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Abstract Let {L(t), t ≥ 0} be a Lévy process with representative random variable L(1) de-

fined by the infinitely divisible logarithmic series distribution. We study here the transition

probability and Lévy measure of this process. We also define two subordinated processes. The

first one, Y (t), is a Negative-Binomial process X(t) directed by Gamma process. The second

process, Z(t), is a Logarithmic Lévy process L(t) directed by Poisson process. For them, we

prove that the Bernstein functions of the processes L(t) and Y (t) contain the iterated logarith-

mic function. In addition, the Lévy measure of the subordinated process Z(t) is a shifted Lévy

measure of the Negative-Binomial process X(t). We compare the properties of these processes,

knowing that the total masses of corresponding Lévy measures are equal.

Keywords Infinitely divisible logarithmic series distribution, Bernstein function, Lévy

process, change of time, compound Poisson process, Gauss hypergeometric function, Stirling
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1 Introduction

Let {L(t), t ≥ 0} be a Lévy process with representative random variable L(1) de-

fined by the infinitely divisible logarithmic series distribution. The distribution of any

Lévy process is completely determined by the distribution of its representative ran-

dom variable, which is infinitely divisible [22]. The probability generating function
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(p.g.f.) of the random variable L(1) is expressed by the Gauss hypergeometric func-

tion 2F1(1, 1; 2; z) [10]. This makes the usage of enumerative combinatorics methods

indispensable in this study [19]. Thus, using the partial Bell polynomials we obtain an

explicit representation of the transition probability and Lévy measure of this process.

But, first of all, we distinguish two logarithmic distributions.

The logarithmic series distribution supported by positive integers N = {1, 2, . . .}

was firstly introduced by R.A. Fisher, A.S. Corbet and C.B. Williams (1943) [9]. It

is not an infinitely divisible distribution. It is a Lévy measure for the well-known

Negative-Binomial process. The paper [9] represents an impressive combination of

empirical data and mathematical analysis, remaining a model for ecology today.

The logarithmic series distribution supported by nonnegative integers Z+ = {0, 1,

. . .} is a particular case of the Kemp generalized hypergeometric probability distribu-

tion (1956) [12]. Its infinite divisibility was proved by K. Katti (1967) [11]. Infinitely

divisible random variables with values in Z+ were first studied by Feller (1968) [8],

where it is shown that on Z+ the infinitely divisible distributions coincide with the

compound Poisson distributions. A historical review on the origin of infinitely di-

visible distributions “from de Finetti’s problem to Lévy–Khintchine formula” is pre-

sented by F. Mainardi and S. Rogosin (2006) [15].

At the present time, there are many works related to the topics of infinite di-

visibility and discrete distributions. Some of them are monographs of F.W. Steutel

and K. Van Harn [22], and N.L. Johnson, A.W. Kemp and S. Kotz [10]. Integer-

valued Lévy processes and their application in financial econometrics are developed

by O.E. Barndorff-Nielsen, D. Pollard and N. Shephard [1]. The compositions of

Poisson and Gamma processes are investigated by K. Buchak and L. Sakhno in [4, 5].

The consecutive subordinations of Poisson and Gamma processes realized on two se-

quences containing only four new processes are studied in [17]. It is shown there

how the additional randomness, caused by random time, is accumulated. The trans-

formation of the Poisson random measure and the jump-structure of the subordinated

process is described in [16]. Other interesting integer-valued Markov processes are

derived from Markov branching processes. In the model of branching particle system

with a random initial condition, we obtained distributions describing the number of

particles at time t , corresponding to the compound Poisson processes over the radius

of a flux of particles [18].

The subordination by Bochner is also developed in many books and articles re-

lated to applications in financial mathematics and functional analysis, see [20, 7].

There is a special Chapter 3 in [3] devoted to the subordinators. The Lévy measure

and potential kernel are also considered in [2]. The properties of the Bernstein func-

tions are studied in [21]. The theory of subordinators and inverse subordinators is

applied to study risk processes in insurance models by N. Leonenko et al. in [13, 14].

Our work in the topic is described in the following sections. In Section 2 we intro-

duce the infinitely divisible logarithmic series distribution and its m-fold convolution.

Our main tools of investigation are the Gauss hypergeometric function and partial

Bell polynomials, Stirling numbers and harmonic numbers. In Section 3 we present

two methods defining the transition probability of the Lévy process L(t) – starting

with the Lévy measure or starting with p.g.f. F(t, s) = E[sL(t)] and its Taylor ex-

pansion. Then, in the following two Sections 4 and 5 we consider the subordinated
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processes Y(t) and Z(t). They are obtained respectively from the Negative-Binomial

process X(t) directed by the Gamma one and the Logarithmic Lévy process L(t) di-

rected by the Poisson one. In this study of subordinated processes, we proceed also

by two methods – either integrating the transition probability of the ground process,

as it is shown in [20], or constructing the compound Poisson process with a prior de-

fined Lévy measure. The Bernstein functions of the processes L(t) and Y(t) contain

the iterated logarithmic function. The Lévy measure of Z(t) is a shifted Lévy mea-

sure of X(t). We compare the behaviour of all these processes in order to understand

better the place of the Logarithmic Lévy process in the picture of compound Poisson

processes. Several combinatorics identities arrive as auxiliary results. Finally, some

applications derived from studied processes are explained and demonstrated in Sec-

tion 6.

2 Infinitely divisible logarithmic series distribution and the Gauss hypergeo-

metric function

The Gauss hypergeometric function is defined in [10], page 20, for |z| < 1 by

2F1(c, d; g; z) =

∞∑

k=0

[c]k↑[d]k↑

[g]k↑

zk

k!
,

where the increasing factorial, known as Pochhammer’s symbol, is denoted as [c]k↑ =

c(c + 1) · · · (c + k − 1), [c]0↑ = 1. In particular,

2F1(1, 1; 2; z) =

∞∑

k=0

k!k!

(k + 1)!

zk

k!
=

− log(1 − z)

z
.

By definition, given in [22], Chapter 2, Example 11.7, the infinitely divisible random

variable L(1) with logarithmic series distribution has the probability mass function

(p.m.f.) supported by {0, 1, 2, . . .} and given as follows:

P(L(1) = k) =
1

A

αk+1

(k + 1)
, 0 < α < 1, A = − log(1 − α), k = 0, 1, . . . . (1)

The p.g.f. defined by F(1, s) = E[sL(1)], |s| ≤ 1, is

F(1, s) =

∞∑

k=0

αk+1

k + 1

sk

A
=

α

A

∞∑

k=0

(αs)k

k + 1
=

− log(1 − αs)

As

and can be presented as follows:

F(1, s) =
α

A
(1 + G(s)), G(s) =

∞∑

k=1

(αs)k

k + 1
, G(1) =

A − α

α
. (2)

We remark that the following simple representation is a starting point of the Taylor

expansion,

2F1(1, 1; 2; αs) = 1 + G(s).
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Let us denote the finite sum of random variables L1, L2, . . . , Lm, being independent

copies of L(1), as

L(m) =

m∑

j=1

Lj . (3)

By convolution of p.m.f. we express the probability distribution of the random vari-

able L(2) by means of the harmonic numbers as follows:

P(L(2) = n) =
( α

A

)2 2αn

n + 2

(
1 +

1

2
+

1

3
+ · · · +

1

n + 1

)
, n = 0, 1, 2, . . . .

Knowing the infinite divisibility of L(1) we write the p.g.f. of L(m) (3) by the power,

F(m, s) = {F(1, s)}m, namely:

(
− log(1 − αs)

As

)m

=
( α

A
(1 + G(s))

)m

.

We present here two methods on expanding F(m, s) as power series of s, expanding

only (− log(1 − αs))m, or with the binomial expanding of ( α
A

(1 + G(s)))m. For this

purpose, the function G(s) is presented as an exponential generating function:

G(s) =

∞∑

k=1

gk

sk

k!
, gk =

αkk!

k + 1
. (4)

For convenience, we denote the sequences by bullet, as it is shown in [19],

g• = (g1, g2, . . .).

Similarly, the sequences of the powers are expressed by a• = (a, a2, . . .), and in

particular: 1• = (1, 1, . . .). In both cases of expanding we use the Faa di Bruno

formula and the partial Bell polynomials Bn,k [19], allowing to express the power

[G(s)]k as follows:

(G(s))k

k!
=

1

k!

⎛
⎝

∞∑

j=1

gj

sj

j !

⎞
⎠

k

=

∞∑

n=k

Bn,k(g•)
sn

n!
, (5)

where

Bn,k(g•) =
∑

(k1,k2,··· ,kn)

n!g
k1

1 . . . g
kn
n

k1!(1!)k1 · · · kn!(n!)kn
.

The sum is over all partitions of n into k parts, that is over all nonnegative integer

solutions (k1, k2, . . . , kn) of the equations:

k1 + 2k2 + · · · + nkn = n, k1 + k2 + · · · + kn = k.

For example, Bn,1(x•) = xn, Bn,n(x•) = (x1)
n and

Bn,k(a
•bx•) = anbkBn,k(x•). (6)
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The falling factorials are defined as follows:

[x]n↓ = x(x − 1) · · · (x − n + 1) =
Ŵ(x + 1)

Ŵ(x + 1 − n)
.

Let us denote the Stirling numbers of the first kind by |s(n, k)| and s(n, k), respec-

tively, – unsigned

|s(n, k)| := Bn,k((• − 1)!) = Bn,k(0!, 1!, 2!, . . . .),

and signed s(n, k) depending on the parity of n − k given by

s(n, k) = (−1)n−k|s(n, k)|.

The Stirling numbers of the first kind transform the factorials into powers,

[x]n↑ =

n∑

k=0

|s(n, k)|xk, [x]n↓ =

n∑

k=0

s(n, k)xk . (7)

Thus, having these definitions and relations, the following useful lemma is formulated

and proved.

Lemma 1. The m-fold convolution of the infinitely divisible logarithmic series distri-

bution (1) can be equivalently expressed in the following forms:

P(L(m) = n) =
( α

A

)m αn

n!
|s(m + n,m)|

m!n!

(m + n)!
, n = 0, 1, 2, . . . , (8)

or

P(L(m) = n) =
( α

A

)m αn

n!

m∧n∑

k=0

m!

(m − k)!
Bn,k(c•), B0,0 = 1, (9)

where

c• =

(
k!

k + 1
, k = 1, 2, . . .

)
, Bn,0 = B0,k = 0, n > 0, k > 0.

Proof. Expanding only the logarithmic function (− log(1 − αs)) we obtain

− log(1 − αs) =

∞∑

k=1

(αs)k

k
=

∞∑

k=1

(k − 1)!(αs)k

k!
.

Then, for the powers we have

1

m!
(− log(1 − αs))m =

∞∑

k=m

Bk,m(α•(• − 1)!)
sk

k!

and

1

m!

(
− log(1 − αs)

As

)m

=
1

Am

∞∑

k=m

αk|s(k,m)|
sk−m

k!
.
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The change of variable n = k − m leads to

F(m, s) =
( α

A

)m
∞∑

n=0

αnsn

n!
|s(m + n,m)|

m!n!

(m + n)!
.

In the Taylor theorem on the binomial expansion of F(m, s), there are only finite

numbers of terms:

F(m, s) =
( α

A

)m

[1 + G(s)]m =
( α

A

)m
m∑

k=0

m!

(m − k)!

[G(s)]k

k!
.

After replacing [G(s)]k

k!
by the expansion (5) we change the summation order. Then

the obtained result is

F(m, s) =
( α

A

)m
∞∑

n=0

αnsn

n!

m∧n∑

k=0

m!

(m − k)!
Bn,k(c•),

where m ∧ n = min{m, n}. The p.m.f. P(L(m) = n) is given by the sequence of

coefficients in front of sn in the p.g.f. F(m, s).

The comparison of two expressions (8) and (9) leads to the following combina-

torics identity:

m∧n∑

k=1

1

(m − k)!
Bn,k(c•) = |s(m + n,m)|

n!

(m + n)!
.

Remark 1. The harmonic numbers take part in the expansion of the hypergeomet-

ric functions. A complete review on summation formulas involving generalized har-

monic numbers and Stirling numbers is given in [6]. The generalized harmonic num-

bers are defined as follows:

H (k)
n := 1 +

1

2k
+

1

3k
+ · · · +

1

nk
, H (1)

n = Hn.

For m = 2, 3, 4, . . ., we use the following relations between Stirling numbers of

the first kind and generalized harmonic numbers to calculate directly the convolution

probability of L(m) and to confirm the previous combinatorics identity. For example,

|s(2 + n, 2)| = (n + 1)!

(
1 +

1

2
+

1

3
+ · · · +

1

n + 1

)
(10)

and

|s(n, 3)| =
(n − 1)!

2
{(Hn−1)

2 − H
(2)
n−1},

and

|s(n, 4)| =
(n − 1)!

3!
{(Hn−1)

3 − 3Hn−1H
(2)
n−1 + 2H

(3)
n−1}.

The general recurrence formula on this relation is given in [6].
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3 Transition probability and the Bernstein function of the Logarithmic Lévy

process

The principal information on the behaviour of any Lévy process is given by the rep-

resentative random variable and it is expressed by the canonical representation of

the Bernstein function and the Lévy measure, [20, 21]. The Laplace transform of the

process L(t) is given by

E[e−λL(t)] = exp(−tψL(λ)), λ ≥ 0,

where the Laplace exponent is a Bernstein function defined by the random variable

L(1) as follows:

ψL(λ) = − log
(
E[e−λL(1)]

)
, λ ≥ 0.

For integer-valued Lévy processes it is also convenient to work with probability gen-

erating functions, see [22], Chapter 2.

Let us denote the Lévy measure of the process L(t) by �L(n), n = 1, 2, . . ., its

total mass by θL =
∑∞

n=1 �L(n), and its generating function by

QL(s) =

∞∑

n=1

sn�L(n), |s| ≤ 1.

The normalised Lévy measure is denoted by �̃L(n) and respectively, its p.g.f. as

Q̃L(s) = QL(s)/θL. Then in these notations, the p.g.f. FL(t, s) = E[sL(t)] is given

by

FL(t, s) = exp{−tθL[1 − Q̃L(s)]} = exp{−tθL + tQL(s)}, |s| ≤ 1,

and the Bernstein function is in the form

ψL(λ) =

∞∑

k=1

(
1 − e−λk

)
�L(k), λ ≥ 0.

All these characteristics of the Logarithmic Lévy process L(t) are specified in the

following lemma.

Lemma 2. The Lévy measure of the process L(t) generated by the infinitely divisible

logarithmic series distribution L(1) (1) is given for n = 1, 2, . . . by the partial Bell

polynomials as follows:

�L(n) =
αn

n!

n∑

k=1

(−1)k−1(k − 1)!Bn,k(c•), ck =
k!

k + 1
. (11)

The generating function of the Lévy measure is

QL(s) = log(1 + G(s)), 2F1(1, 1; 2; αs) = 1 + G(s), |s| ≤ 1.

The Bernstein function of the Logarithmic Lévy process L(t) is

ψL(λ) = θL

{
1 −

1

θL

log(1 + G(e−λ))

}
, λ ≥ 0,
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where

θL = ψL(∞) = − log
( α

A

)
.

Proof. Following representation (2) of p.g.f. F(1, s), it is enough to write

log(F (1, s)) = log
( α

A
[1 + G(s)]

)
= log

( α

A

)
+ log (1 + G(s))

in order to get the generating function of the Lévy measure. The total mass of the

Lévy measure θL = − log
(

α
A

)
because G(0) = 0.

The logarithmic function log(1 + x) is expanding by the signed Stirling numbers

of the first kind and the expansion of G(s) is given previously in (5). Then

log(1 + G(s)) =

∞∑

k=1

(−1)k−1 (G(s))k

k
=

∞∑

k=1

(−1)k−1(k − 1)!
(G(s))k

k!
. (12)

Exchanging the order of summation and in view of Bn,k = 0, k ≥ n + 1, we write

∞∑

k=1

(−1)k−1(k − 1)!

∞∑

n=k

Bn,k(g•)
sn

n!
=

∞∑

n=1

n∑

k=1

(−1)k−1(k − 1)!Bn,k(c•)
αnsn

n!
.

The Lévy measure is given by the sequence of coefficients in front of sn in QL(s).

As a direct result of (11), the computations of several terms of the Lévy measure

are simplified, such as

�L(1) =
α

2
, �L(2) =

α2

2!

5

12
, �L(3) =

α3

3!

3

4
,

�L(4) =
α4

4!

251

120
, �L(5) =

α5

5!

95

12
.

It is well known from the [22] (see Theorem 4.4, Chapter 2), that the p.m.f.

P(L(1) = n), n = 0, 1, . . ., (1) is related to the sequence of the (canonical) Lévy

measure �L(n), n = 1, 2, . . ., (11) by the following recurrence equation:

(n + 1)P (L(1) = n + 1) =

n∑

k=0

P(L(1) = k)(n − k + 1)�L(n − k + 1).

It is equivalent to the next combinatorical identity:

n + 1

n + 2
=

n∑

k=0

1

(k + 1)(n − k)!

n−k+1∑

j=1

(−1)j−1(j − 1)!Bn−k+1,j (c•).

There are two ways to define the transition probability P(L(t) = n), n = 0, 1, . . .,

of the Lévy process L(t). We could proceed either by starting with p.g.f. FL(t, s) and

its Taylor expansion or by using the Lévy measure to define the compound Poisson

process L(t). We present these methods separately in two independent proofs.
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Theorem 1. Let {L(t), t ≥ 0} be a Lévy process generated by the infinitely divisi-

ble logarithmic series distribution (1) supported by {0, 1, 2, . . .}. Then its transition

probability is given for n = 0, 1, 2, . . . by

P(L(t) = n) =
( α

A

)t αn

n!

n∑

k=0

[t]k↓Bn,k(c•), (13)

or equivalently:

P(L(t) = n) =
( α

A

)t αn

n!

n∑

k=0

tkBn,k(y•), B0,0 = 1, (14)

where

yn =

n∑

k=1

(−1)k−1(k − 1)!Bn,k(c•), ck =
k!

k + 1
.

Proof 1. The transition probability P(L(t) = n) is the coefficient in front of sn in the

expansion of p.g.f. FL(t, s) =
(

α
A

)t
(1+G(s))t . The Taylor theorem for the binomial

expansion following (5) leads to

FL(t, s) =
( α

A

)t
∞∑

k=0

[t]k↓

∞∑

n=k

Bn,k(g•)
sn

n!
.

Then after exchanging the order of summation we find

FL(t, s) =
( α

A

)t
∞∑

n=0

αnsn

n!

n∑

k=0

[t]k↓Bn,k(c•).

Because the partial Bell polynomials B0,0 = 1 and B0,k = 0, k = 1, 2, . . ., the

following result is valid:

FL(t, s) =
( α

A

)t

(
1 +

∞∑

n=1

αnsn

n!

n∑

k=1

[t]k↓Bn,k(c•)

)
, ck =

k!

k + 1
.

In particular, it is easy to calculate several terms of the transition probability,

directly from (13):

P(L(t) = 1) =
( α

A

)t αt

2
, P (L(t) = 2) =

( α

A

)t α2

2!

(
2t

3
+

t (t − 1)

4

)
,

P (L(t) = 3) =
( α

A

)t α3

3!

{
3!t

4
+

t (t − 1)3.2!

2.3
+

t (t − 1)(t − 2)

8

}
,

P (L(t) = 4) =
( α

A

)t α4

4!

{
4!t

5
+

13

3
[t]2↓ + [t]3↓ +

1

16
[t]4↓

}
.
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Proof 2. Let the positive random variable ξ be defined by the normalised Lévy mea-

sure (11), having p.m.f.

P(ξ = n) = �L(n)/θL, n = 1, 2, . . . , θL = log
(A

α

)
,

and p.g.f. E[sξ ] = QL(s)/θL. Let (ξ1, ξ2, . . . , ξk, k = 1, 2, . . .) be independent

copies of the random variable ξ . Following definition of the compound Poisson pro-

cess, the transition probability is represented as follows:

P(L(t) = n) =

∞∑

k=0

e−θt (θt)k

k!
P(ξ1 + ξ2 + · · · + ξk = n), θ = log

(A

α

)
.

Taking into account (12) and (6) we can represent the function

1

θ
QL(s) =

1

θ
log(1 + G(s))

as an exponential generating function 1
θ
QL(s) =

∑∞
n=1

xnsn

n!
, where

xn =
1

θ
αn

n∑

k=1

(−1)k−1(k − 1)!Bn,k(c•).

It means that the normalised probability convolution distribution

P(ξ1 + ξ2 + · · · + ξk = n) = Bn,k(x•)
k!

n!
.

Then

P(L(t) = n) =

∞∑

k=0

e−θt (θt)k

k!
Bn,k(x•)

k!

n!
, k ≤ n.

The infinite sum is reduced to the finite one because Bn,k(x•) = 0 when k > n. We

know that θ = − log( α
A

) and e−θt =
(

α
A

)t
. Let us denote

yn =

n∑

k=1

(−1)k−1(k − 1)!Bn,k(c•).

Then following the formula (6), we obtain, for n = 0, 1, 2, . . .,

P(L(t) = n) =
( α

A

)t
n∑

k=0

tk
αn

n!
Bn,k(y•).

The probability P(L(t) = 0) = ( α
A

)t corresponds to the B0,0(y•) = 1.

We remark that in the matrix representation of partial Bell polynomials for com-

position function the numbers Bn,k(x•), n ≥ k ≥ 1, are defined as product of ma-

trices, [19], page 19. Let us denote by H(s) and G(s) respectively the exponential
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generating functions of both sequences (h•) and (g•). Likewise, by (x•) is denoted

the sequence whose exponential generating function is the composition H(G(s)),

such as

H(s) = log(1 + s), H(G(s)) = log(1 + G(s)).

Then the matrix associated with the sequence (x•) is the product of the triangular

matrices associated with (g•) and (h•) respectively:

Bn,k(x•) =

n∑

j=k

Bn,j (g•)Bj,k(h•), k ≤ j ≤ n.

The sequence (h•) defined by the function H(s) = log(1+ s) is exactly the sequence

hk = (−1)k−1(k−1)! and Bn,k(h•) = s(n, k), i.e. signed Stirling numbers of the first

kind. Then, after applying formulas (6) and (7) and changing the order of summation,

where k ≤ j , we confirm the equivalence of (13) and (14) as follows:

n∑

k=1

tkBn,k(x•) = αn

n∑

j=1

Bn,j (c•)

j∑

k=1

tkBj,k(h•) = αn

n∑

j=1

Bn,j (c•)[t]j↓.

The Lévy measure is the infinitesimal generator of the convolution semi-group

given by the transition probability P(L(t) = n), n = 0, 1, 2, . . ., see [2], page 172. It

is a limit in vague convergence, see [3], page 39, as follows:

�L(n) = lim
t↓0

PL(t, n)

t
, n = 1, 2, . . . .

Then

�L(n) = lim
t↓0

( α

A

)t αn

n!

n∑

k=1

[t]k↓

t
Bn,k(c•).

Finally, we know that [t]k↓ = [−t]k↑(−1)k . In this way,

lim
t↓0

[t]k↓

t
= (−1)k−1(k − 1)!.

4 Negative-Binomial process subordinated by the Gamma process

The concept of subordination was introduced by S. Bochner in 1955 for the Markov

processes, Lévy processes, and corresponding semigroups, as randomization of the

time parameter: Y(t) = X(T (t)). There are two sources of randomness – the un-

derlying process X(t) and a random time process T (t), under the assumption of

their independence. The time-change process T (t) is supposed to be a subordinator –

the Lévy process with nonnegative increments, [3], Chapter 3. The independence of

the ground process and the random time process ensures the preservation of Markov

property and Lévy property for the subordinated process. The transformation of the

main probabilistic characteristics, such as transition probability, Lévy measure and
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Laplace exponent, is stated and proved in [20], Chapter 6, Theorem 30.1. See also

[7], Chapter 7, Theorem 6.2 and Theorem 6.18. They are our principal references.

In this paragraph, we study the effect of a random time-change for the Negative-

Binomial process {X(t), t ≥ 0}. The Lévy measure of a Negative-Binomial process

is defined by a logarithmic series distribution supported by positive integers N =

{1, 2, . . .} with the same parameter 0 < α < 1 as for the Logarithmic Lévy process

L(t). The Gamma subordinator {Tβ(t), t ≥ 0} with selective parameter β > 0 can

be considered as a random observation time, where the mathematical expectation

E[Tβ(t)] = βt . The obtained results are formulated and proved in the following

theorem.

Theorem 2. Let {X(t), t ≥ 0} be a Negative-Binomial process with the Bernstein

function

ψX(λ) = log

(
1 − αe−λ

1 − α

)
, λ ≥ 0, ψX(∞) = − log(1 − α) = A.

Let {Tβ(t), t ≥ 0} be a Gamma subordinator with the Bernstein function

ψT (λ) = log(1 + βλ), λ ≥ 0, ψT (∞) = ∞.

Suppose the processes X(t) and Tβ(t) are independent.

Then for the subordinated process Y(t) = X(Tβ(t)) the following results are

valid.

The Bernstein function of Y(t) is given by

ψY (λ) = log

(
1 + β log

(
1 − αe−λ

1 − α

))
, λ ≥ 0, ψY (∞) = log(1 + Aβ).

The Lévy measure of the subordinated process is given by

�Y (n) =
αn

n!

n∑

k=1

|s(n, k)|(k − 1)!

(
β

1 + Aβ

)k

, n = 1, 2, . . . .

The transition probability P(Y (t) = n), n = 0, 1, 2, . . ., is given by

P(Y (t) = n) =
αn

n!

1

(1 + Aβ)t

n∑

k=0

|s(n, k)|[t]k↑

(
β

1 + Aβ

)k

,

or equivalently:

P(Y (t) = n) =
αn

n!

1

(1 + Aβ)t

n∑

k=0

tkBn,k(w•),

where the sequence (w•) is defined by

wn =

n∑

k=1

|s(n, k)||s(k, 1)|

(
β

1 + Aβ

)k

, |s(k, 1)| = (k − 1)!.
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Proof. The main assumption in the definition of subordination by Bochner is the in-

dependence of the ground process and the random time-change process. The methods

of the Laplace transform and conditional probability for independent processes give

the following convenient representations of the main characteristics, see [20], page

197. The Bernstein function of the subordinated process is the composition of the

corresponding Bernstein functions, as follows:

ψY (λ) = ψTβ (ψX(λ)).

The transition probability of the subordinated process is expressed by the conditional

probability and is given as the integral of transition probability of the ground process

by the transition probability of the Gamma subordinator:

P(Y (t) = n) =

∫ ∞

0+

P(X(u) = n)ut−1e−u/β du

β tŴ(t)

=

∫ ∞

0+

(1 − α)u[u]n↑

αn

n!
ut−1e−u/β du

β tŴ(t)
.

Replacing the increasing factorials (7) [u]n↑ =
∑n

k=0 |s(n, k)|uk and

(1 − α)u = eu log(1−α) = e−Au,

we obtain

P(Y (t) = n) =
αn

n!

n∑

k=0

|s(n, k)|

∫ ∞

0+

e−Aue−u/βuk+t−1 du

β tŴ(t)

=
αn

n!

n∑

k=0

|s(n, k)|
Ŵ(t + k)βk

Ŵ(t)(1 + Aβ)t+k

=
αn

n!

1

(1 + Aβ)t

n∑

k=0

|s(n, k)|[t]k↑

(
β

1 + Aβ

)k

.

Let us remark, that the Lévy measure of the Gamma subordinator in our parametrisa-

tion is given by

�Tβ (du) = e−u/βdu/u,

see [3], page 73. Then, from the results proved in [20, 7], the Lévy measure of the

subordinated process can be calculated as the integral of transition probability of the

ground process by the Lévy measure of the Gamma subordinator:

�Y (n) =

∫ ∞

0+

P(X(u) = n)e−u/β du

u
=

∫ ∞

0+

(1 − α)u[u]n↑

αn

n!
e−u/β du

u

=
αn

n!

n∑

k=1

|s(n, k)|

∫ ∞

0+

e−Aue−u/βuk du

u

=
αn

n!

n∑

k=1

|s(n, k)|Ŵ(k)

(
β

1 + Aβ

)k

.
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From the Bernstein function ψY (λ) we derive the generating function of the Lévy

measure �Y (n) in the following form:

QY (s) = θY Q̃Y (s) = − log

(
1 −

β

1 + Aβ
{− log(1 − αs)}

)
.

It can be presented as an exponential generating function as follows:

QY (s) =

∞∑

n=1

un

sn

n!
, un =

n∑

k=1

Bn,k(v•)Bk,1(s•),

where the sequences (v•) and (s•) are defined respectively by

vk =
k!αk

k
, sk =

k!

k

(
β

1 + aβ

)k

.

Moreover,

Bn,k(v•) = αn|s(n, k)|, Bk,1(s•) =

(
β

1 + Aβ

)k

|s(k, 1)|

and

un = αn

n∑

k=1

|s(n, k)||s(k, 1)|

(
β

1 + Aβ

)k

.

Let

(ξ1, ξ2, . . . , ξk, k = 1, 2, . . .)

be independent copies of the positive random variable ξ with p.m.f.

P(ξ = n) = �Y (n)/θ, n = 1, 2, . . . , θ = θY = log(1 + Aβ).

In a complete analogy with the Proof 2 of Theorem 1, we find the normalised proba-

bility convolution distribution

P(ξ1 + ξ2 + · · · + ξk = n) =
1

θk
Bn,k(u•)

k!

n!
.

Then for n = 0, 1, 2, . . ., we have:

P(Y (t) = n) =

∞∑

k=0

e−θt (θt)k

k!

1

θk
Bn,k(u•)

k!

n!
, B0,0 = 1.

Obviously, the exponential decay is e−θt = ( 1
1+Aβ

)t . Additionally, from the formula

(6) we derived that

Bn,k(u•) = αnBn,k(w•), wn =

n∑

k=1

|s(n, k)||s(k, 1)|

(
β

1 + aβ

)k

.

So, taking into account, that Bn,k(u•) = 0 for all k > n, we see that the infinite sum

is reduced to the finite one

P(Y (t) = n) =
αn

n!

1

(1 + Aβ)t

n∑

k=0

tkBn,k(w•), B0,0 = 1.
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Finally, we remark that for n = 1, 2, . . .,

lim
t↓0

P(Y (t) = n)

t
=

αn

n!
Bn,1(w•) =

αn

n!
wn = �Y (n).

5 Logarithmic Lévy process subordinated by the Poisson process

The next studied process {Z(t), t ≥ 0} is constructed as a random time-change of

the Logarithmic Lévy process L(t) with the Poisson one in the assumption of their

independence. The selective parameter b > 0 of the Poisson process {Tb(t), t ≥

0} is introduced, such as mathematical expectation E[Tb(t)] = bt . The results are

formulated and proved in the following theorem.

Theorem 3. Let {L(t), t ≥ 0} be a Logarithmic Lévy process with the Bernstein

function

ψL(λ) = log

(
Ae−λ

− log(1 − αe−λ)

)
, λ ≥ 0, ψL(∞) = log

(
A

α

)
> 0.

Let {Tb(t), t ≥ 0} be a Poisson subordinator with the Bernstein function

ψT (λ) = b(1 − e−λ), λ ≥ 0, ψT (∞) = b > 0.

Suppose the processes L(t) and Tb(t) are independent.

Then for the subordinated Lévy process Z(t) = L(Tb(t)) the following results are

valid.

The Bernstein function of the subordinated process Z(t) is given by

ψZ(λ) = b

(
1 +

log(1 − αe−λ)

Ae−λ

)
, λ ≥ 0, ψZ(∞) = b

(
1 −

α

A

)
> 0.

The Lévy measure of Z(t) is given by

�Z(n) =
bαn+1

A(n + 1)
, n = 1, 2, . . . .

The transition probability of the subordinated process Z(t) is, for n = 0, 1, . . .,

P(Z(t) = n) = e−θt α
n

n!

n∑

k=0

(
αbt

A

)k

Bn,k(c•), ck =
k!

k + 1
, θ = b−

αb

A
. (15)

Proof. Once again, the composition of two Bernstein functions is obvious:

ψZ(λ) = b(1 − exp(−ψL(λ))).

The Lévy measure of the subordinated process is given by the following infinite sum,

as it is shown in [20, 7],

�Z(n) =

∞∑

k=1

P(L(k) = n)�T (k) = bP (L(1) = n) =
b

A

αn+1

(n + 1)
, n = 1, 2, . . . ,
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because the normalised Lévy measure �̃L(n), n = 1, 2, . . ., of the Poisson process is

exactly the delta function in n = 1. The total mass of the Lévy measure �Z(n), n =

1, 2, . . ., is calculated directly from (1) as θZ = b
A

(A−α). The exponential generating

function of the Lévy measure �Z is given by (2) and (4) as follows:

QZ(s) =
bα

A
G(s) =

bα

A

∞∑

k=1

gk

sk

k!
, gk =

αkk!

k + 1
.

Let

(ξ1, ξ2, . . . , ξk, k = 1, 2, . . .)

be independent copies of the positive random variable ξ with p.m.f.

P(ξ = n) = �Z(n)/θ, n = 1, 2, . . . , θ = θZ = b −
bα

A
.

The normalised probability convolution distribution is given by

P(ξ1 + ξ2 + · · · + ξk = n) =

(
α

A − α

)k

Bn,k(c•)
αnk!

n!
,

α

A − α
=

bα

Aθ
.

Then the elementary transformations lead to (15) as follows:

P(Z(t) = n) =

∞∑

k=0

e−θt (θt)k

k!

(
α

A − α

)k

Bn,k(c•)
αnk!

n!

= e−θt α
n

n!

n∑

k=0

(
αθt

A − α

)k

Bn,k(c•) = e−θt α
n

n!

n∑

k=0

(
αbt

A

)k

Bn,k(c•).

In particular,

P(Z(t) = 0) = e−θt , P (Z(t) = 1) =
α2bte−θt

2A
.

Knowing that B2,1 = c2 = 2!
3

and B2,2 = (c1)
2 = 1

4
we find

P(Z(t) = 2) = e−θt α
2

2!

{
2αbt

3A
+

(
αbt

2A

)2
}

.

In the same way, as B3,1 = 3!
4

, B3,2 = 1 and B3,3 = 1
8

we obtain

P(Z(t) = 3) = e−θt α
3

3!

{
αbt

A

3!

4
+

(
αbt

A

)2

+

(
αbt

2A

)3
}

, (16)

and so on.

Remark 2. In this situation, the range of the random time process Tb(t) is a dis-

crete integer-valued set Z+ = {0, 1, 2, . . .}. The subordination by Bochner gives the
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transition probability of the subordinated process Z(t) = L(Tb(t)) as the following

conditional probability:

P(Z(t) = n) =

∞∑

k=0

P(L(k) = n)e−bt (bt)k

k!
. (17)

The transition probability of the ground process L(t) for integer-valued time t = k

is given by the k-fold convolution of the representative random variable L(1), as the

two equivalent expressions (9) and (8).

After replacing P(L(k) = n) in (17) by (9), it is enough to exchange the order of

summation to prove (15), as follows:

P(Z(t) = n) =

∞∑

k=0

( α

A

)k αn

n!

k∧n∑

j=0

k!

(k − j)!
Bn,j (c•)

(bt)ke−bt

k!

=
αne−bt

n!

n∑

j=0

(
αbt

A

)j

Bn,j (c•)

∞∑

k=j

(
αbt

A

)k−j
1

(k − j)!
.

But, if we take P(L(k) = n) from (8), then replacing it in (17) we obtain

P(Z(t) = n) = e−bt α
n

n!

∞∑

k=0

(
αbt

A

)k

|s(k + n, k)|
n!

(n + k)!
. (18)

The relation of the Stirling numbers on the binomial coefficients explains the equiva-

lence of (18) to (15) and the presence of e−bt 	= e−θt in (18). For n = 1 we have

|s(k + 1, k)| =
(k + 1)!

(k − 1)!2!
, |s(1, 0)| = 0.

Then

P(Z(t) = 1) = αe−bt

∞∑

k=1

(
αbt

A

)k

|s(k + 1, k)|
1!

(1 + k)!

= αe−bt αbt

2A

∞∑

k=1

1

(k − 1)!

(
αbt

A

)k−1

= e−bte
αbt
A

α2bt

2A
.

For n = 2 we have

|s(k + 2, k)| =
[3(k + 2) − 1]

4

(k + 2)!

(k − 1)!3!
, |s(2, 0)| = 0, |s(3, 1)| = 2.

We calculate

P(Z(t) = 2) =
α2

2!
e−bt

∞∑

k=1

(
αbt

A

)k (
3k + 5

4

) (
2!

(k − 1)!3!

)
.
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Obviously,

(
3k + 5

4

) (
2!

(k − 1)!3!

)
=

1

4(k − 2)!
+

2

3(k − 1)!
, k = 2, 3, . . . .

It means that the probability P(Z(t) = 2) is equal to:

α2e−bt

2!

{
1

4

(
αbt

A

)2 ∞∑

k=2

(
αbt

A

)k−2
1

(k − 2)!
+

2

3

αbt

A

∞∑

k=1

(
αbt

A

)k−1
1

(k − 1)!

}
.

Finally,

P(Z(t) = 2) =
α2

2!
e−bte

αbt
A

{
1

4

(
αbt

A

)2

+
2

3

αbt

A

}
.

For n = 3 we use the consecutive relations of the Stirling numbers on the binomial

coefficients:

|s(k + 3, k)| =
(k + 3)!

(k + 1)!2!

(k + 3)!

(k − 1)!4!
, |s(3, 0)| = 0, |s(3, 2)| = 3.

The equivalent representation of P(Z(t) = 3) will be transformed as follows:

P(Z(t) = 3) =
α3

3!
e−bt

∞∑

k=1

(
αbt

A

)k
(k + 3)(k + 2)

8(k − 1)!
.

Obviously,

(k + 3)(k + 2)

8(k − 1)!
=

1

8(k − 3)!
+

1

(k − 2)!
+

3!

4(k − 1)!
, k = 3, 4, . . . .

In the same way we obtain (16), and so on. The Stirling numbers are very convenient

in applications because they have recurrence relation and tables of their values.

We confirm the expression of the Lévy measure by the following limit:

lim
t↓0

P(Z(t) = n)

t
=

αn

n!

αb

A
Bn,1(c•) =

bαn+1

An!

n!

n + 1
= �Z(n), n = 1, 2, . . . .

6 Applications

An important problem in many applications is how to recognize the original process

from the observation data when the registration is randomly perturbed. The problem

is growing in cases when the process is composed of several different processes. We

see that the probabilistic characteristics for the couples of processes Y(t) and L(t)

as well as for Z(t) and X(t) are similar. The best way to demonstrate their different

properties is the comparison between Bernstein functions and Lévy measures with

different parameters. The Bernstein functions ψL(λ) and ψY (λ), how they are defined
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in Theorems 2 and 3, contain the iterated logarithmic function and have the following

derivatives at zero:

ψ ′
L(λ) =

αe−λ

(1 − αe−λ)(− log(1 − αe−λ))
− 1, ψ ′

L(0) =
α

A(1 − α)
− 1

and

ψ ′
Y (λ) =

αβe−λ

{1 + Aβ + β log(1 − αe−λ)}(1 − αe−λ)
,

ψ ′
Y (0) =

αβ

(1 + Aβ − Aβ)(1 − α)
=

αβ

1 − α
.

The first cumulants are equal to the corresponding mathematical expectations E[L(1)]

or E[Y(1)] and for the subordinated processes we have

E[Y(1)] = E[X(1)]E[Tβ(1)].

Similarly, the Bernstein functions for processes X(t) and Z(t) are denoted by ψX(λ)

and ψZ(λ) as in Theorems 2 and 3. Their derivatives at zero are as follows:

ψ ′
X(λ) =

αe−λ

1 − αe−λ
, ψ ′

X(0) =
α

1 − α

and

ψ ′
Z(λ) =

b

A

αe−λ + (1 − αe−λ) log(1 − αe−λ)

e−λ(1 − αe−λ)
,

ψ ′
Z(0) =

b

A

α + (1 − α) log(1 − α)

1 − α
=

b

A

(
α

1 − α
− A

)
.

For the application, we constructed two different case tests, named as Selection A and

Selection B.

Selection A. We can choose the parameters β and b in a way that the correspond-

ing total masses of the Lévy measures are equal, θL = θY , and θX = θZ , as follows:

β =
A − α

Aα
< 1, b =

A2

A − α
> 1.

By this choice (selection) of parameters β and b the mathematical expectations are in

the following inequalities:

ψ ′
L(0) < ψ ′

Y (0) < ψ ′
X(0) < ψ ′

Z(0).

Namely,

α

A(1 − α)
− 1 <

(A − α)

A(1 − α)
<

α

1 − α
<

A

A − α

(
α

1 − α
− A

)
.

The values of the Lévy measures �X and �Z at n = 1 satisfy the following inequality

�Z(1) < �X(1), when
∑∞

n=1 �Z(n) =
∑∞

n=1 �X(n) = A, as it is demonstrated in

Figure 1 and in Figure 2.
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Fig. 1. Selection A. Comparison between the Lévy measure �X and �Z for α = 1/2 (left)

and α = 2/3 (right), where
∑∞

n=1 �Z(n) =
∑∞

n=1 �X(n) = A

Fig. 2. Selection A. Comparative plot of main Bernstein functions after rescaling with α equal

to 1/2 and 2/3, where ψ ′
L
(0) < ψ ′

Y
(0) < ψ ′

X
(0) < ψ ′

Z
(0), knowing that θL = θY = log(A

α )

and θX = θZ = A = − log(1 − α)
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Fig. 3. Selection B: Comparative plot of main Bernstein functions after rescaling with α equal

to 1/2 and 2/3, where ψY (∞) < ψL(∞) < ψZ(∞) < ψX(∞), knowing that ψ ′
L
(0) =

ψ ′
Y
(0) and ψ ′

Z
(0) = ψ ′

X
(0)

Selection B. If we choose

β =
1

A
−

1 − α

α
> 0, b =

Aα

α − A(1 − α)
> 0,

then the mathematical expectations ψ ′
L(0) = ψ ′

Y (0) and ψ ′
Z(0) = ψ ′

X(0), and the

total masses of the Lévy measures are in the following inequalities:

ψY (∞) < ψL(∞) < ψZ(∞) < ψX(∞).

Specifically,

log

(
2 −

A(1 − α)

α

)
< log

(
A

α

)
<

α(A − α)

Aα − A + α
< A.

It is demonstrated in Figure 3.

Remark 3. All these inequalities are related to the following:

A − α < Aα < 2(A − α)

and

A2 <
α2

1 − α
,

where we remark only that using (10) we have

A2 = (− log(1 − α))2 = 2

∞∑

n=2

|s(n, 2)|
αn

n!
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= 2

∞∑

n=2

αnHn−1

n
= α2 + α3 +

11

12
α4 +

10

12
α5 +

137

180
α6 · · ·

and
α2

1 − α
= α2(1 + α + α2 + · · · ).

7 Conclusion

The Negative-Binomial process in consideration can be constructed by the subordi-

nation of a Poisson process by a Gamma process. In this way, the process Y(t) is

a Poisson process subordinated by an iterated Gamma process. In potential theory,

a Gamma subordinator and an iterated Gamma subordinator are classified as slow

subordinators.

In the selection A, the inter-arrival times of the processes L(t) and Y(t) are expo-

nentially distributed with the same parameter θL = θY , but the mathematical expec-

tation of the Logarithmic Lévy process in the unit time interval E[L(1)] is less than

E[Y(1)]. It is the same for the processes X(t) and Z(t).

In the selection B, the mathematical expectations of jumps altitude for the pro-

cesses L(t) and Y(t) are equal ψ ′
L(0) = ψ ′

Y (0) and E[L(1)] = E[Y(1)], but the

mean number of jumps in the unit time interval of the Logarithmic process is greater

than that for the subordinated process Y(t), θL > θY . It is the same for the processes

X(t) and Z(t), θX > θZ .

In the general setting: Y(t) = X(T (t)), when the underlying process X(t) is a

compound Poisson process without drift, any randomness of T (t) before it passes the

level given by the first jump time of X(t) is not reflected by Y(t) = X(T (t)), see

[16].
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