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Abstract: The negation of probability distribution is a new perspective from which to obtain infor-
mation. Dempster–Shafer (D–S) evidence theory, as an extension of possibility theory, is widely
used in decision-making-level fusion. However, how to reasonably construct the negation of basic
probability assignment (BPA) in D–S evidence theory is an open issue. This paper proposes a new
negation of BPA, logarithmic negation. It solves the shortcoming of Yin’s negation that maximal
entropy cannot be obtained when there are only two focal elements in the BPA. At the same time,
the logarithmic negation of BPA inherits the good properties of the negation of probability, such as
order reversal, involution, convergence, degeneration, and maximal entropy. Logarithmic negation
degenerates into Gao’s negation when the values of the elements all approach 0. In addition, the data
fusion method based on logarithmic negation has a higher belief value of the correct target in target
recognition application.

Keywords: logarithmic negation; negation of basic probability assignment; uncertainty; Dempster–
Shafer evidence theory; target recognition

1. Introduction

Information fusion on the decision-making level is an important topic in artificial
intelligence and machine learning. It can improve the performance of a system’s decision
making very well. However, in the face of complex, uncertain, inaccurate, and incomplete
information, how to efficiently fuse this information to obtain more reasonable results
is a problem. For this problem, many theoretical tools were proposed, such as possi-
bility theory [1–3], fuzzy set theory [4–6], Dempster–Shafer (D–S) evidence theory [7–9],
D-numbers [10–12], Z-numbers [13–15], rough set theory [16–18], and fractal theory [19–21].
D–S evidence theory assigns probabilities to the power set of events, so it can effectively
combine uncertain information. Therefore, it was widely applied to many real-world appli-
cations that include classification [22–26], fault diagnosis [27–31], decision making [32–36]
and target recognition [37–40].

Events have two sides, so we often describe and express information from the front
in D–S evidence theory. In fact, the opposite of an event can provide us with a new
perspective and help us in obtaining more information in order to solve problems better.
For example, if the highest probability of rain the next day is predicted to be 90%, it is still
hard to make decisions, as the uncertainty cannot be determined. Let us see the negation
of this situation. If the highest probability of not raining the next day is predicted to be
10%, decision making is relatively easy, and uncertainty is small [41]. On the basis of the
above discussion, studying the negation of BPA [42–45] is of great significance to deal with
uncertainty. How to reasonably construct the negation of BPA, on the other hand, is an open
issue. Luo [41] proposed a matrix method of BPA negation where BPAs were represented
as vectors, and negation was realized with matrix operators. This method could interpret
the matrix operators well, but the calculation process was complicated. Gao [42] proposed
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a new negation that could be seen as arithmetic negation. It better presented the connection
between changes in the uncertainty and entropy of random sets. Yin’s [44] negation of BPA
could measure the uncertainty of the BPA well. However, the maximal entropy cannot be
obtained when there are only two focal elements in the BPA. In this paper, we propose a
novel negation of BPA based on the logarithmic function named logarithmic negation that
can be seen as geometric negation and it solves the shortcoming of Yin’s negation. At the
same time, the logarithmic negation of BPA inherits the good properties of negation of
probability, such as order reversal, involution, convergence, degeneration, and maximal
entropy. Logarithmic negation degenerates into Gao’s negation when the values of the
elements all approach 0. In addition, the data fusion method based on logarithmic negation
had a higher belief value of the correct target in the application of target recognition.

The remainder of this paper is organized as follows. The preliminaries are introduced
in Section 2. In Section 3, the logarithmic negation is proposed, and its properties are
analyzed and proved. In Section 4, some numerical examples are used to test the feasibility
of logarithmic negation. In Section 5, two target recognition applications are used to
demonstrate the effectiveness of the data fusion approach based on logarithmic negation.
Conclusions are given in Section 6.

2. Preliminaries
2.1. D–S Evidence Theory
2.1.1. Frame of Discernment

Θ was assumed to be a set of mutually exclusive and exhaustive elements
Fi(i = 1, 2, 3, 4, . . . , N), and it could be defined as [46]:

Θ = {F1, F2, F3, F4, . . . , FN} (1)

where Θ is the frame of discernment (FOD), and Fi is the single subset proposition. We
defined 2Θ as a power set that contains 2N elements and can be described as follows [47]:

2Θ = {∅, F1, . . . , FN , {F1, F2}, {F1, F3}, . . . , Θ} (2)

where ∅ is an empty set in Equation (2).

2.1.2. Basic Probability Assignment

Basic probability assignment (BPA) function m is also called mass function and is
defined as a mapping of power set 2Θ to [0,1] [48].

m : 2Θ → [0, 1],

which satisfies

m(∅) = 0

∑
A⊆Θ

m(A) = 1

If m(A) > 0, A is called a focal element or subset. Mass function m(∅) is equal to 0 in
classical D–S evidence theory.

2.2. Dempster’s Combination Rule

In D–S evidence theory, two BPAs can be combined with Dempster’s combination
rule, defined as follows [49]:

m(A) = (m1 ⊕m2)(A)

=
1

1− k ∑
B∩C=A

m1(B)m2(C)
(3)
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in which

k = ∑
B∩C=∅

m1(B)m2(C) (4)

where ⊕ represents Dempster’s combination rule, and k is the conflict coefficient.

2.3. Shannon Entropy

Shannon entropy is an uncertain measure of information volume and is denoted
by [50]:

H = −
N

∑
i=1

pi log2 pi (5)

where pi is the probability of state i.

2.4. Deng Entropy

Deng entropy is defined as follows [51]:

Ed(m) = − ∑
A⊆Θ

m(A) log2
m(A)

2|A| − 1
, (6)

where |A| is the cardinality of Proposition A.

2.5. Yin’s Negation of BPA

Yin’s negation of BPA is defined as follows [44]:

m̄(ei) =
1−m(ei)

n− 1
(7)

where n is the number of focal elements, and m(ei) is the focal element.

2.6. Gao’s Negation of BPA

Gao’s negation of BPA is defined as follows [42]:

m̄Ai =
1−mAi

2n − 2
(8)

where n is the number of elements in the FOD, and mAi is the mass function.

3. Proposed Negation

D–S evidence theory, with more accurate expression of information and better process-
ing ability, is an extension of possibility theory. The negation of BPA shows the other side
of the information and offers a new perspective on processing information. In this section,
a new negation of BPA is proposed named logarithmic negation.

Assuming that the FOD has N elements, a power set 2Θ is described as:

2Θ = {∅, F1, . . . , FN , {F1, F2}, {F1, F3}, . . . , Θ} (9)

Since the negation of BPA is under classical D–S evidence theory, mass function m(∅)
was not considered. The power set can be expressed as:

2Θ =
{

A1, A2, · · · , Ai, · · · , A2N−1
}

(10)

which satisfies
2N−1

∑
i=1

m(Ai) = 1 (11)
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The definition of logarithmic negation is as follows.

m̄(Ai) =
1− ln(1 + m(Ai))

∑2N−1
i=1 1− ln(1 + m(Ai))

=
1

∑2N−1
i=1 1− ln(1 + m(Ai))

[1− ln(1 + m(Ai))]

=

[
2N−1

∑
i=1

1− ln(1 + m(Ai))

]−1

[1− ln(1 + m(Ai))]

=K[1− ln(1 + m(Ai))]

(12)

where N is the number of element in the FOD, and K is a normal number for every certain
BPA. As we know,

m(Ai) ∈ [0, 1];

then,

1− ln(1 + 0) ≥ 1− ln(1 + m(Ai)) ≥ 1− ln(1 + 1) > 1− ln(e)

so

1 ≥ 1− ln(1 + m(Ai)) > 0

Then, we simplify and establish

2N−1

∑
i=1

1− ln(1 + m(Ai)) > 1− ln(1 + m(Ai)) > 0

Therefore,

1 > m̄(Ai) =
1− ln(1 + m(Ai))

∑2N−1
i=1 1− ln(1 + m(Ai))

> 0

m̄(Ai) is satisfied as the following conditions.

m̄(Ai) ∈ (0, 1)

∑
i

m̄(Ai) =
1− ln(1 + m(A1))

∑2N−1
i=1 1− ln(1 + m(Ai))

+
1− ln(1 + m(A2))

∑2N−1
i=1 1− ln(1 + m(Ai))

+

. . . +
1− ln

(
1 + m(A2N−1)

)
∑2N−1

i=1 1− ln(1 + m(Ai))

=1

(13)

Theorem 1. The logarithmic negation satisfies the order reversal. If m(Ai) > m(Aj),
m̄(Ai) < m̄(Aj).

Proof. if m(Ai) > m(Aj), we can obtain

K(1− ln(1 + m(Ai))) < K(1− ln(1 + m(Aj)))

Then,
m̄(Ai) < m̄(Aj)

Theorem 2. The logarithmic negation satisfies the involution.
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Proof.
¯̄m(Ai) =

1− ln(1 + m̄(Ai))

∑i 1− ln(1 + m̄(Ai))

=
1− ln

(
1 + 1−ln(1+m(Ai))

∑i 1−ln(1+m(Ai))

)
∑i 1− ln

(
1 + 1−ln(1+m(Ai))

∑i 1−ln(1+m(Ai))

) 6= m(Ai)

(14)

Theorem 3. As the number of iterations increases, logarithmic negation converges into 1/(2N − 1).

Proof. Assuming that [m̄(Ai)]t represents the value of the tth iteration, [m̄(Ai)]t+1 repre-
sents the next moment after t. Since logarithmic negation is noninvolutionary, the value of
negation constantly changes. if and only if [m̄(A1)]t = [m̄(A2)]t = . . . = [m̄(Ai)]t =

1
2N−1 ,

we can calculate the result of the next iteration as:

m̄(Ai)tt+1 =
1− ln(1 + [m̄(Ai)]t)

∑i 1− ln(1 + [m̄(Ai)]t)

=
1− ln

(
1 + 1

2N−1

)
∑i 1− ln

(
1 + 1

2N−1

)
=

1
2N − 1

= [m̄(Ai)]t

(15)

So, the negative value is fixed from the tth iteration, namely, converges into 1/(2N − 1).
Then, the belief distribution is uniform.

Theorem 4. Logarithmic negation degenerates into Gao’s negation [42] when m(A1), m(A2),
· · · , m(Ai)→ 0.

Proof. According to the commonly used equivalent infinitesimal relations, we can obtain

ln(1 + x) ∼ x (x → 0)

When m(A1), m(A2), · · · , m(Ai)→ 0, we simplify and establish the following.

m̄(Ai) =
1− ln(1 + m(Ai))

∑i 1− ln(1 + m(Ai))

=
1−m(Ai)

∑i 1−m(Ai)

=
1−m(Ai)

2N − 1− 1

=
1−m(Ai)

2N − 2

Theorem 5. After each logarithmic negation operation, the entropy of information keeps increasing
to its maximum.

Proof.

H(m) =−∑
i

m(Ai) log2(m(Ai))H(m̄) = −∑
i

1− ln(1 + m(Ai))

∑i 1− ln(1 + m(Ai))
log2

1− ln(1 + m(Ai))

∑i 1− ln(1 + m(Ai))
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To further simplify the calculation, we could obtain the following approximation
according to Theorem 4.

1− ln(1 + m(Ai))

∑i 1− ln(1 + m(Ai))
≈ 1−m(Ai)

2N − 2

Then,

H(m)− H(m̄) = −∑
i

m(Ai)× log2 m(Ai)−
(
−∑

i

1−m(Ai)

2N − 2
× log2

1−m(Ai)

2N − 2

)

Through the Lagrangean multiplier method, we assume that

F = −∑
i

m(Ai)× log2 m(Ai)−
(
−∑

i

1−m(Ai)

2N − 2
× log2

1−m(Ai)

2N − 2

)
+ λ

(
∑

i
m(Ai)− 1

)
We then take the partial derivatives.

∂F
∂m(Ai)

= − 1
2N − 2

log2
1−m(Ai)

2N − 2
− 1

2N − 2
log2 e− log2 m(Ai)− log2 e + λ

According to the derivation in [42], it can become

H(m̄) ≥ H(m)

When the belief distribution of logarithmic negation follows uniform distribution,
there is H(m̄) = H(m), and entropy reaches its maximum and cannot increase anymore.

Note: The more elements there are in the FOD, the faster the convergence speed is.
The more elements there are in FOD, the more uncertain information the BPA contains.

Obviously, this has more elements involved in logarithmic negation. From the perspective
of increasing entropy, the larger scale of FOD indicates that more elements consume infor-
mation under the same conditions. Then, the overall rate of the consumption of information
is faster, entropy reaches its maximum more quickly, and the belief distribution quickly
converges. Furthermore, the larger the number of elements is, the smaller the logarithmic
negation that converges into the value of 1/(2N − 1). Thus, belief redistribution by loga-
rithmic negation facilitates the belief distribution to converge into uniform distribution.
This is illustrated by numerical Examples 2–4.

The phenomenon of logarithmic negation measures the uncertainty of evidence by
reassigning belief. From the point of view of information entropy, the essence of logarithmic
negation is the process of consuming information, and the entropy converges into maximal
entropy. Detailed numerical examples in the next section are given to help in understanding
the concept.

4. Numerical Examples

In the next section, several numerical examples are used to illustrate the theorems.

Example 1. The FOD Θ = {a, b} is assumed to be in the close world. The BPA is m(a) = 1,
m(b) = 0, m(a, b) = 0.

Yin’s negation of BPA is

m̄Y(a) =
1−m(a)

n− 1
=

1− 1
1− 1

= NaN

Yin’s negation [44] method cannot handle this special case where there is one focal
element in the close world. Since Yin’s negation can only construct negations from elements
with belief values greater than 0, this inevitably causes a loss of information in the FOD
and produces unreasonable results.
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The logarithmic negation of BPA is

m̄(a) =
1− ln(1 + m(a))

∑i 1− ln(1 + m(a))

=
1− ln(1 + 1)

3− ln(1 + 1)− ln(1 + 0)− ln(1 + 0)

= 0.1330

m̄(b) =
1− ln(1 + m(b))

∑i 1− ln(1 + m(b))

=
1− ln(1 + 0)

3− ln(1 + 1)− ln(1 + 0)− ln(1 + 0)

= 0.4335

m̄(c) =
1− ln(1 + m(c))

∑i 1− ln(1 + m(c))

=
1− ln(1 + 0)

3− ln(1 + 1)− ln(1 + 0)− ln(1 + 0)

= 0.4335

Obviously, the proposed negation could obtain the intuitive results. Although BPAs
m(b), m(a, b) were equal to 0, they contained important information, that is, events b and
a, b were unlikely to happen. The proposed method could capture this hidden information
and process it to render the expression of information more complete and effective.

Example 2. The FOD Θ = {a, b} was assumed to be in the close world. The BPA is m(a) = 0.7,
m(b) = 0.3, m(a, b) = 0.

Yin’s negation of BPA is

m̄Y(a) = 0.3, m̄Y(b) = 0.7

¯̄mY(a) = 0.7, ¯̄mY(b) = 0.3

Table 1 shows the BPA and entropy after Yin’s negation iterations, and Figure 1
visualizes them. When the BPA only contained two focal elements, the negation was
reversible: ¯̄mY(a) = m(a). No matter the number of negation iterations, the belief values
of m(a) and m(b) always cyclically changed between 0.7 and 0.3. This did not converge
into a certain value. Correspondingly, entropy no longer increased and could not reach
its maximum.

Table 1. BPA and entropy after Yin’s negation iterations in Example 2.

Number of
Iterations m(a) m(b) m(a,b) Shannon

Entropy

0 0.700 0.300 0.000 0.88129
1 0.300 0.700 0.000 0.88129
2 0.700 0.300 0.000 0.88129
3 0.300 0.700 0.000 0.88129
4 0.700 0.300 0.000 0.88129
5 0.300 0.700 0.000 0.88129
6 0.700 0.300 0.000 0.88129
7 0.300 0.700 0.000 0.88129
8 0.700 0.300 0.000 0.88129
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Figure 1. BPA after Yin’s negation iterations in Example 2.

The logarithmic negation of BPA is

m̄(a) = 0.213, m̄(b) = 0.334, m̄(a, b) = 0.453

¯̄m(a) = 0.376, ¯̄m(b) = 0.332, ¯̄m(a, b) = 0.292

The above shows that m̄(a) < m̄(b) when m(a) > m(b), which is consistent with
the order reversal. In addition, there is ¯̄m(a) 6= m(a). The irreversibility was verified.
Table 2 shows the BPA and entropy after logarithmic negation iteration, and Figure 2
visualizes them. The belief distribution lastly converged into uniform distribution, that is,
the negative values were all equal to 1/(2N − 1). Entropy kept increasing to its maximum.
Theorems 3 and 5 were fully verified. The proposed negation overcomes the shortcomings
of Yin’s negation well.

Figure 2. BPA after logarithmic negation iterations in Example 2.
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Table 2. BPA and entropy after logarithmic negation iterations in Example 2.

Number of
Iterations m(a) m(b) m(a,b) Shannon

Entropy

0 0.700 0.300 0.000 0.88129
1 0.213 0.334 0.453 1.52089
2 0.376 0.332 0.292 1.57726
3 0.318 0.334 0.348 1.58402
4 0.339 0.333 0.328 1.58485
5 0.331 0.333 0.335 1.58495
6 0.334 0.333 0.333 1.58496
7 0.333 0.333 0.334 1.58496
8 0.333 0.333 0.333 1.58496

Example 3. The FOD Θ = {a, b, c}was assumed to be in the close world. The BPA is m(a) = 0.12,
m(b) = 0.18, m(c) = 0.11, m(a, b) = 0.09, m(a, c) = 0.19, m(b, c) = 0.23, m(a, b, c) = 0.08.

Table 3 shows the BPA and entropy after logarithmic negation iterations, and Figure 3
visualizes them. The belief distribution gradually converged as the number of iterations
increased. Lastly, the BPA converged into uniform distribution. At the same time, maximal
entropy was obtained. We can understand this phenomenon in terms of information
consumption. In fact, each iteration of negation is a process of consuming information.
The consumption of information means an increase in entropy. When maximal entropy
was reached, there was no more information to consume for the BPA, and entropy stopped
increasing. Theorems 3 and 5 of logarithmic negation were verified again.

Figure 3. BPA after logarithmic negation iterations in Example 3.

Table 3. BPA and entropy after logarithmic negation iterations in Example 3.

Number of
Iterations m(a) m(b) m(c) m(a,b) m(a,c) m(b,c) m(a,b,c) Shannon

Entropy

0 0.1200 0.1800 0.1100 0.0900 0.1900 0.2300 0.0800 2.70972
1 0.1460 0.1374 0.1475 0.1505 0.1360 0.1306 0.1520 2.80532
2 0.1424 0.1436 0.1422 0.1418 0.1438 0.1446 0.1415 2.80731
3 0.1429 0.1427 0.1430 0.1430 0.1427 0.1426 0.1430 2.80735
4 0.1428 0.1429 0.1428 0.1428 0.1429 0.1429 0.1428 2.80735
5 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 2.80735
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Example 4. The FOD Θ = {a, b, c, d}was assumed to be in the close world. The BPA is m(a) = 0.12,
m(b) = 0.18, m(c) = 0.11, m(a, b) = 0.09, m(a, c) = 0.19, m(b, c) = 0.23, m(a, b, c) = 0.08.

Table 4 shows the BPA and entropy after logarithmic negation iterations. The FOD
contained two elements in Example 2, three elements in Example 3, and four elements in
Example 4. Tables 2–4 show that the numbers of iterations required for the convergence
of a logarithmic negative were 8, 5, and 4. In other words, the convergence speed of
logarithmic negation accelerated significantly as the scale of the FOD grew. This means that
the BPA needed fewer negative iterations to obtain maximal entropy. This interesting point
is understood from the perspective of increasing entropy. The larger scale of FOD indicates
that more elements consumed information under the same conditions. Then, the overall
rate of consumption of information was faster. Thus, maximal entropy was achieved faster.

Table 4. BPA and entropy after logarithmic negation iterations in Example 4.

Number of Iterations 0 1 2 3 4

m(a) 0.1200 0.0630 0.0669 0.0667 0.0667
m(b) 0.1800 0.0593 0.0672 0.0666 0.0667
m(c) 0.1100 0.0636 0.0669 0.0667 0.0667
m(d) 0.0000 0.0711 0.0664 0.0667 0.0667

m(a,b) 0.0900 0.0649 0.0668 0.0667 0.0667
m(a,c) 0.1900 0.0587 0.0672 0.0666 0.0667
m(a,d) 0.0000 0.0711 0.0664 0.0667 0.0667
m(b,c) 0.2300 0.0563 0.0674 0.0666 0.0667
m(b,d) 0.0000 0.0711 0.0664 0.0667 0.0667
m(c,d) 0.0000 0.0711 0.0664 0.0667 0.0667

m(a,b,c) 0.0800 0.0656 0.0667 0.0667 0.0667
m(a,b,d) 0.0000 0.0711 0.0664 0.0667 0.0667
m(a,c,d) 0.0000 0.0711 0.0664 0.0667 0.0667
m(b,c,d) 0.0000 0.0711 0.0664 0.0667 0.0667

m(a,b,c,d) 0.0000 0.0711 0.0664 0.0667 0.0667
Shannon entropy 2.70972 3.90242 3.90687 3.90689 3.90689

5. Application

In this section, two target recognition applications are used to verify the effectiveness
of the data fusion approach based on the logarithmic negation. On the basis of the proposed
negation, we adopted Li’s data fusion method [45] to run the target recognition application.
The detailed steps of Li’s method are described as follows.

Step 1: construct the logarithmic negation m̄n of each piece of evidence by using
Equation (12), where n is the number of pieces of evidence.

Step 2: calculate the Deng entropy of the initial evidence and its negation by using
Equation (6).

Step 3: calculate the credibility of each piece of evidence by using Equation (16).

Cred(mn) =
Ed(mn)

|Ed(m̄n)− Ed(mn)|
, n = 1, 2, . . . , k (16)

where |Ed(m̄n)− Ed(mn)| represents the absolute value of the entropy difference between
the initial evidence and its negation. If the belief distribution is uniform, we just need to
replace |Ed(m̄n)− Ed(mn)| with e|Ed(m̄n)−Ed(mn)|.

Step 4: calculate the weight of each piece of evidence by using Equation (17).

Wn =
Cred(mn)

∑k
n=1 Cred(mn)

, n = 1, 2, . . . , k (17)
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Step 5: weighted average evidence m̃ is calculated as follows:

m̃ =
k

∑
n=1

Wn ×mn, n = 1, 2, . . . , k (18)

Step 6: Dempster’s combination rule is used k-1 times to combine the weighted
average evidence according to Equation (3). Then, the final combination result is calculated
as follows:

m = (m̃⊕ m̃⊕ . . .⊕ m̃)k−1 (19)

5.1. Application 1

In a multisensor automatic target recognition system, it is assumed that the actual
target is A. The collected sensor reports from the system, modelled as BPAs, are shown in
Table 5. The application is cited from [45].

Table 5. BPAs in Application 1.

A B C A, C

m1 0.50 0.20 0 0.30
m2 0.00 0.90 0.10 0.00
m3 0.55 0.10 0.00 0.35
m4 0.55 0.10 0.00 0.35

Step 1: construct the logarithmic negation m̄n of each piece of evidence by using
Equation (12).

m̄1(A) =
1− ln(1 + 0.5)

7− ln(1 + 0.5)− ln(1 + 0.2)− ln(1 + 0.3)
= 0.0967

m̄1(B) =
1− ln(1 + 0.2)

7− ln(1 + 0.5)− ln(1 + 0.2)− ln(1 + 0.3)
= 0.1330

m̄1(C) =
1− ln(1 + 0.3)

7− ln(1 + 0.5)− ln(1 + 0.2)− ln(1 + 0.3)
= 0.1199

m̄1(A, B) =
1− ln(1 + 0)

7− ln(1 + 0.5)− ln(1 + 0.2)− ln(1 + 0.3)

=0.1626 = m̄1(A, C) = m̄1(B, C) = m̄1(A, B, C)

m̄2(A) = 0.1597, m̄2(B) = 0.0572, m̄2(C) = 0.1445, m̄2(A, B) = 0.1597

m̄2(A, C) = 0.1597, m̄2(B, C) = 0.1597, m̄2(A, B, C) = 0.1597

m̄3(A) = 0.0911, m̄3(B) = 0.1467, m̄3(C) = 0.1622, m̄3(A, B) = 0.1622

m̄3(A, C) = 0.1135, m̄3(B, C) = 0.1622, m̄3(A, B, C) = 0.1622

m̄4(A) = 0.0911, m̄4(B) = 0.1467, m̄4(C) = 0.1622, m̄4(A, B) = 0.1622

m̄4(A, C) = 0.1135, m̄4(B, C) = 0.1622, m̄4(A, B, C) = 0.1622

Step 2: calculate the Deng entropy of the initial evidence and its negation by using
Equation (6).

Ed(m1) =− 0.5× log2
0.5

21 − 1
− 0.2× log2

0.2
21 − 1

− 0.3× log2
0.3

21 − 1
= 1.48548

Ed(m2) = 0.46899, Ed(m3) = 1.89140, Ed(m4) = 1.89140
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Ed(m̄1) =− 0.0967× log2
0.0967
21 − 1

− 0.133× log2
0.133
21 − 1

− 0.1199× log2
0.1199
21 − 1

− 0.1626× log2
0.1626
22 − 1

− 0.1626× log2
0.1626
22 − 1

− 0.1626× log2
0.1626
22 − 1

− 0.1626× log2
0.1626
23 − 1

= 4.01400

Ed(m̄2) = 3.95988, Ed(m̄3) = 3.92908, Ed(m̄4) = 3.92908

Step 3: calculate the credibility of each piece of evidence by using Equation (16).

Cred(m1) =
Ed(m1)

|Ed(m̄1)− Ed(m1)|
=

1.48548
|1.48548− 4.01400| = 0.5875

Cred(m2) =
Ed(m2)

|Ed(m̄2)− Ed(m2)|
=

0.46899
|0.46899− 3.95988| = 0.1343

Cred(m3) =
Ed(m3)

|Ed(m̄3)− Ed(m3)|
=

1.89140
|1.89140− 3.92908| = 0.9282

Cred(m4) =
Ed(m4)

|Ed(m̄4)− Ed(m4)|
=

1.89140
|1.89140− 3.92908| = 0.9282

Step 4: calculate the weight of each piece of evidence by using Equation (17).

W1 =
0.5875

0.5875 + 0.1343 + 0.9282 + 0.9282
= 0.2279

W2 =
0.1343

0.5875 + 0.1343 + 0.9282 + 0.9282
= 0.0521

W3 =
0.9282

0.5875 + 0.1343 + 0.9282 + 0.9282
= 0.3600

W4 =
0.9282

0.5875 + 0.1343 + 0.9282 + 0.9282
= 0.3600

Step 5: weighted average evidence m̃ is calculated as follows:

m̃(A) = 0.5099, m̃(B) = 0.1645, m̃(C) = 0.0736, m̃(A, C) = 0.2520

Step 6: Dempster’s combination rule is used 3 times to combine the weighted aver-
age evidence according to Equation (3). Then, the final combination result is calculated
as follows:

m(A) = 0.9653, m(B) = 0.0021, m(C) = 0.0209, m(A, C) = 0.0117

Evidence m2 is highly conflicted with other pieces of evidence. As shown in Table 6
and Figure 4, Dempster’s method did not identify the correct target A. The operation
of a one-vote vet produced a counterintuitive result that the belief value of target A is
always 0. However, other methods all overcame the impact of conflicting evidence and
obtained reasonable decision-making results. The experimental results show that the belief
value of the correct target A for the three other methods was 0.6027, 0.7773 and 0.8491.
The degree of belief was relatively low. The proposed data fusion method could achieve
better performance in combining pieces of conflicting evidence, as it had the highest belief
value (0.9653) for the correct target A. Compared with the three other methods, the belief
value of the correct target was improved by 36.26%, 17.8% and 11.62%. The main reason is
that the logarithmic negation could extract more useful information in the process of conflict
processing from the perspective of geometric negation. The accuracy of the fusion results
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was improved, and the target type could be identified more accurately. Furthermore, since
the entropy of conflicting evidence is usually low, it can distinguish between conflicting
and normal evidence with Deng entropy. The entropy difference between the conflicting
evidence and its negation was larger than that of normal evidence. Therefore, the proposed
method assigned a lower credibility value to the conflicting evidence, and more reasonable
results were obtained. This application proves the validity of the proposed method.

Table 6. Fusion results from different methods in Application 1.

Method A B C A, C

Dempster [49] 0.0000 0.3288 0.6712 0.0000
Murphy [52] 0.6027 0.2627 0.1346 0.0000
Deng [53] 0.7773 0.0628 0.1600 0.0000
Li [45] 0.8491 0.0112 0.0112 0.1275
Proposed method 0.9653 0.0021 0.0209 0.0117

Figure 4. Fusion results from different methods in Application 1.

5.2. Application 2

Consider a multisensor target recognition problem associated with sensor reports that
are collected from five different types of sensors {S1, S2, S3, S4, S5}, and each of which is
allocated to a different position in order to monitor the objectives. The FOD that consists of
three types of target is given by Θ = {F1, F2, F3}. These sensors collect the target information
and generate reports, which were modeled as BPAs denoted by m1(·), m2(·), m3(·), m4(·)
and m5(·) in Table 7. The application is cited from [54].

Table 7. BPAs in Application 2.

F1 F2 F3 F1, F3

m1 0.40 0.28 0.30 0.02
m2 0.01 0.90 0.08 0.01
m3 0.63 0.06 0.01 0.30
m4 0.60 0.09 0.01 0.30
m5 0.60 0.09 0.01 0.30

The combined results are shown in Figure 5 and Table 8. Even if the second piece of
evidence was in major conflict with other evidence, all the methods could successfully
identify the target type as A, which was in line with our intuition. The belief value of the
target type A for the four other methods is 0.8657, 0.9885, 0.9888 and 0.9892. Although the
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overall belief value was relatively high, the accuracy of the fusion results still has some
room for improvement. The proposed method had the highest belief value (0.9897) for the
correct target. The belief value of the correct target with the proposed method was only
improved by 0.05% compared with Wang’s method [55], but it is of great significance to
the target recognition system based on such a high belief value. The main reason is that
the proposed method took more uncertainty information into account in the process of
logarithmic negation of BPA, that is, it used well the information of elements whose belief
value was equal to 0. The operation of logarithmic negation consumed a lot of information
in the conflicting evidence, which led to a rapid increase in the entropy of the conflicting
evidence’s negation. Then, the entropy difference between the conflicting evidence and its
negation grew, and the conflicting evidence was assigned a smaller weight value. Lastly,
conflicting evidence was handled effectively. In addition, the combination of Deng entropy
and logarithmic negation improved the accuracy of the fusion results and reduced the loss
of information, which also ensured the ability to deal with conflicting evidence. The validity
of the proposed method was verified again.

Table 8. Fusion results by different methods in Application 2.

Method F1 F2 F3 F1, F3

Dempster [49] 0.8657 0.0168 0.1167 0.0007
Xiao [56] 0.9885 0.0015 0.0077 0.0023
Xiao [54] 0.9888 0.0015 0.0073 0.0024
Wang [55] 0.9892 0.0003 0.0085 0.0020
Proposed method 0.9897 0.0005 0.0075 0.0023

Figure 5. Fusion results from different methods in Application 2.

6. Conclusions

How to reasonably construct the negation of BPA is an open issue. To address this
problem, a novel negation of BPA was proposed named logarithmic negation that solves
the shortcoming of Yin’s negation that the maximal entropy cannot be obtained when there
are only two focal elements in the BPA. At the same time, the logarithmic negation of BPA
inherits the good properties of the negation of probability, such as order reversal, involution,
convergence, degeneration, and maximal entropy. Logarithmic negation degenerates into
Gao’s negation when the values of the elements all approach 0. The operation of logarithmic
negation can cause an increase in entropy, and convergence speed is proportional to the
number of elements in the FOD. Some numerical examples were presented for analysis and
proof. Lastly, the data fusion method based on logarithmic negation had the highest belief
value of the correct target in two target recognition applications.
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