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Abstract

In this short note, we want to describe the logarithmic convexity argument for
third-order in time partial differential equations. As a consequence, we first prove
a uniqueness result whenever certain conditions on the parameters are satisfied.
Later, we show the instability of the solutions if the initial energy is less or equal
than zero.

Keywords Third order in time partial differential equations, Logarithmic con-
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1 Introduction

With regard to differential equations, both ordinary and partial, one is in-
terested in knowing if solutions exist, and if solutions do exist, if they are
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unique, and whether the solutions depend continuously on data. One is also
interested in knowing whether the solution is stable or otherwise. A problem
is said to be well-posed if the solution to the equations exists, is unique, and
depends continuously on the data, a notion that can be traced back to the
work of Hadamard [1]. Equations that are not well-posed are referred to as
ill-posed. There has been considerable work on ill-posed problems and of spe-
cial relevance to this work is the use of logarithmic convexity arguments to
study issues of uniqueness, continuous dependence on data and instability for
solutions of these problems (see Knops [2]).

Logarithmic convexity arguments have been used to establish instability re-
sults for ill-posed partial differential equations, particularly with those con-
cerned with the response of continua such as the partial differential equations
for the motion of elastic bodies, the heat equation, etc. Ill-posed problems
occur frequently when one studies inverse problems and problems backward
in time. Such problems usually present the possibility of non-unique solutions.
Based on the values of the parameters that appear in the partial differential
equation, the problem may be well-posed or ill-posed in that a solution might
not exist, or the solution might not be unique, etc. Invariably, the conditions
under which the equations are ill-posed occur, that is, the assumptions that
lead to such ill-posedness, stem from an error in describing the physics of
the problem, when one is concerned with the equations governing a physical
problem.

At times, one may not be able to prove the existence of solution to the partial
differential equation of interest, but one might yet be able to establish the
uniqueness of the solution and its continuous dependence on data. Also, one
might be able to answer questions concerning stability or instability of the
solution if a solution exists. With regard to stability analysis, one usually
defines a functional based on the solution, which when the parameters that
appear in it take on appropriate values becomes a positive definite quantity
and can be associated with the energy of the system, and one can study
the stability of the solution to the partial differential equation. However, if
the parameters take on values which imply that the functional is not positive
definite, then using logarithmic convexity arguments one can show the blow up
of the functional. That is, one can show that an erroneous physical assumption
leads to unacceptable physical response. An interesting analysis of the same
is the situation when the Elasticity Tensor is not positive definite (see [3–6]).
In such a situation one can use logarithmic convexity arguments to prove
instability of the solution.

Logarithmic convexity arguments have been used frequently in partial differ-
ential equations that are first and second order in time. The method has been
used in the study of the Moore-Gibson Thompson heat equation (third order
in time) [6], and for the high order backward in time parabolic equations [7]. In
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the last paper, the uniqueness of solutions was established. Given the paucity
of studies of problems where partial differential equations that have deriva-
tives of order higher than two, we investigate equations that have third order
in time using the notion of logarithmic convexity. Uniqueness and instability
of solutions will be a direct consequence of our approach, but it is worth noting
that many other qualitative results could be developed.

The paper is structured as follows. In the next section, we describe briefly the
problem for which the uniqueness and the instability of solutions are proved
in the third section. The main idea is to use the logarithmic convexity argu-
ments. As an example of application, in the fourth section the specific case
corresponding to the three-phase-lag model is presented. An extension to the
analysis in a Hilbert space is finally discussed.

2 Basic Equations

Let us denote by B a three-dimensional bounded domain whose boundary ∂B

is assumed smooth enough so that the divergence theorem can be applied.

We will study several qualitative properties of the solutions to the problem
determined by the equation:

λ0u̇+ λ1ü+ λ2

...
u = κ1∆u+ κ2∆u̇+ κ3∆ü in B. (1)

To define a well-posed problem we need to impose the boundary condition:

u(x, t) = 0 for a.e. x ∈ ∂B, t ≥ 0, (2)

and the initial conditions, for a.e. x ∈ B,

u(x, 0) = u0(x), u̇(x, 0) = u1(x), ü(x, 0) = u2(x). (3)

It is worth noting that the following equality

E(t) + 2
∫ t

0

D(s) ds = E(0) (4)

holds for the solutions to problem (1)-(3), where

E(t) =
∫

B

[

(λ1u̇+ λ2ü− κ3∆u̇)2 + κ1λ1(∇(u+ ξu̇))2

+ξ(κ2λ1 − κ1λ2)|∇u̇|2 + κ1κ3|∆u|2 + λ0λ2|u̇|
2

]

dv, (5)
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and

D(t) =
∫

B

[

(λ1κ2 − λ2κ1)|∇u̇|2 + λ0λ1|u̇|
2 + κ2κ3|∆u̇|2 + λ0κ3|∇u̇|2

]

dv. (6)

Here, ξ = λ2λ
−1

1 . We note that this equality is satisfied for any sign for the
parameters.

A direct consequence of (4)-(6) is that, if we assume that λi > 0 and κi > 0
for i = 1, 2, 3, and λ1κ2 − λ2κ1 > 0, we obtain stability of solutions.

3 Logarithmic convexity

In this section, we consider logarithmic convexity argument for the problem
determined by equation (1) with boundary conditions (2) and initial conditions
(3). As usual, the basic idea is to work with a “good” function satisfying an
appropriate inequality (see (11)). Thus, we define the function

Gω,t0(t) =
∫

B
(λ1u+ λ2u̇− κ3∆u)2dv + ω(t+ t0)

2

+
∫ t

0

∫

B

[

(λ1κ2 − λ2κ1 + λ0κ3)|∇u|2 + λ0λ1|u|
2 + κ2κ3|∆u|2

]

dvds, (7)

where ω and t0 are two positive constants to be chosen later.

Since we desire that this function defines a measure on the solutions, we would
need to assume that

λ0λ1 ≥ 0, κ2κ3 ≥ 0 and λ1κ2 + κ3λ0 ≥ λ2κ1. (8)

From now onwards, we will assume that inequalities (8) hold. In fact, we could
also assume that at least one of the inequalities is strictly positive.

A direct differentiation of (7) with respect to time gives

Ġω,t0(t) = 2
∫

B
(λ1u+ λ2u̇− κ3∆u)(λ1u̇+ λ2ü− κ3∆u̇) dv

+
∫

B

[

(λ1κ2 − λ2κ1 + λ0κ3)|∇u0|2 + λ0λ1|u
0|2 + κ2κ3|∆u0|2

]

dv

+2
∫ t

0

∫

B

[

(λ1κ2 − λ2κ1 + λ0κ3)∇u∇u̇+ λ0λ1uu̇+ κ2κ3∆u∆u̇

]

dvds

+2ω(t+ t0). (9)
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It is worth noting that the following equality holds:

Ġω,t0(t) = 2
∫

B
(λ1u+ λ2u̇− κ3∆u)(λ1u̇+ λ2ü− κ3∆u̇) dv

+
∫

B

[

(λ1κ2 − λ2κ1 + λ0κ3)|∇u|2 + λ0λ1|u|
2 + κ2κ3|∆u|2

]

dvds

+2ω(t+ t0).

We also have

G̈ω,t0(t) = 2
∫

B
(λ1u̇+ λ2ü− κ3∆u̇)2 dv

+2
∫

B

[

(λ1u+ λ2u̇− κ3∆u)(λ1ü+ λ2

...
u − κ3∆ü)

]

dv

+2
∫

B

[

(λ1κ2 − λ2κ1 + λ0κ3)∇u∇u̇+ λ0λ1uu̇+ κ2κ3∆u∆u̇

]

dv + 2ω.

If we define the function

I = (λ1u+ λ2u̇− κ3∆u)(λ1ü+ λ2

...
u − κ3∆ü)

+(λ1κ2 − λ2κ1 + λ0κ3)∇u∇u̇+ λ0λ1uu̇+ κ2κ3∆u∆u̇,

we have

I = (λ1u+ λ2u̇− κ3∆u)(κ1∆u+ κ2∆u̇− λ0u̇)

+(λ1κ2 − λ2κ1 + λ0κ3)∇u∇u̇+ λ0λ1uu̇+ κ2κ3∆u∆u̇.

Therefore, we find that

∫

B
I dv = −

∫

B

[

λ1κ1(∇u+ξ∇u̇)2+ξ(κ2λ1−κ1λ2)|∇u̇|2+κ1κ3|∆u|2+λ0λ2|u̇|
2

]

dv.

This then leads to

G̈ω,t0(t) = 4
∫

B
(λ1u̇+ λ2ü− κ3∆u̇)2 dv + 2(ω − E(0))

+4
∫ t

0

∫

B

[

(λ1κ2 − κ1λ2 + λ0κ3)|∇u̇|2 + κ2κ3|∆u|2 + λ0λ1|u̇|
2

]

dvds. (10)

In view of equalities (7)-(10) and after a systematic use of the Hölder inequality
one obtains that

G̈ω,t0(t)Gω,t0(t)−
(

Ġω,t0 −
η

2

)2

≥ −2(ω + E(0))Gω,t0(t), (11)
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where

η = 2
∫

B

[

(κ2λ1 − κ1λ2 + λ0κ3)|∇u0|2 + λ0λ1|u
0|2 + κ2κ3|∆u0|2

]

dv.

We will use the inequality (11) to establish the main result.

3.1 Uniqueness

We will deduce from inequality (11) the uniqueness of the solutions whenever
conditions (8) hold.

In fact, to prove the uniqueness of the solutions it is enough to see that the
unique solution corresponding to the null initial conditions is the null solution.
We note that, in the case that we impose null initial conditions, inequality (11)
implies that

G̈G− (Ġ)2 ≥ 0, (12)

where we denote G(t) = G0,0(t).

From inequality (12) we obtain that

d2

dt2
[lnG(t)] ≥ 0 for t ∈ [0, T ],

and so, it follows that lnG(t) is a convex function. Hence, we can deduce that

G(t) ≤ G(0)1−t/TG(T )t/T for 0 ≤ t ≤ T.

Therefore, we find that G(t) vanishes in the interval [0, T ] and we can conclude
that

u(t) = 0 for 0 ≤ t ≤ T.

It leads to the uniqueness of solutions that we state as follows.

Theorem 1 Let us assume that conditions (8) hold. Therefore, the problem
determined by (1)-(3) has at most one solution.

It is worth noting that, in the case that λ2 and κ3 are different from zero, the
uniqueness of solutions is a consequence of the results obtained by [8] and [7].
However, in the case that κ3 = 0, we obtain a new uniqueness result for the
equation

λ0u̇+ λ1ü+ λ2

...
u = κ1∆u+ κ2∆u̇,

with the initial and boundary conditions (2) and (3), respectively.

We note that the uniqueness is guaranteed whenever

λ0λ1 > 0 and κ2λ1 > λ2κ1. (13)
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In virtue of the results obtained in [8], we are aware of an existence and
uniqueness result for this problem when κ2λ2 > 0. It is clear that our result
applies for a new class of assumptions. At the same time, this result extends
the one obtained in [6] for the Moore-Gibson-Thompson equation.

We can use the same analysis for the equation:

λ0(x)u̇+ λ1ü+ λ2

...
u = (bij(x)u,i),j + (kij(x)u̇,i),j. (14)

In this case, we need to assume that λ1λ0(x) and that λ1kij(x) − λ2bij(x) is
positive definite.

It is worth noting that, for this equation, we must use the new functions:

E(t) =
∫

B

[

(λ1u̇+ λ2ü)
2 + λ1bij(x)(u,i + ξu̇,i)(u,j + ξu̇,j)

+ξ(λ1kij(x)− λ2bij(x))u̇,iu̇,j + λ2λ0(x)|u̇|
2

]

dv,

D(t) =
∫

B

[

(λ1kij(x)− λ2bij(x))u̇,iu̇,j + λ1λ0(x)|u̇|
2

]

dv,

Gω,t0(t) =
∫

B
(λ1u+ λ2u̇)

2 + 2ω(t+ t0)
2

+
∫ t

0

∫

B

[

(λ1kij(x)− λ2bij(x))u,iu,j + λ1λ0(x)u
2

]

dvds.

3.2 Instability of solutions

In this subsection we will prove the instability of solutions whenever we as-
sume that E(0) ≤ 0. As E(t) denotes the energy associated with the equation
(1), then assuming it to be negative is not a physically meaningful assump-
tion. Thus, it is not surprising that a consequence of such an assumption is
instability of the solution. In fact, we will show that the solution grows in an
exponential way.

Under the assumption E(0) < 0, we can choose ω = −E(0). Then, inequality
(11) implies that

G̈ω,t0(t)Gω,t0(t) ≥ Ġω,t0(t)(Ġω,t0(t)− η),

and we can write
G̈ω,t0(t)

Ġω,t0(t)
≥

Ġω,t0(t)

Gω,t0(t)
. (15)

Now, we select t0 large enough to guarantee that Ġω,t0(0) − η > 0. From
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estimate (15) it follows that

ln
[

Ġω,t0(t)− η

Gω,t0(t)

]

≥ ln
[

Ġω,t0(0)− η

Gω,t0(0)

]

. (16)

Estimate (16) implies that

Ġω,t0(t) ≥
Ġω,t0(0)− η

Gω,t0(0)
Gω,t0(t) + η.

After an integration we obtain

Gω,t0(t) ≥
Gω,t0(0)Ġω,t0(0)

Ġω,t0(0)− η
exp

[

Ġω,t0(0)− η

Gω,t0(0)
t

]

−
ηGω,t0(0)

Ġω,t0(0)− η
. (17)

It then follows that

G(t) ≥
Gω,t0(0)Ġω,t0(0)

Ġω,t0(0)− η
exp

[

Ġω,t0(0)− η

Gω,t0(0)
t

]

−
ηGω,t0(0)

Ġω,t0(0)− η
− ω(t+ t0)

2,

which gives an exponential type growth of the solution.

In the case that E(0) = 0 and Ġ0,0(0) > η, we can also obtain the previous
inequality when ω = t0 = 0.

Therefore, we have proved the following.

Theorem 2 Let us assume that conditions (8) hold and let us consider the
solution such that E(0) < 0 or E(0) = 0 and Ġ0,0(0) > η. Then, this solution
grows in an exponential way.

The previous theorem applies to the general case but it is possible to show
that, if we consider κ1 < 0 and u1 = u2 = 0, u0 6= 0, then we can obtain that
E(0) < 0. The result also applies when κ3 = 0.

In particular, the analysis also applies to the equation (14).

4 Three-phase-lag model

Let us consider the three-phase-lag equation. The parabolic version is given
by

T̈ + τ1
...
T = κ∗∆T + (κ+ κ∗τ3)∆Ṫ + κτ2∆T̈ . (18)

Here, τ1, τ2 and τ3 are three positive constants which represent the relaxation
parameters, κ is the thermal conductivity (assume to be positive) and κ∗ is
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the rate thermal conductivity. It is worth noting that the axioms of thermo-
mechanics do not imply that κ∗ must be positive. Therefore, we could assume
that it is positive or negative. We note that, in this case, we have

λ0 = 0, λ1 = 1, λ2 = τ1, κ1 = κ∗, κ2 = κ+ κ∗τ3,

κ3 = κτ2, ξ = τ1.

Conditions (8) are satisfied whenever

κ+ κ∗τ3 > 0, κ+ κ∗τ3 > τ1κ
∗.

We note that in the case

τ3κ
∗ > −κ and κ∗ < 0

the assumptions are satisfied.

Finally, we remark that, in this case, E(0) < 0 if we assume that u0 6= 0 but
u1 = u2 = 0. Therefore, the instability of solutions can be obtained.

The backward in time version of equation (18) is

−T̈ + τ1
...
T = −κ∗∆T + (κ+ κ∗τ3)∆Ṫ − κτ2∆T̈ . (19)

In this case, we have

λ0 = 0, λ1 = 1, λ2 = τ1, κ1 = −κ∗, κ2 = κ + κ∗τ3,

κ3 = −κτ2.

If we assume that τ1κ
∗ < κ+κ∗τ3 < 0, then conditions (8) hold. This assump-

tion would be satisfied for suitable choices of the parameter when κ∗ < 0. This
gives a new uniqueness result as well as an instability result for equation (19).

5 Further comments

The proposed analysis concerning the logarithmic convexity argument can be
adapted “word by word” to the equations proposed in a Hilbert space:

λ0u̇+ λ1ü+ λ2

...
u = κ1Au+ κ2Au̇+ κ3Aü,
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when A is a symmetric positive definite operator. In this case, the energy of
the system is

E(t) = ‖λ1u̇+ λ2ü− κ3Au̇‖
2 + λ1κ1‖A

1/2(u+ ξu̇)‖2

+ξ(κ2λ1 − λ2κ1)‖A
1/2u̇‖2 + λ0λ1‖u̇‖

2 + κ1κ3‖Au‖
2,

and the dissipation will be

D(t) = (κ2λ1 − λ2κ1)‖A
1/2u̇‖2 + λ0λ1‖u̇‖

2 + κ2κ3‖Au̇‖
2 + λ0κ3‖A

1/2u̇‖2.

In this case, we can define the function

Gω,t0(t) = ‖λ1u+ λ2u̇− κ3Au‖
2 + 2ω(t+ t0)

2

+
∫ t

0

[

(κ2λ1 − λ2κ1 + λ0κ3)‖A
1/2u‖2 + λ0λ1‖u‖

2 + κ2κ3‖Au‖
2

]

ds.

We can consider the viscoelastic proposition introduced by Lebedev and Glad-
well [9] to consider the system of equations

λ1üi + λ2

...
u i =

(

κ1Cijkluk,l + κ2Cijklu̇k,l + κ3Cijklük,l

)

,j
,

where λi and κi are given constants, and Cijkl is the elasticity tensor satisfying

Cijkl = Cklij,

and there exists a positive constant C such that

∫

B
Cijklui,juk,l dv ≥ C

∫

B
ui,jui,j dv

for every vector function (ui) vanishing at the boundary.

We can consider the Hilbert space H = [L2(B)]3 and so, we can define the
operator

Aiu = (Cijkluk,l),j , A = (Ai).

Our arguments can be used in this situation.
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