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LOGARITHMIC DECAY AND OVERCONVERGENCE
OF THE UNIT ROOT AND ASSOCIATED ZETA

FUNCTIONS

BY B. DWORK AND S. SPERBER

Introduction

Let V^ be a family of algebraic sets parametrized rationally by the points ^ of an
affine variety U defined over F^. Thus for each XoeU algebraic over F^ we have an
algebraic set V^ defined over F^o). Let ^(V^t) be the corresponding zeta
function. We fix an embedding of the algebraic closure of Q into the algebraic closure
of Qp and define the unit (resp.: p " ) root factor, CJV^o. 0. to be the product of factors

(l-ra)^ of CC^o'O such that H"1 (^P- I^M^I) for the indicated ^-adic
valuation. The unit root zeta function of the family is

^(o-n^^^')1^'
the product being over all KeV algebraic over F^ The definition may be modified in a
number of inessential ways. The product may be restricted to a subset U' of U
corresponding to non-supersingularity of V^. Furthermore the rational function
^ (V,,, {des ̂ ) may be replaced by the characteristic polynomial of the Frobenius acting
on the cohomology of fixed dimension. A similar unit root object may also be assigned
in the case of L-functions associated with character sums. The methods of this paper
apply with minor modifications to such unit-root L-functions as well.

The first mention of such a zeta function seems to have been in [Dw 0] where ^ was
shown to be meromorphic in a non-trivial example. Further examples were given in
[Dw 2]. These functions have been examined by Katz [Ka 2], Crew [C] and more recently
(under the hypotheses that U be smooth and proper) by Etesse, [E].

In the present article we provide a method which shows that starting with any over
convergent cohomology theory one can show that the unit root zeta function is mer-
omorphic on a disk ord^>(p- 1)/(?+!). In fact our treatment seems to suggest the
utility of the ring of functions having logarithmic decay (intermediate between rings of
convergent and overconvergent functions). Like the convergent theory, in the logarith-
mic decay case, valuation-based "sub and quotient objects" again belong to the given
category, and the associated L-functions over converge. To make our result more
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576 B. DWORK AND S. SPERBER

understandable we give (§12) a completely non-cohomological treatment of the generic
family of hypersurfaces.

More generally we show that if A is a Frobenius matrix analytic on the set
Q)f= { | x | ̂  1, |/|=1} in ^z-space with logarithmic decay at the boundary in the sense of
Section 6 below then the associated unit root zeta function is meromorphic on the disk
indicated above. By induction one can then treat the pv root zeta function.

The main point of the present work is that the notion of logarithmic decay is made
precise, that the logarithmic decay of the fixed point of the mapping 9 [(7.2) below] is
clearly established and that the relation between logarithmic decay and convergence of
unit root zeta function is clarified (§11). This program has existed since the mapping 9
was introduced by the first named author [Dw 1]. Sperber and Sibuya [S-S] demonstrated

logarithmic decay for the logarithmic derivative of ()FN(L . . . , ! ; Ti^x) by a direct
calculation and explicitly pointed out the application to the unit root zeta function. The
present work is applicable to their example and more generally to solutions of matrix
Riccati equations appearing in the theory of normalized period matrices ([Dw I],
Lemma 5.1 (ii)).

In particular the present results apply to the old favorite, the logarithmic derivative

of2Fi(l/2,l /2;l ;x) [as indeed was also conjectured by N. Koblitz (letter of
12/13/75)]. This case can also be treated by means of the excellent lifting of Frobenius,
(po, so that 9 [equation (7.2)] may in this case be replaced by the simpler mapping
T| i-> h + (po (r| °cpo), where h is overconvergent relative to the Hasse domain.

We observe that the example of [S-S] suggests that the condition
a7 < Inf(a, (p - l ) / ( p + 1)) of Section 7 might be replaceable by the condition a' < Inf (a, 1).

The following conjecture may clarify the relation between the present work and the
general arithmetic theory of linear differential equations.

Let L be an n-th order linear differential operator defined over C (X). Let L^ be
monic operator of minimal order [defined over E, the completion of Cp (X) under the

gauss norm] which annihilates those elements u analytic and bounded on the generic unit
disk D(U~) which lie in the kernel of L. We conjecture that the coefficients of L^
have logarithmic decay in the sense of the present article.

1. Logarithmic type functions

Let m^2, q^2. Let p= p^ be the piecewise linear function on the positive real line
which takes the values

p(^)=0 for O^s^m

p(m,^)=r for ^ = 0 , 1 , . . .

Explicitly for t=0,1,...

p(s)=t+-s—mq— for mq^s^mq^1

m^q-l)^
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OVERCONVERGENCE OF THE UNIT ROOT AND ASSOCIATED ZETA FUNCTIONS 577

We shall use p7 (s) to denote the derivative (resp.: left hand and right hand derivatives)
if s is not w^(resp.: is mq1). For s>m, p'(^), is monotonically decreasing and the right
hand derivative never exceeds the left hand derivative. The purpose of this section is to
describe the basic properties of p which we will need in subsequent sections.

LEMMA 1. (i) For x^O, ^(mqt-\-x)^t^-x|m{q-\)qt

(ii) (l/to-l))+p(^)+p(^p(^+^)

(iii) (l/(^-l)^)+p(^)+p(^)^p(^+^ if^+s^m^mq1

(IV) P^, ( î) + P ,̂ (^2) ̂  Pmi +m2 Ol + ̂ 2)

(v) L^ 1 ̂  c ̂  <7. For s^cm

c-\
p(5)-p(^/c)^——- .

q-\

(vi) For^^O.

p(^)^l+p(4

(vi') For ^ ̂  m, p (^^) = 1 + p (s).

(vii) Pm^^(^)=Pm(^)-

(viii) For a e N, p^ (^) ̂  ̂  p^., ̂  (5).

For ease of exposition, we present the proof of this lemma in the appendix (§ 13).

2. Amice ring in N-space

Let K be a field of characteristic zero complete under a rank one ultrametric
norm. Let (9^ be the ring of integers and let/be an element of ^^[Xi, . . . ,XJ regular
in X^ of degree d, i. e. deg/= d and X^ has unit coefficient in /. We define the gauss

norm on ^P^L

IS^u^lgauss^UplflJ.

u

Let

.d-i .

^f=\ Z S^.Xi/s|^,G^[[Xl,...,X„_J],|^J^-Oas^-a)^.
U=0 s e Z J

To define multiplication in Ly we write

Z E ̂ x;;/5. s Z ^LX^/-^/^ I; x^ ;̂.̂
j = O s e Z j = O s e Z t s+s'=(

O ^ J , J ' < d

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



578 B. DWORK AND S. SPERBER

which is formally well defined since

Zj Sj, s S;', s' ~ ̂  Sj, s Sj", r - s

s+s'==f s e Z

which clearly converges in the gauss norm on ^[[Xi, • • • .X»_J]. Denote this sum by
^ j , j ' , t ' To complete the calculation we must write for a^2(^- 1)

d-l d-l

X^EX^P,,.+/^X^,,,
i=0 1=0

where p,̂ . and c^.e^JXi, . . .,X^J. (Of course for oc^-1 we have p^-8^
a^ ^ = 0, while for a ̂  ̂ , a,, , ==8^^,.) The product may be written

d-l d-l

Z Z/'X;, ^ ^j^Pj+j^+^.'^-lCJ^^^,).

t e Z i = 0 j, j" = 0

Thus L^ is a ring with a norm

|E^X^|-Sup|^J^,

Under this norm, Ly ® K is a banach space. We are unable to show that Lr may be
identified with L^/ if/' is also regular in X^ and with the same image in K[X] as
/. (Here K denotes the residue class field of K.)

Each element of L^ may be written uniquely in the form

(2-1) ^Z^X"/5

the sum being over all seZ, all ^eN", u^<d. For ueW we put
[Hl^i^- . . . +^. Here all a^e^ and |^,J-^0 uniformly (with respect to u) as
s —> — oo.

We define the restricted Amice ring, L^ to consist of all ^ which satisfy the further
condition that a^, -> 0 as [[ u [| 4- [ s | -> oo. The norm of L^ induces a norm on Lp [ ̂  [^
and

|^|^|n|^[^^

3. Restricted Amice Ring (cf. [R], [B])

Let /€ ^K [X] be regular with respect to X^ as in Section 2. Let Q be an extension
field of K which is algebraically closed and complete under a valuation extending that
of K. Let Q^ be the ring of integers of 0.

Let ^^{xe^l |/(x)|==l}. Certainly 2. depends only on / the image of f in
R[X].

4eSERIE - TOME 24 - 1991 - ?5



OVERCONVERGENCE OF THE UNIT ROOT AND ASSOCIATED ZETA FUNCTIONS 579

Let

Vif==[g/heK(X)\h has no zero in ̂ }

By Reich [R], lemma A, the elements of H^ are bounded on Q)f and we denote by |̂
the sup norm on ̂ . The space H (Q) j) of analytic elements on ̂  is defined to be the
completion of Hy- under the sup norm.

Clearly each element of L^ may be viewed as a function on Q) y and in fact may be
identified with an element of Ho (^), the set of all ^ e H (^j.) bounded by unity on ^j..

LEMMA. — The natural mapping of L^ into Hg (^r) is an isomorphism and an isometry,

Proof. — We first show the isometry. It is clear that for ^eLy, |^]^ <|^[^. To
reverse the inequality let | ^ |y=l but |^|^ -s<l. By hypothesis in the representation
(2.1), |^y J^s for all (u,s) outside of a finite set, B. The reduction modulo the prime
ideal of (9^ is thus

^ S ^sXV^KpC.r1].
(u, s) e B

By hypothesis ^(X)=0 for all XeK" such that/(X)^0. Hence ^==0 as element of
K(X). It follows from the regularity of/that ^s=0 for all (M,^)eB. This shows that
a^ J < 1 for all (u, s) € B and since B is finite there exists e' < 1 such that a^ s | ̂  e7 for

all (M,^)eB. This shows that a^ J ̂  e" == sup (e, 8') < 1 for all (u,s), contradicting the
hypothesis that | ^ |j = 1.

Since the mapping is an isometry, it must be an injection. To show surjectivity it is
enough to show that each element of Hy may be represented by an element of Lj.. Since
each element of Hy is a ratio g / h of polynomials and the representation of g is trivial,
we may restrict our attention to \ / h where h 6 (P^ [X], h^O, and h has no zero in ^y. We

may conclude that each zero of Ji in Q" is also a zero of/[as otherwise the zero in Q
could be lifted to a zero of h in % at which \f(x) | == 1]. ([R], lemma A). By the Hilbert
nullstellensatz, a power of/lies in the ideal generated by /?, i.e. there exists 5'eN such
that f=hk for some keO^\X\. Thus putting p=fs—hk, we conclude that

pe^TOjplgauss^^ an(i so

00

ilh^kf- ̂  (p//r
J=0

00

Certainly p//5 is the image of an element T| of Lp Iril^lri^^e^ and so ^ r^ e Lj-
j=o

and has image (1 + p//5)"1 in H(^y). The assertion is now clear.

4. Tempered Amice spaces

Let g be an unbounded, monotonically increasing mapping of R+ into itself. Let
/ed^EX] be regular relative to X^. We define a subset L r of Ly

L,,/^ Z fl,,,X"/s|ordfl„,^g(|H|+rfH)}.
Un<d

se Z

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



580 B. DWORK AND S. SPERBER

We may view Lg ̂  (x) K as a banach space under the norm associated with g. The
elements of Lg ̂  (x) K may be identified with a subspace of H (Q) ̂ ).

LEMMA {Simplified Criterion):

4,/={ E ^X^Iord^^lHI+^l)}."u,s^ ./ I ̂ A ̂  ̂ v, s -

u e N "
s e Z

(The point here is that v^ may exceed ^ in this sum.)

Proof. - The indicated sum r[=^a^,Xvfs obviously lies in H(^) and hence has a
representation

c" /'t^1= Z ^x-r^(^ 7
M«<d

(eZ

in terms of reduced monomials. To determine this representation we write

X- E b^^f\ b^e(9^
i^o

Un<d

\u\\+di^\\v\

and so

Z bv,u,iav,t-i^u,t ^ ^v, u, i ^v, t - i

i^O

\\v\\^\\u\\+di

a sum which converges since a^ ̂ _, -> 0 as either || v || or ; goes to infinity. Now in the
region of this sum

| v || -}-d\t-i \^\\u\\ -^di+d\t-i \^\\u\\ +d\t\

and so

o^a^.^g(\\v\\+d\t-i\)^g(\\ u\\-^d\t\)

which shows that c^ ^ satisfies the required condition.

PROPOSITION. — L^y is a ring if and only if

(4 .1 ) ^l)+^2)^0l+^2)

for all t^ ^eN.

Proof. - The example X^.Xtf=X^+t2 shows the condition to be necessary. To
show sufficiency it is enough to check that if a Xufs, b Xv f lie in Lg y with sup (u^ v^) < d,
then ord(^)^g(||.M+z;||+^|^+/|), i.e.

^(|H|+^ \)^g(\\'u\\+d\t\)^g{\\u+v\\^d\s+t\)

^SER\E - TOME 24 - 1991 - N° 5



OVERCONVERGENCE OF THE UNIT ROOT AND ASSOCIATED ZETA FUNCTIONS 581

which is an immediate consequence of the hypothesis.

NOTATION. — For 8>0, let

L^(£)={^= ^ ^XV-lord^^ll^ll+^p+c.
Un<d

5. Units

LEMMA. — The units of the restricted Amice ring are characterized by the condition

(5.1) |^)|=1, Vxe^.

Proof. — If ^ is a unit of Ho(^y) then both E, and ^-1 are bounded by unity on Q) y
which implies (5.1). Conversely if ^eH(^) is bounded away from zero on ̂  then
^-1 lies in H(^). Thus if ^eH(^y) satisfies (5.1) then it and its reciprocal lie in

Ho (Qf) as asserted.

Let g satisfy (4.1) so that Lg ̂  is a ring. Certainly the units of L^y lie in Ly" the
group of units of Ly. We cannot conclude that Lg ^ C} Lf lies in the group of units of

4,/-
In fact in our application we must consider the case in which g does not satisfy

(4.1). We will need a weak statement about Lg y H L ^ lies in the group of units of

4,/-
In fact in our application we must consider the case in which g does not satisfy

(4.1). We will need a weak statement about Lg ̂  C\ L^. This will appear in the next
section.

6. Logarithmic modules

We assume that/e^i^P^] an(^ ls regular with respect to X^. For oc^O we set (cf. § 1)

oa, m, q —Pm, q

^m^^-^+Pm,^

To simplify the notation we write

L^ ̂  (or occasionally L^ ̂  ̂  for L^ ^ ^ ^

L^ ^ (or occasionally L^ ̂  ^ for L^ ^ ^ .̂

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



582 B. DWORK AND S. SPERBER

Note t^sL^. By condition (4.1), L^ is a ring but l^L^. Furthermore, by
Lemma 1 (ii), 4 ̂  is an L^-module. We would like to describe L^HL^. We
achieve something less which is adequate for our purposes.

LEMMA.— Let a'e^O.a). For each ^eL^ H La ^ there exists m' in N such that
^"^L^.

Proof. - Let £>aa7(a-o0. We choose Bg, a finite subset of all (u,s) appearing in
the representation (2.1) of E, such that

ord^>s for all (u,s)^B^.

Let ^i^S^sX"/5. the sum being over all (^eBg, The image of ^ in K(X) may be
written

^ S ^x^
(«, S) € B£

and so ^J^=KeK [X] for some NeN. Since/==0 on the variety ^(X)==0, we conclude
that 7s=aF for some £eK[X]. Thus ^7;N-5= 1. Let ^e^PV"1] be a lifting of
kf^~\ We write y^ ̂  == 1 - z^ where z^ e ̂ ^ P^/"1]- Certainly ord z^ >0 in the topo-
logy of Lp We choose e e N such that e ord z^ > c. Let y = y^ (1 + z^ + . . . + z\~1) and
so ^ ̂  = 1 — z ' , ord z' > s. By definition

ordj. ^ ^^"/^e
(«, s) ^ Bg

and so y ^ = 1 — z, ord z > s.

Certainly y as element of ̂  [x. /-1] l^5 m
 Loc, mi f01' some w^ e N and hence by lemma

1 (iv), y ̂  € L^ ̂  where m^m+m^.

The graph in the (^, ̂ ) plane, ^ ̂ 0

?2=sup(£,a^)

lies above the graph of

^^(l+^+S, §=£a^o^ -a/>0.
a

Indeed the critical point is at t^ == e/a where the two graphs intersect.

We conclude that for /^O

Sup (s, a, p^ (t)) ̂  8 + a7 (1 + p^ (Q)

GO

and so zeL^ ,^^(5), z.^. ord^, ^ z^8>0. Thus ^ z^ converges in the ring L^ ^ while
J=i

^^4, mi ^ subset of L^^ and since L^^^L^^^ and L^^ is an L^^^^module, we
find ^~l==y(l-z)~l•e L^ ^ with m == m^. This concludes the proof.

4eSERIE - TOME 24 - 1991 - N° 5



OVERCONVERGENCE OF THE UNIT ROOT AND ASSOCIATED ZETA FUNCTIONS 583

Note. - We have no method for bounding m^ and hence there is no point in trying
to determine m' more precisely by these methods.

7. The fixed point (cf. [Dw I], [Dw2])

Let KQ be a complete subfield of K which is unramified over Q^ and let a be an
automorphism of K extending the frobenius automorphism of Ko/Q^,. Let fe (9^ [X],
regular with respect to X,,. Let

Ho(^)={^eH(^)| 1^1}.

Let Vi, v^ be positive integers and for i.je{\,2] let B^ be a v^.xv^ matrix with
coefficients in Ho (^). We further assume

(7.1) |detB^(x)|==l for all xe^.

For h e K (X) we define h0 to be the element of K (X) obtained by applying o- to the
coefficients. Trivially a maps H^ into Hjo and the mapping is an isometry relative to
the sup norms on ̂  and on ^<r. Taking limits we obtain an isometry of H(^) with
H (Qj- a). On the other hand ^ h-> ̂  = t, (X^) maps H (Q) ^ a) into H (Q) ̂ ) again an isometry
since Q)f=Q)^^py We consider a free module of rank v ^ + v ^ defined over H(^) with
an action of Frobenius

^-^^A, for ^eH^)^^

where A has the block form

A^/3 1 1 B12}
\P^21 P^ll)'

We define a map 9

(7.2) 9: ^(B^+^TTB^-^B^+^T^B^

from M^^ ̂ ^(Ho(^)) into itself. The purpose of the map 9 is to identify the unit-root
part of the given F-crystal. A fixed point T[ e ̂ vi, v2 (HO (^/)) of the map 9 corresponds
to a matrix (I,r()e^^ ^^+^(Ho(^)) which is fixed under the Frobenius map
above. Using T[ the unit-root sub-crystal is computed in Section 8 below.

LEMMA. — The mapping 9 above is a contractive map of M^^ ^ (Ho (^)) into itself and
hence has a unique fixed point, r|o.

(Note: We use/^0, but/need not be regular.)

Proof. — That 9 is stable is quite clear. We may write

(7.3) 9o(Ti)=(I+7^B^B,-i1)-1

(7.4) ei(Ti)=B^9o(Tt)B^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



584 B. DWORK AND S. SPERBER

(7.5) e,(ri)=p6o(Ti)rT

(7-6) ^(^B^^B,,

6=61+93

It is enough to show 6^ and 63 contractive and hence it is enough to show 60 and 63
contractive. Let r|i, ̂  e^, ̂  (Ho ( .̂)). We write

(7-7) 9o(^i)-80(^2) ==^80 OliHrh-Thr B^B^ 60 (TI^)

(7.8) e2(^i)-92(^2)=^(9o(^i)-eo(n2))rir+9o(^2)^(^i-r|2r

from which the assertion follows without difficulty.

PROPOSITION. — Let g be a monotonic real valued/unction as in Section 4 satisfying the
further condition that

(7.9) J^g(t)^g{t+2jd)

for ^//7'eN, teR+. Let g denote t -. g (t/p). Then T| H-> ̂  maps Lg ^ into L^ ^

Proof. - Let T|= ^ ^,,X"/5, ord a^^g(\\u\\-^rcl\s\). The main point is that
M e N "

s e Z

f^X^)=f^pk^(\ ̂ pkir)

where fe e ̂  TO. deg ^ ̂ pd. Thus

/ 0 \

^^ £ )a^pjXpukjfp(s~j).
ueNAy/^ e N '

s e Z

J ^ O

By hypothesis

^(<sPj)^j+g^\u\\^d\s\)^g(\\u\\^d\s\+ljd)

^g(\\u\\^jd^d(\s\^j))^g(\\u\\^jd+d\s-j\)

=S(P\\u\\^jpd^dp\s-j\)

^(deg(X^)+^-y|)

which by the simplified criterion of Section 4 completes the proof.

PROPOSITION. — The hypothesis (7.9) of the preceding proposition is satisfied by
g=ap^ p provided Qi^p— 1, m^2d.

Proof. — By Lemma 1 (ii)

ap(^+2^)^ay(7?-l)- l+ap(0+oc7p(2^)

^/+ocp(0.

4eSERIE - TOME 24 - 1991 - N° 5



OVERCONVERGENCE OF THE UNIT ROOT AND ASSOCIATED ZETA FUNCTIONS 585

THEOREM.— Let Be^+^^+^(L^^). We retain hypothesis (7.1). Let
a'e^a), a /<l/(l+(2/(/?-l))). We assert 'that T|o, the fixed point of (7.2), lies in

-^vi, v2 (4', m') /or suitable m'.

Proof. — It follows from Lemma 1 (iv) that det B^ lies in L^ ̂ , ^ and hence by
Section 6 (det B^)"1 lies in L^,^ for suitable w^.

Rechoosing m we may assume that the coefficients of B^/ and of B all lie in
L^ ^. Also with no loss in generality we may assume m>2d. We put
e^-o^^^-l))).

We will show that 6 is a contractive mapping of ^1^2(4', 4m) mto itself. Let T| lie
in this set. We first show 9 is stable on this space. We assert that the coefficients of
/n^B^i Bi~i

1 lie in £„/ 4^(8), more precisely we assert

(7.10) 7^4,L,,4^4,4,(£).

This is a consequence of

(7.10.1) l+a /(p4,(^)+p^(^))^e+aY-^+p^(^+^

This is verified by using Lemma 1 (ii), (vi) (with q^p) to compute

(7>1(L2) '+P4^1+^^7+P4mOl)+P4.02)
p-\ p-\

^l+-2-+P4.(^)+P4m02)
p-\

and so (7.10.1) follows from the choice of e.
00

Since £^4^ is a ring we conclude that for y= —^TI^B^ B^, the series ^ yj

j = i
converges to a matrix with coefficients in L^/ 4^(8). We conclude that

(7.11) Oo(Ti)eI^+^^(L^4,(e)).

We assert

Oi(Ti)e^,^(L^4j.

Since Bi~/ B^ lies in this set, it is enough by (7.11) to show that

l^a', w l^a', 4 m (£) c=z l^a', 4 m.

(Here L^ ^ denotes the additive group generated by products of pairs of elements of

L^ ^.) By Lemma 1 (iv) L^/ ^ c= L^ 3 m c= L^, 4 m and so it is enough to show

( 7 . 1 2 . 1 ) 4,4,L,,4^4,4.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



586 B. DWORK AND S. SPERBER

which is a consequence of Lemma 1 (ii).

We assert

(7-13) e3^)^,vJL^4j.

Using (7.11) it is enough to show

(7.13.1) ^Bri^B^e^^L^)

(7.13-2) ^.L^L^CL^.

Assertion (7.13.1) follows from p L^ K^m^P^'^m L^4m which by (7.10) lies in
L^4^. Assertion (7.13.2) follows by using Lemma 1 (ii), (iv) to obtain

L'a', w La'^ 4 w
 c:

 ^a', 4 m

and then using (7.10). This completes the proof of stability.

To check the contractive property let r^, T|^ be elements of ^vi^^a^m)' we

assert

(7.14) o^,4J9l(T^l)-9l(T12))^£+ord^,JT1,-^^,).

By (7.4), (7.7) and applying (7.11) to Qo^i) and to OoO^) it is more than enough to
show

(
7
-

1 4
-

1
) ^mL^C 4,^(8)

(7-14-2) ^L^.L^^L^^^L,,^

Since L^ ̂  c L<,^ 4 ̂ , (7.14.1) is implied by (7.10). Since L^ 4 ̂  is a ring (7.14.2) is
now clear.

To prove 83 contractive we show

(7.15.1) ord^,^B^(9o(Tl,)-eo(Ti,))^B,^8+ord^^(Ti,-r(,)

(7.15.2) ord^^B,-^eo(ri2)(Ti,-Ti,rB2^8+ord^^(r|,-n2).

For the first assertion we use (7.7) and (7.11) to remark that it is enough to show

^•l^) ^L^(L^4,)2 0=^4, (8)

(7-15.4) /^L^ro,)2 4,4^4,4..

Now (7.15.3) is a consequence of (7.14.1) and so (7.15.4) follows from the fact that
£^4^ is a ring. Finally (7.15.2) follows from (7.11), pL^^L^^^ c= £^4 ̂ 8) and

^L^, mL<?, 4 m Hx', 4 m c ̂  4 m which in turn follows from (7.14.1).
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8. The Matrix A

( R R \
Let B be the matrix of Section 7. We consider A= u 12 |. Let n be the

P^ii P^zz)
fixed point of the last section. We compute the transform

A=(^ ^u^ ^Y
\0 \J \0 \J

J^ 0 \

\pB^ pB^J

where

Au=Bu+.PTr'B2i

822
 =

 ^22 ~B21 Tl-

Suppose that K=Fy q^p5. We define

A„(X)=A<IS-l(XPS'l)ACTS-2(Xi's'2). . ,A(X).

For each xef5" algebraic over Fg such that7(Jc)^0 we have an associated polynomial

A^(t) = det (I -1 A, (x^^-l). . . A, (x))

where x is the Teichmuller lifting of x and deg x=degF^(x)/Fg. For such x, the

reduction (modulo the maximal ideal) ofA^x''*1'"^1). . .Ag(x) has the form

fB^ B^\

\0 0 )

and det Bn^O. Thus A^ ,^(0 has exactly v^ roots which are the reciprocals of units
and these are precisely the reciprocal roots of A^ ,^(0 where

A,(X)=Ar;l(X^-l)...A^(X).

We define the corresponding unit root zeta function to be

^(o= n- A 1 A ~ -r f^ ̂ 1 /deg x

xalgoverWq ^A^,xV /

f(x)^0

It follows from Section 7 that if the coefficients of B lie in L^^p and if
a' < Sup (a, (p - \)l(p + 1)) then there exists m' such that the coefficients of T| lie in L^ ^ p
and hence by (7.10) the coefficients of A^ lie in the same set. Since by Lemma 1 (viii)

S-1 5-1

I P^p^i/P1)^ £ Pmp^(^)^Pm<l+^4-..,+^-l).pOo+ • . • +^-l).
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we conclude that the coefficients of\ lie in L^/^ which by Lemma 1 lies in L,̂ ,, ̂ ,
where m" =m' q2.

9. Basic trace formula for H(^) (c/. [B])

Let /, K, Ko, be as in Section 7 but let Ko=F^. We define \|/^ a continuous
endomorphism of H (^)

(vl^)^)^-" Z ^00.
y^=^'

The point here is that if ^=xe^ then j^e^ as certainly ye^ and if y^^f then
/Cy)=0 which implies that 0=f(y)q==f(x). Thus v|̂  is stable on H^ and as operator
bounded by q". By taking limits \|/^ is extended to H (^)

Let FeH(^). Then a=\|^°F, L^. ^^(^.F), is again an endomorphism of
H(^). Using our basis {X"/5},^ ^<^ we associate a matrix [oc] with a. We assert
that [a] has a trace.

PROPOSITION. — As operator on H (^), || \|/1| = 1.

Proof. - The assertion is trivial for \|/^ as operator on polynomials. Furthermore we

have the trivial estimate Hvj/JI^^". By continuity it is enough to check the norm as
map of K[X,/-1] into H(^). Let ^K[X,/-1], |^==1. Choose reN such that
/^eK[X] and such that \pr+l/qn\p<l. We know that /(X^ =/(X)^ mod p^1 in
the metric of H (2 y ) . Thus

/pr ̂  (^== ̂ , (/(X^ ̂ ) = ̂  (^pr) mod^ +1/^.

Since | \|/^ (^/^r) | ^ < 1, the assertion is now clear.

The following trace formula is closely related to the trace formulas of Reich and of
Monsky. The adaptation here is useful in the present context.

THEOREM. — Let F e H (^). For u^ < d, s e Z we write

vKFX"/^ j; C^^X"'/5'.

Un<d

s 'eZ

We assert that ^ Cy 5^ 5 converges and that

{q -1)" trace C= ^ F(X).
X^'^d,...,!)

I / (X) | = 1
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Proof. — By continuity we may assume FeKpC,/"1], | F L = 1 . Let a=\|/°F,
P,=^°F-(/(X^//(x))< Trivially

P. (XT) =/(Xr a (X"/5-^) = ̂  C^_^,,, X"'/5'+^

==ZL^M,S-PrU/,S'-p'"X"/s .

Let a, = \|/ ° F/^ -1) < We write

^(X^^A^^X"'/5'.

Since

^^^/(X^-^od^
/(X)

(jw Y ==f(X^-1) pr mod^1

V(X)/

as elements of H(^y). Thus as operators

k-P.k^l^1!

and so

A^^—C^^^^^^mod^-'1

L^.

C^;^=A^+^^^rmod7/4-1.

Let F=fe/1, ^eK[X], ZeZ, deg^==D. We restrict r to be so large that /+(^- 1)^0.

Ca^ 7. — Either /eN or g^p2.

If ( ^ r — l ) ^ r + ^ + / ^ 0 then oc^X"/5) is a polynomial of degree bounded by
(l/^)(| |z4+D+^(/+^+(^-l)7/)) and so A^^=0 i f^<0 or if

| |^||+^>1(||^||+D+^(/4-^+^-1)^)).
^

Thus

C^^-Omod^1

if

^r+^+/^0

and either

^+7?r<0
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or

\uf^d(st+pr)>]-(\u^+D+d(l+s+pr+(q-\)pr))
q

i. e. if either s <—pr or

/ ^ ii .n_,^ jHJ+cfa+(D4-^)(y) II z/ )| + ds > -fj—jj———-———-

Letting r -» oo we conclude that

C^^-0 if (y) holds.

We have also shown

C^^Omod^ if J^-^.
I ^<-^

In particular

C.,s;.,s=0 if jjvl|+^>(D+^)/^-l)

^Omodp^1 if sci-l-qp^ -/?').

Hence, if either ^0 or ^^2, then -qprJrt-l< -^+f+l. Thus
(- oo, -^)= u [-^-^r+t, -P'^). Therefore, C^,^^=0 mod p^1, if s< - p " .

t^O

Thus we may compute trace C modpr+l by summing over s ^ — p 1 ' ,
]j u \\ + A < (D + /J)/(^ - 1), a finite set. This demonstrates the existence of the trace of C
in Case I but it also shows the existence of trace A^. Furthermore mod pr+l

TraceCEE ^ A^^^

s^-p^un<d

= V A(r)

Z^ ", s; u, s

s^O, iin<d

=trace(a,|K[X])

-7——— £ F(x)/(^-1^
(^-l)\e-i=i

=—1— V F(x)modpr+l.(q-\r i, ̂ =,
^-1^1

This completes the proof in Case I.
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Case I I . /<0, q^p.

Fy(«-1)^ satisfies the condition of Case I [with / replaced by l-}-(q-\)pr} and hence
we may conclude that

A^=0 if \\u\\^ds>^D^d(l^(q-\)p¥))|(q-\)

sOmod^^1 if s<-pr.

LetN,={(^^)|| |M||+A^(D+^(/+^"l)^))/(^-l),^-^}. Thus

Trace A^ = ^ A^,,, modp^1

(M ,S)€V

where V is any finite set containing N^. But then

TraceA^s ^ C,,^^^ modp^1

(u, s) e V

= £ C^^^mod^^
(u, s) e V

where V is any finite set containing the set

N;={(^^)|||^||+A^(D+^)/^-1),^-2^}.

This shows that Trace A^s Trace A^"^ mod pr+l and so the limit as r —> oo exists. It
is clear that the Trace of C is well defined, and is congruent mod/?^1 to the Trace of
A^. The formula for Trace C now follows by the same proof as in Case I. We extend
this result to matrices.

THEOREM.—Let Fe^^(H(^)), then \|/°F is an endomorphism o/H^^T, whose

matrix relative to the basis {X"/5^}^^ ,sez , i ^ ^ v {^here e^ is the standard i-th unit
vector in v space) has a characteristic series, det (I — t \|/ ° F) and

deUI-^oF)-^-1^
[I ^^(tdesxY/desx

x alg over fq

f(x).Hxi^O

where

deg x — 1

(
ueg x - i \

Ap^CO^det 1-t n F(Teich?1))
1=0 /

and €> maps 1 4-1 K [[t]] into itself by t\—> qt.
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10. \1̂  as operator on H(^) (C/. [Dw3], Chapter 5, for the case o f ^ = l )

Let/, KQ, K satisfy the conditions of Section 9. We have shown | v[/ \g, ^ 1 (§ 9). Thus
if we write

vl^X"/- ^ B.^^X"/1

Vn<d

t e Z

we have [B^^J^L

For s ̂  0 we know By ^ ̂  = 0 unless

(io.i) mi^-ii^i^^o^
To treat the case s < 0 we change notation and for s ̂  1 write

VM yu

O0^) ^-=ZB;,^- .
7 ^n<^ J

t e Z

Let ^=/?fl

LEMMA: By s; y^ = 0 ^2/(?^

(10.1-)

^— || v || ̂  -(ds— || M ||) (hence the number of non-zero entries with t^O is finite).
q

Furthermore

ordBy ,, ^supfo, -^+ ^^(^-l)+ord(^-l)^^
\ W ^ ' /

where for t-^0 the symbol (t— 1)! must be replaced by 1.

Proof. — We define a subspace, L, ofzK[[z-,X^ . . .,XJ].

^I E ^,,XMz s |ord^,>a^+(9(l)forsomea>0,
s^l

u e N "

ord^y^^ + oo as || ̂  ||+^-^ + oo }.

Let n p ~ l = — p . We define the (Laplace) map T^ of L into H(^) by linearity,
continuity and the condition

X" (s-\)!

7 (-^)5-
TX1^—^——7- (note:^!).

•/ /•s /_-\s-l v — }
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Let F=exp K(zf(X)-zqf(Xq)). We assume (as in Section 7) that the coefficients of/
lie in an unramified extension of Qp of degree a, and that/^0. It is known [Dw 3],
p. 242, that

F= ^ c^X-z5

\\v\\^ds

s^O

ordCy ^s——•
Pq

The operator \1^°F: ^ -^\|/^(^F) is a well-defined map of L into itself. Katz [Kal]
showed that the diagram

L ^H(^,.)
^^i i^/

L ^H(^)

commutes. A simpler proof may be found in [Dw4], Chapter 10. Thus

(̂̂ I ̂ =T,«MX^F)

=^^/( 2^ ^U-M^t-S^7)

u, t^s/q

= E c^_„,„_,xpo-l)///t(-Tc)'-l.
u, t^l

We may assume that u^<d but in the sum we may have v^d, and so we must
eventually transform into the reduced form. We first observe that

ord^.^^^t-iy./^-^qt-s)^- - ^^ord^-l)!
pq p-\

^f^l--L^-.^-l+ord(/-l)!+ 1

\ P P ~ ^ ) Pq P-^

a monotonically increasing function of t (for/? ̂ 3). Under reduction this estimate [with
(t - 1)! replaced by 1 if t^ 0] will be maintained (cf. simplified criterion of Section 4). We
conclude that

ordB^^^^-^+ordf'^^+^-.^+ord^-^.
\(s-\)\) pq n1 1

We recall that C^ _ ^ ^ _, = 0 unless

(10.1") \\q-v-u\\^d{qt-s)
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i.e.

dt-\\v\\^(ds-\\u\\)lq.

To prove (10. V) it remains to verify that if ^—)[z; | |^a then under reduction the same
inequality holds, i. e. if v^d then writing /= X^ + ^ y^ X"" we have

Wn<d,\\w\\^d

^^^-.L-v ^"y^
~ct ~ vd ^t-1 ^ ^w r i '
7 ^n J Wn<d J

Trivially (letting £„ be the n-th unit vector),

d(t-\)-\\v-d^\\^^

dt -1) w + v - d^ \\ ̂  a -1| w I I + d^ a,

^n-^-^^r

This completes the proof.

11. Frobenius on Logarithmic space

Let H e L^ „ y We write for ^ < ̂

^(XTH)^ ^ Y.,^,,XT.
^<d
t e Z

THEOREM. — Given c<l ^er^ exists Tg>0 independent of(u,s) such that (for p==p^ J

we have

(11.1) cxp(||^| |+rf|^|)+ordy,^^,^£a+ap(|jt; | |+J|^i)

/or a//

(11.1.1) [|^||+^|^>T,.

Proof. — Let us write H== ^ a^ ^XWfz. Then in the notation of Section 10,
Wn<d

z e Z

V 1 1 ' - ) ^u,s;v,t^ ^ ^w, z "u+w, z+s;v, t '

z e Z

^<4

Thus it is enough to show existence of Fg such that

(11.3) ocp(||^|l+J|^|)+ap(||w||+^|z|)+ordB^^^^^^a£+ap(^
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for all (v, 0 satisfying (11.1.1).

Case 1. z+^0. — Here By+^ , z + s ; v ̂ ^ unless

(11.4)
t^O

u+w\\+d(z-}-s)^q(\\v\\+dt).

Thus putting Ti= | |M| |4 -^ s\, 1:2 = \\w\\+d\z\, T== ||^||+^ we have

(11.4.1) TI+T^^T.

By Lemma 1 (iii), for q T ̂  w + m^6 + x, (^ > 0),

p^O+p^-p^r)^-^" 6

and since T>m,

(11.4.2) p^O+p^-pM^l-^- 6 .

Choose e e N such that G<l—q~e. Then (11.3) is satisfied for Tg = m + m^6 +1 /^.

C^^2: z+^<0, t^O.

By (10.1') we may assume

-A-||?;||^-(-^(z+^)-||M+w
q

i.e.

d{z+s)^-\\u+\v\\^q(dt+\\'u\\).

Thus for T, TI, T^ as in Case 1, (11.4.1) is again valid and so if qx'^m-}-mqe+l we
have (11.4.2). We choose e as in Case 1 and obtain the inequality (11.3) with
T^m+m^1)/^.

Case 3. t<0. — In this case we may assume z+5'<0 in (11.2), (11.3). We change
notation and rewrite (11.3) in the form: there exists Tg such that

(11.5) ap(Ti)+ap(T2)+ordB^^^a8+ap(T)

for all

^1, z+^1, z^weN" (v^u^w^<d)

such that

^>Te

(11.5.1) \\u+w\\-d(z+s)^q(\\v\\-dt).
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Here once again

Ti= ||M|| +^|4 T2=||w||+^|z|, T=||z;||+A

Condition (11.5.1) implies

(11.5.2) T^^+^dlM+wH-^z+.y))

and so (11.5) is implied by

(11.5') ap(TO+ap(T2)+ordB^^^^^^a£+ap(2^+^- l( | |M+w| |-^(z+^)

subject to (11.5.1).

We shall prove either (11.5) or (11.5') by considering three situations covering all
possibilities. We choose ce(l,q) such that (c— \)l(q~ l)>s. We fix K G (0,^/3).

The three subcases of case 3 are

I. | | w + M | +^(|z|+ ^ | )^KTg.

II. | |M+w||+^( |z |+|^ |)^c(2A+(( | |M+w||-^(z+^))/^)) .

III. Both inequalities I and II hold in the reverse directions.

Case I. — Certainly | z +1 s \ ̂  — (z + s) and so

(11.5.3) | |w+M||-^(z+^KT,.

Thus (11.57) holds if for T > T,,

/ 'T' \

(11.6) ordB:^^^a8+ap(2^+^).
\ q )

By (11.5.2) and (11.5.3),

(11.5.3') T^2A-hKT^-1 ;

by I, (Z+^K TJd; while by Section 10,

ordB^^^^^^z+^-ord^^ -a
pq n1

^ - 1 - a + p^- (qt - K T J d ) - log //log;?.
Pq

So by (11.5.3'), tor r>Tg we have

(11.5.3") 2^(1-K/^)T,.

Thus it is enough to choose Tg such that subject to (11.5.3") we have

(11.7) p——(^-KTJf/)-l-^-log^/log/7>£a+ap(2^+KTJ^).
Pq
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The function

h(t)=p^]-t- ^-C^^+KT^)
P log7^

has derivative

h'(t)=p^-}- - t-— -2^ap'(2A+KT^)
P log;?

which is positive for Tg large enough. Thus subject to (11.5.3"), h takes the minimal
value at the extreme point ^o=( l—K/^)Tg/2rf . Thus it is enough to subject Tg to the
further condition that

(11.7.1) h(to)- p^- K T e >l+£a+a .
pq d

The left side is y Tg — log Tg/log^ — ap (Tg) — 5 where y = (p — 1) (^ — 3 K)/(2 dpq\
S\ogp=\og((q—K)/2dq). Since ^>SK, and since p grows logarithmically, it is clear
that the left side of (11.7.1) goes to + oo as Tg -> + oo which demonstrates the existence
ofTg satisfying (11.7.1).

Case II. We first observe that by Lemma 1 (ii)

2+p(2A)+p(TO+p(T^p(2A+Ti+T2)

^p(2A+<7- l(|^+w||-^(z+^))).

Thus (11. 5') holds if there exists Tg such that

(11.8) ordB:^^^a(2+e)+ap(2^)

subject to (11.5.1) and II.

By condition II

/ r\

1- - }(\\u^w\\-d(z-^-s))^2cdt
\ q}

and so

(11.9) || u+ w || - d(z^ s) ̂ 2 cqdt/(q- c).

Thus by (11.5.2)

(11.10) ^^IdtqKq-c).

and so it is enough to choose Tg such that (11.8) holds subject to

(11.1(0 2^^(l-c/^)T,.
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Again by II,

ldct'^\\w^u\\(\-c|q)^d(\z\Jr s\)+ Jc(z+ s ) / q

^d(\-}-clq){z^s)

and so

(11.11) z+s^2tcq/(c+q).

Again by Section 10 and using (11.11)

o^^^.,^qt~(z+s\P-^-ord-^— -a
pq (r-1)!

^ St — 1 — a — log t/logp

where 5 ==p~1 (/?-!) (^-c)/(^+^).

Thus it is enough to choose Tg such that subject to (11. KV) we have

8^ - log t/\ogp - 1 - a ̂  a (2 + s) + ocp (2 ̂ )

but it is clear as 5^— ocp (2 dt) — log t/logp -^ + oo as ^ -> oo.

Ca^ III. Since ord B^^, ,+^^ ^0 it is enough by (11.5') to find Tg such that

(11.12) ap(T,)+ap(T,)^a8+apf2^+^+ w l l~^+ z )^
\ q }

for T > Tg. By Lemma 1 (v), if T^ + T^ > cm then

P(Ti+T2)^p((Ti+T2)/0+(c- l) / (<7-l)

and so by the falsity of II

(11.13) p(Tl+T2)^p(2A+^- l( | |^+w| | -^(z+^)))+(c-l) / to- l)

subject to TI +T2>cm which is precisely the consequence of the falsity of I if Tg>cw/K.
By Lemma 1 (iii)

(11.14) p^+p^^p^+T^)-^-6

if T i+T2^m+w^ which by not I holds if T,>w(l+^)/K. For T, so large then,
(11.12) holds provided

(c-l)/^-!)-^-^.

By the choice of c, we may choose ^eN satisfying this condition.

THEOREM.—Let Fe^^ (^,m,q) ^^ ^e characteristic series det(I-^\|/ OF) (as
defined in Section 9) converges for ord^> —a.
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Proof. - Equation (11.1) implies that (given £ < 1) the matrix of \|̂  ° F relative to the
bases {^''"''^'^X"/5}^^ ,^ of (L^^K)- has all columns divisible
by p^ for || v || + d\ s | > Tg. Thus the coefficient of ^ in the characteristic series is divisible

by (p^~^ where N/v is the cardinality of the set of(u,s) such that |[^||+^ ^Tg.

COROLLARY. — If the matrix B of Section 8 has coefficients in L^ ^ p w^/z a arbitrarily
large then the coefficients of Aq(q=ps) lie in L^ ̂ ,. ̂ for suitable m" and a' arbitrary in
(0, (p— 1)/(^+ 1)). The unit root zeta function is meromorphic for ordq t>(p— !)/(/?+ 1).

Proof. - The first sentence follows from Section 8. The unit root zeta function is by
Section 9 essentially of the form det (I -1 \|/^ ° A^"0"1)" and the point is that the condition
ordpt> -soi' is equivalent to ord^> -a'. However this determinant does not give the
contribution coming from X with some zero coordinates. These may be restored by a
combinatorial argument using the restriction ofA^ to sets of the form {X;=0}^c where
C is a subset of { 1 , 2 , . . .,n}.

Remark. — We have tacitly assumed that condition (7.1) is satisfied with/regular
relative to X^. Indeed the combinatorial argument of the preceding proof requires that
/ be regular with respect to each X;. This need not hold over Fg but will hold over F s
for all S>SQ. By well known methods this shows meromorphy of Y[ ^(vt) for

v^l

ordqt> ~(p- 1)/(^+1) and all S>SQ.

12. Family of hypersurfaces

To illustrate our theory we will consider the generic hypersurface of degree d in n +1
variables which we write in the form

n+1 I

h(X,^)= ^ X f + ^ ^ . X ^
1=1 j = i

where /=( ) — ( / z + l ) and {w 0 ^} is the set of all solutions in N^1 of the equation
\ d )

u^ + . . . +z^+i =d, the solutions u^dS^ 5 with fixed s being excluded.

We observe that the theorem of Section 7 and the discussion of Section 8 remains
valid with v^ infinite provided that matrix B satisfies the further condition that in the
L^ ^ p metric the ,5-th row of B approaches zero as s —^ oo.

Following the combinatorial methods of [Dw 5], Section 4, we construct an infinite
matrix A which may be used to compute the zeta function of the hypersurface defined

by the specialization of the reduction of h. Specifically we choose y algebraic over Q
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such that

00 yP8

Z — — — — 0

5=0 P

ordy=
^-1

We put 0 (t) = E (y ?) where E is the Artin-Hasse exponential function,

E(0=expf^^5

\s=0

We define

n+1 I

F(XA)- n e(XoX?). n e^.XoX^)
1=1 J = l

Let the ̂  be bounded by unity.

We define A(T) to be the matrix of (l/7?)\|/°F(X,?i) (relative to the basis
{y^X"}^^^ +^^^^.) as operator on the space of power series ^ with the

properties

(i) E, is divisible by X^ X^. . . X^+1;

(ii) ^(X)= ^ ^X";
(IMO==U1 +•••+"»+!

(iii) £, converges on the closed unit ball.

Thus writing F = ̂  C^ (k) X" we have

A =Y l ; 0- "On l C
^u, v I f ~pu - v

and so ord A^ ^UQ-\. (If we view the ^ as variables then \ ̂  is a polynomial in
the ^ of degree bounded by PUQ — VQ.)

Let 'k be specialized in C^, so that ' k q = ' k , q =pa. For each subset B of { 1 , 2 , . . ., n + 1},
B^O, let VB denote the projective hypersurface (in the projective space whose variables
are the { Xj^g g) defined by the vanishing of the reduction of h^ (x, ?i), it being understood
that Tig is obtained from h by setting X,=0 for all ^B. We view Vg as defined over F^

a-l

and let ^(Vg, t) denote the corresponding zeta function. Let A^^ ]~[ A(^). Then by
7=0

a minor modification of equation (4.33) [Dw 5] we obtain

deta-^A^)-^"1^1^!-^1"^ [I ^(V^y-0^1"^8

0^B c S

where 0: Cp [[t]] -> Cp [[t]] by t -> qt. It follows that the unit root factor of (1 -1} ̂  (V, i),
(V=Vg) coincides with the (-1)" power of the unit root factor of det^-^A^). It
follows that the unit root zeta function of this family of hypersurfaces is given by the
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methods of Section 8. Here we must take/(^) to be det B^ where

Bll=(Au,v)uo-l,vo=l (dtiQ=U^ . . . +^+i)

v!= ( )5 v2 = °09 and for examPle P ̂ 22 is the matrix (A^ ̂ ^2, vo^r

The advantage of this approach (based on cochains) is that while v^ = oo, we avoid all
necessity of reducing to finite dimensional cohomology spaces. Of course the matrix
A^ is a V ^ X Y ^ matrix and the unit root zeta function of the family is given by

det (I— ^vl^Aii)"^"^ as in the second theorem of Section 9.

13. Appendix

In this section, we provide the proof of Lemma 1.

Proof. — (i) This follows directly from the fact that for s>mqt

p-C^l/m^-l)^.

(ii) Let8(^,^)=P^i+^2)-P(^i)-P(^)-

Case 1. s^>m. — Here p' ( s ^ - \ - s ^ ) — p ' (^i)^O and hence for fixed ̂  P (^i + ̂ 2)— P (^i)
is maximum at s^=m. Thus

8 Oi, s^) ̂  p (m + s^) - p (^).

The same argument shows that the right side assumes its maximum at s^ e [0, m] and so

8(^1^2)^ su? P ( w + ^ ) = p ( 2 m ) = — — .
S2 6 [0, m] ^ 1

Case 2. — Sup (^, s^) ̂  w but then 8 (^, 5-2) = p (^i + ̂ 2) ̂  P (2 w) as before.

(iii) Let z==s^-\-s^ s^^s^, and so s^ ^z/2. For fixed z,

8 Oi,^)= P (z) - P <>2) - P (z - ^2)

and so

-^(^^-P^+P^i^O if ^2^^
05-2

Thus 8(^1,5-2) assumes its maximal value when s^e[0,m\. In that range
8 ( s ^ , s ^ ) = p ( z ) — p ( z — s ^ ) which clearly is maximal at s^=m. Trivially the difference is
bounded from above by m. (right hand derivative of p at z—m). The assertion is now
clear for z ̂  m + mq1.
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(iv) Case 1.

^2^0,

^==Wi qtl-^x^<m^ ^ t l + l

^2 = ̂ 2 ̂ 2 + ̂ 2 < '^2 ̂ 2 + l •

Then trivially

Si + ̂ 2 ̂  (m! + ̂ 2) ̂  +t2 + ̂ l + x!

and so by (i)

-V —j— •y

P , . . , , , , ( ^ . + ^ ) < r i +4+ ——————————————1——————2————————————rm^~rm^\ i z / — i z , ^ * i * / ^ ^

(Wl+W2)^ l + f 2 ( ^ - l )

while

Pmi^l)+P^^2)=^+^2+————^———-+————^———7-.mi^i (^ - l ) W2 ̂ 2(^-1)

The assertion is now clear in this case.

Case 2.

Wi^i =m^ ̂ ^Xi <mi ^ l + f l

Sl ̂ ^2

SO

^1 ̂  ^2 = (w! + ̂ 2) ̂ 1 + ̂

where 5 = x ^ + 5 ' 2 — W 2 ^ i ^ X i . If 8^0 then Pnl^+nl2(sl+s2)^tl^Pm^ (^i)- Hence we
may assume 5 > 0 and so

5
Pmi+m^l+^^l+T———,———-7-7———.-

{m^m^q^(q-\)

while

v"

Pmi (^l) = h + —————————7- ^ Pmi 4-m2 (s 1 + ̂ )

Wi^^-l)

since x^8.

Ca^3. s^m^s^m^ - Here0=p^^(^)=p^(^)=p^l+^( l y l+•y2)•
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(v) Let h (s) = p (s) - p (s/c). For t ̂  0, cmqt <s<mqt+l we have

h'(s)=(\- ^(mq^q-l))-1^
\ c j

and hence h is minimal at s == cmq\

For mqt<s<cmq\ ̂ 1, we have

/^)=——1—— - 1 ———1———<o
m(q—l)qt c m(q—\)qt

and so again the minimum occurs at 5- = cm ^r. We compute

c-1
A(cm^)=p(cw^)-p(w^)=——,

^-1

which gives the lower bound for h on [cm, oo).

(vi) The assertion is trivial for s^m. For s=mqt-^x<mqt+l, we have
qs^mq^1 +xq<mqt+2 and so p(^)= 1 + t-^-xq/(q— ̂ mq^1 = 1 + p(s). This proves
both (vi) and (vi7).

(vii) If s = mq. qt + x < mq . (f +1, ^0, then s / q == mcf + x / q < mqt +1 and so

p^t-^x/mq^^q-l^p^s/q).

If s< mq then s / q < m and hence p^ (^/^) == 0 == p^g (s).

(viii) l{mqaqat^s<mqa.qa(t+l) then

P.,,(^^P.,,(^fl(l+o)=^(l+0

^ Pm^,,- (̂ ) < a p ,̂,. (m^. q-(t+1)) = ̂ . (1 + 0.

This proves

Pm,q(s)^ap^a^a(s)

if s^mqa, while the assertion is trivial if s<mqa.
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