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Introduction:

The theme of this article is the interplay between logarithmic Sobolev inequalitices

and ergodic properties of stochastic Ising models.

To be more precise, let g be a Gibbs state for some potentiul and suppose
{P,: t > 0} is the semigroup of an associated stochastic Ising model. Then
{P,: t > 0} determines on L*g) a Dirichlet form £8. A logarithmic Sobolev ine-

quality is a relation of the form:

(LS) J flog ———dg = af5(Lf). f € L(g)
T

for some positive a {known as the logarithmic Sobolev constaat). What we do in this
article is discuss some of the implications which (L.S.) has for the ergodic theory of the

&

stochastic Ising model.

In section 1 we discuss ergodic properties from the standpoint of large deviation
theory. In particular, we introduce and compare rate functions with which one mighe
hope to measure the large derivations of the normalized occupation time functional.
The discussion here is quite general and does not rely on our having (L..5.). Even so.
we are able to draw the fo.llowiug qualitative conclusion: given any closed set T' of
non-stationary states, the probability that the normalized occupation time functional
up to time T lies in I goes to zero expouentially fast as T - ®. Obviously, this
result is more interesting in cases wlcn one knows that the only stationary measures
are Gibbs states. Utilizing the ideas developed here, we reproye here the result that in

dimensions one and two this is the case. .

Section 2 begins our use of (L.S.). In the first place. we show that a complete
large deviation principle follows from (L.S.). Second. (L.S.) provides us with a way to
estimate the size of large deviations. Finally, we provide a condition under which one

can prove not only that (L.S.) holds, but also that there is precisely one stationary




measure,

In Section 3 we begin by showing that (L.S.) plus uniqueness of g implies that
shift-invariant initial states converge to g at an exponeatial rate at least 2/a. Not-

o

ing that (L.S.) implies that HP,[f — ffdg = exp(—'-.N/cz)lli’-_]'fdgllbg“r we sec

HLQ(%) )
that this rate is the same as the one which we would predict from spectral.cousidera-
tions.

Because we only know a few very special situations in which (L.S.) holds, we
study in Section 4 what can be said if our Gibbs state is very mixing and a logarithmic
Sobolev inequality holds for each finite dimensional conditional with a logarithmic
Sobolev constant which tends to = at a certain rate as the size of the system grows.
What we find is that the type of convergence proved in section 3 (under (L.5.)) still
occurs, only now at a sub-expounential rate (depending on the behavior of the loga-
rithmic Sobolev for the finite dimensional conditionals). Section 5 is devoted to the

application of Section 4 in the case of oue-dimensional Ising models. In this case we

find that the above convergence rate is exp{—+vyt/logt} for some ¥y > 0.

It should be noted that although we have restricted ourselves here to Ising models
with continuous spins, much of what we do applies to any situation in which the
appropriate logarithmic Sobolev incqualities are available. Thus, the results of Sec-
tions 4 and 5 apply equally well to most Ising models with compact spin states. How-
ever, at the present time, the only interesting examples of models for which (L..S.)

holds are continuous spin state models.



1. Rate Functions and Large Deviations for Interacting Systems

Although many of our results are true in a more general context, for the sake of

definiteness we will restrict our attention to the setting described below.

(ALr) is a compact, oriented. C*-Ricmannian manifold of dimension N and X\

denotes the associated normalized Riemannian volume element on M.

E = M?" is given the product topology and # denotes the Borel field l*’h-_ over
E Given @ # ACZ% E,=M"* n€E-n, € E, is the natural projection of E
onto E,. and /:’A is the inverse image under m - m, of the Borel field Z?EA. Also if
p € M, (E) (the space of probability measures on (E, l»’)) and G # A C 7% then p,

denotes the marginal distribution of p on E (i.e., J ddp, = [ d(n,)r(dn) for all
Ep

& € F(E,). Given & # A CC Z¥ (i.e., A is a finite non-empty subset of Z¥), CIE)
denotes  the inverse image  under N ="M of C(Ey). Finally.
DE)= YICFE): T+ ACCzv).

A potential T is a family {Jp: @ # F CC 2'} of functions Jp € CS(E). We
will always assume that T has finite range R: Jp =0 for F CC Z, with the pro-
perty that max{|k—=!| = max [ki= 4|, k.l € F} > R, and we will use A, n 2 0. to
denote {k € Z": |k| < oR} and 8A,, n = 1, to stand for A)\A,_,. In addition. we
will always assume that J is boupded in the sense that, for each m = 0, all deriva-
tives of Jp up to order m are bounded independent of F CC Z¥. Finally we will
often assume that J is shift invariant Jp,p = JpoSY, F CC Z” and k € 2%, where
Sk: E - E is the shift inap on E induced by the lattice shift on Z”.

Given k € Z7, set

{(FCCZ¥Fok}

and define the linear operator L: 1‘(}?) - E(E) by:




Lo = 3 e'’divy(e 'V, o)
kezZ¥

where div, and V| refer, respectively, to the divergence and gradient operators oun
the k'® Riemann manifold {M.r).

For a given & # A C 7% define (§,.m,) 3 Ey X Uyc~PalEalm,d) € E so that
(Pal€alnedla = 8o and (PylEaln,dd)ye = My In particular. if & # A CC 22,

define g,: E4 X E,.~-R! by

galbaln,dd =exp(= X Jpo ®u(Exln, )
F-FnAz2D

and set

Zaln,d) = éf galEaln INA(dE,).
A

We say that g € M, (E) is a Gihhs state for the potential 7 and write g € Gy i

for each & # ACCZ% 9,.€E, .~ gA(CAl’l‘\c))\‘\(dg‘\)/zA(nAc) is a regular condi-

tional probability distribution on E, of g given I?AC (i.e., forall & € é)E:

i "ér o cba(’C/\lﬂ‘\c)g,\“z\IﬂAc))\A(ch)/zlx(ﬂAc)-
A

is the conditional expectation value of ¢ given l;’Ac).

Q = C([0,»); E) with the topology of uniform convergence on finite intervals and
77] is the Borel field /.3“ over {l. Given t =0, q(t): @ ~E is the evaluation map
at time t and M, =oc(n(s): 0ss=<1t). We say that P €\,(Q)

solves the martingale problem for I, at n € E if
t
(d(n(t)) — d(n) = J Lo(n(s)ds, 7. p)
4]

is 2 mean zero wmartingale for all ¢ € :Z\(E).



The following theorem summarizes a few of the basic facts about the situation
described above. At least when X[ is the circle, proofs can be found in [9]. For gen-

eral (\l.r), proofs have been given in the thesis of L. Clemeus [2].

(1.1) Theorem: For each m € E there is precisely one P, which solves the mar-
tingale problem for L at 7m. Moreover. the family {P,‘: N € E} forms a Feller con-
tinuous. strong Markov family. Next. set P(t,l.-) = P om(t)7!, (t.l) € [0,%)XE,
and define {P,: t =0} on 135 by P, $(L) = f¢(n)P(t,§.cln). Then for each
A CC Z" there is a continuous map (t,0) € (0,%) X E = p,(t,l.-) € C*(E,)* such that
Pa(t,8.dns) = palt.Lna)AA(dny). In fact, palt.l.ma) >0 for all

(t.Lm,) € (0.%)X EXE, and

. - [Vipalt.Lo)](ma)?
(1.2) sup max sup
geaccz k  (L1€B.IBIXE Palt.8imy)

A'X(d'ﬂA) < ®

-for each ® € (0.1]. Also if p ¢ ME), then p is {P,: t = O}-invariant (i.e.,

p=puP, t=0)if anonly if [ Lédw =0 forall ¢ € 2(E). Finally. §(T7) isa
E

non-ciupty, compact, convex subset of M(E); g€ g( :7) if and ouly if. for cach
T>0, t€[0.T]-n(t) and ¢t € [0,T] =n(T—t) have the same distribution under

P, = J pagldn) if and only if [ dLbdg = [eLddg forall .y € 2NF). In particu-
E E E

lar, for each g € g( Ty {P,: t = 0} has a unique extension as a strongly continuous
semigroup {P3¥: t 2 0} of non-negativity prescrving seclf-adjoint contractions on

L*(gh .

g = lim L (d— = «up L (d— 2
£5¢.4) = lim —($=Pb.&) ) = sup —(6=Pid.d)o . & € Lig),

ix a Dirichlet form: and g is an extreme element of () if aud only if ¢ = E[d]

(a.s.g.) whenever ¢ € L3(g) and Z5(d.d) = 0.
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Oune of our aims in this article is to study the long time asymptotics of the nor-

malized occupation time functional

t

under the measures P,. To begin this program, we introduce Donsker and Varaduan’s

ate function [: M(E) - [0,%] given by
() = { f L“ dp, u € E) and u > 0}

Clearly 1 is lower semi-continuous (M,(E) is always given the topology of weak con-

vergence) and convex. In fact, if X\: C(E) - R! is defined by
. t
A(V) = lim l-log(sug E "[exp(f V(n(s)ds)]),
t-» t n¢ 0

then (cf. Theorem (7.18.) and Corollary (7.19) in [12] and be warned that J is used in
- place of I throughout that reference) X and I are duals of one another under the

Legendre Transform:

(1.3)  I(r) = sup{f Vdu—X(V): V € C(E)}, » € M(E),
- and

(1.4)  MV) = sup{f Vdp=I(p): » € ML)} V € C(E).
From (1.3) and (1.4) it is quite easy (cf. corollury (7.26) in [12]) to see that
(1.5) H(r) =0 ifandonly il p = uP, forall t =0

and that (cf. Theorew (8.1) in [12])

twX wé

(1.0) fim —lov \UE P (L el)= —inlf;_l(p.)

for all T € Z;’.\Il(E)' lo particalur, if T is a closed subset of M{(E} and T coutuins



no {P,: t = O}-invariant measure, then
' 1
{1.6") l:_tg --t-log f‘lelg P, (L, €T) <0

Although (1.6) aud (1.6") are themselves of some interest as they stand, they have
two serious drawbacks. First, (1.6) is incomplete in the sense that it lacks an accom-
panying lower bound. Second, I(p) does not lend itsell to easy computation or, for
that matter, even easy estimation. For these reasons, we now introduce Donsker and
Varadhan's other candidate for a rate function. Namely, given a g € g( 3), define
Je(p) for p € M(E) so that J&(w) = = if p is not absolutely continuous with

respet to g and
Igp) = ZE(IV2 1Y) if dp = Idg.

Using elementary properties of Dirichlet forms, one can check that
feLYg)* - L&) is lower semicontinuous and convex (cf. Lemma (7.40) in
[12]); from which it is clear that w € M(E) = J&(i) is convex. Ou the other hand it
does not follow that w € M(E) = J& ) is lower semi-continuous: and this cir-
cumstance is the source of the major obstruction to a general theory based on Jg.
Nevertheless, there are several interesting properties of J§ which do not rely on lower

semi-continuity. In particular, let Lf denote the generator of {Pg: t = 0} in L%g)

and define A§(V) for V € C(E) by

t
AG(V) = Itim—:’-logEP“[exp(f V(n(s)ds)).
s 0 L

Then an equivalent expression for AJ(V) is

A§(V) = sup {f\'\b'-’(lg+(¢.L_3¢)Lg(g): ¢ € Dom(L%) and IIMILg(g) =

1}.

From this second expression for Af it is easy to see that A% is the Legeundre

transform of J§:




(L.7)  NEV) = sup{fVdu — JEw): w € ME)}

Unfortunately, unless J§ is lower semi-continuous. one cannot invert (1.7) to con-
clude that J& is the Legendre transform of A& and hence that there is an upper
bound like (1.6) with I replaced by J§&. In order to explain what we can say in this
direction, define SP(g) p € [1,%] to be the set of w € M|(E) such that there exist

T, € [0.x) and’ fo[-p € LP(g) with the property that d(uPTp) = f—rpdg.

(1.8) Theorem: Let g€ g(j) ve given. If g is extreme in g(j) and

p € S!(g), then

(19) lim-1ogP,(L,€T) = = inf Igm). T € By

On the other hand, if J§ is lower semi-continuous and p € [} SP(g), then
pE{L=)

(110) @ logP,(L,€T) < = inligim), T € By gy

In particular, if g € ext( g(f])) and Jg is lower semi-continuous, then for all

p € ) SP(g)and @ € C(M(E)):
pE(1.=)

(1.11) lim—l-logEP“[exp(t-ﬁb(L,,))]

tex

= sup {P{m) — J&m): m € N (E)}.

Proof. Suppose g € ext| g( J)). Then. forall & € L3(g). £3(.d) = 0 if and only
if ¢ i m-almost surely constant. Heuce, by the same argument as is used to prov-o
Theorem (&.2) in [12]. (1.9) can be shown to hold for all p € M(E) with p << g.
Thus, if p € SYg), then there is a T € [0.®) such that (1.9) holds when p s
replaced by pp = uPp. But if 64 2 -Q denotes the time shift map, then

Pﬁj],,ér') = P,(L,e87:€T) and clearly HL,=L,00pll,, < 2T/t. Hence, if m € imtT

var

and B is an open peighborhood of m such that B is a positive variation norm
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distance from T¢ then

lim- 10gP,(L,€T) = Lim=" logP,(L,: 87€B)

twx t-o

= 1!1_13_%- logP, (LR = = infJH(B) = - If(m).

Next. assume that J§ is lower semi-continuous. Then, by Lemma (8.18) in {12]

—1 .
— o r < - . m .
Iim n loapg(LtE ) ,l;[e‘f‘l"“.")

[

Hence, if dp= fdg where f € LP(g), then. by Holder's inequality:

"—-—1— o ™ < - —1— g
l:_l.!i " logP, (L, €T) = rln[:%p, J&(m),

where p’ is the Holder conjugate of p. Now suppose that pw € [} SP(g). Then. for
& pE(l,=)

each p € [l.=) thereisa T, € [0.%) such that

oL S Y
lim " IODP“Tp(LQEF) = o r:][:t;_.lq(m).

Lo

By the same reasoning as was used in the preceding paragraph, we can now conclude

that for any € > 0:
1 —
(1.12) Tm - logP,(L, € ) = l:g-i—p“Tp(L, €I

<--L inf J&(m),

’

P mere

where T = {n’:lp=pn'll,,, < € for some p €T} Since (1.12) Lolds for all

p € il,w), ) .

——-—_l_ - _ g
ltm " logP (L, €T) = ":éxlt; J& m)

L

for all € > 0, and clearly (1.10) results from this and the lower semi-continuity of JI§.

Q.E.D.
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Compuring (1.10) and (1.6). one is inclived to ask whether [ and I3 are not

closely related. A partial answer is provided in the work of Dousker and Varadhan.

Namely. one has (¢f. Theorem (7.44) in [12]) that

(1.13) () < J5(p). w € M(E)

and that

(1.14) I(p) = J&w). w € M(E) with pP, << g forall t > 0.

Obviously. if (as can be the case when v = 3) G( :7) has more than one element.
then I(p) = J&(w) must fail for some p € M(E). Indeed, if g( 3) contaius more

than one element, then so does ext{ ({ .7)). Let ¢ and g’ be distinct elements of
) & 1S

ext(G( TJ). Then glg’ andso J§g') = =, whereas I(g’) = 0.

‘The difference between I and J& is, of course, a manifestation of the weak ergo-
dicity of the processes under consideration. In particular, we do not even know. in
general. that every {P,: t = O}-invariant measure is a Gibbs state. As we will now
suow. one can wake effective use of the function 1 to study such problems; namely we
use | to prove that, when v € {1,2}, every {P,: t 2 O}-invariant measure is a Gibbs
state. This result was obtained by us in [9] using the full force of Theorem (1.1): the
present proof is much more elementary (in particular we do not use (1.2)). lu scction 2
we will use similar ideas to show that, when v = 1, there are nontrivial choices of -/
for which one can show that I = Jg (when v = 1. g( 7) contains ouly one element

and so the choice of g is unambiguous).
.

In the following.. H'(E, ) denotes the Hilbert space obtained by completing

CHEL )} with respect to 1l ) given by
u

”“’”ﬂ'iﬁ.\u) = ”‘f’”i'-'n-:,,n) + z{ ”ka“l:'-'(il(‘\u))'

a

(I.15) Lemma: I[f () <=. then. for each n =0, dp.An-‘—‘fu(l)\'\“ where
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fl e H'(E.\n). In fact, thereis a B € (0.=%} such that

S uvye ' irze™iante < olp) + BlaA,|
k€A, By

Y .

for n = 1, where Hf = Ie
(FC.‘.n: F K}

Proof. 3et E, = EA:.’ Po = Ba. and X\, = Ata,

Noting that

(w)= - f La,,

En-l

for all u € C5(E,) which are strictly positive and taking ¢ = logu. we see that

(p)=z -3 fuveirde, = f Lédp,,,

k€A, E, Egey

for all ¥ € C*(E,). Next define L;: C*(E,) - C™(E,) by

Lv= ef'k divk(eﬂ’? V).

k€A,
Then. by the preceding: -

p)z =23 [fuv.yirtdg, -  Lbdg,
kea, E, E,

+ 3 J (grad¥[Vig= Vil )dp,,,

kea, E .
2 =23 [uvirde, - f Lbde,
kea E, E, *

-Ls suvnprede,,,.
k€dA, Fo.y

where M¢ = H — HP. Hence, if
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L
Flp) = sup{- | -—-;ldp.: u € CF(E,) and u > 0}
E

= sup{—kg éfHdetHfdp. - gLu‘l’dl—“ U eCTEN}

a "2

= 2sup{—~2k‘\ éfHVklefdp. - _Ef Lobdp: ¢ € CXE. )}

t**a ~a 2

for p € M(E,), then
(1.16) I°(r,) S 20(n) + B[3A,].

where

1 ”

= -5 S IV A? =,

B 2 3zt ﬂ:upr‘I LHX‘(T'AD)
kex, “a

-

To complete the proof. let {P?: t = 0} be the diffusion semigroup on C(F,)

. t
determiuned by L, (ie.. P - ¢ = fP,"Lntb(I§ for t >0 and ¢ ¢ CT(E,)) and ~et
v

gu(dnAn) = exp(— > JFMAD”)‘u(d’T‘\n)/Zr .
Fca

a

where Z = fexp(- > )AL (D, ). Then.. since
E, Fca °

féLn‘bdgn = -kz f(vk¢]vkd’)dga

E‘ €4\° E.

forall &, ¢ € C=(E,), {P2: t = 0} is the diffusion semigroup associated with the Dir-

ichlet form f, given by: .
Llvy) = k:zz Juv pirdg,
for ¢ € H'(E,). Morcover, since Ly is elliptic. P® is given by a smooth kernel.

Henee, for all w € M(E,) and t > 0. rP? << g, and so (¢f. Theorem (7.41) in [12h

Plu) <= if and ounly if dp = fdg, where f“"GH'(En). in which case
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Io(p) = £, Applying this with p = @ , our result follows now from (1.15).

Q.E.D.

(1.1I7) Theorem: If I(w)= 0. then. for each n=1, dp.An= fnd)\A“ where

flr= ¢ H'(EAn) and
(1.18) S fuve™iieyzetigata
E

k€A, _,

S BRAA T [ 9t izetign o aue,

k€A Ep. |

In particular, if v € {1,2}. then every {P,: t = 0} invariant p € M(E) is a Gibbs
state for- J , and for all v, every translation invariant, {P,: t =0} invariant

’

ik € My(E)is a Gibbs state for J.

Proof. \Ve continue with the notation used in the proof of Lemma (1.15).

Observe that (cf. [9]) once (1.18) has been proved the identification of {P,: t =0}
invariant measures as Gibbs states is quite easy. Thus we will concentrate on the
proof of (1.18). As a first st'e.p, note that (¢f. Remark (1.20) below), as a consequence
of Theorem (1.1), w = wP, implies that dp, = fyd\, where fa isa strictly positive
element of C*(E,) for each n=1. Sccondly, as in the proof of Lemma (1.15).

I() = 0 implies that

0= = 3 [JUVbiPdu,+ [ edivi(e™ ™V y)dp,, ]
E

keAﬂ ] o+l

.

for all ¢ € C*(E,). Noting that for k € Ao,
S H. . ‘H.
-J'Hdecll-du.n - f e *divi(e Wb )dp, .,
En a+l

= = JIPVWINeY g - 207 WY (M) an
En

and that for k € 3A,




PSS SO DN JNPSRG S O EE U S-S
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= [V wiltdp, - J eH“(li\’k(e~I"‘deJ)dp.u,,,,

o Ep+l

|s H/ H, /2 5
= - jnr/ WIRAA + 2 [ILE Ve T TVIT (e TAE AN
n

o+l

=~ [Ufl=v gnzdn,

o

T AL IRV S 07y R, 1,

n+1

we arrive at

> jm’“ Vi birkda,

LEBA

+20 Y fllf" “VUIEIN Y S f ”Vk(er/:r;I;ll)”‘.’.e—dexn+l]1f‘2

kesA, Ey k€3A, Epyy

2 3 [V g 2e‘“k’ka(e”k”rg’f))dxn

kea | E,
for all ¢ € C*(E,)- In particular, taking ¢ = Y, = [Fg Jp + logf,] and ncting
that
a5V, = Tz"fﬁ"?[vkl‘lf"' }kafn]

=Hfre HR2 o e
=ee KV (e X[l

for k € A, and that HP = [, for k € Ay41. the preceding together with (1.16) yields

(L19) & 3 fuvyd" Tz,
XE@A E

*2EBEBA T [ 9 IE e T a2

k€sA, E L,

z (2e=¢%) 3 fuvye™irimyize g

ke, | Eg

After dividing by € and letting € = 0. we obtain (1.18).  Q.FE.D.

2D e R T A ke e b e s e . e s A b . e 2 it 2o e ot
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(1.20) Remark: As was mentioned before, Theorem (1.17) was proved in [9] using the
estimates in Theorem (1.1), especially (1.2). In the proof given here, we have used the

much simpler fact that Py (1,m.7) adwits a smooth positive density with respect to
A, Actually we could have avoided using even this relatively elementary fuct.
Indeed. the existence of f,, n = 1, with fl”° € H'(EAQ) comes from Lemma (1.15). In
addition a mollification procedure (cf. {13]) allows one to find. for a given n =1, a
sequence {n'}n, € M{(E) such that p!-p, I(p')=I(p), d(""l)‘\uq: féﬂd)\A""
where fle, is a  strictly  positive  element  of C‘”(E%), and
H(eL, e = fi¥1!(g,,,) = 0- Hence, we could have arrived at (1.18) via a limit pro-

cedure in which p is replaced by p! and [ is allowed to become infinite.

2. Logarithmic Sobolev inequalities and Gibbs states.

In this section we give conditions which imply the existence of a logarithmic
Sobolev inequality for some Gibbs states. We then show how a logarithmic Sobolev
g

inequality allows us to prove that [ = J§ when v =1 and to obtain an upper bound

'on - uex; J&w) (and thercfore on l"xTﬁ'%—!ong(LtGF)) for :myb v when
» -
= {peM,(E): fd)du. - fd)dgze} for some ¢ €C(E) and €>0.

The theorem which gives us a logarithmic Sobolev inequality is the following.

(2.1) Theorem: Let Ric denote the Ricci curvature tensor for (M.r) and assume that
ric 2 Br (in the sense of quadratic forms) on T(M)X T(M) Tor some B €(0.=). In
addition assume that there is a y: 7Z"-[0.%) aod an 0 < e <1 such that

2 vy(k)= (1—¢€)B and
kezZv

(2.2) > [Hess(Je) V.1, V,0)]
F2(k &}




s 2 y(k=ORV v
k 1€2Y

for all k.l € Z¥ and f € . Then g{ ) contains precisely one element g. More-

o

over. if
Gapn(dla,) = 8a,(La Im A" HdLs VZ4 (0
for n =0 and 1 € E, then
(2.3) g &( L Floglld(La NNl g, )
. .

= 5 2 S V6 I, (L fn

kEl\n
for all & € C¥(E,). In particular,

(24) [ o(ZFlog([8(L)1/115,) = £e(. 4). & € L(g).

4
B
Proof. When M = 59 and g € ext( g( .7)). (2.3) and (2.4) are proved in [1]. Since

d

the general manifold case is exactly the same as when M = S¢, we will restrict our

attentioun here to the proof that g( ) contains only one element.
To prove that there is only one element in _(,’( 7). we will produce a Markov
semi-group {P,: t = 0} with the properties that every g € G( Ty is {P,: t =0}

invariant and
(2.5) lim sup. [Pd(L) = Prd(n)| =10

for cach & € D(E). To this end. define L: C=(E,) - C=(E,) By

.

Lo= 3 2%div (e ™V ¢)
k€A,

where
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HE = > Jp
(FCALF k)

and denote by {153: t = 0} the associated Markov semigroup on C(E;). Then C¥(F,)

is {P?: t = O}-invariant. Moreover, by the same reasoning as was used in [1], if

T (d.6) = é—[in¢f-2¢in¢]= S ok v eI

KeA,
and
F36.6) = LLHS.0)= 206 .Lo0)]
then
T26.6) = BTHS,6). & € C(E,).
Next, note that for each T > 0 and & € C™(E,):
'cdt_ﬁ‘nri'“—;%-t‘bv Pi_.&) = PITP 6, P2 $) v €[0.T].
Thus

TP < PRd)ile) < e STITNS.6)lIe, -

At the same time, by the mean-value theorem, there is a K € (0.%), which is indepen-

dent of n, such that

SR [W(Z)=d(n)| = KN MU 4)E ). ¥ € CI(E,).
Thus we conclude that .
(26)  sup [PRo(1)=Feotn)| = K e *BTUTH6.$)lIcre,)

forall n2 0. T >0 and & € C7(E,).

Finally., let {P,: t 2 0} be the Markov semi-group on C(E) associated with

l‘:: 17\112) - 3(!')) given by
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Lo = 3 2%edivi(e” v, a).
kezZv
Then every = € g( Ty is {E;!: t = O}-invariant (in fact. reversible). Also. for each
T >0 and ¢ € C(E. [r;'?"b“’.xn] °“.\n“ﬁ’?é nniformly on E. Hence. by (2.6).
(2.5) holds for each & € E). Q.E.D.

Note that Theorem (2.1) applies only to munifolds with a non-zero Ricci curva-
ture. For example, it applies to $%, where the Ricci curvature equals the usual metric.
Thus. in this case, if the interactio is

Blxyx) if F = {ij} with |i=jl=1

JF(X) =

0 otherwise,

then for B < —417 this process (the stochastic Heisenberg model) has a unique station-

ary mcasure, and that stationary measure, which is necessarily a Gibbs state, satisfics

a logarithmic Sobolev inequality.
Our next goal is to show that if gég(j) satisfies (L.S.) then J§ can sometimes
be used in place of [ to estimate Iixﬁ%—logP(Ltéf_). We begin by showing that, when
t-= t

v = 1, (L.S.) implies that T actually coincides with Jg (recall that, when v = 1, there
is only one gE_(](j)). To date. wo kunow of no non-trivial examples in which I = J§
when v=2 : and we cannot rule out the possibility that I = J§ whenever lg (] =1

or, at least, whenever lg (3)] = 1 aund the unique gé_(f(j) satisfies {L.S.).

We begin with the following lemma.

(2.7) Lemma. Assume that g is the only clement of G(j) and that g satisfies

(2.3). Let ultl = Ba, - 0= 1. where w €M (Q) and assume that dp/® = [ d\® where
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7(\
1 .)

sup fe "HVk(e
boke n-1

)= dA < =

>

then p << g

Proof. Let g,(-]|m) be the conditional density of g on A 4, given m € E,c Then

denoting i} by « and applying (2.3) we have

(2.8) S e v ez ga
k€A

u-1

= 3 S gglmun, )
k€A,

2102dLdy
cgcl Zlm) ¢

fy f,
a [ f i?l:)) ((éll:)) sa (M)ga(Lln)dldn .

Let h,(g) = f faAn(n)gn(gl'n)dn. Ther by Jensen's inequality applied to xlogx and
the dm integral. we bound the right side of (2.8) below by

fa- ()

(2.9) aAJ' fo-1({)logf b12)

-1

)chn-l

ml€a)

2 a [ I(ls )log(m

dLa_

for m = n—1. Here we have applied Jensen's inequality again, this time to the vari-

ables CA;."-Am’ Note that (hn)Am = 8a, 3% 0 =% by the uniqueness of the Gibbs state.

Thus

*
m
log(—")gy dEy < .

m m

f .
Therefore {——: n= 1} is uniformly integrable with respect to g. and hence
o

°Am

p << g QE.D.
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Since |8A,] does not depend on n if v = 1. from Lemma (1.13), {1.13), {1.14).

Lemmwma (2.7) and (1.6) we obtain the following theorem.

(2.10) Theorem. If v =1 and {2.3) holds. then there is percisely one gEG( 7)) and

[ = J&. In particular, in this case we have that
. 2 P _:
(2.11) IE-;(. ‘°°(§,2§P“(Lc€r”5 1¥f.}§
for-all closed T'C M () and that

(2.12) ]iim-:—log(P“(LtEI’))Z—i?fJg

for all open T'CM,(£2) and all p€Sig) -

When v=2 and (L.S.) holds, we can still give an upper bound in terms of Jg.

(2.13) Theorem. Let g€ 7)) and assume that g satisfies (L.S.). Then J§ is lower

semi-continuous and M,(2) and |J SP(g)C [} SP(g). In particular:

pe(L. = pé(l,=)
(2.14) I__lm—:-log(P,,_(L,,EF)).= ~infJg
L .

forall p€ {J SP(g).
pE(l, =}

Proof: To prove that J§ is lower semi-continuous, suppose that w ~p in M (Q) and

that supJg(pr,) < =. Then, du, = f,dg where Lol f12) = Jriw ) is bounded.
a

Hence, by (L.S.) ffulog(fn)dg is bounded and ~o {f} is uniformly g-integrable. But this

means  that  dp =fdg and that f,-f in LYg). In  particular.

T5tm) = Le RS i D010 = L I, ).

" .To see that SP(g)C U S%g) for all p€(1.=<), it suffices to check that LP(g)Cs9(g)
q€(1,=%)

for all 1<p<q<=. But, by Gross’s Theorem (cf. Theorem (9.10) in [12])
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Pl = 1 for g%‘l—se-’/M. Q.E.D.

Given gég( .'7). set I'§(d) = {uéf\ll(ﬂ):fcbdp.—f(b(lgze} for $€C(E) and €>0.
We conclude this section by showing that when g satisfies {(L.S.) then
(2.14) - inf J§< —€*/(aB(d)) . >0,
riie)
where B($)€(0,%) is a certain number which depends on & alone.
The first step in the derivation of (2.14) is the simple observation that (L.S.)
implies that

(215)  -ipfigs - i—inf{fflog(f)dg . fdg€T}.

The second step is taken in the following lemma.

(2.18) Lemmz. Let (2.3, 1) be a probability space and let & be a bounded con-

tinuous real valued function on ) such that f d(x)p(dx) = 0. Define
Q

O(a) = [ o2 p(dx).
Then for all € > 0,
inf{f fix)log(f(x))m(dx): f= 0, f f(x)p(dx) =1, and

f d(x)f(x)p(dx) = €} = sup(ae—log(P(a)))

Proof. By a theorem of Sanov (see Lemma (3.38) in [12]), for each f = 0 such that

f f{x)p(dx) = 1, we have

(2.17) J f(xllog(f(x))u(dx) = sup {J w(x)(x)n(dx)=log(f e¥™) u(dx)},

where the supremum over Y is over all bounded measurable functions . Letting ¢

be of the form Y(x) = ad(x) we see that




(2.1%) f fix)og(f(x)ipldx) = sgp{f né(x)f'h;)u(.d.\:}"log(f p24ix) pldx )}

Note that f d(x)u(dx) =0 implies that lo_g(f e*™ pfdx)) 2 0 forall a. Thus

if in addition f fix)d{x)p(dx) = €. then we have

(2.19)  f fixlog(fixNr(dx) = sup{ue—log(f 2™ u(dx))}
a
Q.E.D.

Let ¢ be a bounded coutinuous function with f d{x cr(d\) . We denote

logt [ e**™) g(dx)) by F(a)

(2.20) Corollary. If (L.S.) bolds aud if T = {u: f b(x)p(dx) = €}. € > 0. then
(2.21) —inf J8(p) = - -l-sup('xe F(a)}
wel a

Proof. This follows immediately from (2.15) and Lemma (2.16). Q.E.D.
We now let K(e) = sup{ae=F(al}. Siuce F(0) = 0 and F’(0) =0 and F(a)= 0
a

for all a2 we have K(0) = 0 and K(e) > 0 for all € > 0. Note that if G(x) = [F(x)

for all x =2 0. then
(2.22) K(e) = sup (ea—F(a)) = sup {ea—G(a}).
azu azg _

Since F(0) = F’(a) = 0 and F(a) = alldll, for all a, there is a constant. By < =.

such that F{a) = Bya® for all a = 0. Thus by (2.22). K(e) = 4‘;3'
$

forall e >0

and thus

B3 -

€~

o,

(2.23) —inf JEp) = -
wel )

The constant 4af, in i2.23) is probably not optimal, but in the case where the

Je =0 for all F (i.c., there is no interaction) one sees that “E’{- JHp) is asymptoti-
e
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cally a constant times € as € does to zero. Thus (2.23) is qualitatively correct.

We collect a few of the above observations together for easy reference in the next

two sections.

(2.24) Lemma. Let ¢ be a bounded continuous function such that

f d(x)g(dx) = 0. Then for all f = 0 such that f f(x)p(dx) = 1,
(2.25)  J &(x)f(x)gldx) = 2B(f f(x)logf(x)z(dx))*?

for any B such that log( J e*¢iig(dx)) = B%a® forall a.

Proof. Let € = f d(x)f(x)g(dx). I € = 0, then (2.25) is immediate. Otherwise from

Lemma (2.16) we have f f(x)logf(x)g(dx) = K(e) = €*/4B*. Q.E.D.

3. Free Energy:

In this section the potential T and all probability measures on Z* which occure

are assumed to be translation invariant.

The point of this section is to show that if (2.2) holds (and hence the unique
. Gibbs state admits a logarithmic Sobolev inequality), then, starting from translation
invariant initial states, the corresponding stochastic Ising model converges exponen-

tially fast to equilibrium.

Our main tool in this and the following section is Helmholtz free energy. In order
to take advantage of the translation invariance of the initial di.stlril)ution we work with
the spcciﬁc Helmholtz free eneryy (ic the energy per lattice site) in this section. In the
next section we will be concerned with one large but finite box at a time, and hence in
that section we will not need to divide the frece energy by the volume of the box in

order to keep the quantities with which we are dealing finite.
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The free energy in a box A at time t is defined as follows. Let w, be any ini-
tial distribution and let p.f“ denote the marginal distribution on M? of KoP,
If G'*(d€) is the marginal of the (unique if (2.2) holds) Gibbs state. then by Theorem

dp M)
d(G(A))

(1.1)  pV << G for all t>0. We denote

frec energy of p, on A is defined to be

(3.1) I HAE)oglfIA)€)GIM) dE)

MA

and the specific free energy of p, is given by

(3.2) lim |[A]7Y [ £fA(&)og(fIAN€))GAYdE)
A=ZY MA

If w, is translation invariant. then g, is also translation invariant and hence the

limit in (3.2) exists (possibly +e) by Theorem (7.2.7) in [11].
We need the following two facts.
(3.3) There is a constant C < = such that for all finite boxes, A, and all initial dis-

tributions w,,

I T{AYEog(F{AYENGAdE) < CIA],
MA

and

(3.4) Forall 8 >0 and all ¢ € [8.87!] there is a constant, C(8) < =, such that for

all boxes A. f{*).and logf{A) are in the domain of L and

L f raqenogrA €GN de)

< [ iME)Log A ENGIAE) + |aX[C(3),

where A = {k € Zv: dist(k.A) = R}. and 34 = A\A. (3.3) follows from (1.2) just as

Theorem (1.11) follows from Theorem (3.9) in [9]. For (3.4) see (4.21) and Lemma

[N PSP S AUV ERU PSS SRS S
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(4.22)if [9].
(3.5) Lemma. If (L.S.) holds, then for any initial distribution w, and any box A
and all t > 0

(3.6) J HMNEIL(logflAY 8 )gldE) = = - [ M E)ogfiM(E)g(dE)

Proof. Let [® be the generator of the semi-group {P®: t>0} in Theorem (1.1). Then.

for &.¢ € Dom{[3):
- foTPudg = £8(o,¥)
where ’fg(¢,¢) = i—[fg(¢+¢,¢+¢) - 2¥d-Y.b—-y¥)] and £¢ is described in

Theorem (1.1). Next, set m,(d§Xdn) = P(t,£.dn)g(dE), where P(t,£, ) is the transition

probability function in Theorem (1.1). Then (cf. Lemma 7.38 in [12])
£Ho.0) = limf(d(n)= (ENY(n) = Y(E)m,(dE.dn)
Hence, applying (L.S.) to (f{4))V?, (3.6) will be proved once we show that

(a=b)(log(a)~log(b)) = 4(al2=b12)?

for all a,b > 0. Equivalently, we must show that

(x=1)log(x) = Hx!/2=1)?

for all x > 0. But x€(0,%) = (x~1)log(x)=4(x'*—=1)? is a convex function whose

minimum occurs at x = 1. Q.E.D.
(3.8) Lemma. If (L.S.) holds, then for all 8 > 0 and all t € [5,87!],
(39) <o J HMEogl A ENGINdE) | °

s - ﬁ-f FIANE)log(FAN€))g! A dE) + C(8)[aA] .

Proof. This follows immediately from (3.4) and Lemma (3.5). Q.E.D..
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Note thut by (3.3) aud Lemma (3.8) for all- ¢ € [1.57%],

(3.10) J NENogl1IM£)GIAY dE)

-44e-1) -
se @ ClA|+ %—C(B)(&M.

(3.11) Lemma. If g € G( 7)., and (L.S.) bolds for g then for all & € NE} there

is a constant A = A(d, 7, a) and an € = ¢ :7, a) such that
[ ($0S¥)(boSi)dg = [ doSkdg [ ¢oSidg| = Aem<ikii

Proof. (L.S.) implies that there is a gap of length at least -i— between 0 and the

rest of the spectrum of L on L*(g) (see [10]). The rest follows just as in the proof of

Theorem (2.18) in [8]. Q.E.D.

(3.12) Lemma. Assume that I satisfies (2.2). Let g be the unique element of

G(J) and & € DE) with [ &dm = 0. Define

1Y posk
Fyla)= log(f e K dg) .

where the summation is over all k such that $oSk € 35(1\). Then there is a constant

A<= anda 8 >0 suchthat forall |a] < 8 and all boxes A

(3.13) dLl;TFA(u) = AlA].

Proof. Let A be fixed and suppress it from the notation. Differentiating F twice we
have .

ad, o aY oS
(3.14) F'"{a)= U(E boSk)2e dgf e dg
: K

AZ@OSJ AZ¢°S—’
- (f > doske dg)7] /(_f e da)-
k

Now et :7(:1.1\)= .7U{:1¢o.\":j sich that oSt € 2\(/&)}. That 1s, .‘7(::.1\)
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consists of the elements of 7 together with all trapslates of ad which are measurable
inside A. If J satisfies (2.2), then there is a & > 0 such that for all |a] < 3.
j(a.A) also satisfies (2.2) with € replaced by €/2. Assume that |a| is less than this 8
and let the unique element in :7(:1.1\) be denoted by g, Thon‘ note that {3.14) is

equiv:ﬂent to
(3.15) F(a) = (T 6357 dg, = (J Z dost dg,F
= Ek: % [J (doS¥)(boSh)dg, = (f ¢oS"dga)(I boSidg,)] .
Thus by Theorem (2.10), (L.S.) holds with an « which may be taken independently of

a for Ja] < 8. The lemma now follows from the mixing property of Lemma (3.11).

Q.E.D.

4
B

g( J) = {g}. Then for all & € DE) with J &dg = 0, there is a constant B,

(3.18) Theorem. Let I satisfy (2.2) and denote (see (2.3)) by a. Let

such that for all translation invariant initial states. p,.

. -(-'-:_(,
(3.17) J SlEIn(dE) < Bye ' * .

Proof. Fix a finite box, A, and note that by translation invariance

I o(E)nde) = A [ doske) A )g(de),
keA

. . (A+A ) . . . .
where A, is such that & € C{ (E) and f, ° is as in the first part of this section.
v

Then by (2.25) and (3.10), for any & > 0 and all ¢ € [1,87!], we have

- - « —
(3.18) [ &(E)n (dE) = 2Bgle © ClA,+A] + TC?(S)la(AO+A)}“-.

. a A o . .
where B, satisfies Fpyy (I_\_l) < Bia® for all a = 0. and Fy,p 15 asin Lemma
v / [

(3.12). Note that since Fy,y (0)=0 and Fp,4 (0) = J 3 ¢oS¥dg =10 aund
° ° KEA
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Fasala) = alAjlldii, for all a, the existence of such a B, is guaranteed by Lemma

(3.13). Moreover. again by Lemmu (3.13) we see that therc is a constant B, < =

such that B3 = Bg/|A] for all boxes A. Substituting this into (3.18) we have

I P -
(3.19) [ &(E)n,(dE) = 2Byfe o ”CIA-&-AOJ/IAI + (%—)C(S)}G(A+AO)[/IAI}"3

for all finite boxes A. Letting A -Z" and noting that |A+A_|/|[A] -1 and that

[8(A+ A, )/|A] = 0. we have the desired result.  Q.E.D.

(3.20) Remark. Notice that -i—- is the estimate for the gap in the spectrum of L

predicted by (L.S.). What we have shown is that, at least when pg is shift-invariant,

-3—‘- is a lower bound on the exponential rate at which j(‘,‘adp.t approaches fd)(lg when

b€ INE).

4. More Free Energy:

In this section we weaken the logarithmic Sobolev hypothesis and replace it with
a strong mixing condition on the dil)bs state. \We then derive a rate of convergence
which is slower than exponential. How mucl slower depends on how much the loga-
rithmic Sobolev hypothesis has been weakened. The method used here has the advan-

tage that it works for any initial distributions, not only translation invariant ones.
For ACCZ” recall the functions ¢, : EAXEAc and g, : E X EAC-(O.ﬁ) intro-

duced in section (1) and define G, o €M,(E) by

JUEIG A o(dE) = [rod(Ex]m, galEaln JAMAEAVZ Al )

for n€L and T€C(E). Also, Define ¥(A) to be the smallest aumber ¥ such that

(L1 [ gwm(m]-l—ﬁ)——)uA JdE) S — 3 JREILAEIG, (dE) . fECT(L).
LGy o)




forall n € E.

(4.2) Lemma: For each ACCZY, y(A) < =.
Proof: Observe that (4.1) is equivalent to
I (Elog(—EL—)G, (de) < v [T I MENE, i
Hfl lL" ) Lex
Also, for any probability measure m. and any f€L>(m.&

f f~(&) °°'(m'§)—— m(dg) = igfof(fz(ﬁ)log(ff(g)) — H&oosd — FiS + wmadg),
L¥(m)

and for each x > 0 the integrand on the right sxlie of the wWowe equuriem v woar
negative. Also, if the left side in the above equality i+ Fmite <hem nle fefimum: op 1he
right side is achieved when x = fi"-’(&)m(d&). Hence ore easlty tBechks: s o 1ars pra-

bability measures m and p withm < <p.,

J F&)logl —Lﬁ)—)m(casu“‘“ 1S P —TE g

!«xt

TR )

Thus, since g, is bounded above and below by posiiive consramss. swe mved eafly <leck

L¥(m)

that

J F(glogt LB \adg) s y 3 UTAENANGE)
A

”!.H’:ﬁ(kﬁ) EAEEJl

for some y < ». But, because logarithmic Sobolew imequalities mme preseswed wucker
tensor products (cf. [4] or Lemma (9.13) in [12]), 1he prece-fims, will Tolhow onge we

show that

(1.1 f ) lo«(-ml—flﬂ-—mg) < 5 j‘ HVIE)ITMGE), TEC(MY
M L)

That a logarithmic Sobolev inequality holds for the Browmaim moetion @p v com-

nected compact manifold was first observed by O. Rothans [10]. For the sube i 2om-
pleteness, we sketeh a proof here. By standard ellwtic alhcory, the beon flow <wuni-

croup o' admits a smooth density ¢t.x.y) which, fareac’kh ¢ > @, is awiforde posi-
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time. In particuiar. e® is a Hilbert-Schmit operator on L3(M), and therefore 0 is the
only possible accumulation point of its spectrum. In addition 1 is its largest eigen-
value and, because q(l.x.y) is uniformly positive, it is clear that 1 is a simple eigen-

value. From these considerations. we sce that

Ar o - -¢
letaf ffdan:ms [ ﬁd"”wme tog =0,
for some € > 0 and all f€L3(N). At the same time. because ¢(1.x.y) is bounded. it is

clear that Ie3fH < C|If]], 4, for some C < =. Hence, by a simple arqument. due

L) L)
to J. Glemm [3], there is a T = 1 such that HeT"‘wam = HI'HL:(”. But (¢f. p.181 in

. TA
[12]) 1T 2 i

= ] implies (4.1") with y = 4T. Q.E.D.
The point of this section is that we will not require that {y{A): A CC Z*} be
bounded as we did in the previous section, but only that y(A) not grow too rapidly as

A - Z*. To compensate for this relaxation of the logarithmic Sobolev hypothesis we
p g ¥p

need the following mixing conditions.

(4.3). Thereisa & > 0 such that for all finite A, and all 8 which are bounded and

% . ' .
/:EA measurable, there is a constant A ¢ such that forall m € E and ail A D A,.
o .

- 8dist(A,A°)
b

(44) 1S &G, (dE) = S f(E)g(dE)] €73 (e
where g is the unique (because of (14.4)) element in _C( .7).

Given ACCZ¥ and m€E, let {PA7: t >-0} denotc the Markov semi-group on C(E)

such that

t
PAN = (= [PATLANLs, t.20,
]

where

LANf(E)= ——L— divi(galErlm IV, ToD(E4 7, o)

S’A(é‘\h‘\c) k€A

for [¢€ .‘Z‘(E). [t is an easy matter to check that Gy ) is {PA™ L > 0} reversible.
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If M were a finite set, the prool of the mext lemma could be found in [7]. The
changes needed in that proof to cover the present situation are purely notational. In
particular if one replaces Ay there by V,, the proof goes through nearly word for

word.

(4.5) Lemma. There is a constant ¢ < ® such that for all finite A  and all

f € Cx (Ep ) thereis a constant Ang such that forall m € E

c ct N+2
IPufln)= PATT)] < Ag et (S,

where N = [dist(A.A)/R].

(4.8) Theorewui. Assume that the mixing condition (4.3) holds for some & > 0. In
addit‘ion. assume that there are ¥€(0,<), 0€[0,1), and 7€[0.%) such that

(4.7) | Y(A) = y[Al°(log|A]),

for all ACCZv. Thea there is an € > 0 such that for all initial distributions g, and
b € DE):

(‘1‘0

(48) . If SE)g(dE) = J S(ENn(dE)] = B(d)e tog, ¢ = 2,

where B{($)€(0,%).

Proof. Let & € CXO(E). If A, hasside length !/ let A(t) be the box with side length
{+ 4cRt. Here c¢ is asin Lemma (4.5). Then
(4.9) [P,d(n) = [ 6(£)g(dg)] s [Pyd(m) = PAGM &(m)|

+ {PAM &(n) = [ S(E)G, (dE)]

+ |f (E)G, ,(dE) = | b(E)gldE)] .

Hetle2
The first term on the right side of (1.8&) is bounded by 'A2'¢eCt.(!-[%)t;H—'Z_FS
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cr

Asple(=)) " = Asge °. By (+4.3) the third term on the right side of (4.9) is bouunded

¢
B

by A, ge 88 Thus we need ouly bound the second term. To do that we return to

the frec encrgy considerations of the previous section. First note that if

Ft(a) = ]og [J‘ ea(‘b(&)’f‘b!V)GAn).n(dO) GA(t)'q(dE)] ,

then Fa)=0=F,(0) and F, (a)s 4it¢lI2 for all a. Thus for all a=0

Fla) = 211dl1Za%, and by (2.25)
(‘1-10) !PA“)“¢ ’ﬂ) f¢(§ o;\(t)n d&”
< 22U TAY(E)log FAYE)G o () o(dENV2,

dp MUY

—————and pAt) = (PAM)T5 (). Now by (3.3) we have
dGppnl*)

where fs"\(“)( ) =

(411) J IMOE)logFMU(E)G o,y o(dE) = CIA(Y)] .

Also by a straight forward computat}ou (see [9]) and Lemma (3.5)
(412) b rAE) log TG o, o(dE)
= J 1ME) LA (log fMO(E))G g o(dE)

s — — [ tAGE) og(FANNE))G o) o (dE)

Y(A(1))
Thus
_3-1)
(4.13) o J EAYE) log(TAYE))G A ol dE) = ClA(t)]e AW

s Cf /+ -k‘Rt)" e—-i(t-I)Iy(l+4ch)°(log(l+-!th)")'

< B C—ct""/(logt)'
: Q

for some By < = which depends on ¢ only through /. and some € > 0 which does

not depend on [ and all v = 2. Q.E.D.
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5. One Dimension:

In this section we show that, in one dimension. the hypotheses of Theorem (4.6),
with ¢ = 0 and 7 = 1, are satisfied for all finite range translation invariant poten-
tials .

The first hypothesis is (4.3). That this holds for Gibbs states with finite range
interaction in one dimension is well known. It can be proved by considering intervals
whose length is the length of the interaction and noting that conditional Gibbs state.
G qf*). is just a Markov chain conditioned to have specific values at both ends of an
interval of length |A]//. Moreover the state space of this Markov chain is compact
and the tramslation function is uniformly positive. (See the discussion of one-

dimensional systems in [11] for the basic ideas.)

It is considerably more work to check that y(A) = ylog|A| for some ¥y < =.

We begin with the following lemma.

Lemma. Let A, = [-R/2, R/2]. There is a constant vy, such that if A is any inter-

val containing A, and 7m € E, then forall f € CXO(E).

(5.2) [ (£)log(f2(£))G o(dE) < v, k:z:A J V(8 PG o o(dE)

°
+ [ F(E)Ga o(dE)log(  F(£)Gy 4(dE)

Proof. Note that for any ADA, and any m¢E the marginal distribution of G, , on

M* had a density with respect to A% which is bounded away from infinity and :icro

uniformly in A and 'q.. The rest of the proof is just is in Lemma (4.2). Q.E.D.

Our next step is to prove that there is some number € > 0 such that for all A
and all m, LA™ acting on L%G, () has a gap of length at least € between 0 and

the rest of its spectrum. We do this by first introducing a jump process for which this




result has already been proved.

For f € DE) let
(n) = % & (Fo@ {0 I ) = 111))G iy ol d)
Q generates a positive contraction semi-group, (S,;: t = 0) on C{E) and ‘Q is self-
adjoint on L*(g) (see [5]). Moreover (see [5] or [8])
(5.3) S f(n)0f(n)g(dn) = -é—g J 1S (1@ 4(0 14 = I DG ol d) gl )

The following lemma can be proved by merely changing the notation in the proof of

Theorem (0.4) of [8].

(5.4) Lemma. Thereis an €, > 0 such that for all [ € L¥(g),

(55) - J f(E)Qf(E)g(dé) z €, f ([(€)= f f(m)g(dn))*g(dE) .

(5.8) Lemma. Thereisan € > 0 such thatif f € CJ(E) for some finite A, then

(5.7) 'z:, J v o) Pe(de) = ¢, f (18-S f(q)gldn)) glde) .

Proof. To simplify the notation we make the following convention. For
k€Z¥, m€E, and w€M we write nw for the element of E which is equal to q at all

sites except k and is equal to w at k. Thus instead of writing fofb(m]'qmc) we write
simply f(n,w)

Now by (5.3) and (5.5)
(5.8) % f(f‘ (M(10)= (1)) C gy 4(do ) gl dm)
M

2 ¢, [ (FE)=J fim)gld)) gldE).

But
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(5.9) J (l\fI (f(nw)=(1))Gppaldew)) gldn)

= f,\l;(f('ﬂkw)“}g f{(n7)G 3 4(do)) G gy q(dw)g(dn)

= J { (f(nyo) - ~gf'(.ma))\(dcr))9,\(dm)g(d'n) max i@ My V2 (M )

Now the Laplace-Beltrami operator ou the compact manifold M has a gap at 0 inits

spectrum (cf. the proof of Lemma (4.2). Thus thereis an €, > 0 such that

J (f(n) = S f(n,0)A(de))*\(dw)
M M

= - -El—-f f{mo)divi YV f(n.c)\(do)
2 M

1 -
= —J [Vif(no)\(do) .
2 M
Substituting this into the right side of (5.9) and using translation invariance we have

(510) (S (f(n0)=1(1))G g, (d))?5(dm)

g{k}(m IE{k}c) Z(k)(i{k}c) N
X=g————— max —————— NV f(m, -G lo)g(dn) .
a wi Z{k}(g(k}c) I{f’q&\ g{k}(“’ lg(k}c) f ‘l!; k (’TRU)” {k}.n(( o)g(dn)

The lemma follows from (5.8) and (5.10). Q.E.D.

(5.11) Lemma. There is an ¢ > 0 such that for all intervals A, all q € E, and all

f € C3(E),
(5.12) Y J v M(o)[]*G, 4(do)
k€A
2 e [ (f(o)=  ((©)Gy 4(dw))*Gy o{do) .
Proof. Note that since |dA] is independent of A in one dimeansion, there is a con-

staat a > 0 such that for all % and all A € £, :}‘-2 GpqlA)/g(A) 2 a. Thus

the left side of (5.12) is bounded below by




(3.13) a« X [iiVii(o){*s(do)

kea
2 ae, fiflo) = [ f(w)g(dw))ig(ds)
2 a’e, [ (o)~ [ flw)g(dw))*G ,(do)

z e [ (fo)= [ f(0)Gy 4(dw))*G, (do),

where € = a%¢,. Q.E.D.

(5.14) Lemma. Let g be a one-dimensional Gibbs state whose range of interacticn
is R and iet y(A) be as in section 4. Then there is a constant ky < « such that for

all . 6=1

(5.13) W-4= FRA+ FR])S

y([-/l--;—R.—-}z—R ])v-;({ R+1——R+/]}+l\0

Proof. First note that if A is an interval, ther ¥y(A) depends only on |A|. Therefore

e write y( /) instead of y(A) when A is an interval containing / integers.
. - ! 1 = 15 1
Now l?t, A==/ - -Z—R - ;—R—l], A, =[- E-R. TR] and
Ay = [-}Z-P.+ 1, é—R-P- /"_] and set A=A UA,UA; If 0 € M? and o, € M we

write ¢ = w,w,w, to mean o(k) = (k) if k€ A. If mQEMA"' and M€L, we will let
| nmw, denote the configuration which is equal to m off of A, and equal to w, on A,. We

denote the conditional distribution of g given & by G,,.() and note that since

\"UA

Azl = R, oo, = Gapne,XGayne, 1AL, we denote Gy o(A) by i

(Alm)

Let f € CZ. By conditiouing on ag,m we have

(5.16) fuc o )Cis o(do)

= [ [ (o o.0)logl(www, e (dw dw)? 31 (dw [m)
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Thus by first factoring G,

wwol') and then applying Lemma (9.13) in [12] we bound the

right side of (5.16) above by

(5.17)  Jivthvv bl T J iV f(e0,0,)1°G, (o 401Gy, (dog)

(€A UA,
o a (An)
+ F3(qw,)logF3(nw.)tgs *(dw,|n),
where

Finw,) = § J P, 203)Gy nuf.(d“’x Agme, [(dwy).

By applying Lemma (5.1) to the part of (5.17) which involves F? we may bound (5.17)

above by

(5.18) [y(4vy( L)l 3 J1IVf(0)|[*Gp 4ldo)

k€A UA4

. (AL ,
v k§ J ”VkF("l“’e)“'gf\ ')(d“’g)

+ [ 1%(0)Gy o(do)log(f (0G4 (do)) .

dG,,.

Denote + by g,.. and concéntrate on the second term in (5.18). For any
daA1YAe 2

k€A,

(5.19) NV F(nw.,)|[?

J‘j 2(@,0,0,)V(©,0,0;)T,, (do'dw;)
2F(nw,)

ff (o, mnw.,)vkgwo(m‘w"))« Y ‘((lio,(la3) T
2F(nw,)

<2 J' f HY fw,w.0,)? nu,.(d"’xdws)

2

IBRE w,w3w3)ngmn(wlw3)kAIUA3(dw (dws)
l F(naw,)

+ L
2
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Now [ [ ng‘nwn(dwme)}\A‘U'Xg(clmldw;}j = Vi1 = 0. Thus for any number W
(5.20) 1 f Plo,0,0,)9,8, (©,0)N* Y 3 dw, dw,)i

vkanu (wlm )

1T [ (o, 0.0)=W)?

’ A UA .,
Snwal@1@3) AT (do dwy)
oﬂu:(mlwis) - :

V8o (00;) ‘ y
+2W S J (M0050y) = W) =20 5 (0,0,) A% 4o o)l
. gﬂuz(mlw3) -

< 7I!Vklo°°,‘u (wiwy)ll2 f f (f(wlw:(%—\\"):’Gﬂuo(dwldw_.})

+ 4w f 1V log g, (w0 1°T,, Sdwiws) [ f (flo;0w;)— W) Tro(do dw,)

Setting W = f f flowjw,w TG, (dmldw ), and noting that HY’kloaow (w,w;)]]is

bounded uniformly in all of its variables we see that the second term on the right side

of (3.19) is bounded by -
I\'l\.\,-‘lff (r(“’l“"-"“’S_\V)'-'CT,,Q,,(df.ﬁldws)

for some finite constant K,, which is independent of /1/_ 7. and k. Since
W? < F3(qw,), upon substituting this into (5.19) and then substitutiug the resulting

inequality into (5.18) we have

(5.21) J (o )logf*(a)G, ,ide)

SHAMEL] 3 SUVHe)Gy (do) + v, S S 1Vif(0)]1°G ,(do)
‘ k€A UA, k€A,

> fff(f(ulw:m_.})—\\")'-'tl' (dm dw,) -(dw [m).
An

Stnce G, =G XG_\“%, we apply Lemma (5.6) to the tensor product

nws Al,nw.:

L;(G-\,.nw--} O LG, _,..) to conclude that the last term ou the right side of (3.21) i~

bounded by
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: - A,
K, L > ‘ > f_f f Ilef(mlw2w3)|l-unwz(dmlclm:;)g,\*(dwg)
€1 keAgjea ua,

= KA femt ¥ S WV f(a)l1°G, (de) .
JEA1UA3

Thus the lemma is proved with k, = v,V[K;Re ). Q.E.D.
(5.22) Theorem. Let g be a one-dimensional Gibbs state with finite range poten-

tial, and let <v(|A|) be as in section 4. Then there is a constant v such that
Y(A) = ylog|A]forall |A]= 2.

Proof. By induction on i it is easily seen from Lemma (5.14) that if
(2'-1)R < m = (2i*!=1)R, then

(5.23) ¥(m) = ¥ + ik,

where Y = max ¥(i). Also if (2-1)R<ms= (2*1-1)R, then

IsisR -

logR + (i—1)log2 < logm. Thus

'_M(. Gm ;".iko = k. /loe?
lelgo logm — L]]I‘IL logR+(i—1)log?2 Ko l?"z’

and hence there is a constant y < ® such that

Y(m) < ylogm forall m = 2.

Q.E.D.
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