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We develop the theory of modular invariance for logarithmic intertwining operators.

We construct and study genus-one correlation functions for logarithmic intertwining

operators between generalized modules over a quasi-rational vertex operator algebra V .

We consider generalized V -modules which admit a right action of some associative al-

gebra P , and intertwining operators between modules in this class which commute with

the action of P (P -intertwining operators). We obtain duality properties, i.e., suitable

associativity and commutativity properties, for P -intertwining operators. Using the

concept of pseudotrace introduced by Miyamoto, we define formal q-traces of products

of P -intertwining operators, and obtain certain identities for these formal series. This

allows us to show that the formal q-traces satisfy a system of differential equations with

regular singular points, and therefore are absolutely convergent in a suitable region and

can be extended to yield multivalued analytic functions, called genus-one correlation

functions. Furthermore, we show that the space of solutions of these differential equa-

tions is invariant under the action of the modular group. We obtain a characterization of

symmetric functions on bimodules over associative algebras in terms of pseudotraces of

certain “bimodule actions”. We conclude by sketching the steps by which these results

can be used to obtain a full modular invariance theorem for the genus-one correlation
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functions at least when the central charge is not 0. This modular invariance generalizes

the full modular invariance theorem by Huang in the rational case. Miyamoto was the

first to obtain a partial result that does not involve logarithmic intertwining operators

or even intertwining operators. This modular invariance has been a conjecture for many

years.
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Chapter 1

Introduction

1.1 Background, motivations and description of results

The theory of vertex operator algebra arose independently in mathematics and physics

and has been providing deep and remarkable connections between different fields. In

mathematics, one of its most spectacular applications was the construction of the

“moonshine module”, a vertex operator algebra (usually denoted by V \) whose group

of automorphisms is the Monster group M, the largest sporadic finite simple group.

Noticing patterns relating the dimensions of irreducible modules for the Monster and

the Fourier expansion of the modular function J(q), McKay and Thompson conjectured

the existence of a “natural” infinite dimensional graded module V =
∐∞
n=−1 Vn for M

whose graded dimension
∞∑

n=−1
dim(Vn)qn

is given exactly by J(q). Additionally, Conway and Norton conjectured that for any

element g in the Monster, the series ∑
n∈Z

tr g|Vnqn

is the Fourier expansion of a generator of the field of modular functions for some genus

zero subgroup of SL2(R). Frenkel, Lepowsky and Meurman constructed a module V \ for

the Monster group in [FLM], proving the McKay-Thompson conjecture and introducing

the notion of vertex operator algebra, a variant of Borcherds’ notion of vertex algebra

([B]). The full Conway-Norton conjecture for V \ was later proved by Borcherds.

The connection between the theory of vertex operator algebras and the theory of

modular functions has deep roots and the solution of the Moonshine conjecture is just

a part of it. In his Ph.D. thesis [Z] Zhu obtained another general modular invariance
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result. Considering a class of “rational” vertex operator algebras satisfying a certain

cofiniteness condition, Zhu studied traces of products of n vertex operators associated

to irreducible representations, and showed that these formal traces converge and the

functions thus obtained (called n-point genus-one correlation functions) form a space

invariant under the action of the modular group; as direct consequence, he established

the modular invariance for the spaces of functions spanned by the graded dimension of

the irreducible modules. Zhu’s results were later extended by Dong, Li and Mason in

[DLM2] to include twisted representations; and in [Miy1], Miyamoto considered traces

of products of module maps and at most one intertwining operator.

All these results rely heavily on the use of the commutator formula to obtain recur-

rence relations for the n-point genus-one correlation function in terms of the n−1-point

functions. Since this formula is not available for general intertwining operators, the

methods do not generalize to product of more than one intertwining operator. In [H2],

Huang overcame this difficulty and proved a full modular invariance theorem; he used

commutativity and associativity for intertwining operators to obtain a system of “mod-

ular” differential equations, and to obtain genus-one commutativity and associativity

properties. This modular invariance result is a crucial ingredient in other important

works by Huang, including his proof of the Verlinde conjecture and the rigidity and

modularity of the vertex tensor category (see [H4], [H5]) for “rational” vertex operator

algebras.

In [M1] Milas considered a class of weak modules for non-rational vertex operator

algebras, called “logarithmic modules”. These are modules on which the operator L(0)

does not necessarily act semisimply, but can be expressed as direct sum of generalized

eigenspaces for L(0). Moreover, he introduced and studied “logarithmic intertwining

operators” between these modules, that is, intertwining operators which involve (in-

tegral) powers of log x in addition to powers of the formal variable x. The theory of

these kinds of modules and intertwining operators has since been extended (see [HLZ1]-

[HLZ8]) and interesting classes of such modules have been constructed (see for instance

[M2], [AM1]-[AM3]).

Huang conjectured that a full modular invariance result should hold for such classes
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of modules, and that it should play an important role in the study of the properties of

logarithmic modules. Before this conjecture was explicitly formulated, a partial result

generalizing Zhu’s result in the context of logarithmic modules was obtained first by

Miyamoto [Miy2], assuming only a cofiniteness condition for the vertex operator algebra

V and infinite dimensionality of all nonzero V -modules (an assumption which is used

but not explicitly mentioned in Miyamoto’s paper, as pointed out in [M2],[AN]). The

main new idea is the use of a generalization of ordinary matrix traces, called “pseu-

dotraces”, to construct additional genus-one correlation functions; pseudotraces were

successively studied by Arike in [Ar], who obtained a characterization in terms of pro-

jective bases (or coordinate systems) for projective modules over associative algebras.

In [AM4], Adamović and Milas considered the graded dimensions of modules of certain

non-rational vertex operator (super)algebras, and proved modularity of the differential

equations these graded dimensions satisfy.

In this thesis, we obtain results that will lead us to a full modular invariance result

for logarithmic intertwining operators in the sense of [H2]. We study pseudotraces of

products of intertwining operators and genus-one correlation functions in an attempt

to achieve such result. Our first concern is to construct genus-one correlation functions

from products of intertwining operators; to do so, we are naturally led to consider pseu-

dotraces of products of intertwining operators. In order for the pseudotrace to be well

defined, we consider logarithmic modules which admit a right action of some associa-

tive algebra, and logarithmic intertwining operators whose products commute with this

action. We then develop tools to study these “formal traces”; in particular, we formu-

late suitable associativity and commutativity statements for this kind of intertwining

operator in Theorem 3.5.3 and Theorem 3.5.4.

Using these properties, we can verify that many identities for the formal traces

in the semisimple case carry over to the logarithmic setting; however, we see that

these traces satisfy a more complicated system of differential equations than the one in

[H2] (Proposition 4.1.14). Nonetheless it is still possible to prove convergence of these

formal series to multivalued analytic functions (the “genus-one correlation functions”)

and modular invariance of the space of solutions of the system of differential equations,
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in Proposition 4.2.5.

At this point the only step left to prove is modular invariance of the space spanned

by the genus-one correlation function. Using duality properties, we reduce this problem

to the case of the 1-point functions; we then study the “lower coefficients” of the formal

series expansion. These coefficients yield a symmetric function on a certain bimodule

over some associative algebra; therefore we need to obtain a characterization of such

symmetric functions which would allows us to “construct” appropriate intertwining

operators whose pseudotraces match the given coefficient.

We achieve this by considering pseudotraces of certain “bimodule actions” (Theorem

2.3.5) and using the results by Huang and Yang in [HY]. We conclude by outlining a

proof of a modular invariance theorem for logarithmic intertwining operators, leaving

details for a separate publication. The result applies to vertex algebras with nonzero

central charge satisfying the C2-cofiniteness condition, and in particular to the modules

for the triplet vertex algebraW(p), and the vertex algebraWp,q with (p, q) 6= (2, 3). We

believe this result could have impact in the study of these algebras and their modules.

1.2 Summary of results

We study genus-one correlation functions for logarithmic intertwining operators. In

Chapter 2 we introduce the pseudotraces, that is, symmetric functions on the ring

EndP (U) for a finitely generated projective right P -module U over some associative

algebra P . These are generalizations of ordinary matrix traces, and have similar prop-

erties, including invariance under cyclic permutations. Specifically, given a right pro-

jective P -module U , we know that there exists a projective basis for U , that is, a set

of elements {ui}ni=1 in U and a set of P -linear homomorphisms {αi}ni=1 ⊆ HomP (U,P )

such that for any element u ∈ U , u =
∑n

i=1 uiαi(u). If φ is a symmetric linear function

on P , for α ∈ EndP (U) we define the pseudotrace associated with U and φ by

φU (α) = φ

(
n∑
i=1

αi ◦ α(ui)

)
.

Let A be an associative algebra; it has been shown ([Ar]) that any symmetric function

on A can be expressed as sum of pseudotraces for appropriate symmetric (or Frobenius)
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algebras Pi equipped with non-degenerate symmetric functions φi, and A-Pi-bimodules

Ui, projective as right P -modules. In order to obtain modular invariance of the genus-

one correlation functions, we need a similar characterization of symmetric functions on

bimodules over associative algebras. A symmetric function on an A-A-bimodule M is

a linear function L : M → C such that

L(am) = L(ma)

for all a ∈ A and m ∈ M . For any algebra A and any A-A-bimodule M , we use

pseudotraces to construct symmetric linear functions on the bimodule M as follows: we

consider an associative algebra P equipped with a symmetric linear function φ, and an

A-P -bimodule U , projective as right module over P ; then, given any homomorphism

f of A-P -bimodules from W ⊗A U in U , we have an A-A-bimodule homomorphism

Tf : M → EndP (U). Then the map φfU : M → C defined by

φfU = φU ◦ Tf

is a symmetric linear function on the bimodule M . We show that any symmetric

linear map on a bimodule M can be expressed as sum of functions φfiUi for appropriate

symmetric algebras (Pi, φi), A-Pi-bimodules Ui, and homomorphisms fi.

In Chapter 3 we recall concepts from the theory of vertex operator algebras and

their modules. We will deal with grading restricted generalized V -modules, that is,

weak modules W which are direct sum of the generalized eigenspaces for the operator

L(0),

W =
∐
n∈C

W[n]

such that W[n] is finite dimensional for any n ∈ C, and W[n] = 0 for <(n) sufficiently

negative. A crucial condition for obtaining differential equations for genus-one corre-

lation function is the C2-cofiniteness condition, introduced first in [Z]: we shall say

that a V -module W satisfies the C2-cofiniteness condition if the space C2(W ) spanned

by the set {v−2w|v ∈ V, w ∈ W} has finite codimension in W . We will consider

vertex operator algebras whose grading restricted generalized modules all satisfy this

condition.
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We then define the formal q-traces of products of logarithmic intertwining operators;

for a fixed vertex operator algebra V and some associative algebra P , we consider V -

modules W̃i, i = 1, . . . , n equipped with a right action of the algebra P such that

W̃n is projective as right P -module; if Yi are intertwining operators of type
(W̃i−1

WiW̃i

)
,

i = 1, . . . , n, (where we take W̃0 = W̃n) such that for all i = 1, . . . , n, wi ∈Wi, w̃i ∈ W̃i

and p ∈ P ,

Yi(w, x)(w̃p) = (Yi(w, x)w̃)p,

(we will call intertwining operators which satisfy this property P - intertwining opera-

tors) then the product Y1(w1, x1) . . .Yn(wn, xn) is an element of

EndP (W̃n){x1, . . . , xn, log x1, . . . , log xn}

and it is thus possible to evaluate the pseudotrace

trφ
W̃n
Y1(w1, x1) . . .Yn(wn, xn)qL(0).

In particular we will consider a map U(1) : W →W [x] and study properties of formal q-

traces obtained by taking pseudotraces of products of geometrically modified logarithmic

intertwining operators ([H2])

Y(U(x)w, x),

the first goal is to prove absolute convergence of such q-traces.

In Section 3.3 we recall some notions from the theory of elliptic functions and mod-

ular forms: in particular, we recall the Taylor expansion of the Weierstrass elliptic

function ℘ and its derivatives, and the Fourier (q-expansion) of the Eisenstein series.

These expansions, considered as formal power series, will appear as coefficients in iden-

tities for the formal q-traces and in the system of differential equations for the genus-one

correlation function.

In Section 3.4 we derive identities for the formal q-traces; these identities have the

same shape as the ones found in [H2], and the main tools used in this section are

associativity and commutativity of intertwining operators. It is therefore necessary

to obtain a formulation of these duality properties to use in the present context. In
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Section 3.5, under the assumptions used in [HLZ7], we state and prove suitable commu-

tativity and associativity properties for P -intertwining operators; we recall the required

background from the theory of tensor product for modules of vertex operator algebras

([HLZ1]-[HLZ8]) in Section 3.2.

In Chapter 4 we use the identities obtained in Section 3.4 to obtain differential

equation for the formal q-traces. We obtain a system of differential equations for which

the series

trφ
W̃n
Y1(U(qz1)L(0)i1n w1, qz1) · . . . · Yn(U(qzn)L(0)inn wn, qzn)qL(0)−

c
24 ,

ij ∈ N, j = 1, . . . , n are solutions (here L(0)n denotes the locally nilpotent part of

the operator L(0)). Due to the nonsemisimplicity of the operator L(0), the system is

not decoupled, but nonetheless the singular points in the variable q are regular, and

thus one can prove absolute convergence of the formal q-traces in a suitable domain.

We then prove modular invariance for the solutions of the system of differential equa-

tions in Section 4.2. We consider a space of vector valued functions in the variables

z1, . . . , zn and τ and we denote the components of these vector valued functions by

φi1,...,in(z1, . . . , zn; τ) for ij ∈ N, j = 1, . . . , n. The solutions of the system of differential

equations are naturally elements of this space. Then, for g ∈ SL2(Z),

g =

 α β

γ δ


we define the action of g on φi1,...,in by

(gφi1,...,in)(z1, . . . , zn; τ)

=

(
1

γτ + δ

)a ∞∑
j1=0

. . .

∞∑
jn=0

∏n
k=1(log(γτ + δ))jk

j1! · · · jn!
φi1+j1,...,in+jn

(
z′1, . . . , z

′
n; τ ′

)
with z′ = z

γτ+δ and τ ′ = ατ+β
γτ+δ , and where a is the (rational) number wt w1+. . .+wt wn.

We then prove that the space of solutions of our differential equations is invariant under

this action.
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Chapter 2

Associative algebras and bimodules

2.1 Hattori-Stallings trace

In this section, we recall useful properties of projective modules over an associative

algebra A over C. For additional background, see [AF], [Br]. We introduce the Hattori-

Stallings trace, a function

trM : EndA(M)→ A/[A,A]

defined on the ring of A endomorphisms of a right projective A-module M , with [A,A]

the linear span (over the complex field) of the set of commutators in A. The Hattori-

Stallings trace will serve as the basic building block to construct symmetric linear

functions on EndA(M).

Fix a finite dimensional associative unital algebra A throughout this chapter.

Let M be a right A-module; we equip HomA(M,A) with a left A-module structure

with

(aα)(m) = α(ma)

for all a ∈ A,α ∈ HomA(M,A) and m ∈M . For a second right A-module N , we denote

by τN,M the natural group homomorphism

τN,M : M ⊗A HomA(N,A)→ HomA(N,M)

given by τN,M (m1 ⊗ α) : n 7→ m1α(n), and let τM = τM,M . Moreover we have a

“contraction” homomorphism

π : M ⊗A HomA(M,A)→ A

m⊗ α 7→ α(m)
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Definition 2.1.1. A right A-module M is called projective if every epimorphism of

right modules N
σ−→ M → 0 splits, i.e., there exists a homomorphism i : M → N such

that σ ◦ i = 1M .

Proposition 2.1.2. Let M be a right A-module; the following conditions are equivalent:

(i) M is projective;

(ii) M is direct summand of a free A-module;

(iii) For any epimorphism of right A-modules N1
g−→ N2 → 0 and module map γ : M →

N2, there exists a map γ̄ : M → N1 such that g ◦ γ̄ = γ.

Proof. (i)⇒ (ii): M is a quotient of a free module: since M is projective, the epimor-

phism splits.

(ii)⇒ (iii): Let M be direct summand of the free module F and consider the projec-

tion p : F →M and the inclusion map i : P → F . Then there exists a map f : F → N1

such that g ◦ f = γ ◦ p. Now take γ̄ = f ◦ i

(iii) ⇒ (i) Let g : N → M an epimorphism. Then taking γ = 1M , g ◦ γ̄ = 1M , so the

sequence N →M → 0 splits.

Let M be a finitely generated right module. A projective basis for M is a pair of

sets {mi}ni=1 ⊆M , {αi}ni=1 ⊆ HomA(M,A) such that for all m ∈M ,

m =

n∑
i=1

miα(m).

Proposition 2.1.3. The module M has a projective basis if and only if it is projective.

Proof. (⇒) Let {mi}ni=1, {αi}ni=1 be a projective basis for M . Consider the free module

F on the generators x1, . . . , xn and the surjective homomorphism π : F → M defined

by π(xi) = mi, for i = 1, . . . , n. Then i : M → F , i(m) =
∑n

i=1 xiαi(m) is a section,

and therefore M is a direct summand of F .

(⇐) Let m1, . . . ,mn be a set of generators for M . Consider F as defined above and

let i be a section from M to F ; we have maps gi ∈ HomA(F,A) such that for f ∈ F ,

f =
n∑
i=1

xigi(f).
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Define αi(m) = gi(i(m)); then {mi}ni=1, {αi}ni=1 is a projective basis for M .

Proposition 2.1.4. Let M be a finitely generated right A-module. The following are

equivalent:

(i) M is projective;

(ii) For any right A-module N , the map τN,M : M ⊗A HomA(N,A) → HomA(N,M)

is an isomorphism.

(iii) The map τM : M ⊗A HomA(M,A)→ EndA(M) is an isomorphism.

Proof. (i)⇒ (ii): Let {mi}ni=1, {αi}ni=1 be a projective basis for M . If f is an element

of HomA(N,M), then for all n ∈ N ,

τM

(
n∑
i=1

mi ⊗ αi ◦ f

)
(n) =

n∑
i=1

miαi(f(n)) = f(n)

which shows that τN,M is onto.

Now suppose τM (
∑k

j=1 xj ⊗ fj) = 0, for xi ∈M and fi ∈ HomA(N,M); rewriting xi in

terms of the basis elements, we obtain

k∑
j=1

xj ⊗ fj =
k∑
j=1

n∑
i=1

miαi(xj)⊗ fj

=
n∑
i=1

mi ⊗
k∑
j=1

αi(xj)fj

Now for all elements n ∈ N ,

k∑
j=1

αi(xj)fj(n) =
k∑
j=1

αi(xjfj(n))

= αi

 k∑
j=1

xjfj(n)


= αi

τN,M
 k∑
j=1

xj ⊗ fj

 (n)

 = 0

which shows
∑k

j=1 xj ⊗ fj = 0 and thus τN,M is injective.

(ii)⇒ (iii): Just take N = M .
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(iii)⇒ (i): Consider
∑n

i=1mi ⊗ αi = τ−1M (1M ); then for all m ∈M ,

n∑
i=1

miαi(m) = m,

which shows that {mi}ni=1, {αi}ni=1 is a projective basis for M , and so by Proposition

2.1.3, M is projective.

Let [A,A] denote the subgroup of A generated by commutators. For a finitely

generated projective right module M , we will call the following the Hattori-Stallings

trace of an endomorphism α ∈ EndA(M) the element of A/[A,A]:

trM (α) = π(τ−1M (α)) mod [A,A]

Proposition 2.1.5. Let M , N be two projective right A-modules, and consider homo-

morphisms f ∈ HomA(M,N), g ∈ HomA(N,M). Then

trMg ◦ f = trNf ◦ g.

Proof. By Proposition 2.1.4, τ−1M,N (f) =
∑k

i=1 xi ⊗ fi for elements xi ∈ N , fi ∈

HomA(M,A) i = 1, . . . , k, and τ−1N,M (g) =
∑l

j=1 yj ⊗ gj for elements yj ∈ M and

gj ∈ HomA(N,A). Then τ−1M (g ◦ f) =
∑

i,j yjgj(xi)⊗ fi and

trMg ◦ f = trM

l∑
j=1

yj ⊗ gj
k∑
i=1

xi ⊗ fi

= trM
∑
i,j

yjgj(xi)⊗ fi

=
∑
i,j

fi(yj)gj(xi) mod [A,A]

=
∑
i,j

gj(xi)fi(yj) mod [A,A]

= trNf ◦ g.

which concludes the proof.

2.2 Pseudotraces

In this section we recall the definition of pseudotraces for a right projective A-module

M ; pseudotraces are symmetric linear functions on EndA(U) which where introduced
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in [Miy2] and further studied in [Ar]; all symmetric linear functions on an algebra A

can be expressed as a sum of pseudotraces for suitable representations of A.

We will say that a linear function φ : A → C is symmetric if φ(ab) = φ(ba) for

all a, b ∈ A, and denote by SLF (A) the vector space of all such functions; SLF (A) '

(A/[A,A])∗. Any symmetric linear function defines a symmetric bilinear form

〈 , 〉 : A×A→ C

by 〈a, b〉 = φ(ab), and φ is said to be nondegenerate if the corresponding bilinear form

is nondegenerate. We denote by rad φ the two sided ideal of A

rad φ =
{
a ∈ A | 〈a, b〉 = 0 for all b ∈ A

}
(the radical of φ); the symmetric function φ is nondegenerate if and only if rad φ = {0}.

Let M be a finite dimensional projective left A-module, {mi}ni=1, {αi}ni=1 a projective

basis.

Definition 2.2.1. Let φ ∈ SLF (A). The pseudtrace map φM on EndA(M) associated

to φ is the function φM = φ ◦ trM ; we can express the pseudotrace of an endomorphism

α in terms of the projective basis in the following way:

φM : EndA(M)→ C

α 7→ φ

(
n∑
i=1

αi(α(mi))

)
.

Pseudotrace maps are an extension of regular trace functions, and share similar

properties; it is easy to see that the pseudotrace of a product is invariant under cyclic

permutation of the factors [AN]. Moreover, it is clear from the definition that the

pseudotrace map does not depend on the choice of projective basis for M .

Proposition 2.2.2. Let M1 and M2 be two left projective A-modules, and consider

homomorphisms α ∈ HomA(M1,M2) and β ∈ HomA(M2,M1); then

φM1(β ◦ α) = φM2(α ◦ β).
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Proof. Follows from symmetry property for the Hattori-Stallings trace (Proposition

2.1.5).

Importantly, for a given associative algebra A, the pseudotraces of representations

of A span the space SLF (A) of symmetric linear functions on A.

Definition 2.2.3. Let A, B be associative algebras; an A-B-bimodule is a space M

that is simultaneously a left A-module and a right B-module, such that the left action

of A commutes with the right action of B; i.e., for all a ∈ A, b ∈ B, m ∈M ,

a(mb) = (am)b.

Definition 2.2.4. A symmetric algebra (also called Frobenius algebra) is an associative

algebra equipped with a nondegenerate symmetric function φ.

Definition 2.2.5. A basic algebra is an algebra A such that A/J(A) is isomorphic to

Cn for some n ∈ N (here J(A) is the Jacobson radical of A, that is, the intersection of

all maximal right ideals of A).

Proposition 2.2.6 ([Ar], [Miy2]). Let A be an associative algebra and φ ∈ SLF (A).

Then there exist basic symmetric algebras Pi with symmetric linear functions φi, and

A-Pi-bimodules Mi, projective as right Pi-modules, such that

φ(a) =
n∑
i=1

φiMi
(a)

where we consider a as an element of EndPi(Mi) by left action. Furthermore, if ν is

an element in rad φ, that is,

φ(νa) = 0

for all a ∈ A, then Mi can be chosen to satisfy νMi = 0.

2.3 Symmetric functions on bimodules

Here we introduce symmetric functions over A-A-bimodules. Let A and P be associative

algebras; given an A-A-bimodule M , an A-P -bimodule U , and an A-P endomorphism

f : M ⊗A U → U , we use pseudotraces to construct symmetric functions over M . We

prove that all symmetric functions on M can be expressed as sums of such functions.
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Definition 2.3.1. Let A be an associative algebra, M an A-A-bimodule. A linear

function φ : M → C is called symmetric if for all m ∈M and a ∈ A,

φ(am) = φ(ma).

Let U be an A-P -bimodule, projective as a right P -module. Let φ ∈ SLF (P ). The

endomorphism ring End(UP ) is an A-A-bimodule with actions given by

(a · τ)(u) = a(τ(u))

(τ · a)(u) = τ(au)

for all a ∈ A, τ ∈ End(UP ), u ∈ U .

Proposition 2.3.2. The pseudotrace φU on EndP (U) is a symmetric linear function

of the A-A-bimodule EndP (U).

Proof. This is just a consequence of the fact that φU is a symmetric linear function under

composition. Note that for all τ ∈ EndP (U) and a ∈ A, aτ = La ◦ τ , τa = τ ◦ La.

(Here La is the P -endomorphism of U given by the left action of the element a ∈ A.)

Then

φU (aτ) = φU (La ◦ τ)

= φU (τ ◦ La)

= φU (τa)

which proves our claim.

Let M be an A-A-bimodule, and let HomA,P (M ⊗A U,U) be the set of all A-P -

bimodule homomorphisms from M ⊗A U to U , and let f be an element in this space.

Then for any m ∈M , the map

U → U

u 7→ f(m⊗ u)

is a P -endomorphism of U ; we can then define

Tf : M → End(UP )

m 7→ (u 7→ f(m⊗ u)). (2.3.1)
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Proposition 2.3.3. The map Tf is an A-A-bimodule homomorphism.

Proof. Let m ∈M , a ∈ A; then for all u ∈ U ,

Tf (am)(u) = f(am⊗ u) = af(m⊗ u) = a(Tf (m)(u)) = (aTf (m))(u)

and thus Tf (am) = aTf (m). Similarly,

Tf (ma)(u) = f(ma⊗ u) = f(m⊗ u) = Tf (m)(au) = (Tf (m)a)(u),

which proves Tf (ma) = Tf (m)a.

We will consider linear maps φfU defined by

φfU : M → C

m 7→ φU (Tf (m)). (2.3.2)

Proposition 2.3.4. The linear map φfU is symmetric, i.e., for all a ∈ A and m ∈M ,

φfU (am) = φfU (ma).

Proof. Using Propositions 2.3.2, 2.3.3,

φfU (am) = φU (Tf (am))

= φU (aTf (m))

= φU (Tf (m)a)

= φU (Tf (ma))

= φfU (ma).

We have obtained a map SLF (P ) ⊗ HomA,P (M ⊗A U,U) → SLF (M). We now

need to show that any elements ψ in SLF (M) can be obtained as a sum of functions

φfU . We have the following:
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Theorem 2.3.5. Let M be an A-A-bimodule, and let φ ∈ SLF (M). Then for i =

1, . . . , n there exist basic symmetric algebras Pi equipped with symmetric linear func-

tions φi, A-Pi-bimodules Ui (projective as right Pi-modules) and maps fi in the space

HomA,P (M ⊗A Ui, Ui), such that for any m ∈M ,

φ(m) =

n∑
i=1

(φi)
fi
Ui

(m).

The proof of this Theorem is given in Section 2.4.

Remark 2.3.6. It is easy to see that it is enough to prove this for indecomposable

bimodules: in fact, suppose M = M1 ⊕M2 and ψ = ψ1 + ψ2, where ψi = ψ|Mi .

Suppose there exist algebras Pi with symmetric linear functions φi, A,Pi-bimodules Ui,

and functions gi ∈ HomA,Pi(Mi ⊗ Ui, Ui) such that ψi(mi) = φgiUi(mi) for all mi ∈ Mi.

Then we can define functions fi ∈ HomA,Pi(M ⊗A Ui, Ui) by

fi(m⊗ u) = gi(mi ⊗ u) i = 1, 2

for all m = m1 +m2 with mi ∈Mi, i = 1, 2. Then

φfiUi(m) = φgiUi(mi) = ψi(mi) = ψi(m)

and

ψ(m) = ψ(m1) + ψ(m2) = φf1U1
(m) + φf2U2

(m).

Remark 2.3.7. In [Ar], the algebra P is taken to be symmetric; although we will not

need to, one can safely relax this hypothesis. In fact, suppose U is a projective right

P -module, φ ∈ SLF (P ), and {ui, αi} is a coordinate system for UP .

Let I = radφ; consider the algebra P/I and its symmetric linear function φ̄ defined by

φ on the quotient. Then U/UI is a projective P/I-module, and letting

βi(u+ UI) = αi(u) + UI,

{ui+UI, βi} is a coordinate system for U/UI as a P/I-module. Now if f is an element

of HomA,P (M ⊗A U,U), we can define g ∈ HomA,P/I(M ⊗A U/UI, U/UI) by

g(m⊗ (u+ UI)) = f(m⊗ v) + UI

Then clearly φfU (m) = φ̄gU/UI(m) for all m ∈M .
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2.4 A square zero extension

In this section we recall the construction of the split square zero extension of an associa-

tive algebra by a bimodule and use it to prove Theorem 2.3.5. Let A be an associative

algebra over the complex numbers and M an A-A-bimodule. We consider the following

product on the space Ā = A⊕M :

(a1,m1) · (a2,m2) = (a1a2, a1m2 +m1a2),

which makes Ā into an algebra which contains a copy of A as a subalgebra and a copy

of W as a two sided ideal (this algebra is referred to as the trivial square zero extension

of A by M ; see [W]).

Proof of Theorem 2.3.5. Let φ be a symmetric linear function on the bimodule M .

Then one can extend φ to a linear function φ̄ on Ā by letting φ̄(a,m) = φ(m). The

function φ̄ is a symmetric linear function on the algebra Ā: in fact,

φ̄((a1,m1) · (a2,m2)) = φ(a1m2 +m1a2)

φ̄((a2,m2) · (a1,m1)) = φ(a2m1 +m2a1)

which are equal since φ is symmetric on the bimodule M .

By Proposition 2.2.6, there exist basic symmetric algebras Pi equipped with sym-

metric linear functions φi, and Ā-Pi-bimodules Mi such that on Ā,

φ̄ =

n∑
i=1

trφiUi .

In particular, for any m ∈M ,

φ(m) = φ̄((0,m)) =

n∑
i=1

trφiUi((0,m)). (2.4.3)

where (0,m) on the right-hand side is seen as an element of EndPi(Ui) by left action of

(0,m) on Ui, i.e., trφiUi((0,m)) is the pseudotrace of the Pi-module endomorphism of Ui

given by u→ (0,m)u.

Consider Ui as a left A-module by au = (a, 0)u and for m ∈ M , u ∈ Ui define
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fi(m⊗ u) = (0,m)u. Since

fi(ma⊗ u) = (0,ma)u

= ((0,m) · (a, 0))u

= (0,m)au

= fi(m⊗ au),

fi ∈ HomA,P (M ⊗A Ui, Ui). Then Tfi(m) is the Pi endomorphism given by the left

action of (0,m) on Ui; therefore, (2.4.3) can be rewritten as

φ(m) =
n∑
i=1

(φi)
fi
Ui

(m),

which concludes the proof.

Corollary 2.4.1. Suppose ν is an element in A such that φ(νm) = 0 for all m ∈ M .

Then the modules Ui can be chosen in such a way that νUi = 0 for i = 1, . . . , n.

Proof. Let Ā, φ̄ be defined as in the proof of Theorem 2.3.5. Since φ(νm) = 0 for all

m ∈ M , the element (ν, 0) belongs to rad φ̄ by definition of φ̄ and product on Ā. The

result then follows from Proposition 2.2.6.
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Chapter 3

Logarithmic intertwining operators

3.1 Generalized modules and logarithmic intertwining operators

After recalling some notions from logarithmic formal calculus, we recall the definitions

of vertex operator algebras and classes of modules. In particular, we will deal with gen-

eralized modules (modules which decompose as direct sums of generalized eigenspaces

for the operator L(0)), and we will consider logarithmic intertwining operators for this

class of modules. For more details, see [FLM], [FHL], [LL], [HLZ1]-[HLZ7].

We will denote by x, y, q, log x, log y, log q, x1, x2, x3 . . ., log x1, log x2, . . . inde-

pendent commuting formal variables. For any set of commuting independent formal

variables X and for any vector space W which does not involve any element of X, we

denote by W{X} the space of formal series in arbitrary complex powers of the for-

mal variables in X. In particular we will consider the space W{x, log x}: an arbitrary

element in this space can be written as

∑
m,n∈C

wn,mx
n(log x)m, wn,m ∈ W. (3.1.1)

The symbol d
dx denotes the linear map (formal differentiation) defined on W{x, log x}

by

d

dx

( ∑
m,n∈C

wn,mx
n(log x)m

)
=
∑
m,n∈C

((n+ 1)wn+1,m + (m+ 1)wn+1,m+1)x
n(log x)m

(
=
∑
m,n∈C

nwn,mx
n−1(log x)m +

∑
m,n∈C

mwn,mx
n−1(log x)m−1

)
. (3.1.2)
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We will make use of the notiation

log(1− T ) = −
∞∑
n=1

Tn

n

eT =
∞∑
n=0

Tn

n!
,

for any T for which these expressions make sense. Also, for commuting independent

formal variables x, y, we let

log(x+ y) = log x+ log
(

1 +
y

x

)
= log x−

∞∑
n=1

(−1)n

n

(y
x

)n
.

For any formal series in W{x, log x} the following result holds:

Theorem 3.1.1. For f(x) as in (3.1.1), we have

ey
d
dx f(x) = f(x+ y) (3.1.3)

(“Taylor’s theorem” for logarithmic formal series) and

eyx
d
dx f(x) = f(xey). (3.1.4)

Definition 3.1.2. A vertex operator algebra is a Z-graded vector space

V =
∐
n∈Z

V(n)

satisfying the two grading restrictions conditions dimV(n) < ∞ for all n ∈ Z and

V(n) = 0 for n sufficiently negative, equipped with a linear map

V → (End(V )[[x, x−1]]

v 7→ Y (v, x) =
∑
n∈Z

vnx
−n−1 (3.1.5)

and two distinguished vectors, 1 ∈ V(0) (the vacuum vector) and ω ∈ V(2) (the conformal

vector) satisfying:

1. Lower truncation condition: for all u, v ∈ V ,

vnu = 0 for large enough n
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2. Vacuum property:

Y (1, x) = 1V

3. Creation property

Y (v, x)1 ∈ V [[x]] and lim
x→0

Y (v, x)1 = v

4. Jacobi identity: for all u, v ∈ V ,

x−10 δ

(
x1 − x2
x0

)
Y (v, x1)Y (u, x2)− x−10 δ

(
x2 − x1
−x0

)
Y (u, x2)Y (v, x1) =

x−11 δ

(
x2 + x0
x1

)
Y (Y (v, x0)u, x2)

5. Virasoro algebra relations: Let

Y (ω, x) =
∑
n∈Z

L(n)x−n−2;

then

[L(m), L(n)] = (m− n)L(m+ n) +
1

12
(m3 −m)δm+n,0c;

where c ∈ C is called the central charge of V ;

6. L(0) grading: for v ∈ V(n),

L(0)v = nv;

(here n is called the weight of v and it is denoted by wt v)

7. L(−1) derivative property

Y (L(−1)v, x) =
d

dx
Y (v, x).

This concludes the definition.

In what follows, unless otherwise mentioned, we will fix a vertex operator algebra

V such that V(n) = 0 whenever n < 0 and V(0) = C1. For a vertex operator algebra V ,

we set

Cn(V ) = span{v−nu | v ∈
∐
n>0

V(n), u ∈ V }.
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Definition 3.1.3. We say that V is Cn-cofinite if

dimV/Cn(V ) <∞.

Definition 3.1.4 ([H2]). A weak V -module is a vector space W equipped with a linear

map

V → (End(W )[[x, x−1]]

v 7→ YW (v, x) =
∑
n∈Z

vnx
−n−1

such that the following properties hold:

1. Lower truncation condition: for all u, v ∈ V ,

vnu = 0 for large enough n

2. Vacuum property:

YW (1, x) = 1W

3. Jacobi identity: for all u, v ∈ V ,

x−10 δ

(
x1 − x2
x0

)
YW (v, x1)YW (u, x2)− x−10 δ

(
x2 − x1
−x0

)
YW (u, x2)YW (v, x1) =

x−11 δ

(
x2 + x0
x1

)
YW (Y (v, x0)u, x2)

Definition 3.1.5 ([Z]). An N-gradable weak module is a weak V -module equipped with

an N-grading W =
∐
n∈N W(n) such that for all homogeneous v ∈ V , w ∈W and n ∈ Z,

vnw ∈W(m+wt v−n−1)

if w belongs to the homogeneous subspace W(m).

Definition 3.1.6 ([M1], [HLZ1]). A C-graded vector space W =
∐
n∈CW[n] equipped

with a linear map

YW : V ⊗W → W ((x))

v ⊗ w 7→ YW (v, x)w
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is called a generalized V -module if for n ∈ C, the homogeneous subspaces W[n] are the

generalized eigenspaces of L(0) = ResxxYW (ω, x) with eigenvalues n, that is, for n ∈ C,

w ∈ W[n], there exists K ∈ Z+, depending on w, such that (L(0) − n)Kw = 0. For

w ∈W[n], we denote the generalized eigenvalue n by wt w.

We define homomorphisms (or module maps) and isomorphisms between general-

ized V -modules, generalized V -submodules, and quotient generalized V -modules in the

obvious ways.

Definition 3.1.7. An irreducible generalized V -module is a generalized V -module W

such that there is no generalized V -submodule of W that is neither 0 nor W itself. A

lower bounded generalized V -module is a generalized V -module W such that W[n] = 0

when <(n) is sufficiently negative. We say that lower-bounded generalized V -module

W has a lowest conformal weight, or for simplicity, W has a lowest weight if there

exists n0 ∈ C such that W[n0] 6= 0 but W[n] = 0 when <(n) < <(n0) or <(n) = <(n0)

but =(n) 6= =(n0). In this case, we call n0, W[n0] and elements of W[n0] the lowest

conformal weight or lowest weight of W , the lowest weight space or lowest weight space

of W and lowest conformal weight vectors or lowest weight vectors of W , respectively.

A grading restricted generalized V -module is a generalized V -module W such that W is

lower bounded and dimW[n] <∞ for n ∈ C. An (ordinary) V -module is a generalized

V -module W such that W is grading restricted and W[n] = W(n) for n ∈ C, where for

n ∈ C, W(n) are the eigenspaces of L(0) with eigenvalues n. An irreducible V -module is a

V -module such that it is irreducible as a generalized V -module. A generalized V -module

of length l is a generalized V -module W such that there exist generalized V -submodules

W = W1 ⊃ · · · ⊃ Wl+1 = 0 such that Wi/Wi+1 for i = 1, . . . , l are irreducible V -

modules. A finite length generalized V -module is a generalized V -module of length l

for some l ∈ Z+. Homomorphisms and isomorphisms between lower-bounded, grading-

restricted or finite length generalized V -modules are homomorphisms and isomorphisms

between the underlying generalized V -modules.

For a generalized module W , the formal completion of W is the space

W =
∏
n∈C

W[n],
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and for n ∈ C we denote the projection from W to W[n] by πn.

Definition 3.1.8. Let (W1, Y1), (W2, Y2) and (W3, Y3) be generalized modules for a

vertex operator algebra V . A logarithmic intertwining operator of type
(

W3

W1W2

)
is a

linear map

Y(·, x)· : W1 ⊗W2 →W3[log x]{x},

or equivalently,

w(1) ⊗ w(2) 7→ Y(w(1), x)w(2) =
∑
n∈C

∑
k∈N

w(1)
Y
n; k
w(2)x

−n−1(log x)k ∈W3[log x]{x}

for all w(1) ∈ W1 and w(2) ∈ W2, such that the following conditions are satisfied: the

lower truncation condition: for any w(1) ∈W1, w(2) ∈W2 and n ∈ C,

w(1)
Y
n+m; k

w(2) = 0 for m ∈ N sufficiently large, independently of k;

the Jacobi identity:

x−10 δ

(
x1 − x2
x0

)
Y3(v, x1)Y(w(1), x2)w(2)

−x−10 δ

(
x2 − x1
−x0

)
Y(w(1), x2)Y2(v, x1)w(2)

= x−12 δ

(
x1 − x0
x2

)
Y(Y1(v, x0)w(1), x2)w(2) (3.1.6)

for v ∈ V , w(1) ∈ W1 and w(2) ∈ W2 (note that the first term on the left-hand side is

meaningful because of the lower truncation condition) and the L(−1)-derivative prop-

erty: for any w(1) ∈W1,

Y(L(−1)w(1), x) =
d

dx
Y(w(1), x).

We will denote the space of all logarithmic intertwining operators of type
(

W3

W1W2

)
by

VW3
W1W2

.

Note that if the three modules W1,W2,W3 are ordinary modules, then all logarith-

mic intertwining operators are in fact ordinary intertwining operator, i.e., there are no

logarithmic terms.

For a generalized V -module W , we consider the semisimple part of the operator

L(0), denoted by L(0)s; also denote by L(0)n the locally nilpotent part L(0) − L(0)s.
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Then L(0)n is a module endomorphism of W (i.e., it commutes with the action of V

on W ):

Lemma 3.1.9. Let Y(x,w) be an intertwining operator; then

L(0)nY(x,w)− Y(x,w)L(0)n = 0

Definition 3.1.10. Let W be a generalized module for a vertex operator algebra. We

define

x±L(0) : W →W{x}[log x] ⊂W [log x]{x}

by

x±L(0) = x±L(0)se± log x(L(0)−L(0)s)

Lemma 3.1.11. Using the same notation as above, we have

d

dx
xL(0) = L(0)xL(0)−1.

Proposition 3.1.12. Let Y be a logarithmic intertwining operator of type
(

W3

W1W2

)
and

let w ∈W1. Then

(a)

eyL(−1)Y(w, x)e−yL(−1) = Y(eyL(−1)w, x) = Y(w, x+ y)

(b)

yL(0)Y(w, x)y−L(0) = Y(yL(0)w, xy)

(c)

eyL(1)Y(w, x)e−yL(1) = Y(ey(1−yx)L(1)(1− yx)−2L(0)w, x(1− yx)−1).

3.2 Tensor product of modules and associativity of intertwining op-

erators

In this section, we recall the notion of P (z)-tensor product for modules of vertex op-

erator algebras introduced in [HL1]-[HL3], [H3] (and then generalized to the case of

logarithmic modules in [HLZ1]-[HLZ8]), and some related results that we will need

later; in particular, we will state associativity for intertwining operators.
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Related to the concept of intertwining operator is that of intertwining map: a P (z)-

intertwining map of type
(
W3

W1W2

)
is a linear function

Iz : W1 ⊗W2 →W 3

satisfying the following conditions: the lower truncation condition: for w(1) ∈ W1 and

w(2) ∈W2 and any n ∈ C,

πn−mI(w(1) ⊗ w(2)) = 0 for m ∈ N sufficiently large;

and the Jacobi identity : for v ∈ V , w(1) ∈W1 and w(2) ∈W2,

x−10 δ

(
x1 − z
x0

)
Y3(v, x1)I(w(1) ⊗ w(2))

= z−1δ

(
x1 − x0

z

)
I(Y1(v, x0)w(1) ⊗ w(2))

+ x−10 δ

(
−z + x1
x0

)
I(w(1) ⊗ Y2(v, x1)w(2)).

Let Y ∈
(
W3

W1W2

)
, and let p ∈ Z; then the map

IY,p : W1 ⊗W2 →W3

w(1) ⊗ w(2) 7→ Y(w(1), x)w(2)

∣∣∣
xn=en(log z+2πip),(log(x))m=(log z+2πip)m

is a well defined P (z)-intertwining map of type
(

W3

W1W2

)
; for any p ∈ Z, the correspon-

dence Y 7→ IY,p is a bijection with inverse denoted by I 7→ YI,p ([HLZ3]).

Definition 3.2.1 ([HLZ1]-[HLZ7]). Given two generalized V -modules W1, W2, their

P (z)-tensor product is a third module, denoted by W1 �P (z) W2, equipped with an

intertwining map

�P (z) : W1 ⊗W2 →W1 �P (z) W2

such that for any generalized V -module W3 and intertwining map I : W1 ⊗W2 →W 3,

there exists a unique V -module morphism η : W1 �P (z) W2 →W3 such that

I = η ◦�P (z),

where η is the unique map η : W1 �P (z) W2 →W 3 extending η.
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From the definition, one can see that given two V -modules, if their P (z)-tensor

product exists then it is unique; moreover we have the following:

Proposition 3.2.2. Let W1, W2, W3 and W4 be generalized V -modules and ϕ : W1 →

W3 and ψ : W2 → W4 be V -module homomorphisms. Suppose that the P (z)-tensor

products W1�P (z)W2 and W3�P (z)W4 exist and denote their intertwining maps by I1,

I2 respectively. Then there exists a unique V homomorphism

ϕ�P (z) ψ : W1 �W2 →W3 �W4

such that for all w(1) ∈W1 and w(2) ∈W2,

I2(ϕ(w(1))⊗ ψ(w(2))) = ϕ�P (z) ψ ◦ I1(w(1) ⊗ w(2)).

We recall some results from [HLZ5] concerning associativity of logarithmic inter-

twining operators.

Theorem 3.2.3 ([HLZ5]). Let V be a vertex operator algebra whose category of gen-

eralized modules is closed under P (z)-tensor product, and such that every generalized

module satisfies the C1-cofiniteness condition and the quasi-finite dimensionality con-

dition; let W1, W2, W3, W4, M be generalized V -modules.

1. Consider intertwining operators Y1 ∈
(
W4

W1M

)
, Y2 ∈

(
M

W2W3

)
. Then there exists a

unique intertwining operator Y1 ∈
(

W4

W1�P (z0)
W2 W3

)
such that

〈w′(4),Y1(w(1), x1)Y2(w(2), x2)w(3)〉
∣∣∣
x1=z1, x2=z2

= 〈w′(4),Y
1(Y�P (z0),0

(w(1), x0)w(2), x2)w(3)〉
∣∣∣
x0=z0, x2=z2

whenever z0 = z1 − z2 and |z1| > |z2| > |z0| > 0, for all w(1) ∈ W1, w(2) ∈

W2, w(3) ∈W3 and w′(4) ∈W
′
4.

2. Let Y1 ∈
(
W4

MW3

)
, Y2 ∈

(
M

W1W2

)
. Then there exists a unique intertwining operator

Y1 of type
(

W4

W1W2�P (z2)
W3

)
such that

〈w′(4),Y
1(Y2(w(1), x0)w(2), x2)w(3)〉

∣∣∣
x0=z1−z2, x2=z2

= 〈w′(4),Y1(w(1), x1)Y�P (z2),0
(w(2), x2)w(3)〉

∣∣∣
x1=z1, x2=z2
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whenever |z1| > |z2| > |z1 − z2| > 0 for all w(1) ∈ W1, w(2) ∈ W2, w(3) ∈ W3 and

w′(4) ∈W
′
4.

3.3 Elliptic functions and Eisenstein series

In this section we recall some basic properties of the Weierstrass ℘ function and Eisen-

stein series; in particular, we will be using the Taylor and Fourier q-expansions of such

functions. For additional background, see [L, Z]. For z ∈ C, we will use the notation

qz = e2πiz. We first introduce a formal power series related to the expansion of the

Weierstrass ℘ function: for m ≥ 0,

Pm+1(x; q) = (2πi)m+1
∑
l>0

(
lm

m!

xl

1− ql
− (−1)mlm

m!

qlx−l

1− ql

)
where (1 − ql)−1 is the power series

∑
k≥0 q

lk in the formal variable q. For τ, z ∈ C

satisfying |qτ | < |qz| < 1, the series Pm+1(qz; qτ ) is absolutely convergent, and for

|qz| < 1 the q-coefficients of Pm+1(qz; q) are absolutely convergent. Let

℘1(z; τ) =
1

z
+

∑
(k,l)6=(0,0)

(
1

z − (kτ + l)
+

1

kτ + l
+

z

(kτ + l)2

)

℘2(z; τ) =
1

z2
+

∑
(k,l)6=(0,0)

(
1

(z − (kτ + l))2
− 1

(kτ + l)2

)
;

and for m ≥ 2, let

℘m+1(z; τ) = − 1

m

∂

∂z
℘m(z; τ).

These functions have Laurent expansion

℘m(z; τ) =
1

zm
+ (−1)m

∑
k≥1

(
2k + 1

m− 1

)
G2k+2(τ)z2k+2−m

in the region 0 < |z| < min(1, |τ |), where G2k+2(τ) are the Eisenstein series defined by

G2k+2(τ) =
∑

(m,l)∈Z2\(0,0)

1

(mτ + l)2k+2

for k ≥ 1. Moreover, let

G2(τ) =
π2

3
+

∑
m∈Z\{0}

∑
l∈Z

1

(mτ + l)2
.
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It is known that the Eisenstein series have q-expansion

G2k+2(τ) = 2ζ(2k + 2) +
2(2πi)2k+2

(2k + 1)!

∞∑
l=1

l2k+1qlτ
1− qlτ

We use the following notation to denote these as formal power series in the variable q:

G̃2k+2(q) = 2ζ(2k + 2) +
2(2πi)2k+2

(2k + 1)!

∞∑
l=1

l2k+1ql

1− ql
, k ∈ N

and similarly for the expansion of the elliptic functions

℘̃m(x; q) =
1

xm
+ (−1)m

∞∑
k=1

(
2k + 1

m− 1

)
G̃2k+2(q)x

2k+2−m, m = 1, 2, . . .

For z ∈ C such that 0 < |z| < 1,

℘̃m(z; q) = (−1)m
(
Pm(qz; q)−

∂m−1

∂zm−1
(G̃2(q)z − πi)

)
and ℘̃m(z; qτ ) = ℘m(z; τ). The following is well known:

Proposition 3.3.1. For any element g =

 α β

γ δ

 ∈ SL2(Z), and m = 1, 2, . . .

℘m|g(z; τ) := (γτ + δ)−m℘m

(
z

γτ + δ
;
ατ + β

γτ + δ

)
= ℘m(z; τ)

if m > 1,

℘m(z + τ ; τ) = ℘m(z + 1; τ) = ℘m(z; τ)

and

℘1(z + 1; τ) = ℘1(z; τ) +G2(q)

℘1(z + τ ; τ) = ℘1(z; τ) +G2(τ)τ − 2πi

Proposition 3.3.2. Let f(q) be a modular form of weight k. Then the function ϑk(f)

defined by

(2πi)2q
d

dq
f(q) + kG2(q)f(q)

is a modular form of weight k + 2.
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3.4 Formal q-traces of logarithmic intertwining operators

In this section we consider modules for a vertex operator algebra which admit a right

action (by module endomorphisms) of an associative algebra P . We then consider

products of intertwining operators which commute with this action; in particular, we

are able to define the formal q-trace of such products by using pseudotraces on the

P -endomorphism ring of the L(0) generalized eigenspaces in the V -modules. We use

properties of pseudotraces and intertwining operators to derive identities for the formal

q-traces.

Let P be an associative algebra equipped with a symmetric linear function φ, and fix

a vertex operator algebra V . We say that a generalized V -module W is a V -P -bimodule

if W is a right P module and P acts on W by V -module endomorphisms, that is, for

any v ∈ V , w ∈W , and p ∈ P ,

Y (v, x)(wp) = (Y (v, x)w)p.

Proposition 3.4.1. Let W[n] be an L(0)-generalized eigenspace of W for the eigenvalue

n. Then W[n] is a P -submodule of W ; if W is a projective right P -module, so is W[n].

Proof. This is clear since the action of P commutes with L(0): let p ∈ P and w ∈W[n];

then there exists k ∈ N such that (L(0)− n)kw = 0. Then

(L(0)− n)k(wp) = ((L(0)− n)kw)p = 0

which proves the first part of the claim; the second part follows since W[n] is a direct

summand of W .

As a consequence, the action of P commutes with L(0)s and L(0)n. Suppose now W is

a grading restricted generalized V -module, projective as right P -module. Then for any

generalized eigenspace W[n], we can define the pseudotrace

φW[n]
: EndP (W[n])→ C;

and for a given element a(x1, . . . , xk) ∈ EndP (W ){x1, . . . , xk, log x1, . . . , log xk}, we
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define

trφWa(x1, . . . , xn)qL(0) =
∑
n∈C

φW[n]

(
πna(x1, . . . , xk)

∞∑
i=0

(L(0)n)i

i!
(log q)i

)∣∣∣∣∣
W[n]

qn

where πn : W → W[n] is the projection on the generalized eigenspace W[n]. Note that

since L(0)n is locally nilpotent, the summation over i is finite for any value of n ∈ C.

If W has finite length l, then the powers of log q are globally bounded by l.

Remark 3.4.2. Suppose T ∈ EndP
(
W[n]

)
, and let {wi}si=1, {αi}si=1 be a projective

basis for W[n]. Let w′i ∈ W ′[n] be the linear function defined by 〈w′i, w〉 = φ(αi(w)) for

all w ∈W[n]. Then one can express the pseudotrace of T as

φW[n]
(T ) =

s∑
i=1

〈w′i, Twi〉.

In particular, for any n ∈ C let {wn,i}sni=1, {αn,i}
sn
i=1 be a projective basis of W[n] and

let a(x1, . . . , xk) as above, one can express the q-trace of a(x1, . . . , xn) as

trφWa(x1, . . . , xn) =
∑
n∈C

sn∑
i=1

 ∞∑
j=1

〈
w′n,i, a(x1, . . . , an)

(L(0)n)j

j!
wn,i

〉
(log q)j

 qn

where w′n,i is defined as above and extended to an element of W ′ by letting it map to

0 the generalized subspaces for eigenvalues different from n.

Now let Wi, W̃i, i = 1, . . . , n, be grading restricted generalized modules for V , and

suppose W̃0 is a V -P -bimodules, projective as right P -module. Moreover, consider log-

arithmic intertwining operators Yi ∈
(W̃i−1

WiW̃i

)
, i = 1, . . . , n, where we use the convention

W̃0 = W̃n. If the action of P commutes with the product of the intertwining operators,

i.e., for all wi ∈Wi, w̃n ∈ W̃n, and p in P ,

Y1(w1, x1) · · · Yn(wn, xn)(w̃np) = (Y1(w1, x1) · · · Yn(wn, xn)w̃n)p,

then one can define the formal q-trace

trφ
W̃n
Y1(w1, x1) · · · Yn(wn, xn)qL(0).

Remark 3.4.3. Using the same notation as above, suppose the modules W̃i for i =

1, . . . , n are V -P -bimodules, with W0 projective as right P -module, and the action of
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P commutes with all the intertwining operators, i.e., for all i = 1, . . . , n for all wi ∈Wi,

w̃i ∈ W̃i, and p in P ,

Y(wi, x)(w̃ip) = (Y(wi, x)w̃i)p.

Then the product of the intertwining operators commute with the action of P and

trφ
W̃n
Y1(w1, x1) · · · Yn(wn, xn)qL(0)

is well defined.

Definition 3.4.4. Let W , be a V -module and W1,W2 be V -P -bimodules; we will say

that a logarithmic intertwining operator Y of type
(
W2

WW1

)
is a P -intertwining operator

if

Y(w, x)(w1p) = (Y(w, x)w1)p

for all p ∈ P , w ∈W , W1 ∈W1.

Remark 3.4.5. Note that for any set of intertwining operators Y1, . . . ,Yn of the above

types, one can always consider W̃i as a projective right P -module with P = C and

φ = 1C. In this case, trφ corresponds to the ordinary matrix trace of the action of the

intertwining operators on the vector space W̃n.

Remark 3.4.6. Using the same notation as in Remark 3.4.2, we can express the formal

q-trace as

trφ
W̃n
Y1(w1, x1) · · · Yn(wn, xn)qL(0)

=
∑
n∈C

sn∑
i=1

 ∞∑
j=1

〈
w′n,i,Y1(w1, x1) · · · Yn(wn, xn)

(L(0)n)j

j!
wn,i

〉
(log q)j

 qn.

In particular, as a formal series in the variables q, log q, its coefficients are finite sums

of genus-one correlation functions; one will be able to use properties of these correlation

functions to obtain properties for formal q traces.

Following [H2], we use the concept of geometrically modified intertwining operator.

Let Aj , j ∈ Z+ be the numbers defined by the formal relation

1

2πi
log(1 + 2πiy) =

exp

∑
j∈Z+

Ajy
j+1 ∂

∂y

 y
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and let L+(A) =
∑

j∈Z+
AjL(j); then the operator U(1) is defined by

U(1) = (2πi)L(0)e−L+(A).

Also let U(x) = xL(0)U(1), for any element x for which the expression makes sense: it

follows that

yL(0)U(x) = U(yx).

Definition 3.4.7 ([H2]). Let W1, W2, W3 be V -modules, and Y a logarithmic inter-

twining operator of type
(
W3

W1W2

)
. The operator Y(U(x)w, x) is called a geometrically

modified intertwining operator.

Here we recall some of the properties of the operator U(1) and of the geometrically

modified intertwining operators; see [H2] for these results.

Lemma 3.4.8. Let Y be an intertwining operator of type
(

W3

W1,W2

)
for grading restricted

generalized V -modules W1, W2, W3. Then for u ∈ V and w ∈W1,

[Y (U(x1)u, x1),Y(U(x2)w, x2)]

= 2πiResyδ

(
x1

e2πiyx2

)
Y(U(x2)Y (u, y)w, x2) (3.4.7)

Lemma 3.4.9. Let W1, W2, W3 be grading restricted generalized V -modules, and Y

and logarithmic intertwining operator of type
(

W3

W1W2

)
. Then for any w1 ∈W1,

Y(U(x)L(−1)w1, x) = 2πix
d

dx
Y(U(x)w1, x). (3.4.8)

Lemma 3.4.10. For any generalized V -module W and u ∈ V , we have the U(x)

conjugation property

U(x)Y (u, y) = Y (U(xe2πiy)u, x(e2πiy − 1))U(x). (3.4.9)

We will consider formal q-traces of products of geometrically modified intertwining

operators

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

for intertwining operators whose product commutes with the action of P . Many of the

properties of regular traces which hold in the completely reducible case carry over to

the logarithmic setting.
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In the following, for any v ∈ V , we denote by o(v) the constant term of the operator

Y (xL(0)v, x) acting on a generalized V -module; that is,

o(v) = Resxx
−1Y (xL(0)v, x) = vwt v−1.

Lemma 3.4.11. Consider grading restricted generalized V -modules Wi, W̃i for i =

1, . . . , n, with W̃0 = W̃n, and logarithmic intertwining operators Yi of type
(W̃i−1

WiW̃i

)
for

i = 1, . . . , n. Moreover, suppose W̃0 is a V -P -bimodule projective as a right P -module

for some algebra P equipped with a symmetric linear function φ, and that the product

of the intertwining operators Y1, . . . ,Yn commutes with the action of P . Then for any

v ∈ V , wi ∈Wi, we have

trφ
W̃n
Y (U(x)u, x)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

=
n∑
i=1

∑
m≥0

Pm+1

(xi
x

; q
)

trφ
W̃n
Y1(U(x1)w1, x1)·

· · · Yi−1(U(xi−1)wi−1, xi−1)Yi(U(xi)umwi, xi)·

· Yi+1(U(xi+1)wi+1, xi+1) · · · Yn(U(xn)wn, xn)qL(0)

+ trφ
W̃n
o(U(1)u)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0) (3.4.10)

and

n∑
i=1

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(xi)u0wi, xi)Yi+1(U(xi+1)wi+1, xi+1) · · · Yn(U(xn)wn, xn)qL(0)

= 0 (3.4.11)

Proof. By the commutator formula,

Y (U(x)u, x)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)

=
n∑
i=1

Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· [Y (U(x)u, x),Yi(U(xi)wi, xi)]Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)

+ Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)Y (U(x)u, x)
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=

n∑
i=1

2πiResyδ

(
x

e2πiyxi

)
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)Y (u, y)wi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)

+ Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)Y (U(x)u, x).

Since P acts on W̃n as V -module endomorphisms, and the product of the intertwining

operators Y1 . . .Yn commutes with P , the pseudotrace of each term in this expression

is well defined. Therefore, by linearity of pseudotraces, qL(0) conjugation property and

cyclic property of pseudotraces,

trφ
W̃n
Y (U(x)u, x)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

=

n∑
i=1

trφ
W̃n

2πiResyδ

(
x

e2πiyxi

)
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)Y (u, y)wi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0)

+ trφ
W̃n
Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)Y (U(x)u, x)qL(0)

=

n∑
i=1

trφ
W̃n

2πiResyδ

(
x

e2πiyxi

)
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)Y (u, y)wi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0)

+ trφ
W̃n
Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)Y

(
U
(
x

q

)
u,
x

q

)
=

n∑
i=1

trφ
W̃n

2πiResyδ

(
x

e2πiyxi

)
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)Y (u, y)wi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0)

+ trφ
W̃n
Y

(
U
(
x

q

)
u,
x

q

)
Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)
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=

n∑
i=1

trφ
W̃n

2πiResyδ

(
x

e2πiyxi

)
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)Y (u, y)wi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0)

+
(
q−x

∂
∂x

)
trφ
W̃n
Y (U(x)u, x)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

and thus(
1− q−x

∂
∂x

)
trφ
W̃n
Y (U(x)u, x)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

=

n∑
i=1

trφ
W̃n

2πiResyδ

(
x

e2πiyxi

)
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)Y (u, y)wi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0)

=
n∑
i=1

trφ
W̃n

2πiResye
2πiyxi

∂
∂xi δ

(
x

xi

)
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)Y (u, y)wi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0)

=
n∑
i=1

∞∑
m=0

trφ
W̃n

(2πi)m+1

m!

(
xi

∂

∂xi

)m
δ

(
x

xi

)
·

· Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)umwi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0)

=

n∑
i=1

∞∑
m=0

∞∑
l=1

(2πi)m+1

m!

(
xi

∂

∂xi

)m(xl
xli

+
x−l

x−li

)

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)umwi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0)

+ 2πi

n∑
i=1

Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)u0wi, xi)Yi+1(U(xi+1)wi+1, xi+1) · · · Yn(U(xn)wn, xn)qL(0)

Since the operator (1−q−x
∂
∂x ) kills constant expressions in the variable x, the left hand



37

side has no constant term as a series in x. This implies

n∑
i=1

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(xi)u0wi, xi)Yi+1(U(xi+1)wi+1, xi+1) · · · Yn(U(xn)wn, xn)qL(0)

= 0;

therefore,

(
1− q−x

∂
∂x

)
trφ
W̃n
Y (U(x)u, x)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

=
n∑
i=1

∞∑
m=0

∞∑
l=1

(2πi)m+1

m!

(
(−l)mx

l

xli
+ lm

x−l

x−li

)

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)umwi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0).

Then invert the operator (1− q−x
∂
∂x ), with the appropriate constant term:

trφ
W̃n
Y (U(x)u, x)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

= trφ
W̃n
o(U(1)u)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

+
(

1− q−x
∂
∂x

)−1 n∑
i=1

∞∑
m=0

∞∑
l=1

(2πi)m+1

m!

(
(−l)mx

l

xli
+ lm

x−l

x−li

)

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)umwi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0)

= trφ
W̃n
o(U(1)u)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

+

n∑
i=1

∞∑
m=0

∞∑
l=1

(2πi)m+1

m!

(
−(−l)m qlxl

(1− ql)xli
+ lm

x−l

(1− ql)x−li

)

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)umwi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0)
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= trφ
W̃n
o(U(1)u)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

+
n∑
i=1

∞∑
m=0

∞∑
l=1

(2πi)m+1

m!

(
−(−l)m

ql
(
xi
x

)−l
1− ql

+ lm
(
xi
x

)l
(1− ql)

)

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)umwi, xi)Yi+1(U(xi+1)wi+1, xi+1)·

· · · Yn(U(xn)wn, xn)qL(0)

= trφ
W̃n
o(U(1)u)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

+

n∑
i=1

∑
m≥0

Pm+1

(xi
x

; q
)

trφ
W̃n
Y1(U(x1)w1, x1)·

· · · Yi−1(U(xi−1)wi−1, xi−1)Yi(U(xi)umwi, xi)·

· Yi+1(U(xi+1)wi+1, xi+1) · · · Yn(U(xn)wn, xn)qL(0)

We will now consider finite length module whose weights are real. We choose the

branch of log z such that 0 ≤ =(z) < 2π, and for any z, n ∈ C, we define zn = en log z.

Moreover, we will make the following assumptions:

• (Convergence of genus zero correlation functions) For any generalized V -modules

Wi, W̃i, i = 0 . . . n with W̃n = W̃0, for any elements wi ∈Wi, w̃n ∈ W̃n, w̃′n ∈ W̃ ′n,

and for logarithmic intertwining operators Yi ∈
(W̃i−1

WiW̃i

)
, i = 0 . . . n, the genus zero

correlation function

〈w̃′n,Y1(w1, z1) · · · Yn(wn, zn)w̃n〉

is absolutely convergent in the region |z1| > |z2| > . . . > |zn| > 0.

• (Associativity for P -intertwining operators) For any generalized V -modules W̃1,

W̃2, V -P -bimodules W1, W2, W3, logarithmic P -intertwining operators Y1 ∈( W2

W̃2,W3

)
, Y2 ∈

( W1

W̃1,W2

)
there exists a V -P -bimodule M , a logarithmic intertwin-

ing operator Y3 ∈
( M
W̃1,W̃2

)
and a P -intertwining operator Y4 ∈

(
W1

M,W3

)
such that

for any complex numbers z1, z2 with |z1| > |z2| > |z1 − z2| > 0 and w̃1 ∈ W̃1,
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w̃2 ∈W2, w3 ∈W3, w
′
1 ∈W ′1

〈w′1,Y1(w̃1, z1)Y2(w̃2, z2)w3〉

= 〈w′1,Y4(Y3(w̃1, z1 − z2)w̃2, z2)w3〉

• (Commutativity for P -intertwining operators) For any generalized V -modules

W̃1, W̃2, W1, W2, W3, logarithmic P -intertwining operators Y1 ∈
( W2

W̃2,W3

)
, Y2 ∈( W1

W̃1,W2

)
there exists a V -P -bimodule M and logarithmic P -intertwining operators

Y3 ∈
( W1

W̃2,M

)
and Y4 ∈

( M
W̃1,W3

)
such that for any w̃1 ∈ W̃1, w̃2 ∈ W2, w3 ∈ W3,

w′1 ∈W ′1, the multivalued analytic function

〈w′1,Y1(w̃1, z1)Y2(w̃2, z2)w3〉

in the region |z1| > |z2| > 0 is an analytic continuation of the multivalued analytic

function

〈w′1,Y3(w̃2, z2)Y4(w̃1, z1)w3〉

in the region |z2| > |z1| > 0.

Our goal is to obtain differential equations for the genus-one correlation functions.

In order to do that, we need to derive formulae for

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi(U(xi)L(−1)wi, xi) · · · Yn(U(xn)wn, xn)qL(0),

which is related to the derivative of the formal q-trace with respect to the variable xi;

hence, we consider the expression

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi(U(xi)Y (u, y)wi, xi) · · · Yn(U(xn)wn, xn)qL(0)

Using the U(x) conjugation property, one can rewrite this as

trφ
W̃n
Y1(U(x1)w1, x1)·

· · · Yi(Y (U(xie
2πiyu, xi(e

2πiy − 1))U(xi)wi, xi)·

· · · Yn(U(xn)wn, xn)qL(0)

then, in order to use formula 3.4.10, one rewrites the iterate as a product using asso-

ciativity for intertwining operators.
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Lemma 3.4.12. Let Y be a logarithmic intertwining operator of type
(
W0

W,W1

)
for grading

restricted generalized V -modules W,W0,W1. Then for any w′0 ∈ W ′0, w1 ∈ W1, w ∈ W ,

and for any complex number z satisfying |qz| > 1 > |qz − 1| > 0,

〈w′0,Y(Y (U(xqz)u, x(qz − 1))U(x)w, x)w1〉

= 〈w′0, Y (U(xqz)u, xqz)Y(U(x)w, x)w1〉 (3.4.12)

Proof. Using associativity for intertwining operators, we see that

〈w′0,Y(Y (U(z1qz)u, z1(qz − 1))U(z1)w, z1)w1〉

= 〈w′0, Y (U(z1qz)u, z1qz)Y(U(z1)w, z1)w1〉 (3.4.13)

holds for any complex numbers z, z1 in the region |z1qz| > |z1| > |z1(qz − 1)| > 0,

or whenever z1 6= 0 and |qz| > 1 > |qz − 1| > 0. Then for a fixed z in the above

region, we have two series in powers of z1 (not necessarily integral), and log z1; by our

assumption on the modules, these powers must form a unique expansion set, and thus

the coefficients of the two series must be equal. Then, we can replace the complex

variable z1 in (3.4.13) with the formal variable x, which concludes the proof.

Proposition 3.4.13. Consider grading restricted generalized V -modules Wi and V -P -

bimodules W̃i for i = 1, . . . , n, with W̃0 = W̃n, and P -intertwining operators Yi of type(W̃i−1

WiW̃i

)
for i = 1, . . . , n. Moreover, suppose W̃0 is projective as right P -module. Then

for any v ∈ V , wi ∈Wi, and any integer j, 1 ≤ j ≤ n,

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yj−1(U(xj−1)wj−1, xj−1)Yj(U(xj)Y (v, y)wj , xj)

· Yj+1(U(xj+1)wj+1, xj+1) · · · Yn(U(xn)wn, xn)qL(0)

=
∑
m≥0

(−1)m+1

(
℘̃m+1(−y; q) +

∂m

∂ym
(G̃2(q)y + πi)

)
·

trφ
W̃n
Y1(U(x1)w1, x1) · · · Yj−1(U(xj−1)wj−1, xj−1)·

· Yj(U(xj)vmwj , xj)Yj+1(U(xj+1)wj+1, xj+1)·

· · · Yn(U(xn)wn, xn)qL(0)

+
∑
i 6=j

∑
m≥0

Pm+1

(
xi

xje2πiy
; q

)
·
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· trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(xi)vmwi, xi)Yi+1(U(xi+1)wi+1, xi+1) · · · Yn(U(xn)wn, xn)qL(0)

+ trφ
W̃n
o(U(1)v)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0). (3.4.14)

Proof. By induction on j; when j = 1, by Lemma 3.4.9,

trφ
W̃n
Y1(U(x1)Y (v, y)w1, x1)Y2(U(x2)w2, x2) · · · Yn(U(xn)wn, xn)qL(0)

= trφ
W̃n
Y1(Y (U(x1e

2πiy)v, x1(e
2πiy − 1))U(x1)w1, x1)·

· Y2(U(x2)w2, x2) · · · Yn(U(xn)wn, xn)qL(0)

and using (3.4.12), for any complex number z such that |qz| > 1 > |qz − 1| > 0,

trφ
W̃n
Y1(U(x1)Y (v, z)w1, x1)Y2(U(x2)w2, x2) · · · Yn(U(xn)wn, xn)qL(0)

= trφ
W̃n
Y1(Y (U(x1qz)v, x1(qz − 1))U(x1)w1, x1)·

· Y2(U(x2)w2, x2) · · · Yn(U(xn)wn, xn)qL(0)

= trφ
W̃n
Y (U(x1qz)v, x1qz)Y1(U(x1)w1, x1)·

· Y2(U(x2)w2, x2) · · · Yn(U(xn)wn, xn)qL(0)

Now by 3.4.10 with x = x1qz, we get

trφ
W̃n
Y1(U(x1)Y (v, z)w1, x1)Y2(U(x2)w2, x2) · · · Yn(U(xn)wn, xn)qL(0)

=
∑
m≥0

Pm+1

(
1

qz
; q

)
trφ
W̃n
Y1(U(x1)vmw1, x1)·

· Y2(U(x2)w2, x2) · · · Yn(U(xn)wn, xn)qL(0)

+
m∑
i=2

∑
m≥0

Pm+1

(
xi
x1qz

; q

)
trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·

· Yi(U(x1)vmwi, xi) · Yi+1(U(xi+1)wi+1, xi+1) · · · Yn(U(xn)wn, xn)qL(0)

+ trφ
W̃n
o(U(1)v)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

=
∑
m≥0

(−1)m+1

(
℘̃m+1(−z; q) +

∂m

∂zm
(G̃2(q)z + πi)

)
trφ
W̃n
Y1(U(x1)vmw1, x1)·

· Y2(U(x2)w2, x2) · · · Yn(U(xn)wn, xn)qL(0)

+

m∑
i=2

∑
m≥0

Pm+1

(
xi
x1qz

; q

)
trφ
W̃n
Y1(U(x1)w1, x1) · · · Yi−1(U(xi−1)wi−1, xi−1)·
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· Yi(U(x1)vmwi, xi) · Yi+1(U(xi+1)wi+1, xi+1) · · · Yn(U(xn)wn, xn)qL(0)

+ trφ
W̃n
o(U(1)v)Y1(U(x1)w1, x1) · · · Yn(U(xn)wn, xn)qL(0)

which proves the base case. Now suppose the result holds for j ≥ 1, and use commuta-

tivity for intertwining operators.

Proposition 3.4.14. Using the same notation as in the previous Proposition, for all

v ∈ V and l ≥ 1, we have

trφ
W̃n
Y1(U(qz1)w1, qz1) · · · Yj−1(U(qzj−1)wj−1, qzj−1)Yj(U(qzj )v−lwj , qzj )·

· Yi+1(U(qzi+1)wi+1, qzi+1) · · · Yn(U(qzn)wn, qzn)qL(0)

=

∞∑
k=1

(−1)l+1

(
2k + 1

l − 1

)
G̃2k+2(q)tr

φ

W̃n
Y1(U(qz1)w1, qz1)·

· · · Yj−1(U(qzj−1)wj−1, qzj−1)Yj(U(qzj )v2k+2−lwj , qzj )·

· Yi+1(U(qzi+1)wi+1, qzi+1) · · · Yn(U(qzn)wn, qzn)qL(0)

+
∑
i 6=j

∞∑
m=0

(−1)m+l

(
−m− 1

l − 1

)
℘̃m+l(zi − zj ; q)trφW̃n

Y1(U(qz1)w1, qz1)·

· · · Yi−1(U(qzi−1)wi−1, qzi−1)Yi(U(qzi)vmwi, qzi)·

· Yi+1(U(qzi+1)wi+1, qzi+1) · · · Yn(U(qzn)wn, qzn)qL(0)

+ δl,1G̃2(q)
n∑
i=1

trφ
W̃n
Y1(U(qz1)w1, qz1) · · · Yi−1(U(qzi−1)wi−1, qzi−1)·

· Yi(U(qzi)(v1 + v0zi)wi, qzi)Yi+1(U(qzi+1)wi+1, qzi+1)·

· · · Yn(U(qzn)wn, qzn)qL(0)

+ δl,1tr
φ

W̃n
o(U(1)v)Y1(U(qz1)w1, qz1) · · · Yn(U(qzn)wn, qzn)qL(0) (3.4.15)

Proof. Notice that the coefficients of (3.4.14) as a series in the formal variables q, log q

are absolutely convergent in the region |qz1 | > . . . > |qzn | > 0. Since the q coefficients

of ℘̃m(z, q) are absolutely convergent when |z| < 1, we can substitute y = z, xi = qzi ,

for i = 1, . . . , n in (3.4.14),

trφ
W̃n
Y1(U(qz1)w1, qz1) · · · Yj−1(U(qzj−1)wj−1, qzj−1)Yj(U(qzj )Y (v, z)wj , qzj )

· Yj+1(U(qzj+1)wj+1, qzj+1) · · · Yn(U(qzn)wn, qzn)qL(0)
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=
∑
m≥0

(−1)m+1

(
℘̃m+1(−z; q) +

∂m

∂zm
(G̃2(q)z + πi)

)
·

trφ
W̃n
Y1(U(qz1)w1, qz1) · · · Yj−1(U(qzj−1)wj−1, qzj−1)·

· Yj(U(qzj )vmwj , qzj )Yj+1(U(qzj+1)wj+1, qzj+1)·

· · · Yn(U(qzn)wn, qzn)qL(0)

+
∑
i 6=j

∑
m≥0

(̃− 1)m+1

(
℘m+1(zi − zj − z; q)

+ (−1)m+1 ∂
m

∂zmi
(G̃2(q)(zi − zj − z)− πi)

)
·

· trφ
W̃n
Y1(U(qz1)w1, qz1) · · · Yi−1(U(qzi−1)wi−1, qzi−1)·

· Yi(U(qzi)vmwi, qzi)Yi+1(U(qzi+1)wi+1, qzi+1) · · · Yn(U(qzn)wn, qzn)qL(0)

+ trφ
W̃n
o(U(1)v)Y1(U(qz1)w1, qz1) · · · Yn(U(qzn)wn, qzn)qL(0).

The result follows by taking the coefficient of zl−1 and using the q expansion of ℘̃(z; q)

and (3.4.11).

Taking v = ω and l = 1 in (3.4.15), one obtains

trφ
W̃n
Y1(U(qz1)w1, qz1) · · · Yj−1(U(qzj−1)wj−1, qzj−1)Yj(U(qzj )ω−1wj , qzj )·

· Yi+1(U(qzi+1)wi+1, qzi+1) · · · Yn(U(qzn)wn, qzn)qL(0)

=

∞∑
k=1

G̃2k+2(q)tr
φ

W̃n
Y1(U(qz1)w1, qz1)·

· · · Yj−1(U(qzj−1)wj−1, qzj−1)Yj(U(qzj )ω2k+1wj , qzj )·

· Yi+1(U(qzi+1)wi+1, qzi+1) · · · Yn(U(qzn)wn, qzn)qL(0)

+
∑
i 6=j

∞∑
m=0

(−1)m+1℘̃m+1(zi − zj ; q)trφW̃n
Y1(U(qz1)w1, qz1)·

· · · Yi−1(U(qzi−1)wi−1, qzi−1)Yi(U(qzi)ωmwi, qzi)·

· Yi+1(U(qzi+1)wi+1, qzi+1) · · · Yn(U(qzn)wn, qzn)qL(0)

+ G̃2(q)
n∑
i=1

trφ
W̃n
Y1(U(qz1)w1, qz1) · · · Yi−1(U(qzi−1)wi−1, qzi−1)·

· Yi(U(qzi)(ω1 + ω0zi)wi, qzi)Yi+1(U(qzi+1)wi+1, qzi+1)·

· · · Yn(U(qzn)wn, qzn)qL(0)



44

+ trφ
W̃n
o(U(1)ω)Y1(U(qz1)w1, qz1) · · · Yn(U(qzn)wn, qzn)qL(0)

now since wk = L(k − 1), and since U(1)ω = (2πi)2
(
ω − c

241
)
, we obtain

trφ
W̃n
Y1(U(qz1)w1, qz1) · · · Yj−1(U(qzj−1)wj−1, qzj−1)Yj(U(qzj )L(−2)wj , qzj )·

· Yi+1(U(qzi+1)wi+1, qzi+1) · · · Yn(U(qzn)wn, qzn)qL(0)

=

∞∑
k=1

G̃2k+2(q)tr
φ

W̃n
Y1(U(qz1)w1, qz1)·

· · · Yj−1(U(qzj−1)wj−1, qzj−1)Yj(U(qzj )L(2k)wj , qzj )·

· Yi+1(U(qzi+1)wi+1, qzi+1) · · · Yn(U(qzn)wn, qzn)qL(0)

+
∑
i 6=j

∞∑
m=0

(−1)m+1℘̃m+1(zi − zj ; q)trφW̃n
Y1(U(qz1)w1, qz1)·

· · · Yi−1(U(qzi−1)wi−1, qzi−1)Yi(U(qzi)L(m− 1)wi, qzi)·

· Yi+1(U(qzi+1)wi+1, qzi+1) · · · Yn(U(qzn)wn, qzn)qL(0)

+ G̃2(q)
n∑
i=1

trφ
W̃n
Y1(U(qz1)w1, qz1) · · · Yi−1(U(qzi−1)wi−1, qzi−1)·

· Yi(U(qzi)(L(0) + L(−1)zi)wi, qzi)Yi+1(U(qzi+1)wi+1, qzi+1)·

· · · Yn(U(qzn)wn, qzn)qL(0)

+ (2πi)2trφ
W̃n

(
L(0)− c

24

)
·

· Y1(U(qz1)w1, qz1) · · · Yn(U(qzn)wn, qzn)qL(0). (3.4.16)

3.5 Duality properties for P -intertwining operators

In this section we derive associativity and commutativity properties for P -intertwining

operators, under the same assumptions as Proposition 3.2.3: we show that in the state-

ment of these two properties, all the modules can be taken to be V -P -bimodules and

all intertwining operators to be P -intertwining operators. In particular, under those

assumptions all identities in the previous sections hold.

Let W1 be a generalized V -module and W2 be a V -P -bimodule. We can define a
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right action of P on W1 �P (z) W2 the following way: for any p ∈ P , consider the map

IdW1 ⊗ p : W1 ⊗W2 →W1 ⊗W2

w1 ⊗ w2 7→ w1 ⊗ (w2p);

then, by Proposition 3.2.2, there exists a unique V -homomorphism IdW1 �P (z) p of

W1 �P (z) W2 such that

�P (z) ◦ (IdW1 ⊗ p) = (IdW1 �P (z) p) ◦�P (z). (3.5.17)

so we let p act on W1 �P (z) W2 by

wp = (IdW1 �P (z) p)(w)

for any w ∈ W1 �P (z) W2, and extend it to the formal completion W1 �P (z) W2; thus

(3.5.17) becomes

�P (z)(w1 ⊗ (w2p)) = �P (z)(w1 ⊗ w2)p (3.5.18)

for all w1 ∈ W1 and w2 ∈ W2. Thus, W1 �P (z) W2 can be seen naturally as a V -P -

bimodule; moreover, the intertwining map �P (z) commutes with the action of P . In

particular, P commutes with the intertwining operator Y�P (z),0.

Proposition 3.5.1. Let Y1 ∈
(
W4

W1M

)
and Y2 ∈

(
M

W2W3

)
be two logarithmic intertwining

operators, where W1,W2,W3 are V -P -bimodules, M is a generalized V -module, and P

commutes with Y1 and Y2. Let Y1 ∈
(
W4

WW3

)
be the logarithmic intertwining operator as

in Proposition 3.2.3 (1.) (here W = W1 �P (z0) W2). Then P commutes with Y1.

Proof. Let p be any element in P ; for any two V -P -bimodules W 2,W 3, generalized

V -module W 1, and intertwining operator Y ∈
(

W 3

W 1W 2

)
, consider the logarithmic inter-

twining operators Yp,Yp ∈
(

W 3

W 1W 2

)
defined by

Yp(w(1), x)w(2) = Y(w(1), x)(w(2)p)

Yp(w(1), x)w(2) = (Y(w(1), x)w(2))p

for all w(1) ∈W 1, w(2) ∈W 2. It is clear that Yp (resp. Yp) is an intertwining operator

since p acts on W 2 (resp. W 3) as a V -module homomorphism. Then P commutes
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with Y if and only if Yp = Yp for all p ∈ P . Consider (Y1)p and (Y1)p: then for

w(1) ∈W1, w(2) ∈W2, w(3) ∈W3, w
′
(4) ∈W

′
4, and for all z0, z1, z2 such that z0 = z1−z2,

|z1| > |z2| > |z0| > 0,

〈w′(4), (Y
1)p(Y�P (z0)

,0(w(1), z0)w(2), z2)w(3)〉

= 〈w′(4), (Y
1(Y�P (z0)

,0(w(1), z0)w(2), z2)w(3))p〉

= 〈pw′(4),Y
1(Y�P (z0)

,0(w(1), z0)w(2), z2)w(3)〉

= 〈pw′(4),Y1(w(1), z1)Y2(w(2), z2)w(3)〉

= 〈w′(4), (Y1(w(1), z1)Y2(w(2), z2)w(3))p〉

= 〈w′(4),Y1(w(1), z1)(Y2(w(2), z2)w(3))p〉

= 〈w′(4),Y1(w(1), z1)(Y2)p(w(2), z2)w(3)〉.

Similarly,

〈w′(4), (Y
1)p(Y�P (z0)

,0(w(1), z0)w(2), z2)w(3)〉

= 〈w′(4),Y
1(Y�P (z0)

,0(w(1), z0)w(2), z2)(w(3)p)〉

= 〈w′(4),Y1(w(1), z1)Y2(w(2), z2)(w(3)p)〉

= 〈w′(4),Y1(w(1), z1)(Y2)p(w(2), z2)w(3)〉

= 〈w′(4),Y1(w(1), z1)(Y2)p(w(2), z2)w(3)〉.

Thus, by uniqueness in Proposition 3.2.3 (2.) applied to the intertwining operators Y1

and (Y2)p we see that (Y1)p = (Y1)p and therefore P commutes with Y1.

Proposition 3.5.2. Using the notation of Proposition 3.2.3 (2.), suppose the modules

W3 and W4 are V -P -bimodules, and the intertwining operator Y1 commutes with P .

Then the logarithmic intertwining operator Y1 also commutes with P .

Proof. Note that since W3 is a V -P -module, the right action of P on W3 defines a

right action of P on W2 �W3, and Y�P (z2)
,0 commutes with P . Now for w(1) ∈ W1,

w(2) ∈ W2, w(3) ∈ W3 and w′(4) ∈ W ′4, and for complex numbers z0, z1, z2 such that

|z1| > |z2| > |z0| > 0, z0 = z1 − z2, for any p ∈ P

〈w′(4), (Y1)
p(w(1), z1)Y�P (z2)

,0(w(2), z2)w(3)〉
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= 〈w′(4), (Y1(w(1), z1)Y�P (z2)
,0(w(2), z2)w(3))p〉

= 〈pw′(4),Y1(w(1), z1)Y�P (z2)
,0(w(2), z2)w(3)〉

= 〈pw′(4),Y
1(Y2(w(1), z0)w(2), z2)w(3)〉

= 〈w′(4), (Y
1(Y2(w(1), z0)w(2), z2)w(3))p〉

= 〈w′(4), (Y
1)p(Y2(w(1), z0)w(2), z2)w(3)〉.

Similarly, since Y�P (z2)
,0 commutes with P ,

〈w′(4), (Y1)p(w(1), z1)Y�P (z2)
,0(w(2), z2)w(3)〉

= 〈w′(4),Y1(w(1), z1)(Y�P (z2)
,0(w(2), z2)w(3))p〉

= 〈w′(4),Y1(w(1), z1)Y�P (z2)
,0(w(2), z2)(w(3)p)〉

= 〈w′(4),Y
1(Y2(w(1), z0)w(2), z2)(w(3)p)〉

= 〈w′(4), (Y
1)p(Y2(w(1), z0)w(2), z2)w(3)〉

= 〈w′(4), (Y
1)p(Y2(w(1), z0)w(2), z2)w(3)〉.

The conclusion thus follows from uniqueness in Proposition 3.2.3 part (2.) applied to

the intertwining operators (Y1)p and Y2.

We summarize these results in the following.

Theorem 3.5.3 (Associativity for P -intertwining operators). Let W1,W2,W3 be V -P -

bimodules.

(i) Let M be a V -P -bimodule and Y1, Y2 be two P -logarithmic intertwining operators

of types
(
W4

W1M

)
,
(

M
W2W3

)
, respectively. Then there exist a generalized module W , a P -

intertwining operator Y1 of type
(

W
W1W2

)
and a logarithmic intertwining operator Y2 of

type
(
W4

WW3

)
such that for all w(1) ∈W1, w(2) ∈W2, w(3) ∈W3, w(4) ∈W ′4,

〈w′(4),Y1(w(1), z1)Y2(w(2), z2)w(3)〉

= 〈w′(4),Y
2(Y1(w(1), z1 − z2)w(2), z2)w(3)〉

for all z1, z2 such that |z1| > |z2| > |z1 − z2|.

(ii) Let W be a generalized V -module, Y1 a logarithmic intertwining operator of type
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(
W4

WW3

)
, and Y2 a P -intertwining operator of type

(
W

W1W2

)
. Then there exists a V -P -

bimodule M and P -intertwining operators Y1, Y2 of types
(
W4

W1M

)
,
(

M
W2W3

)
, respectively

such that the same conclusion as in (i) holds.

We now state the commutativity property.

Theorem 3.5.4 (Commutativity for P -intertwining operators). Let Y1, Y2 be P -

logarithmic intertwining operators of types
(
W4

W1M

)
,
(

M
W2W3

)
, respectively, for generalized

V -modules W1,W2 and V -P -bimodules W3,W4,M . Then there exist a V -P -module

M1 and logarithmic intertwining operators Y3,Y4 of type
(

W4

W2M1

)
,
(
M1

W1W3

)
respectively,

commuting with the action of P , such that for any w(1) ∈ W1, w(2) ∈ W2, w(3) ∈ W3,

w′(4) ∈W
′
4, the multivalued analytic function

〈w′(4),Y1(w(1), z1)Y2(w(2), z2)w(3)〉

on the region |z1| > |z2| > 0 and the multivalued analytic function

〈w′(4),Y3(w(2), z2)Y4(w(1), z1)w(3)〉

on the region |z2| > |z1| > 0 are analytic extensions of each other.

Proof. Using associativity twice, by the previous propositions one sees that all the outer

intertwining operators commute with P . Recall ([HLZ2]) the operator Ωr : VW 3

W 1W 2 →

VW 3

W 2W 1 defined by

Ωr(Y)(w(2), x)w(1) = exL(−1)Y(w(1), e
(2r+1)πix)w(2)

for any r ∈ Z; then Ω−r−1(Ωr(Y)) = Ωr(Ω−r−1(Y)) = Y for any Y ∈ VW 3

W 1W 2 .

We know by Theorem 3.5.3 that there exist a module M , an intertwining operator

Y1 and a P -intertwining operator Y2 such that

〈w′(4),Y1(w(1), z1)Y2(w(2), z2)w(3)〉

= 〈w′(4),Y
2(Y1(w(1), z0)w(2), z2)w(3)〉;

now substituting

Y1(w(1), x0)w(2) = Ω0(Ω−1(Y1))(w(1), x0)w(2)

= ex0L(−1)Ω−1(Y1)(w(2), e
πix0)w(1)
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we obtain (in the region |z1| > |z2| > |z1 − z2|)

〈w′(4),Y1(w(1), z1)Y2(w(2), z2)w(3)〉

= 〈w′(4),Y
2(Ω1(Y1)(w(2), e

πiz0)w(1), z2 + z0)w(3)〉;

which is an extension of 〈w′(4),Y
2(Ω1(Y1)(w(2), z2 − z1)w(1), z1)w(3)〉 defined on the

region |z1| > |z2− z1| > 0. Now by Theorem 3.5.3 (ii), we know that there exist a V -P -

bimodule M1 and P intertwining operators Y3, Y4 of type
(

W4

W2M1

)
,
(
M1

W1W3

)
respectively,

such that

〈w′(4),Y
2(Ω1(Y1)(w(2), z2 − z1)w(1), z1)w(3)〉

= 〈w′(4),Y3(w(2), z2)Y4(w(1), z1)w(3)〉

This concludes the proof.



50

Chapter 4

Genus one correlation functions

4.1 Differential Equations

In this section we derive a system of differential equations satisfied by the formal q-

traces, using the identities obtained in the previous chapter. The main technical as-

sumption used in this chapter is the C2-cofiniteness of the generalized V -modules, which

is used to prove that a particular module over a ring of functions is finitely generated.

We denote by G the space of all multivalued analytic functions defined on the region

|z1| > |z2| > . . . > |zn| > 0 with preferred branches on |z1| > |z2| > . . . > |zn| > 0,

0 ≤ arg zi < 2π for i = 1 . . . n. For any such function f(z1, . . . , zn), the function

f(qz1 , . . . , qzn) is a multivalued analytic function defined when |qz1 | > . . . > |qzn |. We

denote by Gq the space of such functions. Let

R = C[G̃4(q), G̃6(q), ℘̃2(zi − zj ; q), ℘̃3(zi − zj ; q)]

let V be a vertex operator algebra with central charge c, and assume all lower bounded

generalized V - modules are R-graded and satisfy the C2 cofiniteness condition. For

V -modules W1,W1, . . . ,Wn we denote by T the graded R-module

R⊗W1 ⊗ . . .⊗Wn,

with grading induced by the grading by generalized eigenvalues on W1, . . . ,Wn. Denote

by Tr the homogeneous subspace of degree r ∈ R; moreover, define a filtration on T by
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F (T )r =
∐
s≤r Ts. Let J be the R-submodule of T generated by the elements

Aj(v;w1, . . . , wn)

= 1⊗ w1 ⊗ . . .⊗ wj−1 ⊗ v−2wj ⊗ wj+1 ⊗ . . .⊗ wn

+
∞∑
k=1

(2k + 1)G̃2k+2(q)⊗ w1 ⊗ . . .⊗ wj−1 ⊗ v2kwj ⊗ wj+1 ⊗ . . .⊗ wn

+
∑
i 6=j

∞∑
m=0

(−1)m(m+ 1)℘̃m+2(zi − zj)⊗

w1 ⊗ . . .⊗ wj−1 ⊗ vmwj ⊗ wj+1 ⊗ . . .⊗ wn

for v ∈ V , wi ∈ Wi, i = 1 . . . , n, and 1 ≤ j ≤ n. The filtration on T induces one on J ,

and we will denote by F (J)r the r-th subspace in the filtration.

Proposition 4.1.1. There exists N ∈ R such that for any r ∈ R, F (T )r = F (T )N +

F (J)r.

Proof. Let N such that∐
r>N

Tr ⊆
n∑
i=1

R⊗W1 ⊗ . . .Wi−1 ⊗ C2(Wi)⊗Wi+1 ⊗ . . .Wn;

then clearly if r ≤ N , F (T )r ⊆ F (T )N = F (T )N + F (J)r. We now prove on induction

on k ∈ N that if r = N + k, then F (T )r = F (T )n + F (J)r. Let r = N + k + 1 and let

t ∈ F (T )r. By definition of N , we can assume

t = 1⊗ w1 ⊗ · · · ⊗ wi−1 ⊗ v−2wi ⊗ wi+1 ⊗ . . .⊗ wn

for some v ∈ V and wj ∈ Wj , j = 1 . . . , n. Observe that the element A(v;w1, . . . , wn)

belongs to F (J)r and

S =
∞∑
k=1

(2k + 1)G̃2k+2(q)⊗ w1 ⊗ . . .⊗ wj−1 ⊗ v2kwj ⊗ wj+1 ⊗ . . .⊗ wn

+
∑
i 6=j

∞∑
m=0

(−1)m(m+ 1)℘̃m+2(zi − zj)⊗

w1 ⊗ . . .⊗ wj−1 ⊗ vmwj ⊗ wj+1 ⊗ . . .⊗ wn

belongs to F (T )r−1. By induction hypothesis, S ∈ F (T )N + F (J)r−1. Then t =

A(v, w1, . . . , wn) − s ∈ F (J)r + F (T )N + F (J)r−1 = F (T )N + F (J)r. This concludes

the proof.
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Corollary 4.1.2. We have T = F (T )N + J and T/J is a finitely generated R-module.

Proof. The first assertion follows immediately from Proposition 4.1.1; the second follows

since F (T )N is finitely generated.

In the following we will fix an associative algebra P and a symmetric linear function

φ on P . For V -P -bimodules W̃0 . . . W̃n with W̃0 = W̃n and P -intertwining operators Yi

of type
(W̃i−1

WiW̃i

)
, i = 1 . . . n, and for wi ∈Wi, i = 1, . . . , n, we consider the map

FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

= trφ
W̃n
Y1(U(qz1)w1, qz1) · · · Yn(U(qzn)wn, qzn)qL(0)−

c
24

and we extend it to an R-module map ψY1,...,Yn : T → Gq((q))[log q] defined by

f ⊗ w1 ⊗ . . .⊗ wn 7→ f · F (w1, . . . , w1; z1, . . . , zn; q).

We will also use the notation F φY1,...,Yn and ψφY1,...,Yn when we need to specify the de-

pendence on the symmetric function φ.

Proposition 4.1.3. The submodule J is contained in the kernel of ψY1,...,Yn; hence

ψY1,...,Yn induces a map, also denoted by ψY1,...,Yn, from T/J to Gq((q))[log q].

Proof. This follows from applying ψY1,...,Yn to (3.4.15) with l = 2; the resulting equation

implies ψY1,...,Yn(Aj(v;w1, . . . , wn)) = 0 for all v ∈ V , w1 ∈W1, . . . , wn ∈Wn.

Proposition 4.1.4. For any w1 ∈ W1, . . . wn ∈ Wn, we have the L(−1)-derivative

property

∂

∂zi
FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

= FY1,...,Yn(w1, . . . , wj−1, L(−1)wj , wj+1, . . . , wn; z1, . . . , zn; q) (4.1.1)

Proof. This is an immediate consequence of Lemma 3.4.8.

Proposition 4.1.5. Consider grading restricted generalized V -modules Wi, W̃i for i =

1, . . . , n, with W̃0 = W̃n, and intertwining operators Yi of type
(W̃i−1

WiW̃i

)
for i = 1, . . . , n.

Moreover, suppose W̃0 is a V -P -bimodule projective as right P -module for some algebra



53

P equipped with a symmetric linear function φ. Then for any homogeneous elements

w1 ∈W1, . . . , wn ∈Wn, and any j = 1, . . . , n, we have(2πi)2q
∂

∂q
+ G̃2(q)

n∑
i=1

wt wi + G̃2(q)

n∑
i=1

zi
∂

∂zi
−
∑
i 6=j

℘̃1(zi − zj ; q)
∂

∂zi

 ·
· FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

+ G̃2(q)
n∑
i=1

FY2,...,Yn(w1, . . . , wi−1, L(0)nwi, wi+1, . . . , wn; z1, . . . , zn; q)

= FY2,...,Yn(w1, . . . , wj−1, L(−2)wj , wj+1, . . . , wn; z1, . . . , zn; q)

−
∞∑
k=1

G̃2k+2(q)·

· FY1,...,Yn(w1, . . . , wj−1, L(2k)wj , wj+1, . . . , wn; z1, . . . , zn; q)

+
∑
i 6=j

∞∑
m=1

(−1)m℘̃m+1(zi − zj); q)·

· FY1,...,Yn(w1, . . . , wi−1, L(m− 1)wi, wi+1, . . . , wn; z1, . . . , zn; q) (4.1.2)

Proof. This follows from (3.4.16) and the definition of ψY1,...,Yn , using Lemma 3.1.11

and (4.1.1).

Remark 4.1.6. This formula differs from the one obtained in [H2], by the presence of

the additional term

G2(q)

n∑
i=1

FY2,...,Yn(w1, . . . , wi−1, L(0)nwi, wi+1, . . . , wn; z1, . . . , zn; q)

due to the non-semisimplicity of the operator L(0).

We will now consider a second grading on the space T by “modular weights”: define

the modular weight on the ring R by assigning weight 2k to the function G2k(q) and

weight m to ℘̃m(z; q), and denote by Rp the homogeneous subspace of degree p.

Now if t = f ⊗w1⊗ . . .⊗wn ∈ T , with homogeneous f ∈ Rp and wi ∈Wi, i = 1, . . . , n,

we assign t modular degree p+
∑n

i=1 wt wi. Clearly from this definition, if v ∈ V and

wi ∈ Wi, i = 1, . . . , n are homogeneous, then the element A(v;w1, . . . , wn) ∈ J has

modular weight wt v +
∑n

i=1 wt wi + 1. As a consequence, we have
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Proposition 4.1.7. The ideal J is graded by modular weights; in particular, this grad-

ing induces a grading on the quotient module T/J .

Proposition 4.1.8. Let W1, . . .Wn be generalized modules for the vertex operator al-

gebra V , and consider homogeneous wi ∈Wi for i = 1, . . . n. Then there exist elements

ap,i ∈ Rp for p = 1, . . . ,m such that for any V -P -bimodules W̃j and P -intertwining op-

erators Yj of type
( W̃j−1

WjW̃j

)
, j = 1, . . . , n, with W̃0 = W̃n projective as a right P -module,

the series

trφ
W̃n
Y1(U(qz1)w1, qz1) · . . . · Yn(U(qzn)wn, qzn)qL(0)−

c
24

satisfies the differential equations

∂m

∂zmi
ϕ+

m∑
p=1

ap,i(z1, . . . , zn; q)
∂m−p

∂zm−pi

ϕ = 0. (4.1.3)

for i = 1, . . . , n, in the region 1 > |qz1 | > . . . > |qz1 | > |q| > 0.

Proof. Consider the submodule Mi of T/J generated by the elements

1⊗ w1 ⊗ . . .⊗ wi−1 ⊗ L(−1)kwi ⊗ wi+1 ⊗ . . . wn + J

for k ∈ N. Since R is Noetherian and T/J is finitely generated, Mi is also finitely

generated. Therefore there exists an integer m and elements ap,i ∈ R such that

1⊗ w1 ⊗ . . .⊗ wi−1 ⊗ L(−1)mwi ⊗ wi+1 ⊗ . . . wn + J

=

m∑
i=1

ap,i(z1, . . . , zn; q)·

· 1⊗ w1 ⊗ . . .⊗ wi−1 ⊗ L(−1)m−pwi ⊗ wi+1 ⊗ . . . wn + J. (4.1.4)

Note that since the modular weight of 1⊗w1⊗ . . .⊗wi−1⊗L(−1)kwi⊗wi+1⊗ . . . wn+J

is
∑n

i=1 wt wi + k, we can choose the element ap,i to have degree p. The conclusion

follows by applying the map ψY1,...,Yn to both sides and using the L(−1) derivative

property.

Given a logarithmic intertwining operator Y of type
(

W3

W1W2

)
, for generalized modules
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W1, W2, W3, we will consider the map

Y(k) :W1 ⊗W2 →W3{x}[log x]

w1 ⊗ w2 7→ Y(L(0)knw1, x)w2

for k ∈ N. Since L(0)n acts on W1 as a V -module endomorphism, Y(k) is itself an

intertwining operator of the same type. Also, for j = 1, . . . , n define

Qj(1⊗ w1 ⊗ . . .⊗ wn) =

w1 ⊗ . . .⊗ wj−1 ⊗ L(−2)wj ⊗ wj+1 ⊗ . . .⊗ wn

−
∞∑
k=1

G̃2k+2(q)·

· w1 ⊗ . . .⊗ wj−1 ⊗ L(2k)wj ⊗ wj+1 ⊗ . . .⊗ wn

+
∑
i 6=j

∞∑
m=1

(−1)m℘̃m+1(zi − zj ; q)·

· w1 ⊗ . . .⊗ wi−1 ⊗ L(m− 1)wi ⊗ wi+1 ⊗ . . .⊗ wn.

Then, according to (4.1.2), we have

ψY1,...,Yn(Qj(1⊗ w1 ⊗ . . .⊗ wn)) =(2πi)2q
∂

∂q
+ G̃2(q)

n∑
i=1

wt wi + G̃2(q)
n∑
i=1

zi
∂

∂zi
−
∑
i 6=j

℘̃1(zi − zj ; q)
∂

∂zi

 ·
· FY1,...,Yn(w1, . . . , wn; z1, . . . zn; q)

+ G̃2(q)
n∑
i=1

f(q)FY1,...,Yi−1,Y
(1)
i ,Yi+1,...Yn

(w1, . . . , wn; z1, . . . , zn; q). (4.1.5)

For α ∈ C and j = 1, . . . , n, we define the differential operator

Oj(α) =

(2πi)2q
∂

∂q
+ G̃2(q)α+ G̃2(q)

n∑
i=1

zi
∂

∂zi
−
∑
i 6=j

℘̃1(zi − zj ; q)
∂

∂zi

 (4.1.6)

and introduce the notation

Dj(α)FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

= Oj(α)FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)
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+ G̃2(q)

n∑
i=1

FY1,...,Yn(w1, . . . , wi−1, L(0)nwi, wi+1, . . . , wn; z1, . . . , zn; q)

and inductively(
k∏
l=1

Dj(αl)

)
FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

= Oj(α1)

((
k∏
l=2

Dj(αl)

)
FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

)

+ G̃2(q)
n∑
i=1

(
k∏
l=2

Dj(αl)

)
·

· FY1,...,Yn(w1, . . . , wi−1, L(0)nwi, wi+1, . . . , wn; z1, . . . , zn; q).

Remark 4.1.9. Using this notation, (4.1.5) can be written as

ψY1,...,Yn(Qj(1⊗ w1 ⊗ . . .⊗ wn)) = Dj

(
n∑
i=1

wt wi

)
ψY1,...,Yn(1⊗ w1 ⊗ . . .⊗ wn).

We now want to extend Qj to a map Qj : T → T such that, for any t ∈ T of modular

weight α,

ψY1,...,Yn(Qj(t)) = Dj(α)ψY1,...,Yn(t).

This is necessary since we will need to apply ψY1,...,Yn to repeated iterations of the map

Qj on the element 1⊗ w1 ⊗ . . .⊗ wn for homogeneous elements w1, . . . , wn; and while

the elements of T obtained this way are not homogeneous in the conformal grading,

they have a well defined modular weight.

Definition 4.1.10. We define functions ϑj : R → R for j = 1, . . . , n in the following

way: let

ϑj(G̃k(q)) = (2πi)2q
∂

∂q
G̃k(q) + kG̃2(q)G̃k(q),

and for the formal series ℘̃m(zr − zs; qτ ) with 1 ≤ r 6= s ≤ n and any m ≥ 2, and

j = 1, . . . , n, we define ϑj(℘̃m) by

ϑj(℘̃m(zr − zs; q))

= (2πi)2q
∂

∂q
℘̃m(zr − zs; q) +mG̃2(q)℘̃m(zr − zs; q)

−mG̃2(q)(zr − zs)℘̃m+1(zr − zs; q)
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+m℘̃m+1(zr − zs; q) (℘̃1(zr − zj ; q)− ℘̃1(zs − zj ; q))

if j /∈ {r, s}; and by

ϑj(℘̃m(zj − zs; q))

= (2πi)2q
∂

∂q
℘̃m(zj − zs; q) +mG̃2(q)℘̃m(zj − zs; q)

−mG̃2(q)(zj − zs)℘̃m+1(zj − zs; q)

−m℘̃m+1(zj − zs; q)℘̃1(zs − zj ; q)

if j = r, and we extend ϑj as a derivation on the ring R.

Proposition 4.1.11. Let ϕ(z1, . . . , zn; q) = ϑj(℘̃m(zr − zs; q)); then ϕ(z1, . . . , zn; qτ )

converges uniformly to an elliptic function in the variables z1, . . . , zn with possible poles

at zr = zs +mτ + n, n,m ∈ Z, r, s = 1, . . . , n. Moreover, for any g ∈ SL2(Z), if

g =

 α β

γ δ


we have

ϕ

(
z1

γτ + δ
, . . . ,

zn
γτ + δ

;
ατ + β

γτ + δ

)
= (γτ + δ)m+2 ϕ(z1, . . . , zn; τ).

Proof. Easy computation using transformation properties of ℘m and Gk under the

action of SL2(Z).

In particular, ϑj is indeed a map from R to R and if f ∈ R has modular weight p, then

ϑj(f) has modular weight p + 2. We then consider the C-linear maps Qj : T → T for

j = 1, . . . , n defined by

Qj(f(q)⊗ w1 ⊗ . . .⊗ wn)

= f(q) ·Qj(1⊗ w1 ⊗ . . .⊗ wn) + ϑj(f(q))⊗ w1 ⊗ . . .⊗ wn;

note that if the modular weight of t ∈ T is α, then the modular weight of Qj(t) is α+2.

Proposition 4.1.12. Let t ∈ T be an element of modular weight α: then

ψY1,...,Yn(Qj(t)) = Dj(α) · ψY1,...,Yn(t).
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Proof. It is enough to prove this for elements t of the form G̃k(q) ⊗ w1 ⊗ . . . ⊗ wn or

℘̃m(zi − zj ; q)⊗w1 ⊗ . . .⊗wn. Suppose t is of the first form with
∑n

i=1 wt wi = s with

k + s = α. Then

ψY1,...,Yn(Qj(t))

= ψY1,...,Yn(G̃k(q)Qj(1⊗ w1 ⊗ . . .⊗ wn) + θ(G̃k(q))⊗ w1 ⊗ . . .⊗ wn)

= G̃k(q)Dj(s)FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

+

(
(2πi)2q

∂

∂q
G̃k(q) + kG̃2(q)G̃k(q)

)
FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

= Dj(s+ k)G̃k(q)FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

= Dj(α)ψY1,...,Yn(t).

The proof of the other case is a similar computation.

Proposition 4.1.13. Let α =
∑n

i=1 wt wi; then for any s ∈ N, we have

ψY1,...,Yn(Qsj(1⊗ w1 ⊗ . . .⊗ wn))

=

s∏
i=1

Dj(α+ 2(s− i)) · FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q). (4.1.7)

Proof. We proceed by induction on s; the base case s = 0 follows by definition of

ψY1,...,Yn . Now suppose the claim holds for s−1; then by (4.1.2), and since Qk(1⊗w1⊗

. . .⊗ wn) has modular weight equal to α+ 2(k − 1),

ψY1,...,Yn(Qsj(1⊗ w1 ⊗ . . .⊗ wn))

= Oj(α+ 2(s− 1))ψY1,...,Yn(Qs−1j (1⊗ w1 ⊗ . . .⊗ wn))

+ G̃2(q)
n∑
i=1

ψY1,...,Yi−1,Y
(1)
i ,Yi+1,...,Yn

(Qs−1j (1⊗ w1 ⊗ . . .⊗ wn))

= Oj(α+ 2(s− 1))

(
s−1∏
l=1

Dj(α+ 2(s− 1− l))

)
·

· FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

+ G̃2(q)

n∑
i=1

(
s−1∏
l=1

Dj(α+ 2(s− 1− l))

)
·

· FY1,...,Yn(w1, . . . , wi−1, L(0)nwi, wi+1, . . . , wn; z1, . . . , zn; q)
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= Oj(α+ 2(s− 1))

(
s∏
l=2

Dj(α+ 2(s− l))

)
·

· FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

+ G̃2(q)

n∑
i=1

(
s∏
l=2

Dj(α+ 2(s− l))

)
·

· FY1,...,Yn(w1, . . . , wi−1, L(0)nwi, wi+1, . . . , wn; z1, . . . , zn; q)

=

s∏
l=1

Dj(α+ 2(s− l)) · FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q),

which concludes the proof.

Proposition 4.1.14. Let W1, . . .Wn be generalized modules for the vertex operator

algebra V , and consider homogeneous wi ∈ Wi for i = 1, . . . n; let α =
∑n

i=1 wt wi.

Then there exist elements bp,i ∈ R2p for p = 1, . . . ,m such that for any V -P -bimodules

W̃j and P -intertwining operators Yj of type
( W̃j−1

WjW̃j

)
, j = 1, . . . , n, with W̃0 = W̃n

projective as right P -module, the series

ϕ = FY1,...,Yn(w1, . . . , wn; z1, . . . zn; q)

satisfies the differential equations

m∏
l=1

Dj(α+ 2(m− l))ϕ

+

m∑
p=1

bp,j(z1, . . . , zn; q)

m−p∏
l=1

Dj(α+ 2(m− p− l))ϕ = 0 (4.1.8)

for j = 1, . . . , n, in the region 1 > |qz1 | > . . . > |qz1 | > |q| > 0.

Moreover, for any k = 1, . . . , n, the series

ϕk(z1, . . . , zn; q)

= F φY1,...,Yn(w1, . . . , wk−1, L(0)nwk, wk+1, . . . , wn; z1, . . . zn; q)

also satisfies (4.1.8), for the same choice of elements bp,i.

Proof. Consider the R-submodule M of T/J generated by the elements

Qkj (1⊗ w1 ⊗ . . .⊗ wn) + J
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for k ∈ N. Since T/J is finitely generated and R is noetherian, M is also finitely

generated; therefore, there exists m and elements bp,j(z1, . . . , zn; q) ∈ R, p = 1, . . . ,m

such that

Qmj (1⊗ w1 ⊗ . . .⊗ wn)

+
m∑
p=1

bp,j(z1, . . . , zn; q)Qm−pj (1⊗ w1 ⊗ . . .⊗ wn) ∈ J.

Since the modular weight of Qij(1⊗w1 ⊗ . . .⊗wn) is α+ 2i, we can choose bp,j in R2p;

then applying ψY1,...,Yn to both sides of the equation and applying (4.1.7), we obtain

(4.1.8).

The last part of the proposition follows by applying the first part to the intertwining

operators Y1, . . . ,Yk−1,Y
(1)
k ,Yk+1, . . . , Yn.

Remark 4.1.15. Note that the coefficients bp,j only depend on the elements w1, . . . , wn;

in particular, they do not depend on the choice of algebra P and symmetric function φ

in the definition of the pseudotrace.

Remark 4.1.16. For ij ∈ N, and i = 1, . . . , n, let

ϕi1,...,in(z1, . . . , zn; q)

= FY1,...,Yn(L(0)i1n w1, . . . , L(0)inn wn; z1, . . . , zn; q),

The differential equation (4.1.8) depends on all the functions ϕi1,...,in ; therefore, we

obtain a system of differential equations of which {ϕi1,...,in |ij ∈ N, j = 1, . . . , n} is

a solution. Since L(0)n is locally nilpotent, this system of equations is finite; if the

modules W1, . . . ,Wn all have length smaller than l, then we obtain a system for the

l(n + 1) functions {ϕi1,...,in |ij = 0, . . . , l, j = 1, . . . , n}. If the modules are ordinary

modules the system decouples and we obtain the equations in [H2].

Proposition 4.1.17. The series

FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; qτ ) (4.1.9)

is absolutely convergent in the region 1 > |qz1 | > . . . > |qzn | > |qτ | > 0| and can be

extended to a multivalued analytic function in the region =(τ) > 0, zi 6= zj + l+mτ for

i 6= j, l,m ∈ Z.
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Proof. For fixed z1, . . . , zn such that |qz1 | > . . . > |qzn | > 0, the coefficients in the

variable q, log q of the series

FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; q)

are absolutely convergent, and the series satisfies a system of differential equations with

a regular singular point at q = 0 and analytic coefficients. Since the coefficients of the

differential equations are analytic functions in z1, . . . , zn, qτ , with possible singularities

in the region =(τ) > 0, zi 6= zj + l + mτ for i 6= j and l,m ∈ Z, the solutions of

the system (4.1.8) can be extended to an analytic (multivalued) function in the same

region.

We will call genus-one correlation functions the analytic extensions of (4.1.9) to the

region =(τ) > 0, zi 6= zj + l +mτ for i 6= j, l,m ∈ Z, and we will denote them by

F
φ
Y1,...,Yn(w1, . . . , wn; z1, . . . , zn; qτ ).

Proposition 4.1.18 (Genus-one commutativity). Let Wi be V -modules, W̃i be V -

P bimodules and Yi intertwining operators of type
( W̃i−1

WiW̃i−1

)
for i = 1, . . . , n, with

W̃0 = W̃n projective as right P -module. Then for any k ≤ n − 1, there exists a V -P -

bimodules Ŵk, and intertwining operators Ŷk, Ŷk+1 of type
( Ŵk

WkW̃k+1

)
,
( W̃k−1

Wk+1Ŵk

)
such

that

F
φ
Y1,...,Yn(w1, . . . , wn; z1, . . . , zn; τ)

= F
φ

Y1,...,Yk−1,Ŷk+1,Ŷk,Yk+2,...Yn
(w1, . . . , wk−1, wk+1, wk, wk+2 . . . , wn;

z1, . . . , zi−1, zi+1, zi, zi+2, . . . , zn; τ)

as multivalued analytic functions.

Proof. Follows from commutativity for P intertwining operators.

Proposition 4.1.19 (Genus-one associativity). Let Wi be V -modules, W̃i be V -P -

bimodules and Yi intertwining operators of type
( W̃i−1

WiW̃i−1

)
for i = 1, . . . , n, with W̃0 =

W̃n projective as right P -module. Then for any k ≤ n−1, there exists a V -P -bimodules
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Ŵk, and intertwining operators Ŷk, Ŷk+1 of type
(

Ŵk
WkWk+1

)
,
( W̃k−1

ŴkW̃k+1

)
such that the

series

F
φ

Y1,...,Yk−1,Ŷk+1,Yk+2,...,Yn
(w1, . . . , wk−1, Ŷ(wk, zk − zk+1)wk+1,

wk+2, . . . , wn; z1, . . . , zn; τ)

=
∑
r∈R

F
φ

Y1,...,Yk−1,Ŷk+1,Yk+2,...,Yn
(w1, . . . , wk−1, Pr(Ŷ(wk, zk − zk+1)wk+1),

wk+2, . . . , wn; z1, . . . , zn; τ)

is absolutely convergent in the region

1 > |qz1 | > . . . |qzk−1
| > |qzk+1

| . . . > |qzn | > |qτ | > 0

and 1 > |q(zk−zk+1)| > 0 and converges to F
φ
Y1,...,Yn(w1, . . . , wn; z1, . . . , zn; τ) when 1 >

|qz1 | > . . . > |qzn | > |qτ | > 0 and |q(zk−zk+1)| > 1 > |q(zk−zk+1) − 1| > 0.

Proof. By associativity for P intertwining operators, there exist a V -P -bimodule W̃k

and intertwining operators Ŷk, Ŷk+1 of type
(

Ŵk
WkWk+1

)
,
( W̃k−1

ŴkW̃k+1

)
such that for any

z1, . . . , zn ∈ C satisfying 1 > |qz1 | > . . . > |qzn | > 0 and |qzk+1
| > |qzk − qzk+1

| > 0, and

for any element w̃′n ∈ W̃ ′n, w̃n ∈ W̃n

〈w′n,Y1(U(qz1)w1, qz1) . . .Yk−1(U(qzk−1
)wk−1, qzk−1

)·

· Ŷk+1(U(qzk+1
)Ŷk(wk, zk − zk+1)wk+1, qzk+1

)·

· Yk+2(U(qzk+2
)wk+2, qzk+2

) . . .Yn(U(qzn)wn, qzn)w̃n

= 〈w̃′n,Y1(U(qz1)w1, qz1) . . .Yn(U(qzn)wn, qzn)w̃n〉

and therefore as series in q and log q,

trφ
W̃n
Y1(U(qz1)w1, qz1) . . .Yk−1(U(qzk−1

)wk−1, qzk−1
)·

· Ŷk+1(U(qzk+1
)Ŷk(wk, zk − zk+1)wk+1, qzk+1

)·

· Yk+2(U(qzk+2
)wk+2, qzk+2

) . . .Yn(U(qzn)wn, qzn)qL(0)−
c
24

= trφ
W̃n
Y1(U(qz1)w1, qz1) . . .Yn(U(qzn)wn, qzn)qL(0)−

c
24 .

The right hand side is absolutely convergent when q = qτ and 1 > |qz1 | > . . . > |qz1 | >

|qτ | > 0, the right hand side is also absolutely convergent if |qzk | > |qzk − qzk+1
| > 0,
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and satisfies the same system of differential equations as

trφ
W̃n
Y1(U(qz1)w1, qz1) . . .Yn(U(qzn)wn, qzn)qL(0)−

c
24 .

So in this region the left hand side converges absolutely to a function that can be

extended to the multivalued analytic function

F
φ
Y1,...,Yn(w1, . . . , wn; z1, . . . , zn, τ),

which concludes the proof.

4.2 Modular invariance of the space of solutions

In this section we consider a space of functions which contains the solutions of the

system of differential equations (4.1.8), and we define an action of the group SL2(Z) on

the elements of this space. We prove that the space of solutions of (4.1.8) is invariant

under this action.

We will introduce the following notations: let χ be the space of sequences (indexed

by n indices) of analytic multivalued functions in the variables z1, . . . , zn, τ , on the

region =(τ) > 0, zi 6= zj + nτ +m for n,m ∈ N, i 6= j

Φ = Φ(z1, . . . , zn; τ) = (φi1,...,in(z1, . . . , zn; τ))i1,...,in∈N

with preferred branches on the region 1 > |qz1 | > . . . > |qzn | > |qτ | > 0, such that

φi1,...,in ≡ 0 whenever max{i1, . . . , in} is sufficiently large. We will also denote an

element Φ of χ by (φi1,...,in) or using a multi-index notation (φµ) for µ ranging over Nn.

The sum of sequences of this kind is defined component by component, so that if Φ1,

Φ2 are two elements of χ, the µ-th component of Φ1 + Φ2 is (φ1µ +φ2µ) and similarly we

can define the product by another analytic function. Moreover, we extend differential

operators to χ component-wise:(
∂

∂zi
Φ

)
µ

=
∂φµ
∂zi

, i = 1, . . . , n.

For j = 1, . . . , n, let dj : χ→ χ be the shift operator on the j-th coordinate defined by

(djΦ)i1,...,in = φi1,...,ij−1,ij+1,ij+1,...in .
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Note that for any Φ ∈ χ, dkjΦ = 0 if k is large enough; therefore for any function

f(z1, . . . , zn; τ), the operator

ef(z1,...,zn;τ)dj =
∞∑
k=0

fk(z1, . . . , zn; τ)

k!
dkj

is well defined.

Now, for α ∈ C and j = 1, . . . n, we define Dj(α) : χ→ χ by

Dj(α) = Oj(α) +G2(τ)
n∑
i=1

di

where Oj(α) is defined as in (4.1.6) (with (2πi)2q ∂∂q = 2πi ∂∂τ ) and extended component-

wise to χ.

Remark 4.2.1. Using the notation as in remark (4.1.16), for fixed elements wi ∈ Wi,

i = 1, . . . , n, and intertwining operators Y1, . . .Yn, one can consider the element of χ

Φ = (ϕi1,...,in)i1,...,in∈N.

Then if bp,j(z1, . . . , zn; τ) j = 1, . . . , n are defined as in Proposition 4.1.14, by the same

proposition we have(
m∏
l=1

Dj(α+ 2(m− l))

+

m∑
p=1

bp,j(z1, . . . , zn; q)

m−p∏
l=1

Dj(α+ 2(m− p− l))

Φ = 0. (4.2.10)

Definition 4.2.2 (SL2(Z) action). Let a ∈ C, and consider an element g in SL2(Z),

g =

 α β

γ δ

 .

For Φ ∈ χ, we define

Φ|g,a(z1, . . . , zn; τ)

=

(
1

γτ + δ

)a n∏
i=1

e− log(γτ+δ)diΦ

(
z1

γτ + δ
, . . . ,

zn
γτ + δ

;
ατ + β

γτ + δ

)
(4.2.11)

Proposition 4.2.3. For any a ∈ C, (4.2.11) defines an action of the group SL2(Z) on

the space χ.
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We will also use the notation z′, τ ′ to denote z
γτ+δ and ατ+β

γτ+δ respectively. Note that

for any function f(z1, . . . , zn; q), g ∈ SL2(Z), and any Φ ∈ χ,

(fΦ)|g,a = f(z′1, . . . , z
′
n, τ
′)Φ|g,a;

in particular, if f ∈ Rp, then f(z′1, . . . , z
′
n; τ ′) = (γτ + δ)p f(z1, . . . , zn; τ) and thus

(fΦ)|g,a = f(z1, . . . , zn, τ)Φ|g,a−p.

Proposition 4.2.4. Let Φ ∈ χ, a ∈ C and g ∈ G. Then

Dj(a)(Φ|g,a) = (Dj(a)Φ)|g,a+2. (4.2.12)

Proof. This is just a straightforward computation, using the transformation properties

of the functions G2(τ) and ℘1(z; τ): for simplicity we use the notation

ed =
n∏
i=1

e− log(γτ+δ)di

Dj(a)(Φ|g,a) = Dj(a)

((
1

γτ + δ

)a
edΦ(z′1, . . . , z

′
n; τ ′)

)

=

(2πi)
∂

∂τ
+G2(τ)

(
a+

n∑
i=1

di

)
+G2(τ)

n∑
i=1

zi
∂

∂zi
−
∑
i 6=j

℘1(zi − zj ; τ)
∂

∂zi

 ·
·

((
1

γτ + δ

)a n∏
i=1

e− log(γτ+δ)diΦ(z′1 . . . , z
′
n; τ ′)

)

= −(2πi)γa

(
1

γτ + δ

)a+1

edΦ(z′1, . . . , z
′
n, τ
′)

− (2πi)γ

(
1

γτ + δ

)a+1

ed
n∑
i=1

diΦ(z′1, . . . , z
′
nτ
′)

− (2πi)γ

(
1

γτ + δ

)a+1

ed
n∑
i=1

z′i
∂Φ

∂zi
(z′1, . . . , z

′
n, τ
′)

+ (2πi)

(
1

γτ + δ

)a+2

ed
∂Φ

∂τ
(z′1 . . . , z

′
n, τ
′)

+

(
G2(τ

′)

(
1

γτ + δ

)2

+ 2πiγ

(
1

γτ + δ

))(
a+

n∑
i=1

di

)
·

·
(

1

γτ + δ

)a
edΦ(z′1, . . . , z

′
n; τ ′)

+

(
G2(τ

′)

(
1

γτ + δ

)2

+ 2πiγ

(
1

γτ + δ

))
·
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·
(

1

γτ + δ

)a
ed

n∑
i=1

z′i
∂Φ

∂zi
(z′1, . . . , z

′
n, τ
′)

−
(

1

γτ + δ

)a+2

ed
∑
i 6=j

℘1(z
′
i − z′j ; τ ′)

∂Φ

∂zi
(z′1, . . . , z

′
n, τ
′)

=

(
1

γτ + δ

)a+2

ed·

·

(
(2πi)

∂Φ

∂τ
(z′1, . . . , z

′
n, τ
′) +G2(τ

′)

(
a+

n∑
i=1

di

)
Φ(z′1, . . . , z

′
n; τ ′)

+G2(τ
′)

n∑
i=1

z′i
∂Φ

∂zi
(z′1, . . . , z

′
n, τ
′)−

∑
i 6=j

℘1(z
′
i − z′j ; τ ′)

∂Φ

∂zi
(z′1, . . . , z

′
n, τ
′)

)

which is equal to (Dj(a)Φ)|g,a+2, concluding the proof.

We can then prove the following

Proposition 4.2.5. Let Φ be a solution of the system of differential equations (4.2.10).

Then for any g ∈ SL2(Z), Φ|g,α is also a solution of the same system.

Proof. Just apply |g,α+2m to both sides of (4.2.10); since bp,j belongs to R2p, we find(
bp,j(z1, . . . , zn; q)

m−p∏
l=1

Dj(α+ 2(m− p− l))Φ

)∣∣∣∣∣
g,α+2m

= bp,j(z1, . . . , zn; q)

(
m−p∏
l=1

Dj(α+ 2(m− p− l))Φ

)∣∣∣∣∣
g,α+2(m−p)

.

Now applying (4.2.12) several consecutive times, we obtain(
m∏
l=1

Dj(α+ 2(m− l))

+

m∑
p=1

bp,j(z1, . . . , zn; q)

m−p∏
l=1

Dj(α+ 2(m− p− l))

Φ|g,α = 0

which concludes the proof.

4.3 Towards modular invariance for intertwining operators

In this section we will sketch the roadmap to prove modular invariance for intertwining

operators using the results from the previous sections. We recall properties of the N -th



67

Zhu’s algebra AN (V ) (see [DLM1], [HY]) and of the AN (V )-bimodule A(W ) associated

with a grading restricted generalized V -module W ([HY]). Fix a positive integer N and

a vertex operator algebra V . We can define a product ∗N on V by

u ∗N v =

N∑
m=0

(−1)m
(
m+N

N

)
Resxx

−N−m−1Y((1 + x)L(0)+Nu, x)v

for u, v ∈ V ; let ON (V ) be the subspace of V spanned by the elements of the form

(L(−1) + L(0))u for u ∈ V and

Resxx
−2N−1−nY ((1 + x)L(0)+Nu, x)v

Then ON (V ) is a two sided ideal of V under ∗N , and the product ∗N defines a structure

of an associative algebra on AN (V ) = V/ON (V ) with identity element 1 + ON (V );

moreover, the element ω +ON (V ) belongs to the center of AN (V ).

For any left AN (V )-module U , we can construct a lower bounded generalized V -

module SN (U) such that the N − th graded piece of SN (U) is equal to U and for any

v ∈ V , o(v) acts on this piece by the action given by AN (V ) on U (for details, see

[DLM1], [HY]).

We still need to prove that given an n-point genus-one function

F
φ
Y1,...,Yn(w1, . . . , wn; z1, . . . , zn; τ),

and any element g ∈ SL2(Z),

g =

 α β

γ δ

 ,

the function

F
φ
Y1,...,Yn

(
(γτ + δ)−L(0)w1, . . . , (γτ + δ)−L(0)wn; z′1, . . . , z

′
n; τ ′

)
can be expressed as linear combination of n-point functions

F
φi
Yi,1,...,Yi,n(w1, . . . , wn; z1, . . . , zn; τ),

for certain intertwining operator Yi,n and symmetric functions φi. Using genus-one

associativity, we can reduce this problem to the case of 1-point functions

F
φ
Y(w; z; τ)
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for intertwining operator Y of type
( W̃
W,W̃

)
. For these 1-point functions we have

∂

∂z
F
φ
Y(w; z; τ) = 0.

Then by Proposition 4.2.4, the function

F
φ
Y((γτ + δ)−L(0)w; z; τ)

=

(
1

γτ + δ

)wt w ∞∑
i=0

(− log(γτ + δ))i

i!
F
φ
Y(L(0)inw; z; τ)

satisfies the system (4.1.8) with α = wt w. Therefore,

F
φ
Y((γτ + δ)−L(0)w; z; τ) =

K∑
k=0

L∑
l=0

∑
m∈N

Ck,l,m(w)τkqrl+mτ

for some numbers rl ∈ R such that ri−rj /∈ Z if i 6= j. Let Sk,l,m(w) = Ck,l,m(U(1)−1w).

Lemma 4.3.1. We have U(1)ON (W ) ⊆ ON (W ); moreover, the map S0,l,N (w) defines

a symmetric function on the AN (V )-bimodule A(W ) such that

S0,l,N

((
ω −N − rl −

c

24

)s
? w
)

= 0.

Let s ∈ {0, . . . , L}: by Theorem 2.3.5, there exist basic symmetric algebras Pi with

symmetric functions φi, AN (V )-Pi-bimodules Ui and functions fi ∈ HomAN (V ),Pi(A(W )⊗AN (V )

Ui, Ui), i = 1, . . . , n such that
(
ω −N − rs − c

24

)s
Ui = 0 and

S0,s,N (w) =

n∑
i=1

φfiUi(w)

for all w ∈W .

For any i = 1, . . . , n, let SN (Ui) be the V -module generated by the AN (V )-module

Ui: from the construction of SN (Ui), it is easy to see that the action of Pi on Ui extends

to a right action of Pi on SN (Ui) which commutes with the action of V . Then by the

results in [Miy2] and [Ar], we have

Proposition 4.3.2. Suppose all the irreducible V -modules are infinite dimensional;

then if N is large enough, then the V -module SN (Ui) is projective as right Pi-module.

Although the infinite dimensionality condition on the irreducible modules is not a

natural one, it holds in particular for all vertex operator algebras of central charge zero.
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Using the results in [HY], we can construct logarithmic intertwining operators Yfi

of type
( SN (Ui)
W,SN (Ui)

)
for i = 1, . . . , n such that for all w ∈W and u ∈ Ui,

Resxx
wt w−1Yfi(w, x)u = fi(w ⊗ u)

(here Res denotes the coefficient of the monomial in x−1 log(x)0). Then

F̄ φY ((γτ + δ)−L(0)w; z; τ)−
n∑
i=1

F̄ φiYi (w; z; τ)

=
K∑
k=0

L∑
l=0

∑
m∈N

C̃k,l,m(w)τkqrl+mτ

with C̃0,s,N (w) = 0 for all w ∈ W . Repeating this argument several times and using

the fact that vertex algebras satisfying the C2-cofiniteness condition have finitely many

irreducible modules, we find that there exist symmetric basic algebras Pi, equipped

with symmetric linear functions φi, V -P -bimodules Wi, projective as right P -modules,

and intertwining operators Yi of type
(
Wi
W,Wi

)
, for i = 1, . . . , t, such that

F̄ φY ((γτ + δ)−L(0)w; z; τ) =
t∑
i=1

F̄ φiYi (w; z; τ).
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[AM1] D. Adamović and A. Milas, Logarithmic intertwining operators andW(2, 2p−
1)-algebras, Journal of Math. Physics 48, 073503 (2007).
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