characters (3.20) suffemfthe same deficiency as the standard free boson charac-
ters (1.13) in that they do not completely distinguish theresentations: di¥,] = ch[F1_,]. As in Section 1.2,

the fix is to include thé&-grading and thesi(1|1) levelk:

YKZH-1/2q(H=1/2) /2K

n(a)
Here, we have finally fixed our choice for tifegrading used to define singlet modulés; is assigned the grade
u— % in Vs (wherey’ = yu mod 1). We do this because the typical singlet charactedf3tn takes the same
form as the free boson character (1.14), up to the shifts %).y

Writing y = €2, z= 2! andq = ™7, as in Section 1.2, the modular S-transformation for thécgigand
indecomposable atypical) characters is then immediate {fo15):

ch[F,] = try yKZH~1/2glo=¢/24 — (3.24)

ch5)]], = [ Sipch[Tu]du, S = e 222 (3.25)
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(we have sek back to 1 for convenience here). This S-matrix is again sytrimand unitary. Moreover, with
the T-matrix T, = ™ A-V+1/8)5(} = 1), it defines a representation 8 (2;Z) in which the conjugation
permutationist — 1—A.

By analogy with Section 1.2, we expect that a continuum wversf the Verlinde formula will be valid. However,
we must now take into account the fact that the vacmlt(ri, 2)—modu|e is theatypicalirreducibleMg. As there
is no “atypicality” with the free boson’s representationar story now deviates from that of Section 1.2. Using
the character formula (3.23) for atypical irreducibles,eesily obtain their S-transformations expressed in terms
of the topological basi¢ch[F,] : p € R}:

[ee] 00

ch[M, ] = Z( 1) ch[Fry 1] ‘s = J;:)(fl)j /:;e*Z"“’“*l/Z)(“*l/Z)ch[Sﬂl} du
e—2mi(r+1/2) ufl/z e—2mir(u—1/2)
7/00 1+ e-2m(u-1/2) ch|Jy] du = / 2cosm(u —1/2)] ch|Jy] du. (3.26)
The corresponding S-matrix entry is therefore
e72mr(ufl/2)
Stp = (3.27)

2cogm(u—1/2)]’

where we have indicated when a label corresponds to an atypieducible by underlining it.
We can now apply the continuum Verlinde formula to compugédn coefficients. Actually, because characters

cannot distinguish an indecomposable from the direct suits @omposition factors, what the Verlinde formula

gives is the structure constants of tBeothendieckusion ring (Appendix A.3). The easiest computation is that

for the fusion of an atypical and a typical:

0 S 5S,0SH o .
Ny = [ R gp— [ e amru e 32 dp — 5y = ). (3.29)
- (=] Qp —o00

Fusing two typicals is only slightly more involved because denominator dbg, no longer cancels:
Ny, = /°° o~ 2T\ +p-v-1/2)(p-1/2) (eir[(pfl/z) +e7m(p71/2)) do

=O(v=A+u)+3(V=A+pu—1). (3.29)

Fusing two atypicals is a little more subtle however. Cormuunaively, one quickly arrives at a divergentintegral.
The problem here may be traced back to the derivation of {3r2Which we summed a geometric series at its
radius of convergence. The fix is obvious: Expand the gedossries once again (in the right region) as continue
to integrate. From this perspective, the dubious summatiaybe simply regarded as a placeholder that simplifies
some computations. With this proviso, we quickly obtain

o o 2Mi(r+s-v+1/2)(p-1/2) 3
Ny’ = /

do = /m 1 je72ni(r+3+j+17v)ada
scosmp 1] P~ L)Y

(—1)J8(v=r+s+j+1). (3.30)

or

0

i
This seems to say that the fusion of two atypicals leads tathaegmultiplicities (forj odd), but in fact, this infinite
alternating sum corresponds to an atypical with positivétiplicity.
The Grothendieck ring of characters is now obtained by natiigg these coefficients as in (1.20):
ch[M;] x ch[Fy] = ch[Fpsr], ch[Fx] x ch[Fyu] =ch[Fy ] +ch[Faipy1],
: > i 3.31
ch[Mr] % ch[M] = Y (~ 1) ch[Fr.os 1] = ch[Misa]. (3:31)
j=0
When one is sure that the characters cannot describe ingesatle modules, these Grothendieck fusion rules
may be lifted to genuine fusion rules. In particular, we d=slthat
MrXMsZMr+5, MrX§“:§“+r, ?A X:}’u::}’)\+u@§A+“,l ()\,[J,)\+/.1§§Z), (332)

the last constraint arising because the conformal dimessibthe states of, andJ), _, differ by A mod 1. This
means that the fusion of two irreducibles is known in eveecaxcept, x I, whenA + u € Z.
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FIGURES5. Conjectured Loewy diagram for the proposed indecompeﬁﬁlﬁl, 2)-modu|eﬂ>r.

Observe now that (3.32) identifies thé& as simple currents of infinite order (with no fixed points)sleasy to
show that the maximal simple current extension, meaningldpebra generated By(; andM_;, is precisely the
symplectic fermion algebrﬁg\[(lu) (indeed, the generators ®f; andM_; have conformal dimension 1). From
this, we may conclude that the extensiorfdy andM_3 is the triplet algebraﬂ(l, 2). Itis therefore the maximal
bosonicsimple current extension.

Let us now perform a consistency check on the continuumielformula by deriving (some of) the(1,2)
fusion rules from (3.32). Our identification of the triplégabra as a simple current extension of the singlet algebra
leads to the restriction rules

Wo=EP Mom, Wi=EP Moms, W_r58=PD Fomrrjo: Was = P Fom-1/2- (3.33)
mezZ mezZ mezZ meZ
As in Section 1.2, we can use these rules to compute fusiorenmering to take a singl?et(l, 2)—representative
for one of the2li(1,2)-modules being fused. To illustrate:

Wo x Wo = Mp X (@ Mzm) = P (Mo x Mom) = @ Mam = Wo. (3.34)

meZ meZ mezZ
This procedure therefore correctly normalises the exteattpebra fusion. Applying this, we can reproduce all the
triplet fusion rules (3.15) except for thoseWwf_; s andW3 /g with one another. For these latter rules, we can only
compute the Grothendieck fusion, for example
ch[W_y] % ch[Was] = ch[Fars1/2] x (L chlTFom 1/2]) = ¥ (ch[Farem] +ch[Faesm 1] )
meZ

mezZ

= % (ch[Magem)] +260Magem-2] +ch[Maesm 2] )

meZ
= 2¢ch[Wo| +2ch[Wy], (3.35)
where we have used (3.21). We note that this is consistehtWit; ;s x W3/g = 81 because (see Figure 4)
ch[8o] = ch[81] = 2ch[Wo]| +2ch[W;]. (3.36)

Of course, the Grothendieck fusion of th&(1,2)-typicalsF, andFy, A + u € Z, gives us the composition
factors of the fusion product:
ch[F) x Ty =ch[Fa] x ch[Fy] =ch[My ] +2ch[My 1] +ch[My 2] (3.37)

Because the corresponding fusion products for the tripldtsymplectic fermion algebras are indecomposable, we
propose that this is true for the singlet algebra as well. Mgedfore conjecture that

FyxFrira =P (re7), (3.38)

where?; is an indecomposabtm(l, 2)—module whose Loewy diagram is given in Figure 5. To provs,thhe
would have to either construct the fusion product expliditthich seems very demanding), or deduce the existence
of such indecomposables abstractly and show that theyitestie restriction of th@yy (1, 2)-indecomposables

8o ands; to 931(1, 2). Either approach is beyond the scope of this review.

3.5. Bulk Modular Invariants. Because of the symmetries of the S-matrix, the singlet thbas two obvious
bulk modular invariants, corresponding to the diagonal@ratge-conjugate partition functions:

Zaiag(@0) = [ oh[TaJch[T]dA,  Zec(ad) = | chTa a]ch[7,] dh. (3.39)
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As usual, simple current extensions allow one to construartem Specifically, we have seen that each atypical
Sm(l, 2)-moduIeMn is a simple current, so an extended alget#& may be constructed by promoting all the
fields in the fusion orbit of the vacuum module to symmetryagators:

™ = B Mmn (3.40)

meZ

We have already remarked tHé&t™V) is the symplectic fermion algebra afil?® is the triplet algebra. The other
extended algebras likewise give rise to rational logarithoonformal field theories and may be described as
orbifolds of the symplectic fermion theory [29]. The fusiorbits through otheﬁ)?(l, 2)—modules likewise give
rise to (twisted)W(™-modules, for example

" = @ Mr+mn7 Ff\n) = @ Fa +mn (3-41)
mezZ mezZ
The untwisted extended algebra modules are preciselMﬁﬂ)eand thdFE\n)
we arrive at new modular invariants.

The modular S-transformation of an untwisted typical edtghalgebra module is easy to calculate:
[ J/n] Z Ch[ /n+mn} Z / —2mi(j/n+mn-1/2)(u— l/Z)Ch[ u] d[.l

meZ:
:/ 2 o—2mimn(u—1/2) .~ 27i( J/n71/2)(u71/2)ch[?u] du

with A € %Z. By restricting to these,

/ Y 8(u— 1/2= £/n)e2TI/N-Y2W-Y2)ch[5, ] du

® ez

_ = Ze72ni(j/nfl/Z)f/nCh[Sré/n+l/2}
n lez

_ = Z Z e727'[1 j/n— 1/2)(k/n+mn)Ch[?k/n+mn+l/2] (342)
meZ k=0

Here, we pause to note tharfs even, then the exponential factor in the above sum is iendgnt oim. We may
therefore perform thexsummation and then shiftto k — %n, obtaining

1 o
Z Slk Jch[F ﬁ/)n] SEE) = Ze 2mli/n=1/2(k/n=1/2) (n even). (3.43)

(n)
ch[F ] -

i/n

The typical extended characters, foreven, therefore carry a finite-dimensional representaifoiie modular
group. Ifnis odd however, then the exponential factor includes a faetd)™ and thed, do not combine to give
an untwisted extended algebra module. One is instead feocazhsider supercharacters and twisted modules, the
final result being that the modular invariant one constriroim W, with n odd, is equivalent to that constructed
from W@V, This is consistent with the observation that the extendgebaa generators are fermionic fioodd
and bosonic fon even.

As the f even) S-matrix of (3.43) is unitary, the diagonal and chargejugate partition functions are modular

invariants:
n2— —

2= X o JenlE]). 2= 2 ch[EJcn[E L ] (349
J:

Expressing these in terms of singlet characters finallysynesv modular invariants fopt(1,2). We will not write
them out in generality, noting only that for the triplet dbgam](l, 2) =W, the diagonal and charge conjugate
modular invariant coincide. Since p]h()z)} = ch[IF(lz)} = ch[Wo| +ch[W4], they are

z2) = |eh[W_1g]|? + |ch[Wa/g] |* + 2 [ch[Wo] +ch[Wa] > (3.45)

Note that the obvious candidate for the non-chiral vacuurdutesWy @ Wy contributes with multiplicity 2. We
will see that this is explained by the bulk vaculié) @ |0) having a non-chiral logarithmic partng®).

Finally, we remark that the modular transformations of thypigal extended characters are problematic. Re-
peating the calculation that led to the typical extendedasim(3.43), assuming again thais even, leads to the
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FIGURE 6. On the left, the Loewy diagram of the bulk indecomposabielute B (over the direct sum of
two copies of the symplectic fermion algebra). On the rige,same diagram but with the bulk compaosition
factors replaced by the fields naturally associated to them.

sum
1M1 g—2mirk/n
s n &= 2cogmk/n|
The pole ak = %n cannot be swept aside in this summation as it was when we wegrating. Of course, we
know for the casen = 2 (20 (1, 2)) that the S-transformation of the atypical characterslire®factors of logj,
so we should not expect that the above approach will works Tan be traced back to the fact that the atypical
extended characters can, unlike their singlet countespaotionger be written as an (infinite) linear combination
of the typical extended characters. The extended versidineofesolution (3.22) is periodic in the typical labels
and, consequently, the character formula (3.23) is diverge

ch[IF(n)

12 (3.46)

3.6. Bulk State Spaces. Let us consider the symplectic fermions once again. Reuadthe action (3.1) is defined
in terms of (non-chiral) fermion8*(z 2). From these, we can construct the following field:

Q(z2)=:07(22)07(22):. (3.47)
The symplectic fermion currents, both holomorphic andrasitimorphic, act o2 as follows:
i J—
3 @oww ~ =2 gty ~
=W Zw (3.48)
6" (w,w) 1

=+ = —
) @ETWW) ~ o
From this, we deduce the structure of the bulk indecompesaphplectic fermion modulB, see Figure 6. We
remark that its character is twice the atypical contribmt'n»them](l, 2) modular invariant (3.45).

The symplectic fermion bulk module is graded by the (totafyrfion number, hence it decomposes into the
direct sum of two bulk modules ové?ﬂ(l, 2) (or rather over two copies of it). Only one of these modues
contains the triplet vacuum modul®y ® Wy as a submodule. We illustrate its structure in Figure 7. As it
character coincides with the atypical contribution to thetiion function (3.45), we conclude that the bulk space
of states corresponding to this modular invariant is

Houlk = (W,l/g ® W,l/g) ® (Wg/g ® Wg/g) DB. (3.49)

This conclusion essentially defines the bulk triplet theasyhe bosonic subtheory of the bulk symplectic fermions
theory in which the only non-local fields admitted are thosenhich the fermions act with half-integer moding.
This confirms the triplet model as ti#e-orbifold of symplectic fermions.

It is worth thinking for a few moments how one could have adat the triplet model’s bulk state space
structure (3.49) if the non-chiral information concernBygnplectic fermions was not so readily available. First,
the modular invariant in (3.45) is very suggestive, esplgaieghen we may rewrite the atypical contribution, using
the character identity (3.36), as

2 |ch[Wo] +ch[W1] |? = ch[Wy] ch[So] +ch[W1]ch[81] = ch[So]ch[Wo] +ch[S1]ch[W1].  (3.50)

This ties in nicely with the idea discussed in the introdmetihat natural representations often decompose in a
manner whereby each irreducible is paired with its projeatover. Indeed, it is known [100] that the irreducibles
W_y/g and W3/g are projective and that the projective covers of the irréalas Wo and' Wy are 8o and 8y,
respectively (in an appropriate category of vertex algemodules).

T 2Qww) ~ F
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FIGURE 7. The Loewy diagram for the indecomposable bulk modBlef 20(1,2) ®25(1,2). The
solid/dotted arrows indicate the action of the holomorfaritholomorphic triplet algebra. It is clear that
restricting to each chiral subalgebra result$ilecomposing aéWp ® Sp) @ (W1 ® 81) and (8o ® Wq) &
(81 ®Wy), respectively.

A simple guess, which works in this case, is therefore to ditasvLoewy diagram of the tensor product
(Wo® 80) & (W1 ®81). This gives a holomorphic module structure to the bulk medl Then, complete the
diagram by adding (dotted) arrows representing the amtihotphic module structure so that they trace out the
Loewy diagram of 8o ® Wp) @ (81 ® W1). One quickly finds that there is a unique way to do this. Moegpane
can check that the resulting diagram is manifefstfal, meaning that the corresponding bulk correlation funaion
will all be single-valued. For this, we recall [35] that fidtztality has an algebraic reformulation which requires
thatLo — Lo be diagonalisable with integer eigenvalues. The seconstnt is clearly met and the first follows
from the locality of the non-diagonalisable action for syeqpic fermions (see (3.5) and (3.48)):

Lo|Q) =3 3 |Q) = -3 ]Q) =—[0), Lo|Q)=33|Q) =Ty |Q) =—|0). (3.51)

3.7. Correlation Functions. Correlation functions and operator product expansionsyarplectic fermions, in-
cluding twist fields, were computed by Kausch [95]. The ofmerproduct expansion of the logarithmic partner
Q(z2) of the vacuum with itself is logarithmic,

_ _ 2\ 2 2 _
Q(2,2)Q(w,W) = — (A+Iog|z—w| ) - 2(A+Iog|z—w| )Q(W,W) +-, (3.52)
and the same is true for the twist figld > (z,2) with itself:
22,2y (W) = [z~ w2 (Q(w W) + logiz— W[ + cons) + - (353)

In the triplet theory, the twist field generates the bulkleimoduleW_; g @ W_3 g, while the logarithmic partner
of the identity is associated to the top composition fadtyro Wy of the bulk staggered module. These operator
product expansions are, of course, consistent with therfusiles and the bulk state space explained in last section.
We will now outline an efficient means of computing the caatien function that implies (3.53) (using a different
approach to Kausch).

Viewing symplectic fermions as the Wess-Zumino-Witten elazf the Lie supergroupSL(1|1), it is natural
to describe the theory by passing to a first order formulati®in, for example, [101]. For symplectic fermions,
this idea has been applied in [102]. The picture is sketckddlmbws:

06736~ L0 99+ 1 h 90 +btb 20NN 5456 1 e~9 1 linear dilaton (3.54)
The first order formulation, or equivalently its bosonieatiis best used to compute correlation functions pertur-
batively. The symplectic fermion fields are recovered byotiegosinge*9(22 = e=0L(2e=0r(2) with

1

e¢L (Z) ef¢|_ (W) ~
(z—w)

(3.55)

and so on. The fieldd* (z) = e®? andJ~(z) = de~*(? commute with the zero-mode of #(? and they have
the same operator product expansion as symplectic fermidgres(holomorphic) Virasoro field is

T(2) = % :00(22)00(22): + %dztp(z,z). (3.56)
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The twist fieldsy, are identified with the?9-(? because the corresponding states have dimensiqi — A )/2
and theJ* act on them with moding ifZ + A. The corresponding bulk field will be denoted‘h},y(z, z) =er0(z7),
In this formalism, correlation functions are defined by

(Vo (21,21) Vi (z0,20) ) = (Vay (20,21) -+ Virn (20, Zn)e ™), (3.57)

Q- /*d’zz dzdz (3.58)

and the correlators in the free theory, denoted with thecsqhso, are standard free boson correlators subject to
the charge conservation condition

(Vay (21,21) Vo (20, 20))g = —8(a1 + -+ an = D[ [ |2 — | **. (3.59)

i<j

where

In this manner, we obtain the non-zero one-point and twaorgfanctions
M(z,2)) = -1, Va(z1,20)\V1-4(22,22)) = |71 — 22|22, (3.60)

The logarithmic partner of the identil%(z, 2) is the fieIdQ(z,Z) =Vj(z,2). This can be verified by computing
three-point functions involving this field. For this, cother first a three-point function of the form

CC(BV(27 2) = <VG (27 Z)VB (15 1)VV(07 0)>a (361)
with o 4+ 8 + y = 2. The famous Fateev-Dotsenko integral [103] gives

2 2 2 2B, —2y 9202
Capy(22) = — |22z 1 "B/|z w21 — w2 w2 2
_ A -—a)F(1-p)rd—y)
__ayiB-1)q _ 2aB iy _ 3.62
G MBI ) 362

We see that the three-point function diverges if one or mdérigsdields coincide withQ(z,Z) and that, if this
happens, then a regularisation will be required. The coregilarisation mimics the addition of the identity to its
logarithmic partner:

Ca,l—a,l(zvz)reg. =—lim (Ca,lfafs,l+£(za 2) — r(*f)ca,l—a—s,s (sz))

£—0

_ f ae a(l-a—¢ r( ) (a+£)r(_£) |l—Z|2£

= - lim [ 12|22 (r( aF(I-a—el(lte) |7% _r(_g)))

=- y;no(u 2P0 Der (—e) (w(@) + @1 - a) — Y(1) + (a - 1)log|z
+(1—a)log|1—z|2—alog|z|2+alog|1—z|2))

= 1= 2P (g(a) + Y(1- @)~ Y(1) ~ loglz +logl1 - 7). (3.63)

Here, y(x) = I''(x) /I (x) is the logarithmic derivative of (x). Settinga to % we recover the correlator which
gives the coefﬁment of the identity in the operator prodaigiansion (3.53).

3.8. Further Developments. The singlet algebraﬁ)t(l, p) and triplet aIgebraﬁU(l, p), with p=2,3,... and
central charge =1—-6(p— 1)2/ p, were first discovered by Kausch [30]. They are generated &ydl3 fields

of dimension » — 1, respectively (along with the energy-momentum tensohe 3inglet, being a subalgebra of
the triplet, has received relatively little attention, Ibe Qﬁ(l, p)-models have been considered by a variety of
groups [38, 104-109]. In particular, we now have a compléteupe of theﬁn(l, p) spectrum, characters and
fusion rules [100, 110, 111]: There are two projective itreilles as well as(@ — 1) non-projective irreducibles
whose projective covers have Loewy diagrams similar toghod-igure 4. These projective covers carry a hon-
diagonalisable action dfy, so the‘m(l, p)-models are logarithmic conformal field theories.

The representations of the singlet algekﬂﬁﬁl, p) were considered in [112,113]. Here, the results are a
little less comprehensive: There is a continuum of irrelies whose characters are known, but fusion rules and
indecomposable structures do not seem to have been seBilede modules with non-diagonalisablgactions
have been constructed, so me(l, p)—models are also logarithmic. The modular properties okthglet models
will appear elsewhere [34].
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The (1, p) triplet algebras were generalisedfm(q, p), with p,g€ Zy, p>q> 2, gcdp,q} =1 andc =
1-6(p—q)®/pg, in [114]. This is the central charge of the minimal mod&{q, p) and2J(q, p) has, unlike
Qn(l, p), a reducible but indecomposable vacuum module. Indeedyrtltgie irreducible quotient of the triplet
vacuum module is the minimal model vacuum module. This is@mpate for these central charges, as we have
seen in Section 2. Perhaps because of this indecomposaittust, these triplet models have been intensively
studied [39,115-121]. Again, there are two projectivedtrables, but now the (conjectured) projective covers of
the other irreducibles can have Loewy diagrams which amgfgigntly more complicated than the diamonds we
have seen here, see [39, App. A.1] for example. One intagefature here is that fusion rules involving certain
irreducibles, notably the irreducible quotient of the vaity do not behave as expected [118] (fusing with these
does not define an “exact functor”). This means that the fusjmeration does not define a ring structure on the
Grothendieclgroupgenerated by the irreducible characters. Instead, it séeh®ne can quotient this group by
the ideal of minimal model irreducibles and only then imphsson. It would be interesting to try to reconstruct
this Grothendieck ring (or group) using the continuum Vet# approach advocated here.

4. THE FRACTIONAL LEVEL WESSZUMINO-WITTEN MODELE[(Z)A/2

Our next example is based on an affine Kac-Moody symmetry.sAgeil known, affine algebras give rise to
rational conformal field theories when the lekek a non-negative integer. To get a logarithmic theory, wa tu
to non-integer levels. In particular, we consider the Kaoeldy algebral(2) at fractional levek = —%. This is
one of the simplest of the admissible levels introduced by &ad Wakimoto [44] and, like the triplet model of
Section 3, the theory may be described as a subalgebra ofsh thieory. We will start from these ghosts before
turning to the relevant representationss?tb(fZ)71/2 and their characters. Modular transformations are defrived
leading once more to Grothendieck fusion rules which arepgarad to the known fusion rules computed using the
Nahm-Gaberdiel-Kausch algorithm in [62].

4.1. The By Ghost System and its Z,-Or bifold 57[(2)71/2. The By ghost system is generated by four bosonic
fieldsB, y, B andy whose action takes the form

s[B.v:B.¥| =g [ (Boy+Bay) cesz (4.1)

The equations of motion requif@andy to be holomorphic, whilg8 andy become antiholomorphic. The usual
symmetries under shifting by (anti)holomorphic fields Iéathe operator product expansions
1
B@BW)~0.  B@YW) ~ =0  Y(@yW)~0 4.2)
and their antiholomorphic analogues (which we shall magtigre for now). The (holomorphic) energy-momentum
tensor is given by

()= 2[:B@VE): — B2y ] 43)

and the central chargeds= —1.
The affine algebral(2) is recovered as thé,-orbifold of the ghost theory. We define

2 =3 B@B@:,  h@=—BEVD: (D=5 V@A) (@.)
and note that these composite fields obey the operator pregpansions
2e(w) -1
e(z)e(w) ~ 0, h(z)e(w) ~ T’ h(z)h(w) ~ m, .
—2f(w) 1/2 h(w) '
f(2)f(w) ~0, h(z) f (w) ~ W e(2)f(w) ~ (sz)z_ﬂ'

This indeed corresponds 6(2) at levelk = — 2, but with respect to a basfg,h, f} of s((2) which differs from
the standard basis in thge, f| = —handk (e, f) = —1 (wherex (-, ) denotes the Killing form in the fundamental
representation}® Whereas the standard basis defines a triangular deconqmsﬁﬁ[(z) with the adjoint induced
by the real fornsu(2), this basis corresponds §6(2;R) [60].

The automorphisms (ﬁ[(Z) which preserve the Cartan subalgebra spanndg bdyand the Virasoro zero-mode
Lo are generated by the conjugation automorphisaind thespectral flowautomorphisno. The former is the

18 e also note that the energy-momentum tensor (4.3) may beerd from the standard Sugawara construction and (4.4).
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lift of the non-trivial Weyl reflection oﬁ[(z), whereas the latter is a square root of the translation swipguf the
affine Weyl group (it corresponds to translating by a duat rather than a coroot). Both leave the leket f%
invariant and the action on the generatorsi¢2) is as follows:

W(Qw) = fn; W(hn) = —hn; W(fn) = a’h W(LO) = LO)
o) =enr, O'(m)=h+3o  0'(fa)=frr,  0'(Lo)=Lo—ztho— gt
(o is referred to as spectral flow because it does not presenfercoal dimensions). We remark thatis induced

from the spectral flow of th@y ghost algebrao?(B,) = Bn_1, 0%(¥h) = Yy 1. The mapo would take the ghost
algebra to a twisted sector, consistent va't(Q)fl/z being an orbifold.

Twisting the action 0f§[(2) on a moduleéM by w or af, we obtain new modules denoted bf and M),
respectively. The first is precisely the module conjugate(tand we shall refer to the second as a “spectral flow”
of M. Explicitly, the twisted algebra action definidg* and M is given by defining new stat%(\v)) and
o' (|v)), for each|v) € M, and lettings|(2) act via

Jw(V) =ww)N),  3-0(v)=a' (a7 @)  @esi). 4.7)

(4.6)

4.2. Representation Theory of E[(Z)fl/z. The vacuum module of the theory is taken to be the irredudiiglleest
weight module oﬁ[(Z)fl/2 with highest weightlfp-eigenvalue) 0. The other highest weight states consigtiéimt
this may be found using the singular vectors of the corregipgrverma module [122]. One suchﬁ§\0> which
never constrains the spectrum. The only other singulaovedtich is not a descendant Qﬂ0> turns out to have
weight 4 and conformal dimension 4. It is given explicitly by

|X) = (156_3e_1 — 71€% , + 4de_oh_1e 1 —52h o€, + 16f_1€%; —4h? €%, |0). (4.8)

Because we insist upon the irreducibility of the vacuum nedthe corresponding field and its modes must
therefore decouple from the theory (vanish identically dwygical states). For the calculation to follow, it is
convenient to consider instead the descencﬂéb@) for which the corresponding field is

64:eeff: +16:ehhf: —136:ehdf: +128:edhf: — 12 :ed?f : —8:hhhh:
+200:0ehf: —108:9edf : +8:9hhh: —38:9hdh: +156:0%ef: +24:9%hh: —3%h. (4.9)

Acting with the zero-mode of this field on a highest Weightesqaﬁ of weightA, we arrive at a constraint on
such states to be physical:

ho(ho — 1)(2hg + 1)(2ho + 3) |vA> =0. (4.10)
It follows that a physical highest weight must be onerof 0, 1, f% or f%. As this analysis also applies to
singular vectors, one can conclude that the physical higheight modules must also be irreducible.

The physical highest weight modules are therefore chaiaeteby thes((2)-module spanned by their ground
states. This ground state module has dimension 1 and 2 fer0 and 1, respectively. We denote the corre-
sponding irreducibIeA[(Z)fl/Z-modules byLo andL4. ForA = f% andf%, the ground states span an infinite-
dimensional (irreducible) module Gﬂ(z), a discrete series representation in fact, hence we wilb@ethe
E[(Z)fl/z-irreducibles byD_1/2,4 andD_3,.,, with the “+” serving to indicate that the space of ground states is
generated by a highest weight state gh(rz)). We remark that the four irreduciblés, £1, D_1/5., andD_z/5.,
exhaust thedmissiblemodules of Kac and Wakimoto [44] fér= —%. The conformal dimensions of their ground
states are 03, —1 and— 3, respectively.

There are several reasons to be dissatisfied with this spedf physical highest weight modules. The first
is that while the characters of these admissible modules gaed modular properties [123], an application of
the Verlinde formula leads to negative fusion coefficiedts][(see Section 4.4). The second, which is far more
elementary, is that this spectrum is not closed under caijmig. Indeed, whileCy and £, are readily seen to be
self-conjugate, the application afto D_; »., andD_3,,, leads to new modules:

DZy/ps =Drjaiy Digpp, =D . (4.11)

These new modules are labelled with™symbols to indicate that their ground states span lowegjlhteliscrete
series representations. A third reason for dissatisfadtidhat, as we shall see in Section 4.3, the spectrum of
admissible highest weight modules is not closed under fusio
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To check the physicality of the highest weight modulgs,._ andD3,,._, we should let the zero-mode of the
null field (4.9) act on their ground states. In fact, we may &4 analyse this constraint for a general space of
ground states, allowing the possibility of principal seEiE(Z)-representations as wéfl.For this, we parametrise
the ground states representation/by R and label its states by € R. The action of the zero-modes on these
states is given by

elVi) = 3A kN2 holvy) =A V),

folvi) = 3A IV _p),  Lolvi) = gr(H+2)|vy).
We remark that ground states with= p are highest weight, whereas those with= — 1 are lowest weight. It
follows that if A £ +u mod 2, then the#vf{), with p fixed andA fixed modulo 2, span an irreducible principal
series representationsﬁ(Z). Itis not hard to verify that for a giveh # +u mod 2, the parametersand—2 —
define isomorphic representations. Thus, principal sénieducibles are distinguished by the valuelomod 2
and the eigenvalue afy (or the quadratic Casimir).

Applying the zero-mode of the null field (4.9) to the st#\l@ now gives

0= (64f¢e§ -+ 16foh3en — 192fghoep + 180foen — 8hg — 8h3 -+ 10h3 -+ 6ho) V4 )
= (2u+1)(2u+3) ((p +2) — 3A%) |4). (4.13)

If 312 = u(u+2), we note that each choice for yields at most two consistent possibilities for The space
of ground states is therefore one-dimensional, in whicle das- 0 andu = 0 or —2, or two-dimensional, in
which caseA = +1 andu = 1 or —3. The conformal dimensions are 0 aéd respectively. Ifu = f% or
—3, then) € R/27Z is unconstrained while the conformal dimension of each efground states is fixed to be
gH(H+2)=—3. ~

In this way, we recover the admissimé2)71/2-irreduciblesao and{;. We also deduce the physicality arfiy
irreducible module whose ground states have conformal rattine—%. This includes the admissibl€3_ ,..
andD_z/,,, as well as their conjugateB; . andD3/»._. However, we also obtain an uncountable family
of physical relaxed highest weight modules whose groungstimrm a principal seri&ﬁ(z)-representation of
conformal dimensiopr%. These modules are characterisedAby R /27 and will be denoted by, . They are
irreducible whem # u = i% mod 2, so we will refer to thé , with this range of parameteisas beingypical.
The remaining , , along with the other physicaAl(Z)fl/z-modulesCO, L£1,D_1/2.4,D_3/2.4, Dyj2._ andDgz)5._,
are defined to batypical

Finally, we remark that the atypicél, (with A = i% mod 2) are indecomposable and their structure is not
completely fixed byA and the conformal dimension of their ground states. Thicw#fty may be overcome by
affixing a label “+” or “—" to communicate whether the indecomposable has a highdstvest weights(2)-
state among its ground states. In this way, we arrive at fistindt atypical indecomposables whose structures are
specified by the following exact sequences:

(4.12)

O0—D_y/04 —E 124 — 913/2 —0, 0—D_ 30, —E 12 — Djrl/z —0,

O—>D;1/2

_ (4.14)
— 8+1/2;, — 'D,3/2;+ — O, 0— D+3/2 — 8,1/2;, — ’D71/2;+ — 0.

4.3. Spectral Flow and Fusion. At positive-integer levek, the spectral flow automorphismacts on the set of
integrable modules as the involutidn— k— A. This is no longer true for fractional levels as we shall deex.
k= —%, one can check that the atypical irreducibles are relatexpbgtral flow as follows:

5(()1) =D 124, 5(11) =D 324, 5(()71) =Dz, 5(171) = D3z, (4.15)

This is most easy checked by computing the actioasf on theextremalstates of a module, though one can also
use the character formulae discussed in Section 4.4. Thesefned to be the states whose conformal dimension
is minimal among those sharing their weight. For examgllg|0) and f’,|0) are the extremal states 6 and
(4.6) and (4.7) give

hoo ™ (€ 4]0) ) = o**((ho ¥ 3)€4[0) ) = (2) F 3) 0¥ (€l 4[0) ),

Loail(eil\0>) = aﬂ((Loi%hof %)ej,l\0>) =(i£ji- %)Uil(e£1‘0>)'

19The correspondingA[(Z)-modules are sometimes knownrataxedhighest weight modules [124,125]. We will see that thesexezl modules
are essential to the consistency of the theory. For now, \lweremark that relaxed modules are natural for (twist@dyepresentations because
the ghost zero-modg% andyy are bosonic, hence do not square to 0.

(4.16)
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FIGURE 8. Depictions of the physical irreducitde)fl/Z-modules. Each labelled state declares its weight

and conformal dimension (in that order). Conformal dimensiincrease from top to bottom aar(z)-
weights increase from right to left.

Thus,o*? shifts the weight uniformly byp%, whereas increases the conformal dimensio@ﬁ\O) by 2j — %

andotincreases it by%. A similar calculation describes the spectral flow of theemil|0>.
More interesting is the question of what happens if we itetiag¢ spectral flow. For example,

Loo?(114]0)) =~ (i+3)0?(f'4]0)) (4.17)
shows that the conformal dimensions of the statesﬁﬁ)f areunbounded belowThe same is true foﬁéa and
L(f), whent #£ 0,+1, andegf), when/{ # 0. Because algebra automorphisms map physical modulesy/gicah
modules, we conclude that almost all of the physical modof&(Z)fl/2 have the property that the conformal
dimensions of their states have no lower bound. We illustita¢ weights and conformal dimensions of the states
of these modules in Figure 8.

The full spectrum of irreducible modules then consists efspectral flow imagesg), L(la and 8%), where
e ZandA # i% € R/27Z. We extend the notion of typicality and atypicality so thad preserved by spectral flow.
We then also have four families of atypical indecomposaf)i%z;i. As twisting by automorphisms preserves

module structure, the members of these families are desthlp applyingo’ to each module in the appropriate
exact sequence of (4.14). This is a rather large collectionaulules, but it is still not quite complete.

We turn now to the fusion of the irreducibdA(z{Z)fl/z—modules identified above. Because there are uncountably
many of these, this seems a rather daunting undertakingetfawwo things work in our favour: First, fusion and
spectral flow are strongly believed to play nicely togetinethie sense that

M) 5 N2 = (W x ) (2t 2) (4.18)

for all (physical) module®1 andN. We know of no proof for this relation despite much evidencitd favour, but
we will assume it in the following, so that we may restrict thsion rules to the “untwisted” sectéf = ¢, = 0.
The second boon is that the singular vectors of the typicalutest ), are expressible as polynomial functions of
A. This allows us to compute their fusion decompositions astions ofA .
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/\ /\ /\
\/ \/ \/

FIGURE 9. Loewy diagrams for the indecomposaEI(sQ)71/2—modulesSo ands$; (left) and the indecom-
posableBy ghost modulé (right).

The fusion rules of the untwisted irreducibles were comging62] using the Nahm-Gaberdiel-Kausch algo-
rithm. As expected{ is the fusion identity and the other products are

L1 x L1 = Lo, Lix &y =& 11,

8/\+u if A+u=0,1mod 2, (4.19)

8A+u+1/2@ 8A+u 12 Otherwise.

Here, the labels on the typicalg and the new atypicals, must be taken modulo 2. These two additional modules
8o and§; are indecomposables whose Loewy diagrams are given ind-fyurheir fusion rules are

_e(=2 2
Ex X8y *8,\+u+1@28/\+u@8)\+u+17 (4.20)

_g(-2) (2
SA X8 =83 1 P28y DS -

This shows that the fusion ring generated by the irredusibleses upon adding the indecomposaBlgand§;
(and their spectral flows).

We remark thaBp has the vacuum modulgy as its socle. One can check from Figure 8 that the composition
factorsL (Wh|ch lie immediately abovey in the Loewy diagram o8p) have state$9i> of weight +-2
and conformal dimensior-1. Indeed, the explicit construction 8p as a fusion product allows us to choose
normalisations for states so that;|61) =e_1|6~) = |0). We also note from this construction that the vacuum
]O) is part of a rank 2 Jordan block fbg. We denote the generalised eigenvector in this bIoc}{b){ normalising
it so thatLo]Q> = ]0) One can show that this fixes the structure of the indeconigd@8g uniquely [62]. In
particular, one derives tha{|Q) = —%|6") and f;|Q) = —3|67). In any case, the non-diagonalisable action
of Lo on §p leads to logarithmic singularities in the two-point fumetiof Q(z). Ly is similarly non-diagonalisable
when acting upo8. This confirms that the fractional level Wess—Zumino—V\r‘itnaodeL?[(Z)71/2 is a logarithmic
conformal field theory.

Note that{4, with its two ground states of dimensic%: is observed to be a simple current of order 2. The
corresponding simple current extensionsAt(12)7l/2 is, of course, thg8y ghost algebra [60]. Combining fusion
orbits undeirl;, we deduce that the ghost vacuum modute Lo @® £, has an indecomposable coets So® 81
upon which the ghosts act with half-integer moding (thishis tintwisted sector). This is analogous to the case
of symplectic fermions analysed in Section 3.1 and we gieelibewy diagram of in Figure 9. Againlg acts
non-diagonalisably off, hence thg8y ghost theory is also logarithmic.

However, the untwisted sector fBiy ghosts also contains other modules thanks to the existéispectral flow.

In fact, it containd_(2™  S(2M) andEgzm*”, forA € R/Z andme Z (andE, = €, @ &, _.1). Similarly, the twisted

sector with integer moding contain?™1, ™1 and Egzm), again forA € R/Z andm < Z. If one allows
more general moding, then there is a continuum of sectoc, wéh a similar spectrum obtained by relaxing the
constraint orm.

L1X8) =841,

4.4. Modular Transformations and the Verlinde Formula. The By ghost theory is free, so it is easy to write
the characters of its modules using a Poincaré-Birkhaft-Nesis. Indeed, the vacuum character is

o-c 12T 1 ~1/2_N(9)
ch[L] =tr y*ZoZ /24 _ 1/21:{1 i) (1 2q 37 =y 1/2194(2;(1), (4.21)
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where we have included th?é(Z)-weight and level in preparation for deriving the corresgiag affine characters.
The characters of its images under spectral flow may be aatdiom

ch[MY] (v;zq) = ch[M] (yZd /%242 q), (4.22)

which holds for an arbitrary moduls{. Combining this with the identifications (4.15) and the aise that
;[(2)71/2 is theZ,-orbifold of the By ghosts, we obtain the characters of the admisﬁlﬁ@fl/z-modules:

ch[Lo}:yl/zl n@_, n@ ] Ch[Dl/2;+]:yl/2[—il7(Q)) +Sn(q) ]

2 | 94(za)  93(zq) 2 |91(za) 92(zq)

vy 2] n(a) n(a) _yY2l—in(@  n(
chiea] == lz94(z;q)193(z;q)]’ eh[D-s2] = [51(z;q)19z(z;q)]'

Unlike the triplet algebra characters studied in Secti@) these characters have good modular properties.
Indeed, withy = 2 z = ¢2U and q = ¢?7 as usual, the S-matrix with respect to the (ordered) basis
{ch[Lo],ch[£1],ch[D_y/5.. |,ch[D_3/5., | } is found to be symmetric and unitary:

(4.23)

1 -1 1 -1
1/-1 1 1 -1

S_E 101 i il (4.24)
1 -1 i i

However, when one computes the conjugation mairix S? and the fusion matrices (using the standard Verlinde
formula), trouble arises in the form of negative multigiies [45]:

1 0 O 0 0 0 1 0 0O 0 D
01 O 0 0 0 01 0 0O 1 0

C= 0 0 0 -1/’ Dy — 0 -1 0 0 N'D,3/2;+— 1 0 o ol (425)
00 -1 0 1 0 00 0 -1 0 0

To understand this paradox of negative multiplicities, sineuld first recall that the fusion ring generated by the
admissibles and their conjugates contains all their saleﬁlmwsﬁff) andL(lZ) as well. However, the well known
periodicities of theta functions lead to the following cheter identities:

chld ] +ch[c{™] = ch[e{ D] +ch[c{™] = 0. (4.26)

The characters of théf\a are therefore linearly dependent [58] and a basis for the sahese characters is

precisely given by the characters of the admissibles. Téglwdon to the paradox [60] is then that the characters
do not completely specify the module, because of (4.26);ééme map from modules to characters is a projection.
For example, the conjugate ®f_4 ., is Dy/>._, but we have

ch[Dy)p. ] =ch[£yP] = —ch[£M] = —ch[D 5., (4.27)

which explains whyC asserts that the conjugate®d ;5. is —D_3/»., (itis, as far as the characters are con-
cerned). Similarly, the fusion rut®_z»., x D_3/5., = Léz) translates into the Grothendieck rule

Ch[D_s/5.4] X ch[D_g/5.,] = ch[£?] = —ch[£4], (4.28)

which explains why the Verlinde formula givésD73/2_+Dis/2_fl =-1

Having recognised the source of negative multiplicitibg @¢haracters are notlinearly independent), we can turn
to fixing it. As the reader may have guessed, this will invdlve typical module€ ) introduced in Section 4.2.
The characters of these may be computed [61] from those gB yhghost module€, which are, again, easily
deduced from Poincaré-Birkhoff-Witt bases:

~1/2 /250 (A—(/4)/2
L Zya o cnel)=Y 4 Yy 2 (4.29)
n(@? nez n(a) nez
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It is important to note that this character is not converdgenany z % 0, hence it does not define a meromorphic
function. Instead, we shall treat it as a distribution in¥hdableg, u andr:

,intezm()\ 74/2)ueirr€()\ —L/4)T Z 2mi(2u60)n
e 4

n(r)? nez
e—imtgint?t/4 )
=———— ) M Y2Mg(m=2u+ (7). (4.30)
n(r) meZ

This has a rather satisfying interpretation [63]: The cbmlaofﬁgf) is, as a meromorphic function af only
convergentin the annullg| ™ < |z < g/ ~*~* (we also neethy| < 1) because of poles at the annulus’ boundaries
[58]. One therefore realises that the linear dependendi@s) amount to summing characters which are defined
ondisjointannuli of convergence and obtaining 0. On the other handyeagspectral flow to the exact sequences
(4.14) gives the character relations

chlg V] +chlef V] =chlell) ,.]. (4.31)
eh[c{ V] +en[el Y] =ch[el ..

from which we deduce that, in the distributional settingnsuing these characters does not give 0, but rather gives
a distribution whose support is precisely the pole sepagdlie two annuli of convergence.

In any case, (4.31) shows that the atypical irreducible attars are not linearly dependent when treated as
distributions. To obtain distributional formulae for tieesharacters, we splice the exact sequences (4.14) together
to obtain resolutions for the atypical irreduciblég) andLy) in terms of the atypical indecomposab 2t

As with the singlet algebrﬁn(l, 2) in Section 3.3, these resolutions translate into altemgesums for the atypical
characters:

00

ch[¢!)] = (/Z“O(—l)”ch[agﬁjﬁ/l;}] (A =0,1). (4.32)

Our (topological) basis for the space of characters wiltdfere be chosen to consist of those of the typical

irreduciblesEEf), A#£ i% mod 2, supplemented by those of the atypical indecomposéﬂ%;Jr.

We therefore turn to S-transforming the characters (4.3ﬂ)®8§f). We find that

chlel]| = X

Ve~
which is easily verified by expanding both sides, integgatind then summing. Once again, the S-matrix is seen to
be symmetric and unitary. Thredependent factor in the S-matrix entries originates froentomogeneity of delta
functions,5(ax= 0) = |a| *&(x = 0), and is not particularly worrisome because it will cancebwitransforming
bulk characters (partition functions) and when applyirgy\derlinde formula. Mathematically, it signifies that the
space of characters carriepm@jectiverepresentation of the modular groﬁp(Z;Z) rather than a genuine one.

The modular S-transformation of the atypical irreducililamcters is now computed from (4.32) exactly as we
did for the atypical singlet modules in Section 3.4. The lté@sy S-matrix entries take the form

1 / 1]t : ! 1o gl _pl
/1S(€,/\)(€’,A’)Ch[85\£’)} dA’, 5(4,/\>(4/,A'>:§l—i|remw/2 =eh), (4.33)

® 17| eint(et' /2—tA"—1'x)

!

Sryean = //20(—1) S(e+20+1)(A+0+1/2) = 2-0  2co8m) (4.34)

Here, as before, we distinguish atypical from typical Iab®} underlining the former (s¢/,A) stands forLSf)
with A = 0,1). Applying the continuous Verlinde formula, we can nowilgagbtain the Grothendieck fusion
coefficients. The calculations are straight-forward any wémilar to those presented in Section 3.4, so we only
report the resulting Grothendieck fusion rules:

ch[£{"] s ch[{™] = ch[£{™],

A+

ch[£y’] xch[e™] =ch[e{ ], (4.35)
V4 . y4 1 V4 —1

ch[e\] x ch[e{™] = che! j;‘jl)z] +ch[e} 1311)2].

These agree perfectly with the Grothendieck versions ofukmn rules (4.19) for the irreducibles and may be
checked to imply the Grothendieck versions of those (4.26)@indecomposables. We remark that these decom-
positions also confirm the Grothendieck version of the atinjed relation (4.18).
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FIGURE 10. A part of the (proposed) Loewy diagrams for the atypicakimmodules. Takingt = 0 mod 2
and/=0,1,2,3 mod 4 gives the diagrams ftio, B_; /2., B1 andB_z/».,, respectively.

4.5. Bulk Modular Invariantsand State Spaces. The symmetries of the S-matrix imply, as usual, that the-diag
onal partition function (and its charge-conjugate vaji@modular invariant:

Zeiag(0,0) = 2/ chlel]ch[e!"] dA. (4.36)

LeZ:
At the level of the quantum state space, this suggests &irspiinto typical and atypical sectors:

1
Houk = l@ %1 (e el)an

(€2 ) 2412

® Bayp (4.37)

Once again, the character of the atypical contribuiggp, may be put in the suggestive form

ch[Bayy] :Z(ch[ cPTch[s] +ch[c <>]ch[s<f>])

LEZ

-y <ch[8g>]ch[ﬁg)] +ch[s{"]ch[£{"] ) : (4.38)

EZ

but, unlike the bulk triplet module of Section 3Batyp = Bo® B1® B_1/5,4 ® B_3/2, is decomposable. This
follows immediately from considering the weights, modul@@d conformal dimensions, modulo 1, of the atypical
states. We have chosen to label the bulk atypicals as we diddmissible irreducible§o, £1, D_1/5;, and
D_3/,,+ because the bulk modules are distinguished by which of theddmissibles has its character squared
contributing to the bulk character.

A natural proposal for the structure of these bulk atypicatimes is then to draw the Loewy diagrams of the
contributing indecomposabl@é[), tensoring each factor (on the left) Wilz};"lff). This defines the holomorphic
structure of the bulk atypical and the antiholomorphicatute is added by identifying factors which combine to
give SE\Z) ®L§f). The resulting bulk Loewy diagram differs from that of thglet model, pictured in Figure 7,
in that there are now infinitely many composition facto?&l)fl/z behaves more like the singlet model in this
respect). We illustrate a part of it in Figure 10. Note tha ginoposed structure suggests that spectral flow acts
periodically on the atypical sector:

D Bo - B yjpy > Br - B gy — Bo—r-ee . (4.39)

We further remark that these bulk modules are manifestigllfie, — Lo may be diagonalised).

There are, of course, many simple currents with which we patotconstruct additional modular invariants.

Indeed, the fusion rules (4.19), coupled with (4.18), shioat every atypical irreducibléf\a is a simple current.

Requiring that the simple currents have fields of integeedision restricts this to two familieﬁé‘m andL(l4m+2),
for me Z. However, the latter family is generated by the spectral$lofithe bosonic ghost fields. Because the
ghost fields have dimensio}wand their spectral flows have integer dimension, these fldigkts will be mutually
fermionic We do not therefore expect them to give rise to modular iavs.

The construction of the extended algebras proceeds ashthiglet algebra (Section 3.5). For each Z,

there is an extended algeBiid" = @, £5'™ and its untwisted typical modules are & = @,,,_, &™)



36 T CREUTZIG AND D RIDOUT
with 2nA € Z and/¢=0,1,...,4m— 1. The extended S-matrix is then

4n—-1
mo7| (n ) (n 11Tl in(een-je—jer)jn
Ch[Ej/Zn] . j/;og(j,zx ///)Ch[ ’/Zn} St = an it i )/, (4.40)

and its evident symmetries immediately imply the modulaarrance of the extended partition function
an—-14n-1—— ——

Ziing = Y 2, chlE o Ch[E)]. (4.41)

j=0 (=
Unfortunately, the modular properties of the atypical eglted characters again remain out of reach.

We conclude by mentioning that these extended patrtitiootfans may describe the Ievel% Wess-Zumino-
Witten models on the non-compact simple Lie nglILQZ;R). More precisely, we recall that this group has centre
Z and fundamental group, so there is an infinite number of Lie groups havjsm@Z;R) as their Lie algebra. This
includes the simply-connected universal coveSb(Z;R), often referred to addSs, and the centreless adjoint
groupPSL(Z;R). We propose that the partition functi@qiag. of (4.36) describes strings gkS3 with level — 5
Whereaszé?;g_ describes strings oRSL (2;RR) (or SL(2;R)).

Whether this proposal is true or not, we remark that we cawesat a consistent structure for the atypical sector
of the quantum state space of these extended theories hifyitagnfactors in Figure 10 which are identical except
that their spectral flow indices differ by a multiple of.4This imposes a periodicity on the infinitely wide bulk
Loewy diagrams so that the resulting diagrams have a finiteo@n of composition factors. For= 1, it is easy to
check that each extended atypical diagram has eight faanokthat the structure looks identical to the triplet bulk
atypical pictured in Figure 7.

4.6. Correlation Functions. Correlation functions 1‘01?[(2)71/2 may be computed using a strategy that is almost
identical to that used for symplectic fermions. We startégatling the bosonisation of the ghost fiel&i@) and
y(2). Let ¢ () andy. () be free bosons with operator product expansions

¢L(2)pL (W) ~log(z—w),  yL(Z)yL(W) ~ —log(z—w). (4.42)
Then, the bosonisation amounts to the identifications
B(2) = : e (@m@) . V(2) = 0L (2)eh @M@ ;. (4.43)

We observe that these fields commute with the zero-mode 82, so we conclude that we can use the same
screening charge as for symplectic fermions:

Q= / dZdZ. (4.44)
ThesA[(Z)fl/2 currents now take the bosonised form
o2 =5 BDBE@: =7 e 2NN b= By —on (2.
(4.45)

(@)= 5 VWD) =5 (08(209(2) — 029 () 2% O@) ..

We will neglect the antiholomorphic currents which are ¢omged similarly. In this free field realisation, it is
natural to consider the following bulk fields:

Vian(22) = - A28 A2y n (0@ @) (4.46)
Here we have chosen a convenient labelling which reqdiee® andn € 2Z. We compute the following operator
product expansions with the currents:

Vi 2(WW) (A = £/2)Vy r 0(W, W)

e(z)vf,A;O(\MW) = (Zf W)lié + -y h(Z)Vg’)\;o(W, V_V) = Zi’\’N' +
3 —
N o) — 2A42) AL (4.47

)

(z—w)? z-w

1 2 .
—2 (1402 =AM WV yo(WW) V) .0(WW
T(2Vip,0(WW) = ol Veao " 2:0( )+
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This means that the fielki'g,,\;o(w,v_v) transforms as a ground state in the representﬁﬁ@n In general,n
parametrises the ground states of these representatidgngelwill restrict ton = 0 for simplicity.
Correlation functions are defined exactly as in the symjgéetmion case,

(Vi a0(Z1,22) Vi av0(Zn Z0) ) = (Vg ag0(22,22) -+ Vi anio(Zn, Zn)e ™), (4.48)
and correlators in the free theory are standard free boswalators, subject to the charge conservation condition
(Via:0(21,21) -V ao(Z0,20) )

— 76(/\14» i A= %(n— 2))5£1+---+€n:n72H|Zi —z ‘2(()‘i*1/2)()‘1*1/2)*()”*&/2)()‘]73]/2)) . (4.49)
i<]

In this way, we arrive at the following non-zero one- and tpant functions:
(Veao(z2) ==3(A =—3)8-1,

(4.50)
(Ver0(z2)Vipro(WW)) = —3(A +A"=0) & r—olz— w2 ~L[2PA/4),
where L 1 o )
A-BA+Y) A=y 1, 2 1
hya = Gl (2( 2) | 22) :5(6/\7272) (4.51)

is the conformal dimension of the ground state of weiyht ¢/2 of EE\[). We remark that this one-point function
is consistent with the vacuum appearing as a compositiciorfat the indecomposable&(:lyz;i and that the
two-point function is in line with our notion of conjugationFor the three-point function, we again need the
Fateev-Dotsenko integral formula to obtain

-1
z— 1|2(hM +hmp—hny) |Z|2(hM ~hmpt+hny)

FG+A)MG+HN(G+V)
FE-A)rz-wrz-v)

We observe that there are singularities in the three-puimnttion whenevek € Z + % Regularising as in the case

of symplectic fermions would give logarithmic correlatotisus confirming the presence of the indecomposable

modulesS((f) andS(f). These correlation functions may be checked to be consisiémnthe fusion rules (4.19).

(Ve2:0(22Vm0(1,1)Vav0(0,0)) =

AN+ U+V=1/2)8men-1+ SA+u+v=-3)imn—1|. (4.52)

4.7. Further Developments. Unlike the triplet theories discussed in Section 3.8 andtiperalgebra theories that
we will consider in Section 5.7, the logarithmic conformaldi theories with admissible level affine algebra sym-
metries remain relatively unexplored. Aside fr@ﬁ(}Z)fl/z, reviewed above, the only other admissible theory to
have received comparable treatmer:‘?ﬂ(ﬁ)le/3 [56,63]. Here, there are three admissible highest weigluiuies,
all irreducible, which we denote (with the same conventasisised above) b§o, D_5/3.,. andD_y4/3., . Again,
spectral flow acts and we obtain two infinite families becalsg/z, | = L(()D. There are also typical irreducibles
Ex, With A # i% mod 2, and atypical indecomposablgs, »..., both of whose ground states have conformal
dimension—%, as well as their spectral flows.

The Nahm-Gaberdiel-Kausch algorithm gives (untwistedjdn rules including [56]

Dy/3i- x D_3/3. = Lo® o, D o34 x€0=8_2/3.4, Eox Eo= EoD 8o, (4.53)

with the vacuum modulé.o acting again as the fusion identity. Hei& and §_,/3,, are indecomposables
with respective soclego andD_5/3;, and the familiar diamond-shaped Loewy diagrams. Both e«himon-
diagonalisable action dfy. The modular properties of the characters of the typicatsadppicals are derived as
for k= —3 with the resulting S-matrix entries being [63]

_ LT in(aeesz-i-ea)

S(g’)\)(g/’)\/) = > 71_[_6
. 17| einz(M’/H’) . | ein(£+1/2)(4£’/37)\’) cogmmA’/2)
LOWA) = 3 i1 11 2c04m) AN T Ty 1+2cogm)

)

(4.54)

Applying the Verlinde formula then leads to
-1 1
EAxeu=E 0 1@ er®E s (A+p#0+3mod2). (4.55)
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At the atypical points 0 andt 2, the natural prediction is instead that

ExXE_A=E0®80,  EyxE_riza=El @Sys_, ExxE_r=ES V@S 3., (4.56)
wheresy/3,_ = SS%+ = 812/3;+. Moreover, it also suggests the fusion rule
D gy xS0=ES VDS 5, ®EY, (4.57)

from which the remaining rules follow by using associatjivit

The fact that Verlinde formulae foaAr[(Z)fl/2 andg?[(2)74/3 have been successfully derived using the above
formalism suggests that this will generalise to all adnbigslevels. This will be detailed in [64]. Other affine
algebras at admissible levels have not yet received muehtatth, though?[(S) was briefly addressed [126] in
the days before spectral flow and indecomposability werbiseghto be critical and some structure theory for
admissible leve$i(2/1) may be found in [127-129]. The link with the Wess-Zumino-#fitmodel orbL(2;R) is
interesting because it suggests that these theories magasthmic for general values of the level. The famous
articles [42,130,131] of Maldacena and Ooguri suggest garithmic structure for this model, though it could be
argued that they did not look for any (see also [132]). Indeecknt mathematical work [133] suggests that there
may be more to this picture than was previously realised.

5. WESS-ZUMINO-WITTEN MODELS WITH gi(1|1) SYMMETRY

The Wess-Zumino-Witten model 0BL(1/1) is by far the best understood conformal field theory assediat
to Lie supergroups. It was first studied by Rozansky and $&lew decades ago [9, 10] in two of the original
landmark logarithmic conformal field theory papers. Moreergly, this model was reconsidered by Saleur and
Schomerus [36] who were able to compute correlation funsteind propose a structure for the full bulk theory.
Their computations revealed a striking similarity to théstield correlators of the symplectic fermion theory, an
observation that was explained in [102], which in turn wagivaded by [134]. The correlation functions of Saleur
and Schomerus implicitly suggested fusion rules, whichevileen confirmed in [66]. This theory is also one of the
few for which the boundary theory is thoroughly studied [2837], meaning that D-branes have been classified
and boundary three-point correlation functions and budk#zlary two-point functions are known. We follow [66]
in reviewing this example.

5.1. gl(1]1) and its Representations. The Lie superalgebrgi(1]1) is generated by two bosonic elemehtand
E and by two fermionic oneg¢/™ subject to the relations

Ny =+¢*,  {y" ¢y }=E (5.1)
It naturally acts on the super vector sp&t¢! and its elements are identified with supermatrices as fatiow

oo B mo D) weloo) v-(o) e

The Killing form, corresponding to the supertrace form ia #ujoint representation, is degenerategfiot|1). To
obtain a non-degenerate bilinear fornr, -), one instead takes the supertrace in the defining repreisen(a. 2):

K(N,E) =k (E,N) =1, K(WH gy )=—k(yp ,g") =1 (5.3)
Verma module¥n e are constructed from highest weight stalm) satisfying
E‘\_/n,e> = e’\_/n,e>; N‘\_/n,e> = (n+ %) ’\_/n,e>, w+‘\_/n,e> =0 (5.4

in the usual manner. However, gs squares to 0, all Verma modules are two-dimensiéhaloreover, as
YT |Vne) = €|Vne), the Verma modul®, is reducible if and only ie= 0. Once again, irreducibility is the
generic situation and hence modules vét}# 0 are referred to as being typical. In the atypical case wheté®,
there is an irreducible one-dimensional submodule spabped ]\_/n,o> — we shall denote it bﬁn,l/z — and
the quotientﬁnﬂ/z is also one-dimensional and irreducible:

0— Z:'\fl/z — Vno — Any12 — 0. (5.5)

20we remark at this point that the labelof the Verma modulé,, ¢ refers to theaverageof the N-eigenvalues for this representation. This
average labelling convention forwill be adhered to for alj((1]1)-modules.
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FIGURE 11. The projective coveP, of the gl(1|1)-moduleA,, illustrated by its states on the left and by its
Loewy diagram on the right.

Here, the prime attached to the submodﬁ,l,el/z serves to remind us that its highest weight state has thesitppo
parity to the highest weight generators of the other modabeearing in this sequence.

Typical irreducibles turn out to be projective in the catggof all finite-dimensional modules upon whidh
andE act diagonalisably. The atypical irreducibles have pridjecoversP, which are generated by a vecﬂwn>
satisfyingE|Wn) = 0 andN|Wyn) = n|W,). The fermionic generatorg™ and ¢/~ act freely on|Wy), resulting
in the four-dimensional representation illustrated inUf@11l. These atypical projectives naturally appear in the
representation ring generated by the irreducibles un@efgtaded) tensor product:

ﬁn ®ﬁn/ = Zn+n’7 ﬁn ®Vn’,e’ = Vn+n’,e’a ﬁn ®in’ = §n+n’7
—/

Pogr if e+€ =0,

Vn,e®vn’,e’ = { (5.6)

Vnini1/2.ere @ Vw1 j2ere Otherwise,
o, _ .
Vne® Py =Voini1eD2Vnine® Vn+n’71,ea Pr@Py = j)n+n/+1 ©2Pniw & Pryw_1

The prime on the indecomposabfBsrefers to the relative parity of the generating st‘ﬂ@. We remark that the
CasimirQ = NE+ @~ acts non-diagonalisably aPy: Q|Wn) = Y=+ |Wn).

5.2. The GL(1|1) Wess-Zumino-Witten Model. Wess-Zumino-Witten models on compact reductive Lie groups
give rise to a natural family of rational conformal field thies. The model on a Lie supergroup may be con-
structed in the same manner. One starts with a supergrdupé/fieldg and parametrises it using a “Gauss-like”
decomposition. FoGL(1|1), this corresponds to

g= et [/ eXE+Y Ne7C+ L[J+, (57)

so the fields of the theory are the two bosonic fieXdg,z) andY(zz) and the two fermionic fields.(zz). The
standard Wess-Zumino-Witten action is then reduced, ubiagolyakov-Wiegmann identity, to

Swzwld] = - / ~0X3Y — OY9X + 26Y0c, 3¢ ) dadz (5.8)
wherek is the level. Varying this action leads to the expected éqoaiof motion:
0J(z2)=0, dJ(z2)=0. (5.9)
Here,J = kdgg ! andJ = —kg~1dg are Lie superalgebra-valued currents. In component fdray, become
JE=—kay, IN=_—kdX+kc dcie', I =ke'dc,, I =—kdc_—kc_daY, (5.10)

and similarly for the anti-holomorphic curreht
Upon quantising, the modes of the holomorphic current fyatiee relations of the affine Kac-Moody super-
algebragi(1/1) at levelk (we will mostly ignore the antiholomorphic sector as usual)

[3F. 8] =rdusok.  [FE]=%Fs {35} = strdsok (5.11)

As in the case of the free boson (Section 1.2), any non-zgsbkecan be rescaled to 1. We will assume in what
follows that such a rescaling has been made.
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The energy-momentum tensb(z) has central charge zero and is given by a variant of the Sugaseastruc-
tion?! L L
T@=5: INJE HJEN - 050~ 43707 (9 + 5 JEJE: (2. (5.12)

We note that, as in the case@f2) discussed in Section 4J(1|1) possesses a family of spectral flow automor-
phismso’ which are indispensable to understanding its representtiteory:

o' () =3, o'(F)=F—-tdo (F)=3,, '(Lo)=Lo—€L" (5.13)
As before, these automorphisms may be used to construct nelles)M(*) from an arbitrarygl(1]1)-moduleM

by twisting the action on the states as in (4.7).

5.3. Representation Theory of gi(1/1). The representation theory of the affine algefpi(d|1) is very similar to
that of its horizontal subalgebrd(1|1). We define affine Verma modulé, ¢ and their irreducible quotients, as
before, by defining a highest weight stzima,e> to be one satisfyind

Jé\l ‘Vn’e> = (n+ %) ‘Vn,e>7 \]g‘\/n,e> = e‘Vn’e>, Ja”Vn’e> = Jri‘\/n,e> = 0 (r > 0) (514)
The conformal dimension of the highest weight sdm) is then (recalling thait has been set to 1)
LO‘Vn,e> = An’e|\/n,e> = (ne+ %ez) |Vn’e>. (515)

It follows that every singular vector &f, o has dimension 0, leading to the non-split exact sequence
0— Ay 120 — Vno — Ant1/20 — 0, (5.16a)

where the prime again indicates that the submodule’s higheight state has parity opposite to those of the other
modules. A simple counting argument [66] now shows thatthgwith 0 < |e| < 1 are irreducible. By employing
the spectral flow automorphisms of (5.13), one concludestiieaVerma module¥, e with e ¢ Z are irreducible
(typical) and that the (atypical) cage= Z yields reducible Verma modules. Along with (5.16a), thenisplit)
exact sequences turn out to be
0— Al 16— Vne—Ane—0 (e€Z.),
;o (5.16b)
0—Apsie——>Vne—>Ane—0 (6€Zy).
Note that, once again, the vacuum modalg, is atypical.
We remark that, in contrast with the action of spectral flows§8)-modules, spectral flows gi(1/1)-modules
do not have states whose conformal dimensions are unboureded. This can be traced back to the fact that
each of the modeg* squares to 63 Indeed, character methods and some analysis of Verma nsoantetheir
contragredient duals allow one to identify the result oflging o

1 1 Al e Te=—1,
Ve =V 1e1. 1Te¢Z  Afd={ Ay 101, ife=0, (5.17)
‘Af'lfl,e+17

Note that this immediately explains how the irreducibitifithe Verma modules wit ¢ Z could be deduced from
that of those with G< |e| < 1.

otherwise.

21The Lie superalgebrgl(1/1) is not simple and the space of invariant bilinear forms tuwuasto be two-dimensional. However, there is a
unique choice that leads to a Virasoro field [9].

2255 with gl(1/2)-modules, the label parametrising modules refers to the averégieeigenvalue of the ground states.

237he corresponding statement for integraplmodules, withg a Kac-Moody algebra, may similarly be traced back to theigpémrm of the
singular vectors of the Verma covers of these modules.
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FIGURE 12. The Loewy diagram of the indecomposa@il(d|1)-modu|eﬂ>n,e.

n-le

Finally, the fusion rules follow readily from the princigldehind the Nahm-Gaberdiel-Kausch algorithm and
the tensor product rules (5.6) gf(1/1) (we ignore parity here to avoid an overabundance of cases):

Ane X An’,e’ = An+n/—e(e,e’),e+e/a Ane X Vn’,e’ = VnJrn/—a(e),e+e’v

Prrry , if e+€ €7,
Vn,e % Vn/,e’ _ { n+n'+¢e(et+€).e+e

v AV otherwise,
' +1/2e+€ © Vi —1/2e+¢ (5.18)

Ane X an’,e’ = Tn+n’—e(ee’),e+e’7
VneX Py e = Vn+n’+1fs(e’),e+e’ @ 2Vn+n’fs(e’),e+e’ D Vn+n’717£(e’),e+e’7
Tn,e X an’,e’ = :Pn+n’+1fs(e,e’),e+e’ D 23)n+n/75(e,e’),e+e’ D j)n+n/flfs(e,e’),e+e’-
Here, we have defined
e(e)=13sgnle), e(e€)=¢(e)+e(€)—¢e(e+d), (5.19)
with the convention that the sign function satisfies(ﬂ)r‘p 0.

The modulesPy e, with e € Z, generated by the above fusion rules may be constructeddogiing theg((1|1)-
moduleP, and applying spectral flow. They are indecomposable antad, carries a non-diagonalisable action
of the CasimirQ, so the action ofy on Py is non-diagonalisable. The Loewy diagrams are given in feigi2.

It is often stated that th@, ¢ are the projective covers of th#, e, presumably in the category of vertex algebra
modules upon WhiCﬂ(')\l anng act diagonalisably, but we are not aware of a proof of thitestant.

5.4. Modular Transformationsand the Verlinde Formula. For superalgebras, it is natural to work with super-
characters rather than characters. Those of the Verma esiéid are given by

© (174 (1_71q-1
sch[Vne] (X:Z q) = str, [XngZ](')\‘qLo—c/ZAZ X)/eZ”H/ZqA"'eH (1 Zd()l(l )i q-t)
" i—1 -q
91(z0)
n(@?®

where we recall that the levie(of whichx is supposed to keep track) has been set to 1. With?™! y =2l 7=
e?™ andq = e?"" and the S-transformatidt (t|u|v|T) — (t —uv/t|u/T|v/T|-1/T), the induced transformation
of the supercharacters may be computed as (the analytimoation of) a double Gaussian integral. The resulting
S-matrix coefficients are

sch Vne] - /40 /700 Sine)(.e)SCh[Viy | dn'de/,  Sine ey = e 2mi(ne+rieted) (5.21)

= ixyPZ'gfne

(5.20)

wherew is a square root of minus one that depends upon how the anatyitinuation is performed. We note that
the sign—iw will cancel in bulk modular invariants and the Verlinde faria.

The exact sequences (5.16) may now be used to constructitiess! for the atypicals in terms of Verma
modules. We consider only the vacuum module for brevity:

e — \7’77/2’0 —V_5/00— \7',3/2,0 —V_1/p0 — Aoo — 0. (5.22)
Because the relative parities of the Verma modules alteytia¢ vacuum supercharacter is not an alternating sum
of Verma characters. The vacuum S-matrix entries are theref
iw w

= - 2mi(j+1/2)€
Sooe) = LSz me = WL M = T = s 629
I= 1=
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© An1®A i1 An @A _n ¢ An 1®@A ny1¢ -+

/ e / \ 4; \
Ap, (®A n-1- Ant1®@A _n ¢ An-1®@A _n ¢ An[®A Nl —¢
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FIGURE 13. A part of the Loewy diagrams for the atypical bulk mod@gs corresponding to the charge-
conjugate modular invariant partition function. We haveglaeted to indicate relative parities because the
conjugate of an atypicaln e changes parity unless= 0.

From this, and the continuous Verlinde formula, we can camfhe Grothendieck fusion of the typicals:

Ny or, () _ /7"; /:: o~ 27 ((n+1—n")E-+ (€ —€")(N+E) ) (einE _ einE) dNdE
=3(n"=n+n"+1/2)-5(n" =n+n'-1/2) (5.24)
= SCh[Vn’e] kSCh[Vn/,e/} = SCh[Vn+n’+1/2,e+e’} - SCh[Vn+n/,l/27Hg] . (525)

The minus sign appearing in this result indicates that thiéypef V., v_1/2 e4e is Opposite tothat ¥,y 1/2e1¢
hence we would affix a prime to the former module. This is tfegeein perfect agreement with the genuine typical
fusion rule reported in (5.18), the case wheep€ € Z following from the character identity

Schl:’\?n+n/+1/2,e+d} + SCh[’V:’lJrn’fl/Z,e%e’] = SCh[?n+n/+£(e+e/),g+4/} , (526)
which may be checked using the exact sequences (5.16) ahdehs diagram in Figure 12. The other Grothendieck
fusion products may be checked in a similar fashion. We r&rieat one can also use the modular properties of
the characters, rather than the supercharacters, to cer@pathendieck fusion rules. However, closure under the
(projective) modular group action then requires the carsition of the characters and supercharacters of twisted
gl(1]1)-modules on which the generators act with half-integer mgdi

5.5. Bulk Modular Invariants and State Spaces. The bulk state space of thel(1|1) Wess-Zumino-Witten
model was first proposed by Saleur and Schomerus in [36]. @hdtris

Hpuk = ﬁz [(Vn,e@ Vln,,e)} dnde| @ Batyp: (5.27)
e¢Z
where the atypical contributions further decompose as
1
Bayp = P % Inedn. (5.28)
ecz’0

We illustrate the structure of the indecomposable bulkiatlpdn e in Figure 13, noting that this proposal corre-
sponds to the charge-conjugate partition function, rathem the diagonal one.
The modular invariance of the corresponding bulk supeitgartfunction is now straightforward to verify:

= /H%Z (sch[V’ n_el . S> dnde
= /R2 /R2 ,/RZ S(n,e),(n’,e’)S(fn,fe),(n”,e’/) (SCh[V;‘,,yeﬂ] SCh[Vn/’e/]) dndedn’de’dn”de”’

_ / ] / ] / 2(_wz)efzrri(né+n/e+eé+né/+n”e+eé’)(msch[ n/e’]) dndedn’de/dn’de”
R4 JR4 JR

Zec. SCh[Vn,e}

(5.29)
_ /R ] /R ,O(e+& =0)3(n+&+n"+¢ =0) (sch{Vy, o Jsch[Vy o] ) dide/an’"de’

= [, (seh[V, “Jsch[Vne] ) dnfde

= ZC.C.-
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The diagonal super partition function is also modular ifevat: We remark that constructing an ordinary (non-
super) partition function that is modular invariant reggithe introduction of half-integer moded sectors [66] and
the result is the invariant associated to the bosonic sobgHerbifold) of GL(1|1).

Other super partition functions which are modular invariean be found using extended algebras. Every
atypical irreducibleAne is a simple current, by (5.18). One can therefore constriatge variety of extended
algebras, among the most interesting being [66, 138] theotguroduct of theg8y ghost algebra and that of a pair
of free fermions, the affine Kac-Moody superalgebii@|1) at Ievelsf% and 1, as well as an infinite series of
(non-Lie) superalgebras containing, as subalgebrad\the? superconformal algebra, the Bershadsky-Polakov
aIgebraWéz), and its generalisations, the Feigin-Semikhatov algewgé

One very interesting observation is that the superchasaofethe atypical irreducibles of these extended al-
gebras turn out to bmock modular formsThese are familiar, but mysterious, objects in numberrthedose
modular transformations may be expressed in terms of agraitéhe Mordell integral [139]. One can evaluate the
Verlinde formula directly by using this Mordell integral4@]. It would therefore be extremely interesting if one
could rederive this using the method of atypical resoligiofe note that mock modular forms in general seem to
be closely tied to atypical characters of affine Lie supesialgs, see [141-143].

5.6. Correlation Functions. The three-point functions of th6L(1]1) Wess-Zumino-Witten model were com-
puted in [36]. The results bear a striking resemblance teelod symplectic fermions, an observation which was
explained in [102]. We briefly summarise the computatiors)eggalising the method used for both symplectic
fermions and;[(Z)fl/z. First, consider a set of three free bosgng, z),y(z z) andx(z z) whose non-regular
operator product expansions take the form

$(z2p(wW) =loglz—wi+ -,  y(z2x(WW) =loglz—w*+--. (5.30)
As before, we denote the chiral part of fields by a substrifdefine four holomorphic fields
E@)=-0y2), ND)=-0x2), I (Q=—:"@ 0@ J'(z2)=—:0¢(2)e @D (531
and their antiholomorphic analogues similarly. The nogutar operator product expansions of these fields are
1 +JF(w) N 1 +JE(w)
E(ANMWY 0o & N 7% () o = W) + -
FeIwW~ e @I WSSE ST W st (632

so we have a free field realisation of the currentgl6f|1). As these fields again commute with the zero-mode of
e %2 we can use the same screening charge as before:

Q= /*4’ dZdZ (5.33)

In this free field realization, one can identify mteresttngk flelds, namely

V:ej—n+1/2 — - eSOt +ny . , V:re’ 12— - eB(@-H)+Ny+L -y - , 6530
V:etn+1/2 = 1 BTN FNYHORVR - V::r 1= - eB(PH)+ny+o—y - '
We find the following non-regular operator product expansiwith the currents:
—eV * (W, W) —eV'E (W, W)
E -+ - —e—nt+1/2\75 + - —6-—n+1/2
‘] (Z)V7g7n+1/2(waw) ~ Z—W ) ‘] ( )V:re n+l/2(\N,W) Z—W 9
—nv_* (W, W) —(n=1)V*E - (w,W)
N 4 — —e—n+1/2\"" + — e—n+1/2
IV gy 1/2(WW) ~ S @V p(WW) ~ e . (5.35)
eV Ly (W W) VoE (W)
— —e—n+1/2 + — —e—n+1/2\""
‘]+( ZV_, —e— n+1/2(WaW) Z—w J( )V:re n+l/2( L W) ~ —

which imply that these fields correspond to the primarie8 gf, 1/ e

Correlation functions are now defined in almost exactly tame manner as for symplectic fermions and
E[(Z)fl/z. The only difference is that there are now two free bosonddititen to the screened bosqn(z z).
The results for the three-point functions include, for epém

(Ve —ns1/2B VI 1oLV o 1/2(0,0))
Fr1—e)lr(—e)r(—es) d(m+m+n=2)0(e1+e+e3=0)

T T(e)N (1t el (11 &) [7— 1@l e n el ) 2E0 e ) el )’ (5-36)
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from which we again observe singularities at the atypicalis® € Z. As before, regularising leads to logarithms
signifying the presence of the indecomposalilgs and the results are consistent with the fusion rules (5.18).

5.7. Further Developments. Conformal field theories associated to affine Kac-Moody salgebras provide a
rich source of interesting new logarithmic conformal fielhedries. Unfortunately, the only examples that are
understood in great detail are those witti(1/1) andgl(1/1) symmetries. However, this does not mean that no
progress has been made on more sophisticated superalgethetsm

As with 5[(1|1), the spectrum of the the bulk theory may be conjectured usisgmbination of harmonic
analysis and a first order formulation. By the latter, one msea perturbative description of the Wess-Zumino-
Witten model in terms of its bosonic subtheory coupled te fire-ghosts. One can then compute correlation
functions and so on as above. This approach has been catsidégth varying degrees of detail, for the bulk
theories corresponding to the Wess-Zumino-Witten modelSLd2|1) [37], PSL(2|2) [144] and for general type
| supergroups in [101]. A different approach determines, tien exploits, correspondences with super-Liouville
theories [145, 146]. Both methods appear to generaliseedtiundary conformal field theory, but there is an
obstacle amounting to identifying the appropriate boupgareening charges. This has so far only been achieved
for GL(1|1) [136] andOSP(1]2) [147]. In both cases, the boundary screening charge waglfiaube essentially
given by the square root of the bulk screening charge. Thigeur is very similar to that observed for ma-
trix factorization in Landau-Ginzburg theories [148] wlehe boundary and bulk screening charges seem to be
similarly related, at least fagL(n|n) [149].

Some supergroup Wess-Zumino-Witten theories and the@tstsive remarkable properties that lead to interest-
ing applications in physics. The key point is the rather rard-seeming observation that the Killing form, the su-
pertrace in the adjoint representation, vanishes iddhtica the simple Lie superalgebras((n|n), osp(2n+ 2|2n)
and?(2,1;a). The corresponding Wess-Zumino-Witten models have begmearto possess exactly marginal
perturbations [150-152] including, as a special caseptimeipal chiral model In the case oPSU(1,1|2), this
describes (the target space supersymmetric part of) stipgrtheory onAdSs x S® x X, whereX is some four-
dimensional manifold [69]. One prediction of the celebda#&lS/CFT correspondende that this string theory
is dual to the two-dimensional conformal field theory asated with certain symmetric orbifolds of the four-
manifold X. The superstring theory dual to four-dimensional confdrgaaige theory is likewise described by the
conformal field theory associated to the coset [153]

PSU(2,2|4)
SU(2,2) xSU(4)
This coset differs from the gauged Wess-Zumino-Witten nhdmlet it can still be argued to be conformally invariant
due to the fact that the Killing form of the numerator vansfs2, 154, 155].

Conformal field theories with superalgebra symmetries afgmear in statistical physics. Supersymmetric dis-
ordered systems are described by perturbatiomspirs of free fermions anfly ghosts. The bilinears in these
fields are well known to define the currentsgdfn|n) at levelk = 1. The associated disordered system is given
by the corresponding current-current perturbation [68hGgh in this case it seems that the perturbed theory is
not quite conformal). One of the important open question$im area is finding an effective field theory for the
transition of plateaux of the integer quantum Hall effeaici$a theory might havéL(n|n) symmetry and sigma
models related t&SL(2|2) have also been argued to appear in this context [67].

(5.37)

6. STAGGEREDMODULES

We have seen in the previous sections that logarithmic cordbfield theories all have certain types of re-
ducible, but indecomposable, modules in their spectra. atien of the Virasoro zero-mode) is not diagonal-
isable on these modules, leading to logarithmic singudsrin appropriate correlators. In this section, we shall
discuss the mathematical structure of the simplest classaiiles on which.g cannot be diagonalised, tstag-
gered modulesThese were so named by Rohsiepe in his study [70] of indeoeaipe Virasoro modules formed
by glueing several highest weight modules togetAdiere, we will discuss indecomposables formed by glueing
modules from more general, but still structurally well-enstood, classes. However, we will restrict to glueing

24The “staggering” presumably derives from a useful pictoearesentation (see Figupe for example) in which the vertical positions of the
highest weight states are ordered according as to theioooaf dimensions. The result bears a passing similarityh@¢ostaggered starting
positions customarily used for runners racing around &trac
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only two of these well-understood modules together. Thesd¢hee most common types of indecomposables en-
countered in logarithmic conformal field theory and the migjof the best understood examples of these theories
feature only this type of reducible indecomposable (thdsdied in Sections 3, 4 and 5 for example). A further
advantage is that we expect a classification of such staggeveules to be feasible, see [70, 71] for the Virasoro
case.

6.1. Staggered Modules. In preparation for defining staggered modules in some gétyekae first declare that
for a given Lie algebra (or more generally, associativelaigfé), we will choose a collection aftandard modules
whose structure is reasonably well-understood: §(t|1), the standard modules are the Verma modules; for
E[(Z)fl/z, standard means the spectral flows of the relaxed higheghiveiodules which we have denoted by

85\@; for M(1,2), standard means the Feigin-Fuchs moddlgs These are the modules whose characters have
the most satisfactory modular transformation properiésremark that these notions of being “standard” may be
lifted to the respective simple current extensions by dewahat an extended module is standard whenever it is
the orbit, under fusing with the simple current, of a staddaodule. In this sens&y_, ;3 andW3/g are standard
20(1,2)-modules, whiléWo andW; are not.

Note that this notion is more general than logarithmic comfal field theory. For example, we may choose the
standard modules of a (type I) Lie superalgebraiké|1) to be its Kac modules [98F Similarly, a good choice
for quantum groups likély(s[(2)) is that standard means highest weight. Even the diagrarbralgesuch as the
Temperley-Lieb algebra, which crop up in statistical tatmodels have standard modules, in this case the right
choices are the cell modules of Graham and Lehrer [156] {@swn as standard modules; we have borrowed the
nomenclature from this example).

The feature that these collections have in common is thatatal modules are always indecomposable and,
moreover, are naturally parametrised so that they are gafigrirreducible. In this review, we have referred to
irreducible standard modules as typical and reducible asestypical. Furthermore, and this is crucial for the
next definition, the central elements of the associativelaig all act diagonalisably on standard modules. We now
define a staggered modwlldo be one which is (isomorphic to) an extension of a standaxdute by another upon
which there is a central eleme@tacting non-diagonalisably:

0—H s L HR o0 (6.1)

In other words$ has a submodule isomorphic to a standard mogiiewhich we shall refer to as tHeft module
and the quotien8 /1 (}CL) is isomorphic to another standard mod®H&, which we shall refer to as theght
module Forgl(1]1) andlUq(s!(2)), we may takeQ to be quadratic Casimir; for the Temperley-Lieb algei@a,
can be taken to be the “braid transfer matrix” [157]. For thgehras arising in logarithmic conformal field theory,
itis Lo which acts non-diagonalisably — to get a central elemerg,aam act witre?L0 instead. It is not hard to
see that o ande?™ may be interchanged with only minor modifications to the argats that follow?’

The first result to note about staggered modules is that théy exist if Q acts on both the left and right
modules as the same multipleof the identity (Appendix A.1). The second result to notehiattthe non-trivial
Jordan blocks of) all have rank 2. This follows directly from the exactness@fLj: If \v> € 8 is an arbitrary
element of a non-trivial Jordan block f@y of (generalised) eigenvalug, then (Qf/\)|v> need not be 0, but
m(Q—A)|v) = (Q—A)mv) =0, sinceQ is diagonalisable ofi(R. Exactness then givéQ —A)|v) = 1|w), for
some|w) € H* of Q-eigenvaluel, whence(Q—A)zM = (Q-A)t|w) =1(Q—A)|w) =0, becaus® is also
diagonalisable ofi(-.

To further investigate these staggered modules, we int®vdame more notation. Lw> € § be a generalised
eigenvector oR of eigenvalue\, so that| x) = (Q—A)|6) # 0. Then,mt|6) € HR is non-zero because/6) = 0
implies that|6) € 1 (#"), by exactness, hence thais a genuine eigenvector . Now, suppose that there is an
element of our associative algebra such thair|6) = 0. Then,nU|6) =0, hence |8) € 1 (H"). Because of

25t is more convenient to consider the universal enveloplgglaa of the Lie algebra in what follows.

26Actually, we would have liked to refer to standard modulegéneral as “Kac modules”. However, this term is already afoslogarithmic
conformal field theories with Virasoro algebra symmetri&H [ It is not clear to us at present if these Kac modules feMinasoro algebra are
good candidates for standard modules in the sense we wisteoVier, a theory of Virasoro staggered modules, with st@haeeaning highest
weight, has already been developed [71].

270ne could also imagine conformal field theories on which o#eeo-modes act non-diagonalisably, however very few @tesnappear to
be known (see [158] for one).
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this, the centrality o€ now gives
U\x) UQ-2A) \6 (Q— )\U]B (6.2)

the last equality again following from the fact that elenseot | (G{L) are genuine eigenvectors @ In other
words, anyJ annihilatingrt|8) € HR also annihilategy ) € 1 (H").

This is a bit abstract, so let us consider an important sfis&i®mn that occurs when standard means highest
weight and|6) is chosen to project onto the highest weight staté(Bf Then,|x) = (Q—2)|6) is necessarily
non-zero becaus® would be diagonalisable on all &f otherwise. But[ 9> is annihilated by all positive modes
U, hence we can conclude tHa(t> is too. It follows that in a staggered module over a Lie (symgebra,|x> isa
non-zero singular vectaof 3(-. Similarly, if 71/6) is a relaxed highest weight state, then sgxi$ (we might call
it a relaxed singular vector).

Taking this a step further, we may suppose tH&tis generated by a ségj@j >} ., and then choose elements

|67) € 8 sothatr|6)) = |@1). For eachj € J, the elements of our associative aIgebra which annihj@te form
an ideal whose generators we denotéMyi € I. We now deﬂnde) € M by
')y =u|6h) (6.3)

(applying7t shows thatJ] |67) € 1(3")). Because there is an ambiguity in our choice of el up to adding
arbitrary element$n!) € 3", there is a similar ambiguity in our definition 66y’ ):

0") —[eh)+in’) = @) — @) +Un). (6.4)
With this setup, we can prove that thqj> determine the isomorphism class of a staggered modulerajésieg
the Virasoro result given in [71, Prop. 3.6].

Theorem. Let$ and$ be staggered modules with the same left mot@itHeand the same right modufgR. Then,
there exists an isomorphisgn: § — 8 making the diagram

0 H Ly s T xR 50
H e (65)
0 Ht L o5 T LR 40

commute if and only if there exiy ) € 3", for each je J, such that
@) =[«')+U![n’), (6.6)
foralli € 1.
Proof. If we have such an isomorphisgn, then
n(y[6') ~|67)) =7(0’) ~ nfe)) = o)) — o)) =0, 6.7)
hencet,u|§j> — |63y =1|n’) for some|nt) € H". Applying U, now gives (6.6), as required.
Conversely, if (6.6) holds for song!) € 3", then definap to bei o7+ on7(3") and by

w[0') =|68)) +1|nl), pule'y =uyle’) (6.8)
otherwise. Nowy is clearly a homomorphism and it is easy to invert. All we néedheck is that it is well-
defined because it may happen thldﬂj> € l(fHL) in which case the two definitions fap must agree. But,
U ]9’) eT(H") leads tdJ ]@J> 0, hencdJ belongs to the (left) ideal that anmhﬂat@’) Thus, we may write
u=%,V JU The first definition fony now gives

uo") =tV Te)) = o () + Ul ) ) =1 oV ! +1ulnt), (69)
| 1 1
while the second yields _ o
pu[8') =U(|6")+1[n')) = Vi) +1Unt), (6.10)
i
completing the proof. ]

We illustrate this theorem with staggered Virasoro modfbesvhich standard means Verma. Théi® is
generated by its highest weight st4®> (so|J] = 1) and the annihilator of this state is generated_-byl, and
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Lo — h, whereh is the conformal dimension ¢B> We therefore obtain three vectors
|w) =(Lo—h)[6),  |an)=11]6), |wz)=Lo|6), (6.11)

Where7T|9> = |O> Up to the ambiguity in choosin)gﬁ), these three vectors completely specify the isomorphism
class of a staggered module. In fact, becdm;ﬁ is (a rescaling of}x} and Virasoro singular vectors of a given
conformal dimension are unique, this vector is alreadyrdeteed by K- and KR, so the staggered module is
characterised byt ) and|w,).?®

This theorem therefore allows us to reduce the problem ofidegif two staggered modules are isomorphic
to computing a set of vectoligy' ) € H- and seeing if there exigty! ) € H" such that (6.6) holds. If one can
determine which sets ct»tqj> do actually correspond to a staggered module — this is tretende problem and it
is decidedly difficult in general — then the question of cangthe number of isomorphism classes of staggered
modules with given left and right modules becomes an exeiicidinear algebra. We remark that this is not
quite the same as computing Eé(HR,iHL) (see Appendix A.1) because we are restricting to extensidthsa
non-diagonalisable action of the centre.

6.2. Logarithmic Couplings. Because the counting of staggered module isomorphismedasay be reduced,
modulo the existence problem, to a question of linear algebseems plausible that the space of isomorphism
classes will be a vector space (or affine space). It seemsralle to ask if there is a natural means to parametrise
this space. This is the idea behind logarithmic couplingsstdad of characterising a staggered module by a
collection of vector#oq’), subject to the ambiguities (6.6), we try to find a collecttmumbers which likewise
characterise the staggered module but whichirargiantunder (6.6).

This programme has only been studied in any detail for thasdiro algebra (related computations?tﬁ@)fl/2
were detailed in [62] and foa¢[(2)74/3 in [56, 63]). When standard means Verma, it turns out [71, T8 and
Thm. 6.14] that the vector space of isomorphism classesagfgsred modules has dimension 0 Wﬁgr) is
the (generating) highest weight stateJof (staggered modules are unique) and has dimension 1 Wh)e'm; a
principal singular vector, meaning that it is descended from no othepgr singular vector. These are the most
useful cases, thoughitis also possible for the dimensite d, and we shall consider the second case exclusively
in the remainder of this section.

We therefore need a single number to identify a staggereasdio module, up to isomorphism, whbn) is
principal. A method to compute this number was originallygrsed by Gaberdiel and Kausch [28] in the course
of explicitly constructing certain = —2 andc = —7 staggered modules using the Nahm-Gaberdiel-Kauschfusio
algorithm. They chos¢9) to satisfyL,|6) = 0, for alln > 1, and then definef € C by L} |6) = B|&), where
|E> denotes the highest weight stateJ6f and/ is the difference in conformal dimensions|@‘> and\é).zg One
can check thaB does not depend upon the choicq 6}, assuming that we only choose among hﬁ%zwhich are
annihilated by thé., with n > 1. It follows that isomorphic staggered modules will have same3.

More recently, these numbeBswere generalised to other staggered modules, most notaf@@j where it was
realised that Gurarie and Ludwig’s anomaly numbers (seafimu (2.35)) for percolation and dilute polymers
were just (differently normalised versions of) tAdor thec = 0 staggered modules 5 andS3 1 (see Sections 2.3
and 2.5). Unfortunately, attention was not always paid ® ¢hucial requirement thgd not depend upon the
choice of] 9>. In particular, when one considers staggered modules nesrergl than those considered in [28], it
is not usually possible to find ad;@) satisfyingLn|9> =0 for alln> 1. It follows that the proposed recipe for
computingB does not make sense for general staggered modules.

This was corrected in [26] where a definition Bfwas given for any staggered Virasoro module Mm
principal (see [71] for the general case). First, we norsedli59] the singular vectdw() so that

’X>:U‘E>’ U=Ly+-, (6.12)
where the omitted terms are Virasoro monomials involvirglth, with n > 1 and at least one > 1. We then
definef3 by

u'le) =pl&), (6.13)

28Thjs remains true if standard means, instead, highest weigtause the additional generators of the annihilatingli&ad to additional
states\(q> which can be computed given tme>1> and\a&) defined in the Verma case [71, Prop. 3.4].
2%e remark thaté)) is naturally restricted to being a generalised eigenvafue) @ this development.
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whereL! = L_, is the usual adjoint (lifted to the universal envelopingedign). If ]E) is given norm 1, then
applying<E| to both sides of this definition leads to

B=(£u'|6) = (x]6), (6.14)
which is obviously invariantundeB) — |8) +1|n), |n) € 3-, becausgy ) is singular ini (3" ). The quantities
B were christenedogarithmic couplingsn [26], though the term$eta-invariantg71] andindecomposability
parameterg90] have also been used since.

The logarithmic coupling defined in (6.13) has the propérgt two staggered modules with the same left and
right modules will be non-isomorphic if their couplings aliéferent. The converse is also true [71, Thm. 6.15]: If
the logarithmic couplings of such staggered modules cd@dhen the modules are isomorphic. In other words,
B is a complete invariant of the space of isomorphism claskstsggered Virasoro modules. The same is true for
staggered Virasoro modules with standard meaning higheigthty though it is then no longer true that evéry
need correspond to a staggered module.

A downside to this theory is thg is not particularly easy to compute in general. One can eitigliconstruct
the staggered module, for example using the Nahm-Gabeéfdiesch algorithm [26, 28, 80] (or as a space of local
martingales for a Schramm-Loewner evolution process [180]this way, the logarithmic couplings s of the
¢ = 0 staggered modules s considered in Section 2 may be computéd:

Bra=—3% Pus=—35 Pu7=-420, Prg=—1008N0 g, =19 (6.15)

A slightly more efficient method [82] is to check if the existe of singular vectors in staggered modules fixes
B. However, the most efficient known seems to be the proposgl&ff] in which a limit formula is obtained
for B as a byproduct of cancelling divergences in Virasoro prnnogoerator product expansions as the conformal
dimensions and central charges tend to their required satua controlled manner. Surprisingly, the logarithmic
couplings of certain classes of staggered moduleshfith h- small can be computed as a function of the central
charge [82,160, 162, 163]. These functions are reasonabplesand conjectures for more general formulae have
been made. However, there appears to have been no progsetoasesolving these conjectures.

6.3. MoreLogarithmic Correlation Functions. We now briefly reconsider the (chiral) two-point functionaa
lations of Sections 1.1 and 224 Given the state$9> and|X> =(Lo— h)| 6), the global invariance of the vacuum
always leads to the following form for the two-point funct®of the corresponding fields:

(xtaxon) =0, (x@ew) = <e<z>e<w>>%g§§hw)v

(6.16)
(z—w

(z—w
whereA andB are constants. If =0, so|6) has the same conformal dimension|4$, then|x) = |€) and
B=(&|6). Inthis case|& ) has norm zero, so we are free to normalise the hermitian fortietB = 1. Note that
B does not depend upon the choice\ 6§, whereasA does. We remark that if the vacuqm> has a logarithmic
partner[Q), o] LO\Q> = \O> then this analysis shows that the one-point function ofideatity field vanishes
whereas that of its partner will be constant.

When/ =1, |x) can only be__;|&) which is only singular whefé ) has dimension 0 an@) has dimension
1. It follows that the hermitian form may be normalised V&(z)& (w)) = (£|¢) = 1. Becausew,) = L1|6) =
B[E), we can comput® using the partial differential equation derived from theinvariance of the vacuum.
This equation has inhomogeneous terms proportional tetferithmic coupling3 of the staggered module which
determine the constant of integration(iéi(z) 6 (w) ):

B -B
(£(2)B(w)) = p— = (x(26(w)) = o = B=-p. (6.17)

The constanA appearing in8(z)6(w) ) again varies with the choice ¢6), unless3 = 0.

For ¢ > 1, computing the proportionality constant betwd®and is a little more cumbersome. As above,
one way is to determingx(z)6(w)) from (& (2)6(w)). For this, we derive in the usual fashion, foe 2 and an

30we remark that the discrepancy between the logarithmic lows)B; 5 = -2, Bs1 = 39 and the anomaly numbelgs = —2, b1 = 2

of Gurarie and Ludwig (see Equation (2.35)) is just a mattemarmalisation. We have chosen to (canonically) normalixé as
(L2, - 2L_5)|€). Identifying |€) with the vacuum|0), we find that|T) = —3|x) and|t) = —3|6), hence the anomaly numbers are
obtained from the logarithmic couplings by multiplying byg)z.

31Three-point correlators may likewise be computed, assgrfiat one has already determined the three-point coupbingtants between
primary fields.
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arbitrary fieldg(z), the following relation:

e I PSS

é’ —_
(LLn@)(26(W)) = o — <k+n 1)M (6.18)

n—2 (Ziw)n+k :

(oo + -1

k=1
Here, we have define{:m(> = Lk\9>. Moreover, we note that whe6> 1, we may always choosk9> SO
that ]wl> = 0.32 For this choice oﬂ9>, we deduce (from the global conformal invariance of the vacuthat
(¢(26(w)) = 0. (This is certainly not true wheh= 1 — see (6.17).)

To illustrate the method, consider the= 0 staggered modul®; 7 that was briefly considered in Section 2.3.
Recalling (2.18) and (6.15), we note tHat) has dimension 2,6) has dimensio =5, B = —420, and|x) =
(L3, —6L_oL_1+6L_3)|&). Setting|c ) =0 forces|aw,) = — 75BL_1|& ) and|ws) = £5B|€). From(&(2)6(w)) =
0 and (6.18), we now obtain

(E@ww) ((@ww) —p/12

<(L73E)(Z)9(W)> =4 (Z—W)S -5 (Z—W)G = (Z*W)lo, 619
_((Lad)(@aw)) _ 5B/12 '
((Lal18)(20(w)) = w®  w®
and{(L3,&)(2)6(w)) = 0. Therefore,
(X(26(w)) = (273;5)10 (6.20)

andB = —3f3 = 1260. Unfortunately, we are not aware of any general resoliserning the rati®/3. However,
the limit formula for given in [161] has a variant which giv&sdirectly [164].

Whether one prefei8 or B, itis clear that such a parameter is mathematically impoead physically relevant.
For example, the logarithmic couplings for the= 0 staggered modules containing the vacuum distinguish the
percolation and dilute polymers theories. In this case staggered modules have different right modules, but
this might be too difficult to check explicitly in a more geakphysical situation. Another example occurs in the
symplectic fermions theory in which one can identify: —2 staggered Virasoro modules Wh¢f§ and\ 9> have
dimensions 0 and 1, respectively. For each such module, xarage being 6) = J*,|Q) and|§) = —J5|Q)
(see Section 3.1 for notatiorf,is found to be—1. However, there is another= —2 theory, theabelian sandpile
model(see [165] for example), in which a staggered module \Mt)wdimension 0 andi9> dimension 1 is present.
However, the logarithmic coupling here has been measurgs ﬁ% [166], indicating that this theory is not
equivalent to symplectic fermions.

6.4. Further Developments. As noted at the beginning, the staggered modules which hasgeed us through-
out this section are among the simplest, structurally, iigive rise to logarithmic singularities in two-point
functions. However, more complicated structures may ais@amples of indecomposable Virasoro modules on
which Lg acts with Jordan blocks of rank 3 were first discovered in fB@ugh fusion. These appear structurally
as a glueing of four highest weight modules and their excstemas posited more generally in [81,167] using a
(conjectured) means of analysing Virasoro representatiming lattice techniques. Moreover, indecomposables
formed by glueing three highest weight modules, but wittyosahk 2 Jordan blocks, have been shown to arise in
the percolation conformal field theory [85]. More recentita computations [163] suggest that indecomposables
with Jordan blocks of arbitrary rank are physically reldévadnfortunately, there is almost nothing known about
the finer mathematical structure of these more complicatgeldomposables.

We conclude with an example illustrating a Virasoro indeposable with a rank 3 Jordan block fog. It
may be realised as the fusion product of the 0 irreduciblesCy g and £_1 /24, but has only been explicitly
constructed to grade 6 [80], so its deeper structure renuakisown (see [81] for a conjectured character). There
are two ground states of dimension 0 and they form a Jordak Iidw Lo. We denote the eigenvector lj)&) and
its partner by 6), normalised so thaty|6) = | ). At dimension 1, one finds four states with all but one forming
arank 3 Jordan bIocH.,l]E> is found to be non-zero, hence is thgeigenstate belonging to the Jordan block;
the other eigenstate will be denoted |bfy> The generator of the Jordan block will be denotedcbyand, along
with L,l\ 9}, this completes a basis for the dimension 1 subspace.

32This follows from counting arguments. IB(¢) denotes the number of partitions 6f then \wl> belongs to a space of dimension
p(hR—ht—1), whereas one hap(h® —h") — 1 effective independent shift®) — |0) + |n). Becausep(¢) — p(¢—1) > 1 whenever
¢ > 2, we conclude thdt@) may always be shifted so th@h) = 0. Strictly speaking, we should also allow for the posdipithat K" has a
vanishing singular vector of dimension less than thdh@f}, but this turns out not to change the result.
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The state${ ) and|&’) must satisfy the following relations:
(Lo—1)|) =aql_1|0) +az|&') +asl_1|E), Li|{)=b1|&)+b2|0), Li1|&')=c1|E)+c2|6). (6.21)

However,a; # 0 as|Z> generates a rank 3 block, hence we may s¢ébeso thata; = 1. Moreover,\E’> is
anLo-eigenvector, hence® Ly(Lo—1)|&’) = LoL1|&’) = c1Lo|&) + calo|B) = c2|€ ), hencec, = 0. One can
check explicitly that; is non-zero, hence we may normal|§é> so thatc; = 1. We now make use of the freedom
we have in defining{): Shifting by multiples ofL_1|6) and |&’) allows us to tuneag andb;y to 0. Finally,
b2|&) = LoL1|{) = L1(Lo—1)|{) = (a2 +2)|& ) reduces us to a single unknown:

(Lo—1)|¢) =L_1|6)+ (b2 —2)|"), L1|{) =hb2|6), L1|&") = |&). (6.22)

This result may be checked explicitly with the result tha fhsion product hab, =
forward to calculate the corresponding two-point coraist

(£@Ew) =(E@)E' W) =0, ({@6W))=1, (6(26(w))=A-2logz—w),

1 . .
—15- Itis now straight-

! 1 !/ ! 1 b
(@8 W) =75, (F@FW)= =10 (E@2w) =~
~ B—2bylog(z—w) , ~ C—(bx—3)log(z—w) (6.23)
(8@7w) = —— =", (£@{w)= Z(HV)z :
D + Elog(z—w) — (by — 1)(b; — 6)log?(z— w)

(2@Zw) = o

The constantg, B, C, D andE are all dependent upon the precise choices that we have ratieffields. We
remark that a lo§term in correlators is indicative of a rank 3 Jordan blockifgr

7. DiIscussiION ANDCONCLUSIONS

In this review, we covered various aspects of logarithmigfoomal field theory. We have started with a discus-
sion of a logarithmic theory describing the crossing pralitgifor percolation at the critical point. We then have
discussed three well-understood examples of logarithméarmal field theory. Our approach of study consists
of two essential steps.

First, one needs to thoroughly understand the representditeory of the chiral algebra. The pattern is that
there is a large set of typical (standard) modules with femgeneric (atypical) points at which modules cease to
be irreducible. It is then crucial to understand the stmectf projective modules that can be constructed from the
atypical irreducibles.

The second step is the modular data. Here, we have a procedooenpute the Verlinde formula and bulk
modular invariants which then can be combined to identifgreded algebras. This procedure has been outlined
already in the introduction in the example of the free bosAa.we are convinced of its future usefullness, we
summarize it now for logarithmic theories.

(1) Start with a logarithmic conformal field theory with cordus spectrum

(2) Compute the modular S-transformation for charactetgpmi€al representations.

(3) Splice short exact sequences to obtain a long exact seqleat resolves atypical irreducible modules in
terms of typicals. This allows to express atypical charadas infinite sums of typicals.

(4) Use these sums to deduce the S-matrix of charactersmitatyrreducible modules.

(5) Apply the natural continuum version of the Verlinde faria

(6) Use the modular properties to compute bulk modular iavés corresponding to extended algebras.

(7) Use fusion of the parent theory to deduce the fusion miléise extended theory.

We stress that our method of applying the Verlinde formudguness to have non-periodic resolutions of atypical
modules in terms of typical representations. The extenedries usually only have discrete or even finite spec-
trum and resolutions are usually periodic. In such examphesiular transformations depend on the modular pa-
rameterr, especially one obtains a representation of the modulanath non-diagonalizable T-transformation.
In such a case the application of the Verlinde formula is tearc see however [104] for a proposed generalized
Verlinde formula. As we can immediately deduce fusion ofékended theory by its continuous parent, we have
a straight forward method that circumvents a generalizetindke formula. Nonetheless it is an apparent question
whether one can derive the proposal of [104] using our method
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The three examples of this review are closely related, naa@({1)-coset algebra of an extensiongif1/1) is
51(2) atlevel—1/2 [102], while the single®t(1,2)-algebra and triple2yi (1, 2)-algebra argi(1)-coset algebras of
3[(2) at level—1/2 and its maximal extended algebra [61]. The generalizagitimat the single!]m(l, p)-algebra
and triplem](l, p) -algebra aréi(1)-coset algebras of certain fractional leVélalgebras [168].

In this article we only partialy emphasized the power of fiiell realizations. All three examples allowed for
a free field realization inside a certain lattice theory, vetbe chira; algebra was the kernel of a screening charge.
Such a description is a powerful tool in understanding tipeagentation theory and also as explained in the present
article it provides an explicit integral for correlatiormfctions.

Presently, the simplest class of logarithmic conformadfiéleory is finally under control. Hopefully the near
future will bring insights into more sophisticated theariélaving applications in both string theory and statistica
physics in mind, it seems worth to turn to the theories asseditogl(2|2) andps((2]2).
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APPENDIXA. HOMOLOGICAL ALGEBRA: A (V ERY BASIC) PRIMER

The quantum state space of a (bulk) conformal field theoryni®dule (representation space) over a symmetry
algebra which must contain two commuting copies of the \draslgebra (one copy in the boundary case). The
raison d&tre of logarithmic conformal field theory is that there are odgas for which this module cannot be
written as a direct sum of irreducible submodules over thersgtry algebra, but rather that one must include,
in the direct sum, some submodules which are reducible ld#composable. When discussing reducible but
indecomposable modules, the language of homological edgahd category theory becomes very convenient,
indeed almost unavoidable. In this appendix, we will introel some of the basic concepts and terminology that
are used freely throughout the text.

A.1. Exact Sequences and Extensions. First, recall that a module is said to beducibleif it contains a non-
trivial proper submodule andecomposabl# it may be written as the direct sum of two non-trivial subdotes:
M = M1 & My with M1, M, # {0}. We remark that in the latter cadd; andM, are calleddirect summandsf
the decomposable modul. An irreducible (or simple module is then one which has only the trivial module
and itself as submodules. A direct sum of irreducible maoslidesaid to beompletely reducibléor semisimple
Similarly, anindecomposablmodule is one for whicivl = M1 ® M, implies that eitheM; or My is trivial. Finally,
we define gpropersubmodule oM to be one which is not all dl. A maximalproper submodule d¥! is then a
proper submoduldl for whichN ¢ M’ C M (with M” a submodule) implies that’ = M.

The structure-preserving maps between modieandN, the module homomorphisngsr intertwiners), are
defined to be those linear maps M — N which commute with the action of the symmetry algeAra

a-f(m=f(a-m forallac Aandme M. (A1)

Canonical examples include the identity map M :— M, the inclusion map: M — N of a submodulé/ of N,
and the canonical projectiom: N — N/M onto the quotient by a submodule. We note that both the keme
image of a module homomorphistm M — N are submodules (&l andN, respectively).

One of the central notions of homological algebra isdkact sequencéhis is a chain of modules connected
by module homomorphisms,

f_ f_ f, f
Mg —3M_g —5 My — My —5 My — -+, (A.2)

which isexact At each positiom of the chain, the kernel of the outgoing homomorphigneoincides with the
image of the incoming on§,_1, that is, kelf, = im f,,_;. One may also consider chains which terminate at either
end, in which case one does not require exactness at theiatglphs examples, note that the identity, inclusion
and quotient maps give rise to the following exact sequences

0—M-%M-—0 0-—M-5N, N-T5N/M—0. (A.3)

Conversely, the first sequence says that id is bijectivesélsend that is injective and the third thatis surjective.
We remark that it is standard to abbreviate the trivial medal} by just 0.
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A short exact sequenég an exact sequence of the form
0—M-5N-"5Q—0 (A.4)

(note that! is automatically an injection and is automatically a surjection). This concisely summarithes
common situtation in whiclM is a submodul®& and the quotieniN /M is isomorphic toQ. An obvious question
that arises now is whether there is a submoduld afomorphic toQ such thalN = M & Q — if so, then we say
that the short exact sequensglits Certainly, if N is such a direct sum, then the sequence (A.4) is exact. We
are therefore asking if a direct sum is the only possibilitythe very important case in which bolth andQ are
indecomposable, this amounts to askiniyliandQ can be “glued together” to form a new indecomposabler
whether they may only be combineddsp Q.

Answering this question is a very subtle and difficult bus&i@ general. The general machinery of homological
algebra reduces this to the computation of the éxsension grouExt' (Q, M) (when (A.4) is exact is said to be
anextensiorof Q by M). In particular, Ext(Q,M) = 0 guarantees that (A.4) always splits, hence khatM © Q
is the only possibility. We will not need to concern ourselweith the formal machinery required to compute
extension groups in general. Instead, we only remark theaetls one easy test for deciding when a short exact
sequence must split: If soneentralelement of the symmetry algebfeacts as a multiple of the identity dv and
as adifferentmultiple of the identity orQ, then it acts oiN as a linear transformation with two distinct eigenspaces
which may be easily checked to be submodules isomorphit &amdQ. In other words, it follows thal splits as
M& Q.

We will typically apply this test on modules that are gradgdfie (generalised) eigenvalues of a zero-mode
such as that of the Virasoro algelirg In this case, the central element should be identified efffo and the
test reduces to the remark that if the states of the indecsaipp@ moduleM;, i = 1,2, have conformal dimensions
(Lo-eigenvalues) itZ. + hj, then Ext(My,M,) = 0 will follow if hy # h, modZ.

We also note that there may exist modu@for which Ext(Q,M) = 0 for all modulesM (in the category under
consideration). Suclp are said to berojective These modules give a rough measure of maximal complexity
among indecomposable modules. More precisely, they hav@thperty that if they appear as a quotient of
any module, then that module decomposes as the direct supnaoid something else. We mention that if an
irreducible modul® is a quotient of an indecomposable projective modjlhen we say tha is theprojective
coverof Q (projectivity guarantees that these covers are unique whenexist). This is a remarkably useful
concept. Unfortunately, progress in rigorously identifyiprojective covers for the module categories of interest
in logarithmic conformal field theory is lamentably slow.

A.2. Splicing Exact Seguences. One construction that we will take advantage of is thasplfcing two short
exact sequences together. This procedure starts from wvbestact sequences of the forms

0— M —5 Ny 5 Mg—0, 00— Mp—25Np —2 My —3 0 (A.5)

and produces the sequence

0— My —25 Np 222 Ny %5 Mg — 0. (A.6)
Itis a simple exercise to check that the resulting sequeralsd exact. Moreover, if one has a short exact sequence
with My in the third position, 3— M3 — N3 — M, — 0 say, then the splicing process may be repeated to obtain a
new, longer exact sequence. The most interesting casesoati@n one can splice infinitely many times, thereby

obtaining a long exact sequence callagsolutionof Mg in terms of thel;:

s Ng 275 Ny BT N 278 N, 0 Ny T Mg — 0. (A7)

This is useful when th&l; belong to a class of well-behaved modules and one wishesderstand the behaviour
of Mo.

A.3. Grothendieck Groups and Rings. One point that deserves emphasising is that the indecorblgosiauc-
tures that modules may exhibit become irrelevant when nesdaite replaced by their underlying vector spaces.
This is because exact sequences of vector spaces alwaystspllows that quantities attached to modules which
only depend upon their vector space structure, characeéng lprime examples, will be blind to any indecom-
posable structure. One is therefore motivated to consigeeffect of forgetting the indecomposable structure of
modules such as the quantum state space. Certainly, it sully be easier to ignore questions of whether a
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FIGURE 14. An example of a Loewy diagram (left) and its annotatedioer (right).
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module is completely reducible or not and for some applicetj computing modular invariant partition functions
for example, maintaining such ignorance is perfectly fiesti

This “forgetting” may be formalised through the notion ofGaothendieck group Here, one starts with a
collection (category) of modules, preferably finitely-gested, and forms an abelian gro@pwhose generators
are formal elementfM], whereM is a module from the collection, and whose relations are

[M] = [N] +[Q] =0, whenever 0—M — N —Q—0 isexact. (A.8)

The point of these relations is to ensure that all extengbQsby M are identified wititM & Qin Gr. In favourable
circumstances, such as when the characters of the irrdduniiidules are linearly independent, then the abelian
group generated by the characters will be isomorphic to threh@ndieck group. Note that the collections of
modules that we will be considering will always carry a tengduct structure (fusion) and that this structure
will always induce a well-defined product @r. We will therefore usually refer tGr as aGrothendieck ringor
Grothendieck fusion ring.

A.4. Socle Series and Loewy Diagrams. Finally, it is often convenient to go beyond the formalisnegéct se-
guences in order to visualise the structure of an indecoatgesnodule. One way to do this is througdmposition
series This is a filtration of a modul& by submodules,

0O=MpgCM;C---My_1CM; =M, (Ag)

such that thesubquotients C= M; /M;_1 of M are all irreducible. Composition series are not uniquejfttdoes
possess a composition series, thenlémgth/ and thecomposition factors Care common to every composition
series oM (only the ordering of th€; may change).

A common variation on this theme is thecle seriesHere, one again has a filtration (A.9) by modules, but the
condition thatM; /M;_1 be irreducible is replaced by the requirement tatM;_1 be thesocleof M/M;_;. The
socle of a modul®M is defined to be its maximal completely reducible submoditguivalently, it is the (direct)
sum of the irreducible submodules . As the socle is unique (if it exists), the same is true of sadries. In
essence, composition series describe how irreducible leedue glued together to formM, whereas socle series
describe how completely reducible modules are glued andesasually more efficient. The dual notion to the
socle is the maximal semisimple quotient, sometimes cétletiead

We conclude with an abstract example illustrating an indgmasable structure which commonly arises in
logarithmic conformal field theory (and elsewhere). Thdesseries is

0=MgCM; CMaCM3=M, with M1 2 Cy, My/M1 = C, @ C3 andMs /My = Cy, (A.10)

where theC; are irreducible subquotients (composition factorsivof A common way of visualising this in-
formation is through the associatedewy diagram This is constructed by “layering” with thieth layer con-
sisting of the direct summands comprising thh filtration quotientM;/M;_1. In the example at hand, the
bottom layer is sobl = M; = C;, the middle layer is sqd1/M1) = Ma/M; = C, @ C3, and the top layer is
sodM/My) = M/M;, = Cy. This is illustrated in Figure 14 (left).

It is often convenient to annotate Loewy diagrams with agoetailing the finer structure of the indecompos-
able module as in Figure 14 (right). Such an arrow will alwagt down from a composition fact@; at layer
i to anothelC at layeri — 1. Roughly speaking, bot@; andC, may be associated to certain stated/oand the
arrow indicates that the action of the algebra can take a atsociated witll; to a state associated wiGy, but
not vice-versa. More precisely, it is possible to isofag@andCy by canonically constructing a length 2 subquotient
of M whose composition factors are precis€lyandCy. If this subquotient is indecomposable, then we draw an
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arrow fromC; to Cy (if Eth(Cj ,C«) has dimension greater than 1, we should also affix a labektarttow to pre-
cisely identify the subquotient). We will not try to demarade or verify this precise criterion for drawing arrows
on Loewy diagrams here. Suffice to say that it will be cleahim ¢xamples considered how composition factors
are associated to states and arrows will be drawn on thidrbagis.
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