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0. Introduction

In this paper we shall develop a theory of logarithmic deformations of normal
crossing varieties, and prove that certain normal crossing varieties have flat
deformations to smooth varieties.

A normal crossing variety is a reduced complex analytic space which is
locally isomorphic to a normal crossing divisor on a smooth variety. More-
over, it is called a simple normal crossing variety if the irreducible components
are smooth. According to Friedman [F], we can define the concept of
d-semistability for simple normal crossing varieties (§1). For example, the
central fiber of a semistable degeneration is a d-semistable simple normal
crossing variety.

Let f: 2 — 4 be a semistable degeneration over a disk 4 such that the
general fibers /() for t + 0 are smooth K3 surfaces and that the irreducible
components of the central fiber £~ !(0) are compact Kahler surfaces. Then by
Kulikov’s theorem on the minimal model of f([Ku] and [PP]), there exists
another semistable degeneration f :2'— 4 which is bimeromorphically
equivalent to fover 4 and such that the canonical divisor K, - is trivial. In this
case, the central fiber X = f ™ !(0) can be easily classified.

Conversely, Friedman’s theorem ([F]) states that for an arbitrary d-
semistable simple normal crossing compact Kahler surface X with trivial
Ky and H!(X, Oy), there exists a semistable degeneration f” as above, i.c., the
d-semistable K3 surface X has a smoothing.

The purpose of this paper is to give an alternative easy proof of Friedman’s
theorem, and generalize it to higher dimensional varieties.

The difficulty of the proof is [F] stems from the fact that the flat deforma-
tions of the above X is obstructed. The Kuranishi space of deformations of
X has two components, one for the smoothings and the other for the locally
trivial deformations which may destroy the d-semistability. In order to
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overcome this difficulty, we introduce the concept of the logarithmic structures
by Deligne, Faltings, Fontaine and Illusie (cf. [Kat]) and the logarithmic
deformations (§1 and §2). In general, a simple normal crossing variety X admits
a logarithmic structure % if and only if it is d-semistable (Proposition 1.1).

The logarithmic deformations of the pair (X, %) give us a covariant
functor LD from the category of local Artin C[[ty, ...,t,]]-algebras with
residue field € to the category of sets, where m is the number of connected
components of the singular locus of X. LD has a hull in the sense of [Sch]
(Theorem 2.3). LD has a similar property as the usual flat deformation functor
F of X for the infinitesimal extension (Theorem 2.2). But we note that the
tangent space of LD is bigger than that of F, since there are deformations of
the logarithmic structure % which fix the underlying variety X.

The logarithmic deformations of the d-semistable K3 surface X corres-
pond to the smoothing component of the Kuranishi space, and proved to be
unobstructed since the obstruction group is trivial (Corollary 2.5). Here the
unobstructedness means the smoothness of the hull of LD over
C[[t,, ... ,t.]] instead of over the base field €, and implies automatically the
existence of the smoothing. We note also that our argument could be modified
for algebraic schemes over a field of arbitrary characteristic.

In the higher dimensional case, we shall generalize the T'-lifting principle
([R], [K]) shlightly in order to prove the unobstructedness of logarithmic
deformations (§3). Here the base field should be of characteristic zero. We shall
prove that a compact Kiéhler normal crossing variety X of arbitrary dimen-
sion d with a logarithmic structure such that Ky ~ 0, H*"*(X, Ox) = 0, and
HY™3(X© ©y0)) =0 has unobstructed logarithmic deformations and is
smoothable, where X1°! is the normalization of X (Theorem 4.2).

1. Logarithmic structures on normal crossing varieties

A reduced complex analytic space X is called a normal crossing variety (or n.c.
variety) of dimension d if the local ring €y, , at each point p is isomorphic to
C{xg, ..., X4} /(X0 ... x,} for some r = r(p) such that 0 < r < d. In addition, if
X has smooth irreducible components, then X is called a simple normal
crossing variety (Or s.n.c. variety).

A partial open covering of X with systems of holomorphic functions

U ={Uy 2P, ..., 2P}

is called a logarithmic atlas (or log atlas) if the following conditions are
satisfied:

(a) U,1 U, contains the singular locus D of X,

(b) there is an isomorphism ¢ from U, to an open neighborhood of
(0, ... ,0) of the variety

V,={(x0, ..., x) e C** 1, xg ... x, =0}
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for some r = r(4) such that ¢*(x;) = z{" for 0 < j < r and that 2V (0 £ j £ d)
are invertible,

(c) if U,nU,+® then there exist invertible holomorphic functions
u (0 <j<donU,nU, and a permutation ¢ = o(4, u) € S, , such that

D — ,0m W e (R —
zlly = ut and ug® . u" =10nU;nU,.

Two log atlases % and %' on a n.c. variety X are said to be equivalent if
their union defines a long atlas on X. An equivalence class of log atlases is
called a logarithmic structure (or log structure).

Let X be a s.n.c. variety, X; (0 < j < n) the irreducible components, and
Ix, (resp. Ip) the defining ideals of X; (resp. D) in X. Then X is called
d-semistable if

Iy Ix Jp® ... @I, /Ix. Ipd Cp.

Proposition 1.1. A s.n.c. variety X admits a logarithmic structure if and only if it
is d-semistable.

Proof. Let U = {U;; 2, ...z} be alog atlas on X. Then for each 4 there is
an injection a;: {0, ...,7(4)} = {0, ..., n} such that z{ is a Jocal equation of
X4, Us. Define local sections s;(“ of Ix,/Ix,Ip over U, as follows:

e (A) (%) (4)
So0y = Zo Zry+1 o Zd (mod ]Xmo)ID)

s =20 (mod Iy, Ip) if k=g,(j) for j=0
sV = 1(mod Iy, Ip) if k= a;()j) for any j
Then {s$® ... ® s}, defines an isomorphism
Cp0 Ixo/IxoIp® ... ®Ix,/Ix,Ip.

Conversely, suppose that X is d-semistable. Let {U,} be a partial covering
of X satisfying the condition (a) and such that Iy /Iy Ip|y,é Cply,. We have
a nowhere vanishing section s of I'x /Ix, Ip ® ... ® Ix,/Ix, Ip. We can write
sly, =P ® ... ® s for some sV € HO(Iy /Iy, Iply,). We may assume that
the 3”(0 <j£r(d)) are represented by some holomorphic functions
z‘“ e H(Ix)y) and the other s}"(r(l) <j<n) are represented by
e HO (Ix,lv). If the U, are chosen small enough, then {U/,; 2", ..., 2P}
satisfies the condition (b), and we can write z;’” = u§‘“’ zj.“’ on U;nU,
The u!** satisfy the equality ult . ult =1 on U;nU,nD, hence

G e W w
ufb? ot =1 4 Zoaz S S SR
J

forsome a; € H%(Cy,~p,). Since z‘(;‘) .. zfi") = 0on U, one can add a multiple of
zw ...z;“_’l z;’ﬂl ..z to u‘.’“‘)‘ Thus, if we replace each u§‘”’ by

(Apy __ W (1) (u) ) (A (Au) o (An) (-1
U; azg? oz 2 g a T au)

then we see that {U; z%, ... ,z‘d’”} satisfies the condition (¢). Q.E.D.
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2. Logarithmic deformations

Let (X,%,) be a nc. variety with a logarithmic structure as in §1, and
Di, ..., D, the connected components of D = Sing X. Let 4 be an Artin local
C-algebra with residue field A/m, = €, and sy, ..., s, elements of m,. Then
a logarithmic deformation (Z, %) of (X, ¥ o) over o = (A; sy, ...,S,,) 18 a pair
consisting of a flat deformation & of X over A and a logarithmic atlas

U ={Ujs zg‘), A

on & which is defined as follows: {U,} is a partial open covering of 2" and the
2" are holomorphic functions on the U, such that

(@) {U,n X} and the restrictions of the z;.“ define a logarithmic atlas on
X which is equivalent to %,,

(b) 2P ... 2P =5 if U Dy + 0,

(c) if U;nU, %0, then there exist u;.“" eH'WU,nU,, 0%)for 0 <j<d
such that

zjf(’j) = u;.“‘) z‘j‘" and ul? .. uf* =1o0nU,nU,.
where ¢ is a permutation.

Let A, = C[[ty, ... ,t,]] We shall regard .« as a A,-algebra with the
same underlying ring as A whose structure homomorphism A,, ©.o/ is given
by a(t;) = s..

Two log deformations (2, %) and (2, %) of (X, % ) over .« are said to be
equivalent if they define the same log structure, i.e., if their union defines a log
atlas on %

Let of' =(A';5), ..., s,) be another Ar}in local A,,-algebra with a local
homomorphism h:.</ — /" over A, ie., h is a C-algebra local homomor-
phism h: A - A" such that h(s) =s;. Let ' =% x 4 A" with the natural
morphism @: %" — Z. Then one can define a log structure %’ on 2" by pulling
back % by ¢. The log deformation over &/’ thus obtained is called the
pull-back of (¥, %) by h. In the case in which h is surjective, (', %’) (resp.
(Z, %)) is called the restriction (resp. lifting) of the other.

The log deformations of (X,#%,) defines a covariant functor
LD = LD(X,%,) from the category of Artin local A,-algebras with residue
field € to the category of sets:

LD:(Art,, ) — (Set)

Let (Z, %) be a log deformation of a n.c. variety (X, %) over .«/. Then the
sheaf of relative logarithmic differentials 2 ;r/,o/(log) is a locally free ¢ y-module
of rank d defined as follows:

() on each U,, it is a quotient sheaf of the direct sum of Qb ;4 and a free
module (P, e;’“ Oy, by the submodule generated by

d
Az — W M0 <j<d) and Y P,
J J J N <o J
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By if UynU, £ 0, then the gluing on the overlap is given by

A o) (Ag) /. ()
€ =€) + dul" ful¥

as well as the identification of Q{4 and Q{, there.

The transitivity of the above gluing can be checked by using the Lemma
2.1 below, and the sheaf Q},,(log) is well defined. We shall denote
eﬁ.’“ = dz{?/z$P. We also define

Q% 4(log) = /\Q, ,(log)

Ty (log) = Home (@}, (l0g). Cx)
We note that 2% ,¢(log)d  wy.

Lemma 2.1. Let (X, %) be a logarithmic deformation of (X, U ¢} over <, and
(U; zo, ...,24) a member of #. Let u; (0 =j < d) be invertible holomorphic
functions on U such that

zi=u;z; and wug...tuy=1

Then ug = --- =ug=1.

Proof. We proceed by induction on the length of 4. We assume that the z; are
not invertible for 0 < j < r and invertible for r <j < d. It is clear that u; = 1
for r <j < d. We shall consider the u; for 0 £j <r. If A = C, the U has an
equation zq ... z, = 0 in an open set of €**'. Since z; = u;z;, we have

uj—1l=azqg ... 2j_12j4y... 2,

for some holomorphic functions a;. Then

d
L=ug...ug=1+ 3 ;20 ... 2j=1Zj41 - 2.
=0
Hence u; = 1 for all j.
If A # €, we take a principal ideal J = a4 < A such that m,J = 0, and let
A= A/J. Let U denote the restriction of U over Spec A. By the induction
hypothesis applied to U, we have

u;=1+aa;zg ... z;- 1 Zjy1 -2
for some holomorphic functions a;. Then as before, from u, ... u; = 1 follows

that u;= 1. QE.D.

Theorem 2.2. Let (X, %) be a normal crossing variety with a logarithmic
structure whose singular locus has m connected components, and (X', U) a logar-
tithmic deformation of (2, U,) over a An-algebra /. Let

0-J>d" >0

be an extension of A,-algebras an ideal J such that J* = Q.
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(1) Assume that (¥, %) lifts to a logarithmic deformation (2", U’) over </’
Then the set of automorphisms of ' over /' which fix the log structure U’ and
induce the identity on 4 is bijective to

Ho(.%‘, TZ[/Q/(IOg) ®c/J)

(2) Under the same assumption as in (1), the set of equivalence classes of log
deformations over ' which are liftings of (X', %) is a torsor on

HY, Tr(108) ® o J).
(3) The obstruction to the existence of the lifting of (%, W) over o' is in
H*(Z, Tyy(l0g) ® 1 J)

Proof. Let (U; zq, ... ,z4) be a logarithmic chart belonging to the atlas %. If
U is small enough, then a lifting (U’; z, ... ,zj) over /" always exists uniquely
up to the equivalence. The set of automorphisms ¢ of U’ over &/’ which fix the
log structure of U’ and induce the identity on U correspond bijectively to the
set of ring isomorphisms @* of ¢y which induce the identity on ¢, with
invertible holomorphic functions ] for 0 <j < d such that

@*(z)) =ujzjand up ... ug =1,

since the u} are uniquely determined by ¢* by Lemma 2.1. The ring isomor-
phism ¢@* corresponds to a derivation ¢* — id from Oy to JO.0 J® ,0y.
The corresponding ¢y-homomorphism é,: Q},, — J ® » Oy can be extended
uniquely to § e Hom, (2}, 4(log), J ® . Cy) if we set 8(dz;/z;) = uj — 1, since
Y4 o(u; — 1) = 0. Conversely, & determines an automorphism ¢ of U’ induc-
ing the identity on U given by ¢*(w)= w + d(dw) for we Oy.. Then
@*(zj) = (1 + 8(dz}/z)))z}. Since Y-, dz}/zj = 0, @ preserves the logarithmic
structure. Therefore, we obtain (1). The rest of the theorem follows from the
general theory in [Gro]. Q.E.D.

Theorem 2.3. Let (X, %) be a compact normal crossing variety with a logarith-
mic structure. Then the logarithmic deformation functor LD(X, U,) has a hull
R(X,%,) in the sense of [Sch].

Proof. Similar to the case of the usual flat deformations. Q.E.D.

Corollary 2.4. Let (X, %) be a compact normal crossing variety with a logarith-
mic structure, and m the number of connected components of the singular locus of
X. Assume that H*(X, Ty,c(log)) = 0. Then LD(X, %) is unobstructed, i.e,
R(X, %) is formally smooth over A, =C[[ty, ...,tm]]. Moreover, X is
smoothable by a flat deformation.

Proof. The first assertion follows immediately from Theorem 2.2. By [Gra],
there exists a semi-universal family of flat deformations 2" — S. Let R be the
formal completion of the local ring (s, where s is the base point of S.
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By forgetting the log structure, we obtain a natural homomorphism
o:R = R(X, %). By assumption, there exists a formal arc §:R(X, %) - C[[]],
where the target has a A,,-algebra structure given by t; > ¢ for all i. By Artin’s
approximation theorem ([A]), there exists a homomorphism s ; — C{t}
which coincides with fea up to the first order. Therefore, X has a smoothing.
Q.E.D.

Corollary 2.5. ([F]) Let X be a compact Kahler normal crossing variety of
dimension 2 which admits a logarithmic structure. Assume that wxé Oy and
HY(X, Ox) = 0. Then X is smoothable by a flat deformation.

Proof. By [F, 5.71, h*(X, Ty,¢(log)) = h°(X, Q}c(log) =0. Q.ED.

It is possible to develop a theory of logarithmic deformations of algebraic
normal crossing varieties over a field of arbitrary characteristic, and extend
Corollary 2.5. to positive characteristic (cf. [Kat]).

3. T'-lifting property

Let (X, %) be a n.c. variety with a log structure, m the number of connected
components of the singular locus of X, and LD = LD(X, %) the log deforma-
tion functor of (X, %,). Let

A= C[]/(**Y) and AJe] = C[t, e]/(t**',e) fork> — 1.

We note that they are zero rings if k = — 1. Set A4,, = C[[t4, .. ,t.]] as before.
Let o/, and ./, [¢] be A,-algebras whose underlying C-algebras are A4, and
Ay [€], respectively. We set LD(0) = LD(C). We always assume that the images
of the t; are in the maximal ideals for k = 0, and the natural homomorphisms
Ay o Ay, A [e] = A 1[¢] and [¢] - o, are over A, for all k.

Then LD is said to have the T'-lifting property if the natural maps

LD([e]) = LD(o) X 1o, ) LD( -1 [€])

are surjective for all k = 0 and all A,-algebra structures on the A4, etc. as
above. We note that the T'-lifting in the case k = 0 is also a non-trivial
condition. We extend the T*-lifting principle on unobstructed deformations in
[R], [K] to our situation in the following.

Theorem 3.1. Let (X, %) be a n.c. variety, m the number of connected compo-
nents of Sing X, and LD its logarithmic deformation functor. Assume that LD is
pro-representable and has the T'-lifting property. Then LD is unobstructed, i.e.,
its hull R is formally smooth over A,

Proof. We fix a A,-algebra structure 7, ,, on A, for some k = 0. Let
Cp = Clt, e]/(t** ", e, %) = Ay X 4, Ar-1[e]. We define homomorphisms
o: Ay — Axle] and o' : A, — C, by setting a(f) = o (t) = t + ¢. Then we consider
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Anq-algebra structures .o/, o/;[¢] and 4, on A,, A[¢], and C,, respectively,
such that the following commutative diagram

ey — S

al Lo
i [e] — G

consists of A,-homomorphisms, where horizontal arrows are natural
homomorphisms. We note that %, coincides with the fiber product o7, x o, |
- [£] for the induced A,-algebras of ;| and /. | [¢]. Then by Theorem
2.2(3), we have the following commutative diagram of obstruction sequences:

LD(y, ) —— LD —— () ® H}(X, Ty c(log))

{ { a|
LD(«/[e]) —— LD(®) —— (te) ® H*(X, Tx,¢ (log))

where a” is induced by a. By the T*-lifting property, we have , = 0. Since «” is
an isomorphism, we also have §, = 0, hence the hull R of LD is formally
smooth over 4,. Q.E.D.

Theorem 3.2. Let (X, U,) be a n.c. variety, m the number of connected compo-
nents of Sing X, and LD its log deformation functor. Assume the following
conditions:

(i) for an arbitrary nonnegative integer k, an arbitrary A,-algebra structure
on <y, and for an arbitrary log deformation (X', U} of (X, U o) over sy, the
natural homomorphism

H*(%, Ty,19,(108) = EXt¢ (4,4, Ox,)

is injective,

(i) for an arbitrary positive integer k, and arbitrary of , and (Z'y, %) as in (i)
if &y is the induced A,-algebra structure on Ay_, and (X'y_ 1, Uy 1) is the
restriction over < _ ,, then the natural homomorphism

HY %, Ty l0g)) > H' (T i—1, T, 1o, (102))

is surjective.
Then the hull of LD is formally smooth over A,, if LD is pro-representable.

Proof. Let of,[¢] be an arbitrary A,.-algebra structure on A, [¢] for k = 0, and
(%1, %) € LD(o#,) for the induced A,-algebra .o/;. Since &, can always be
liftable over A,[¢] as a flat deformation, the condition (i) implies that it is
liftable over 7, [€] as a log deformation by Theorem 2.2(3). In particular, (i)
for the case k = 0 implies the T*-lifting for k = 0. Then by Theorem 2.2(2), the
condition (ii) implies the T*-lifting in general. Q.E.D.
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4. Smoothing of degenerate Calabi-Yau varieties

Lemma 4.1. Let (X, %) be a compact Kahler n.c. variety with a log structure,
m the number of connected components of Sing X, and (X, %) a log deformation
of (X, U,) over a Ay-algebra </. Then

() HY(Z, Q,’}‘/,O/(log)) is a free o/ -module and commutes with base change of
o for any p and g,

(2) the Hodge spectral sequence

Ept = HYZ, @y, (log) = HP (%, Q% 4(log))

degenerates at E;.
Proof. First, we consider the case in which &/ = &/, is an A,,-algebra structure
on 4;. We can define a locally free ¢, -module Q} (log) as follows:

(x) on each log chart U, where z"” Z = ct™ with ce €, it is the

quotient of the direct sum of Q. and a free module P-o e‘“ ('y by the
submodule generated by

d
W g < i< i — )
Az — 2P0 <j<d) and ndt I'Zoej ,

(B) if U,nU, # 0, then we identify on the overlap by
iy = 20+ e

as well as QU and QU
We also define Q% (log) A"Q}k(log)‘ Then following [St, 2.6], we define
a complex of ¢ Xk-modules

= (D Q7, (log)(log 1)*
5=0

with a differential given by the rule
N N
d< Y w(log t)"> =Y (dwlog 1y + (sw,Adt/1)(log 1)~ ") .
s=0 s=0

Then the homomorphism ¢:L* — Q% X/C (log) which assigns Y -, w(log t) to
the image of g in 2%, ¢ (log) is a quasi-isomorphism as in [St, §2]. Since i can
be factored as L® — 2%, 4, (log) > Q%,¢ (log), the homomorphisms

H' (%, Q3,/., (log) - H" (X, %¢ (log))

are surjective. Then the long exact sequence of hypercohomologies associated
to the exact sequence of complexes

t
0 Q% . (log)— Q% 4, (log) - Q% (log) >0
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splits into short exact sequences. By counting the dimension as vector spaces
over €, we infer the splitting of those associated to

0 - 0%¢(log) > %, (log) > Q%, /., (log) =0
Hence
H(Z 4, Q% r, (102))/1H (2 Q% ., (l0g)0 H'(X, Q% ¢ (log))

so H"(%%, Q%, ., (108)) is a free «/;-module.

Next, we consider the general case. Let m be the maximal ideal of /.
Assume that m**! =0 for a positive integer k, and set .o/' = .o//m* and
X' =& x o ' We shall prove that the homomorphism

H"(%, Q% (log)) » H'(Z", Q% (l0g))
is surjective. Suppose the contrary. Then the obstruction homomorphism
S H"(A', Q% (log)) —» H" (X', Q% ¢ (log) @ m*)

is not zero. For a A,-homomorphism o:.«/ — o7,, we define X', = X x o .},
etc. Then there is a commutative diagram of obstruction homomorphisms

H"(Z, Q% . (log)) — H"(Z, 23,4, (log))

! !
H'(Z", Q% (l0g)) — H"(Fe-1, Q%, 19, (l0g)
5l 14

H™ (X, Q% c (o ®m) —  H™'(X,2%c (log)

If o is chosen to be general, the a, °é =+ 0, but ¢’ = 0 by the previous argument,
a contradiction.

In the rest of the proof, we shall show that the complex Q% ¢ (log)) allows
a structure of a cohomological mixed Hodge complex on X. Then by
[D, 8.19], the spectral sequence

EP®= HY(X, Q% ¢ (log)) = H "X, Q% ¢ (log))
degenerates at E,, and the homomorphisms
HYZ, Q%4 (log)) = H(X, Q% ¢ (log))

are surjective, hence (1) and (2).

In order to define a Z-structure on our complex, we shall construct
a morphism of semi-analytic spaces 5: X — X. It is called real blow-up in [P]
(see also [C]), but our X is a real analytic manifold with corner instead of
a C*-manifold.

As in §1, we let V= V,;={xg, ...,x5) € C*"; x¢ ... x4 =0}, and set
x; = s,-e\/t_1 % Correspondingly, we consider a real analytic space

W= {(so, Bos ... »55 0 € Rx SV 50...5,=0,
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and its semi-analytic subspace V defined by equations s;z 0forallj If O is
the structure sheaf of a real analytic space W, then ¢F =i ! ¢} is that of
a semi-analytic space V for i:V = W. The natural projection j:V -V is
a morphism of semi-analytic spaces.

We define the sheaf of logarithmic differential 1-forms Q%, “(log) as a lo-
cally free % -module of rank 2d generated by

dsy/sg, dBo, ... ,dsg/ s d0y
with relations Y ; ds;/s; = Y ; d6; = 0. We also define

p
Q%" (log)e = A\ 2" (log) ® C.

Then by the same argument as in [St, 1.13], we have

HPQT " (log)g )l ﬁ<c<d%/%“n,wJ&>/<§ij%>>
ji=0

ifs;=0for0<j<rands;#0forr<j<datQeV.

Let VO =V\p '(Sing V) and 1:V° c V. Let M* be the subcomplex of
1,97 (log)¢ generated by Q% “(log)e and the functions (fog so)® -+ (log sy
for ig, ... ,iy € Z » y, where we define log 5; = — Zk «j log s, on the locus on
which s; = 0. Then we have

My = 6—) oQV *(log)c. g (tog so)™ -+ (log s,)} /( Y logs>
fgy cooslp 2
for the above Q.

We claim that M*® gives a resolution of the constant sheaf Cy. In fact, since
the problem is local, we have only to check it at Q € V as above, and it is
similar to [St, 2.15].

Let % be the log atlas of X as in §1. For a log chart U, we define the real
blow-up p,: 0, - U, and a complex M$ on U, as the pull-back of 5 and M®
by a morphism y,;: U; - V given by ¢} (x)) = z"” for all j. We can check that
the g, and the M$ for the A can be glued to give 'the real blow- up X of X with
a semi-analytic morphism p: X — X and a complex M% on X. In fact, for the
real Varlables s and 6 such that z‘“ = 9“’ /1oy z;“’ = i‘]"’ e/ 19" and u”“’
55’“‘)(3 " if we put s‘“(’n = s ) 597, 0‘“ = 0"“" + 6% and 20‘“ = 29“” then

W = ui“” z“‘) and ul" .. u"“" — t'on the overlap U lr\ U, Moreover M % gives
a resolution of Cy.

Now we have a natural inclusion of complexes g* :Q}/T(log) - p«M%and

we can check directly that the combination of the homomorphisms

Q% cllog) > Rps M§ - Rp: Cx
is a quasi-isomorphism. Therefore, we define a complex of Z-modules on X by

Az =Rp.Z3 .
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Next, we define a weight filtration defined over @. For this purpose, we
define a semi-analytic morphism p: X* — X. Instead of W and V, we define
W * and V* by the equations s, ... 5, = 0 and 5; = 0 for all j. Thus we have an
additional real variable 8 = ;0,

The sheaf of logarithmic dlfferenual 1-forms QV* ‘(log) is defined as a lo-
cally free ¢}%.-module of rank 2d + 1. A complex N* on V* is defined as before
so that

N§ = @ Qv (log)g, ¢ (log sg)™ - (logs,)’ /( y logs,>

fgn oeri, 20

if ;=0for 0<j=<r and 5;%0 for r <j<d at Qe V* Thus N* gives
a resolution of the constant sheaf €,«. By gluing, we define X*, etc. We can
check again that the combination of the homomorphisms

Q%(log) ~ Rp o N3 - Rp, Cxe

is a quasi-isomorphism.
Now the rest of the proof is similar to [S, §4]. We only explain how to
modify it. Let

HG = Rp, Qxx(k + D[k + 11/(W,Rp, Qu) (k + D [k + 1]

where {W,} is the canonical filtration given by the truncations. The 1-form d¢
gives an element of H'(X*, @Q(1)), and by using it, we can define a complex
Aq.) with a weight filtration W on it such that

Az®Qé Ag .
We also define
AP = QB4 (log)/W, Q54 Y(log)

where W is defined by the multiplicity of log poles. Then the associated single
complex Ag has a weight filtrarion W and a Hodge filtration F such that

(Q%,c(log), F)o (Ag, F)
(AQ® C, W) (Ag, W).

Moreover, the GrW(AQ) are described by the constant sheaves of some
compact Kdhler manifolds, and the filtrations on the Gr¥(Ag) induced by
F coincide with the Hodge filtrations. So the data

Az,(AQ, W), (AC, F. W)
becomes a cohomological mixed Hodge complex on X. Q.E.D.
Theorem 4.2. Let (X, %) be a compact Kihler normal crossing variety with

a logarithmic structure of dimension d = 3, m the number of connected compo-
nents of the singular locus of X, v:X'"®1— X the normalization, and LD the
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logarithmic deformation functor of (X, U,). Assume the following conditions:
(@) wyd Gy,
(b) H'™H(X, Oy) =0,
(¢) H* (X1 Gyo) = 0.
Then the hull of LD is formally smooth over A,,, and X is smoothable by a flat
deformation.

Proof. We shall check the conditions of Theorem 3.2. The condition (ii)
follows immediately from Lemma 4.1. Let (¥, %) be a log deformation of
(X, %,) over a A,-algebra /. By the Serre duality, (i) follows from the
surjectivity of the homomorphism

H72( 20, Qo) > HO (@, Q4 o, (log)).
Since d log/2ni defines homomorphisms of sheaves
¢3, - Q‘,I“, " Q;.M, ., 10g),
it is sufficient to prove that the image of
dlog/2mi: HY™ (X, €% ) — H 2T, Q) (l0g)

generates H*™*(2', Q},,,,(10g)) as an /;-model.

We proceed by induction on k. First, we treat the case k =0. The
homomorphism dlog/2ni: H " %(X, %) — H?" (X, Z) is surjective by (b). By
[F, 1.5], if 1§ denotes the torsion part of Q% ¢, then we have a spectral sequence

ER? = H(X, Q% ¢/t5) = H" (X, ©)
which degenerates at E;. So the homomorphism
HOHX, @) HO X, Q e/ Th)

is surjective by (b) again.

Let # and #' be the cokernels of the natural homomorphisms
Ox — v+Cyo and Q},¢c/tx — Q) c(log), respectively. Then we claim that
Fo F'. In fact, locally on a log chart (U; zy, ...,zs), #  is generated by

e;j=dz;/z; for 0 £j <r. So we have

0 Oy PeiCo/(z)) > F'|y—0.

j=0

The residue gives a natural identification of ¢; to 1€ 0y/(z;). Thus we have
F'o F.
Then by (b) and (¢), H*~%(X, #) = H*"2(X, #') = 0, hence

H™ (X, Qkje/tx) — H T2 (X, QY cllog)

is surjective, and we finish the proof in the case k = 0.
Now we treat the case k > 0. We have an exact sequence

. Lk S
0—*"Ox -y, — 5, —0.
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So by (b), the homomorphism
HY 2@ O, ) > H 2T, O3, )

is surjective. By the induction hypothesis and the Nakayama lemma, we
complete the proof of (i) using (ii). Since X is Kahler and W0 €y, a log
automorphism is always liftable by Theorem 4.4 and [Wa, §3]. Thus LD is
pro-representable. Q.E.D.

We shall give a simple example of producing Calabi-Yau 3-folds by
applying the above theorem. Let X = X, uX, and X,nX, = D, where D is
a smooth quartic in P3, and X, (resp. X,) are obtained by blowing up IP?
successively with smooth centers Cy, ..., C(resp. C1, ..., C;) contained in the
strict transforms of D in this order. In order that X has a logarithmic
structure, we should have C + C"€|@p(8)| for C =Y, C; andC’ =Y ; Cj, so
that Np,x, ® Np;x,0 Op. If there exists a polarization on X, then it is easy to
see that the remaining conditions of Theorem 4.2 are satisfied and X has
a smoothing. For example, if s = 1 and ¢ = 0, then there exists a smoothing
with Euler number e = — 296.

We take a D defined by an equation x§ + x{ + x% + x% = 0. For a primitive
8-th root of unity ¢, the divisors I'; ;, on D defined by I'; ; , = {(xo, ..., Xx3) € D;
x; = (*x;} consist of each 4 lines. We can choose 4 different I'; ; ,, denoted by
Iy, ..., Iy, which have no common lines. Let a be a non-negative integer such
that a<4. Then we take C=Cy+ --- +Cy + 1+ - +T,,and C'=C + --- +
Co+I + - +1T, where C; (resp. Cj) for 1 £i<s' (resp. 1 £j<t) are
members of | p{a)} (resp. |Cp(b)|) such that 2a + Y a; + > 'b; = 8. Then we can
prove that there exists a polarization on X. In this way, we can produce Calabi
Yau 3-folds with the following Euler numbers: — 296, — 240, — 200, — 192,
- 176, — 168, — 160, — 152, — 144, — 136, — 128, — 120, — 112, — 104,
—96, — 88, —80, — 72, — 64, —56, —48, —40, —32, —24,0, 24
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