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Measurements of the streamwise component of the turbulent fluctuations in fully
developed smooth and rough pipe flow are presented over an unprecedented Reynolds
number range. For Reynolds numbers Reτ > 20 000, the streamwise Reynolds stress
closely follows the scaling of the mean velocity profile, independent of the roughness,
and over the same spatial extent. This observation extends the findings of a logarithmic
law in the turbulence fluctuations as reported by Hultmark, Vallikivi & Smits (Phys.
Rev. Lett., vol. 108, 2012) to include rough flows. The onset of the logarithmic
region is found at a location where the wall distance is equal to ∼100 times the
Kolmogorov length scale, which then marks sufficient scale separation for inertial
scaling. Furthermore, in the logarithmic region the square root of the fourth-order
moment also displays logarithmic behaviour, in accordance with the observation that
the underlying probability density function is close to Gaussian in this region.
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1. Introduction

Here we are concerned with the scaling behaviour of hydraulically smooth,

transitionally rough, and fully rough pipe flow at very high Reynolds numbers. That

is, we report and examine measurements in pipe flow at Reynolds numbers ReD from

81 × 103 to 6.0 × 106, where ReD = D〈U〉/ν, D is the pipe diameter, 〈U〉 is the bulk

velocity, and ν is the kinematic viscosity. In terms of the friction Reynolds number,

Reτ , this corresponds to 2.0×103 6 Reτ 6 101×103, where Reτ = Ruτ/ν, R is the pipe

radius, and the friction velocity uτ =
√

τw/ρ, where τw is the wall shear stress, and ρ

is the fluid density.

1.1. Scaling of hydraulically smooth flows

When the flow is hydraulically smooth such that the smallest eddy scales are much

larger than the roughness elements, classical scaling arguments indicate that the flow

scaling can be divided into two regions, an ‘inner region’ and an ‘outer region’

(Millikan 1938; Perry & Abell 1975). In the inner region, where viscosity is important,

the characteristic velocity scale is the friction velocity uτ and the characteristic length
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scale is the viscous length scale ν/uτ . In the outer region, where viscosity is not

important, the characteristic velocity scale remains the friction velocity uτ (at least at a

sufficiently high Reynolds number: see Zagarola & Smits 1998), but the characteristic

length scale is now the shear layer thickness, which in a pipe is its radius R.

Classical scaling works very well for the mean velocity profile in fully developed

smooth pipe flow, as comprehensively demonstrated by Zagarola & Smits (1998)

and McKeon et al. (2004), among others (Marusic et al. 2010c; Smits, McKeon

& Marusic 2011a). The near-wall region follows universal behaviour when scaled

using inner scaling. In particular, McKeon et al. (2004) concluded that at sufficiently

high Reynolds number there exists a viscous sublayer for y+ 6 5, where the inner-

scaled velocity U+ = U/uτ varies linearly with y+, a buffer region for 5 6 y+ 6 50,

and a power-law-like region for 50 6 y+ 6 600 described by U+ = Cy+γ
, where

C and γ are Reynolds-number-independent constants. Here, y+ = yuτ/ν, where y

is the distance from the wall. This power-law region has a clear resemblance to

the mesolayer introduced for pipe flow by Wosnik, Castillo & George (2000), who

argued that in this region there is insufficient scale separation between the energy and

dissipation ranges for inertially dominated turbulence to exist. Beyond this power-law

region, McKeon et al. (2004) noted that a ‘true’ logarithmic region appears, from

approximately y+ = 600 up to about y/R = 0.12, and then a universal wake region in

outer coordinates fills out the remainder of the profile.

The upper and lower limits of the logarithmic region in pipe flow are still under

discussion. As noted, Zagarola & Smits (1998) and McKeon et al. (2004) observed

a lower bound close to y+ = 600, while Hultmark et al. (2012) observed a lower

limit closer to 800. Recently, Marusic et al. (2013) evaluated high Reynolds number

measurements from boundary layer and pipe flow experiments, including those of

Hultmark et al., and argued that this lower bound is Reynolds-number-dependent and

estimated the limit to be y+ = 3Re0.5
τ . This conclusion can only hold at high Reynolds

numbers, at least for pipe flow, since no logarithmic region was observed by McKeon

et al. for Reτ < 5000. As to the upper limit, Zagarola & Smits (1998) suggested 0.07R,

whereas McKeon et al. (2004) indicated an upper bound of 0.12R and Marusic et al.

(2013) used 0.15R for a mix of pipe and boundary layer flows.

Despite these ambiguities, it appears that classical scaling describes the behaviour

of the mean velocity very well. In contrast, it is not so clear that the turbulent

stresses follow a similar scaling, especially with regard to the streamwise component

u′2. Within the near-wall region, for example, the distribution of u2+ = u′2/u2
τ shows

a distinct peak at y+ ≈ 15, the so-called ‘inner peak’. However, the variation of this

peak with Reynolds number is currently a topic of debate, with recent studies arriving

at contradictory conclusions. In pipe flow, for instance, Ng et al. (2011) found that

the magnitude of the inner peak increased with Reynolds number, whereas Hultmark,

Bailey & Smits (2010), Vallikivi et al. (2011) and Hultmark et al. (2012) each found

that its magnitude was constant with Reynolds number, although they disagreed on its

precise value. For channel flows and boundary layer flows the picture seems clearer,

in that there is a general consensus that the peak value increases with Reynolds

number (Klewicki & Falco 1990; De Graaff & Eaton 2000; Marusic & Kunkel 2003;

Hutchins & Marusic 2007; Jiménez & Hoyas 2008). It is worth noting, however, that

its rate of increase has not yet been established with any certainty, where, for example

Hutchins & Marusic (2007) proposed an increase in peak u2+ of 2.22 per decade

in Reτ , while Marusic, Mathis & Hutchins (2010a) suggest a possible value as low

as 0.90 per decade. The question is important in that it informs our understanding
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of inner/outer layer interactions. Marusic, Mathis & Hutchins (2010b) suggested that

the increase in the near-wall peak for boundary layers occurs through a superposition

and modulation coupling between the inner and outer regions of wall turbulence,

and given that boundary layers, channel flows, and pipe flows have different

geometrical constraints it would not be surprising to see differences in the structure

and organization of the outer layer turbulence, and its interaction with the near-wall

motions.

Further from the wall, some studies have reported the appearance of a second peak

(the so-called ‘outer peak’) at high Reynolds number. For instance, Morrison et al.

(2004) observed its appearance in pipe flows for Reτ > 8560. These measurements

covered the range 1.8 × 103 6 Reτ < 101 × 103, and used hot-wires with 14.1 <

ℓ+ < 385, where ℓ+ = ℓuτ/ν, and ℓ is the wire length (the lowest Reynolds number

case at Reτ = 1500 has been excluded since it has been found to have a poor low-

velocity calibration). The effects of spatial filtering in this investigation were obviously

substantial at the higher Reynolds numbers, especially near the wall, and preferential

filtering of near-wall data could have led to the appearance of a ‘false’ outer peak

(Hutchins et al. 2009). To more precisely establish the nature of this outer layer

behaviour, spatial filtering effects need to be minimized. In this respect, Hutchins et al.

(2009) and Smits et al. (2011b) demonstrated that to avoid all spatial filtering effects

close to the wall ℓ+ must be smaller than 4. Smits et al. (2011b) further showed

that the requirements on ℓ+ can be relaxed linearly with the distance from the wall

outside the inner peak, and proposed a correction for inadequately resolved data for

wall-bounded flows on smooth surfaces.

1.2. Scaling of transitionally and fully rough flows

One of the more important concepts for the understanding of turbulent flows over

rough surfaces is Townsend’s hypothesis (Townsend 1976), which states that if the

height of the shear layer, R, is much larger than the roughness height, k, the only

effect of the roughness is to change the boundary condition by changing the wall shear

stress. In all other respects, the flow far from the roughness elements is independent

of the wall roughness. That is, when the mean flow and turbulent fluctuations are

scaled by the friction velocity the profiles are universal, although the mean velocity

profile in inner coordinates will be shifted downward by an amount that depends on

the roughness.
Townsend’s hypothesis has been confirmed by many authors (see for example Flack,

Schultz & Shapiro 2005; Kunkel, Allen & Smits 2007; Allen et al. 2007), although
some studies found the geometry of the roughness to be important through its effect
on the turbulence, especially in the transitionally rough regime. Jiménez (2004) noted
that most of these studies had large values of the relative roughness ratio k/R, and he
proposed that the influence of the geometry of the roughness on the outer flow should
diminish as k/R → 0 since the information of the roughness reaches the outer flow
after a long series of eddy interactions. He further stated that high-quality experiments
are needed with simultaneous small k/R and large k+ values, which implies very high
Reynolds numbers. This was attempted by Kunkel et al. (2007), who investigated the
validity of Townsend’s hypothesis by comparing measurements taken in two pipes with
different surface roughness for Reynolds numbers up to Reτ = 100×103. One pipe was
smooth (k+

rms < 0.25), and other was rough so that k/R = 3.9 × 10−5 with k+
rms up to 11,

where krms is the root mean square roughness height (Shockling, Allen & Smits 2006).
The results supported Townsend’s hypothesis, but the authors noted that experimental
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errors due to, for example, spatial and temporal filtering of the hot-wire signal added
to the uncertainty, especially close to the wall where the two flows showed significant
differences.

1.3. Current study

Here we present experimental results and scaling of turbulent pipe flow, and compare
hydraulically smooth, transitionally rough and fully rough flows at very high Reynolds
numbers with small relative roughness. To minimize the effects of spatial and temporal
filtering, a new nanoscale thermal anemometry probe (NSTAP) was used to acquire
the streamwise velocity component (Bailey et al. 2010; Vallikivi et al. 2011). The
smooth-wall results were previewed by Hultmark et al. (2012), but the rough-wall
results are presented here for the first time.

2. Experiments

Measurements of the streamwise component of the instantaneous velocity were
obtained for 2.0 × 103 6 Reτ 6 101 × 103. The experiments were conducted in the
Princeton University/ONR Superpipe, described in detail by Zagarola & Smits (1998)
and Langelandsvik, Kunkel & Smits (2007).

Two different test pipes with different relative roughnesses were used, one ‘smooth’
and one ‘rough’. The smooth pipe was the same as that used by Zagarola & Smits
(1998) and McKeon et al. (2004), and Morrison et al. (2004), with an average inner
radius of R = 64.68 mm and a surface roughness of krms = 0.15 µm, resulting in a
relative roughness of krms/R = 2.3 × 10−6. This pipe has been previously demonstrated
to be hydraulically smooth for Reτ < 217 × 103, which includes all Reynolds numbers
tested in the current study. The rough pipe was the commercial steel pipe used
by Langelandsvik et al. (2007) with an average inner radius of R = 64.92 mm
and a surface roughness krms = 5 µm, giving krms/R = 7.7 × 10−5. Langelandsvik
et al. demonstrated that this pipe is hydraulically smooth up to Reτ ≈ 13 × 103 and
fully rough for Reτ > 101 × 103.

For both pipes the measurement station was located 392R downstream from the
entrance, to ensure fully developed flow. The streamwise pressure gradient in the pipe
was measured with 21 pressure taps over a distance of 50R to obtain the friction
velocity, uτ . The flow conditions examined in this study are listed in table 1 and the
estimated experimental uncertainties are listed in table 2.

In order to acquire data with adequate spatial and temporal resolution, NSTAPs were
used for all velocity measurements reported here. Bailey et al. (2010) reported the first
successful NSTAP measurements in grid turbulence, using a probe with sensing length
ℓ = 60 µm. The design and the manufacturing process of the probe has since been
greatly improved by Vallikivi et al. (2011), who also used the newly designed probe to
make measurements in a pipe flow at relatively low Reynolds numbers. An image of a
representative 60 µm probe of the new design is shown in figure 1.

The NSTAP was operated using a Dantec StreamLine constant temperature
anemometry system in the 1:1 bridge mode with an external resistor heating the
NSTAP to a wire temperature of approximately 450 K. The frequency response, as
measured by the usual square wave test, was always above 150 kHz in still air, which
increased to more than 300 kHz at the highest Reynolds number. The data were low-
pass filtered using an eighth-order Butterworth filter at 150 kHz and digitized using a
16-bit A/D board (NI PCI-6123) at a rate of 300 kHz. The initial distance between the
wall and the wire, y0, was determined using a depth-measuring microscope (Titan Tool
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Case ReD Reτ pg

(atm)
〈U〉

(m s−1)
ν/uτ

(µm)
ℓ

(µm)
ℓ+ y0

(µm)
y+

0 k+
rms

1 81 × 103 1985 0 9.48 33 60 1.8 14 0.4 0.00
2 146 × 103 3334 0.67 10.1 19 60 3.1 14 0.74 0.01
3 247×103 5412 2.40 8.40 12 60 5.0 14 1.2 0.01
4 512×103 10 481 5.43 9.37 6.2 60 9.7 14 2.3 0.02
5 1.1 × 106 20 250 10.8 10.5 3.2 60 18.8 14 4.4 0.05
6 2.1 × 106 37 690 22.5 10.5 1.7 60 35.0 14 8.2 0.09
7 4.0 × 106 68 160 45.6 10.4 0.95 60 63.2 14 15 0.16
8 4.0 × 106 68 371 45.9 10.3 0.95 30 31.7 35 37 0.16
9 6.0 × 106 98 190 69.7 10.6 0.66 30 45.5 28 43 0.23
10 993×103 19 316 6.88 14.8 3.4 60 17.9 28 8.5 1.49
11 2.0 × 106 36 676 13.3 16.3 1.8 60 33.9 28 16 2.82
12 3.8 × 106 69 118 22.7 19.2 0.93 60 63.9 28 30 5.32
13 5.6 × 106 100 530 34.3 19.2 0.65 60 92.9 28 44 7.74

TABLE 1. Experimental conditions. Cases 1 to 9 were measured in the smooth pipe, and
cases 10 to 13 were measured in the rough pipe. Here, pg is the pipe gauge pressure, and
y0 is the measurement location nearest to the wall.

Source Uncertainty ±

Pressure (static and total) 0.4 %
Temperature 0.1 %
Atmospheric pressure 0.2 %
Density, ρ 0.3 %
Dynamic viscosity 0.4 %
Friction velocity, smooth flow, uτ 0.8 %
Friction velocity, rough flow, uτ 1.6 %
Viscous length scale, ν/uτ 0.9 %
Wall-normal position zero, y0 5 µm
Wall-normal position accuracy, y 10 µm m−1

Distance between Pitot and hot-wire 15 µm
Wall-normal distance in inner scaling, y+ 0.53 + 0.9 %
Calibration error due to calibration velocity 0.4 %
Calibration error due to curve fitting 1.8 %
Mean velocity derived from hot-wire, U 2.2 %
Mean velocity in inner scaling (smooth), U+ 2.3 %
Mean velocity in inner scaling (rough), U+ 2.7 %

Variance of velocity, u′2 3.0 %
Variance of velocity in inner scaling (smooth), u2+ 3.4 %
Variance of velocity in inner scaling (rough), u2+ 4.7 %

TABLE 2. Uncertainty estimates.

Supply, Inc.). A stepper motor traverse with an encoder resolution of 0.5 µm (SENC50
Acu-Rite Inc.) was used to position the probe.

The NSTAP was calibrated using the pressure difference between a 0.89 mm Pitot
tube and two 0.4 mm static pressure taps located in the pipe wall. The pressure
difference was measured using four different pressure transducers depending on the
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Wire

FIGURE 1. Scanning electron microscope image of a typical 60 µm NSTAP. The probe is
mounted on a wax substrate for imaging (seen in background).

Reynolds number. For the lowest Reynolds number, a Datametrics 1400 transducer

with a 2488 Pa range was used, and for the higher Reynolds numbers two different

Validyne DP15 transducers with ranges 1379, 8618 and 34 473 Pa were employed.

The Pitot tube measurements were corrected for static tap Reynolds number effects

with the correlation proposed by McKeon & Smits (2002) and for viscous effects

using the correlation identified by McKeon et al. (2003). The streamwise pressure

gradient was acquired using a 133 Pa MKS Baratron transducer for the lowest

Reynolds number and a 1333 Pa MKS transducer for the higher Reynolds numbers.

Each pressure transducer was individually calibrated over its full range. The ambient

fluid temperature change during a given profile ranged from 0.3 to 2.0 ◦C over the full

Reynolds number range, and the data were corrected using the temperature correction

outlined by Hultmark & Smits (2010). The rest of the experiment closely followed the

procedures described by Hultmark et al. (2010).

The NSTAP manufacturing process improvements reported by Vallikivi et al. (2011)

also allowed further reduction in the sensing length of the probe to ℓ = 30 µm,

although there is a corresponding reduction in wire aspect ratio. The analysis of

Hultmark, Ashok & Smits (2011) demonstrated that end-conduction effects reduce

with Reynolds number such that the sensing length of a hot-wire probe can be

halved with a 15-fold increase in the Reynolds number based on sensing wire width,

Rew. No evidence of end-conduction effects were observed for the 60 µm NSTAP

measurements by Bailey et al. (2010) at Rew ≈ 2, and therefore we can expect that

the 30 µm NSTAP used here will continue to be free of end-conduction effects as

long as Rew > 30, which in the current experiments corresponds to Reτ > 36 × 103.

To verify the operation of the 30 µm NSTAP, we compare the streamwise Reynolds

stress profile measured by this smaller probe with that measured by the 60 µm NSTAP

at Reτ = 68 × 103 (cases 7 and 8 in table 1), where the ℓ+ values are 31.7 and

63.2, respectively. Figure 2 demonstrates a convincing agreement between two probes,

following application of the Smits et al. (2011b) correction for spatial filtering effects.

The end-conduction effects appear to be negligible for the 30 NSTAP (at least for

Reτ > 68 × 103), indicating that the 30 µm wire therefore is suitable for measuring at
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FIGURE 2. Comparison between 60 µm NSTAP (solid symbols) and 30 µm NSTAP (hollow
symbols) in smooth-wall pipe flow at Reτ = 68 × 103 following correction for spatial filtering
effects.

these Reynolds numbers. To minimize spatial filtering effects at the higher Reynolds
numbers, therefore, NSTAP probes with 30 µm sensing length were employed.

3. Results and discussion

3.1. Mean velocity

The mean velocity profiles for all Reynolds numbers in the smooth and rough pipes
obtained using NSTAP are shown in figure 3, plotted in inner coordinates. For the
smooth-wall dataset, it is clear that inner scaling collapses the data well up to the
wake region whereas the rough-wall pipe, as expected, demonstrates a progressive
downward shift of the profiles as k+

rms increases. In all cases, the profiles display the
anticipated region of logarithmic dependence given by

U+ =
1

κ
ln y+ + B − 1U+, (3.1)

where 1U+ is the Hama roughness function (Hama 1954), and κ and B are the
von Kármán and additive constants, respectively. The values κ = 0.39 and B = 4.3
represent a reasonable fit to the present data, and they are consistent with the values
used in the recent study by Marusic et al. (2013). As they note, the value of κ = 0.421
obtained by McKeon et al. (2004) in the Superpipe using Pitot tubes exceeds the
estimated uncertainty in κ of ±0.02, but for purposes of comparison we retain the
values used by Marusic et al. (2013). The possible reasons for differences among these
estimates of κ and B are the subject of a separate study.

The Hama roughness function 1U+ accounts for the shift in mean velocity profiles
described by Townsend (1976). Its magnitude depends on k+

rms and the particular nature
of the roughness. The value of 1U+ as a function of the equivalent sand grain
roughness height, ks, is compared in figure 4 to that found in the same pipe by
Langelandsvik et al. (2007), who used Pitot tubes to acquire the mean velocity data.
Langelandsvik et al. found that k+

s = 1.6k+
rms, which, given the good agreement shown

figure 4, was also assumed for our experiments.
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FIGURE 3. Mean velocity profiles for (a) smooth-wall and (b) rough-wall cases: ,
Reτ = 2.0 × 103; ▽, Reτ = 3.3 × 103; ⊲, Reτ = 5.4 × 103; △, Reτ = 10.5 × 103; �,
Reτ = 20.3 × 103; ♦, Reτ = 38 × 103 (smooth), Reτ = 37 × 103 (rough); ⊳, Reτ = 68 × 103

(smooth), Reτ = 69 × 103 (rough); ©, Reτ = 98 × 103 (smooth), Reτ = 100 × 103 (rough).
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FIGURE 4. Hama roughness function as a function of non-dimensionalized roughness height
k+

s = 1.6k+
rms from current study (hollow symbols) and from Langelandsvik et al. (2007) (solid

symbols).

To better examine the range of applicability of this logarithmic scaling we define the
functions

Ψ1 = U+ −
1

κ
ln y+ − B − 1U+ (3.2)
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FIGURE 5. The function Ψ1 defined by (3.2) for the three highest Reynolds numbers:
(a) smooth pipe; (b) rough pipe. Symbols as in figure 3. The vertical line in (a) indicates
y+ = 800; vertical lines in (b) indicate y/R = 0.02.

and

Ψ2 = U+
cl − U+ +

1

κ
ln

[ y

R

]

(3.3)

for the velocity profiles in inner and outer coordinates, respectively. Figure 5 shows
the variation of Ψ1 for the three highest Reynolds number cases for both smooth
and rough pipes and figure 6 shows the corresponding variation of Ψ2. To better
extract the range of validity for the log law, the value of κ used to evaluate Ψ1 and
Ψ2 for each profile was the one determined from a regression fit within the range
1000 < y+ < 0.1Reτ for that particular profile. In all cases, the regression fit value was
within the uncertainty limits of κ = 0.39 ± 0.02.

In figure 5(a), the lower bound of the logarithmically scaled region appears at
y+ ≈ 800 with the upper bound at y/R ≈ 0.15 as illustrated in figure 6(a). As shown
in figure 6(b), this upper bound describes the upper limit of the logarithmically scaled
region for the rough cases as well. However, figure 5(b) indicates that the lower limit
for the rough cases is not fixed in inner units and instead appears to be fixed at
y/krms ≈ 260 (y/R ≈ 0.02) as shown in figure 6(b). Given that the upper extent of
the roughness sublayer can be expected to be driven by the inertial eddies introduced
by the roughness elements, it is perhaps not surprising that the lower limit scales
with krms rather than ν/uτ . The value of 260 greatly exceeds the expected extent
of the roughness sublayer (2–5krms) described by Raupach, Antonia & Rajagopalan
(1991), suggesting a much greater region of influence of roughness in the present case.
However, considering that viscous effects for the smooth pipe are noticeable up to
y+ = 800, or ∼200 times the viscous sublayer thickness, it is not unreasonable that
the effects of roughness extend over a similarly large distance (in terms of roughness
heights) from the wall.

3.2. Streamwise Reynolds stress

Profiles of the streamwise Reynolds stress u2+ = u′2/u2
τ for the smooth-wall and rough-

wall pipes at all Reynolds numbers are shown in figure 7(a,b).
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FIGURE 6. The function Ψ2 defined by (3.3) for the three highest Reynolds numbers:
(a) smooth pipe; (b) rough pipe. Symbols as in figure 3. The vertical line in (a) indicates
y/R = 0.15; vertical lines in (b) indicate y/R = 0.02 and y/R = 0.15.
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FIGURE 7. Inner-scaled streamwise Reynolds stress profiles in the (a) smooth pipe and
(b) rough pipe. The same profiles corrected for spatial filtering effects following Smits et al.
(2011b) are shown in (c) and (d) respectively. Symbols as in figure 3.

Consider first the effects of spatial filtering. Table 1 shows that the requirement
ℓ+ < 4 is only met at the lowest two Reynolds numbers even with the NSTAP, and
the maximum value of ℓ+ was 46 for the smooth case and 93 for the rough case
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at Reτ = 105. To compensate for spatial filtering effects in the smooth-wall data, the
correction proposed by Smits et al. (2011b) was applied, as shown in figure 7(c). For
the rough-wall data, the effects of spatial filtering are potentially more severe, but
the correction proposed by Smits et al. has not been validated for measurements over
rough walls. Instead, we use this correction to estimate where spatial filtering may
become important. Figure 7(d) shows the corrected rough-wall data, but from now on
we will only consider the uncorrected rough-wall data where the magnitude of the
correction (if it were applied) would be less than 3 %. In general, it is apparent from
figure 7 that the spatial filtering effects are mostly confined to the near-wall region
(y+ < 200), leaving the logarithmic and wake regions essentially unaffected.

3.3. Inner and outer peaks in the Reynolds stress

For the corrected smooth-wall profiles given in figure 7(c), it is evident that the
magnitude of the inner peak is invariant with Reynolds number, within the range
of 9.0 ± 0.3, agreeing with the expected u2+ measurement uncertainty of ±0.3 at
this location. This observation applies for 3.3 × 103 < Reτ < 20 × 103 (for higher
Reynolds numbers the inner peak was below the measurement point closest to
the wall). Note that this value is somewhat higher than those previously reported
in lower Reynolds number studies in this facility: 7.7 using uncorrected hot-wire
probes for 691 < Reτ < 3336 (Hultmark et al. 2010), and 8.1 using an NSTAP for
1133 < Reτ < 3312 (Vallikivi et al. 2011). It is possible, therefore, that the uncertainty
in measuring u2+ is concealing a slow growth of the inner peak. This problem is
compounded by the temporal resolution required to fully capture the turbulence, which
may help to explain the differences between the two low Reynolds number datasets
because the usual frequency response of a hot-wire is considerably lower than that of a
typical NSTAP.

3.4. Logarithmic scaling in the Reynolds stress

Logarithmic scaling of the turbulent fluctuations was first proposed by Townsend
(1976), who used the attached eddy hypothesis to show that the streamwise and
spanwise Reynolds stresses should follow the logarithmic variation given by

u2+ = B1 − A1 ln
[ y

R

]

(3.4)

within a region where the eddies scale on y, that is, within the overlap region where
the mean velocity displays logarithmic scaling. Subsequently, Perry & Abell (1977)
used a similarity analysis of the spectral behaviour of turbulence in smooth and rough
pipe flows to suggest that, in the overlap region,

u2+ = B1 − A1 ln
[ y

R

]

− F(y+)
−0.5

(3.5)

with B1 = 3.53, A1 = 0.8 and F = 6.06. The viscous term was intended to capture the
contribution of the smallest eddies to the total intensity such that (3.5) asymptotes to
(3.4) at sufficiently high Reynolds number. Perry, Henbest & Chong (1986) refined the
constants to suggest B1 = 2.67 and A1 = 0.9. These pipe flow studies were performed
at relatively low Reynolds numbers (1610 6 Reτ 6 3900), and therefore the viscous
correction term was always significant.

As first noted by Hultmark et al. (2012) for the smooth-wall cases, the
Superpipe results provide strong support for the existence of logarithmic scaling
of the streamwise turbulence component within the overlap layer. To illustrate this
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FIGURE 8. Outer-scaled streamwise Reynolds stress profiles of the four highest Reynolds
numbers of (a) smooth-wall and (b) rough-wall datasets. Symbols as in figure 3, with the solid
line indicating (3.4).

result, the streamwise Reynolds stress results are shown in figure 8(a) using outer
scaling, displaying only the results for y+ > 100 and for the four highest Reynolds
numbers, where F(y+) is negligible. The corresponding rough-wall results are given
in figure 8(b). The outer peak is readily apparent as a distinctive feature of both
smooth and rough pipe flows, and it seems to be particularly well delineated in the
rough-wall cases. However, unlike the smooth-wall cases, where the location of the
outer peak appears to depend on Reynolds number (Hultmark et al. 2012), the outer
peak for the rough-wall cases seems to be located at a fixed value of y/krms = 100
(y/R = 0.008), at least for the three highest Reynolds numbers. These figures also
highlight the emergence of a logarithmic region for u2+ in both smooth-wall and
rough-wall flows. A regression fit of the data between y+ = 1500 and y/R = 0.11
returns A1 = 1.24 ± 0.10 and B1 = 1.48 ± 0.30 for the smooth-wall cases, and
A1 = 1.26 ± 0.05 and B1 = 1.53 ± 0.20 for the rough-wall cases. Equation (3.4) with
these coefficients is shown in figure 8(a,b) for comparison. Note that for a range of
boundary layer flows, Marusic et al. (2013) gave A1 = 1.26.

To better examine the range of applicability of this logarithmic scaling we define a
function

Ψ3 = u2+ + A1 log
y

R
− B1. (3.6)

Figure 9 displays Ψ3 as a function of inner and outer scaling for the smooth-wall
(figure 9a,b) and rough-wall cases (figure 9c,d). For the smooth pipe, within the
scatter of the data, the streamwise Reynolds stress follows logarithmic scaling over the
same region where the mean flow displays logarithmic scaling (800 < y+ < 0.15Reτ ).
For the rough pipe, the upper limit for the logarithmic region appears at y/R = 0.15,
with the lower limit scaling with krms (or R) rather than ν/uτ , as in the case of the
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FIGURE 9. Function Ψ3 defined by (3.6). Smooth wall: the three highest Reynolds numbers
in (a) outer scaling, (b) inner scaling. Rough wall: the three highest Reynolds numbers in
(c) outer scaling, (d) inner scaling. Symbols as in figure 3. The vertical dashed lines in (a) and
(b) mark the location where y/R = 0.15, and y+ = 800 respectively. In (c) the vertical dashed
lines indicate the locations where y/krms > 260 and y/R > 0.15.

mean flow. The lower limit appears at y/krms = 260 (y/R = 0.02) with a consistent

deviation below logarithmic scaling between y/krms = 100 and 260 for all the rough-

wall cases. At sufficiently high Reynolds number, these results for the rough pipe

indicate that the Reynolds stress obeys outer scaling for y/krms > 260, and there is an

overlap between inner and outer scaling between y/krms > 260 and y/R < 0.15.

The mean velocity and the streamwise Reynolds stress distributions are shown

together in figure 10, where the wall-normal locations corresponding to the upper and

lower limits of the logarithmic mean velocity and Reynolds stress variation are marked

by dashed lines. We see that the mean velocity and the turbulence intensity display

their respective logarithmic variations over essentially the same range of wall-normal

distances. This duality occurs for the smooth- and rough-wall experiments.

For the smooth-wall cases, we have seen that inner scaling in u2+ is observed for

y+ < 80, and outer scaling is observed for y+ > 800. The intermediate range between

these two limits approximately corresponds to that of the power-law-like region in the

mean flow, suggesting that in this region the mean flow follows inner scaling, even

though there is insufficient scale separation for the fluctuations to form an overlap

region: dissipative scales are not fully separated from the energy-containing scales. It

was found that the onset of outer scaling, that is, the lower limit of the logarithmic

region, corresponds (approximately) to the location where y/η ≈ 100, where η is the

Kolmogorov length scale, which gives an estimate of the required scale separation.

These observations are consistent with the mesolayer described by Hultmark (2012),

which shows up as an offset in the logarithmic behaviour of the fluctuations. This

concept is also consistent with the presence of a viscous term, as included by
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FIGURE 10. Comparison of mean (hollow symbols) and streamwise Reynolds stress (solid
symbols) profiles for: (a) smooth-wall pipe at Reτ = 38 × 103; (b) rough-wall pipe at
Reτ = 37×103; (c) smooth-wall pipe at Reτ = 68×103; (d) rough-wall pipe at Reτ = 69×103;
(e) smooth-wall pipe at Reτ = 98 × 103; (f ) rough-wall pipe at Reτ = 101 × 103. The solid
lines represent (3.1) and (3.4) and dashed lines indicate their region of validity.
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FIGURE 11. Cross-plot of streamwise Reynolds stress and mean velocity data for (a) smooth-
wall and (b) rough-wall datasets, for the four highest Reynolds numbers and y+ > 100.
Symbols as in figure 3, with the solid line indicating (3.8).

Perry et al. (1986) in (3.5), since both terms act to reduce the fluctuations compared to
the logarithmic equivalence closer to the wall.

3.5. Cross-plotting logarithmic region data

We have seen that the mean velocity and the streamwise turbulence intensity each
display logarithmic behaviour over the same spatial extent. In this region, an outer-
scaled log-law must also be valid for the mean velocity, where

U+
CL − U+ = −

1

κ
ln

y

R
+ B∗, (3.7)

where U+
CL is the inner-scaled mean centreline velocity and B∗ is another empirical

constant, found here to be approximately 1.0. Equation (3.7) and (3.4) yield

u+2 = B1 − A1κB∗ + A1κ(U+
CL − U+). (3.8)

That is, the variance in the logarithmic region should be a linear function of the
velocity defect. This representation removes the uncertainties due to 1U+, with the
further advantage that any uncertainties in the wall position are eliminated because the
fluctuations and the mean are measured at the same point. Figure 11, for y+ > 100,
shows that the data follow this linear variation, particularly for the three highest
Reynolds numbers, where the viscous damping term of (3.5) is negligible. This result
contradicts conventional gradient diffusion arguments, where the stresses are related to
velocity gradients instead of velocity differences.

3.6. Higher-order moments of streamwise velocity

We now explore the behaviour of the higher-order moments, especially the third- and

fourth-order central moments, u3+ = u′3/u3
τ and u4+ = u′4/u4

τ , respectively. Morrison
et al. (2004) found no evidence of scaling of the higher-order moments but their
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FIGURE 12. Profiles of skewness from the (a) smooth and (b) rough pipes in outer
coordinates for the three highest Reynolds numbers. (c,d) Corresponding flatness profiles
for smooth and rough pipes respectively. Only data points above y+ = 100 are shown for
clarity. Symbols as in figure 3.

results were potentially dominated by spatial filtering effects and, as observed by

Bailey et al. (2010), spatial filtering effects become more significant with increasing

order of moment. Although the NSTAP offers an improvement over conventional hot-

wires, for the majority of the Reynolds numbers measured ℓ+ > 4, and therefore the

effects of spatial resolution cannot be neglected on the higher-order moments. Hence,

we limit the analysis to wall-normal locations where the spatial filtering correction of

Smits et al. (2011b) predicts attenuation of u2+ to less than 3 %.

The skewness and flatness profiles are shown for the three highest Reynolds

numbers in figure 12 for y+ > 100 using outer coordinates. At these high Reynolds

numbers, the results depend only weakly on Reynolds number and roughness effects.

Although the flatness remains approximately constant throughout the logarithmic layer,

the skewness varies over the same range of y/R, and it does not appear that the pipe

flow results follow the same self-similar behaviour in the logarithmically scaled region

observed in turbulent boundary layers (Tsuji, Lindgren & Johansson 2005).

As to the flatness, for a Gaussian distribution we expect it to be equal to 3, so that

u2+ = (u4+/3)
0.5

. We see from figure 12 that the flatness in the logarithmic region is

constant at a value of ∼2.7, so we explore the wall-normal dependence of (u4+)
0.5

(see

also Meneveau & Marusic 2013). Figure 13 shows that there is strong support for the

existence of a logarithmically scaled region in (u4+)
0.5

over the same Reynolds number
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FIGURE 13. Profiles of (u4+)
0.5

from the (a) smooth and (b) rough pipes in outer coordinates.
Symbols as in figure 3, with data points below y+ = 800 for the smooth-wall flow and
y/krms = 260 for the rough-wall flow indicated using solid symbols. For clarity, only the four
highest Reynolds numbers are shown and only for y+ > 100. The solid line is (3.9).

range where logarithmic scaling is evident in u2+, closely following

(u4+)
0.5 = D1 − C1 log

[ y

R

]

, (3.9)

with D1 = 2.78 ± 0.46 and C1 = 1.98 ± 0.16 for the smooth pipe and D1 = 2.83 ± 0.25

and C1 = 2.00 ± 0.06 for the rough pipe. Note that for the smooth wall, B1

√
3 = 2.6 ≈

D1, and A1

√
3 = 2.17 ≈ C1, as expected if the probability density function followed a

normal distribution (we obtain 2.73 and 2.05 if instead we use 2.7, the measured value

of the flatness). Similar results are found for the rough-wall experiments.

Figure 13 also indicates that, for sufficiently high Reτ , this logarithmic region

extends over the same range of wall distance as for the mean velocity and Reynolds

stress. To illustrate this point, the data points that lie below the lower logarithmic

limits have been indicated in figure 13 using solid symbols. It therefore appears that

the logarithmic scaling extends beyond the second moment due to the near-normality

of the velocity probability density function in the log layer.

Returning to the skewness behaviour, Mathis, Hutchins & Marusic (2009) noted that

there is an indication that the skewness reflects modulation of the near-wall flow by

outer-scaled eddies. Similarly, the lack of scaling in the even moments within the

logarithmic region at lower Reynolds numbers may indicate a significant interaction

between the outer-scaled and inner-scaled eddies due to insufficient scale separation.

Interestingly, once a logarithmically scaled region forms, figures 12 and 13 reveal

that the location where the outer peak forms at high Reτ closely corresponds to the

location where u3+ = 0. Hence, it would appear that the outer peak is related to the

modulation of the near-wall flow. We also note that, although potentially attributable
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to experimental uncertainty, the weak Reynolds number dependence in u3+ in the outer
and logarithmic layers suggests that complete similarity does not exist.

4. Conclusions

Measurements of the streamwise component of the velocity were performed in
fully developed pipe flow for two pipes with different surface roughness conditions;
one machined to provide a hydraulically smooth surface and the other consisting
of a commercial steel pipe with irregular elements of small relative roughness.
Measurements were made over a very large range of Reynolds numbers using a
NSTAP to minimize contamination of the results by spatial and temporal filtering
effects.

A strong duality between the scaling of the mean velocity profile and the turbulence
fluctuations was observed, with an inner-scaled region extending to y+ ≈ 50 occupying
the same span as the combination of the viscous sublayer and the buffer region in the
mean velocity profile. A wake region in the turbulence intensity scales with y/R and
extends outwards from y/R > 0.15, similar to that of the mean flow. More interestingly,
logarithmic behaviour of the streamwise Reynolds stress under hydraulically smooth,
transitionally rough, and fully rough conditions was observed for Reynolds numbers
higher than Reτ > 20 × 103, in a region corresponding to the logarithmic scaling in the
mean flow. This extends the results by Hultmark et al. (2012) to include transitionally
rough and fully rough flows. In addition, in this region of logarithmic scaling, the
streamwise turbulence intensity scales with the mean velocity defect, which contradicts
conventional eddy viscosity or mixing length arguments.

It was observed that the nature of the interface between the inner-scaled near-
wall region and outer-scaled logarithmic region produces a peak in the streamwise
Reynolds stress distribution, which appears at the same Reynolds number where the
logarithmic region becomes established. This confirms earlier observations in high
Reynolds number flows, where a similar outer peak has been noted. The onset of the
logarithmic region is found at a location where the wall distance is equal to ∼100
times the Kolmogorov length scale.

Additionally, higher-order statistics were investigated and it was shown that, in
the logarithmic region the square root of the fourth-order moment also displays a
logarithmic region in y/R, which reflects the fact that the underlying probability
density function is close to Gaussian in this region.
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