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ABSTRACT: We compute logarithmic corrections to the entropy of supersymmetric extremal
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the near horizon geometry, and include, in particular, contributions from dynamical four
dimensional gravitons propagating in the loop. Thus our analysis provides a test of one loop
quantum gravity corrections to the black hole entropy, or equivalently of the AdSy/CFT;
correspondence. We also extend our analysis to N' = 2 supersymmetric STU model and
make a prediction for the logarithmic correction to the black hole entropy in that theory.
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1 Introduction

Wald’s formula gives a generalization of the Bekenstein-Hawking entropy in a classical the-
ory of gravity with higher derivative terms, possibly coupled to other matter fields [1-4]. In
the extremal limit the near horizon geometry contains an AdSs factor, and Wald’s formula
leads to a simple algebraic procedure for determining the near horizon field configurations
and the entropy [5, 6]. A proposal for computing quantum corrections to this formula was
suggested in [7]. In this formulation, called the quantum entropy function formalism, the
degeneracy associated with the black hole horizon is given by the string theory partition
function Z44s, in the near horizon geometry of the black hole. Such a partition function is
divergent due to the infinite volume of AdSs, but the rules of AdSs/CFT; correspondence
gives a precise procedure for removing this divergence. While in the classical limit this pre-
scription gives us back the exponential of the Wald entropy, it can in principle be used to
systematically calculate the quantum corrections to the entropy of an extremal black hole.

Given this prescription one would like to test this by comparing with some microscopic
results. For A/ = 8 supersymmetric string theories obtained by compactifying type II string
theory on 7% and a class of N' = 4 supersymmetric string theories obtained by compact-
ifying type II string theory on K3 x T? and its various orbifolds, the exact formula for
the microscopic index is known [8-23]. Furthermore it has been argued in [24, 25] that for
extremal supersymmetric black holes preserving four supercharges the black hole entropy
also gives the index, and hence can be directly compared with the microscopic index. Thus



these theories provide us with an ideal ground for testing the macroscopic formula for the
black hole entropy.

The microscopic formula for the index in these theories shows that in the limit in which
all the components of the charge are large, the logarithm of the index is given by [9, 13, 18]

Spicro = VA +O(1) for N =4, (1.1)

and [26]
Smicro = TVA = 2In A+ O(1) for N =8, (1.2)

where in both theories A is the unique quartic combination of the charges which is invari-
ant under all the continuous duality transformations. Using the equality between index
and degeneracy for a black hole, egs. (1.1), (1.2) should be equal to the entropies of the
corresponding black holes. Now for a classical black hole solution carrying these charges,
the radius of curvature a of the near horizon AdS; x S? geometry is related to A via

VA =d?/Gy, (1.3)

where Gy is the four dimensional Newton’s constant. Thus the leading contribution
/A = 47a® /4Gy is the classical Bekenstein-Hawking entropy [27, 28]. This leads to a
natural question: can we reproduce the logarithmic corrections from the macroscopic side?!

This question was partially analyzed in [46] where it was argued that such corrections,
if present, must arise from one loop quantum correction to Z44g, due to massless fields
of the supergravity theory. The stringy modes, massive Kaluza-Klein excitations along
compact directions and/or higher derivative corrections to the effective action play no role
in this analysis and can be safely ignored. Furthermore [46] computed the contribution
to Zags, due to the massless matter multiplets in A/ = 4 supersymmetric string theo-
ries, and found that the net contribution vanishes, in agreement with the fact that the
result (1.1) is independent of the number of matter multiplets in the theory. In this paper
we complete the computation by including the contribution from the gravity multiplet of
N = 4 supersymmetric theories and also extend the analysis to N/ = 8 supersymmetric
string theories. In both cases our results are in perfect agreement with the microscopic
results (1.1) and (1.2). Since the computation on the macroscopic side involves one loop
determinant of dynamical gravitons propagating on AdSs x S?, our results can be taken
as a non-trivial confirmation of quantum gravity contribution to the black hole entropy,
or equivalently of AdSy/CFT) correspondence [7] on which the prescription for computing
quantum corrections to the entropy is based.?

We would like to emphasize that the limit of charges we consider is different from
the Cardy limit which, in the present context, would amount to taking one of the charges
representing momentum along a compact direction to infinity keeping the other charges

'Earlier approaches to computing logarithmic corrections to black hole entropy can be found in [29-45].

2The analysis of [47-49] for partition function of (super-) gravity and higher spin theory in AdSs also
includes the effect of graviton loops. However in 3 dimensions there are no dynamical degrees of freedom
in the graviton and hence only the boundary modes associated with asymptotic symmetries contribute to
the partition function.



fixed. This was studied in detail in [25]. The coefficient of the log A term in this limit can
also be read out from the general expression for the microscopic entropy, and is given by
—2 for N' = 8 supersymmetric string theory, and —(m + 2)/4 for N' = 4 supersymmetric
string theories, m being the total number of matter multiplets in the theory. Thus for type
IIB string theory on K3 x T? the coefficient will be —(22 + 2)/4 = —6.

Since our analysis will be somewhat technical we shall now give a brief description of
our analysis and the results. The one loop contribution to Z44g, arises from two sources.
First, the integration over each eigenmode of the kinetic operator carrying non-zero eigen-
value gives a contribution to Z44s, through the determinant of the kinetic operator. The
logarithm of this determinant can be expressed as integral over the proper time parameter
s, with the integrand given by the trace of the heat kernel [50, 51] after removing the con-
tribution due to the zero modes. This typically will be proportional to the infinite volume
of AdSy x S? and hence is apparently infrared divergent. But we use the trick of [7, 52]
to express the AdSs volume as ¢13 + co where ¢; and ¢o are finite constants and 3 is the
(divergent) length of the boundary. The coefficient of 8 can be absorbed into a redefini-
tion of the ground state energy and the S independent term gives the correction to the
black hole entropy Spp. This leaves us with an infrared finite contribution to the entropy.
There is also ultraviolet divergence which comes from the lower limit of integration of the
parameter s. This is regulated by setting the lower limit of s integration to be the string
scale [2. The resulting integration over s goes as ds/s in the range 2 < s < a? where a is
the radius of curvature of AdSs and S2. This gives a term of order In(a?/I2) which can be
reinterpreted as In /A using (1.3).

The other source of logarithmic corrections is the integration over the zero modes.
These zero modes represent eigenmodes of the kinetic operator with zero eigenvalues and
arise due to the asymptotic symmetries of the euclidean near horizon geometry. To find the
result of integration over these zero modes we first make a change of integration variable
from the zero modes to parameters labelling the supergroup of asymptotic symmetries.
The supergroup is parametrized in a way that its volume is manifestly independent of a,
— the radius of curvature of AdS, and S?. Thus the net a dependence of the zero mode
integration arises from the Jacobian associated with the change of variables from the field
modes to the supergroup parameters. The a dependence of the Jacobian can be calculated
explicitly and leads to additional corrections to the entropy proportional to Ina.?

For both N/ = 4 and N = 8 supergravity theories we find that the final results of
the macroscopic analysis, after adding up the contribution from the zero mode and the
non-zero mode integration, are in perfect agreement with the microscopic results (1.1)
and (1.2). Even for the N' = 4 supersymmetric theory where the net contribution vanishes,
the individual contributions from the zero modes and the non-zero modes are non-trivial.
This has been illustrated in table 1 where we have displayed separately the contributions
from the zero modes and the non-zero modes.

3The left-over integration over the supergroup includes integration over both, fermionic and bosonic
modes. With the help of localization [53-56] it can be shown that the infinite contribution from integration
over the bosonic variables cancel the zero contribution due to integration over the fermionic modes, leaving
behind a finite result [54].



The theory non-zero mode contribution | zero mode contribution | total contribution
N =4 1(6+m)lnA —4(6+m)In A 0

N =38 5In A —7InA —2InA

STU model | 2In A —InA InA

Table 1. The logarithmic correction to the black hole entropy in A’ = 4 and N/ = 8 supersym-
metric string theories in four dimensions and the STU model. We have displayed separately the
contributions from the non-zero modes and the zero modes. m denotes the number of matter mul-
tiplet fields in the N' = 4 supergravity theory. The difference between the zero mode contributions
in the different theories arise solely due to the different number of gauge fields they have, — the
contributions from the graviton and gravitino zero modes cancel in all the theories.

Our analysis can also be extended to compute the logarithmic correction to the en-
tropy of half BPS black holes in N' = 2 supersymmetric STU model [57, 58]. The low
energy effective action of this theory is a truncation of the N/ = 4 supergravity theory,
and furthermore the black hole of the N/ = 4 supergravity theory for which we carry out
the analysis can be embedded in this theory. Thus eigenmodes and the eigenvalues of the
kinetic operator in the near horizon geometry of the black hole solution in the STU model
are a subset of the corresponding eigenmodes and eigenvalues in the N' = 4 supersymmetric
string theory. As a result the coefficient of the In A term in the STU model can be found
by examining the contribution to the logarithmic correction to N' = 4 black hole entropy
from this subset. From this we arrive at the following prediction for the asymptotic growth
of black hole entropy in the STU model:

VA +InA+O(1). (1.4)

This logarithmic correction is in apparent violation of the proposal of [59] for the index of
half BPS states in the STU model, and more generally, with the one loop correction to OSV
integral [60] proposed in [61].* However (1.4) is consistent with the measure proposed in [62]
if we assume that this formula is valid for weak topological string coupling. This perhaps
indicates that although the result of [62] was derived in the limit of strong topological string
couping, its range of validity, interpreted as the index of single centered black holes, may
extend even to weak topological string coupling — the regime in which our analysis is valid
since we scale all the charges uniformly. More discussion on logarithmic correction to N' = 2
black hole entropy, as well as its relation to the results of [61] and [62], can be found in [63].

The rest of the paper is organized as follows. In section 2 we review some results
on the eigenfunctions and eigenvalues of the Laplacian operator in AdSs x S? acting on
fields carrying different spins. Section 3 we review the general procedure for computing
the logarithmic correction to the black hole entropy. Section 4 we describe the action, to

4This is different from the ‘non-holomorphic corrections’ discussed e.g. in [61] since the latter involves
logarithm of moduli fields and not of the size of the horizon. Furthermore the analysis of [61], based on
the requirement of duality invariance, does not put any constraint on the In A terms we find since A is
manifestly duality invariant.



quadratic order, of the fluctuations of the gravity multiplet fields of NV = 4 supergravity
around the near horizon geometry of the black hole. Most of the results in these sections
were already discussed in [46]. Section 5, section 6, section 7, section 8 and section 9 contain
the new results. In section 5 we compute the contribution to the heat kernel (and hence to
the logarithmic correction to the entropy) due to the bosonic non-zero modes of the gravity
multiplet of the N/ = 4 supergravity theory. Section 6 contains the contribution from the
fermionic non-zero modes of the gravity multiplet of the N' = 4 supergravity theory. In
section 7 we augment the results by computing the contribution due to the integration
over the zero modes, and show that the net contribution to the coefficient of In A vanishes.
In section 8 we include the contribution due to the extra fields which are present in the
N = 8 supergravity theory and show that they give the result —2In A. These results
are in agreement with the microscopic results (1.1) and (1.2). In section 9 we compute
logarithmic corrections to the black hole entropy in the STU model leading to (1.4).

We conclude this introduction by commenting on the method we use to compute the
heat kernel, and an alternative. We compute the heat kernel by explicitly constructing the
eigenstates and eigenvalues of the kinetic operator in the near horizon geometry, but we
could also compute the relevant terms by simply computing the one loop contribution to
the trace anomaly in the near horizon geometry [50, 51]. Indeed in the presence of back-
ground gravitational field the contribution to the heat kernel in supersymmetric theories
was computed in [64-67]. In order to apply it to the present problem we either need to
repeat the analysis in the presence of background gauge fields, or use supersymmetry to
determine the possible structure of the one loop counterterms and hence the trace anomaly.
Neither of this is completely straightforward. Furthermore the trace anomaly method in-
cludes the contribution from the zero modes as well which, as we have described, need to
be analyzed separately. Thus even if we use the trace anomaly methods for computing the
heat kernel, we need to find separately the zero modes of the kinetic operator, remove their
contribution from the heat kernel and then separately evaluate their contribution to the
entropy. To whatever extent we have tested, the two methods lead to the same result.

2 Eigenfunctions of Laplacians on AdS, and S?

In this section we shall review the results on eigenfunctions and eigenvalues of the Lapla-
cian operator L = ¢"” D, D, on AdS3 and S? for different tensor and spinor fields. These
have been studied extensively in [68-71], and also discussed in the context of near horizon
geometry of black holes in [46]. We consider the background AdS, x S? space with a metric
of the form:

ds* = a*(dn* + sinh? n d6?) + a®(dp® + sin® Pd¢?) . (2.1)

We shall denote by x" the coordinates (n,0) on AdSy and by z® the coordinates (v, ¢)
on S? and introduce the invariant antisymmetric tensors EaB O S2 and e,,, on AdS,
respectively, computed with the background metric (2.1):

£y = a’ sinep, 0 = a® sinh7. (2.2)

All indices will be raised and lowered with the background metric g,, defined in (2.1).



We shall first review the construction of the eigenstates and eigenvalues of the Laplacian
acting on individual fields in AdS, and S? separately. First consider the Laplacian acting
on the scalar fields. On S? the normalized eigenfunctions of —[J are just the usual spherical
harmonics Y}, (1, ¢)/a with eigenvalues I(I + 1)/a®. On the other hand on AdSs the §-
function normalized eigenfunctions of —[J are given by [69]°

1 1
V2ma? 214(]¢))!

1 1
XFGA+2+WL4A+2+MMM+1¢me2>,

L (iA+ 5 +14])
T(i))

f)\/(777 9) =

‘ "0 sinh! n

Lel, 0< A< o0, (2.3)

with eigenvalue (i + )\2) /a?. Here F' denotes hypergeometric function.
The normalized basis of vector fields on S? may be taken as

1 1
0o Uk,
k k
Az o

where {U}} denote normalized eigenfunctions of the scalar Laplacian with eigenvalue x

£ap0°Uy, (2.4)

(k)
i
The basis states given in (2.4) have eigenvalue of —[J equal to ngk) — a~2. Note that for

ngk) =0, i.e. for [ = 0, Uy, is a constant and 0,,U), vanishes. Hence these modes do not
exist for [ = 0.

Similarly a normalized basis of vector fields on AdSy may be taken as

1 1
0 Wk e Wi, 25
[ " [ ®) * 29

2 2

where Wy, are the d-function normalized eigenfunctions of the scalar Laplacian with eigen-

value /ﬁ};k). The basis states given in (2.5) has eigenvalues of —J equal to /igk) +a~2. There

are also additional square integrable modes of eigenvalue a~2, given by [69]

1 inh le|
A=dd, &= [ ST } e =41, 42,43, . (2.6)
/2r|f] |1+ coshn

These are not included in (2.5) since the ® given in (2.6) is not normalizable. d® given
in (2.6) is self-dual or anti-self-dual depending on the sign of /. Thus we do not get
independent eigenfunctions from *d®. However we can also work with a real basis in which
we take dRe(®) and dIm(®) x *dRe(®P) as the independent basis states for £ > 0.

A similar choice of basis can be made for a symmetric rank two tensor representing
the graviton fluctuation. For example on S? we can choose a basis of these modes to be

1 1
R U ,
\@ GaplYk

[Dafﬁ + Dﬁga - D7§,Y goz,B] ) (2'7)
2(I€gk) —2a7?)

5 Although often we shall give the basis states in terms of complex functions, we can always work with
a real basis by choosing the real and imaginary parts of the function.



where &, denotes one of the two vectors given in (2.4). Note that for /@Sk) =2a72, i.e. for
[ =1, the second set of states given in (2.7) vanishes since the corresponding &, ’s label the
conformal Killing vectors of the sphere.

On AdSs the basis states for a symmetric rank two tensor may be chosen as

1 1 ~ ~ ~
E Imn Wi, - [Dmgn + Dpém — ngp Imn| » (2'8)
2(;15 ) 4 2a-2)

where &, denotes one of the two vectors given in (2.5), or the vector given in (2.6). Besides
these there is another set of square integrable modes of eigenvalue 2a 2 of —[J, given by [69]

't (dn? + 2i sinh n dndf — sinh? n d6*)

o \11/2 2
hyndz™dx™ = a [l -1) (sinhn)
2 (1 + coshn)l

J
ez, |4 >2. (2.9)

Locally these can be regarded as deformations generated by a diffeomorphism on AdSs,
but these diffeomorphisms themselves are not square integrable.

We can construct the basis states of various fields on AdSy x S? by taking the product
of the basis states on S? and AdSs. For example for a scalar field the basis states will be
given by the product of Y}, (1, ¢) with the states given in (2.3), and satisfy

O B0 0) il16) = 23 {10414 024 1} han0)Vin(00). (210

For a vector field on AdSy x S? the basis states will contain two sets. One set will be given
by the product of Yi,,(1, ¢) and (2.5) or (2.6). The other set will contain the product of
the functions (2.3) on AdSy and the vector fields (2.4) on S2.

Finally we turn to the basis states for the fermion fields. Consider a Dirac spinor®

on
AdSy x S?. Tt decomposes into a product of a Dirac spinor on AdS; and a Dirac spinor on
S2. We use the following conventions for the vierbeins and the gamma matrices

e’ = a sinhn dé, el = adn, e? = a sinvy do, e =adi, (2.11)
P =—o3@m, V' =o3®7, V= -0y ® Iy, VY =01®1, (2.12)
where o; and 7; are two dimensional Pauli matrices acting on different spaces and Is is 2 x 2
identity matrix. In this convention the Dirac operator on AdSs x S? can be written as

D aasyxs2 =Ps2 + 03 Dads, (2.13)
where
Dg=a! [—02 siiw(% +oloy+ %Ul cot w] ) (2.14)
and
Daags, =a”" [—72 sinhnae + 70y + %Tl cothn] : (2.15)

SEven if the spinors satisfy Majorana/Weyl condition, we shall compute their heat kernel by first com-
puting the result for a Dirac spinor and then taking appropriate square roots.



First let us analyze the eigenstates of [Dg2. They are given by [72]

I L VI=m)!l+m+1)! Gi(m+1)o (z sin™t! %cosm %Pl(innjl’m)(cosw)>

Xiom = .
bm = Vira? ! +sin™ % cos™t1 %PI(Z;LW—H) (cosp)

= L VI=—m)!(l+m+1)! o—i(m+1)e sin™ % cos™*1 %Pl(f:;lmﬂ)(cos )
bm = Vra? il +i sin™ ! L cos™ %B@Jlm) (cosv)) )’
LmeZ, 1>0, 0<m<lI, (2.16)
satisfying
Doxiy =xia " 1+ 1) xS,  Psen,, =Fia™ (+1)n,. (2.17)

Here P (x) are the Jacobi Polynomials:

(_1)” —« _g d" a+n n
W(l_x) (14 ) B@ (1—2)*T"(1+ )" . (2.18)

Xlim and nlim provide an orthonormal set of basis functions, e.g.

T
a* / (o) X S0 6 4 = GG (2.19)
52 N7 ’

etc.
The eigenstates of ID 44 s, are given by the analytic continuation of the eigenstates given
in (2.16) [72], making the replacement ¢ — in, | — —i\ — 1,

1 I'(1+k+i)) (et L
+ i(k+5)0
\) = etk +3)
X () Viama? |T(k+ 1)L (5 + i)
o (7 cosh® Fsinb* T F (K + 140X k+1— i)k +2; —sinh” §)
tcosh™! Tsinh* 2F (k+ 1+ i)\ k+1—i\k+ 1;—sinh®2) ]’
1 I'(14k+iX) (ke
+ i(k 0
)\ = ( +2)
N = T+ DT (3 +iA) |
cosh®™ ! Zsinh* ZF (k+ 14 i\, k+ 1 —i\jk + 1; —sinh? 1)
X SN En s 1 k+ln . Y L wir2m )
+i 777 cosh” § sinh 2F(k:+1+z/\,k+1 i\ k + 2; —sinh 2)
ke, 0<k<oo, 0<A<oo, (2.20)
satisfying
DagsyXy N =£ia ' A (N, Daasymp (A) = Fia " A (A). (2.21)

in()\) and nk,i()\) provide an orthonormal set of basis functions on AdSs, e.g.

a? /sinhndn a0 (GEN)) T XEWN) = Srrd (A = N, (2.22)

etc.



The basis of spinors on AdS; x S? can be constructed by taking the direct product of
the spinors given in (2.16) and (2.20). Suppose that 1)1 denotes an eigenstate of [Dg2 with
eigenvalue i¢; and 12 denotes an eigenstate of [) 445, With eigenvalue i(:

Ds2r = iCibr,  Daas, b2 = iCa1a. (2.23)

We have ¢; = +a (I + 1) and (o = +a~'\. Since o3 anti-commutes with Dg> and
commutes with /) 44s,, we have, using (2.13),

D pas,xs2 V1 @ Yo = iC1P1 @ o + iC031P1 @ P2,
D pdsyxs2 0301 @ Y2 = iCaP1 @ o — (10391 @ P2 (2.24)

Diagonalizing the 2 x 2 matrix we see that ) 44,52 has eigenvalues +i\/¢? + (5. Thus
the square of the eigenvalue of 12 445, g2 is given by the sum of squares of the eigenvalues

of Daas, and Dge. B ) B
By introducing the ‘charge conjugation operator’ C' = oy ® 71 and defining v = 7 C,
we can express the orthonormality relations (2.19), (2.22) as

/ d'e /Aoty (X7 @3 W) (M @ 1 (V) = i 000 B prd A = N, (2.25)

etc. This is important since eventually we shall be dealing with fields satisfying appropriate
reality conditions for which v will be defined as ¢T5 as far as the SO(4) Clifford algebra
associated with AdSs x 52 is concerned (see (4.8)).

In our analysis we shall also need to find a basis in which we can expand the Rarita-
Schwinger field ¥,. Let us denote by x the spinor ¥ ® 12 where 11 and 13 are eigenstates
of Dg2 and 1D gq4s, with eigenvalues i(; and (s respectively. Then a (non-orthonormal set
of) basis states for expanding ¥, on AdSs x S? can be chosen as follows:

Yo =YaX; ¥ =0,

v, =0, WU = YmXs

U, = Dux, U, =0,

W, =0, U,y = Dy - (2.26)

By including all possible eigenstates x of D¢z and D 445, we shall generate the complete set
of basis states for expanding the Rarita-Schwinger field barring the subtleties mentioned
below.

There are two additional points which will be important for our analysis. First of all
we have the relations

i i
Daxojfo = :i:§ at ’YaXoi,m Doﬂ?(j)fo = :l:§ at 'yangfo. (2.27)

Thus if we take x = 11 ® 19 where 91 corresponds to any of the states X(j)t,o or 773%0, and 1o is
any eigenstate of I) AdS,» then the basis vectors appearing in (2.26) are not all independent,
— the modes in the third row of (2.26) are related to those in the first row. The second



point is that the modes given in (2.26) do not exhaust all the modes of the Rarita Schwinger
operator; there are some additional discrete modes of the form

Eﬁf)iE%@ (Dmi21ao'3'7m> Xf(i)v g"l:)ingl@ (DmizlaUB'Ym> n]:ct(i)7 k=1,---00,

(2.28)
where Xf()\) and 77;::(/\) have been defined in (2.20). Since in(z) and n,f (1) are not square
integrable, these states are not included in the set given in (2.26). However the modes
described in (2.28) are square integrable and hence they must be included among the
eigenstates of the Rarita-Schwinger operator. These modes can be shown to satisfy the
chirality projection condition

1 , 1 )
T3 (Dm + 2a0'37m> Xf(z) = - <Dm + 2aU3Vm> Xf@%
1 » 1 »
3 [ Dy £ %0'3’)/771 M, (1) = ( D = 25 787m | M (7). (2.29)

3 Logarithmic correction to the black hole entropy

In this section we shall review the general procedure for computing the logarithmic correc-
tion to the extremal black hole entropy. Suppose we have an extremal black hole with near
horizon geometry AdSy x S?, with equal radius of curvature a of AdS; and S?. Then the Eu-
clidean near horizon metric takes the form given in (2.1). As in [46], we shall make use of the
flat directions of the classical entropy function to choose the near horizon parameters such
that a is the only parametrically large number, all other parameters e.g. the string coupling
or the size of the compact space remains fixed as we take the large charge limit. Let Z44g,
denote the partition function of string theory in the near horizon geometry, evaluated by
carrying out functional integral over all the string fields weighted by the exponential of the
Euclidean action §, with boundary conditions such that asymptotically the field configura-
tion approaches the near horizon geometry of the black hole.” Then AdSs/C FTy correspon-
dence tells us that the full quantum corrected entropy Spg is related to Zaqs, via [7, 24]:

GSBH_EOﬂ = ZAd52 , (3.1)

where Ej is the energy of the ground state of the black hole carrying a given set of charges,
and [ denotes the length of the boundary of AdSs in a regularization scheme that renders
the volume of AdSs finite by putting an infrared cut-off n < ng. Let AL.g denote the
one loop correction to the four dimensional effective lagrangian density evaluated in the
background geometry (2.1). Then the one loop correction to Za4s, is given by

exp [ / Vdet gdndfdi dp ALeg| = exp [87° a* (coshmg — 1) ALeg] - (3.2)

"Since in AdSs the asymptotic boundary conditions fix the electric fields, or equivalently the charges
carried by the black hole, and let the constant modes of the gauge fields to fluctuate, we need to include in
the path integral a boundary term exp(—i § >, qkALMdm“) where AEP are the gauge fields and gx are the
corresponding electric charges carried by the black hole [7]. This term plays a crucial role in establishing
that the classical contribution to the black hole entropy computed via (3.1) gives us the Wald entropy, but
will not play any role in the computation of logarithmic corrections.
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The term proportional to coshng in the exponent has the interpretation of —SAFEy +
O (5_1) where § = 2masinhng is the length of the boundary of AdS,; parametrized by
0 and AEy = —4na®>ALeg is the shift in the ground state energy. The rest of the con-
tribution in the exponent can be interpreted as the one loop correction to the black hole
entropy [7, 24]. Thus we have

ASpy = —8m%a* A Log . (3.3)

While the term in the exponent proportional to 5 and hence AFEy can get further correc-
tions from boundary terms in the action, the finite part ASpy is defined unambiguously.
This reduces the problem of computing one loop correction to the black hole entropy to
that of computing one loop correction to L. We shall now describe the general procedure
for calculating ALqg.

The near horizon geometry of the black hole has background flux of various electro-
magnetic fields through S? and AdSy. In this section we shall ignore the effect of this
background flux, leaving the full problem for later sections. Then the dynamics of various
fields is controlled essentially by their coupling to the background metric (2.1). First con-
sider the case of a massless scalar field. If we denote the eigenvalues of the scalar laplacian
by {—kn} and the corresponding normalized eigenfunctions by f,(x) then the heat kernel
K*(z,2; s) of the scalar Laplacian is defined as (see [50, 51] and references therein)

Ko(x,a'58) = > e fo(x) fula') . (3.4)
n
The superscript s on K reflects that the laplacian acts on the scalar fields. In (3.4) we
have assumed that we are working in a basis in which the eigenfunctions are real; if this is
not the case then we need to replace f,,(2’) by f}(2’). The contribution of this scalar field
to the one loop effective action can now be expressed as

1 1 [*°d 1 [*d
Asz_zgmn:2/€ 2:2/ E [ dte Vet K@ zi5), (35)

where g, is the AdSy x S? metric and € is an ultraviolet cut-off. Identifying this as
[ d*z/det g ALy we get

1 oo
Ma=j [ TR0, (5.6)

where K%(0;s) = K*(x,z;s). Note that using the fact that AdSs and S? are homogeneous
spaces we have dropped the dependence on x from K*(x,x;s).

For higher spin fields the field will carry an extra index (say a). Then we can define
the heat kernel K,;(z,z; s) by generalizing (3.4) and the contribution to ALg from these
fields will be given by

1 [>*d
5 /6 ?SKaa(x,x;s). (3.7)

For notational simplicity we shall refer to K,, as the heat kernel and denote it by K, but
it should be kept in mind that for higher spin fields this refers to the trace of the heat

— 11 —



kernel. For fermions there will be an extra minus sign since the fermionic integral produces
a positive power of the determinant. We shall choose the convention in which this extra
factor is absorbed into the definition of K. Also the fermionic kinetic operator is linear
in derivatives; we shall find it convenient to define the heat kernel using the square of the
fermionic kinetic operator, and then include an extra factor of half in the definition of K
to account for the final square root that we need to take.

Let us now return to the computation of K*(0;s). It follows from (3.4) and the fact
that Oags,xs2 = Hags, + g2 that the heat kernel of a massless scalar field on AdSs x S?
is given by the product of the heat kernels on AdSs and S?, and in the 2/ — x limit takes
the form [68]

K*(0;8) = Kgs, (0;5) Kg2(0;5) - (3.8)

K3, and K3 g, in turn can be calculated using (3.4) since we know the eigenfunctions and
the eigenvalues of the Laplace operator on these respective spaces. The eigenfunction on
AdSy are described in (2.3). Since fy, vanish at n = 0 for ¢ # 0, only the ¢ = 0 eigen-
functions will contribute to K73 ;g (0;s). At n = 0 the £ = 0 eigenfunction has the value
V/Atanh(m\)/v2ma2. Thus (3.4) gives

K345, (0;8) = /0 h dX A tanh(m\) exp [—s <)\2 + i) /aZ] . (3.9)

21 a?

On S? the eigenfunctions are Y,,(1, ¢)/a and the corresponding eigenvalues are —I(I +
1)/a?. Since Y}, vanishes at ¢ = 0 for m # 0, and Yo = /2] + 1/v/4w at 1) = 0 we have

55(0;5) = S st/ (91 4 7). (3.10)

dma?

We can bring this to a form similar to (3.9) by expressing it as

1

s/4a> Y T\ ,—sA2 /a2
me“ %d/\)\ tan(m) e N/ (3.11)

where ¢ denotes integration along a contour that travels from oo to 0 staying below the real
axis and returns to oo staying above the real axis. By deforming the integration contour
to a pair of straight lines through the origin — one at an angle x below the positive real
axis and the other at an angle x above the positive real axis — we get

1

K52 (0:) = 2ma?

efixoco . ~
e¥/49* I / NdX tan(mh) eV 0<k< 1. (3.12)
0

Combining (3.10) and (3.9) we get the heat kernel of a scalar field on AdSy x S%:

1 > 9] 1 2
K*(0;s) = S2gl Z(Ql + 1)/0 d\ A tanh(mw)\) exp [—5)\2 -5 (l + 2>
1=0
_ b /oodA)\tanh(w)\) Im /emxoox dX tan(m)) exp [—g)\Q — §X2} (3.13)
47r2a4 0 0 ’ '
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where
5=s5/a®. (3.14)

We can in principle evaluate the full one loop correction to Spy due to massless fields
using (3.3), (3.6) and (3.13), but our goal is to extract the piece proportional to Ina for
large a. Such contributions come from the region of integration 1 < s < a? or equivalently
a2 < 5 < 1. Thus we need to study the behaviour of (3.9), (3.10) for small 5. We shall
now describe a general procedure for carrying out this small 5 expansion, not just for the
integrals appearing in (3.13) but for a more general class of integrals where we insert some
powers of A and ) into the integrand. For this we first write

[e9) o ~
tanh(m)) = 142> (=1)Fe ™A tan(z)) =i [1+2) (-DF e (3.15)
k=1 k=1
In the term proportional to 1 in the expression for tanh(7A) (tan w)\) we change the integra-
tion variable in (3.13) from A (\) to u = 5A? (v = 5)A2?). These integrals can be performed

exactly in terms of I' functions. On the other hand in the term proportional to e~ 27k

(e 2ka) in the expansion of tanh(m\) (tan(wA)) we change the variable of integration to
u = 27k (v = 2mik)) and then expand the e=*** (¢=***) term in a power series in u (or

v). After performing the integrals and a resummation over k we get

/ dA X tanh(m)) e 5N A2
0

o 1 ——1-n - -m (2m +2n + 1)‘ —2(m+4n+1) m
=55 r(1+n)+2£s () (—1)
(2722l _c2(m+n+1)). (3.16)
e X o0 — ~ e~ o~
Im / dX X tan(mh) e ™ X271
0
[ . o _m (2m +2n +1)! —2(m4n+1) n+1
=58 r(1+n)+2n;)s e (2m) (-1)
(2722l 1 c2(m+n+1)). (3.17)

This leads to the following expression for K3, (0;5) and Kg,(0; s):

—n+1 1
s - g) = e 5/4 —2n—1
Kiigs, (0;5) = 4m2 1+ ) s 5 (2 —1)¢(2n+2)
1 1 7
— e84 (1- 54+
Tz (1 s + 4805 +0(s )) (3.18)
s 1 5/4 = 1 §n+1 1 —2n—1
1 1 7
= 1+ =5+ — ) . 1
25 € ( t 55+ 4808 +O(s )) (3.19)
Substituting (3.18) and (3.19) into (3.8) we get
. 1 1
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eq. (3.6) now gives

. 1 o0 dg 1 9 4
ALeg = 397200 /E/a2 = <l—|— 55 + O(s )) . (3.21)

This integral has a quadratically divergent piece proportional to 1/e?. This can be thought
of as a renormalization of the cosmological constant and will cancel against contribution
from other fields in a supersymmetric theory in which the cosmological constant is not
renormalized. Even otherwise in string theory there is a physical cut-off set by the string
scale.® Our main interest is in the logarithmically divergent piece which comes from the
order 52 term inside the parentheses. This is given by

1

m 1n(a2/6) 5 (322)

and, according to (3.3) gives a contribution to the entropy

ASpy — —% In(a2/e) . (3.23)

Computation for the higher spin fields follows in a similar manner. We use the basis
described in section 2 to construct the heat kernel. For evaluating K(0; s) we need to com-
pute u(x)? at 2 = 0 where u is a generic basis element for the higher spin fields. This can of
course be done using the explicit form of the basis functions given in section 2 but here we
shall suggest a useful shortcut. Consider for example the state of the form (/fgk))*laka
given in (2.5). Since K,q(z,z;s) is independent of x due to the homogeneity of AdS,
and S?, we can replace the contribution from every term to Kao(x, ;) by the volume
average of the term. Now since Wj and (/ﬁ;gk))_lﬁka are both J-function normalized
states, the volume average of the square of (mék))_laka over AdSs is the same as that
of the square of Wj; hence we can replace the square of (/{gk))_laka by Wi(z)? while
computing K, (x,z;s). The contribution to the heat kernel from this set of modes will
have the same form as (3.9), except that the exp[—s(A?+1/4)/a?] term will be replaced by
exp[—svy(A)] where () is a function of A that gives the eigenvalue of the kinetic operator
acting on this state. Similar remark holds for all other basis states which are obtained by
acting suitable differential operators on the eigenfunctions of the scalar Laplacian. This
will be illustrated in detail in section 5.

As we shall see in the later sections, in the presence of non-trivial background gauge
fields the individual basis states introduced e.g. in (2.10) and similar basis states for higher
spin fields no longer remain eigenstates of the kinetic operators. Instead the kinetic op-
erator is represented as a matrix on such basis states for fields of different spin. The
matrix however is still block diagonal, with each block spanned by basis states built by the
action of various differential operators on the Y, (1, @) fax(n,0) for fixed (I,\,m, k). In

8Typically in a string theory there are multiple scales e.g. string scale, Planck scale, scale set by the
mass of the D-branes etc. We shall consider near horizon background where the string coupling constant
as well as all the other parameters describing the shape, size and the various background fields along the
six compact directions are of order unity. In this case all these length scales will be of the same order.

— 14 —



this case we have to replace the e~ =sl(1+1)

factor in the integrand by >, exp[—s7;(l, A)]
where the sum over i runs over all the eigenvectors of this matrix and 7;(l, A) represent the
corresponding eigenvalues.

For the discrete modes given in (2.6) and (2.9) we need to evaluate the contribution
explicitly. This can be done by noting that at n = 0 only the £ = +1 modes in (2.6) are
non-vanishing and only the £ = £2 modes in (2.9) are non-vanishing. This allows us to
explicitly evaluate the contribution from the discrete modes to K44, (0;s) for the vector

and the symmetric tensor fields:

1
tor :
vector : o
3
tric t : . 3.24
symmetric tensor : o— (3.24)

Again in the presence of non-trivial background field there can be mixing between the
discrete modes of various fields, carrying the same [ label, under the action of the kinetic
operator. In this case we have to find the eigenvalues ~;(l) of the corresponding matrix,
and include factors of exp[—s7;(l)] in the summand in computing the contribution to the
heat kernel from the discrete modes.

This procedure for computing the heat kernel for higher spin fields from that of scalars
does not work for fermions since the eigenfunctions of the fermionic kinetic operator are
not given by simple differential operators acting on the eigenfunctions of the scalar kinetic
operator. However since the eigenfunctions of the fermionic kinetic operator are given
in (2.16), (2.20), we can use this to explicitly compute the heat kernel of a fermion on
AdSy x S%. This was done in [46] and the result for a Dirac fermion is

1 > . -
~ g / e X coth(rA) (20 4 2) eV (3.25)
T 0 1=0

Since the basis for the expansion of a spin 3/2 field is given by various operators acting on
the eigenmodes of the spin 1/2 Dirac operator, we can use the previous trick to compute
the heat kernel for spin 3/2 field in terms of the heat kernel of the spin 1/2 field. This will
be illustrated in section 6.

One final issue that enters the computation is the following. Typically for higher spin
fields the heat kernel on AdSy x S? also receives contribution from zero modes, — discrete
modes representing eigenfunctions of the kinetic operator with zero eigenvalue.? These give
s independent contribution to the heat kernel. Integration over these zero modes cannot
be represented as a determinant of the kinetic operator and must be computed separately.
For this reason we need to identify in the final expression for the heat kernel on AdSs x S?
the s-independent contribution from the discrete modes and subtract it from the full heat
kernel. We then have to evaluate separately the contribution due to integraton over these
zero modes.

9Note that here we are refering to the zero eigenvalues of the full kinetic operator on AdSs x S?, taking
into acount the effect of background gauge fields, and not eigenvalues of the kinetic operators on AdS> and
S? separately.
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It follows from (3.3), (3.6) and (1.3) that if the total contribution to K(0;s) after
removing the contribution due to the zero modes is given by c¢/72a* for some constant c,
then the net logarithmic correction to the black hole entropy from the non-zero modes will
be given by

—4clna® = —2clnA. (3.26)

4 Quadratic action of gravity multiplet fields in N/ = 4 supergravity

We consider type II string theory compactified on K3 x T? or equivalently heterotic string
theory on 7. In the language of heterotic string theory the black hole solution we consider
contains momentum and winding charge along one of the circles of 76 denoted by the co-
ordinate z*, and Kaluza-Klein monopole and H-monopole charges associated with another
circle of T denoted by z°. The other compact directions will be denoted by %, - - - 2°. The
quadratic action involving fluctuations of the various massless fields of N' = 4 supergravity
around the near horizon geometry of the black hole was analyzed in [46]. The result of
this paper shows that the dependence on the charges can be scaled out by a simple field
redefinition and the final action depends on the charges only through an overall length
parameter a describing the radius of curvature of AdS, and S2. The relation between a
and the charges has been given in (1.3). It was further found that the net logarithmic
correction to the black hole entropy due to fields in the matter multiplet vanish. Thus we
shall focus on fields in the gravity multiplet.

We shall use the convention in which the indices p, v run over all the four coordinates
of AdSy x S, the indices «, 8 run over the coordinates of S? and the indices m,n run over
the coordinates of AdSs. In this convention the gravity multiplet fluctuations around the
near horizon geometry are labelled by a set of six vector fields .Aff) (1 <a<6),aspin two
field hy,, two scalars x1 and x2 describing fluctuations of the axion-dilaton field, and four
gravitino and four dilatino fields. It is natural to combine the four dilatino fields into a 16
component right-handed Majorana-Weyl spinor A of the ten dimensional Lorentz group,
and the four gravitino fields into a set of fields {1} where for each p (0 < pp < 3) 7, is a
16 component left-handed Majorana-Weyl spinor of the ten dimensional Lorentz group.'?
In the harmonic gauge the quadratic part of the action involving these fluctuating fields is
given by [46]

S =8,+5f= d*z \/detg(CbJr[,f), (4.1)

6
1 w1 1 1
_ 1 1 1 1S~ 4@ gy prvy 4(@
Ly 4hW<Ah> + 5000+ 5 xe0xe+5 Y AP (90— B)A

a=1

2
o @2 (W By = 1D + 232 (W7, = %) ) + f i J {0, + &P [ ng"|

N | =

90ur conventions here are somewhat different from that of [46], where A refered to the dilatino field in
ten dimensions, and the four dimensional dilatino, obtain after dimensional reduction, was denoted by .
The latter field is being called A here, and we shall not make any reference to the ten dimensional fields
before dimensional reduction.
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1 -_mn « 2
+m [Zs i (—2x2+ WL, —hP,) —e 5f(§46) (=2x2 + WP, - hvv)}

1
- :_mn £(2) afB £(1)
+a\@ X1 (zs o+ € faﬂ) , (4.2)
and

1] - _
Lr=—3 [u}#rwmm,, +AT#D,A

+4\1/§ Wy, [~THP7 4 2617 VP 4 QDHPVTY 4 THVTPO] (F) T + Fo 1) 4h,
7 BT (BT 4 F2,0%) A= A (EL, T+ FL D7) D075,
—;%FNFVD,,F%,,] . (4.3)
Here
19 = 9,41 — 0,4, (4.4)
(&h) = "D = Bye, = Ry T = 2Ry b %gw 9% O hpo
+Rhy + (QMVRW + szgpa) hpo — % R g 9" hpo (4.5)

and £*% and £ have been defined in (2.2). All indices are raised and lowered by the back-
ground metric gy, given in (2.1). R0 is the Riemann tensor on AdSy x S? constructed
from the background metric (2.1) and F’ pla and F 920, are background gauge field strengths
whose non-vanishing components are

_ i _ 1
Flo= e, F2, = —¢.5. 4.6
mn ﬂa mn af \/ﬁ& afB ( )

I'M are ten dimensional gamma matrices chosen as follows:
' =+ ® Iy, ™ =300, 0<pu<3, 4<m<Y, (4.7)

where 7#’s have been defined in (2.12) and I'™ are 8 x 8 SO(6) gamma matrices. Yy A
are defined as

o=yl C, A=ATC, (4.8)
where T denotes transpose and C' is the SO(10) charge conjugation matrix satisfying
ecrhHT =cr4,  cT=-cC. (4.9)
Our choice for C will be: R
C=0207®C, (4.10)

where C is the SO(6) charge conjugation matrix satisfying

crm’ =-cre, Cc'=C. (4.11)
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We can use the vielbeins to convert the tangent space indices to coordinate indices and
vice versa. We shall use the same symbol I' for labelling the gamma matrices carrying
coordinate indices.

The Lagrangian densities given in (4.2) and (4.3) includes gauge fixing terms of the
form:

- %gw <D“h“p - %D,) h“u> (D” Do — ;Dgh”y> - %D“AE;L)DVAW + %Z#F“F”Dl,l“pzﬁp.

(4.12)
Gauge fixing also leads to a set of ghost fields. Let us denote by b, and ¢, the ghosts
associated with diffeomorphism invariance, by b and ¢(®) the ghosts associated with the
U(1) gauge invariances, and by E, ¢ the ten dimensional left-handed Majorana-Weyl bosonic
ghosts associated with local supersymmetry. Quantization of the gravitino also requires the
introduction of a third ten dimensional right-handed Majorana-Weyl bosonic ghost field
which we shall denote by é.1! Then the total ghost action is given by [46]

Lanost = [V (g0 + Ru) ¢ + 600 — 200 B, Die”| + 5T D,e+ ET#Dye. (4.13)

Our goal will be to compute the one loop contribution to Leg due to these fields and use
this to compute the correction to the black hole entropy.

5 Contribution from the integer spin fields

In this section we shall compute the contribution to the heat kernel due to the gravity
multiplet fields of integer spin — both physical fields and the ghosts. We begin with the
physical bosonic fields which include the fluctuations h,,, AELG) for 1 < a < 6 and the scalar
fields x1 and x2. From the structure of £ given in (4.2) we see that the fields A,(f) for
3 < a < 6 are not affected by the presence of the background flux. Hence their contribution
to the heat kernel is given by that of four regular vector fields in AdSy x S?. This was
computed in [46], but we shall review the analysis since the method it uses will be of use
for other fields as well. As explained in section 3, the general strategy is to express various
fields as derivatives of scalar fields and then express the scalar fields as linear combinations
of complete set eigenstates of the —[Jg2 and —[J44g, operator. For example we can write'?

Aga) - Z 1(k) (Pék)aa U + ng)gaﬁaﬁ uk) )

"' This comes from the special nature of the gauge fixing term given in (4.12); to get this term we first
insert into the path integral the gauge fixing term 6(I'*4,, — £(z)) for some arbitrary space-time dependent
spinor &(z); and then average over all £(z) with a weight factor of exp(— [ v/det g&IP€). The integration
over ¢ introduces an extra factor of det ) which needs to be canceled by an additional spin half bosonic
ghost with the standard kinetic operator proportional to .

12Note that we are pretending that the eigenvalues are discrete whereas in reality the eigenvalues of
—0aags, are continuous and hence the w’s are delta function normalized. But this does not affect the
diagonalization of the kinetic operator.
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1
Al = Z = (ng)ﬁm w4+ SWep 0" uk> , for3<a<6, (5.1)

where {uy} are a complete set of scalar functions with eigenvalue /1(1 ) =1 (I+1)/a? of —Og2
and Iiék) =N 4+1 of —0ags, and P s Q,(lk S, R(k) s, and S( )s, are constants. Upon
substiting (5.1) mto (4.2), and integrating over AdSs x S2, we shall get an expression
quadratic in the coefficients P,Q, R,S. Orthonormality of the wu;’s guarantee that the
quadratic term is block diagonal, with different blocks labelled by different k, i.e. different
(I,A). Thus for each (I,\) we shall have a finite dimensional matrix to diagonalize. If
we denote the eigenvalues of this matrix by 7;(l, \), then the net contribution to the heat
kernel will be given by

00 [e.e]

ﬁ /0 dA X tanh(m)) IZ; (20 4 1) XZ: e 0N 4 Kiiserete s (5.2)
where Kgjscrete denotes the contribution from the discrete modes given by the product
of Yy, (¢, ¢) with (2.6). This can be computed in a similar way using the fact that the
discrete modes of each vector gives a contribution of 1/2wa? to the AdS; heat kernel. The
corresponding contribution will involve only a sum over [ but no integration over A. In
order to avoid proliferation of indices we shall from now on work in a fixed k sector and
drop the superscript k& and the subscript a from all subsequent formulee. Then the part of
the action involving the coefficients P, @, R, S is given by

1
-5k + ko) (P2 + Q* + R? + 5?). (5.3)
For k1 = 0, i.e. for I = 0 the modes P and ) are absent since the corresponding u

is constant on S? and hence d,u vanishes. Thus we have four eigenvalues of the form
K1+ ko = [A2 + (14 3)?]/a® for I > 1 and two eigenvalues of the form A? + 1. Finally for
ko = 0, i.e. A = i/2 we have some additional discrete modes. The net contribution from
all these modes to the trace of the heat kernel is given by:

4
8m2at

[65/4 / dA X tanh(r)) e > (2+1) e (426, ) +Z (204+1)e S“”U]
0 1=0 1=
(5.4)

The last term without an integration over A represents the contribution from the discrete
modes.

We now turn to the rest of the physical bosonic fields which include the gauge fields
.AEL&) for a = 1,2, the graviton h,, and the scalars x; and 2. The analysis proceeds in a
similar manner by expanding various fields in a basis obtained from derivatives of u. As
before we work in a fixed k sector and drop the index k since there is no mixing between
sectors with different k. We take the following expansion for different fields:

AD = \/771 (Cla U+ Caeagd® ) AD = T (C30m 1+ Camnd™ 1) |
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A = \/1?1 (cgaa U+ Coeapd” u) . A® = \/1?2 (C10m t + Csmnd™ 1) |
[ \/% (B1 Gadhn 4 By enndad™ e+ By 2oy 0° Ot + Breag emn °0™u)
hay = \2 (i Bs + Bg) gap u + \/m_lw (Dats + Dgéa — gus D',
[ \2 (i Bs — Bg) gmn t + W (Dmén + Dy — G DPE,,) ,
o = \/1/?1 <B78a u + By gagaﬁ u) , Em = \/1/?2 (BygOm u+ By emn0™ u) ,
x1 = Cyu, xz2 = Cou, (5.5)

where By, --- Bg and Cy, - - - Cy are arbitrary coefficients. The normalizations of the coeffi-
cients have been chosen such that the deformations parametrized by individual coefficients
are correctly normalized and the deformations parametrized by different coefficients have
vanishing inner product. For reasons to be explained later we shall first consider defor-
mations associated with uy’s for which /{,(Cl) > 2a~2 (i.e. | > 1). The need for restricting
to modes with k1 > 2a~2 is clear from the denominator factor of x; — 2a~2 in the ex-
pansion (5.5) of haz. We also exclude all the discrete modes on AdSs corresponding to
H](f) = 0 from the initial analysis; they will be incorporated later. Note the ¢ multiplying
Bs, — we have taken into account that the conformal factor of the metric, parametrized
by Bs, has wrong sign kinetic term, and hence must be rotated to lie along the imaginary
axis to make the path integral well defined. Substituting (5.5) into (4.2) and integrating
over AdSy x S? using the orthonormality of the basis states we get the contribution to the
action from the k1 > 2472, k2 > 0 modes to be

9 6
d» cl+> B
=0 i=1

1
—5 (1 + Ko +4a7) (B + B)

+a 2 (B2 + B} — a2 (B2 + B2)—2ia"*BsBs — 2v2a"*Bs(y

+iv2a~! [—\/k1C3By + \/K1C4B1 + \/k2C1 By + \/kCa. By

+V2a~! [—\/k1C7 Bs — \/k1Cs By + /kaC5 B3 — \/kaCs B1]

+iv2a" /Ry (—Co + V2Bg)Cy 4+ V2a71\/k1(Co + V2Bg)Ce

+v2a7 (/1 Cy + i1 /kaCg)Cy . (5.6)

1 1 _
—5(%1—1—%2) —5(:‘11—1—%2—4& 2)(B$—|—B§)

This needs to be further integrated over A and summed over [ to get the full action but we
shall work in a sector with fixed [ and A as before.

We can now diagonalize the kinetic operator by analyzing various blocks. First of all
note that By, Bg, Bg and By do not have any cross terms. Hence the eigenvalues in these
sectors can be read out immediately from (5.6). We get

B7,Bg : H1+I€2—2a72,
By, By : K1+ Ko + 2 a2, (57)
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Next we note that the parameters By, C3 and C] mix among themselves but do not mix
with any parameter outside this set. In this three dimensional subspace the kinetic operator

takes the form
K14 Ky a2k —ia N 2ke
2K1 K1+ Ko 0 . (5.8)
—ia"Y\/2ks 0 K1+ ko

Diagonalizing this matrix we find the eigenvalues in this sector to be
K1+ Ka, K1+ Ko ia 1 /2(k1 + ko). (5.9)

Similarly we find from (5.6) that the parameters B3z, C7, C5 mix among themselves but do
not mix with any parameters outside this set. In this subspace the kinetic operator takes

the form:
K1+ Ky a2k —a ' 2ko
251 K1+ Ko 0 . (5.10)
2/4,2 0 K1+ Ko

The eigenvalues of this matrix are given by
K1+ Ko, K1 +/£2ia*1 2(:‘%1 —l—/ig). (5.11)

The parameters By, Co, Cg, Cy mix among themselves but do not mix with any other
parameter. In this four dimensional subspace the kinetic operator is given by

K1+ ke —ia 2Ky a 'V2ky 0
—ia '\ 2ks K1+ Ko 0 —a~1\/2k1 (5.12)
2K1 0 K1+ ke —ia 1\/2ks '
0 —a N2k, —ia 2Ky K1+ K2
The eigenvalues are
K1+ Ko +a 1 y/2(k1 — K2), K1+ K2+ a”V2(k1 — Ka),
K1+ Ky —a ! 2(k1 — K2), K1+ K2 — a ! 2(k1 — K2) . (5.13)

Finally the remaining parameters By, Cy, Cg, Co, Bg, Bs all mix among themselves and
produce a kinetic operator

K1+ ke —ia 12k a"'2ks 0 0 0
—ia 2k, K1+ ks 0 2/@2 —2ia" Y /ka 0
252 0 K1+ kKy —a ! —2a Y F1 0 (5.14)
0 ia N 2ks —a " 2k1 K1+ ke 2v2a72 0 ’
0 —2ia " /Ry =207V \/R1 2v2a7? K1+ K2 2ia~2
0 0 0 0 2ia—2 K1 + K9
We shall denote the eigenvalues of this matrix by
—2 . 2 1 )\2
K1+ ke +a " fi(l, M), 1<i<6, k=Ill+1)/a* ﬁgE@—{—ﬁ. (5.15)
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For k; = 2a2 (i.e. I = 1) the modes parametrized by By and Bg are absent since the
vectors J,u and €a56/3 u are the conformal Killing vectors of S? and hence do not generate
any deformation of the metric. The rest of the modes are not affected. Thus we get the
same set of eigenvalues except the ones given in the first line of (5.7). The net contribution
to the heat kernel from the [ > 1 modes is then given by

e~/ / dA X tanh(m\) e~ Z (20 4 1) e=10HD) {2 + 262 272 — 2%,
0 =1

. 1 . 1 = 1 = 1
L 2>\2+2l(l+1)+§+e—zs\/2A2+2l(H—1)+§ +€s\/2A2+2l(l+1)+§ LSRR+

6
_ 1 F L 5
Lo FVAD2N =L L - 2l(l+1)2v2+Zesfi(l,x)}]. (5.16)
i=1

1
8m2at

For k1 = 0 (i.e. [ = 0) the function u is a constant on S?, and as a result all the modes
which involve a derivative with respect to a coordinate of S? are absent. This will require
us to set to zero the modes corresponding to C1, Csy, C5, Cg, By, B2, B3, By, B7 and Bg.
The net contribution to the action from the rest of the modes is given by

6
1 1 1
— 52 > CP- 32 > B} - 5 (k2 + 2a72)(B2 + B2) — 2v2a72 BsCy
=5

i=0,3,4,7,8,9
—H’\/ia_l,/m (—Co + \/§B6)C4 + a_li\/ 2k C3C — 2ia_2B5B6- . (5.17)

Since C3, C7, Bg and By do not mix with other fields, they produce the following eigenvalues
of the kinetic operator:

Ko, Ko, Ko+2a"2 kKe+2a 2. (5.18)
Cg and (9 mix with each other but not with others, producing eigenvalues:
ko tia "tV 2ngy. (5.19)
Finally Cy4, Cy, Bg, Bs mix with each other producing the matrix:

K9 ia" 2Ky —2ia "\ /ra O

ia" /2K Ko 2v2a2 0 (5.20)
—2ia" 1\ /ka 2v/2 a2 K9 2ia 2 '
0 0 2ia2 Ko
We shall denote the eigenvalues of this matrix by
-2 . 1N
Ko +a gl(>\)7 1 SZ§4, /{2:470/2“‘?. (521)

Thus the net contribution to the heat kernel from the I = 0 modes is given by

oo 4
1 5 . = i3 T s/ 1 _
87244 6_8/4/ A tanh(rA) e 242672 4 SV L TV L §R emsa)
T=a 0 pr

(5.22)
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We can combine the contributions (5.16) and (5.22) as follows. We first extend the
sum in (5.16) all the way to [ = 0 and subtract explicitly the extra contribution due to the
[ = 0 terms. This includes in particular the terms involving f;(0, A). Now it is easy to see
that for [ = 0, i.e. k1 = 0, the 6 x 6 matrix given in (5.14) takes a block diagonal form,
with B; and Cg forming a 2 x 2 block with eigenvalues ko & a~'v/2k2, and Cy, Cy, Bg, Bs
forming a 4 x 4 block that is identical to the matrix given in (5.20). Thus the corresponding
£i(0,\)’s coincide with ko 4-a~1y/2k2 and the four g;(\)’s. Using this result we can express
the sum of (5.16) and (5.22) as

Ly [™ | o ; ; ;
Ry e ¥/ / dA X\ tanh(m\) e~V [Z (20 + 1) e~ 50FD {2 + 2¢%5 4 2¢7%F
T™=a 0 =0

- 1 - 1 = 1 = 1
1 2)\2+2l(l+1)+§+6—zs DA +5 5 2,\2+21(l+1)+§+6—s,/2x2+2z(z+1)+§

6

19 &8 20(1+1)—2x2 -1 n 9¢8 20(1+1)—2x2—-1 + Ze—gfi(z,,\)}
i=1

1

B 6+ 202 4+ 26i§,/2)\2+% n 26—2‘5,/2X2+§
8m2at

_ 1 = 1
25V e 26_5V2>\2+2] . (5.23)

e~ 5/4 / dA X tanh(m)\) e
0

Finally we need to consider the discrete modes associated with square integrable wave-
functions of various fields on AdS;. These involve the discrete modes of the vector fields
on AdSs described in (2.6), and also the discrete modes of the symmetric rank two tensor
on AdSs described in (2.9). We can take the product of these modes with any mode of
S? to describe deformations of vector and symmetric rank 2 tensors on AdSs x S?. Let
us denote by {vﬂf), Emnv®) a real basis of vector fields obtained from the product of the
real and imaginary parts of (2.6) and a spherical harmonic on S? with eigenvalue ng) of
—Ug2 and by waq)l a real basis for symmetric rank two tensors obtained from the product
of real and imaginary parts of (2.9) and a spherical harmonic on S? with eigenvalue Hgk) of
—[g2. Note that the eigenvalues of [ 445, are already fixed for these modes; so we do not
need to specify them. We shall choose wgf% and v#f) to be real. As before we shall drop
the superscript (k) and consider the following deformations for each k:

AS,}L) = El'Um + E‘lsmnv”, .,47(7%) = EQUm + Egsmnv”,

1 ~ ~
Rone = \/771 <E38avm + E38mn0aV" + E4€a5851)m + E46a55mn35v")
a ~ ~ ~ ~ ~
hon = ﬁ (Dmgn + Dpém — gmnDp§P> y &m = Esvp + Esemnv™, (5'24)

and

Note that for k1 = 0 the modes Eg,Eg,E4,E4 are absent; this will be taken care of in
the computation. These parameters describe a set of orthonormal deformations as long as
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the v, and w,,, are correctly normalized. Also orthonormality of the various modes on
AdS, guarantee that the modes given in (5.24), (5.25) do not mix with each other and the
modes analyzed earlier. Substituting the modes given in (5.24) into (4.2) we arrive at the
following contribution to the action from these modes

4
1 ~ 1 ~ = = =
— 5/‘%1 Z(E?%—E?) — 5 (Hl -+ 2a_2) (Eg—l—Eg) —a_l V2K1 (ZElEg —ZE1E3+E2E4+E2E4> .
i=1
(5.26)
The ten eigenvalues of the kinetic operator are

K1+ 2a_2, K1+ 2a_2, == a_1\/2/<51, == a_1\/2/<al,
ki tia "2k, kK1tia 'V2k. (5.27)

Note that for k1 = 2/a?, i.e. for [ = 1 we have a pair of zero eigenvalues. Physically these
arise due to the fact that the dimensional reduction of the metric on S? produces a massless
SU(2) gauge field on AdSs, and these, like the U(1) gauge fields, have zero modes on AdSs.
For k1 = 0 the modes Ej, Eg,, FE4 and E4 are absent and we get six eigenvalues

0, 0, 0, 0, 272, 2a72. (5.28)

Finally the modes described in (5.25) does not mix with anything and describes a mode
with eigenvalue k1 of the kinetic operator, leading to a contribution

1
— 5 h E? (5.29)
to the action. Combining these results and recalling the coefficient of the contribution
from the discrete modes of AdSs given in (3.24) (1/27a? for the discrete mode of the vec-
tor'3 and 3/27wa? for the discrete mode of the symmetric rank two tensor) we get the net
contribution from the discrete modes to be:

1 Ze—gl(l-i-l) (20+1) e—zg+e—g\/2l(z+1)+eg\/25(1+1)+e—¢g\/25(z+1)+e¢§\/21(z+1)+3 5.30)
8m2at ot
+2+e 43
= 5 i . Zegl(l+1)(2l+l){3+€2§+e5\/2l(l+1)+€§\/2l(l+1)+ei§\/21(l+1)+ei§1/2l(l+1)}2‘|.
m2a
1=0

The 2+ %% in the second line represents the contribution to the heat kernel from the prod-

uct of the discrete modes of the vector field with [ = 0 mode on S? (i.e. with eigenvalues
given in (5.28)) and the 3 represents the contribution from the modes of the metric given
by the product of I = 0 modes in S? and w,,,, in AdSs.

13In carrying out this computation we have to take into account the fact that we have chosen a real basis
in which v, and &,,,v" are independent vectors. This gives an extra factor of %, leading to a contribution
of 1/4ma® per mode from AdSs. For example the zero modes of a free gauge field which does not couple to
the background flux will be described by the modes E; and E4 with action r1 (E? + Ef), and together they
will give a contribution of 1/27a? from the AdSs part.
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We must also include in our list of bosonic fields in the gravity multiplet the ghosts
which arise during the gauge fixing of the six U(1) gauge groups and the diffeomorphism
group. The Lagrangian density for the ghost fields has been given in (4.13). In particular
the kinetic term has the form:

—g,,0—R 0 &
— (e plo Guv - v
G )( 2 5, D? D) <c(a)> | (5.31)

Since this has a lower triangular form, the off diagonal term does not affect the eigenvalues.
Thus the scalar ghosts have the standard kinetic operator —[J and the twelve scalar ghosts
arising from U(1) gauge invariance gives a contribution —12K%(0;s):

—12 e 5/ / dA X tanh(m)) e~ [Z (20 4 1) e‘sl(l“)] . (5.32)
0

=0

8m2at

The contribution from the vector ghosts b, ¢, can be analyzed by decomposing them into
various modes as e.g. in (5.5) for kK1 > 0:

1 1
by = A—— Oyu+ B——¢, 8ﬂu,
NG N

1 1
by = C—— Opu + D—— £,,,0"u,
N N

1 1
Co = E—K1 Oatt + F71 8a585u,

1 1
em = G—— O+ H—— ™. 5.33
= = (5.33)

Substituting this into (5.31) we get the following action:
(k1 + ko — 20" 2)(AE + BF) 4 (k1 + k2 + 207 2)(CG + DH). (5.34)

This has four eigenvalues of magnitude (k7 + k2 —2a~2) and four eigenvalues of magnitude
(k1 + k2 +2a72). For k1 = 0 i.e. [ = 0 the modes corresponding to A, B, E, F are missing
and we get the action to be

(ke +2a%)(CG + DH). (5.35)

This has four eigenvalues of magnitude (k2 + 2a~2). The net contribution to the trace of
the heat kernel from these modes is

1 A o | ; ; s .
~ 32 e ¥/ / dA X\ tanh(m\) eV [Z (21 + 1) e S1HD) {46_2S + 4628} + 46_2s]
T™a 0 -1
1 A o | — ; ; . ;
= g e~ 5/4 / dA X tanh(m)) e~ [ (20 + 1) e—8l<l+1>{4e—25 + 4628} — 4625] .
T™a 0 =0

(5.36)

To this we must include the contribution from the additional modes obtained by taking the
product of the discrete modes for vector fields on AdSs given in (2.6) and the eigenstates



of the scalar Laplacian on S2. These modes have eigenvalues x1 + 2a~2 and hence gives a
contribution to the heat kernel of the form:

— a4z (21 +1) e+ =25 (5.37)
7T

Adding (5.4), (5.23), (5.30), (5.32), (5.36) and (5.37) we get the following expression
for the total heat kernel from the bosonic sector and the scalar and vector ghost fields of
the gravity multiplet:

1 [ee]
Kﬁauzty(o; 5) = 87‘1’2@4 75/4 / dA A tanh 71')\ lz 2[ + 1 —si(l+1)
=0

X {6 — 2% —2¢7%
+ei§w/2>\2+21(l+1)+% +e—¢g,/zx2+21(z+1)+% +e§\/2)\2+2l(l+1)+% +e—5\/2A2+21(l+1)+%
6
265\/2l(l+1)—2>\2—% + 26—5\/2l(l+1)—2>\2—% + Ze—sfi(l,k)}

_{14 — 225 4 26i§«/2>\2+§ + 267i§‘/2)\2+% + 265«/2)3-#% + 267§,/2>\2+% }]

1 N -3 —25 \/ 54/
+87r2a4 Z (2l + 1) e l(l+1) {7 —_e 25 21 lJrl + e~ 2l lJrl)
=0

ENCIC N e-is\/m} . (5.38)

Ar2gt”

Following the trick leading to (3.11) we can express this as'*

1
8m2at

B
Kgramty

oo X oo — .
(0;5) = e~/ / dA X tanh(7A) e~ [68/4Im/ dX Mtan(m)) e
0 0

X2 X {6 —2e% —2¢7%
L eisV2R 2R | e—ig\/2A2+2X2 n eg\/2A2+2X2 4 V2R
6
9 5V 2222221 + 26—5\/2,\2—2,\2—1 + Ze—sfi(,\—;,,\)}

—{14 —2e% 4 26V R Tl I P }]

1 _ € X 00 o "
+87r2a4 68/4[77”&/ d\ Mtan(m)) e
{14_26_2§+26 I T R LG N P \/ﬁ}
1
CAm2at” (5.39)

M Note that although the individual terms in the sum have branch points on the real hy axis, the sum of
all the terms inside each curly bracket is free from such branch point singularities.
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Our goal is to extract the behavior of this expression in the region a =2 < 5 < 1 since
the logarithmic correction to the entropy from the non-zero modes come from this domain.
This is done using the same trick as in section 3. First we expand all terms in (5.39) other
than the e~ and e factors in a power series expansion in 5. The only additional
subtlety in this analysis comes from the fact that the eigenvalues f;(l,\) are not given
explicitly. However we can use the expansion

6 oo 6
doethi=3 % (=1)"s"> (f)" (5.40)
=1

n=0 i=1

to reduce the problem to the computation of Y- (f;)". Since f;/a®’s are the eigenvalues
of the matrix M obtained by removing the diagonal k; + k2 terms from the matrix given
in (5.14), 21'6:1( fi)™ is given by a?"T'r(M™) which can be easily computed. In our analysis
we need the result for n < 4. The results are

Dofi=0, D (P =4 24 1), 3 (i) = 4807+ 47,

K3 (2

D O(fi)* = =28 = 11227 + 80A* + 112X% + 9617 X2 + 80A* (5.41)

(2

This allows us to express the right hand side of (5.39) in terms of products of factors of
the form

00 e x o0 . . P
/ dA X tanh(mA) e N A2 and  Im / dAX tan(mA) e A2 (5.42)
0 0
Using eqs. (3.16), (3.17) we can express the right hand side of (5.39) in a power series
expansion in 5. We need to compute up to order s” term in this expansion for computation
of logarithmic correction to the entropy. Collecting all the terms of order s° we get

13 2 2 1 169
B L) _
Kgravity (0:9) =  90m2at * 3m2at * 3n2at  4n2al T s 18072a4 o (543)
where - - - denote terms proportional to 52 and 5! as well as positive powers of 5. In the

central expression in (5.43) the four terms represent respectively the contributions from
the terms inside the three curly brackets in (5.39) and the last term in (5.39).

Finally we need to remove from this the contribution due to the zero modes. To
identify the zero modes we can look for the s independent terms in the contribution to the
heat kernel from various discrete modes. These consist of the following:

1. The | = 0 modes in the last term in (5.4), giving a contribution of 1/27%a* to
K (0;s).”These represent the zero modes of the four gauge fields ASZ) for 3<a<6.

2. The third term inside { } in the first line of (5.30) for [ = 1, giving a contribution
of 3/8n2a*. These represent the zero modes of the SU(2) gauge fields arising out of
dimensional reduction on S2.
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3. The 2 and 3 in the second line of (5.30). The first one gives a contribution of
2/ 8m2a* and represent the zero modes of the two gauge fields Aﬁﬁ‘:) for 1 <a < 2.
The second one gives a contribution of 3/872a* and represent the zero modes of the
metric associated with the asymptotic symmetries of Ad.Ss.

Thus the net contribution to K, gamty

1 3 1 3 3
= . 5.44
2m2at + 8m2at + 47204 + 8m2at 272t ( )

(0; s) from all the zero modes is given by

Subtracting (5.44) from (5.43) we get the net contribution to the s independent part of

KB

gravity(0; 8) from the non-zero modes:

101

_— 4
18072at (5.45)

6 Contribution from the half integer spin fields

Next we must analyze the fermionic contribution to the heat kernel. For this we express
the gravity multiplet part of fermionic action given in (4.3) as

1 _ _ —
£y =—5 (AKW + GoKD 4§ KD (6.1)

where
1

5 ﬁa(agf‘* — i) (TP4pg — Thy)

KW = (Dg2 + o3 D aas,) A+

1 ~ ~ 1
2 4 . T5
K® = W Lo (03" —dmsI™) A — ifn(lpbﬂ + 031 aq5,)Tatbn
1 7 EN oA
— <2T5 (Ds2 + 03D ags,) Ta + %03%6 <03F4 - 273F5>) (0
1 ~ ~ 1
KB = _— T I* —imP)A — =17 r
n = 55 m (03 iT3I™) 5 (Ds2 + 031D aas,) Tms

1 ? N .
+ (—2Fn (wgz + 03 wAng) T, + %7’3577? (03F4 - ’LT3F5)) Up . (6.2)

Let us denote by D the differential opeartor such that (6.2) may be expressed as

K@ A
KO =D [ wa|. (6.3)
K Vi

Our goal will be to calculate the eigenvalues of D (or more precisely D?) since these will
appear in the expression of the heat kernel. For this we follow the same strategy as
in the bosonic case, i.e. instead of working in the infinite dimensional space of fermionic
deformations, we identify finite dimensional subspaces such that modes inside one subspace
do not mix with the modes outside this subspace under the action of D. Let us pick one
particular basis state y for the spinor, given by the direct product of (len or nf{n) with

— 28 —



(xT(X) or n*(N\)) defined in (2.16), (2.20), and an arbitrary spinor in the representation of
the Clifford algebra generated by I'*,---T'¥ carrying I'*® eigenvalue i. Then y satisfies

T =ix, Dgex=iC1x, Pais,x =iCax, € >0, (2>0. (6.4)

From this we can derive the identities:

5Q5D6X = —i03Dax — G1o3Tax, €mnD"x = —im3Dpx — (o303 X . (6.5)

The set of states x constructed this way do not form a complete set of basis states since
we have left out the states with (; < 0 and/or (2 < 0 and those with 45 eigenvalue
—i. We shall overcome the first two problems by including in the basis the states o3y,
Tgf4f5x =473 and 0373f4f5x = io373X. Since x and o3Y have opposite g2 eigenvalues
and y and 73x have opposite P Ads, eigenvalues, this amounts to including in the basis
states with ¢; < 0 and/or {2 < 0. To overcome the last problem we add four more states
in the basis obtained by acting I'* on the states already included. We now consider the
subspace consisting of the following fermionic deformations:

A=ax+ a203f4x + a373f5x + a4037'3f4f5x
+o3 [aix + a’203f4x + G§T3f5x + 020373f4fsx )
Yo = biTaX + baosT T x + b3l T o) + baos DT T 1 x
+b5Dax + beo3T Dax + b3 Doy + bgosmsTT° Dy x

+o3 [b’lfax + béagf‘LFax + béTgf5FaX + bQ0373f41q5Fax

Vi Dox + byosT* Doy + bhmsT Doy + bé0373f4f5DaX}

Vm = c1l'mx + 0203f4FmX + 037-31A“51“mx + 040373f4f5f‘mx
+¢503 Dy X + 6T Dy + ¢7o3m30° Dy x + cs3T T2 Dy x

403 [c’lf‘mx + clzagf4f‘mx + CgT3f5FmX + cﬁka373f4f5f‘mx
+c503 DX + cgf4DmX + c§7303f5DmX + cé73f4f5Dmx} (6.6)

where a;’s, b;’s, ¢;’s, a’s, bl’s and ¢}’s are arbitrary grassman variables and x is a fixed
spinor satisfying (6.4). We shall see that the action of D keeps us inside this subspace.
Before we proceed some comments are in order. First note that the basis states used
in (6.6) are not orthonormal. As we shall discuss shortly, this will not affect our analysis.
Second, due to the relation (2.27) the basis states used in the expansion (6.6) are not all
independent for (; = 1/a. For this reason we shall for now consider the case ¢; > 1/a. The
¢1 = 1/a case will be analyzed separately. Finally there are additional set of states associ-
ated with the discrete modes described in (2.28), — these will also be discussed separately.
Using (6.2), (6.6) and (6.5) we can express K, K?) and K®) in the form

K(l) = A1X + A20'3f4x + A37‘3f5x + A4O‘37‘3f4f5x
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+0’3 [All)( -+ A/20'3F4X + AéTngX + A2037’3f4f5><:| s

K = BiTox 4 BaosI*Tox + BsmsI°Tox + ByosmsD T T, ¢
+B5Dyx + BGUgf4DaX + B7T3f5DaX + 380373f4f5DaX
+o03 |:BiFaX + B§03f4FaX + B§T3f5FaX + B£0373f4f511ax

+BgDaX + Bé03f4DaX + B/77’3/F\5DO¢X + Bé0'37’3f4f5DaX]

K,(,:j’) = Cil'yx + 0203f4fmx + 0373f51“mx + C’4037'3f4f5FmX
+C503 Dy x + Cﬁf4DmX + C7Jg7’3f5DmX + 08T3f4f5DmX

+03 [C{me + ChosD T x + C§73f51“mx + Chosms T T, ¢

—I—C'éagDmX + C’éf4DmX + CéTgUng)DmX + Cé73f4f5Dmx]

(6.7)
where!?
. by ibg  iCibg (b7 2 icg  iGece  Gecr ..,
Al =iCia; — - - + — — - + + 1C2a
! Gan V2a V24  2v2a  2vV2a V24 V24 2v2a  2v2a G2
. by tby  iCibs  Cibg c1 iy iGecs g ..,
Ay = —iCraz + - + + - + — — +iCoa
2 G142 V2a V24 2v2a  2vV2a V24 V24  2vV2a  2v/2a G2z
. iby by Cibs  iCibg | iy cq Goes  iCecs ..,
Az = iCia3 — - + - + + - + —1G2a
3 Guas V2a V24 2v2a  2vV2a V24 V24  2vV2a  2v2a G203
. ibo b3 C1be iC1b7 19 c3 C2C6 iCacr ..,
Ay = —iCraq — + + — + + + —1G2a
4 G1as \/ia ﬁa 2\/5@ 2\/§a ﬁa V2a Qﬁa 2\/5@ G2
b/ ib/ iClb/ Clb/ C/ ic’ iCQCI CQC/
A = iCoay —iCid, + —2 + 103 6 7 G g 6 4 7
! G = iry V2a V24 224 2v2a V24 V24  2vV2a  2V2a
b, b iClb/ Clb/ c i iCQC/ CQC/
! = 1000 +Z a, — 1 + 4 5 8 1 + 4 5 8
2 G2a2 Gy V2a V24 2v2a  2v2a V24 V2a 224 2v/2a
. . b b, C1b/ z’{lb’ ic} c, CQC/ ’ngC/
Ay = —iCyas — iCraly + — + —A — L5 i
3= Tl G T 9vRe T avaa  vaa T vaa 2v2a | avaa
b, bl Clbl iClb/ ict ch CQC’ ’iCQC/
':—ia—kia’—i—ZQ—?’— 6 7 & 34 6 7
4 G2a1 Gy V2a V24  2v2a  2vV2a V24 V24 2v2a  2v2a
as 1as
By = — +
! 2V2a  2v/2a
. 1 1 ~ 1 1 1
—iC1b1 + %52 - %53 + (C]? - 5412 + K) bs + %bﬁ + %57 + 5(1(25/5
. 1 ~ 1
+iC1er — §C1C2C5 + <C22 - 2(22> c
al 104
By = — +
2 2V2a  2v/2a

5These relations were derived without using the fact that x has r eigenvalue ¢ or that {; and (o are
positive.
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i1 C1
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+oob1+iGbe + 5 b4 + 5 s = <c% - 5¢t +K> b — 5-bs + @@b’

) 1 ~
+iCico — §C1C206 + <2C22 - C22> 6

z'al ayq
Qfa 2v/2a

b Cl =2 1 2 Cl /

—— 1—ZC1b3+*b4+ g —bs+ ({3 —551 + K b7+7 8—*ClCzb7
—iCic3 + *C1C267 + <§32 - 2(22> s

iag as
Z\fa Q\fa

- 1 1
7b2 + 7()3 4+ i(1bg — gb6 + £b7 — ((% — §C12 + K) bg — 5(1(252;

—iC1c4 + §C1C208 + <2422 - ZS) cs

1 ) . .
_%b6 + %57 +iCab5 — 2¢1 — iCacs

1 ) . .

*%bs - %bs + iCabg — 2¢2 — iCacs

) 1 ) )
ib5 - %bs — iCaby + 2¢3 + iCacr

) 1 . .

—%b6 - %57 — ilabl + 2¢4 + iCacs

al B iah
2V2a  2v2a

1 . 1 i = 1 i1, G
+§C1C255 + i1 b} + %5/2 - %bé - <C12 - §C12 + K> b5 + 7b6 * o /7

1 2 72 sk 1 1 /

(5% @ ) e +itiey — GG
a4y dag

2v2a  2v/2a

1 1 .
+=C1lobs + b} — iC1by + b4 + i ¢ - *C12 + K ) b — g

2 2a 2a

- 1 .

+ (@2 - 2(22) 6+ i1y — 5(1(206
iy al

2v2a  2v/2a

1 1 . Cl ZC1
—§C1C2b7 - %5/1 + iC1bs + % f + 5, <C1 *C12 + K) T+ 3,

1 ~ .
+ (263 - 622) cr —iCics + 541@0/7
ial, ah

a 2v/2a a 2v/2a
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C3

Cy

) 1
- C1C2bs + —bh+ —

2a 2a 2a 2
- . 1
+ (@2 - 2(22) cg — iC1cy + 5(1(2023
. 1., i, by
iCobs — 2406 + %57 — 2¢7 — Q205
) 1 1 .
iCabe — %5/5 - %bé — 2¢y — iCacg

. 1 i .
—1Caby — %bg + %bg + 2¢5 + ilach

1
—iGabs — 507 — 5 b + 2¢) + iCacy

)
2a

~ 1
ty— il — S ’6+Z@’7+<<%—2<%+K>bé

Ao (Z% - 56 ) b= it + 5064

—217102 + ; C1C205 - 22206 - 24*07 iCach + <522 - %@2 + L) c
2\0}1& + Qi;é + (512 - C%) be + iCaby — %Cl@b%

—21*&01 - 2104 - 22&65 + C1C206 + ZC —iCacy + <622 - %@2 + L) G
N TR 7 (cl c%) b — iGathy + 5ol

-I-iﬁ - %64 - 29 C5 — *C1C267 - ;Cjcs + iCach — <522 - %@2 + L) cr
N TN T (Z% - c%) bs + iGalh, — 5G1Gab

—% c2 — ;63 + ;;206 - %w + CICQCS + iCacy — (gzz - %CzQ + L) cs
W, +iGib — iGues + oco — o-cr

—2bly — (b +.21QC5 + iy + %08

1
Qbé + chb/7 — cs —iCier + %Cg

7 1 .
—cg + —c7 +iCics

—2b, — i(y b
17 b + 2a 2a

al ial +iob 1<<b_|_<z2 1C2>bl
_ i - _
N2 2a o 2oER AN T )T
. ps)) 1 2 1 / i / 1 /
_lCZCl + <2 - 5(:2 +L|cs— %62 + %63 + §<1C205 -
/ -/
Cll Zaz4 . 1 ) 1 2) /
+ ~iCabs + = C1Cab + ~2 )b
NIREN:T Cabo 2C1C2 6 <C1 2C1 6
. ~ 1 1 7 (o
—iCaco + <C22 - 5(22 + L) Co — 2a0/1 - %Cﬁx - %CQ -
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! ia} aly L ioh 1( G <ZQ 1 C2> "

pr— —_— Z —_— — R
5T 0VRa 2v2a | 0t 2T Bt Tt )

. ~ 1 7 1 (o 1 Z'C2
+i¢ac3 — <C§ - §C22 + L) cr + %0/1 - %CQ — %0’5 + §C1C20’7 — %cg
ial a’ 1 ~ 1

o/ T TN Y b—(2—2>b’

N P M I T SRR A

, - 1 i 1 G, G, 1
+iCacy — <C§ — 5(% + L) cg — %0’2 — —acg + %6/6 — 2%0'7 — iglggcg

. , 1 i
Ch = —2by —i(1bs +iCics + %cg — %0’7

‘ 1 , i
Ci = 2by +iC1bg + %0'5 —il1cy + %cg
. { . 1
Ch = —2bg —i(1by — %0/5 +i¢1ch + %C/S
! . Z / 1 / . /
Cy = 2by +iC1bg + 2456 + 2257~ iC1cy (6.8)
where ) ) . )
T _ 2 T 2 _ _
C1—<1—@a CQ_C2+T‘27 K—thv L__ﬁa (6.9)

and we have used

— DaD% =C3x, —DpD™x =C3x, TP[Dg,Dulx = KTux, T[™[Dy, Dylx = LT,x.

(6.10)
We can express (6.8) as
A a
B b
g - M ;/ , (6.11)
B’ g
C’ é

where M is a 40 x 40 matrix. The eigenvalues of M? will determine the heat kernel in the
fermionic sector of the gravity multiplet.

Let us now discuss the possible complication that could arise due to the fact that we
have chosen to expand the various fields in a non-orthonormal set of basis functions. If
we did use an orthonormal basis then the resulting matrix M will be related to the one
appearing in (6.11) by a similarity transformation. This however will not affect the eigen-
values of M?2. Since our final result will be expressed in terms of the eigenvalues of M?,
the non-orthonormality of our basis vectors will not affect the result.

To proceed we introduce a matrix M; through

M? = —(G + 3o+ a > My, (6.12)

where I4y denotes the 40 x 40 identity matrix. It is easy to see that in the limit of large (i,
(5 the dominant contribution to the eigenvalues come from the first term. Let us denote
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by B for 1 < k < 40 the 40 eigenvalues of the matrix My, and introduce variables A\ and
[ through:
G=0+1)/a, G=2Aa (6.13)

Then the contribution to the heat kernel from the fermionic modes for ¢; > 1/a, (2 > 0
will be given by

00 40
1 0 _3 275 2 5
K(fl)(();s) =553 > (2+2) /0 dAX coth(mA)e S AT N = 56k (6.14)
=1 k=1

The overall minus sign reflects the fact that we are dealing with fermions. The normal-
ization factor is fixed by noting that since the four gravitinoes represented by the sixteen
component field v, for 0 < p < 3 give effectively 4 x 4 = 16 Majorana fermions, and the
dilatino, represented by the sixteen component field A, gives 4 Majorana fermions in four
dimensions, we have in total 20 Majorana or 10 Dirac fermions in four dimensions. Thus the
heat kernel should agree with that of 10 free Dirac fermions in the limit of small 5§ when the
effect of background flux can be ignored, i.e. $8); can be set equal to 0. Comparing (6.14)
with (3.25) we see that we indeed have the equivalent of ten Dirac fermions.

The contribution from the ¢; = 1/a, i.e. [ = 0 term has to be evaluated separately. For
this the basis states used in the (6.6) are not independent, since we have D,x = ﬁl“ax.
Using this we can choose the coefficients bs, - - -bg and bf, - - b to zero in (6.6). Further-
more in egs. (6.7) we can make the replacement D,y — ﬁf aX, which amounts to replacing
in (6.8) the expressions for By by that of By + 5= B4 and of B}, by that of B}, + 5=Bj .,
for 1 < k <4 and then drop the expressions for By, 4 and B,; 44 for 1 < k < 4. This gives a
32 x 32 matrix M relating (Ay, - Ay, Ay, -~ A By, By, B, --- By, Cy,---Cs,Cy, -+ - CF)
to (a1, --aq,ay,---ay, b, ba, by, - by, c1,---cg,c),---¢cg). Let us now define a matrix
Ml through

M2 = —(a 2+ D) sa+ a2 My, (6.15)

where I35 denotes the 32 x 32 identity matrix. If Bk’s are the eigenvalues of M 1 then the
contribution from the [ = 0 modes to the heat kernel may be expressed as

32
1 > —5-5A2 385
Kg;)(o;s) =~ /0 dA) coth(m\)e 5 ;—1:6 B, (6.16)

We can combine (6.14) and (6.16) to write

Kby (0:) 4 Koy (0:8) = K (0:5) 4+ Ky (0:9). (6.17)
where
~ 1 > oo ) . 0
Kl (0:5) = —55— ZZ%(% +2) /0 dAX coth(m\)e S5 ;esﬁk‘ (6.18)
S / T dA X cot(m\) / ~ coth(mA)e N —53 iegﬂkhﬂ—ﬁ
A2t 0 0 2
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32 40
- 1 - —5-35\? 56 5Brli=
K(};)(O; s) = _47r2a4/0 dA)\ coth(m\)e A g ek — g e*Prli=o | (6.19)
k=1 k=1

In the second step in (6.18) we have used a trick similar to that described in (3.11), (3.12)
to convert the sum over [ to integral of A

We also need to compute the contribution due to the discrete modes described in (2.28).
For this we set the fields A and 1, to 0, and expand ¢, as in (6.6) with ¢4 = 2cja,
c;€+4 = 2¢ja for 1 < k < 4, with & = i/a, (§ > 1/a, ie. | > 0.16 Tt can be seen that
with this choice A;, A}, B;, Bl computed from (6.8) vanish and we have Cy14 = 2Cja,
C, 4= 2Cpa for 1 < k < 4. Thus we can express these relations as

1 cl
Cy Co
03 C3
04 —_ C4
o | = M o1 (6.20)
Cy ¢
Cy c
C) ¢

for some 8 x 8 matrix M. If B\k denote the eigenvalues of
My = P{M? + (G — a )}, (6.21)

then the contribution to K(0;s) from these modes is given by
1 > 2 8 3
I (0 <) — §—35(1+1 sp
K(3)(0,3) = —m Z(2l +2)€s 5( ) Zes k
=0 k=1
1 et xoo ~ san 8 5B | -
= g Im /0 dA X cot(mA)e®? Ze Flipisx (6.22)
k=1

Finally the three sets of bosonic ghosts 5, ¢ and € associated with gauge fixing of local
supersymmetry, each of which gives rise to four Majorana fermions in four dimensions,

contributes

3« e —5(1+1)2—5)2

Kost = e > (21 +2) /0 dM\ coth(m))e 51+
=0
6 e'"xoo . 00 2 a2
= Im dA X cot(mA) dAX coth(m\)e™ " 754 (6.23)
7T2a4 0 0

to K(0;s).

16T his basis is still overcomplete since, as discussed in (2.29), the action of 73 on the basis states is fixed
once we choose x to be x; (i) or n; (). Thus we could work with either the C;’s or the C}’s. But we shall
proceed by including both sets and include a factor of 1/2 in the expression for the heat kernel.
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To evaluate the right hand sides of (6.18), (6.19), and (6.22) we use the relations

Z ek = Z Zﬁk = Z —‘"TT(M") (6.24)

n= 0 n= 0
gk:esﬂk Z "> - ;;gmm). (6.25)

and
S et = Z DICEDY LSTr(MY), (6.26)
k n=0 "

Explicit computation gives

Tr(M;) =0

Tr(M3) = 64+ 16(1 + 1)* — 16)?

Tr(M3) = —144(1 + 1)? — 144)?

Tr(M3) = 256 +192(1 + 1)% +80(1 + 1) — 19202 + 32(1 + 1)2A? + 80\ .  (6.27)
Tr(M;) = —8

Tr(M3) = 72 — 8

Tr(M3) = —152 — 1202

Tr(M?Y) = 520 — 112X% + 7222 (6.28)
Tr(M;) = —8

Tr(M3) = 8+ 8(1+ 1)

Tr(M3) = —8 — 24(1 + 1)

Tr(M?P) = 8+48(1+ 1) +8(1 + 1)*. (6.29)

Furthermore we also have the analogs of egs. (3.16) and (3.17):

dA X coth(m\) e 52 A2n
0

_ 1 =—1-n = =m (2m +2n + 1)‘ —2(m+4n+1) m
=55 r(1+n)+2mz::05 () (—1)
C2(m+n+1)). (6.30)
e X o0 — ~ e~ o~
Im / dAX cot(mA) e ™ A2
0
R S o _m (2m 420+ 1)! —2(m4n+1) n+1
=58 r(1+n)+2n;)s e (2m) (-1)
¢2(m+n+1)). (6.31)

Using these relations we get the following order s contributions to various terms when
expanded in a power series in s around s = 0:

5

0;5) : 721204

Ky (
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1

- f . .
Ko (0:9) s =350
1
f . .
iy O38) s =5
f Lo 1
thOSt (07 S) - 12071_2(14 . (632)

Adding up all the contributions we get the net contribution to K(0;s) from the fermionic
fields in the gravity multiplet:
31
45m2at "

We now need to remove from this the zero mode contribution. Analysis of the zero

K7 (0;s) = (6.33)

modes in the fermionic sector requires special care. Among the [ = 0 modes in the first line

of (6.22) we have four vanishing 3}, giving a net contribution of —1/72a*. Thus naively

we must remove this contribution from K(0;s). However a detailed analysis shows that
although the matrix M? describing the square of the fermionic kinetic term has four eigen-
vectors with zero eigenvalues, the matrix M has only a pair of eigenvectors with zero
eigenvalues. These eigenvectors are

) — (- o3l — il 4 037'3f4f5)(a7111m +203Dm)x
P2 = o3(i + o3 + isT° + o573 T%) (' Ty, + 203Dy ) X - (6.34)

The other two eigenvectors of M? which are not zero modes of M are

57(7,}) = (Z + 03f4 — iT3f5 — 0'3T3f4f5)(ailrm + 203Dm)X7
57(7%) = O‘3(i - O‘3f4 + ’iT3f5 — 03T3f4f5)(a_lrm + 203Dm)X . (6'35)

The action of M on these modes are given by
MeD = —2iat gl MeQ =2ia 4, My =0, My =0, (6.36)

From this we conclude that the contribution of only two of the four zero modes of M?2
will have to be removed from the contribution to K(0;s). This amounts to removing a
factor of —1/272a* from K (0;s). Subtracting this from (6.33) we get the net contribution
to K(0;s) from the non-zero modes of the gravity multiplet fermions:

17
9072a4 "

For later use it will be useful to find the physical interpretation of these zero modes.

(6.37)

First we note that the zero modes satisfy the chirality projection condition:
0373f4f5¢,(ff) = i?[)ﬁ,lf), 0373f4f5§,(,lf) = —ifﬁ,’f), for k=1,2. (6.38)

Choosing x = xj (i) in (6.34) and using (2.29) and the fact that y has been chosen to
satisfy T%y = iy, we get

1/}(1) = (Z — 03f4 — f4 — Z0’3)(]?771 + 203Dm)X7

m

V2 = o3(i + o3T* + T* — i03) (T + 203D X - (6.39)
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Thus we have 1#%) = —¢£3), i.e. they are not independent. A similar analysis for x = n,j(z)
will give w,(,}b) = ¢,(3) again showing that they are not independent. This allows us to keep
only one of these modes, — we shall take it to be ¥/} — 1)) in both cases. Now one can
show that
. 1 /= =
OB~ 0P = Dy 1 (BT FT)

€= 2(i —03f4 —i73f5 +0373f4f5+03 —if4—|—037'3f5 —i73f4f5)03x ,

ree (Fg;>r4+ﬁp<§>r5) e=0 (6.40)

Comparing this with the supersymmetry transformations laws for the gravitino and the
dilatino in the convention of [46]

Sy = Dye + —— (30T — T, T%°) (FWrt+ F2T) et -

442
1 o (1)4 n(2)175
oA = —T7 (Fp(g)l“ + FIT >e (6.41)

where € is the supersymmetry transformation parameter and - - - denotes terms which van-
ish in the near horizon background geometry, we see that w&l) — iw,(tg) is associated with a
supersymmetry transformation generated by the parameter e. However since € is obtained
by the action of I" matrices on x* (i) or ™ (i), it is not normalizable.

7 Zero mode contribution

Adding (5.45) and (6.37) we get the net s-independent contribution to K (0;s) from all the

non-zero modes:
101 17 3

T 18072a%  90m2at | An2ad

To this we must add the result of carrying out the zero mode integration. This was described

(7.1)

for the gauge fields in appendix A of [46]; we shall briefly review the argument since it can
also be generalized to integration over the zero modes of the metric and the gravitino fields.

Let A, be a vector field on AdSs x S? and 9w be the background metric of the form
a® gl(f,),) where a is radius of curvature of S? and AdS, and gf?) is independent of a. The

path integral over A, is normalized such that

/[DA“} exp [— d*x detggWAuA,,} =1, (7.2)

/[DA,J exp [—aQ/d4x \/det g(0) g(o)‘“’AuA,,} =1. (7.3)

From this we see that up to an a independent normalization constant, [DA,] actually corre-

i.e.

sponds to integration with measure [ [, , d(aA4,(z)). On the other hand the gauge field zero
modes are associated with deformations produced by the gauge transformations with non-
normalizable parameters: 0A, o< 9,A(zx) for some functions A(z) with a-independent inte-
gration range. Thus the result of integration over the gauge field zero modes can be found
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by first changing the integration over the zero modes of (aA,) to integration over A and
then picking up the contribution from the Jacobian in this change of variables. This gives a
factor of a from integration over each zero mode of A,. Thus if there are IV zero modes then
we shall get a factor of a’V. Of course N is infinite, but it needs to be regularized by sub-
tracting from it a term proportional to the length of the boundary of AdS,. We shall now
describe two equivalent ways of computing N: one is a somewhat indirect but useful method
and the other is a more direct method, but involves a little bit of additional computation.

First let us describe the indirect method. For a non-zero mode, the path integral

/2

value of the kinetic operator. Since k,, has the form b, /a2 where b, is an a independent

weighted by the exponential of the action produces a factor of x, 12 Where Ky is the eigen-
constant, integration over a non-zero mode produces a factor proportional to a. Including
the zero mode contribution to K (0, s) is equivalent to counting the same factor of a from
integration over the zero modes as well. Thus when we remove from the determinant the
contribution due to the zero modes, we remove a factor of a for each zero mode. However
the analysis of the previous paragraph showed that integration over the zero modes gives
us back a factor of a. Thus the net effect of integrating over the gauge field zero modes is
to cancel the effect of the subtraction of the zero mode contribution from K (0; s). In other
words the net effect of integration over the six gauge field zero modes amounts to effecively
adding a contribution of 6/87%a* to K(0;s).!7 Using (3.26) we see that this corresponds
to a contribution of —61Ina in the entropy, i.e. —Ina for each gauge field.

Next we shall describe a direct method for evaluating the zero mode contribution from
the gauge fields which does not make any reference to the result on integration over the
non-zero modes. Let fy(,f) denote the normalized zero mode wave functions of gauge fields
on AdS; given in (2.6). Then the total number of zero modes may be written as

> [ doun/Aetgaas, i, 140 12, (7.4)

CeF 1£0

where gaqs, is the metric on AdSs. We now use the fact that >, 9'Nds, T(,f)* f,(f) must be
independent of the AdSy coordinates (7, 6) since AdS, is a homogeneous space. Thus we
can evaluate this at 7 = 0. In this case only £ = £1 modes contribute, leading to the result
1/(2ma?). Integrating this over AdSy with a cut-off n < 19, we get the result

a2 2ma? (coshmg — 1). (7.5)

The term proportional to coshng can be interpreted as a shift in the ground state energy.
Thus we are left with an effective contribution of —1. From this we conclude that for every
gauge field the integration over the zero modes gives a factor of a~! to e%8H  i.e. —Ina to
the black hole entropy.

The effect of integration over the zero modes of the fluctuations h,, of the metric
(including those of the SU(2) gauge fields arising from the dimensional reduction of the

7"Note that this is not the actual modification of the heat kernel, but represents the effective contribution
to be added to K(0;s) that reproduces, via (3.26), the net contribution to the one loop determinant due
to the zero modes.
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metric on S$?) can be found in a similar way, with (7.2), (7.3) replaced by

/ [Dh,,,] exp [— d'z \/detg g‘“’gp"huphw} =1, (7.6)

/[Dh,w] exp {—/d‘lx \/ det g(0) g(o)“”g(o)pghuphw] =1. (7.7)

Thus the correctly normalized integration measure, up to an a independent constant, is

i.e.

chv(w) dhy(z). We now note that the zero modes are associated with diffeomorphisms
with non-normalizable parameters: h,, o D,&, + D&, with the diffeomorphism param-
eter £#(x) having a independent integration range. Thus the a dependence of the integral
over the metric zero modes can be found by finding the Jacobian from the change of vari-
ables from h,,, to £&*. Lowering of the index of # gives a factor of a?, leading to a factor of
a? per zero mode. On the other hand following the same logic as in the case of gauge fields
we find that the removal of the integration over the metric zero modes from the heat kernel
removes a factor of a per zero mode from the integrand. Thus the effect of integration
over the metric zero modes will be to add the double of the contribution that one removes.
Since we had removed from K (0;s) a contribution of 3/872a* + 3/87%a* = 6/87%a* (see
eq. (5.44)) we need to add a factor of 12/872a*.

Finally we turn to the fermion zero modes.'® The normalization of the zero modes is
determined from

/ [D,][DY,.] exp [— d*z \/det g gﬂ"wuwy] =1, (7.8)

/ [D,][DY,.] exp [—aQ / d*z \/det g(© g<0>ﬂ'/¢u¢y] =1, (7.9)

indicating that ai, and a@Z_Ju are the correctly normalized integration variables. As dis-

i.e.

cussed in the previous section, the fermion zero modes are associated with the asymptotic

supersymmetry transformations, with the anti-commutator of a pair of supersymmetry

1

transformations generating a diffeomorphism with parameter él'*e. Since I'* ~ ¢, and

since el'*e has a-independent integration range, we see that the correctly normalized e is
€0 = a~'/2¢ for which the supersymmetry algebra generated by ¢y and £* does not involve

any a dependence. Thus integration over each ¢, zero mode is equivalent to integration

3/2 —3/2

over avp, ~ a°/“ €y, producing a factor of a . On the other hand a non-zero mode of the

fermion will produce a factor of a~1/2

1

after integration since the kinetic operator of the
fermion is of order a~*. Thus removing a fermion zero mode contribution from the heat
kernel removes a factor of a~/2 for each zero mode. Thus the effect of integration over
the fermion zero modes is to add back three times the amount we remove from the heat
kernel while removing the fermion zero mode contribution. This gives a net contribution

of —3/2712a* to the effective heat kernel.

¥Naively integration over the fermion zero modes will make the integral vanish. However it was shown
in [54] using localization techniques that the zeroes due to the fermionic zero mode integrals cancel the
infinities coming from integration over the bosonic zero modes of the metric.
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Adding up the contribution from all the zero modes we see that the net effect of
integration over the zero modes is to effectively add a factor of

6 12 3 3
_ — 7.10
8m2gt + S8m2at  2m2at 4n2at’ ( )

to K(0;s). Note that the contribution from the graviton and the gravitino zero modes
cancel — the final result 3/472a? is the contribution of the six gauge fields in the gravity
multiplet.

Adding (7.10) to the contribution (7.1) due to the non-zero modes we get the net
contribution to the effective heat kernel to be

3 3

— et g =0 (7.11)

This is perfectly consistent with the microscopic result (1.1).

8 AN = 8 black holes

In this section we shall briefly describe the analysis of logarithmic corrections to the entropy
of 1/8 BPS black holes in N' = 8 supersymmetric string theories obtained by compactifying
type IIB string theory on 7. For this we first note that there is a consistent truncation of
N = 8 supergravity to N = 4 supergravity by projecting on to the (—1)fZ even states in
which we set all the RR and R-NS sector fields to zero. Using this embedding of the N' = 4
supergravity into N’ = 8 supergravity, the quarter BPS black hole in A/ = 4 supergravity
that we have already analyzed can now be regarded as the 1/8 BPS black hole in the N' = 8
supergravity. Since the projection on to the N/ = 4 supergravity is a consistent trunca-
tion it is guaranteed that at the quadratic level, the fluctuations of the additional fields
in the (—1)fZ odd sector does not mix with the fluctuations of the fields in the (—1)F~
even sector. Thus the one loop effective action of full N' = 8 supergravity receives the
contribution already computed for the N' = 4 black holes plus an additional contribution
from the determinant of the (—1)fZ odd fields.

We begin with the contribution due to the extra bosons. There are sixteen gauge
bosons, — one from the ten dimensional gauge field A, and fifteen from the components
Cony of the 3-form field with m, n along 7° and p along AdSs x S?. There are also thirty
two scalars, — six from the components A,, of the ten dimensional gauge field along T,
twenty from the components Ciyy,) of the 3-form field along 7° and six from dualizing the
components Cy,,,, of the 3-form field. These fields can be labelled as A,(f), o1 and @o,
with 1 <r <16, and, in the Feynman gauge, the quadratic terms in the action in the near
horizon background geometry takes the form:

16

16
1 1
d*z \/det g [2 ;:1 ALT) (g0 — R™) AT + 3 E (o1 O o1 + P2 O o)

r=1

8
+3° (2071002790, A5) — a2 6
r=1
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16
+ Z (—21’ a o, 5m"8m.A£f) +a 2 g1, ¢1r> ] . (8.1)
r=9

This has the same structure as the bosonic part of the matter multiplet fields analyzed
in [46] except that for 1 < r < 8 only the components of the gauge fields along S? and
the scalar fields ¢o, are affected by the background flux, while for 9 < r < 16 only the
components of the gauge fields along AdSs and the scalar fields ¢, are affected by the
flux.!® Thus the analysis proceeds as in [46] and we find, after including the contribution
due to the ghosts, that the net contribution to the heat kernel is given by

s s 1 s s
8 SKAdSQ (0, S)KSQ (0, S) + W {K52 (O, 8) — KAng (O, 8)} . (82)

The small s expansion of this can be found by standard methods described earlier and we
get the s independent contribution to (8.2) to be

34

o2l (8.3)

Next we consider the contribution from the extra fermion fields. These fields can be
labelled by vy, (0 < p < 3), A" and ;. (4 <7 < 9) where for each p and r, ¢}, and ], are 16
component right handed Majorana-Weyl spinor of the ten dimensional Lorentz group, and
A’ is a 16 component left-handed Majorana-Weyl spinor of the ten dimensional Lorentz
group. Physically @/}L and ¢, are the four dimensional and internal components of the ten
dimensional gravitino arising in the R-NS sector. In the presence of the background field,
the quadratic action of these fermionic fields can be obtained by the dimensional reduction
of the ten dimensional action of type ITA supergarvity. The result is:

9
1] . l-
-5 ¢ TP Dy + NTHD, A + Z ¢.T* D, — §¢LFHFVDVFP¢/p
r=4
1 _ _ _ _
NG (—%F“’TP + sz’F’""’) (PaFp, + w5 Fa)

19This is not an accident but follows from the following considerations. We could have gotten an N = 4

supergravity theory from the original N' = 8 supergravity by projecting out all fields which are odd under
T, where T, represents the transformation that changes the sign of the coordinates 2, --- 2% The eight
vectors Crnp, Casy and A, with 6 < m,n <9, 0 < p < 3 and the sixteen scalars Crina, Crmns, Aa, As
and the duals of C4uy, Csu survive the projection. Four of the gauge fields and the 16 scalars will form
part of the bosonic sector the four matter multiplets. For completing the matter multiplets we need eight
more scalars which will come from the components of the NSNS 2-form field and the metric along 6789
directions, but from the analysis of [46] we know that these describe free scalars in AdS2 x S? background.
Thus the net contribution from the eight vector and sixteen RR scalar fields to the heat kernel will be
given by that of four matter multiplets of N/ = 4 supergravity minus eight free scalar fields. The four
remaining gauge fields will describe the four non-interacting vector fields of the gravity multiplet, and their
contribution to the heat kernel will be given by that of four vector fields in AdS2 x S? as given in (5.4).
For the RR fields which are odd under Z, we can repeat the argument by using projection by the operator
(—l)FL X L4, — this will pick the complementary set. Thus in total the contribution to the heat kernel will
be given by that of the bosonic sector of eight matter multiplets of the A/ = 4 theory, plus that of eight
free vector fields minus that of sixteen free scalar fields on AdS> x S?. This is precisely (8.2).
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(P, FL, + FLF2) (—rﬂr#w’p— \/§F“”A’) }] , (8.4)

where the last term in the first line is the gauge fixing term. This also leads to ghosts which
have the same action as given in the last two terms in (4.13), except that the new ghost
fields b’ ¢ and ¢ have opposite ten dimensional chirality compared to the superghosts b
¢ and € respectively of N' = 4 supergravity. Using (4.6) we can express (8.4) as

9
1] - 1- _
5 [w;F“”prwg — §¢LFMFVDVF/)¢;) +A'TD, A + g oL.TH D, ),
r=4

1 _ _ _ _ _ _
+2a{ (GaT™ = G0 + V2N ) oy + 1 (— 00, T + G0 + V2 ) 03

@3 (T4, — T4, — V2A) + ighors (~T™), + Do), — V2N') } (8.5)
As in (6.1) we shall express this as
1o . .
= [Z T Dy + (MKW + oKD +§mK) + gk + b k@) | (3.6)
r=6

where
1 .
KW = (Dg2 + o3 D ags, )N + E(TSSOZ +io3¢5)

1 1 1 .
K@ = —§F”(¢32+03 IDAdsg)Fai/JQL—*Fﬂ (Ds2+03 D ags,) Fa%—%Fa(Twﬁrws@%)
1 )
KB = —2Tﬂ($s2+03 D 4as,)T m%—*T" (Ds2+03 D ags,) Fm%Jr%Fm(TsSOQ—ZUsSOg)

1
KW = (Dg + 03 B aqs,) ¢ + 5a T (me;n — Iy, — ﬁA/)

K = (D2 + 03 D aas, )b + 5205 (~I™00, + T, — V2N) . (8.7)

The fields ¢}, - - - ¢f represent free fermions in AdS; x S? background, and the net
contribution from these fields to the heat kernel is given by [46]

4 /°° a2 e s(41)?
—_—— dA) coth(m\)e (204 2)e s
w2a* | lz;
2 11 2 3
_7r2a4§2 (1 180 + O<3 )> . (88)

The overall normalization is fixed by noting that each of the ¢.’s represent four Majorana
fermions in four dimensions. Thus altogether we have 16 Majorana or equivalently eight
Dirac fermions. The overall minus sign is a reflection of the fact that the path integral
over the fermions gives the determinant of the kinetic operator instead of the inverse of
the determinant.
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For computing the contribution from the other fields we expand them as in (6.6)

A = arx + ago3x
Pl = biTax + baosLa X + b3DaX + byosDax
P = c1lmXx + c2o3TmX + 303D X + caDimx
@y = 13(hix + haosx) (8.9)
@5 = (91X + 9203X) (8.10)
where a;, b;, ¢;, h; and g; are grassman parameters and x is the product of an arbitrary

spinor of the SO(6) Clifford algebra generated by I'4, - - 19, x;. (or ;! ) defined in (2.16)
and xiF(\) (or 7 (\)) defined in (2.20). y satisfies

Dex =iGx, Daas,x =i¢2x, ¢ >0. (8.11)
As in (6.7), we expand K1), ... K6) as

KY = Arx + Asosx

lC((f) = Bil'ax + Baosl'ax + B3Dax + BiozDqax

KB = CiTynx + Co03lyx + C303 Dy x + CaDiyx

KW = 73(Hix + Ha03)

K®) = (Gix + Gaosy) (8.12)

Explicit computation yields

. . 1 )

Ay = iC1a1 +il2a2 + Em + EQQ
. . 1 7

Ay = (a1 — iCiaz + EhQ + \me

1 7
By = —i¢1b1 + Cl bs + C1C2b4 +iic1 — *41C263 + - <C2 ) cq — *h1 + 2492

By = iC1ba + C1C253 - *C1 by +iCic2 — = (Cg ) c3 — *C1C2C4 + ?hz - 2*91
B3 = i(2bs — 261 —1(2c3
By = i(ob3 — 262 —iC2cy

1 1 1
C1 = —iGba + 5 (Cl ) bs + C1C2b4 —iC2co — C1C2C3 + *C2204 + fh1 ~ 5%
) :
) g1
a?

. 1
Cy = iQaby — §C1C2b3 + 3 <C - %

C3 = 2by +iC1by — iCic3
Oy = —2by —i(1b3 +iC1cq
Hy = iC1h1 — i(aho —

2
> 4 — 1G2c1 + C2C3 + C1C2C4 + *hz - —

1 1 7 1 7
4t — Zbi — — (b = _
\/§aa1 L 2aC1 3+ e + 26LC203

1 1 7 1 7
Hy = —i(ohy — i(1thg — —— —b —(1b - —
2 iCoh1 — iC1ha \/ia@ + e + 2aC1 4+ C2 + 2QC204
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. . 1 7 1 7 1
G1 = iCG1g1 + 1C292 — EQQ - 51)2 + 7<1b4 - C + *C204
G2 = G291 — 1C192 — Eal + gbl Clbs — C1 -|- C263 (8.13)

We can express this as

(8.14)

QT Ty
1
<

K S0 oYl

M being a 14 x 14 matrix. Let us also introduce a matrix M;j through
M? = —((+ G+ a7 My, (8.15)

where I14 denotes the 14 x 14 identity matrix, and denote by [ for 1 < k < 14 the 14
eigenvalues of the matrix M. Then following the logic leading to (6.14) one can show that
the contribution to the heat kernel from the fermionic modes for |(;| > 1, i.e. I > 0, will
be given by

0o 14

K[, (0;) Z 2+ 2) / dAX coth(m\)e~s(HFIP =52 § ™ 3 (8.16)
= k=1

where [ and A are related to ¢; and (o via

Gl =(0+1)/a, G =) a. (8.17)

The overall normalization is fixed by noting that v, ¢ for r = 4,5 and A’ altogether has
degrees of freedom equal to that of (4424 1) x 4 = 28 Majorana fermions or equivalently
14 Dirac fermions.

The contribution from the [(i| = 1/a, i.e. [ = 0 term has to be evaluated separately
following the same logic that lead to (6.16). We choose the coefficients b3 and b4 to be zero
and replace in (8.13)A‘Ehe expressions for By by thait/ of By + %B;ﬁg for k = 1,2. This leads
to a 12x12 matrix M. We now define a matrix M; through

M= —(a 2+ B +a M, (8.18)

where I15 denotes the 12 x 12 identity matrix. If Bk’s are the eigenvalues of Mv 1 then the
contribution from the [ = 0 modes to the heat kernel may be expressed as

12
1 - —5—5\2 56
K(J;)(O;s) == /O dA coth(m\)e 5~ ;_1:@ P (8.19)

We can combine (8.16) and (8.19) to write

K (055) + KL, (055) = K, (08) + K, (058) (8.20)
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where

3 2_5)2 5
K(fl)(O;s) = 27r2 i Z (20 +2) / dA)\ coth(m\)e 5(141)2—5\ Zeﬁk

k=1
e’ fxoo _ 0o . , 14 i
- W2a4 Im / dA X cot(m\) /O dA coth(m\)e 52" —A Zesﬁk|z+1—>i
k=1

(8.21)
~ 1 00 I 12 “o
K(fg)(O;S) = _7T2a4/0 dA coth(m\)e 5~ [Zesﬁk _Zesﬁkz=o] _ (8.22)

k=1 k=1

We also need to compute the contribution due to the discrete modes described in (2.28).
For this we set the fields A, ¢/, ¢} and ¢f to 0, and expand ¢/, as in (8.9) with ¢4 = 2¢,a
for k = 1,2, with (o = i/a, |(1] > 1/a, i.e. I > 0. It can be seen that with this choice A;,
B;, H;, G; computed from (8.13) vanish and we have Cyio = 2Cya for 1 < k < 2. Thus

we can express these relations as
01 — [ C1
=M , 8.23

for some 2 x 2 matrix M. If B; denote the eigenvalues of GQ{M\Q + (¢} — a=?)L2} then the
contribution to K (0;s) from these modes is given by

00 2
. oy — 1 5—5(1+1)2 5B)

= a4 Im /e XOOdX)\ cot(mA) e*~ 2% Zesﬁﬂuﬁx (8.24)
k=1
Explicit computation using (8.13) gives Bl = Bg = —1. Hence we have
KL (0:5) = —— Im / T B cot(rh) eV (8.25)
m2a

Finally the three sets of bosonic ghosts b’ and € associated with gauge fixing of lo-
cal supersymmetry, each of which gives rise to four Majorana fermions in four dimensions,

contributes
/ = 3 > —5(1+1)%—5)2
Kopost = Gy E (20 + 2)/0 dX )\ coth(m\)e (+1)
0 RSt 5 [ —5X2-5)2
= Im d\ X cot(m\) dM\ coth(m\)e , (8.26)
m2at 0 0
to K(0;s).

To evaluate the right hand sides of (8.21) and (8.22) we use the relations

D et = Z Z Br = Z 75"TT(M”) (8.27)

k n:O n= 0
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[e.e]

3 P — Z_; %gn zk: Br = > %—nTr(/Wf) : (8.28)

k n=0

Explicit computation gives

TT(Ml) =0

Tr(M3P) = -8+ 16(1 + 1) — 16)?

Tr(M3) = —6(1+1)% — 62

Tr(M?) =8 —16(1 + 1) +40(1 + 1)* + 1602 —48(1 + 1)?A? +40X*.  (8.29)
Tr(M;) = —2

Tr(M?) = 6 — 162

Tr(M3) = —8 — 6A?

Tr(M?%) = 30 — 3227 + 40A* . (8.30)

Following the procedure of section 6 we can now carry out the small s expansion of
the heat kernels. We get the following contribution to the order s term in the small s
expansion of various terms:

IN((fl)(O;s) : f%
I~((f2)(0;5) : 67‘(’726#
K(J;)(O;s) : 6Téa4
K} st (055) - —#73%4. (8.31)

Adding up all the contributions in eq. (8.31) and the contribution from (8.8) we get the
net contribution to K (0;s) from the extra fermionic fields of N' = 8 supergravity:

11

KI0:5) = ma

(8.32)
Adding (8.32) to the bosonic contribution (8.3) we get the net contribution to the
order s° terms in the heat kernel from all the extra fields appearing in N = 8 supergravity:

%all . (8.33)

It is also easy to see that the only zero modes among these extra fields arise from the
gauge fields. In particular there are no fermion zero modes since both the gk’s in (8.24) take
the value —1 for [ = 0. Now we have already seen that for the gauge fields the integration
over the zero modes gives us back the same result that we remove from the heat kernel.
Thus removing the zero mode contribution of the sixteen gauge fields from the heat kernel
and then including the contribution due to the zero mode integrals does not give any net
contribution, and (8.33) represents the net extra contribution to the heat kernel from the
extra fields of N' = 8 supergravity. Since for the N' = 4 supergravity the net s independent
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contribution to the effective heat kernel vanished, (8.33) represents the net contribution in
N = 8 supergravity. According to (3.26) this gives a logarithmic correction to the black
hole entropy of the form:

—4Ina® = —2InA. (8.34)

This is in perfect agreement with the microscopic answer (1.2).

For identifying separately the contributions from the zero modes and the non-zero
modes we note that the N’ = 8 supergravity has 28 gauge fields whose zero mode contribu-
tion to the entropy is —281na = —71In A. This represents the net zero mode contribution
since the contribution from the graviton and the gravitino zero modes cancel. The rest of
the contribution 51In A comes from non-zero modes.

9 Half BPS black holes in STU model

Our analysis also gives the result for logarithmic corrections to the entropy of half BPS black
holes in the STU model [57, 58] which has been studied recently in [59, 73, 74] in the context
of black hole entropy. The STU model is constructed by beginning with type ITA string
theory on 7% x T2 and taking an orbifold of this theory with a Zs x Zs group. The first Zo
acts as (—1)FZ times half a unit of shift along one of the circles of T2 and the second Z acts
as Z4 times a shift along the second circle of T? where 7, denotes changing the sign of all the
coordinates of T%. If we label the two circles of T2 by z* and z° then the black hole solution
described at the beginning of section 4 survives the orbifold projection and hence continues
to describe a black hole solution in this theory. The first Zs projection removes from the
spectrum all the masless RR and R-NS sector states and hence the low energy theory
is an N = 4 supergravity theory, — with a structure identical to that of heterotic string
theory on T except that the sixteen matter multiplet fields associated with the dimensional
reduction of ten dimensional Fg x Eg gauge fields are absent. The action of the second
Zs orbifold projection breaks the N’ = 4 supersymmetry to A/ = 2. Under this a matter
multiplet of N' = 4 supergravity decomposes into a vector multiplet and a hypermultiplet,
and we need to examine which components of the fields survive the projection. Similarly the
gravity multiplet fields of the N' = 4 supergravity decompose into different supermultiplets

of N' = 2 supergravity, and only some of these survive the orbifold projection.

For later use it is useful to note that in the fermionic sector the orbifold operation
projects onto modes which are even under the action of '8 accompanied by (25, - - - 29) —
(—a%,---—2?). Using the ten dimensional chirality of A and the ten dimensional gravitino
field vps (0 < M < 9), this condition translates to

0373f4f57/1p =iy, o3 D %%y 5 = ihas, o3l 6789 = —itber89, 03l T°A = —iA,
(9.1)
together with similar projection on the ghost fields.

Let Gy and Bjsn be the ten dimensional metric and NSNS 2-form fields. We begin
with the two matter multiplet fields of N' = 4 supergravity whose vector fields come from
Gy — By, and Gs, — Bsy,. Their scalar partners are Gya, Gas, G55, Bas, Gam — Bam and
Gs5m — Bsy, for 6 < m < 9. Under the orbifold projection the two vector fields as well as
the scalars Gu4, G5, G55, Bys survive, but the rest of the scalars are projected out. The
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surviving fields belong to two vector multiplets of N' = 2 supersymmetry. The contribution
to the heat kernel from these scalar and vector fields and the ghosts associated with the
vector fields can be read out from the results of [46]. The vector couples to the two scalars
due to the presence of the background flux and the net contribution to the heat kernel from
the bosonic fields (including the ghosts) is given by 4K°(0;s). There are zero modes of the
gauge fields whose contribution needs to be removed from this and then added separately,
but as we have seen before, this does not change the result.

The fermionic components of these two matter multiplets come from the components
14 and 15 of the ten dimensional gravitino. As was shown in [46], acting on these fermions,
the kinetic operator takes the form:

i = 1, =
¢S2+03¢Ad32—§a 1F57-3—§a LogTH. (9.2)

It follows from (9.1) that acting on the fields 14 5 the last two terms in (9.2) cancel and
the kinetic operator reduces to g2 + 03D a45,, i-e. that of a free fermion in AdSs x S2.
The heat kernel of this is given by 1/8 of the contribution shown in (8.8). Adding this to
the bosonic contribution 4K%(0;s) given in (3.20) we get the net contribution to the heat
kernel from each of the vector multiplets to be:

1 11 1
Kvector 0: — e — —
(0:5) = Tgor2ad T 7202t T 1Sn2at

(9.3)

This corresponds to a correction of —i In A per vector multiplet, i.e. a total of —% InA
to the black hole entropy from the two vector multiplets coming from the two matter
multiplets of N/ = 4 supergravity.

Next we turn to the four matter multiplet fields of AN/ = 4 supergravity whose vector
fields come from G, — By, where m is along T* and p is along the non-compact direc-
tion. Their scalar components are Gy, Bmn, Gma — Bma and G5 — Bps. Under the
orbifold projection the scalars Gy, Bmy survive but the vector fields as well as the scalars
Gia — Bmg and G5 — Bys are projected out. This corresponds to removing the vec-
tor multiplets and keeping the hypermltiplet fields. Since the net contribution to K (0;s)
from a hypermultiplet and a vector multiplet vanishes, we could directly conclude that
the hypermultiplet contribution to K (0;s) will be negative of the contribution (9.3) from
the vector multiplet. However it is instructive to carry out the computation directly. For
each hypermultiplet we have four scalars without any coupling to the background gauge
fields, and their contribution to the heat kernel is given by 4K*%(0;s). In the fermionic
sector we have the fields 1)g, - - - 109 subject to the orbifold projection (9.1). This makes the
contribution from the last two terms in (9.2) identical, and we can express the operator
as Ip g2 + o3l AdSy — ia"1T? 3. We need to compute its determinant on the subspace of
states subject to the projection (9.1). Now note that since o33l anti-commutes with the
projection operator it takes a state satisfying the orbifold projection to a state satisfying
the opposite projection and vice versa. Since it also anti-commutes with the kinetic opera-
tor Dg2 + USlDAdSQ — g lT® 73, the action of 0373f4 changes the eigenvalue of the kinetic
operator. Thus we see that the matrix representing the kinetic operator in the subspace sat-
isfying opposite projection is just the negative of the kinetic operator acting on the subspace
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satisfying the correct projection. Thus we could evaluate the determinant ignoring the pro-
jection condition and then take the square root of the modulus of the determinant. We
now note that in the unprojected space the operator g2 —ia~! s 73 anti-commutes with
the operator o3P 1qs,. Thus the squares of the eigenvalues of g2 + 031 rq5, —ia ™! I T3
will be given by the sum of the squares of the eigenvalues of Dg2 —ia~! [ 73 and I AdSs -
Of these 1) 545, has eigenvalues +ia~'A. On the other hand since [Dg has eigenvalues
+ia~ (1 +1) and s 73 has eigenvalues +1, and they act on independent spaces, the eigen-
values of g2 —ia™? 5 73 are given by +ia=1(I+1=+1) with [ = 0,1, --oco. This gives the
net contribution to K (0;s) from the fermionic components of the hypermultiplet to be

1 e xoo . [© 5 7o ~ ~
— 5™ / dA X cothmA / dAX cothmh e N 5 757294 4 e—5+2ﬂ - (94)
Ta 0 0

We can evaluate this by expanding the term in the square bracket in a power series in s,
or by shifting the sum over [ as in [46]. Both ways give the same result and adding this
to the scalar contribution 4K°(0;s) we get the contribution to the heat kernel from each
hypermultiplet fields to be

1

Khyper 0: - - .
(0:9) = = Jgrzan +

(9.5)
This corresponds to a correction of i In A per hypermultiplet, i.e. a total of %ln A to the
black hole entropy from the four hypermultiplets coming from the matter multiplets of
N = 4 supergravity.

Finally we have to compute the contribution from the fields which survive from the
gravity multiplet of N' = 4 supergravity. In the bosonic sector the four gauge fields Gy, +
By, for m along T* are projected out but all other fields survive. Thus we need to
remove the contribution given by (5.4) together with a contribution of —8K7% ¢ . 2 (0;s)
representing the contribution of the eight ghost fields associated with these four gauge
fields. The small s expansion of this is given by [46]:

1 6, 1 1 1 /1 31
R T Ry S T S (e it S N 6
724152 ( T T T T ) 724152 <2 Tt T ) : (9.6)

where the —1/2 — 52/90 is the contribution due to the ghosts. Of these 4/87%a* can be
identified as the contribution due to the gauge field zero modes. Thus the net non-zero
mode contribution from these four gauge fields is 31/907%a* — 1/2n%a* = —7/457%a*, —
this needs to be removed from the non-zero mode contribution (5.45) from the gravity
multiplet of full NV = 4 supergravity. Thus the net s-independent contribution to the heat
kernel from the bosonic non-zero modes of N' = 4 gravity multiplet which survive the
orbifold projection is given by:

~ 101 N T T
1807204 = 4572a*  18072a?

(9.7)

The fermionic components of the N' = 4 gravity multiplet are given by 1, and A,
but we need to work in the subspace of these fermions which satisfy the conditions (9.1).
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This requires us to impose the following restriction on the various coeflicients appearing in

section 6:
. . / - ! -/
as =1ay, asz = —ias, ay =1tay, a3 = —1iay,
by = —iby, bs = i bo, by = —i bs, by = ibg
/ - / - / - / -/
by = —iby, 3 = 1, by = —ibs, 7=1bg
C4:—i61, CgZiCQ, CgZ—iC5, C7:iC6
Cﬁl = _7;0/17 cg = iCIQ, 0/8 = —1 Cg, 0/7 = icg . (98)

Furthermore after the action of the kinetic operator on the fields the result will be a fermion
of opposite chirality and hence the coefficients A;, A}, B;, B., C;, C! are no longer all inde-
pendent. This allows us to remove half of these coefficients and keep A;, A} for i = 1,2 and
B;, B.,C;,C! for i = 1,2,5,6 as the independent constants labelling the state obtained by
the action the kinetic operator on the fields. This essentially halves the dimensions of all the
matrices My, M 1 and M 1 appearing in section 6. The rest of the analysis proceeds exactly
as in section 6, and we find the following results for the traces of the various matrices:

Tr(M;) = 16

Tr(M3) = 64 — 32(1 + 1)% — 3222

Tr(M3) = 256 — 192(1 + 1)? — 192)\2

Tr(M7) = 1024—1024(1+1)% +128(14+1)* —1024\* +256(1+1)? A%+ 128X\ . (9.9)
Tr(Mi) = 8

Tr(M3?) = 16 — 162

Tr(M3) = 32 — 962

Tr(M?Y) = 64 — 38477 + 64\*. (9.10)
Tr(My) =0

Tr(M3?) =0

Tr(M3) =0

Tr(Mb) =0. (9.11)

This in turn gives the following order 5° terms in the small 5 expansion of various parts of
the fermionic heat kernel:

IN((fl)(O;s) : ﬁ
IN((J;)(O;S) : _Wia‘l
K(J;)(O;s) : —ﬁ
K} st (0:5) - —ﬁ;&. (9.12)

Adding up all the contributions and subtracting the zero mode contribution —1/272a* we
get the net contribution to K(0;s) from the non-zero modes of the surviving fermionic
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fields in the N/ = 4 gravity multiplet after the orbifold projection:
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K0:5) = ~ gzt

(9.13)
Adding this to (9.7) we get a net contribution of —17/2472a* from the non-zero modes.
On the other hand the zero modes of two gauge fields, the metric and the gravitino gives
a net, contribution of

2 12 3 1
_ = .14
8m2at + 8n2a*  2m2a*  4m2at’ (9.14)
to the effective heat kernel. Adding this to the sum of (9.7) and (9.13) we get
11
- —— 1
24m2a4’ (9.15)

leading to a correction of % In A to the entropy. Adding this to the contribution of %ln A
from the four hypermultiplets and —1—12 In A from the two vector multiplets we arrive at a
net correction of

InA, (9.16)

to the entropy of a half BPS black hole in the STU model.

We can identify separately the zero mode and the non-zero mode contributions by not-
ing that the four gauge field zero modes give a contribution of —In A and the contributions
from the metric and the gravitino zero modes cancel. The rest of the contribution 21In A
comes from the non-zero modes.

Finally we note that the analysis of this section can be extended to any N = 2 super-
gravity theory whose low energy effective action can be obtained by a consistent truncation
of the NV = 4 supergravity action in which two of the six vector fields of the gravity multi-
plet survive. In that case we can consider a black hole solution whose electric and magnetic
charges are carried by these vector fields and the analysis of logarithmic corrections proceed
in an identical manner. The FHSV model of [75] is another example of such a model.
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