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0. Introduction 

In this paper we shall develop a theory of logarithmic deformations of normal 
crossing varieties, and prove that certain normal crossing varieties have flat 
deformations to smooth varieties. 

A normal crossinq variety is a reduced complex analytic space which is 
locally isomorphic to a normal crossing divisor on a smooth variety. More- 
over, it is called a simple normal crossin9 variety if the irreducible components 
are smooth. According to Friedman [F], we can define the concept of 
d-semistability for simple normal crossing varieties (w For  example, the 
central fiber of a semistable degeneration is a d-semistable simple normal 
crossing variety. 

Let f : . ~ ' ~  A be a semistable degeneration over a disk A such that the 
general fibers f -  1 (t) for t + 0 are smooth K3 surfaces and that the irreducible 
components of the central fiber f -  1 (0) are compact K/ihler surfaces. Then by 
Kulikov's theorem on the minimal model o f f ( [ K u ]  and [PP]),  there exists 
another semistable degeneration f ' : , ' ~ " ~  A which is bimeromorphically 
equivalent t o f o v e r  A and such that the canonical divisor K~, is trivial. In this 
case, the central fiber X =f ' -1 (0 )  can be easily classified. 

Conversely, Friedman's theorem ( [F] )  states that for an arbitrary d- 
semistable simple normal crossing compact Kiihler surface X with trivial 
Kx and H 1 (X, [~"x), there exists a semistable degenera t ionf '  as above, i.e., the 
d-semistable K3 surface X has a smoothing. 

The purpose of this paper is to give an alternative easy proof of Friedman's 
theorem, and generalize it to higher dimensional varieties. 

The difficulty of the proof is [-F] stems from the fact that the flat deforma- 
tions of the above X is obstructed. The Kuranishi space of deformations of 
X has two components, one for the smoothings and the other for the locally 
trivial deformations which may destroy the d-semistability. In order to 
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overcome this difficulty, we introduce the concept of the logarithmic structures 
by Deligne, Faltings, Fontaine and Illusie (cf. [Kat])  and the logarithmic 
deformations (w and w In general, a simple normal crossing variety X admits 
a logarithmic structure ~ if and only if it is d-semistable (Proposition 1.1). 

The logarithmic deformations of the pair (X ,~ )  give us a covariant 
functor LD from the category of local Artin IF[[t l ,  ... ,troll-algebras with 
residue field �9 to the category of sets, where m is the number  of connected 
components of the singular locus of X. LD has a hull in the sense of [Sch] 
(Theorem 2.3). LD has a similar property as the usual flat deformation functor 
F of X for the infinitesimal extension (Theorem 2.2). But we note that the 
tangent space of LD is bigger than that of F, since there are deformations of 
the logarithmic structure o//which fix the underlying variety X. 

The logarithmic deformations of the d-semistable K3 surface X corres- 
pond to the smoothing component of the Kuranishi space, and proved to be 
unobstructed since the obstruction group is trivial (Corollary 2.5). Here the 
unobstructedness means the smoothness of the hull of LD over 
t12[[q, . . . ,  troll instead of over the base field ~, and implies automatically the 
existence of the smoothing. We note also that our argument could be modified 
for algebraic schemes over a field of arbitrary characteristic. 

In the higher dimensional case, we shall generalize the Tl-lifting principle 
([R],  [K])  slightly in order to prove the unobstructedness of logarithmic 
deformations (w Here the base field should be of characteristic zero. We shall 
prove that a compact K/ihler normal crossing variety X of arbitrary dimen- 
sion d with a logarithmic structure such that K x  ~ 0, H a- l (X, (gx) = 0, and 
H'r x[~ ~!X[Ol)= 0 has unobstructed logarithmic deformations and is 
smoothable, where X E~ is the normalization of X (Theorem 4.2). 

1. Logarithmic structures on normal crossing varieties 

A reduced complex analytic space X is called a normal crossing variety (or n.c. 
variety) of dimension d if the local ring 6x,p at each point p is isomorphic to 
t12 {x0 . . . . .  Xd}/(Xo ... X,) for some r = r(p) such that 0 -< r _< d. In addition, if 
X has smooth irreducible components, then X is called a simple normal 
crossing variety (or s.n.c, variety). 

A partial open covering of X with systems of holomorphic functions 

,~  = {u~;  z'o ~' . . . . .  z ~ ' }  

is called a logarithmic atlas (or log atlas) if the following conditions are 
satisfied: 

(a) U~ Ua contains the singular locus D of X, 
(b) there is an isomorphism ~0 from U~ to an open neighborhood of 

(0 . . . . .  0) of the variety 

v ,  = {(Xo . . . . .  x~) e r  1; Xo .. .  x ,  = 0} 
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= ~(~) (0 <_ j < d) for  some  r = r(/~) such tha t  ~o*(x~) = z / )  for 0 < j  < r and  t ha t  ~j = 
are invert ible ,  

(c) if Uxc~U, + fh t hen  there  exist inver t ib le  h o l o m o r p h i c  func t ions  
@ " )  (0 < j < d) on  U). c~ U,  and  a p e r m u t a t i o n  a = gift,/~) e ~ e  + ~ such t ha t  

z ~) = u~. ~') z~. ") and  U~o ~") u ~'~ = 1 on  U~c~ U, .  a(j) J J . . . .  d 

Two  log at lases  ~ an d  ~ '  on  a n.c. var ie ty  X are said to be equivalent if 
the i r  un ion  defines a long  a t las  on  X. An equiva lence  class of log at lases is 
cal led a logarithmic structure (or log structure). 

Let X be a s.n.c, var iety,  X~ (0 < j < n) the  i r reducib le  c o m p o n e n t s ,  a n d  
Ix~ (resp. Io) the  def in ing ideals of X~ (resp. D) in X.  T h e n  X is called 
d-semistable if 

l x o / I x o l o |  ... |  IocS C~. 

Propos i t ion  1.1. A s.n.c, variety X admits a logarithmic structure if and only if  it 
is d-semistable. 

Proof. Let  '~g = { t~'x''(x)~o , " '  , Z~d~l} be a l~  at las  ~  X T h e n  f~  each 2 there  is 
a n  in jec t ion  a~: {0 . . . . .  r(,i)} --, {0 . . . . .  n} such tha t  z'. ~ is a local  e q u a t i o n  of 

J 

~x) of I xk / l xk lo  over  Ux as follows: X ~ j ) c ~  Ux. Def ine  local sect ions  s k 

s (~) ~ z ~z~ z ~) z~ 2~ (mod  Ix ..... ID) 
�9 a , ( O )  - O  t O . ) +  I " ' "  

s~ z ) - z ~  ~ ) ( m o d l x k l D )  if k = a a ( j )  f o r j # 0  

~(~') -= 1 (rood IxklD) if k # a~(J') for any  j "'k 

T h e n  {S~o~) | ... ~ s ~). )~, defines an  i s o m o r p h i s m  

6DC ~ l x o / I x o l D |  ... | I x , / 1 x , I ,  . 

Converse ly ,  suppose  t ha t  X is d-semistable .  Let  {Uz} be a par t ia l  cover ing  
of  X sat isfying the  cond i t i on  (a) and  such  tha t  I x / I x , I ,  Iv,.O (%1v,. We have  
a n o w h e r e  van i sh ing  sec t ion  s o f l x o / l x o I ,  | ... | I x , / I x ,  ID. We can  wri te  
s[ v. = s~o a) | | s ~z) for  some  s() ) e H ~  Iv[ v.). We may  assume  tha t  
the  s~.Z'(O <j'<= r(2)') are  represen ted  by some h o l o m o r p h i c  func t ions  
z~)eJ I~  an d  the  o the r  s / ) ( r ( 2 ) < j < n )  are represen ted  by  
1 eH~ If  the  U~ are  chosen  smal l  enough ,  then  {l/k," z o t~ . . . .  'zt~}d 
satisfies the  c o n d i t i o n  (b), and  we can  write zt. x~ =u[~"~z? ~ on U a n U , .  
The  u~ satisfy the  equa l i ty  u~0 ~') ... %" ~") -- 1 on  U~ c~ U, ,~  D, hence  

d 

U(ZU) u ̀ x u , =  1 q- 2 aJz~ ') z(~') z(u) z ~  ) 0 . . . . .  d " "  j - 1  j + l  " ' "  

j = O  

for some a2 e H~ Since z~o") . . . .  z ~176 = O o n U , , o n e c a n a d d a m u l t i p l e o f  
z~l .. z ?  ) z ~") z ~"~ to u ~") Thus ,  if we replace  each  u~. x") by 

0 " j - - 1  j + l  . . . .  d j " j 

(~) z(~) Z(f) (4#) - u~. z') - a~z~o "~ . . . .  z~_, ~+, . . . . . .  (u~o ~"~ 0'~")~_ ~ -~+,,~"), ... u~ ) ' J 

t hen  we see t ha t  ,~r �9 .~x~ z~X)/ satisfies the  c o n d i t i o n  (c). Q.E.D.  /. t . , . ~  z. 0 ~ , . .  ~ d 
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2. Logarithmic deformations 

Let (X, ~//o) be a n.c. variety with a logarithmic structure as in w and 
D1 . . . . .  D,, the connected components ofD = Sing X. Let A be an Artin local 
C-algebra with residue field A / m  a = C ,  and sl . . . . .  s,, elements of m a. Then 
a logarithrnic deformation (~', ~l) of (X, ~ over ,4  = (A; sl  . . . . .  Sin) is a pair 
consisting of a flat deformation ,~" of X over A and a logarithmic atlas 

on X which is defined as follows: {U~} is a partial open covering of Y' and the 
zl. ~) are holomorphic functions on the Ua such that 

J 
(a) {U~ ~ X }  and the restrictions of the zt. a) define a logarithmic atlas on 

j 

X which is equivalent to ~t/o, 
(b) Z~o z) . . . .  z~x)a = si if Uac~Di + O, 
(c) if U ~ n U ,  4= O, then there exist ul.X"~ H~ (!'.,~,) for 0 < j  < d 

such that 
z ~) = ul? u) z ~u) and u 12u) u ~:'") = 1 on U~,~U,. 

a ( j )  j j - 0  . . . . .  d 

where a is a permutation. 
Let A,, = C[[t~,  ... , t , ,]].  We shall regard ,~' as a Am-algebra with the 

same underlying ring as A whose structure homomorphism A,, %~4  is given 
by ~(tl) = si. 

Two log deformations (Y', ~k') and (,Y', J#') of (X, ~o) over ~4 are said to be 
equivalent  if they define the same log structure, i.e., if their union defines a log 
atlas on Y'. 

Let s J ' =  (A'; s] . . . .  , s;,) be another Artin local Am-algebra with a local 
homomorphism h': ~ --* ,~ '  over A,,, i.e., /~ is a C-algebra local homomor-  
phism h : A  ~ A' such that h(s~)= s', Let ,~"= .~" x a A' with the natural 
morphism ~0: Y" ~ ,~'. Then one can define a log structure ,~' on ,~" by pulling 
back ~'  by (p. The log deformation over ,~ '  thus obtained is called the 
pull-back of (Y', ~ )  by h. In the case in which h is surjective, (,'~", "~l') (resp. 
( f ,  ~g)) is called the restrict ion (resp. lifting) of the other. 

The log deformations of (X,~#o) defines a covariant functor 
LD = LD(X,~o)  from the category of Artin local Am-algebras with residue 
field C to the category of sets: 

LD :(ArtA~) ~ (Set.) 

Let (5~, ~//) be a log deformation of a n.c. variety (X, ~o) over ,~'. Then the 
sheaf of relative logarithmic differentials (2.~./,u(log) is a locally free (!~:-module 
of rank d defined as follows: 

(ct) on each U~, it is a quotient sheaf of the direct sum of ~2~,/A and a free 
a 

module @j=0etA)(9 by the submodule generated by 
j uA 

d 

dz~ ~) - z ~) elZ~(O < j < d) and ~ el. a) 
J J - = j ' 

j = o  
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(fi) if U J ~ U .  4: O, then the gluing on the overlap is given by 

e ~x~ = e{U) + du(,XU}/u~ ~ 
~ ( J )  J J a 

as well as the identification of f2~,/A and f21. /a there. 
The transitivity of the above gluing can be checked by using the Lemma 

2.1 below, and  the sheaf O}./~(log) is well defined. We shall denote  
e~. ~) = dz~.a)/z~) ). We also define 

J J " J 

P 

~2~/~r = A Q ~/~r 

T~ / ~/(log) = Home~ (f2~/.~/(log), C~x) 

We note tha t  f2~/r ~ox. 

Lemma 2.1. Let ( f ,  "~ll) be a logarithmic deformation o f  ( f ,  'go) over .4 ,  and 
(U; Zo . . . . .  Zd) a member o f  ~l. Let uj (0 <=j < d) be invertible holomorphic 
.functions on U such that 

z i = u )  z) and U O . . . U d = I .  

T h e n  u 0 ~ . . .  ~ u d ~ 1. 

Pro(~  We proceed by induction on the length of A. We assume that  the zj are 
not  invertible for 0 < j  < r and invertible for r < j  < d. It is clear that  uj = 1 
for r < j < d. We shall consider the uj for 0 < j < r. If A = I~, the U has an 
equat ion Zo ... zr = 0 in an open set of ~d+l .  Since zj = ujzj, we have 

Uj--  1 = a j z  0 , , .  Z j - I Z j +  1 , . . Z  r 

for some ho lomorphic  functions aj. Then  

d 

1 = Uo ... Ud = 1 + ~ a j z  o . . .  Zj 1 Zj+ 1 . , .  Zr" 
j = O  

Hence uj = 1 for all j. 
If A # ~ ,  we take a principal ideal J = aA c A such that  ntAJ = 0, and  let 

= A/J .  Let 0 denote the restriction of U over Spec ,4. By the induct ion 
hypothesis applied to 0 ,  we have 

uj = 1 + a a j z  o . . .  Z j _ l Z j +  1 . . .Z  r 

for some holomorphic  functions aj. Then as before, from Uo ... Ud = 1 follows 
tha t  uj = 1. Q.E.D. 

Theorem 2.2. Let (X ,  qlo) be a normal crossing variety with a logarithmic 
structure whose singular locus has m connected components, and (~', ~ a logar- 
tithmic deformation o f  ( f ,  <//o) over a Am-algebra ,4 .  Let  

O ~ J -~ ~/ '  -~ . ~  ~ O 

be an extension o f  Am-algebras an ideal J such that j 2  = O. 
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(1) Assume that (~', o~) lifts to a loyarithmic defi~rmation (~", q/') over ,~'. 
Then the set of  automorphisms of Y" over d '  which f ix  the log structure ~#' and 
induce the identity on X is bijective to 

H~ Z~/.g(log) | J). 

(2) Under the same assumption as in (1), the set of equivalence classes of  log 
deformations over ~ '  which are liftings of  (~', q/) is a torsor on 

H 1 (.%r, Z~'/.4(log) | J). 

(3) The obstruction to the existence of the lifting of (:Y{', q/) over ,4'  is in 

H2 (,~, iQ/.4(log) @4 J) 

Proof Let (U; Zo, . . . ,  Zd) be a logarithmic chart belonging to the atlas ~ .  if 
U is small enough, then a lifting (U'; z~, . . . ,  z~) over ~4' always exists uniquely 
up to the equivalence. The set of automorphisms (p of U' over ,~" which fix the 
log structure of U' and induce the identity on U correspond bijectively to the 
set of ring isomorphisms (p* of 0e, which induce the identity on Cry with 
invertible holomorphic functions u~ for 0 < j  < d such that 

q)*(z~) = u)z) and u~ ... u~ = 1, 

since the u) are uniquely determined by ~p* by Lemma 2.1. The ring isomor- 
phism ~o* corresponds to a derivation (p* - id from (9 v to J(gv,~9 J| 
The corresponding 6'v-homomorphism 6o. ~2 v/,4 | ~;v can be extended 
uniquely to 6 e Home~.(s2~/,4(log), J |162 6v) if we set 6(dzJzj)  = u) - 1, since 
52~=o(U) - 1) = 0. Conversely, 6 determines an automorphism ~o of U' induc- 
ing the identity on U given by ~o*(w)=co + 6(dw) for w~6~v,. Then 
(o*(z)) = (1 + 6(dz)/z)))z). Since 525=o dz)/z) = 0, ~0 preserves the logarithmic 
structure. Therefore, we obtain (1). The rest of the theorem follows from the 
general theory in [Gro].  Q.E.D. 

Theorem 2.3. Let (X, q/o) be a compact normal crossing variety with a logarith- 
mic structure. Then the logarithmic deformation functor LD(X, q/o) has a hull 
R(X,  q/o) in the sense of [Sch]. 

Proof Similar to the case of the usual flat deformations. Q.E.D. 

Corollary 2.4. Let (X, q/o) be a compact normal crossing variety with a logarith- 
mic structure, and m the number of  connected components of  the singular locus of  
X.  Assume that Hz(X ,  Tx/r 0. Then LD(X, q/o) is unobstructed, i.e, 
R(X,q/o)  is formally smooth over A,, = l l ; [ [ t l  . . . . .  t , ,]].  Moreover, X is 
smoothable by a f lat  deformation. 

Proof The first assertion follows immediately from Theorem 2.2. By [Gra],  
there exists a semi-universal family of flat deformations Y" --* S. Let R be the 
formal completion of the local ring (gs.s, where s is the base point of S. 
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By forgetting the log structure, we obtain a natural homomorphism 
ct: R ~ R ( X ,  ~l). By assumption, there exists a formal arc fl :R(X ,  ~?l) ~ 112 [I t ]] ,  
where the target has a Am-algebra structure given by ti --* t for all i. By Artin's 
approximation theorem ([A]), there exists a homomorphism Cs,~ ~ II~{t} 
which coincides with floc~ up to the first order. Therefore, X has a smoothing. 
Q.E.D. 

Corollary 2.5. ( [F])  Let X be a compact Kfihler normal crossing variety o f  
dimension 2 which admits a logarithmic structure. Assume that ~OxO (9 x and 
H i ( X ,  (~x) = O. Then X is smoothable by a f lat  dfformation. 

Proo f  By [F, 5.7], h2(X, Tx/c(log)) = h~ f2~/r = 0. Q.E.D. 

It is possible to develop a theory of logarithmic deformations of algebraic 
normal crossing varieties over a field of arbitrary characteristic, and extend 
Corollary 2.5. to positive characteristic (cf. [Kat]). 

3. Tl-lifting property 

Let (X, ~b'o) be a n.c. variety with a log structure, m the number of connected 
components of the singular locus of X, and LD = LD(X, ~#o) the log deforma- 
tion functor of (X, ~o). Let 

A k = C [ t ] / ( t  k+l) and Ak[8 ] = II~[t,~]/(tk+l,e) for k > -- I. 

We note that they are zero rings ifk = - 1. Set A,, = ~ [ [ t l ,  . . . ,  t,.]] as before. 
Let S~Ck and .~r be Am-algebras whose underlying II~-algebras are Ak and 
Ak [~], respectively. We set LD(0) = LD(C). We always assume that the images 
of the ti are in the maximal ideals for k > 0, and the natural homomorphisms 
~ k  ~ ~ k -  1, ~5~k [-el ~ ~ k - -  1 I-G] and "~k I-el ~ "~k are over A,, for all k. 

Then LD is said to have the Tl-lifting property if the natural maps 

LD(,~'R [e,]) --* LD(,.4k) x t,D(,~k ~) LD('~Ck- 1 [e]) 

are surjective for all k > 0 and all Am-algebra structures on the Ak, etc. as 
above. We note that the Ta-lifting in the case k = 0 is also a non-trivial 
condition. We extend the T l-lifting principle on unobstructed deformations in 
[R], [K] to our situation in the following. 

Theorem 3.1. Let (X, ~llo) be a n.c. variety, m the number of  connected compo- 
nents o f  Sing X ,  and LD its logarithmic deformation functor. Assume that LD is 
pro-representable and has the Tl-lifting property. Then LD is unobstructed, i.e., 
its hull R is formally smooth over Am. 

Proo f  We fix a Am-algebra structure ~ k + l  on  Ak+ 1 for some k >_-0. Let 
Ck = ~ It, e]/(t k + x, t ke, e 2) = AR X A~ ~ A k- 1 [e]. We define homomorphisms 
0~ : Ak + 1 --~ A k [ C ]  and ct': A k -+ C k by setting ~(t) = ~' (t) = t + e. Then we consider 
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Am-algebra structures o~r ~r and (dk on Ak, Ak[e], and Ck, respectively, 
such that the following commutative diagram 

~k+ 1 ~ ~'k 

~'~[c] , % 

consists of A,,-homomorphisms, where horizontal arrows are natural 
homomorphisms. We note that ~k coincides with the fiber product ~r X.~r ..... 
o~'k- ~ [~] for the induced Am-algebras .~r 1 and ~ : Eel. Then by Theorem 
2.2(3), we have the following commutative diagram of obstruction sequences: 

6, 
LD(,~Ck+I) , LD(~k)  , (t k+1) | H2(X, Tx/~'(log)) 

l, ~"J, 
L D ( J k [ e ] )  , LD(~k) , (tke,) | Hz(X, Tx/r 

02 

where cr is induced by e. By the T l-lifting property, we have 62 = 0. Since cr is 
an isomorphism, we also have 6~ = 0, hence the hull R of LD is formally 
smooth over A,,. Q.E.D. 

Theorem 3.2. Let (X, ~Jg0) be a n.c. variety, m the number of connected compo- 
nents of Sing X,  and LD i~s log deformation fi~nctor. Assume the following 
conditions: 

(i) for an arbitrary nonnegative integer k, an arbitrary A,,-aloebra structure 
on ,~r and for an arbitrary Io9 deformation ( f  k, ~]k) of (X, ~go) over ,~r the 
natural homomorphism 

2 1 H 2 (,~k, Z~'~/.~k (log)) --" Ext ~ x (f2.~./~/~, COXk) 

is injective, 
(ii) for an arbitrary positive integer k, and arbitrary ,~k and (Y'k, ~ as in (i) 

if d k - 1  is the induced Am-algebra structure on Ak-a, and (Yf k-a, ~ 1) is the 
restriction over ~ k -  ~, then the natural homomorphism 

H 1 (Y'k, T,z~l.~ (log)) ---, H 1 (~k-  1, Zf~_ ~/,4~_ ~ (log)) 

is surjective. 
Then the hull of LD is formally smooth over A,, if LD is pro-representable. 

Proof Let S]k[e] be an arbitrary A,,-algebra structure on Ak[e] for k > 0, and 
(.~ Y/k)e LD(~'k) for the induced Am-algebra StiR. Since 3Y k can always be 
liftable over Ak[e] as a flat deformation, the condition (i) implies that it is 
liftable over ~qk[e] as a log deformation by Theorem 2.2(3). In particular, (i) 
for the case k = 0 implies the T I-lifting for k = 0. Then by Theorem 2.2(2), the 
condition (ii) implies the Tt-lifting in general. Q.E.D. 
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4. Smoothing of degenerate Calabi-Yau varieties 

Lemma 4.1. Let  (X,  ~#o) be a compact  K~hler  n.c. variety with a log structure,  
m the number o f  connected components  o f  Sing X ,  and (~ ,  ~ )  a log deformation 
o f ( X ,  ~llo) over a A~-algebra ~q[. Then 

(1) H q (Y', (2~/.q(log)) is a f ree  ~r and commutes  with base change o f  
~& ]br any p and q, 

(2) the Hodge  spectral  sequence 

E~ 'q = H%~',  t2~./~(log) ~ II-IP+%~ ', (2~-/~(log)) 

degenerates at Ex. 

P r o o f  First, we consider the case in which ,~' = ~4k is an Am-algebra structure 
on Ak. We can define a locally free (5'~ -module O}~(log) as follows: 

(e) on each log chart U~ where Zto a) "'" ~a'tx~= ct"i with c e ~*, it is the 
d quotient of the direct sum of ~2~, and a free module @j=o  et. a) (%, by the 

J 
submodule generated by 

d 

dzt. ~) - z~'. ~) et. ~) (0 < j < d) and nidt  - t ~ e ~ 
J d J J 

j = O  

(fl) if U~c~Uu # O, then we identify on the overlap by 

eta) = zCU) + du~.ZU)/ut.Z,) 
a ( j )  j j - j 

as well as ~ and ~2~. 
We also define ~2~. (log) = APQ ~k(log). Then following [St, 2.6], we define 

a complex of Cx~-modules 

L * =  +Q~-~  (log)(log t) ~ 
s = O  

with a differential given by the rule 

d o)~(log t) s = (de)~(log t) s + (s~o~Adt/t)(log t) ~- 1). 
s s = 0  

�9 N Then the homomorphism ~o:L �9 ~ Qx/r  (log) which assigns ~ = 0  %(log t) ~ to 
the image of~oo in ~2]/r (log) is a quasi-isomorphism as in [St, w Since ~, can 
be factored as L �9 -~ fl)~/,uk (log) ~ t~]/r  (log), the homomorphisms 

IH"(Y'k, Q]~/.~/~ (log)) ~ ~I" (X, ~2~/r (log)) 

are surjective. Then the long exact sequence of hypercohomologies associated 
to the exact sequence of complexes 

0 ~ ~.~_ ,/,~k-, (log)) ~ Q~k/~k (log)) --* t~]/r  (log) -~ 0 
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splits into short exact sequences. By counting the dimension as vector spaces 
over C, we infer the splitting of those associated to 

t k 
0 ~ t2x/~: (log) ~ ~}~/.~r (log) ~ ~2~- /.~_~(log) ~ 0 

Hence 

~-I%Y{'k, t2}~/.~/~ (log))/tlH"(Y'k, s (1og))t? " " IH (X, ~2x/r (log)) 

so lH"(fk, F2~./,~ (log)) is a free ~k-module.  
Next, we consider the general case. Let m be the maximal ideal of ~ .  

Assume that r a g + i =  0 for a positive integer k, and set , ~ " =  o~/m k and 
39' = ,~' x .~ d ' .  We shall prove that the homomorphism 

~l"(.~", s ~ (log)) ~ IH"(:~", (2~.,1< 4, (log)) 

is surjective. Suppose the contrary. Then the obstruction homomorphism 

6 : IH"(Y", ~. , / .~ ,  (log)) ~ lid" + a (X', Q~/e  (log) | m k) 

is not zero. For  a A,,-homomorphism ~:.~ ~ ~'k, we define Y'k = ,o~. • .~'~k, 
etc. Then there is a commutative diagram of obstruction homomorphisms 

IH"(.~, Q~-/.~ (log)) , IH"({~rk, (2~/.4~ (log)) 

IH" (Y", ~2~-,/.~, (log)) , IH"(Y'k_ ~, (2~. /.4~ , (log)) 

IH "+ I(X, g2~c/e (log) | m k) ) IH"+ 1( X,  ~?~(/e (log)) 
ct, 

I f~ is chosen to be general, the % o6 4 = 0, but 6' - 0 by the previous argument, 
a contradiction. 

In the rest of the proof, we shall show that the complex ~ : / ~  (log)) allows 
a structure of a cohomological mixed Hodge complex on X. Then by 
[D, 8.19], the spectral sequence 

E~ '~ = Hq(X, f l} / r  (log)) ~ IHP+ q( X, Q~:/r (log)) 

degenerates at El, and the homomorphisms 

Hq(Y ", QP/.~ (log)) -~ Hq(X, (2}/r (log)) 

are surjective, hence (1) and (2). 
In order to define a Z-structure on our complex, we shall construct 

a morphism of semi-analytic spaces ~ : ~  ~ X. It is called real blow-up in [P] 
(see also [C]),  but our )( is a real analytic manifold with corner instead of 
a C*-manifold. 

As in w we let V =  Vd = {Xo . . . . .  Xd) ~ Cd+~; XO ... Xd =0},  and set 

xj  = sje ",f~~ Correspondingly, we consider a real analytic space 

~r=((So, O 0 . . . . .  Sd, Od)~(IRxSI)d+I;SO...Sd=O,~Oj=O} 
j=0 
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and its semi-analytic subspace I7 defined by equations sj  > 0 for allj.  If 6'~."" Is" 
the structure sheaf of a real analytic space gV, then 6)p i -  ~ n~ ~ = (Sg- is that of 
a semi-analytic space 17 for i:17 ~ gV. The natural projection ~:17--. V is 
a morphism of semi-analytic spaces. 

1. re 
We define the sheaf of logarithmic differential 1-forms f2p (log) as a lo- 

cally free C%-module of rank 2d generated by 

dso /  so, dOo . . . . .  dse /  sd, dOd 

with relations y ' ;  d s J s j  = ~ dO~ = 0. We also define 

p 
p , r e  

lap (log)~- = / ~  ~2~'~(log) | r  

Then by the same argument as in [St, 1.13], we have 

-" .... ' :( )) #g (~2p (log)r 112<dso/So . . . . .  ds , /Sr  d s j / s j  
3 

i fs j  = 0 for 0 < j  < r and sj =t= 0 for r <j__< d at Q e  17. 
Let 17o = 17\~-  1 (Sing 17) and 1: 17o c 17. Let M �9 be the subcomplex of 

t.f~V're(1og)r generated by fav'rC(logh: and the functions (log So) i . . . .  (log sa)i, 
for i0, . . . ,  id e Z _> 0, where we define log sj = - Y',k ,~ j log Sk on the locus on 
which sj = 0. Then we have 

) ME = @ Q~'r~(log)~ ", e (log SO) i . . . .  (logs.)/. logsj 
io . . . . .  z, > 0 j 

for the above (2. 
We claim that M �9 gives a resolution of the constant sheaf 112p. In fact, since 

the problem is local, we have only to check it at Q ~ 17 as above, and it is 
similar to [St, 2.15]. 

Let ~ be the log atlas of X as in w For  a log chart U4, we define the real 
blow-up P4 :/-Ta --+ U4 and a complex M~ on/,74 as the pull-back of ~ and M �9 
by a morphism 04:U4 --+ V given by 0*(xj) = z~ 4) for allj. We can check that 
the/54 and the M~ for the 2 can be glued to give'the real blow-up 77 of X with 
a semi-analytic morphism ~ : J7 --+ X and a complex Mx on 77. In fact, for the 

real variables s and 0 such that zl: ~ = s~: ~) e',/Ti~ ~,, z? ') = s?  ) e ' / ' -X~ ' and u~: ~") = 
J J J J J 

(4~0 x / ' - - i 0 t  "~ (.a) ( ,~)  0~) (4) 0 4 0  0 0  (x) (~0 s. e : , i f w e p u t s . . , = s .  s. , 0 , . , = 0 .  + 0 .  andS '0 .  = ~ ' 0 . , t h e n  
) o 'U)  J J ~ 'U)  J J ~ ,/ ~ J 
(~,) 0 4 0  (u) (4u) (4it) �9 . z~ . ,  = u, z, and u 0 . . .u  n = 1 on the overlap Uac~U,. Moreover, M 2 gives 

a r'~solu'tion'of II2~. 
Now we have a natural inclusion of complexes ~* : f2x/~(log ) --+/% Mx and 

we can check directly that the combination of the homomorphisms 

~2x/~(log) --+ R/5, Mx --+ R~, e ~  

is a quasi-isomorphism. Therefore, we define a complex of 7/-modules on X by 

A~ = a ~ . g ~ .  
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Next, we define a weight filtration defined over Q. For this purpose, we 
define a semi-analytic morphism p : X* ---, X. Instead of ~ and I7, we define 
W* and V* by the equations So ... sd = 0 and sj > 0 for allj. Thus we have an 
additional real variable 0 = ~ j  0 i. 

1 , r e  
The sheaf of logarithmic differential 1-forms ~2v, (log) is defined as a lo- 

cally free (9~.-module of rank 2d + 1. A complex N* on V* is defined as before 
so that 

N~ (~  p.r~ (lOg so)iO .. (logsr)ir/( ~ ~ = ~V* (log)c, Q �9 1ogsj 
i o, . . . , i r > O  j / \ = o  / 

if s j = 0  for 0 < j < r  and s~4=0 for r < j < d  at QeV*. Thus N �9 gives 
a resolution of the constant sheaf ~v*. By gluing, we define X*, etc. We can 
check again that the combination of the homomorphisms 

~2x(log ) ~ Rp,  Nx* -~ Rp, ~x* 

is a quasi-isomorphism. 
Now the rest of the proof is similar to [S, w We only explain how to 

modify it. Let 

H~) = Rp,Qx,(k  + 1)[k + 1]/(WkRp, Qx*)(k + 1)[k + 1] 

where {Wk} is the canonical filtration given by the truncations. The 1-form dO 
gives an element of H a(X*, Q(1)), and by using it, we can define a complex 
A~ with a weight filtration W on it such that 

A~ | ~ A~. 

We also define 

A p. q = ~2~r +q+ l(log)/WqY2~+q+ 1(log) 

where W is defined by the multiplicity of log poles. Then the associated single 
complex A~: has a weight filtrarion W and a Hodge filtration F such that 

(Ox/r F)O (Ar F) 

(A~ | r Wr (A~, W). 

W �9 Moreover, the Grr (AQ) are described by the constant sheaves of some 
W �9 compact K~ihler manifolds, and the filtrations on the Gr, (Ar induced by 

F coincide with the Hodge filtrations. So the data 

A~, (A~, W), (A~, F, W) 

becomes a cohomological mixed Hodge complex on X. Q.E.D. 

Theorem 4.2. Let (X, '~llo) be a compact K~hler normal crossin9 variety with 
a logarithmic structure of dimension d >= 3, m the number of connected compo- 
nents of the singular locus of X, v:Xt~ X the normalization, and LD the 
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logarithmic deformation f imc tor  o f  (X, ~o). Assume the .following conditions: 

(a) O~xC? ~x ,  
(b) H '~- 1 (X, 6~x) = 0, 
(c) H d 2 ( X [ ~  (Qx[Ol) = 0,  

Then the hull o f  LD is ]brmally smooth over A~,  and X is smoothable by a f l a t  
&format ion .  

Proo f  We shall check the condit ions of Theorem 3.2. The condit ion (ii) 
follows immediately from Lemma 4.1. Let (Y', o/,/) be a log deformation of 
(X,O/go) over a Am-algebra ..~. By the Serre duality, (i) follows from the 
surjectivity of the homomorph i sm 

H d- 2 C~'k, ~r / eZk) __~ H e z ([~'k, Q Ilk~ ~r 

Since d log/2~i defines homomorph i sms  of sheaves 

it is sufficient to prove that  the image of 

d log /2n i :Hd-a( :~ ' k ,  r* ~ d- l 

generates 11 '~- 2 (~'k, Q ~ / ~ ( l o g ) )  as an ,4k-model. 
We proceed by induction on k. First, we treat  the case k = 0. The 

homomorph i sm d log/2~zi : H e- 2 (X, C*) ~ H e- 1 (X, Z) is surjective by (b). By 
IF, 1.5], i f r  p denotes the torsion part  of Q}/e, then we have a spectral sequence 

E{ ,q = Hq(X, O } / r  ~ Hv+q(x ,  Ir) 

which degenerates at El. So the homomorph i sm 

H d I ( X , ~  ) H d 2(X ' 1 i -+ s 1 6 2  

is surjective by (b) again. 
Let o~' and ,~-' be the cokernels of the natural  homomorph i sms  

(!::x -+ v.6;x~oJ and ' 1 f g x / e / Z x - ~  O}/~:(log), respectively. Then we claim that  
~ ?  ,~-'. In fact, locally on a log chart  (U; zo, ... ,zd), ~N' is generated by 
e s = d z / z j  for 0 N j < r. So we have 

r 

0 ~ ( fv  -~ @e2(Cv/ (z2) )  -* J ' ]  v ~ O. 
j=o 

The residue gives a natural  identification of e s to 1 e Ov/(Z j .  Thus we have 

Then  by (b) and  (c), n a - 2 ( X ,  ,~)  = H a - 2 ( X ,  ~ ' )  = O, hence 

H d- 2 1 1 d- (X,  ~2x/r ~ H z(X,  ~2~/r 

is surjective, and we finish the proof  in the case k = 0. 
Now we treat  the case k > 0. We have an exact sequence 

0 - ,  ?6~x ~ e ~  k -+ (~'~ 1 -+ O. 
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So by (b), the homomorphism 

Hd-- 2(~,'k, r 1) --~ H d -  2((j~" k 1, C()~" k 1) 
is surjective. By the induction hypothesis and the Nakayama lemma, we 
complete the proof  of (i) using (ii). Since X is K~hler and WxO (~x, a log 
automorphism is always liflable by Theorem 4.4 and [Wa, }3]. Thus LD is 
pro-representable. Q.E.D. 

We shall give a simple example of producing Calabi-Yau 3-folds by 
applying the above theorem. Let X = X l w X 2  and X l c ~ X 2  = D, where D is 
a smooth quartic in IP 3, and X1 (resp. X2) are obtained by blowing up IP 3 
successively with smooth centers C1 . . . .  , Cs (resp. C'~, . . . ,  C~) contained in the 
strict transforms of D in this order. In order that X has a logarithmic 
structure, we should have C + C '~  1(5o(8)1 for C = ~ i C i  andC'  = y ' j  C~, so 
that  No/x,  | No/x28 CD. If there exists a polarization on X, then it is easy to 
see that the remaining conditions of Theorem 4.2 are satisfied and X has 
a smoothing. For  example, if s = 1 and t = 0, then there exists a smoothing 
with Euler number e = - 296. 

We take a D defined by an equation xo 4 + Xl 4 + x 4 + x 4 = 0. For  a primitive 
8-th root of unity (, the divisors Fij .k  on D defined by Fi,s.k = {(Xo, ... ,x3) e D; 
x~ = ~kxj} consist of each 4 lines. We can choose 4 different F~,Zk, denoted by 
F1 . . . . .  F4, which have no common lines. Let a be a non-negative integer such 
that a<4 .  Then we take C = C1 + ... + Cs, + F1 + ... + F , ,  and C' = C'~ + ... + 
C't, + F1 + --. + Fa, where C~ (resp. C~) for 1 < i _< s' (resp. 1 <.] < t') are 
members of I(f'o(ai)l (resp. LCD(bj)I) such that 2a + ~a i  + ~bs = 8. Then we can 
prove that there exists a polarization on X. In this way, we can produce Calabi 
Yau 3-folds with the following Euler numbers: - 296, - 240, - 200, - 192, 

- -  1 7 6 ,  - 1 6 8 ,  - 1 6 0 ,  - 1 5 2 ,  - 1 4 4 ,  - 1 3 6 ,  - 1 2 8 ,  - 1 2 0 ,  - 1 1 2 ,  - 104, 
- 9 6 ,  - 8 8 ,  - 8 0 ,  - 7 2 ,  - 6 4 ,  - 5 6 ,  - 4 8 ,  - 4 0 ,  - 3 2 ,  - 2 4 ,  0 ,  2 4 .  
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