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1 Introduction

Wald’s formula gives a generalization of the Bekenstein-Hawking entropy in a classical

theory of gravity with higher derivative terms, possibly coupled to other matter fields [1–

4]. In the extremal limit this leads to a simple algebraic procedure for determining the

near horizon field configurations and the entropy [5, 6], leading to a simple proof of the

attractor mechanism [7–9] in a general higher derivative theory coupled to matter.

Given this success, one could ask: is there a generalization of the Wald’s formula to

the full quantum theory? At least for extremal BPS black holes, there is reason to expect

that such a formula might exist, since on the microscopic side there is a precise result for

the degeneracy (more precisely an appropriate index)1 for these BPS black holes. One

naive approach to this problem will be to continue to use Wald’s formula by replacing the

classical action by the one particle irreducible (1PI) action. In string theory this approach

1See ref. [10, 11] for a discussion on how the black hole entropy can be related to an index. In this paper

we shall not distinguish between index and degeneracy.
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has been successful in a number of cases, producing highly non-trivial dependence of the

entropy on the charges which can then be verified by explicit computation of the statistical

entropy in a microscopic description [12–15]. (Further results on the microscopic spectrum

of N = 4 supersymmetric string theories, which will be our focus of attention, can be

found in [16–42]. Early studies on the macroscopic entropy of these black holes can be

found in [43–48]).

There is however a simple reason why this cannot be the complete prescription. In its

original formulation, Wald’s formula holds only for local action. On the other hand the 1PI

action at sufficiently high orders in derivatives contains non-local terms due to the presence

of the massless fields in the supergravity theory. Thus the prescription of replacing the clas-

sical action by the 1PI action in Wald’s formula cannot be the complete story.2 A proposal

for overcoming this difficulty based on a Euclidean path integral approach was suggested

in [50]. In this formulation, called the quantum entropy function formalism, the degeneracy

associated with the black hole horizon is given by the finite part of the string theory par-

tition function in the near horizon geometry of the black hole containing an AdS2 factor.

More precisely, the partition function is calculated by evaluating the string theory path in-

tegral over all string field configurations subject to the condition that near the asymptotic

boundary of AdS2 the configuration approaches the near horizon geometry of the extremal

black hole under consideration. Such a partition function is divergent due to the infinite

volume of AdS2, but the rules of AdS2/CFT1 correspondence gives a precise procedure

for removing this divergence.3 While in the classical limit this prescription gives us back

the exponential of the Wald action, it can in principle be used to systematically calcu-

late the quantum corrections to the entropy of an extremal black hole. Indeed many of the

non-perturbative features of the known spectrum of quarter BPS states in N = 4 supersym-

metric string theories have been reproduced from the macroscopic side using this formal-

ism [10, 40, 41, 54–56]. These non-perturvative effects arise from inclusion in the path inte-

gral the contribution from non-trivial saddle points which have the same asymptotic geome-

try as the near horizon geometry of the black hole, but differ from it in the interior of AdS2.

In order to make full use of this program we need to carry out the path integral over

the string fields around each saddle point. We can take two approaches to this problem.

The simplicity of the microscopic formula for the black hole entropy in N = 4 and N =

8 supersymmetric string theories leads us to expect that the contribution to the path

integral from each saddle point can be expressed as a finite dimensional integral with

simple integrand. Given the large amount of supersymmetry possessed by the near horizon

geometry, one could try to achieve this using localization techniques [57–68]. In particular

it is quite conceivable that supersymmetry will help us localize the path integral over string

fields to a finite dimensional subspace of the full configuration space, which could then be

directly compared with the corresponding contribution to the microscopic formula [69]. On

the other hand one could also take a brute force approach and try to evaluate the path

2See [49] for an attempt to resolve this using an auxiliary scalar field.
3Technically this is identical to the procedure one follows for removing the quark self-energy divergence

while computing the Wilson /’t Hooft line expectation values in gauge theories via holographic method [51–

53], but whether there is a deeper physical connection between these two quantities remains to be seen.
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integral over string fields in perturbation theory around each saddle point. This can then

be compared with a similar expansion of the microscopic degeneracy formula in appropriate

inverse powers of the charges.

The analysis of this paper will be based on the second approach. We shall calculate

the one loop contribution to the quantum entropy function to analyze one specific feature

of the entropy formula, — logarithmic corrections to the classical entropy. More precisely,

we shall consider the limit in which all charges become uniformly large, carrying a common

scale Λ, and study corrections of order ln Λ to the entropy.4 The motivation for this study

comes from the known results on the microscopic spectrum of the quarter BPS dyons in

N = 4 supersymmetric string theories and 1/8 BPS dyons in N = 8 supersymmetric string

theories. If we denote by ∆ the unique quartic combination of the charges which is invariant

under continuous U-duality group of these theories, then for large ∆ the microscopic entropy

Smicro, computed by taking the logarithm of the appropriate helicity trace index [73, 74],

grows as

Smicro =

{
π
√

∆ + O(1) for N = 4

π
√

∆ − 2 ln ∆ + O(1) for N = 8
. (1.1)

The result for the N = 4 theory can be found in [12, 13, 15] and that for N = 8 theory

can be found in [56]. Thus in the limit described above the quarter BPS dyons in N = 4

supersymmetric theories have no logarithmic corrections whereas 1/8 BPS dyons in N = 8

supersymmetrc theories have corrections of order −8 ln Λ. Our goal will be to understand

some aspects of these results from the macroscopic viewpoint.

We shall begin by trying to understand the origin of possible logarithmic corrections

to the entropy in the quantum entropy function formalism. As we shall see, for this study

the contribution from the stringy modes — and the Kaluza-Klein modes associated with

the internal directions — become irrelevant, and we only need to compute the contribution

from the massless modes living on the near horizon AdS2 × S2 geometry. As a simple

exercise we first calculate the one loop determinant of a massless scalar field in the near

horizon AdS2 × S2 background using heat kernel method,5 and show that after following

the prescription of extracting the entropy from the one loop partition function, we do

generate a logarithmic correction to the entropy. Furthermore this agrees with earlier

result of [77] calculated using a somewhat different approach (more detailed discussion on

the comparison with other approaches will be given below).

Applying this procedure to compute logarithmic corrections to string theoretic black

holes requires us to evaluate the one loop contribution to the partition function from

the fluctuation of massless fields in the attractor geometry. The main technical difficulty

in this computation is the diagonalization of the kinetic terms of various fields. Since the

background contains electric and magnetic fields besides gravity, and since the supergravity

action is non-linear, the fluctuations of scalars, vectors and metric (and similarly of spin 1/2

4This is to be distinguished from the Cardy limit in which one of the charges representing momentum

along an internal circle becomes large. In this limit the logarithmic correction to the black hole entropy is

known to be universal [70–72].
5Similar calculations in AdS3 background, with a somewhat different application in mind, can be found

in [75, 76].
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and spin 3/2 fields) mix with each other. However for quarter BPS black holes in N = 4

supersymmetric string theories, which will be the main focus of our analysis, there is a

simplification: the near horizon background involves purly gravitational and graviphoton

fields, but no matter multiplet fields. Due to this property the quadratic terms in the

action expanded around this background do not contain any mixing term between matter

and gravity multiplet fields. This allows us to analyze the contribution to the partition

function from the matter multiplet fields and gravity multiplet fields separately.

In this paper we study the contribution to the partition function due to the fluctuations

of the matter multiplets. The first step in this process is to find explicitly all the eigenvalues

and eigenfunctions of the kinetic operator acting on the matter multiplet, both in the

bosonic and the fermionic sectors. We then express the one loop contribution to the

partition function in terms of this data, and find that in the final expression the contribution

from the bosonic and the fermionic fields cancel. While a similar calculation is possible in

principle for the fields in the gravitational sector, the computation is technically involved,

and we have not carried out this analysis. As a result for any single theory we cannot

make a definite macroscopic prediction for the black hole entropy. However if we consider

a collection of different N = 4 supersymmetric string theories then our result has a definite

prediction, namely that the logarithmic correction to the black hole entropy in N = 4

supersymmetric string theories is independent of the number of matter multiplets we have in

the theory. This is borne out in the microscopic analysis, — the net logarithmic correction

being zero in all known N = 4 supersymmetric string theories irrespective of the number of

matter multiplets the theory contains [12–15]. In order to fully reproduce the results given

in (1.1) we shall have to compute the contribution from the gravity multiplet in N = 4

and N = 8 supersymmetric string theories.

To put our results in context we note that part of the one loop contribution to the

entropy of BPS black holes has been analyzed earlier, leading to non-trivial agreement

between the microscopic and the macroscopic results [12, 13, 15]. These results were

computed using the local part of the one loop effective action derived in [73, 78] for which

one could use Wald’s formula [1] or equivalently the classical entropy function formalism [5].

This local effective action, computed in type IIB string theory on K3× T 2 and its various

orbifolds, included contribution from massive string states carrying winding and momentum

along the cycles of T 2, but the contribution due to the massless modes had to be removed

by hand so as to avoid infrared divergent results. In contrast our analysis in this paper

computes part of the contribution from the massless sector. Thus this contribution must

be added to the result of the previous analysis.

Logarithmic corrections to the (extremal) black hole entropy have been analyzed before

from different points of view [49, 70–72, 77, 79–86]. The previous approaches can be

divided into two broad classes, — microscopic and macroscopic. In the microscopic analysis

the logarithmic corrections are computed by using specific microscopic description of the

theory, while in the macroscopic approach the logartithmic corrections are computed from

the analysis of fluctuating quantum fields in a black hole background. The macroscopic

approaches can also be divided into two categories. In one category, that involves entropy

of BTZ black holes, one first analyzes the gravity path integral in asymptotically AdS3
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spaces to compute the partition function, and then computes the entropy by taking a

laplace transform of the partition function. In this approach the logarithmic terms arise

in the process of taking the Laplace transform. In the second category one computes the

entropy directly by analyzing the quantum fluctuations of various fields in the black hole

geometry. The analysis of this paper clearly falls in the last category.

To be more specific, we shall now compare our method to [77] which is closest in

spirit. In [77] logarithmic corrections to the entropy of extremal black hole was calculated

by relating it to the partition function of the theory in the near horizon geometry with a

conical defect. This requires computing the heat kernel of various fields in a background

with conical defect. However while attempting to make this into a general prescription for

computing black hole entropy in string theory, one runs into the problem that string theory

may not make sense in backgrounds with arbitrary conical defects other than those obtained

by taking orbifolds of smooth space-time. Our approach also requires computing the heat

kernel of various fields, but directly in the near horizon geometry without a conical defect.

As a result it is completely well defined once we adopt the infrared subtraction procedure

described in [50]. Nevertheless the results of our approach agree with those of [77] for cases

where both methods have been applied e.g. for a massles scalar field. The main advantage

of our approach is that we begin with a general prescription for computing the entropy of

an extremal black hole based on AdS2/CFT1 correspondence, and then evaluate it using

various approximations. This allows us to carry out a systematic comparison between

the macroscopic and microscopic entropies. So far (including the results of this paper) this

comparison includes classical Wald entropy and some one loop and non-perturbative results.

The rest of the paper is organised as follows. In section 2 we show how quantum

entropy function can be used to calculate logarithmic correction to the entropy of an

extremal black hole due to a single massless scalar field coupled to the background metric by

minimal coupling. This requires computing the eigenvalues and eigenfunctions of the scalar

Laplacian in the near horizon geometry, and the heat kernel constructed from these data.

We also study the effect of introducing a mass term for the scalar, and show that massive

stringy states do not give any logarithmic correction to the entropy of an extremal black

hole. In section 3 we generalize the analysis to include contribution from massless vector, p-

form and spinor fields coupled to the background metric via minimal coupling. In section 4

we focus on the near horizon geometry of quarter BPS black holes in N = 4 supersymmetric

string theories. By expanding the supergravity action in this near horizon background we

find the complete quadratic action involving the various fluctuating fields in the matter

and gravity multiplet. This action contains the minimal coupling of various fields to the

background metric, but also contains additional terms including mixing between fields of

different spin. We find however that at the quadratic order there is no mixing between

the fluctuations in the matter and gravity multiplet fields, and hence we can separately

analyze the one loop contribution from the two sets of fields. In section 5 we find the

eigenvalues of the kinetic operator in the matter multiplet (which in general contains a

mixing between the scalar and the vector fields, and also between different components

of the spin half field) and use this to compute the one loop contribution to the quantum

entropy function. We find that while individual fields give logarithmic contribution to
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the entropy, the total logarithmic contribution from each vector multiplet vanishes, in

agreement with the microscopic results. We end in section 6 by summarizing the results

and speculating on the possible application of the pure spinor formalism for a one loop

computation of the quantum entropy function in full string theory. In appendix A we

analyze the contribution from integration over the zero modes which were left out from

the functional integral in the analysis of section 5 and show that they do not give any

additional logarithmic correction to the black hole entropy.

2 Logarithmic correction to the black hole entropy due to a single scalar

field

Suppose we have an extremal black hole with near horizon geometry AdS2×S2, with equal

size a of AdS2 and S2. Then the Euclidean near horizon metric takes the form

a2
(
dη2 + sinh2 η dθ2

)
+ a2(dψ2 + sin2 ψ dφ2) , (2.1)

where θ and φ are periodic coordinates with period 2π. We choose the sign convention for

the euclidean action S such that the weight factor inserted into the path integral is given by

eS . Let ∆Leff denote the one loop correction to the four dimensional effective lagrangian

density evaluated in the background geometry (2.1). Then the one loop correction to the

action is given by

∆S =

∫ √
det g dη dθ dψ dφ∆Leff = 8π2 a4 (cosh η0 − 1)∆Leff (2.2)

where η0 is an infrared cut-off. The term proportional to cosh η0 has the interpretation of

−β∆E0 + O
(
β−1

)
where β = 2πa sinh η0 is the inverse temperature given by the length

of the boundary of AdS2 parametrized by θ and ∆E0 is the shift in the ground state

energy [10, 50]. The rest of the contribution can be interpreted as the one loop correction

to the black hole entropy [10, 50] and takes the form

∆SBH = −8π2a4 ∆Leff . (2.3)

We shall now describe the general procedure for calculating ∆Leff .

Let us assume that the theory contains a massless scalar field. If we denote the eigen-

values of the scalar laplacian by {−κn} and the corresponding normalized eigenfunctions

by fn(x) then the heat kernel Ks(x, x′; s) of the scalar Laplacian is defined as (see [87, 88]

and references therein)

Ks(x, x′; s) =
∑

n

e−κn s fn(x) fn(x
′) . (2.4)

The superscript s on K reflects that the laplacian acts on the scalar fields. In (2.4) we

have assumed that we are working in a basis in which the eigenfunctions are real; if this

is not the case then we need to take the complex conjugate of fn(x
′). Ks(x, x′; s) satisfies

the equation

(∂s − �x)K
s(x, x′; s) = 0; Ks(x, x′; s = 0) = δ(4)(x− x′) , (2.5)

– 6 –
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�x being the Laplacian on AdS2 ×S2. The contribution of this scalar field to the one loop

effective action can now be expressed as

∆S = −1

2

∑

n

lnκn =
1

2

∫ ∞

ǫ

ds

s

∑

n

e−κns =
1

2

∫ ∞

ǫ

ds

s

∫
d4x

√
det gKs(x, x; s) , (2.6)

where gµν is the AdS2×S2 metric and ǫ is an ultraviolet cut-off. Comparing this with (2.2)

we see that6

∆Leff =
1

2

∫ ∞

ǫ

ds

s
Ks(0; s) , (2.7)

where Ks(0; s) ≡ Ks(x, x; s). Note that using the fact that AdS2 and S2 are homogeneous

spaces we have dropped the dependence on x from Ks(x, x; s).

Now it follows from (2.4) and the fact that �AdS2×S2 = �AdS2 + �S2 that the heat

kernel of a massless scalar field on AdS2 × S2 is given by the product of the heat kernels

on AdS2 and S2, and in the x′ → x limit takes the form [92]

Ks(0; s) = Ks
AdS2

(0; s)Ks
S2(0; s) . (2.8)

Ks
S2 and Ks

AdS2
in turn can be calculated using (2.4) if we know the eigenfunctions and

the eigenvalues of the Laplace operator on these respective spaces. Fortunately these have

been studied extensively [92–95]. On S2 the normalized eigenfunctions of −� are just the

usual spherical harmonics Ylm(ψ, φ)/a with eigenvalues l(l + 1)/a2. Since Ylm vanishes at

ψ = 0 for m 6= 0, and Yl0 =
√

2l + 1/
√

4π at ψ = 0 we have

Ks
S2(0; s) =

1

4πa2

∑

l

e−sl(l+1)/a2(2l + 1) . (2.9)

On the other hand on AdS2 the δ-function normalized eigenfunctions of −� are given

by [93]

fλ,k(η, θ) =
1√

2π a2

1

2|k|(|k|)!

∣∣∣∣∣
Γ
(
iλ+ 1

2 + |k|
)

Γ(iλ)

∣∣∣∣∣ e
ikθ sinh|k| η

F

(
iλ+

1

2
+ |k|,−iλ+

1

2
+ |k|; |k| + 1;− sinh2 η

2

)
,

k ∈ ZZ, 0 < λ <∞ , (2.10)

with eigenvalue
(

1
4 + λ2

)
/a2. Here F denotes hypergeometric function. Since the eigen-

function described in (2.10) vanishes at η = 0 for k 6= 0, only the k = 0 states will contribute

to Ks
AdS2

(0; s). At η = 0 the k = 0 state has the value
√
λ tanh(πλ)/

√
2πa2. Thus (2.4)

gives

Ks
AdS2

(0; s) =
1

2π a2

∫ ∞

0
dλλ tanh(πλ) exp

[
−s
(
λ2 +

1

4

)
/a2

]
. (2.11)

6There are various other methods for evaluating functional determinants in non-trivial space-time back-

grounds, see e.g. [89–91]. However the form of the result given in (2.7) is closest to the form in which

we expect to obtain the answer in string theory, with the integration over s replaced by integration over

the modular parameter of a torus and Ks(0; s) replaced by the torus partition function of the first quan-

tized string.
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Combining (2.9) and (2.11) we get the heat kernel of a scalar field on AdS2 × S2:

Ks(0; s) =
1

8π2a4

∞∑

ℓ=0

(2l + 1)

∫ ∞

0
dλλ tanh(πλ) exp

[
−s̄λ2 − s̄

(
l +

1

2

)2
]
, (2.12)

where

s̄ = s/a2 . (2.13)

The associated eigenstates of the laplacian operator on AdS2 × S2 are obtained by taking

the products of the spherical harmonics and the function fλ,k given in (2.10) and satisfy

� fλ,k(η, θ)Ylm(ψ, φ) = − 1

a2

{
l(l + 1) + λ2 +

1

4

}
fλ,k(η, θ)Ylm(ψ, φ) . (2.14)

We can in principle evaluate the full one loop effective action due to massless fields

using (2.7) and (2.12), but our goal is to extract the piece proportional to ln a for large

a. Such contributions come from the region of integration 1 ≪ s ≪ a2 or equivalently

a−2 ≪ s̄ ≪ 1. Thus we need to study the behaviour of (2.9), (2.11) for small s̄. Since

both Ks
S2(0; s) and Ks

AdS2
(0; s) diverge at s̄ = 0, we cannot simply expand the summand

/integrand in (2.9), (2.11) in a power series expansion in s̄, — we must first isolate the di-

vergent part and evaluate it exactly. Let us begin with the expression for Ks
AdS2

(0; s) given

in (2.11). We first express tanh(πλ) as 1 − 2 e−2πλ/(1 + e−2πλ) = 1 + 2
∑∞

k=1(−1)ke−2kπλ,

and divide the integral into two parts: the first part containing the 1 term from the expan-

sion of tanh(πλ) and the second part containing the rest of the terms. The first integral

can be evaluated in closed form. In the second integral we expand e−s̄λ
2

in a power series

expansion in s̄ and perform the integral over λ. This leads to the following expression for

Ks
AdS2

:

Ks
AdS2

(0; s) =
1

4πa2 s̄
e−s̄/4

[
1 +

∞∑

n=0

(−1)n

n!
(2n+ 1)!

s̄n+1

π2n+2

1

22n

(
2−2n−1 − 1

)
ζ(2n+ 2)

]

=
1

4πa2 s̄
e−s̄/4

(
1 − 1

12
s̄+

7

480
s̄2 + O(s̄3)

)
. (2.15)

In order to find the small s expansion of Ks
S2 , we first express (2.9) as

1

4πi a2
es̄/4

∮
dλλ tan(πλ) e−s̄λ

2
, (2.16)

where
∮

denotes integration along a contour that travels from from ∞ to 0 staying below

the real axis and returns to ∞ staying above the real axis. By deforming the integration

contour to a pair of straight lines through the origin — one at an angle κ below the positive

real axis and the other at an angle κ above the positive real axis — we can express this as

1

2πa2
es̄/4 Im

∫ eiκ×∞

0
λdλ tan(πλ) e−s̄λ

2
, 0 < κ≪ 1 . (2.17)

– 8 –
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This integral can now be expressed in the same way as in the case of Ks
AdS2

, and we get

Ks
S2(0; s) =

1

4πa2 s̄
es̄/4

[
1 −

∞∑

n=0

1

n!
(2n+ 1)!

s̄n+1

π2n+2

1

22n

(
2−2n−1 − 1

)
ζ(2n+ 2)

]

=
1

4πa2 s̄
es̄/4

(
1 +

1

12
s̄+

7

480
s̄2 + O(s̄3)

)
. (2.18)

Substituting (2.15) and (2.18) into (2.8) we get

Ks(0; s) =
1

16π2a4 s̄2

(
1 +

1

45
s̄2 + O(s4)

)
. (2.19)

eq. (2.7) now gives

∆Leff =
1

32π2a4

∫ ∞

ǫ/a2

ds̄

s̄3

(
1 +

1

45
s̄2 + O(s̄4)

)
. (2.20)

This integral has a quadratically divergent piece proportional to 1/ǫ2. This can be thought

of as a renormalization of the cosmological constant and will cancel against contribution

from other fields in a supersymmetric theory in which the cosmological constant is not

renormalized. Even otherwise in string theory there is a physical cut-off set by the string

scale.7 Our main interest is in the logarithmically divergent piece which comes from the

order s̄2 term inside the parentheses. This is given by

1

1440π2a4
ln(a2/ǫ) , (2.21)

and, according to (2.3) gives a contribution to the entropy

∆SBH = − 1

180
ln(a2/ǫ) . (2.22)

This agrees with the earlier result of [77, 96]. In this earlier approach one computed

the black hole entropy by relating it to the partition function of the theory in an eucldean

space-time with a conical defect [97]. This required computing the scalar heat kernel on a

space-time with conical defect. Besides being computationally more difficult, this method

also suffered from the intrinsic problem that string theory on a space-time with conical

defect may not be well defined. In contrast the quantum entropy function approach only

requires us to compute the partition function of string theory on the near horizon AdS2×S2

geometry. Since this is a smooth geometry, and solves the classical equations of motion

of string theory, the partition function of the theory in this space should be well defined,

leading to an unambiguous prescription for computing the black hole entropy.

Note that the term in Leff proportional to ln a2 comes from the s independent part

of Ks(0; s) in an expansion in s. This can also be calculated using the general formula

7Typically in a string theory there are multiple scales e.g. string scale, Planck scale, scale set by the

mass of the D-branes etc. We shall consider near horizon background where the string coupling constant as

well as all the other parameters describing the shape, size and the various background fields along the six

compact directions are of order unity. In this case all these length scales will be of the same order.
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derived in [87, 88, 98–101] which relates the coefficients appearing in the small s expansion

of K(0; s) to local quantities computed in the background geometry. In AdS2 × S2, where

the Weyl tensor as well as the curvature scalar vanishes, the formula for the constant part

of Ks(0; s), denoted as as4(0; s), takes the form

as4(0; s) =
1

180(4π)2
Rµν R

µν , (2.23)

where Rµν is the Ricci scalar. Evaluating it on the background (2.1) we find that RµνR
µν =

4a−4, and hence

as4(0; s) =
1

16π2a4

1

45
. (2.24)

This is in precise agreement with the coefficient of the s independent term in (2.19). We

shall see however that evaluating the heat kernel explicitly by summing over eigenfunctions

gives us valuable insight that will be useful for our analysis when we try to extend the results

to include the contribution from higher spin fields, and the effect of background electric

and magnetic fluxes on AdS2 × S2. In particular in order that the integrals of the form

appearing in (2.7) are well defined, we need to subtract from the integrand K(0, s) its value

at s → ∞, — this corresponds to removing the zero eigenvalues of the kinetic operator

from the definition of the determinant. Thus we need to know the s→ ∞ limit of the heat

kernel besides its small s expansion.

Let us now discuss the effect of switching on a mass term for the scalar. The effect of

this is to insert a factor of e−m
2s = e−m

2a2s̄ into the integral in (2.20). This gives

∆Leff =
1

32π2a4

∫ ∞

ǫ/a2

ds̄

s̄3

(
1 +

1

45
s̄2 + O(s̄4)

)
e−m

2a2s̄ . (2.25)

We shall now consider two different situations. First suppose m2 is of order unity, ı.e.

of the order of the string scale. In that case the exponential factor in (2.25) effectively

restricts the integration over s̄ in the region s̄<∼1/a2. As a result ∆Leff will not contain

any piece proportional to ln a2. On the other hand if m2 = c/a2 where c is a constant of

order unity, then in the region s̄≪ 1 the term in the exponent is small and we can expand

the exponential in a Taylor series expansion. This gives

∆Leff =
1

32π2a4

∫ ∞

ǫ/a2

ds̄

s̄3

(
1 − cs̄+

1

2
c2s̄2 +

1

45
s̄2 + O(s̄4)

)
. (2.26)

This has a term proportional to ln a2 of the form

1

8π2a4

(
1

180
+
c2

8

)
ln(a2) , (2.27)

and, according to (2.3) gives a contribution to the entropy

∆SBH = −
(

1

180
+
c2

8

)
ln(a2) . (2.28)

This shows that a massive scalar whose mass is of the order of string scale does not give

any contribution to the entropy proportional to ln a2. On the other hand a massive scalar
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whose mass is inversely proportional to a will contribute terms proportional to ln a to the

entropy, and furthermore the actual contribution will depend on the mass of the scalar.

In the examples we shall analyze, the presence of the background flux generates an

effective potential of order a−2 for background scalars via the coupling between scalars and

vector fields in the supergravity action. Thus we must take into account such corrections

in our analysis. In contrast the massive string modes have mass of the order of the string

scale and we can ignore their contribution while computing logarithmic correction to the

black hole entropy. Finally one might also worry about the effect of higher derivative

corrections to the effective action on the potential for the scalars. Such corrections are

of order a−4 or higher powers of a−1, and do not affect the logarithmic correction to the

entropy since correction to the exponent m2a2s̄ remains small throughout the relevant

region of integration.

So far we have discussed the effect of one loop corrections. What about higher loop

contributions? As discussed in footnote 7, we have assumed that all the moduli parameters

including the string coupling constant are of order unity at the horizon; hence the higher

loop contributions could be of the same order as the one loop contribution. While we cannot

make any definite prediction about these higher loop corrections in general, in the special

case of supersymmetric black holes we shall be considering, we can argue as follows that

the higher loop contributions can be ignored. For definiteness we shall consider a situation

where all the charges carried by the black hole are Ramond-Ramond (RR) charges. In

this case the scaling argument of [102] tells us that as we scale all the charges by some

common scale Λ, the dilaton Φ at the horizon scales as e−2Φ ∼ Λ2, and all the other NSNS

background fields, including the string metric, remains fixed. As a result for large Λ the four

dimensional canonical metric gµν , related to the string metrc Gµν via gµν = e−2ΦGµν , scales

as Λ2 and e−2Φ scales as Λ2. This would seem to contradict our assumption of footnote 7

that all the moduli are of order one at the horizon. This is resolved by noting that at least

in the classical supergravity approximation, the value of the dilaton at the horizon can be

changed keeping the four dimensional canonical metric fixed. In the language of N = 2

supersymmetric theories this is a consequence of the fact that the four dimensional dilaton

belongs to the hypermultiplet and hence the vector multiplet fields do not generate any

potential for the dilaton. We shall assume that this flat direction, labelled by the value of

the dilaton, is not lifted even in the full quantum theory. Thus we can evaluate the entropy

at any value of the dilaton, in particular either for e−2Φ ∼ Λ2 as given by the scaling

argument or for e−2Φ ∼ 1. In the first case the k loop contribution to the entropy will go

as e2Φ(k−1) ∼ Λ2−2k. In the second case we have e2Φ ∼ 1 and Gµν = e2Φgµν ∼ Λ2. Thus

any term that has 2k + 2 derivatives will give a contribution of order Λ2−2k irrespective

of the order of the perturbation theory in which it is generated. Requiring that both be

correct leads to the conclusion that at k loop order only the terms with 2k + 2 derivatives

will contribute to the entropy, giving a contribution of order Λ2−2k. Thus the logarithmic

corrections can arise only from one loop terms in the effective action, the higher loop

corrections being suppressed by inverse powers of Λ, ı.e. inverse powers of the charges.
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3 Heat kernels of vector, p-form and fermion fields

The matter multiplet of an N = 4 supersymmetric theory in (3+1) dimensions contains a

vector, four Majorana fermions and six scalars. Thus in order to compute the logarithmic

correction to the entropy due to a matter multiplet we need to extend the results of the

previous section to include the heat kernels of vector and fermion fields. In this section we

shall compute the heat kernels of these fields by regarding them as free fields in AdS2 ×S2

background. Although the analysis is straightforward using the results of [92–95, 103], we

shall go through it carefully, since, as we shall see in the next two sections, these results

need to be further corrected due to mixing between scalar, vector and tensor fields in the

black hole near horizon geometry.

3.1 Vector fields

In general the contribution from a field of given spin requires evaluation of the functional

integral after suitable gauge fixing. We shall use a Feynman type gauge and compute the

net contribution from a given field as the sum of the contribution from the original field as

well as the various ghosts which appear during gauge fixing. Let us first consider the case

of a U(1) gauge field with euclidean action

SA = −1

4

∫
d4x
√

det g FµνF
µν , (3.1)

where Fµν ≡ ∂µAν − ∂νAµ is the gauge field strength. Adding a gauge fixing term

Sgf = −1

2

∫
d4x
√

det g (DµA
µ)2 , (3.2)

we can express the action as

SA + Sgf = −1

2

∫
d4x
√

det gAµ(∆A)µ , (3.3)

where

(∆A)µ ≡ −�Aµ +RµνA
ν , �Aµ ≡ gρσDρDσAµ . (3.4)

We shall denote by d the exterior derivative operator and by δ the operator − ∗ d∗ where

∗ denotes Hodge dual operation. Then ∆ may be expressed as

∆ ≡ (dδ + δd) . (3.5)

We shall use (3.5) as the definition of ∆ acting on any p-form field.

Since the eigenfunctions of ∆ are four component vectors, the vector heat kernel is a

4 × 4 matrix. We shall denote by Kv(x, x′; s) the trace of this matrix. Quantization of

gauge fields also requires us to introduce two anticommuting scalar ghosts whose kinetic

operator is given by the standard laplacian −� = δd in the harmonic gauge. Thus the net

one loop contribution of the vector field to Leff will be given by

1

2

∫ ∞

ǫ

ds

s

√
det g lim

x′→x

[
Kv(x, x′; s) − 2Ks(x, x′; s)

]
, (3.6)

where the −2Ks term reflects the contribution due to the ghosts.

A vector in AdS2 × S2 decomposes into a (vector, scalar) plus a (scalar, vector),

with the first and the second factors representing tensorial properties in AdS2 and S2
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respectively. Furthermore, on any of these components the action of the kinetic operator

can be expressed as ∆AdS2 + ∆S2, with ∆ as defined in (3.5). Thus we can construct

the eigenfunctions of ∆ by taking the product of appropriate eigenfunctions of ∆AdS2 and

∆S2 , and the corresponding eigenvalue of ∆ on AdS2 × S2 will be given by the sum of the

eigenvalues of ∆AdS2 and ∆S2. This gives8

Kv(0; s) = Kv
AdS2

(0, s)Ks
S2(0; s) +Ks

AdS2
(0, s)Kv

S2(0; s) . (3.7)

Thus we need to compute Kv
AdS2

(0, s) and Kv
S2(0; s).

Now suppose that we have a scalar field Φ on AdS2 or S2 satisfying

∆Φ ≡ δdΦ ≡ −�Φ = κΦ . (3.8)

Then we can construct two configurations for the gauge field A with the same eigenvalue

κ of ∆ and the same normalization as Φ as follows:

A(1) = κ−1/2 dΦ, A(2) = κ−1/2 ∗ dΦ . (3.9)

Furthermore locally every vector field in two dimensions can be decomposed as dΦ1 +

∗dΦ2. Thus for every scalar eigenfunction Φ of the operator δd we have a pair of vector

eigenfunctions of (dδ+δd) with the same eigenvalue. The contribution from any of these two

eigenfunctions to the vector heat kernel Kv(x, x; s) is given by κ−1 e−κs gµν∂µΦ(x)∂νΦ(x).

Now since Kv(x, x; s) is independent of x after summing over the contribution from all the

states, we could compute it by taking the volume average of each term. Taking a volume

average allows us to integrate by parts and gives the same result as the volume average of

κ−1 e−κs Φ(x)δdΦ(x) = e−κsΦ(x)2. This is the same as the contribution from Φ(x) to the

scalar heat kernel.9 Thus we conclude that leaving aside global issues, the heat kernel for

a vector field on AdS2 or S2 should be given by twice that of the scalar.

There are however some corrections to this both on S2 and AdS2 due to global issues.

On S2, the constant mode of the scalar is an eigenfunction of �S2 with eigenvalue 0.

However these modes do not generate any non-trivial gauge field configuration via (3.9).

Hence their contribution to Ks
S2 should be removed while computing Kv

S2 . Since the zero

mode gives a contribution of 1/(4πa2) to Ks
S2(0; s), this gives

Kv
S2(0, s) = 2Ks

S2(0, s) − 1

2πa2
. (3.10)

On the other hand on AdS2 the constant mode of the scalar is not normalizable, and hence

Ks
AdS2

does not include any contribution from the constant mode. Thus we do not need

to make any subtraction from Ks
AdS2

in computing Kv
AdS2

. However it turns out that in

8The main ingradient that allows us to express the heat kernel on AdS2 ×S2 in terms of heat kernels on

AdS2 and S2 is that the kinetic operator on AdS2 × S2 can be expressed as a sum of the kinetic operators

in S2 and AdS2. This will continue to hold for the other fields as well, but the choice of harmonic gauge is

essential for this.
9This can also be verified using the explicit form of the scalar eigenmodes given in section 2 and noting

that the non-vanishing contribution now comes from eigenmodes with Yl,±1 on S2 and fλ,±1 on AdS2.
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this case there is a set of square integrable eigenvectors of ∆ with zero eigenvalue, given

by [93]:10

A = dΦ, Φ =
1√
2π|ℓ|

[
sinh η

1 + cosh η

]|ℓ|
eiℓθ, ℓ = ±1,±2,±3, · · · . (3.11)

These are not included in (3.9) since the Φ given in (3.11) is not normalizable. These give

additional contribution to Kv
AdS2

(0; s). In fact since for |ℓ| > 1 the gauge field vanishes at

η = 0, only the ℓ = ±1 terms contribute to Kv
AdS2

(0; s). This gives

Kv
AdS2

(0, s) = 2Ks
AdS2

(0, s) +
1

2πa2
. (3.12)

We now proceed to compute the contribution to the vector heat kernel using these

results. Using (3.7), (3.10), (3.12) and then (2.15), (2.18) we get

Kv(0; s) = 4Ks
AdS2

(0; s)Ks
S2(0; s) +

1

2πa2

(
Ks
S2(0; s) −Ks

AdS2
(0; s)

)

=
1

4π2a4s̄2

(
1 +

16

45
s̄2 + O(s̄4)

)
. (3.13)

This is again consistent with the results of [100] which gives the coefficient of the s indepen-

dent part of Kv to be 64(180)−1(4π)−2RµνR
µν . Taking into account the contribution due

to the ghosts via (3.6) we can now compute the total contribution to the effective action

from the vector field.

There is however an additional subtlety we must take care of. The contribution to the

vector heat kernel given in (3.13) includes contribution from the zero modes obtained by

taking the product of (3.11) and the l = 0 mode, i.e. the constant mode of the scalar on

S2. The integration over the zero modes of any field requires special treatment since these

integrals are not Gaussian. Thus in evaluating the determinant of the kinetic operator for

computing the one loop contribution to the effective action we must remove the contribution

due to the zero modes [104]. This will require replacing Kv(0; s) by

K̂v(0; s) = Kv
AdS2

(0, s)Ks
S2(0; s) +Ks

AdS2
(0, s)Kv

S2(0; s) −
1

8π2a4
. (3.14)

More generally, removal of the zero modes from any heat kernel will require subtracting

from K(0; s) its value as s→ ∞:

K̂(0; s) ≡ K(0; s) − lim
t→∞

K(0, t) . (3.15)

We shall take this as the definition of the proper heat kernel that should be used in com-

puting logrithmic correction to the entropy. This subtraction is in fact necessary to ensure

that the integration over s does not diverge at infinity.11 However instead of removing the

zero mode contribution from the heat kernel of every field we shall find it more convenient

10Since dΦ is (anti-)self-dual in AdS2, we do not get independent eigenfunctions from ∗dΦ.
11In any case a constant term in K(0; s) will not produce a factor of ln a2, — these arise from terms

which remain constant in the range 1 ≪ s ≪ a2 and fall off for s ≫ a2.
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to remove the contribution at the end from the trace of the total heat kernel of all the

fields. For this reason we shall continue to use the result (3.13) for the vector heat kernel.

Even though in evaluating the determinant of the kinetic operator we need to remove

the contribution due to the zero modes, eventually we must carry out the integration

over the zero modes of physical fields. We shall describe the analysis of the zero mode

integrals in appendix A and show that the net effect of these integrals — and an additional

contribution that will be described in the same appendix — cancel, leaving us with the

prescription of working with the regularized heat kernel described in (3.15).

3.2 p-form fields

A matter multiplet in N = 4 supergravity theory contains six scalar fields. However often

in string theory, some of the scalars appear in their dual form as 2-form fields. This happens

for example if we consider type IIA string theory on K3×T 2, — we get 2-form fields from

taking the components of the RR 3-form field with one leg on T 2 and also from the NSNS

sector 2-form fields. All of these need to be dualized to scalars and they then form parts

of the matter multiplets. However from the viewpoint of type IIA string theory we should

really carry out the path integral by regarding them as 2-form fields. Similarly in the

same theory the RR 3-form field with all its legs along the four dimensional Minkowski

space must also be regarded as an integration variable in the path integral even though in

four dimensions it does not have any physical degree of freedom. Thus in order that our

results do not depend on which description of the theory we use, we must ensure that the

2-form field and the scalar gives the same contribution to the one loop determinant and

that the 3-form field does not contribute to the one loop determinant. We shall now try

to verify this explicitly. This analysis is important in view of the results of [105] that the

dual descriptions do not always lead to the same result for the trace of the stress tensor,

which in turn can be related to the s independent term in the expansion of K(0; s).

First we consider the 2-form field Bµν with gauge invariant action

SB = − 1

12

∫
d4x

√
det gHµνρH

µνρ, Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν . (3.16)

Adding a harmonic gauge fixing term

Sgf = −1

2

∫
d4x

√
det g gµν DρBρµD

σ Bσν , (3.17)

we get a simple form of the total action

SB + Sgf = −1

2

∫
d4x

√
det g Bµν(∆B)µν , ∆B ≡ (dδ + δd)B . (3.18)

On AdS2 and S2, there is a one to one correspondence between the normalizable modes

of the scalar and the normalizable modes of Bµν via Hodge duality Bµν = Φ εµν where ε

is the solume form. As a result the heat kernels for Bµν and scalars are identical in these

two spaces:

Kb
S2(0; s) = Ks

S2(0; s), Kb
AdS2

(0; s) = Ks
AdS2

(0; s) . (3.19)
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Since the 2-form field on AdS2×S2 can be decomposed as (vector, vector), (2-form, scalar)

and (scalar, 2-form), and furthermore on any of these components the action of the kinetic

operator is given by ∆AdS2 +∆S2, we can express the trace of the heat kernel of the 2-form

field on AdS2 × S2 as

Kb(0; s) = Kv
AdS2

(0; s)Kv
S2(0; s) + 2Ks

AdS2
(0; s)Ks

S2(0; s)

= 6Ks
AdS2

(0; s)Ks
S2(0; s) +

1

πa2

(
Ks
S2(0; s) −Ks

AdS2
(0; s)

)
− 1

4π2a4

=
1

16π2a4

(
6

s̄2
− 6

5
+ O(s̄2)

)
, (3.20)

where we have used (3.19) in the first step, (3.10), (3.12) in the second step and (2.15),

(2.18) in the last step. This is consistent with the results of [100] which gives the coefficient

of the s independent part of Kb to be −54(180)−1(4π)−2RµνR
µν .

Quantization of the 2-form field produces two anti-commuting vector ghosts and three

commuting scalar ghosts [106–108]. Thus the net contribution to the one loop effective

action is given by

∆Leff =
1

2

∫ ∞

ǫ

ds

s

[
Kb(0; s) − 2Kv(0; s) + 3Ks(0; s)

]

=
1

2

∫ ∞

ǫ

ds

s

[
Ks(0; s) − 1

4π2a4

]
. (3.21)

Comparing (2.7) and (3.21) we see that the contribution to the one loop effective action

due to a scalar field differs from that of a 2-form field. This is a bit surprising since in four

dimensions the scalar and 2-form fields are supposed to be equivalent. As already noted

in [105, 109], this difference can be attributed to the contribution due to the zero modes,

— we shall now verify this explicitly. Indeed the zero mode contribution to the heat kernel

can be identified as the term obtained by taking the s→ ∞ limit of the heat kernel. Thus

on the right hand side of (3.21) this is given by the −1/4π2a4 term in the square bracket.

As discussed before, in calculating the one loop determinant we must explicitly remove the

contribution due to the zero modes. In this case we shall no longer have the −1/4π2a4

term inside the integrand in (3.21) and the result for the effective action computed using

the 2-form field would agree with that computed using the scalar.

We can carry out a similar analysis for a 3-form field in the harmonic gauge. In this

gauge the kinetic operator is again given by ∆ = (dδ + δd). Since the 3-form field on

AdS2 ×S2 and a vector field can be related by Hodge duality, the relevent part of the heat

kernel for the 3-form is given by Kv(0; s). On the other hand the quantization of the 3-form

requires 2 anti-commuting 2-form ghosts, 3 commuting vector ghosts and 4 anti-commuting

scalar ghosts [106–108]. Thus the net contribution to ∆Leff is

∆Leff =
1

2

∫ ∞

ǫ

ds

s

[
Kv(0; s) − 2Kb(0; s) + 3Kv(0; s) − 4Ks(0; s)

]

=
1

4π2a4

∫ ∞

ǫ

ds

s
. (3.22)
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This is contrary to our expectation that the contribution to the effective action from

a 3-form field should vanish since it is non-dynamical in four dimensions. We now

note that since the total heat kernel represented by the term inside the square bracket

is an s-independent constant, removing the zero mode contribution amounts to sub-

tracting this constant. This makes the net contribution vanish, in agreement with the

general expectation.

3.3 Fermions

Next we turn to the computation of the heat kernel of spinors [103]. Consider a Dirac

spinor12 on AdS2 × S2. It decomposes into a product of a Dirac spinor on AdS2 and a

Dirac spinor on S2. We use the following conventions for the vierbeins and the gamma

matrices

e0 = a sinh η dθ, e1 = a dη, e2 = a sinψ dφ, e3 = a dψ , (3.23)

Γ0 = −σ3 ⊗ τ2, Γ1 = σ3 ⊗ τ1, Γ2 = −σ2 ⊗ I2, Γ3 = σ1 ⊗ I2 , (3.24)

where σi and τi are two dimensional Pauli matrices acting on different spaces and I2 is

2 × 2 identity matrix. In this convention the Dirac operator on AdS2 × S2 can be written

as

6DAdS2×S2 = 6DS2 + σ3 6DAdS2 , (3.25)

where

6DS2 = a−1

[
−σ2 1

sinψ
∂φ + σ1 ∂ψ +

1

2
σ1 cotψ

]
, (3.26)

and

6DAdS2 = a−1

[
−τ2 1

sinh η
∂θ + τ1 ∂η +

1

2
τ1 coth η

]
. (3.27)

First let us analyze the eigenstates of 6DS2 . They are given by [103]

χ±
l,m =

1√
4πa2

√
(l −m)!(l +m+ 1)!

l!
ei(m+ 1

2)φ

(
i sinm+1 ψ

2 cosm ψ
2P

(m+1,m)
l−m (cosψ)

± sinm ψ
2 cosm+1 ψ

2P
(m,m+1)
l−m (cosψ)

)
,

η±l,m =
1√

4πa2

√
(l −m)!(l +m+ 1)!

l!
e−i(m+ 1

2)φ

(
sinm ψ

2 cosm+1 ψ
2P

(m,m+1)
l−m (cosψ)

±i sinm+1 ψ
2 cosm ψ

2P
(m+1,m)
l−m (cosψ)

)
,

l,m ∈ ZZ, l ≥ 0, 0 ≤ m ≤ l , (3.28)

satisfying

6DS2χ±
l,m = ±i a−1 (l + 1)χ±

l,m , 6DS2η±l,m = ±i a−1 (l + 1) η±l,m . (3.29)

Here Pα,βn (x) are the Jacobi Polynomials:

P (α,β)
n (x) =

(−1)n

2n n!
(1 − x)−α(1 + x)−β

dn

dxn

[
(1 − x)α+n(1 + x)β+n

]
. (3.30)

12Even if the spinors satisfy Majorana/Weyl condition, we shall compute their heat kernel by first com-

puting the result for a Dirac spinor and then taking appropriate square roots.
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We shall denote by Kf
S2(x, x

′; s) the trace over the spinor indices of the heat kernel of

the Dirac fermion on S2. The precise normalization of Kf
S2 is chosen as follows. If 6DS2 has

eigenfunction fn(x) with eigenvalue iλn, then we define

Kf
S2(x, x

′; s) = −
∑

n

e−sλ
2
nf †n(x

′)fn(x) . (3.31)

The extra minus sign in the definition of Kf
S2 has been included to account for the fact

that for fermionic path integral we get a factor of the determinant instead of the inverse

of the determinant. Two additional normalization factors cancel; the fact that i 6D is the

square root of − 6D2 gives a factor of 1/2, but since we are considering a Dirac fermion

instead of a Majorana fermion we get a factor of 2. The result for (3.31) in the x → x′

limit can be simplified by noting that for ψ = 0, χ±
l,m, η±l,m vanishes unless m = 0, and

(
χ±
l,0

)†
χ±
l,0 =

(
η±l,0

)†
η±l,0 =

1

4πa2
(l + 1) . (3.32)

Thus we get

Kf
S2(0; s) = − 1

2π a2

∞∑

l=0

(2l + 2) e−s(l+1)2/a2 . (3.33)

The eigenstates of 6DAdS2 are given by the analytic continuation of the eigenfunctions

given in (3.28)[103], making the replacement ψ → iη, l → −iλ− 1, φ→ θ,

χ±
m(λ) =

1√
4πa2

∣∣∣∣∣
Γ (1 +m+ iλ)

Γ(m+ 1)Γ
(

1
2 + iλ

)
∣∣∣∣∣ e

i(m+ 1
2)θ

(
i λ
m+1 coshm η

2 sinhm+1 η
2F
(
m+ 1 + iλ,m+ 1 − iλ;m+ 2;− sinh2 η

2

)

± coshm+1 η
2 sinhm η

2F
(
m+ 1 + iλ,m+ 1 − iλ;m+ 1;− sinh2 η

2

)
)
,

η±m(λ) =
1√

4πa2

∣∣∣∣∣
Γ (1 +m+ iλ)

Γ(m+ 1)Γ
(

1
2 + iλ

)
∣∣∣∣∣ e

−i(m+ 1
2)θ

(
coshm+1 η

2 sinhm η
2F
(
m+ 1 + iλ,m+ 1 − iλ;m+ 1;− sinh2 η

2

)

±i λ
m+1 coshm η

2 sinhm+1 η
2F
(
m+ 1 + iλ,m+ 1 − iλ;m+ 2;− sinh2 η

2

)
)
,

m ∈ ZZ, 0 ≤ m <∞, 0 < λ <∞ , (3.34)

satisfying

6DAdS2χ
±
m(λ) = ±i a−1 λχ±

m(λ) , 6DAdS2η
±
m(λ) = ±i a−1 λ η±m(λ) . (3.35)

This gives

Kf
AdS2

(0; s) = −
∫ ∞

0
dλe−sλ

2/a2

∞∑

m=0

[
(χ+
m(λ))†χ+

m(λ) + (χ−
m(λ))†χ−

m(λ) + (η+
m(λ))†η+

m(λ) + (η−m(λ))†η−m(λ)
]

= − 1

πa2

∫ ∞

0
dλe−s̄λ

2
λ coth(πλ) . (3.36)

– 18 –



J
H
E
P
0
3
(
2
0
1
1
)
1
4
7

In arriving at (3.36) we have evaluated χ±
m(λ), η±m(λ) at η = 0 since the final result is

independent of the point in AdS2 where we evaluate it.

The expansion of Kf
S2(s; 0) and Kf

AdS2
(s; 0) for small s can be found in the same way

as for Ks
S2 and Ks

AdS2
. We get

Kf
AdS2

(0; s) = − 1

2πa2 s̄

[
1 +

∞∑

n=0

(−1)n

n!
(2n+ 1)!

s̄n+1

π2n+2

1

22n
ζ(2n+ 2)

]

= − 1

2πa2 s̄

(
1 +

1

6
s̄− 1

60
s̄2 + O(s̄3)

)
, (3.37)

and

Ks
S2(0; s) = − 1

2πa2 s̄

[
1 −

∞∑

n=0

1

n!
(2n + 1)!

s̄n+1

π2n+2

1

22n
ζ(2n+ 2)

]

= − 1

2πa2 s̄

(
1 − 1

6
s̄− 1

60
s̄2 + O(s̄3)

)
. (3.38)

Now suppose that ψ1 denotes an eigenstate of 6DS2 with eigenvalue iκ̃1 and ψ2 denotes

an eigenstate of 6DAdS2 with eigenvalue iκ̃2:

6DS2ψ1 = iκ̃1 ψ1, 6DAdS2ψ2 = iκ̃2 ψ2. (3.39)

Since σ3 anti-commutes with 6DS2 and commutes with 6DAdS2 , we have, using (3.25),

6DAdS2×S2 ψ1 ⊗ ψ2 = iκ̃1ψ1 ⊗ ψ2 + iκ̃2σ3 ψ1 ⊗ ψ2 ,

6DAdS2×S2 σ3 ψ1 ⊗ ψ2 = iκ̃2 ψ1 ⊗ ψ2 − iκ̃1σ3 ψ1 ⊗ ψ2 .

(3.40)

Diagonalizing the 2 × 2 matrix we see that 6DAdS2×S2 has eigenvalues ±i
√
κ̃2

1 + κ̃2
2. Thus

the square of the eigenvalue of 6DAdS2×S2 is given by the sum of squares of the eigenvalues

of 6DAdS2 and 6DS2 . This in turn gives

Kf
AdS2×S2 = −Kf

AdS2
Kf
S2 , (3.41)

where the minus sign again accounts for the fact that the fermionic integration produces a

factor of the determinant instead of the inverse of the determinant. Using (3.37) and (3.38)

we get

Kf
AdS2×S2 = − 1

4π2a4 s̄2

(
1 − 11

180
s̄2 +O(s̄3)

)
. (3.42)

The s independent term in this expression is in agreement with the results of [100].

4 Effect of graviphoton background in N = 4 supersymmetric string

theory

Quarter BPS black holes in N = 4 supersymmetric string theories, obtained by compacti-

fying heterotic string theory on T 6 or equivalently type II string theory on K3× T 2, have

near horizon AdS2 ×S2 geometry. The background is also accompanied by flux of electro-

magnetic fields along AdS2 and S2. The presence of this flux modifies the kinetic terms

of various fields around this background, and hence also the associated heat kernels. In

this section we shall compute the modification of the kinetic term of various fields due to

these fluxes.
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4.1 Four dimensional N = 4 supergravity from ten dimensional N = 1 super-

gravity

We shall begin by reviewing the dimensional reduction of the ten dimensional supergravity

action on T 6 leading to the four dimensional N = 4 supergravity action.13 The action of

N = 1 supergravity in ten dimensions coupled to 16 Maxwell fields is given by [110]:

1

(2π)6(α′)4

∫
d10z

√
detG(10) e−2Φ(10)

[
R(10) +

1

4
G(10)MN∂MΦ(10)∂NΦ(10)

− 1

12
H

(10)
MNPH

(10)MNP − 1

4
F

(10)I
MN F (10)IMN

−
{

1

2
ψ̄

(10)
M ΓMNPDNψ

(10)
P +

1

2
Λ̄ΓMDMΛ +

1

2
Σ̄IΓMDMΣI

− 1

48
Σ̄IΓMNPΣIH

(10)
MNP +

1

2
√

2
Σ̄IΓMΓNP

(
ψ

(10)
M +

1

6
√

2
ΓMΛ

)
F

(10)I
NP

− 1

48

(
ψ̄

(10)
M ΓMNPQRψ

(10)
R + 6ψ̄(10)NΓPψ(10)Q −

√
2ψ̄

(10)
M ΓNPQΓMΛ

)
H

(10)
NPQ

}]

+ · · · . (4.1)

Here G
(10)
MN , B

(10)
MN , A

(10)I
M , and Φ(10) are ten dimensional metric, anti-symmetric tensor field,

U(1) gauge fields and the scalar dilaton field respectively (0 ≤M,N ≤ 9, 1 ≤ I ≤ 16), ψ
(10)
M

denotes a left-handed Majorana-Weyl gravitino field, Λ is a right-handed Majorana-Weyl

spinor field and ΣI are left-handed Majorana-Weyl spinor fields in the gauge multiplet.

· · · denotes terms containing fermion bilinears multiplied by derivatives of the dilaton or

terms quartic in the fermions, and

F
(10)I
MN = ∂MA

(10)I
N − ∂NA

(10)I
M

H
(10)
MNP =

(
∂MB

(10)
NP − 1

2
A

(10)I
M F

(10)I
NP

)
+ cyclic permutations in M , N , P , (4.2)

DMψ
(10)
P = ∂Mψ

(10)
P −

{
N

M P

}
ψ

(10)
N +

1

4
ωABM ΓABψ

(10)
P ,

DM

(
ΣI

Λ

)
=

(
∂M +

1

4
ωABM ΓAB

)(
ΣI

Λ

)
,

ωABM = −G(10)NP e BN ∂Me
A
P + e A

N e BP G(10)PQ

{
N

Q M

}
,

{
M

N P

}
=

1

2
G(10)MR

(
∂NG

(10)
PR + ∂PG

(10)
NR − ∂RG

(10)
NP

)
, (4.3)

the e A
M being the vielbeins. ΓA’s are the 32×32 SO(10) gamma matrices, ΓAB ≡ (ΓAΓB−

ΓBΓA)/2, and

ψ̄
(10)
M ≡ ψ

(10)T
M C, Λ̄ ≡ ΛT C, Σ̄I ≡ ΣIT C , (4.4)

13We could have directly began with the N = 4 supergravity action in four dimensions given in (4.20).

However for dealing with the fermions we have found it more convenient to use the ten dimensional de-

scription.
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where T denotes transpose and C is the SO(10) charge conjugation matrix satisfying

(CΓA)T = CΓA . (4.5)

We can use the vielbeins to convert the tangent space indices to coordinate indices and

vice versa. We shall use the same symbol Γ for labelling the gamma matrices carrying

coordinate indices. Our choice for the ten dimensional gamma matrices and the charge

conjugation matrix will be as follows:

Γ0 = −σ3 ⊗ τ2 ⊗ I8, Γ1 = σ3 ⊗ τ1 ⊗ I8, Γ2 = −σ2 ⊗ I2 ⊗ I8, Γ3 = σ1 ⊗ I2 ⊗ I8,

Γp = σ3 ⊗ τ3 ⊗ Γ̂p , C = σ2 ⊗ τ1 ⊗ Ĉ, 4 ≤ p ≤ 9 , (4.6)

where Γ̂p are 8 × 8 SO(6) gamma matrices and Ĉ is the SO(6) charge conjugation matrix

satisfying

{Γ̂p, Γ̂q} = 2δpq, (ĈΓ̂p)T = −ĈΓ̂p, ĈT = Ĉ . (4.7)

The spinors are taken to be 32 component, and the Weyl condition is imposed by setting

to zero half of these components. Finally note that in ten euclidean dimensions we cannot

impose Majorana-Weyl condition and hence must formally allow the spinors to be complex.

However we shall continue to use (4.4) as the definition of the barred fields. As a result

the action will not be real.

The supersymmetry transformation laws of various fields can be found in the standard

literature (see e.g. [110]). We shall only need to know the supersymmetry transformation

laws of ψ
(10)
M and Λ. In the background where all scalar fields are constants this has the

form:

δψ
(10)
M = DMη +

1

96

(
Γ NPQ
M − 9δNMΓPQ

)
HNPQ η , δΛ =

1

24
√

2
ΓMNPHMNP η , (4.8)

where η is the supersymmetry transformation parameter.

For dimensional reduction, it is convenient to introduce the ‘four dimensional fields’

Ĝāb̄, B̂āb̄, Â
I
ā, Φ, Aiµ, Gµν and Bµν for 4 ≤ ā, b̄ ≤ 9, 0 ≤ µ, ν ≤ 3, 1 ≤ I ≤ 16 and 1 ≤ i ≤ 28

through the relations [111, 112]

Ĝāb̄ = G
(10)

āb̄
, B̂āb̄ = B

(10)

āb̄
, ÂIā = A

(10)I
ā ,

Aā−3
µ =

1

2
Ĝāb̄G

(10)

b̄µ
, AI+12

µ = −
(

1

2
A(10)I
µ − ÂIb̄A

b̄−3
µ

)
,

Aā+3
µ =

1

2
B

(10)
āµ − B̂āb̄A

b̄−3
µ +

1

2
ÂIāA

I+12
µ ,

Gµν = G(10)
µν −G

(10)
āµ G

(10)

b̄ν
Ĝāb̄,

Bµν = B(10)
µν − 4B̂āb̄A

ā−3
µ Ab̄−3

ν − 2(Aā−3
µ Aā+3

ν −Aā−3
ν Aā+3

µ ),

Φ = Φ(10) − 1

4
ln det Ĝ,

ψ̂ā = ψ
(10)
ā , ψ̃µ = ψ(10)

µ − 2 ψ̂āA
ā−3
µ . (4.9)
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Here Ĝāb̄ denotes the inverse of the matrix Ĝāb̄. We have not displayed the spinor indices

explicitly; it is enough to note that under this dimensional reduction the spinor representa-

tion of the ten dimensional rotation group splits into a product of a spinor representation of

the four dimensional rotation group and a spinor representation of the SO(6) R-symmetry

group. We now combine the scalar fields Ĝāb̄, B̂āb̄, and ÂIā into an O(6, 22) matrix valued

scalar field M . For this we regard Ĝāb̄, B̂āb̄ and ÂIā as 6 × 6, 6 × 6, and 6 × 16 matrices

respectively, Ĉāb̄ = 1
2Â

I
āÂ

I
b̄

as a 6 × 6 matrix, and define M to be the 28 × 28 dimensional

matrix

M =




Ĝ−1 Ĝ−1(B̂ + Ĉ) Ĝ−1Â

(−B̂ + Ĉ)Ĝ−1 (Ĝ− B̂ + Ĉ)Ĝ−1(Ĝ+ B̂ + Ĉ) (Ĝ− B̂ + Ĉ)Ĝ−1Â

ÂT Ĝ−1 ÂĜ−1(Ĝ+ B̂ + Ĉ) I16 + ÂT Ĝ−1Â


 . (4.10)

M satisfies

MLMT = L, MT = M, L =




0 I6 0

I6 0 0

0 0 −I16


 , (4.11)

where In denotes the n× n identity matrix.

The effective action that governs the dynamics of the massless fields in the four di-

mensional theory is obtained by substituting the expressions for the ten dimensional fields

in terms of the four dimensional fields in eq. (4.1), and taking all field configurations to be

independent of the internal coordinates. The result is

S =
1

2πα′

∫
d4x

√
detGe−2Φ

[
RG + 4Gµν∂µΦ∂νΦ − 1

12
Gµµ

′

Gνν
′

Gρρ
′

HµνρHµ′ν′ρ′

−Gµµ′Gνν′F iµν(LML)ijF
j
µ′ν′ +

1

8
GµνTr(∂µML∂νML)

]
+ Sf (4.12)

where Sf denotes the fermionic terms, RG is the scalar curvature associated with the four

dimensional metric Gµν , and

F iµν = ∂µA
i
ν − ∂νA

i
µ

Hµνρ = (∂µBνρ + 2AiµLijF
j
νρ) + cyclic permutations of µ, ν, ρ . (4.13)

In deriving this result we have taken
∫
d6y = (2π

√
α′)6, where ym (1 ≤ m ≤ 6) denote

the coordinates labeling the six dimensional torus. Note that we have not written down

the fermionic terms explicitly. Instead of writing the four dimensional action involving the

fermions we shall find it more convenient to evaluate the quadratic term in the fermions

in the black hole background by directly using the ten dimensional action (4.1).

For our analysis it will be convenient to use a new set of field variables which are

related to the ones described above by a rotation in the internal space. We define

U =



I6/

√
2 I6/

√
2

−I6/
√

2 I6/
√

2

I16


 , (4.14)
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and

Āiµ = UijA
j
µ, M̄ = UMU−1, L̄ = ULU−1 =

(
I6

−I22

)
, F̄ iµν = UijF

j
µν ,

(4.15)

so that

M̄L̄M̄T = L̄, M̄T = M̄ . (4.16)

In these new variables the action takes the form:

S =
1

2πα′

∫
d4x

√
detGe−2Φ

[
RG + 4Gµν∂µΦ∂νΦ − 1

12
Gµµ

′

Gνν
′

Gρρ
′

HµνρHµ′ν′ρ′

−Gµµ′Gνν′F̄ iµν(L̄M̄L̄)ijF̄
j
µ′ν′ +

1

8
GµνTr(∂µM̄L̄∂νM̄L̄)

]
+ Sf , (4.17)

Hµνρ = (∂µBνρ + 2ĀiµL̄ijF̄
j
νρ) + cyclic permutations of µ, ν, ρ, (4.18)

Finally we can arrive at a simpler version of the action by dualizing the 3-form field via

the relation

Hµνρ = −i (
√

detG)−1e2Φǫµνρσ∂σΨ , (4.19)

where Ψ is a scalar field. The new action is then given by

S =
1

2πα′

∫
d4x

√
detGe−2Φ

[
RG + 4Gµν∂µΦ∂νΦ − 1

2
e4ΦGµν∂νΨ∂µΨ

−Gµµ′Gνν′F̄ iµν(L̄M̄L̄)ijF̄
j
µ′ν′ + Ψ e2ΦGµµ

′

Gνν
′

F̄ iµν L̄ij
˜̄F
j

µ′ν′

+
1

8
GµνTr(∂µM̄L̄∂νM̄L̄)

]
+ Sf , (4.20)

˜̄F
iµν

≡ i

2

(√
detG

)−1
ǫµνρσF̄ iρσ . (4.21)

4.2 The quadratic action for the fluctuations around the attractor geometry

We shall consider black holes carrying (electric,magnetic) charge vectors14

Q̄ =




Q0

0

·
·
·
0




, P̄ =




0

P0

·
·
·
0




. (4.22)

14While this is a very specific choice of the charges, and pair of charges (Q̄, P̄ ), satisfying Q̄2
≡ Q̄T L̄Q̄ > 0,

P̄ 2 > 0 and Q̄2P̄ 2 > (Q̄ · P̄ )2, can be brought to this form with the help of a continuous SL(2, R)×O(6, 22)

transformation which is a symmetry of the supergravity equations of motion. Thus the final result of our

analysis holds for any (Q̄, P̄ ) satisfying Q̄2 > 0, P̄ 2 > 0, Q̄2P̄ 2 > (Q̄ · P̄ )2, — conditions under which a

supersymmetric black hole solution exists.
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Then in an appropriate normalization convention the near horizon geometry is given by [29]:

ds2 = a2
(
dη2 + sinh2 η dθ2

)
+ a2(dψ2 + sin2 ψ dφ2) , a2 =

α′

8
P 2

0 , e−2Φ =
Q0

P0
, M̄ = I28,

F̄ iηθ = −i
√
α′

4
sinh η

P0

Q0
Q̄i, F̄ iψφ =

√
α′

4
P̄i sinψ , Hµνρ = 0 . (4.23)

We shall make the choice of vierbeins given in (3.23) and denote the indices labelling the coordinates

of S2 by α, β, · · · , the indices labelling the coordinates of AdS2 by m,n, · · · and the indices labelling

all the four cordinates by µ, ν, · · · .
We shall study quadratic fluctuations of various fields around the background (4.23). Let us

denote the background values of various fields given in (4.23) by the superscript (0). We parametrize

the bosonic fluctuations as follows:

Φ = Φ(0) +
1

2
χ2, Gµν = eχ2

{
G(0)
µν + hµν

}
, Ψ =

Q0

P0
χ1, Āiµ = Āi(0)µ +

1

2
A(i)
µ . (4.24)

Special care is taken to parametrize M̄ since it is a constrained field. A parametrization satisfy-

ing (4.16) to quadratic order in the fluctuations is as follows:

M̄ar = M̄ra =
√

2φar, M̄ab = δab + φarφbr, M̄rs = δrs +φarφas, 1 ≤ a, b ≤ 6, 7 ≤ r, s ≤ 28 .

(4.25)

We also need to add to the action the gauge fixing term:

1

2πα′

Q0

P0

∫
d4x

√
detG(0) Lgf ,

Lgf = −1

2
gρσ

(
Dµhµρ −

1

2
Dρ h

µ
µ

)(
Dν hνσ − 1

2
Dσh

ν
ν

)
− 1

2
DµA(i)

µ DνA(i)
ν , (4.26)

where all covariant derivatives and raising of lowering of indices are computed with the background

AdS2 × S2 metric. Substituting (4.24), (4.25) into (4.20), adding to it (4.26) and expanding it to

quadratic order in the fluctuations we get

S = S(0) +
1

2πα′

Q0

P0

∫
d4x

√
detG(0) [Lstandard + Lflux] + Sf . (4.27)

Here Lstandard is the standard gauge fixed action for various free quantum fields in the AdS2 × S2

background metric:

Lstandard = −1

4
hµν

(
∆̃h
)µν

+
1

2
χ1 �χ1 +

1

2
χ2 �χ2 +

1

2

6∑

a=1

A(a)
µ (G(0)µν

� −Rµν)A(a)
ν

+
1

2

28∑

r=7

A(r)
µ (G(0)µν

� −Rµν)A(r)
ν +

1

2

6∑

a=1

28∑

r=7

φar �φar , (4.28)

where,

(
∆̃h
)

µν
= −�hµν −Rµτh

τ
ν −Rντh

τ
µ − 2Rµρντh

ρτ +
1

2
G(0)
µν G

(0)ρσ
� hρσ

+Rhµν + (gµνR
ρσ +Rµνg

ρσ)hρσ − 1

2
Rgµν g

ρσ hρσ . (4.29)

Here all indices are lowered and raised by the background metric G
(0)
µν and its inverse, and Rµνρσ ,

Rµν and R are calculated with the metric G
(0)
µν . Lflux denotes the extra terms due to background
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flux:

Lflux = 2 a−1 φ2r ε
γβ∂γA(r)

β − a−2 φ2r φ2r − 2i a−1 φ1r ε
mn∂mA(r)

n + a−2 φ1r φ1r

+
1

2
a−2

(
hmnhmn − hαβhαβ + 2χ2 (hmm − hαα)

)
+

√
2

a

[
iεmn f (1)

αmh
α
n + εαβ f (2)

αmh
m
β

]

+
1

2
√

2 a

[
iεmnf (1)

mn

(
−2χ2 + hγγ − hpp

)
− εαβf

(2)
αβ

(
−2χ2 + hpp − hγγ

)]

+
1

a
√

2
χ1

(
iεmnf (2)

mn + εαβf
(1)
αβ

)

f (i)
µν ≡ ∂µA(i)

ν − ∂νA(i)
µ . (4.30)

Here εαβ and εmn are the invariant antisymmetric tensors on S2 and AdS2 respectively, computed

with the background metric G
(0)
µν :

εψφ = a2 sinψ, εηθ = a2 sinh η . (4.31)

Lstandard is what was used in section 3 for computing the heat kernel of various fields; so our main

goal will be to compute the effect of Lflux on the heat kernels.

Note that both Lstandard and Lflux have an SO(22) symmetry acting on the index r. This is

a remnant of the SO(6, 22) continuous duality symmetry of the original supergravity action (4.17)

of which an SO(4, 22) subgroup survives in the background (4.23). The gauge fixing term (4.26)

also respects this symmetry. The various fluctuations transform either as a singlet or a vector of

SO(22). We shall call the singlets of SO(22) fields in the gravity multiplet and the vectors of SO(22)

fields in the matter multiplet. Clearly we can analyze separately the heat kernels from fields in the

matter multiplet and the gravity multiplet since they will not mix at the quadratic level. In this

paper we shall focus on the contribution from the matter multiplets only.

To this action we must also add the action for the ghosts associated with diffeomorphism and

U(1) gauge invariances. Let us denote by bµ and cµ the ghosts associated with diffeomorphism

invariance, by b(i) and c(i) the ghosts associated with the U(1) gauge invariances, and by

Fµ ≡ Dρhµρ −
1

2
Dµh

ρ
ρ, F (i) ≡ DρA(i)

ρ (4.32)

the gauge fixing terms for the diffeomorphism and U(1) gauge invariances. Then by standard rules

the ghost lagrangian density will be given by

bµδFµ + +b(i)δF (i) , (4.33)

where δ denotes the variation under a diffeomorphism transformation with parameter cν and gauge

transformations with parameters c(i). In the attractor geometry given in (4.23) we have

δhµν = Dµcν +Dνcµ + · · · , δA(i)
µ = Dµc

(i) − 2 F̄ iµνc
ν + 2Dµ(Ā

(i)
ρ cρ) + · · · , (4.34)

where Dµ denotes covariant derivative computed using the background metric of the attractor

geometry, Ā
(i)
µ is the background gauge field (note the normalization factor of 2 between the back-

ground and fluctuations given in (4.24)) and · · · denotes terms higher order in the fluctuations.

Using (4.32)–(4.34), and the fact that the background geometry satisfies DµF̄ iµν = 0, we see that

the quadratic part of the ghost action is given by

bµ (gµν� +Rµν) c
ν + b(i)�c(i) − 2 b(i)F̄ iµν D

µcν + 2 b(i) � (Āiρc
ρ) (4.35)

The last term can be removed by a field redefinition c(i) → c(i) − 2 Āiρc
ρ. This yields a simpler

version of the ghost lagrangian density:

Lghost ∝
[
bµ (gµν� +Rµν) c

ν + b(i)�c(i) − 2 b(i)F̄ iµν D
µcν
]
. (4.36)
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Note that the ghosts (b(i), c(i)) for i = 7, · · · 28 are SO(22) vectors and the rest of the ghosts are

SO(22) singlets. As in the case of matter fields, we shall analyze the contribution from SO(22)

vector ghosts only.

Finally let us turn to the fermionic terms in the action. In order to simplify the structure of

the action we need to carry out a set of field redefinitions. We define

ψµ = ψ̃µ +
1

2
Γµ Γāψ̂ā ,

λ =
1

2

(
Λ +

√
2 Γāψ̂ā

)
,

ϕā+3 = ψ̂ā −
1

2
√

2
ΓāΛ,

ϕI+12 = ΣI , 0 ≤ µ, ν ≤ 3, 4 ≤ ā, b̄ ≤ 9, 1 ≤ I ≤ 16 , (4.37)

where ψ̂ā and ψ̃µ have been defined in (4.9). Then the quadratic terms in the fermionic action,

evaluated in the background (4.23), takes the form

Sf =
1

2πα′

Q0

P0

∫
d4x

√
detG(0) Lf , (4.38)

where

Lf = −1

2

[
28∑

r=7

ϕ̄r

{
ΓµDµ +

1

2
√

2
Γρσ

(
F̄ 1
ρσΓ

4 + F̄ 2
ρσΓ

5
)}

ϕr

+ψ̄µΓ
µνρDνψρ + λ̄ΓµDµλ

+
1

4
√

2
ψ̄µ [−Γµνρσ + 2gµσgνρ + 2ΓµρνΓσ + ΓµνΓρσ]

(
F̄ 1
ρσΓ4 + F̄ 2

ρσΓ5
)
ψν

+
1

4

[
ψ̄µΓ

ρσΓµ
(
F̄ 1
ρσΓ

4 + F̄ 2
ρσΓ5

)
λ− λ̄

(
F̄ 1
ρσΓ

4 + F̄ 2
ρσΓ5

)
ΓµΓρσψµ

]
]
. (4.39)

To this we add the gauge fixing term

1

2πα′

Q0

P0

∫
d4x

√
detG(0) L′

gf , (4.40)

where

L′

gf =
1

4
ψ̄µΓ

µΓνDνΓ
ρψρ . (4.41)

The structure of the ghost action can be determined as follows. Since the gauge fixing term

is Γµψµ, the lagrangian density for the spinor valued bosonic ghost fields b̃, c̃ is proportional to
¯̃bΓµδψµ, where δψµ is the variation of ψµ under the supersymmetry transformation with parameter

c̃. Using the supersymmetry transformation laws of the ten dimensional fields given in (4.8), and

the relations between the ten and the four dimensional fields given in (4.37), we find that in the

near horizon background (4.23),

δψµ = Dµc̃+
1

4
√

2

(
4δρµΓ

σ − ΓµΓ
ρσ
) (
F̄ (1)
ρσ Γ4 + F̄ (2)

ρσ Γ5
)
c̃+ · · ·

δλ = −1

4
Γρσ

(
F̄ (1)
ρσ Γ4 + F̄ (2)

ρσ Γ5
)
c̃ . (4.42)

where · · · denotes terms which vanish in the background (4.23). Thus

Γµδψµ = ΓµDµc̃ , (4.43)
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and the ghost lagrangian density is proportional to

Lf ;ghost ∝ ¯̃
bΓµDµc̃ . (4.44)

Quantization of the gravitino also requires the introduction of a third spin 1/2 bosonic ghost field.

This comes from the special nature of the gauge fixing term given in (4.41); to get this term we first

insert into the path integral the gauge fixing term δ(Γµψµ − ξ(x)) for some arbitrary space-time

dependent spinor f(x); and then average over all ξ(x) with a weight factor of exp(−ξ̄ 6Dξ). The

integration over ξ introduces an extra factor of det 6D which needs to be canceled by an additional

spin half bosonic ghost with the standard kinetic operator proportional to 6D. Denoting the new

ghost field by ẽ we get the additional ghost action to be

L′

f ;ghost ∝ ¯̃eΓµDµẽ . (4.45)

In the fermionic sector only the fields ϕr, ϕ̄r are SO(22) vectors. Rest of the fields including all

the ghosts are SO(22) singlets. As before we shall analyze the contribution to the one loop effective

action from SO(22) vector fields only.

5 Eigenvalues, heat kernel and one loop effective action in the matter

sector

In this section we shall compute the eigenvalues and eigenfunctions of the kinetic operator in the

matter sector and use it to calculate the logarithmic correction to the extremal black hole entropy.

The SO(22) symmetry guarantees that at the quadratic level there is no mixing between fields

carrying different r values, so we can analyze one r value at a time.

We first focus on the bosonic fields. From the structure of the action we see that the fields φar
for 3 ≤ a ≤ 6 do not enter Lflux; so their heat kernel is given by the standard heat kernel of scalar

fields computed with Lstandard+Lgf . The field φ2r mixes with the component of A(r) along S2 and

the field φ1r mixes with the component of A(r) along AdS2. Thus we can separately analyze these

two cases. This reduces the problem to that of a mixing between a single scalar and a vector field.

First we shall consider the mixing between φ2r and the component of A(r) along S2. To avoid

proliferation of indices we drop the SO(22) and SO(6) indices on the fields, define gαβ ≡ G
(0)
αβ and

express the relevent quadratic term in the action as

− 1

2

∫ √
det g

[(
φ Aα

)( −� + 2 a−2 −2 a−1εγβDγ

−2 a−1εαγDγ −gαβ� +Rαβ +DαDβ

)(
φ

Aβ

)
−AαD

αDβAβ

]
, (5.1)

up to an overall multiplicative factor. The last term is the gauge fixing term. In order to construct

the heat kernel of the combined system of the scalar and the gauge fields we need to find the

eigenstates of the kinetic operator appearing in (5.1). For this we first decompose the gauge field

as

Aα = Dαψ + ε βα Dβχ , (5.2)

where ψ and χ are scalars on S2. Substituting this into (5.1) we get

−1

2

∫ √
det g

[ (
φ ε α′α Dα′χ

)( −� + 2 a−2 −2 a−1εγβDγ

−2 a−1εαγDγ −gαβ� +Rαβ +DαDβ

)(
φ

ε β′β Dβ′χ

)

−DαψD
αDβDβψ

]
. (5.3)
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Note that the part of Aα involving ψ does not contribute to the first term and the part of Aα

involving χ does not contribute to the second term. We now decompose φ, ψ and χ as

φ =
∑

n

anfn(x), χ =
∑

n

1√
κn
bnfn(x), ψ =

∑

n

1√
κn
cnfn(x), (5.4)

where {fn} is an orthonormal basis of eigenfunctions of the scalar −� operator with eigenvalues

{κn}. Substituting this into (5.3) we get

− 1

2

∑

n

[(
an bn

)( κn + 2a−2 −2a−1√κn
−2a−1√κn κn

)(
an
bn

)
+ κncncn

]
. (5.5)

This shows that the eigenvalues of the modes labelled by cn are not affected by the mixing with

the scalars. On the other hand the eigenvalues of the modes labelled by an, bn change from κn to

κn + a−2 ± a−1
√

4κn + a−2 , (5.6)

for κn > 0. For κn = l(l + 1)a−2 with l > 0 this gives the eigenvalues

(l − 1)la−2, (l + 1)(l + 2)a−2 . (5.7)

Thus for each pair of modes with l > 0, one has its l value shifted by +1 and one has its l value

shifted by −1. Finally for l = 0 there are no modes from bn, and the eigenvalue of the mode an
shifts from 0 in the absence of flux to 2a−2. This effectively causes a shift of the l = 0 eigenvalue to

l = 1 eigenvalue. Thus the net additional contribution to the trace of the heat kernel on S2 from

the scalar and the gauge field is given by

δKv+s
S2 =

1

4πa2

[
∞∑

l=0

(2l+ 1)
{
e−s(l+1)(l+2)/a2 − e−sl(l+1)/a2

}

+

∞∑

l=1

(2l + 1)
{
e−s(l−1)l/a2 − e−sl(l+1)/a2

}]
, (5.8)

where the l = 0 term in the first sum takes into account the shift of the scalar mode with l = 0 to

l = 1. We now break this as a sum of four different sums and shift l → l ∓ 1 in the first and the

third terms. This gives

δKv+s
S2 =

1

4πa2

[
∞∑

l=1

(2l− 1) e−sl(l+1)/a2 −
∞∑

l=0

(2l + 1) e−sl(l+1)/a2

+

∞∑

l=0

(2l + 3) e−sl(l+1)/a2 −
∞∑

l=1

(2l+ 1) e−sl(l+1)/a2

]

=
1

2πa2
. (5.9)

Thus the net contribution to the heat kernel from a vector on S2 and the scalar on S2 with which

the vector mixes is given by

Kv+s
S2 = Kv

S2 +Ks
S2 +

1

2πa2
= 3Ks

S2 , (5.10)

where in the last step we have used (3.10).

A similar analysis can be done for the mixing between φ1r and the component of the vector

field A(r) along AdS2. The main difference between the S2 and the AdS2 case is that for AdS2 the

mixing term (5.1) is replaced by

− 1

2

∫ √
det g

[(
φ Am

)( −� − 2 a−2 2 i a−1εpnDp

2 i a−1εmpDp −gmn� +Rmn +DmDn

)(
φ

An

)
−AmD

mDnAn

]
.

(5.11)
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One can now analyze its effect on the eigenvalues of the kinetic operator exactly as in the case of

S2. The final outcome of this analysis is that if we denote the eigenvalue of (dδ + δd) on a vector

field of the form ε pn Dpχ or a scalar field on AdS2 by κ ≡
(
λ2 + 1

4

)
/a2, then acting on fields φ and

An carrying this eigenvalue the kinetic operator coming from the first term takes the form:
(
κ− 2a−2 2i

√
κa−1

2i
√
κa−1 κ

)
. (5.12)

Although this matrix is complex, it is diagonalizable with a (complex) orthogonal matrix and gives

eigenvalues

a−2

[
(λ± i)2 +

1

4

]
. (5.13)

Thus the mixing between the scalar and the vector on AdS2 shifts the parameter λ by i for one

set of states and −i for another set of states. The kinetic operator in the second term of (5.11)

continues to have the eigenvalue
(
λ2 + 1

4

)
/a2 on fields of the form Dnψ. As a result the net change

in the heat kernel of the scalar and the vector on AdS2 is given by15

δKv+s
AdS2

=
1

2πa2
exp[−s̄/4]

∫
∞

0

dλλ tanh(πλ)
[
e−s̄(λ+i)2 + e−s̄(λ−i)

2 − 2 e−s̄λ
2
]
. (5.14)

We now shift the integration variable λ→ λ∓ i in the first two terms and express this as

δKv+s
AdS2

=
1

2πa2
exp[−s̄/4]

[∫ i+∞

i

dλ (λ − i) tanh(πλ − iπ)e−s̄λ
2

+

∫ −i+∞

−i

dλ (λ + i) tanh(πλ+ iπ)e−s̄λ
2 − 2

∫ ∞

0

dλλ tanh(πλ) e−s̄λ
2

]
. (5.15)

Using tanh(x ± iπ) = tanhx and the fact that the integrands in (5.15) do not have any poles for

Re(λ) > 0, we can deform the integration contour in the first integral as a contour from i to 0 lying

in the Re(λ) > 0 region and a contour from 0 to ∞ along the real axis. Similarly the integration

contour in the second integral can be deformed to a contour from −i to 0 lying in the Re(λ) > 0

region and a contour from 0 to ∞ along the real axis. The total contribution from the contours

from 0 to ∞ cancel the last term in (5.15), and we get

δKv+s
AdS2

=
1

2πa2
exp[−s̄/4]

[∫ 0(+)

i

dλ (λ − i) tanh(πλ)e−s̄λ
2

+

∫ 0(+)

−i

dλ (λ + i) tanh(πλ)e−s̄λ
2

]
,

(5.16)

where the superscript (+) denotes that we are integrating along a contour in the Re(λ) > 0 region.

Making a change of variables λ→ −λ in the second term we get

δKv+s
AdS2

=
1

2πa2
exp[−s̄/4]

[∫ 0(+)

i

dλ (λ− i) tanh(πλ)e−s̄λ
2 −

∫ 0(−)

i

dλ (λ − i) tanh(πλ)e−s̄λ
2

]
.

(5.17)

15Note that as λ → 0 the integrand grows as exp(3s̄/4). Thus the eigenvalues of the kinetic operator

are negative and the path integral is not well defined, reflected in the fact that the integration over s will

diverge for large s if we try to carry out the integration over s first for a fixed λ. Physically this divergence is

a consequence of the imaginary background electric field in the euclidean AdS2 space. However as we shall

see, if we carry out the integration over λ first then there is a cancelation and the exponentially divergent

contribution in the large s limit is removed. This procedure is consistent with the rules for computing loop

amplitudes in string theory, where the integration over the modular parameter (the analog of s) is carried

out at the end, after we have integrated / summed over the eigenvalues of the kinetic operator. Presumably

at the level of the path integral this corresponds to deforming the path integration contour to the complex

configuration space where the path integral is well defined, as e.g. in [113]. Further justification of this

procedure can be found in appendix A.

– 29 –



J
H
E
P
0
3
(
2
0
1
1
)
1
4
7

We now have a closed clockwise contour. The result of this contour integral can be easily evaluated

in terms of the residue at the pole at λ = i/2, and we get

δKv+s
AdS2

= − 1

2πa2
. (5.18)

Thus the net contribution to the trace of the heat kernel from a vector of AdS2 and the scalar on

AdS2 with which the vector mixes is given by

Kv+s
AdS2

= Kv
AdS2

+Ks
AdS2

− 1

2πa2
= 3Ks

AdS2
, (5.19)

where in the last step we have used (3.12).

We can now use these results to compute the net contribution to the heat kernel from the

bosonic fields of a matter multiplet on AdS2 × S2. First of all there are four scalars which do not

mix with the vector; their contribution will be given by 4Ks
AdS2

Ks
S2 . Then we have a vector of

S2 which mixes with one of the remaining scalars, giving a contribution Kv+s
S2 Ks

AdS2
with Kv+s

S2

given in (5.10). Next we have a vector along AdS2 that mixes with the remaining scalar and gives

a contribution Ks
S2K

v+s
AdS2

with Kv+s
AdS2

given in (5.19). Finally we have a pair of ghosts whose

contribution −2Ks
AdS2

Ks
S2 needs to be added. Thus the net contribution from the six scalars and

one vector of the matter multiplet is given by

Kv+6s
AdS2×S2(0; s) = 4Ks

AdS2
Ks
S2 +Ks

AdS2
Kv+s
S2 +Ks

S2Kv+s
AdS2

− 2Ks
AdS2

Ks
S2 = 8Ks

AdS2
(0; s)Ks

S2(0; s) .

(5.20)

Note that the small s expansion of this quantity (and a similar result for the trace of the fermionic

heat kernel given in (5.30)) could be computed using the heat kernel expansion discussed e.g.

in [87]. However (5.20) and (5.30) also has information about the large s behaviour. This is needed

to identify and subtract the zero mode contributions.

Let us now consider the effect of the background flux on the fermionic fields in the matter mul-

tiplet. These fields are the fields ϕr appearing in (4.39), and transform in the vector representation

of SO(22). From (4.23), (4.39), and the representations of the gamma matrices given in (4.6), we

see that the Dirac operator acting on the fermions takes the form16

6D = 6DS2 + σ3 6DAdS2
, (5.21)

where

6DS2 =6DS2 − i

2
a−1 Γ̂5 τ3, 6DAdS2

=6DAdS2
− 1

2
a−1 Γ̂4 . (5.22)

6DS2 and 6DAdS2
have been defined in (3.26), (3.27), and Γ̂4 and Γ̂5 are two of the six SO(6) gamma

matrices satisfying

{Γ̂i, Γ̂j} = 2 δij, [Γ̂i, σa] = 0 = [Γ̂i, τa], 1 ≤ a ≤ 3, 4 ≤ i, j ≤ 9 . (5.23)

16Although the original fermions are chiral — in the sense that their chirality property under the space-

time Lorentz group SO(4) is correlated with their chirality under the internal R-symmetry group SO(6)

— in order to compute the eigenvalue of the Dirac operator we shall ignore the chirality projection and

then take appropriate square root of the determinant. Since this doubles the number of fermionic degrees

of freedom, the action is not manifestly supersymmetric. We can avoid this by appropriately pairing the

fermions in the dimensionally reduced four dimensional theory to construct Dirac fermions without using any

additional fermionic degrees of freedom. Thus in this description we can maintain manifest supersymmetry.

This is essential if we make use of supersymmetry in evaluating the path integral; e.g. using localization

arguments [69]. However for the explicit computation of the one loop determinant the loss of manifest

supersymmetry of the action will not be a problem.
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One can easily check that 6DS2 and σ3 6DAdS2
anticommute. Hence 6D2 = 6D2

S2+ 6D2
AdS2

, the eigenvalues

of 6D2 are given by the sum of the eigenvalues of 6D2
S2 and 6D2

AdS2
, and the trace of the heat kernel

of 6D is given by −1 times the product of the traces of the heat kernels of 6DS2 and 6DAdS2
. Thus

we first need to find the eigenvalues of 6DS2 and 6DAdS2
. Since Γ̂5τ3 and Γ̂4σ3 each have eigenvalues

±1 and commute with 6DS2 and 6DAdS2
respectively, it follows from (5.22) that the eigenvalues of

6DS2 are given by the eigenvalues of 6DS2 ±ia−1/2, and the eigenvalues of 6DAdS2
are given by the

eigenvalues of 6DAdS2
±a−1/2, Using this result and eqs. (3.29), (3.35) we see that the eigenvalues

of 6DS2 are given by ±ia−1
(
l + 1 ± 1

2

)
and the eigenvalues of 6DAdS2

are given by ±ia−1
(
λ± i

2

)
. As

a result Kf
S2 defined in (3.33) changes to17

Kf ′
S2(0; s) = − 1

4πa2

∞∑

l=0

(2l+ 2)
[
e−s(l+

3

2
)2/a2

+ e−s(l+
1

2
)2/a2

]
, (5.24)

and Kf
AdS2

given in (3.36) is replaced by

Kf ′
AdS2

(0; s) = − 1

2πa2

∫
∞

0

dλ
[
e−s̄(λ+ i

2
)2 + e−s̄(λ−

i

2
)2
]
λ coth(πλ)

= − 1

2πa2

∫ i

2
+∞

i/2

dλ e−sλ
2/a2

(λ− i

2
) tanh(πλ)

− 1

2πa2

∫ −
i

2
+∞

−i/2

dλ e−sλ
2/a2

(λ+
i

2
) tanh(πλ),

(5.25)

where in the second step we have shifted λ → λ − i
2 in the first term and λ → λ + i

2 in the

second term.

Changing l → l − 1 in the first term in (5.24) and defining s̄ = s/a2 we get

Kf ′
S2(0; s) = − 1

4πa2
e−s̄/4

∞∑

l=0

e−s̄l(l+1)(2l + 2l+ 2) = − 1

2πa2
e−s̄/4

∞∑

l=0

e−s̄l(l+1)(2l + 1) . (5.26)

On the other hand in (5.25) we deform the first integration contour to over the range i/2 to 0 and

0 to ∞ and the second integration contour to over the range −i/2 to 0 and 0 to ∞. This gives

Kf ′
AdS2

(0; s) = − 1

2πa2

∫ 0(+)

i/2

dλ e−sλ
2/a2

(λ − i

2
) tanh(πλ)

− 1

2πa2

∫ 0(+)

−i/2

dλ e−sλ
2/a2

(λ +
i

2
) tanh(πλ)

− 1

πa2

∫
∞

0

dλ e−sλ
2/a2

λ tanh(πλ) . (5.27)

As before the superscript (+) denotes that the contour lies in the Re(λ) > 0 region. Changing

λ→ −λ in the second integral gives

Kf ′
AdS2

(0; s) = − 1

2πa2

∫ 0(+)

i/2

dλ e−sλ
2/a2

(λ− i

2
) tanh(πλ)

+
1

2πa2

∫ 0(−)

i/2

dλ e−sλ
2/a2

(λ− i

2
) tanh(πλ)

− 1

πa2

∫
∞

0

dλ e−sλ
2/a2

λ tanh(πλ) . (5.28)

17We are giving the result for the heat kernel per Dirac fermion.
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We now note that the first and second integrals can be combined into a singe clockwise contour

and the result vanishes since the integrand does not have any singularity enclosed by the contour.

Thus we have

Kf ′
AdS2

(0; s) = − 1

πa2

∫
∞

0

dλ e−sλ
2/a2

λ tanh(πλ) . (5.29)

Combining this with (5.26) we get the net contribution to the effective heat kernel of a Dirac fermion

on AdS2 × S2 in the presence of background flux:

Kf ′(0; s) = −Kf ′
AdS2

(0; s)Kf ′
S2(0; s)

= − 1

2π2a4
e−s̄/4

∞∑

l=0

e−s̄l(l+1)(2l+ 1)

∫
∞

0

dλ e−s̄λ
2

λ tanh(πλ)

= −4Ks(0; s) , (5.30)

where Ks(0; s) = Ks
S2(0; s)Ks

AdS2
(0; s) is the heat kernel of a scalar on AdS2×S2 as given in (2.12).

Since a single matter multiplet contains four Weyl fermions, or equivalently two Dirac fermions,

the net contribution to the heat kernel from the fermions is given by −8Ks(0; s). This exactly

cancels the contribution (5.20), showing that the net contribution to the heat kernel from a matter

multiplet is zero.

Our result also shows that no subtraction of the type described in (3.15) is needed to regulate

the infrared divergences. Mathematically it is a consequence of an additional s independent constant

term that arose in the expression for δKv+s
AdS2

Ks
S2 . However physically this is somewhat surprising

given that the subtraction was needed to remove the contribution from the zero modes of the vector

fields on AdS2 × S2. In appendix A we have provided a justification of this procedure by carefully

analyzing the contribution from integration over these zero modes. We also note that since these

zero modes transform non-trivially under a simultaneous rotation in AdS2 and S2, the argument

of [69] shows that the contribution to the path integral due to these zero modes will cancel a similar

contribution from the fermion zero modes. Put another way, supersymmetry allows us add a term

to the action which does not change the result of the path integral but lifts the zero modes. Thus

it appears that the analytic continuation procedure we have adopted, namely doing the λ integral

first and then the s integral, automatically accounts for this cancelation. This clearly deserves

further study.

This concludes our analysis leading to the result that the matter multiplet fields of N = 4

supergravity do not give any logarithmic correction to the entropy of a quarter BPS black holes.

In fact since the heat kernel vanishes for all s, the full one loop contribution from the massless

matter multiplet vanishes.18 Since we have not computed the contribution due to the gravity

multiplet fields, our analysis does not produce the complete logarithmic correction to the entropy.

Nevertheless our result has non-trivial prediction for the entropy. For this recall that there is a

whole class of N = 4 supersymmetric string theories with different number of matter multiplet

fields [114, 115]. In these theories the quadratic action of fluctuating fields around the attractor

geometry will have exactly the same structure as discussed here except that the index r now runs

over a lower number of values than 22. Since the quadratic action of the gravity multiplet fields is

common to all these theories, the one loop contribution from these fields to the entropy will also

be identical. The vanishing of the contribution from the matter sector then implies that for all

the N = 4 supersymmetric theories the one loop contributions to the black hole entropy from the

masless fields are identical. In particular the logarithmic corrections to the entropy — which we

have argued earlier come only from the one loop contribution due to the massless fields — must also

18We do not rule out the possibility of a finite left-over contribution due to different ultra-violet cut-off

on different terms imposed by string theory.
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be identical. This is consistent with the microscopic result for the entropy of quarter BPS states

in a variety of N = 4 supersymmetric string theories. None of these theories have any logarithmic

correction to the entropy of quarter BPS black holes irrespective of the number of matter multiplets

they have [12, 13, 15].

6 Discussion

In this paper we have analyzed the eigenvalues and eigenfunctions associated with the fluctuations

of massless matter multiplet fields in the near horizon geometry of quarter BPS black holes in

N = 4 supersymmetric string theories. This allows us to calculate the one loop effective action

and the logarithmic correction to the Bekenstein-Hawking entropy due to the fields in the matter

multiplet. We find that even though individual fields contribute to the effective action and loga-

rithmic correction to the black hole entropy, the net contribution from all the fields in the matter

multiplet vanishes. This is consistent with the fact that there are no logarithmic corrections to the

microscopic entropy in N = 4 supersymmetric string theories. In particular since the logarithmic

contribution to the microscopic entropy vanishes independent of how many matter multiplet fields

we have in the theory, we would have run into an inconsistency if there had been a non-vanishing

logarithmic contribution from the matter multiplet fields to the macroscopic entropy.

Ref. [116] presented a general analysis, based on the computation of the trace anomaly, which

showed that the trace anomaly vanishes for on-shell backgrounds in N = 4 and N = 8 gauged

supergravity theories. Since the trace anomaly is related to the coefficient of the s independent

term in the expansion of K(0; s) via relations of the type described in (2.23), our result may appear

to be similar in spirit to those in [116]. However the analysis of [116], being a local analysis, does not

take into account the possible subtraction term given in (3.15) for removing the zero modes. Indeed,

the results of [116] would change if we had replaced some of the fields by their dual description, e.g.

the scalars by 2-form fields. Our analysis shows the vanishing of K(0; s) for all s and hence also the

regulated K̂(0; s) given in (3.15). Since K̂(0; s) remains unchanged when we replace a field by its

dual description, the vanishing of K̂(0; s) holds irrespective of the duality frame we use to describe

the fields.

One might naively conclude that the cancelation we have found is a result of supersymmetry.

However examining the microscopic results for the black hole entropy we find that while quarter

BPS black holes in N = 4 supersymmetric string theories have no logarithmic corrections to their

entropy, 1/8 BPS black holes in N = 8 supersymmetric string theories, having the same amount of

supersymmetry as the quarter BPS black holes in N = 4 supersymmetric string theories, do have

logarithmic corrections to their entropy. Thus the cancelation observed above cannot merely be a

consequence of supersymmetry. Nevertheless the vanishing of the matter multiplet contribution to

the logarithmic corrections is crucial for correct matching with the microscopic entropy of quarter

BPS black holes in N = 4 supersymetric string theories, which do not have any logarithmic terms

which depend on the number of matter multiplets.

It is clearly desirable to extend the computation to include the fields in the gravity multiplet,

both in the N = 4 and N = 8 supersymmetric string theories, and verify that the macroscopic

results are in agreement with the microscopic results given in (1.1). This can be done either by

the brute force approach of diagonalizing the fluctuations in the gravity multiplet fields in the near

horizon geometry, or possibly by carrying out a direct string one loop calculation as in [117]. The

latter computation will give the complete one loop contribution, including the order one contribution

from the massive states, in one step. In this case the answer would be given by an integration over

the modular parameter τ of the torus, with its imaginary part playing the role of the integration

variable s and the integrand a generalized version of K(0; s) that also takes into account the
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contribution from the massive modes. The difficulty in carrying out this program lies in the fact

that we have to solve string theory in Ramond-Ramond background and then carry out an exact

one loop calculation in this background. While this is not an easy task, it will be interesting to see

if the pure spinor formalism [118] or the hybrid formalism of [119, 120] can be of help. An attempt

to do this path integral using localization principle and semi-classical method can be found in [68].
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A Analysis of the zero mode contribution

In the analysis of section 3 we had removed the zero mode contribution while evaluating the de-

terminant of the kinetic operator for various fields. In this section we shall analyze the result of

the zero mode integrals for the vector fields on AdS2 × S2 — the only fields containing zero modes

which appeared in the explicit analysis of section 5 — and show that their contribution cancels

against another contribution that was left out in the analysis of section 5.

Let Aµ be a vector field of AdS2 × S2 and gµν be the background metric. This has the form

gµν = a2 g(0)
µν , (A.1)

where a is the size parameter of S2 and AdS2 and g
(0)
µν is independent of a. Now in our analysis

in section 3 we have assumed that the integration over Aµ gives the determinant of the kinetic

operator (dδ+ δd) constructed from the metric gµν . For this we need to normalize the path integral

over Aµ such that ∫
[DAµ] exp

[
−
∫
d4x

√
det g gµνAµAν

]
= 1 . (A.2)

Using (A.1) this may be expressed as

∫
[DAµ] exp

[
−a2

∫
d4x

√
det g(0) g(0)µνAµAν

]
= 1 . (A.3)

From this we see that up to an a independent normalization constant, [DAµ] actually corresponds

to integration with measure
∏
x d(aAµ(x)). This in turn implies that integration over every zero

mode of Aµ(x) with the measure induced from [DAµ] will produce a factor of a.

Now for a non-zero mode, the path integral weighted by the exponential of the action produces a

factor of κ
−1/2
n where κn is the eigenvalue of the kinetic operator. Since κn has the form bn/a

2 where

bn is an a independent constant, integration over a non-zero mode produces a factor proportional to

a. Thus when we remove the contribution due to the zero modes, we remove a factor of a for each

zero mode. However the analysis of the previous paragraph showed that integration over the zero

modes gives us back a factor of a. Thus the net result is that for computing the coefficient of the

ln a term we can effectively ignore the subtraction described in (3.15) and continue to use the full

heat kernel Kv(0; s) provided we use the prescription that the ln a terms arise from integration over

s in the range 1 ≪ s≪ a2 even though the integral
∫
ds s−1Kv(0; s) does not converge at large s.
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Looking back at our final expression (5.20) for the net contribution to the trace of the heat

kernel from a matter multiplet, we see that the right hand side of this expression in fact vanishes

rapidly as s → ∞ since it is proportional to the scalar heat kernel in AdS2 which does not have

any zero mode contribution. So indeed we did not need to explicitly carry out any subtraction of

the type given in (3.15). Technically this was due to the fact that there was another term that

approached a constant as s → ∞ and canceled the constant term in the trace of the vector heat

kernel in AdS2 × S2. This new term arose from the product of Ks
S2 and δKv+s

AdS2
given in (5.18).

So if we can argue that the correct prescription for evaluating the contribution from Ks
S2δK

v+s
AdS2

to

the ln a terms is to not subtract the constant term as s→ ∞, and restrict the integration over s to

the range 1 ≪ s≪ a2, then our final result (5.20) will be justified; we do not subtract any constant

either from the original Kv
AdS2×S2 , nor from the correction term Ks

S2δK
v+s
AdS2

.

Thus our task now is to justify (5.18) for calculating the effect of the flux in AdS2 without any

subtraction. If we adopt this prescription then the net change proportional to ln a in − 1
2 ln det(dδ+

δd) due to the presence of the flux through AdS2 will be given by

1

2

∫
d4x
√

det g

∫

1≪s≪a2

ds

s
Ks
S2(0; s)δKv+s

AdS2
(0; s) . (A.4)

If we denote by u and v the coordinates of AdS2 and S2 respectively, and pick a particular eigen-

function on S2 with eigenvalue c/a2 and eigenfunction f(v), then the contribution from this eigen-

function on S2 to (A.4) will be given by

1

2

∫
d4x |f(v)|2

√
det g

∫

1≪s≪a2

ds

s
e−cs/a

2

δKv+s
AdS2

(0; s) = − 1

4πa2
ln(a2)

∫
d4x |f(v)|2

√
det g .

(A.5)

Note that we have used the ad hoc prescription of restricting the integration range to 1 ≪ s≪ a2;

without this the integral will diverge from the large s region for c = 0. Now we shall verify

the correctness of this result using an independent procedure that does not require this ad hoc

prescription. For this we go back to (5.14). From this equation it is clear that the effect of

the flux is to take a pair of eigenvalues
(
c+ λ2 + 1

4

)
/a2 of −�S2 − �AdS2

and shift them to(
c+ (λ± i)2 + 1

4

)
/a2. Now since we are interested in computing the determinant, we could also

interpret this as shifting a factor of
(
c+ λ2 + 1

4

)2
/a4 in the determinant to

∣∣c+ (λ+ i)2 + 1
4

∣∣2 /a4.

Thus the change in − 1
2 ln det(dδ + δd) can be written as

1

4πa2

∫
∞

ǫ̃

dt

t

∫
d4x |f(v)|2

√
det g

∫
∞

0

dλλ tanh(πλ)

[
exp

(
−t
∣∣∣∣c+ (λ + i)2 +

1

4

∣∣∣∣
2

/a4

)
− exp

(
−t
(
c+ λ2 +

1

4

)2

/a4

)]
, (A.6)

where we have used the fact that the distribution function of the parameter λ is given by

λ tanh(πλ)/(2πa2). ǫ̃ is an untraviolet cut-off of order 1. This integral is manifestly convergent

at large t even for c = 0 and does not have the problem mentioned in footnote 15. Since the

integrand falls off rapidly for t ≫ a4, the possible ln a terms come from integration over the range

1 ≪ t ≪ a4. Using the method described in section 2 one can estimate the behaviour of the

integrand in this range after carrying out the λ integral, and finds the result:

− 1

8πa2

∫
d4x |f(v)|2

√
det g

∫

1≪t≪a4

dt

t
≃ − 1

4πa2
ln(a2)

∫
d4x |f(v)|2

√
det g . (A.7)

This is in perfect agreement with (A.5), showing that the prescription of using the full result δKv+s
AdS2

given in (5.18) without any subtraction and restricting the integration in the range 1 ≪ s≪ a2 gives
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the correct ln a factors in the determinant. Of course since the final result (5.20) falls off sufficient

rapidly for s→ ∞ we can drop the requirement of restricting the integration to the range s≪ a2.

This concludes our proof that even after taking into account the possible additional factors of

ln a which could arise from zero mode integration, (5.20) can be used to calculate the logarithmic

correction to the black hole entropy due to the bosonic fields in the matter multiplet.

Open Access. This article is distributed under the terms of the Creative Commons Attribution

Noncommercial License which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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In Gauged N > 4 Supergravity, Phys. Rev. Lett. 45 (1980) 161 [SPIRES].

[117] J. Polchinski, Evaluation of the One Loop String Path Integral,

Commun. Math. Phys. 104 (1986) 37 [SPIRES].

[118] O.A. Bedoya and N. Berkovits, GGI Lectures on the Pure Spinor Formalism of the

Superstring, arXiv:0910.2254 [SPIRES].

[119] N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebach, Superstring theory on

AdS2 × S2 as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [hep-th/9907200]

[SPIRES].

[120] B. Chandrasekhar, Black Hole Partition Function using Hybrid Formalism of Superstrings,

arXiv:0811.1758 [SPIRES]

– 41 –

http://dx.doi.org/10.1016/0550-3213(80)90423-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B170,480
http://dx.doi.org/10.1007/JHEP05(2010)097
http://arxiv.org/abs/0908.3402
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.3402
http://dx.doi.org/10.1016/0393-0440(95)00042-9
http://arxiv.org/abs/gr-qc/9505009
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9505009
http://arxiv.org/abs/hep-th/9505186
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SMATF,1,383
http://dx.doi.org/10.1016/0370-2693(80)90852-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B94,179
http://dx.doi.org/10.1016/0370-2693(80)90119-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B93,170
http://dx.doi.org/10.1016/0550-3213(90)90497-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B335,334
http://dx.doi.org/10.1103/PhysRevD.22.301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D22,301
http://dx.doi.org/10.1103/PhysRevD.78.084024
http://arxiv.org/abs/0806.3505
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.3505
http://dx.doi.org/10.1016/0550-3213(93)90387-5
http://arxiv.org/abs/hep-th/9207016
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9207016
http://dx.doi.org/10.1142/S0217751X94001497
http://arxiv.org/abs/hep-th/9402002
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9402002
http://arxiv.org/abs/1001.2933
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1001.2933
http://dx.doi.org/10.1016/0550-3213(95)00589-7
http://arxiv.org/abs/hep-th/9508144
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9508144
http://dx.doi.org/10.1016/0920-5632(96)00004-7
http://arxiv.org/abs/hep-th/9508154
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9508154
http://dx.doi.org/10.1103/PhysRevLett.45.161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,45,161
http://dx.doi.org/10.1007/BF01210791
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA,104,37
http://arxiv.org/abs/0910.2254
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0910.2254
http://dx.doi.org/10.1016/S0550-3213(99)00683-5
http://arxiv.org/abs/hep-th/9907200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9907200
http://arxiv.org/abs/0811.1758
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.1758

	Introduction
	Logarithmic correction to the black hole entropy due to a single scalar field
	Heat kernels of vector, p-form and fermion fields
	Vector fields
	p-form fields
	Fermions

	Effect of graviphoton background in N = 4 supersymmetric string theory
	Four dimensional N = 4 supergravity from ten dimensional N = 1 supergravity
	The quadratic action for the fluctuations around the attractor geometry

	Eigenvalues, heat kernel and one loop effective action in the matter sector
	Discussion
	Analysis of the zero mode contribution

