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Logarithmic stable toric varieties and their moduli

Kenneth Ascher and Samouil Molcho

Abstract

The Chow quotient of a toric variety by a subtorus, as defined by Kapranov–Sturmfels–
Zelevinsky, coarsely represents the main component of the moduli space of stable toric
varieties with a map to a fixed projective toric variety, as constructed by Alexeev and
Brion. We show that, after we endow both spaces with the structure of a logarithmic
stack, the spaces are isomorphic. Along the way, we construct the Chow quotient stack
and demonstrate several properties it satisfies.

1. Introduction

We work over an algebraically closed field of characteristic zero.

Alexeev and Brion construct a moduli stack AB(V ) parametrizing finite torus-equivariant
maps from stable (also known as broken) toric varieties X to fixed projective variety V [AB06],
generalizing Alexeev’s construction of the moduli space of stable toric pairs: pairs (X,B) whereX
is a stable toric variety and B is a divisor satisfying certain numerical and singularity crite-
ria [Ale02]. As is common with moduli spaces of higher-dimensional varieties, the modular com-
pactification has several irreducible components. Adding a logarithmic structure often gives one
hope toward isolating the main component of a compactification. In [Ols08], Olsson introduces
logarithmic geometry as a method for compactifying moduli spaces of abelian varieties. Along
the way, he enriches Alexeev’s moduli space of stable toric pairs with a logarithmic structure and
shows that this stack carves out the main component of Alexeev’s space of stable toric pairs.

In this paper we will give the space of maps AB(V ) an analogous logarithmic structure,
AB(V ), in the case where the target variety is toric, and show that AB(V ) is isomorphic as
logarithmic stacks to [V //C H], the Chow quotient of a toric variety by a subtorus as defined
in [KSZ91] endowed with a logarithmic stack structure. Not only does this construction give an
explicit description of a stack of logarithmic stable maps, but it also isolates the main component
of AB(V ), just as in the case of stable toric pairs.

Main Theorem. Let V be a projective toric variety and let H ⊂ T be a subtorus. The stack
AB(V ) parametrizing logarithmic maps of stable toric varieties to V is isomorphic to the Chow
stack [V //CH]. In particular,AB(V ) is a logarithmically smooth, proper, and irreducible algebraic
stack with finite diagonal. Moreover, AB(V ) is isomorphic to the normalization of the main
component of Alexeev–Brion’s space, AB(V )main.
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Logarithmic stable toric varieties and their moduli

Along the way, we construct the Chow quotient stack, a moduli stack parametrizing orbits of
the action of a subtorus on a toric variety, and prove several properties it enjoys. In particular,
the following universal property of the Chow quotient stack is a crucial element of the proof of
our main theorem.

Theorem 1.1. Let V be a projective toric variety. The Chow quotient stack is the terminal
object of CV , the category of toric families of toric H-stacks mapping to V .

Furthermore, it carries a universal family.

Theorem 1.2. Fibers of the universal morphism U → [V //C H] are connected stable toric
varieties.

Finally, in a similar vein to [GrS13, Remark 1.21], we prove the following result (cf. Theo-
rem 3.19).

Theorem 1.3. The dual cone of the basic monoid is the moduli space of tropical broken toric
varieties of the given type.

We will now sketch some previous results for the one-dimensional case where the subtorus H
is C∗.

1.1 Previous work

In [KSZ91], the Chow quotient V //CH is constructed, where V is a toric variety and H, thought
of as a k-parameter subgroup, is a subtorus of the torus T . In fact, it is also shown that V //CH is
a toric variety1 and the fan structure is described purely using combinatorial data from the fan of
V and the subtorus H. In [CS13], it is shown that if one considers H = C

∗ to be a one-parameter
subgroup, then the Chow quotient V //C C

∗ coincides with the coarse moduli space of KΓ(V ),
the moduli space of logarithmic stable maps constructed independently by Chen [Che14] (in the
rank one case), Abramovich–Chen [AC14], and Gross–Siebert [CS13]. To show this isomorphism,
the authors endow V with its natural logarithmic structure as a toric variety and use the one-
parameter subgroup H to determine the discrete data Γ specifying the stack structure on KΓ(V ).
This gives a somewhat different, explicit, description of the moduli space of logarithmic stable
maps.

Finally, in [Mol14], an additional level of structure is added to the Chow quotient, making
[V //C C

∗] into a toric stack. One can obtain this structure explicitly by enriching the fan of
V //C C

∗ by adding natural combinatorial data that arises from V and H. This toric stack is
then shown to be isomorphic to the logarithmic stack KΓ(V ), giving very explicit descriptions of
several stacks of logarithmic stable maps. Thus, this paper serves to find a higher-dimensional
analogue of KΓ(V ), generalizing the result where H is a one-parameter subgroup.

We will begin by reviewing some of the techniques involved in the above-mentioned construc-
tions. We will, however, assume knowledge in logarithmic geometry. For background, we refer
the reader to the survey [ACG+13].

1.2 Outline

In Section 2, we give the definition and construction of a toric stack, discuss various notions of
toric stacks appearing in the literature, and define logarithmic stacks. In Section 3, we discuss the

1In this paper we adopt the convention that the Chow quotient is a normal toric variety.
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Kapranov–Sturmfels–Zelevinsky (KSZ) construction of the Chow quotient variety, construct the
Chow quotient as a toric stack, and discuss of various properties of the Chow quotient stack. In
Section 4, we define stable toric varieties, discuss logarithmic structure, and define the logarithmic
stack parametrizing logarithmic stable maps of stable toric varieties. Finally, in Section 5, we
prove the main theorem describing the equivalence of the two logarithmic stacks.

1.3 Notation

We will use X to denote a stable toric variety in the sense of Alexeev and V to describe its target,
a fixed projective toric variety. When we wish to discuss the scheme underlying a logarithmic
scheme, we will use X. The notation V //C H will denote the Chow quotient and [V //C H] will
represent the Chow quotient stack. Finally, we will use AB(V ) to denote Alexeev and Brion’s
stack of stable maps of toric varieties to V and AB(V ) will denote the stack of logarithmic stable
maps of toric varieties.

2. Toric stacks

There are several definitions of toric stacks appearing in the literature. Borisov–Chen–Smith first
introduced toric stacks in [BCS05], where they construct smooth Deligne–Mumford stacks arising
from simplicial fans. The notion which we will primarily use in this paper was first introduced
by Tyomkin [Tyo12] as a generalization of Borisov–Chen–Smith’s construction. Geraschenko
and Satriano (see [GeS15a, GeS15b]) provide an extensive description of several notions of toric
stacks. In addition, they develop a theory of toric stacks that encompasses, among other theories,
the work of both Borisov–Chen–Smith and Tyomkin. The main purposes of this section are
to introduce toric stacks and to show that the notion we adopt is present in the theory of
Geraschenko–Satriano.

Geraschenko–Satriano define a toric stack to be the stack quotient of a normal toric variety X
by a subgroup G of its torus T0. In this case, the stack [X/G] has a dense open torus T = T0/G,
and so a toric stack can be thought of as a stack with an action of a dense torus. The following
definition, which we will use, is adopted from Tyomkin’s construction of toric stacks; see [Tyo12,
Definition 4.1] for more details.

Definition 2.1. A toric stack datum is a triple (F,Nσ, N) where F is a fan in a lattice N and
for each cone σ ∈ F we specify a finitely-generated and saturated submonoid Nσ ⊂ σ ∩N . We
require that if τ < σ is a face, then Nτ = τ ∩Nσ. We also require that for all maximal cones σ,
the group Ngp

σ ⊂ N has finite index.

We can realize a toric stack geometrically from this datum as follows. Since the inclusions
Ngp

σ ⊂ N have finite index, they induce maps of tori T (Ngp
σ ) → T (N) whose kernels Kσ are

finite subgroups of Ngp
σ . Let Xσ be the toric variety associated with the cone σ in the lattice

Ngp
σ . We then define Xσ to be the stack quotient [Xσ/Kσ] and thus the compatibility condition

in the toric stack datum allows one to glue the Xσ together to obtain a toric stack X (F,Nσ, N).

Remark 2.2. In this paper, all maximal cones will be of full dimension. We do note, however,
that the definition and realization above generalizes to situations where this is not the case. We
will not discuss this in this paper.

Definition 2.3. A morphism of toric stack data (F,Nσ, N) → (G,Mτ ,M) is a morphism of
lattices N → M that takes every cone σ ∈ F into a cone of G. We also require that if σ maps
into τ , then Nσ maps to Mτ .
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In fact, a toric stack will naturally be a logarithmic stack. Following Shentu [She14], we will
use the following definition for a logarithmic algebraic stack (see also [Ols03, Chapter 5] for
a discussion on various notions of algebraic stacks).

Definition 2.4 ([She14, Definition 4.2]). Given an algebraic stack X , define a logarithmic
structure on X as a pair (M, α), where M is a sheaf of monoids and α : M → OX is a homomor-
phism of monoids, such that α|α−1O∗

X
is an isomorphism. We call the pair (M, α) a logarithmic

algebraic stack.

Remark 2.5. The stack X (F,Nσ, N) is a logarithmic stack. The charts for the logarithmic struc-
ture of the affine pieces Xσ are given by the dual monoid Mσ = Hom(Nσ, N).

Remark 2.6. The coarse moduli space of X (F,Nσ, N) is the toric variety X(F ) associated with
the fan F .

2.1 Alternate definitions

We will now give a more careful definition of a Geraschenko–Satriano toric stack, before stating
the main result of [GeS15b], which gives conditions on when an Artin stack is toric.

Let (F, β : L → N) be a stacky fan, that is, a pair of a fan F in a lattice L and a map β to
a lattice N with finite cokernel. Then β∗ induces a surjective map of tori, Tβ : TL → TN , with
kernel Gβ .

Definition 2.7. Let (F, β : L → N) be a pair as above. Then a GS toric stack XF,β is defined
to be the stack quotient [X(F )/Gβ ].

To differentiate from GS toric stacks, when referring to toric stacks, we mean the toric stacks
arising from the data in Definition 2.1.

As mentioned above, in [GeS15b] the authors develop criteria for showing that an Artin stack
is a GS toric stack. The criteria have been somewhat relaxed due to work of Alper, Hall, and
Rydh (see [GeS15b, Remark 4.4.0]). We recall the necessary criteria below.

Theorem 2.8 ([GeS15b, Theorem 6.1]). Let X be an Artin stack of finite type over an alge-
braically closed field k of characteristic zero. Suppose that X has an action of a torus T and a
dense open substack which is T -equivariantly isomorphic to T . Then X is a GS toric stack if and
only if

(i) X is normal;

(ii) X has affine diagonal;

(iii) geometric points of X have linearly reductive stabilizers.

Using this theorem, Geraschenko–Satriano show the following result.

Remark 2.9 ([GeS15b, Remark 6.2]). The toric stacks defined by Tyomkin arising from the data
in Definition 2.1 are GS toric stacks.

Finally, we discuss a property of maps between toric stacks that will be used to conclude our
main result in the final section of this paper.

Lemma 2.10. Let XF = (F,Nσ, N) and XG = (G,Mτ ,M) be two toric stacks and suppose
M = N . Furthermore, suppose that there are morphisms in both directions between XF and XG.
Then XF

∼= XG.
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Proof. In one direction, a cone σ ∈ F must be a subcone of a cone τ ∈ G. The morphism in the
other direction tells us that τ is a subcone of σ. So F = G. Additionally, for each cone σ ∈ F ,
the submonoid Nσ must be a submonoid of Mσ and vice versa, so Nσ = Mσ. As the lattices,
fans, and submonoids are all the same, the two toric stacks must be equivalent.

3. Chow quotients of toric varieties

3.1 Construction of the quotient as a variety

We will begin by recalling the definition and construction of the Chow quotient of a toric variety
by a subtorus, following [KSZ91].

Let V be a projective toric variety with big torus T embedded as a Zariski open subset such
that the action of T on itself extends to an action on V . Let N = Hom(C∗, T ) ∼= Z

r be the lattice
of one-parameter subgroups. Then V is defined by a fan F ⊂ NR = N ⊗R, which is a collection
of closed rational strictly convex polyhedral cones.

In [KSZ91] it is proven that the Chow quotient is itself a toric variety whose fan structure
can be defined explicitly. Consider a k-parameter subgroup H of the torus T of V . Then H
corresponds to a sublattice L ⊂ N . We then obtain a natural projection map p : N → Q = N/L
and we can define G to be the projection of our fan F along pR : NR → QR. This is defined by
projecting each cone in F along pR and taking their minimal common refinement. In [KSZ91] it
is shown that the Chow quotient V //C H is V (G), the toric variety associated with the fan G.

More explicitly, we can define G as follows. For each vector ψ ∈ NR, define

N(ψ) :=
{

σ ∈ F |σ◦ ∩ (L+ ψ) 6= ∅
}

.

Vectors ψ, ψ′ will be called equivalent if N(ψ) = N(ψ′). The closure of each non-empty equiv-
alence class of vectors defines a rational polyhedral convex cone in NR invariant under L. The
collection of images of these cones under the projection map forms the fan G.

The Chow quotient is a subspace of the Chow variety, the space of algebraic cycles of a given
dimension and homology class. Again, let H be a k-parameter subgroup of the larger torus T ,
then we must show that every point of V //C H corresponds to an algebraic cycle on V . For
each point x ∈ T we can define the closure Cx to be H · x, the orbit of x under the action
of H. Since the Cx are translates of one another by the action of T , each Cx has the same
dimension and homology class—this determines a morphism from T/H to the Chow variety.
One then defines the Chow quotient V //C H to be the closure of T/H inside the Chow variety.
In fact, this construction, which we will sketch below, allows us to determine the toric stack
structure [V //C H].

3.2 Construction of the quotient as a toric stack

Let κ ∈ G be a cone in the quotient fan, and let eκ ∈ V (G) be the associated distinguished point.
For ψ ∈ κ, denote by N0(κ) the set

N0(κ) =
{

σ ∈ F |σ◦ ∩ (ψ + L) is one point
}

. (3.1)

Now, with each distinguished point eκ ∈ V (G), associate a cycle on V of the form

Eκ =
∑

σ∈N0(κ)

c(σ, L) ·Heσ ,
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where we define the multiplicities c(σ, L) ∈ N as follows: For each σ ∈ F , we denote by Lin(σ)
the subspace of N spanned by σ. Then we define c(σ, L) as the index of lattices

c(σ, L) :=
[

(L+ Lin(σ)) ∩N : (L ∩N + Lin(σ) ∩N)
]

.

The cycle over general points is obtained by translating by the action of the torus, thus each
point of V //C H corresponds to an algebraic cycle.

Let κ ∈ G be a cone in the fan for the Chow quotient described above. Define

Qκ =
⋂

σ∈N0(κ)

p(σ ∩N)

to be the intersection of the projection of the lattices determined by the cones σ such that eσ is
in the fiber of eκ. Clearly Qκ is a submonoid of Q as p(σ ∩N) ⊂ p(N) = Q.

In [Mol14], the authors prove the following lemma, concluding that the datum above deter-
mines a toric stack.

Lemma 3.1 ([Mol14, Lemma 10]). The triple (G,Qκ, Q) determines a toric stack, [V //C H].

Proof. The only thing that needs to be checked is the compatibility condition, that is, if λ ⊂ κ is
a face, then Qκ = λ∩Qκ. Suppose that σ ⊂ F is a cone mapping isomorphically to κ, then since
p is an isomorphism on σ, it follows that there is a unique face τ ⊂ σ mapping isomorphically to
λ. Since τ ⊂ σ and τ maps isomorphically to λ, we have p(τ ∩N) ⊂ p(σ ∩N) ∩ λ. Furthermore,
since p−1(p(σ ∩N) ∩ λ) ∩ σ ⊂ τ ∩N , we can conclude that p(σ ∩N) ∩ λ ⊂ p(τ ∩N). The result
then follows from taking intersections over N0(κ) and N0(λ).

In fact, [V //C H] is a Deligne–Mumford stack whose underlying coarse moduli space is the
Chow quotient V //C H.

In the following, we discuss some properties of the universal family of the Chow quotient stack,
as well as its universal property. What follows for the remainder of Section 3 is somewhat technical
and so the proofs can be skipped on a first reading; however, we do note that Theorem 3.8 (the
universal property) is the key tool in the proof of our main theorem in Section 5. Finally, we
note that Subsections 3.5, 3.6, and 3.7 are not necessary for the proof of our main theorem, but
contain more properties of the Chow quotient stack that are interesting in their own right.

3.3 Universal family

The Chow stack is naturally a moduli space, as it parametrizes broken orbits of H inside V , and
as such, it should carry a universal family. The universal family on the stack [V //C H] is also
constructed in [Mol14], in particular, U → [V //C H] is the minimal modification of the fan F
of V into a toric stack (F ′, Lκ′ , L) that maps to both V and [V //C H]:

U −−−−→ V




y

[V //C H] .

Here Lκ′ is defined to be Lκ′ = Lκ ∩ p
−1(Qτ ), where κ

′ is a cone in F ′.

This statement will follow as a corollary to the following lemma.
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Lemma 3.2 ([Mol14, Lemma 11]). Fix a diagram of morphisms of lattices

N N

Q

id

p

as well as two fans F ⊂ N and G ⊂ Q. Let D denote the category of fans F ′ ⊂ N that map to
both F and G under the given map of lattices. The morphisms of D are given by maps of fans
F

′′

→ F ′ that commute with the maps to both F and G. Then the category D has a terminal
object.

Proof. The terminal object is the collection of cones p−1(κ)∩σ, where κ ranges through all cones
in G and σ ranges through all cones in F . To show that these form a fan, it suffices to show that
the intersection of two cones is in the collection and is a face of each.

To show that the intersection of two cones is in the collection, note that
(

p−1(κ1) ∩ σ1
)

∩
(

p−1(κ2) ∩ σ2
)

= p−1(κ1 ∩ κ2) ∩ (σ1 ∩ σ2) .

If x+y ∈ p−1(κ1)∩σ1 is inside the intersection p−1(κ1∩κ2)∩ (σ1∩σ2), then applying p gives
that p(x+ y) = p(x)+p(y) is in κ1∩κ2. Therefore we see that p(x) ∈ κ1∩κ2 and p(y) ∈ κ1∩κ2.
Furthermore, x + y ∈ σ1 ∩ σ2 and thus x ∈ σ1 ∩ σ2 and y ∈ σ1 ∩ σ2. Finally, we see that
x, y ∈ p−1(κ1 ∩ κ2) ∩ (σ1 ∩ σ2) and so the second statement also follows.

The above lemma gave rise to a fan F ′. As [V //C H] is a toric stack, to obtain U we must
additionally exhibit its monoid structure; that is, given a cone σ′ ∈ F ′, we must determine Nσ′ .
This is the minimal choice mapping to Nσ and Qτ : define Nσ′ = Nσ ∩ p−1(Qτ ). The proof of
compatibility, given in [Mol14], is similar to the proof of Lemma 3.1, and so we omit it here.
Thus, we have shown the following result.

Lemma 3.3 ([Mol14, Lemma 12]). The collection (F ′, Nσ′ , N) is a toric stack U . It is the minimal
toric stack that maps to both V and [V //C H].

We note that the universal family satisfies the following properties.

Proposition 3.4. The morphism U → [V //CH] has reduced fibers and is an integral morphism
of logarithmic stacks; in particular, it is flat.

Proof. The fact that the morphism has reduced fibers follows directly from [Mol14, Lemma 13]
(see also [AK00, Lemma 5.2]). Thus, we only have to demonstrate integrality.

To show integrality, it suffices to work locally on [V //C H], and so the proof reduces to
a statement about monoids. Let N be a lattice and let L be a sublattice, so that we can define
the quotient lattice, Q = N/L. Denote the projection map by p. Furthermore, suppose that
κ ∈ Q is a cone, σ ∈ N is a cone such that p(σ) = κ, and assume that for every face τ < σ, there
exists a face λ < κ such that p(τ) = κ. That is, faces of σ map onto faces of κ. Finally, assume
that for each face τ mapping to a face λ, we have Nτ := N ∩ τ = p−1(Qλ). To prove integrality
(and hence flatness), we prove the following lemma.

Lemma 3.5. The dual map Hom(Qκ,N)
p∨

−→ Hom(Nσ,N) is an injective, integral map of monoids.
Therefore, the map Z[Qκ] → Z[Nσ] is flat.
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Proof. To prove injectivity, note that by definition the monoid Nσ surjects onto Qκ. We demon-
strate integrality by using the equational criterion. If the map is not flat, the locus where flatness
fails is closed and torus invariant. Therefore, if this locus is non-empty, it must contain a torus
fixed point and so it suffices to consider cones σ and κ of full dimension in their respective
lattices. Suppose

p1 + q1 = p2 + q2 ,

where pi ∈ N∨
σ and qi ∈ Q∨

κ . Since we assumed that σ and κ are full-dimensional, we have
N∨

σ = σ∨∩N∨ and Q∨
κ = κ∨∩Q∨. We can thus identity pi and qi with vectors in the dual spaces

of N and Q, respectively. We wish to show that p1 = w + r1 and p2 = w + r2, where w ∈ N∨
σ

and ri ∈ Q∨
κ , and that q1 + r1 = q2 + r2.

Let v1, . . . , vm be the extremal rays of κ, and let uk denote the lifts of these extremal rays
in σ. Among such uk, choose u1, u2, . . . , um such that ui maps to vi and such that p1(ui) is
minimal among all possible lifts of vi to an extremal ray of σ. Notice that Nτ = Qκ, as the face
τ < σ generated by the ui is a face mapping isomorphically to κ. Thus, we can identify κ with τ
and we will write p(x) for the unique element of τ mapping to p(x) ∈ κ. As every x ∈ σ can be
written uniquely as p(x) + tv, where v ∈ L, we will make the following definitions:

r1(x) = p1(p(x)) ,

w(x) = p1(tv) .

Then p1 = r1 +w and thus we need to show that w ∈ N∨
σ and r1 ∈ Q∨

κ . This is equivalent to
showing that w is nonnegative on σ and r1 is nonnegative on κ = τ . First note that if x ∈ L, then
w(x) = p1(x) > 0. If x is an extremal ray not in l, then x maps to some extremal ray p(x) ∈ κ.
Since then x = p(x) = tv and p1(p(x)) < p1(x) by our minimality condition,

w(x) = p1(tv) = p1(x)− p1(p(x)) > 0 .

Since w > 0 on all extreme rays of σ, it is also nonnegative on their convex hull and so w > 0
on σ. Thus w ∈ N∨

σ as claimed. The claim that r1 ∈ Q∨
κ follows as p1 is already nonnegative on

σ and thus also on τ = κ.

Repeating this argument for r2 and taking x = p(x) ∈ τ , we see that

r1(x) + q1(x) = p1(x) + q1(x) = p2(x) + q2(x) = r2(x) + q2(x) .

Thus, rq + q1 = r2 + q2 and the proof is complete.

This concludes the proof that the universal family has reduced fibers and is an integral (and
thus flat) morphism of logarithmic stacks.

3.4 Universal property

Finally, we introduce the universal property of the Chow quotient stack which first appeared (in
less generality) in [Mol14]. This will be the key tool used in proving the main theorem.

Definition 3.6. A toric family of toric H-stacks is an H-equivariant morphism X → S of toric
stacks which is flat, proper, and equidimensional with reduced fibers. Let Λ be the character
lattice of X, and let Π be the character lattice of S. Then we assume that H is a subgroup of the
torus T (Λ) of X, as is the kernel of the map of tori: T (Λ) → T (Π). Furthermore, a morphism of
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families between X → S and X ′ → S′ is a diagram

X −−−−→ X ′





y





y

S −−−−→ S′

taking H to H.

Let C denote the category of families of toric H-stacks.

Definition 3.7. A toric family of toric H-stacks mapping to a projective toric variety V is
a family of toric H-stacks X → S as in the previous definition together with an H-equivariant
morphism to V . A morphism between families is a morphism in the category C which commutes
with the maps to V . Denote the category of such toric H-stacks mapping to V by CV .

Theorem 3.8 (Universal property). The Chow quotient stack U → [V //C H] is the terminal
object of CV .

Proof. To simplify the exposition, we will first prove that any family of toric H-varieties in CV
factors through [V //C H]. Such a family is equivalent to a diagram of lattices

Λ
j

−−−−→ N

π





y

Π

such that j maps L ⊂ Λ, the kernel of π, to L ⊂ N isomorphically, and also a diagram of fans in
the vector spaces spanned by these lattices:

Φ
j

−−−−→ F

π





y

Γ .

As before, let p : N → Q denote the map of lattices induced by the map V → V //C H. Since
j takes the kernel of π to the kernel of p, we have an induced map of lattices i : Π → Q giving
the following commutative diagram:

Λ
j

−−−−→ N

π





y

p





y

Π
i

−−−−→ Q .

Lemma 3.9. The map i induces a map of fans i : Γ → G from the fan of S to the fan of [V //CH].

Proof. We must show that any cone k ⊂ Γ maps into a cone κ ∈ G. Let v1 and v2 be two
arbitrary vectors in the interior of κ. As the map X → S is equidimensional, it takes cones of Φ
onto cones of Γ by the criterion of Lemma 4.1 of [Kar99]. Now let {s} be the collection of cones
in Φ with image k. Denote by (vi)s a preimage of vi for each s. Now consider the collection

N
(

i(vi)
)

= N
(

j(vi)s
)

=
{

σ ∈ F | p−1(vi) + L ∩ σo = pt
}

,

which first appeared as formula (3.1). As j takes L to L, the lattice (vi)s + L necessarily maps
to j(vi)s + L. Notice that the collection {s} covers (vi) + L since by properness of the maps in
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the families, any of the preimages of vi must be the whole (vi)+L. Furthermore, any cone in the
preimage maps to the interior of k, hence onto k by the equidimensional criterion of Karu [Kar99,
Lemma 4.1]. Since Φ maps to F , cones of Φ must map onto cones of F and then for each cone
σ ∈ N(i(v1)), there is a cone s such that so maps to σo. Therefore, i(v2)+L∩σ is a point and thus
N(i(v1)) ⊂ N(i(v2)). By symmetry, N(i(v1)) = N(i(v2)). By definition, then i(v1) and i(v2) are
in the interior of the same cone of the Chow quotient. Calling this cone κ, we see that ko 7→ κo

and thus k 7→ κ. This yields the following diagram:

Φ
j

−−−−→ F

π





y

Γ
i

−−−−→ G .

Proof of Theorem 3.8, continued. By the minimality of the universal family we obtain a diagram

Φ
j′

−−−−→ F ′ −−−−→ F

π





y

p





y

Γ
i

−−−−→ G .

To conclude, we must show that the submonoids Γk = k∩Γ factor through the submonoids Gk

for any cone k whose interior maps into the interior of κ. Let v ∈ Gκ, then since X → S has
reduced fibers, cones in Φ map onto cones in Γ. The reduced fibers condition tells us that if we
have s mapping to k, then the map Φs → Γk is surjective. Let {s} denote the collection of cones
in Φ mapping to k. Choose a list vs ∈ Φs of v for each S. Define

N0(κ) =
{

σ ∈ F : w + L ∩ σo = pt
}

for all vectors w in the interior of κ. By definition,

Gκ =
⋂

σ∈N0(κ)

p(Nσ) .

Repeating the argument above shows that every cone σ ∈ N0(κ) contains the image of some
cone s, and therefore j(Λs) ⊂ Nσ. Therefore, i(v) = p

(

j′(vs)
)

for all s in Gκ.

We have given the proof in the case of a toric H-variety, that is, in the case where all monoids
satisfy Γk = Γ∩k. Observe, however, that for the general case of a toric stack, we have Γk ⊂ Γ∩k,
and hence Γk a fortiori factors through Gk by the same argument. This concludes the proof of
the universal property of the Chow quotient stack.

3.5 Geometry of the universal family

We now undertake a more careful study of the universal family U → [V //C H]. Our main goal
is to connect the minimality property of the Chow quotient with the minimality (or basicness)
condition appearing in logarithmic geometry, as seen for instance in the work of Abramovich–
Chen [AC14], Gross–Siebert [GrS13], and Gillam [Gil12]. Indeed, such a connection has already
been established in [Mol14] in the case of logarithmic stable maps, that is, when the dimension
of H is one. Here we give an analogous description in the higher-dimensional case.

In the one-dimensional case, the cones in the fan of U can be explicitly described in terms of
the cones in the fan of the Chow quotient stack. This is not true in the higher-dimensional case,
as the cones of U can essentially be arbitrary; however, the same description that works in the
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one-dimensional case works for cones of U mapping with relative dimension one. To state the
result, we need a lemma.

Lemma 3.10. Let σ be a cone in the fan F ′ of U of dimension k + 1 mapping onto a cone τ of
dimension k in the fan G of [V //C H]. Then σ has precisely either one or two faces mapping
isomorphically to τ .

Proof. Since we assume that σ maps with relative dimension one, we have

dim span(σ) ∩ L = 1 ,

and hence span(σ) ∩ L = Ru for some vector u ∈ H. The proof thus reduces to the one-
dimensional case, which is Lemma 15 of [Mol14]. In fact, it also follows that if σ has two faces
mapping isomorphically to τ , then the two preimages of a vector of τ differ by a multiple of the
same vector u.

Hence, in the second case, it makes sense to define the following map c : Qτ → N. For a lattice
point v in τ , there are precisely two lifts v1, v2 in σ. We define c(v) to be one less than the number
of lattice points in σ on the ray connecting v1 with v2:

card( ~v1v2 ∩Nσ)− 1 .

With this we can state the following lemma.

Lemma 3.11. With notation as above, if σ has precisely one face mapping isomorphically to τ ,
then Nσ

∼= Qτ×N. If σ has precisely two faces mapping isomorphically to τ , then Nσ
∼= Qτ×NN

2,
where the map Qτ → N is the map c defined above and the map N

2 → N is the addition map:
(a, b) 7→ a+ b.

Proof. By the same argument as in the previous lemma, the statement reduces to the case where
H is one-dimensional, which is treated in [Mol14, Lemma 16].

In fact, unraveling the proof in [Mol14] gives the following description of the cone σ: in the
first case, every point x ∈ Nσ can be uniquely written as p(x) + nu, where p(x) denotes (with
abuse of notation) the unique lift of p(x) ∈ Qτ in the face τ1 ∼= τ , where u ∈ L is a fixed vector.
The vector u can be described canonically: it is the primitive vector on the face σ ∩ p−1(0). In
the second case, an x ∈ Nσ can be uniquely written as

x =
a

c(p(x))
p1(x) +

b

c(p(x))
p2(x)

with a+b = c(p(x)), and with p1(x), p2(x) the unique lifts of p(x) in the faces τ1, τ2, respectively.
Note that in this case any two lifts of the same element in Qτ also differ by a multiple of a unique
vector u in L, though now the choice of u is not canonical. However, once we choose an ordering
of the two faces τ1, τ2 isomorphic to τ , we can take u to be the primitive vector in the direction
p2(x)− p1(x). We summarize this in the following definition.

Definition 3.12. Let σ ∈ F ′ be a cone mapping to a cone τ ∈ G with relative dimension one.
Let K ⊂ L be the one-dimensional space span(σ) ∩ L. We denote by uσ the primitive vector
u ∈ K ⊂ L in the direction

(a) x− p(x) if σ has a unique face mapping to τ isomorphically;

(b) p2(x)− p1(x) if σ has precisely two faces mapping to τ isomorphically.
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Geometrically, a cone τ ′ mapping to τ ∈ G isomorphically corresponds to a generic component
of the fiber of U over the special point eτ of [V //C H], that is, of the identity of the torus of
the toric stratum corresponding to τ . A cone σ mapping to τ with relative dimension one is
a divisor in this fiber. The content of Lemma 3.10 is then that any such toric divisor in the fiber
appears either isolated in a generic component, like a marking in Gromov–Witten theory, or as
the intersection of precisely two generic components.

It thus makes sense to call two cones τ1, τ2 mapping isomorphically to τ adjacent if they
are the faces of the same cone of dimension dim τ + 1. Furthermore, we can call two such cones
comparable if there is a sequence ρ0 = τ1, ρ1, . . . , ρn = τ2 such that ρi and ρi+1 are adjacent.

Lemma 3.13. Let τ1 and τ2 be any two cones in F ′ mapping isomorphically to τ . Then τ1 and τ2
are comparable.

Proof. We need to show that given two cones τ1 and τ2 in F ′, there exist a sequence of cones

ρ0 = τ1 , ρ1 , . . . , ρn = τ2 ,

with ρi mapping isomorphically to τ , and cones σ1, . . . , σn of dimension dim τ+1 such that ρi, ρi+1

are faces of σi+1. Since the fibers of the fans F ′ → G are isomorphic in the interior of τ , the
statement reduces to the following: any two zero-dimensional strata in the fiber over a point
in τ o can be connected by a sequence of one-dimensional strata. This is clear since the fiber is
a polyhedral complex.

Lemmas 3.10 and 3.13 imply the following corollary regarding the fibers of the universal
morphism. We will formally introduce the notion of stable toric varieties in the following section,
but choose to state this corollary here. Informally, stable toric varieties can be thought of as the
union of toric varieties glued together along their toric boundaries.

Corollary 3.14. Fibers of the universal morphism U → [V //C H] are connected stable toric
varieties in the sense of Alexeev (see Section 4).

3.6 Gromov–Witten theory

To draw the connection with Gromov–Witten theory, we must connect the geometry of [V //CH]
with that of V , rather than U .

To be precise, consider the following association between cones of F ′ and cones of F . For
a cone σ′ ∈ F ′, we denote by ι(σ′) the unique cone σ ∈ F such that σ′o ⊂ σo. By construction
of the universal family, the map ι has the following explicit description: every cone σ′ ∈ F ′ is of
the form σ ∩ p−1(τ) for a cone σ ∈ F and τ ∈ G.

Then ι
(

σ ∩ p−1(τ)
)

= σ and we can define new sets, in analogy with N0(τ).

Definition 3.15. Let

Nk(τ) =
{

σ ∈ F : dim span
(

σ ∩ p−1(v)
)

= k
}

for v ∈ τ o, τ ∈ G, and define

Mk(τ) =
{

σ′ ∈ F ′ : dim span
(

σ′ ∩ p−1(v)
)

= k
}

=
{

σ′ ∈ F ′ : p(σ′) = τ, dimσ′ = dim τ + k
}

.

Lemma 3.16. Let τ be a cone in G. The map ι maps M0(τ) into N0(τ) and induces a bijection
M0(τ) ∼= N0(τ).
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Proof. Let σ′ ∈ M0(τ) and let σ = ι(σ′); take a vector v ∈ τ o. By assumption p−1(v) ∩ σ′o

is a unique vector w. Therefore w = p−1(v) ∩ p−1(τ) ∩ σo = p−1(v) ∩ σo and thus σ ∈ N0(τ).
Conversely, given σ ∈ N0(τ), it is clear that σ

′ = σ∩p−1(τ) is inside σ; hence the map p maps σ′

injectively into τ ; on the other hand, it hits the interior of τ , and hence, since p maps cones of F ′

onto cones of G, it must map σ′ to τ isomorphically, and σ′ is thus in M0(τ).

In relative dimension one, the situation is only slightly more subtle: if M1(τ)
′ ⊂ M1(τ)

denotes the subset of cones σ′ that have precisely two faces mapping to τ isomorphically, as in
Lemma 3.10, then we have the following result.

Lemma 3.17. The map ι takes M1(τ)
′ into N1(τ). The image of a cone σ′ in M1(τ)

′ is a cone
σ ∈ N1(τ) with precisely two faces in N0(τ), namely the images of the two faces of σ′ in M0(τ)
under ι.

Finally, we also have the following result.

Theorem 3.18. Let τ be a cone in [V //C H], and let τ0, . . . , τn be the cones in F that are
inside N0(τ). For a cone σ ∈ ι(M1(τ)

′), choose an ordering of the first and second face of σ
in N0(τ). Denote by i(σ) and j(σ) the index of the first and second face of σ in N0(τ) in the list
τ0, . . . , τn, respectively. Then the monoid Qτ has the description

Qτ =
{

(v0, . . . , vn,mσ : vi(σ) − vj(σ) = mσuσ)
}

⊂ τ0 × · · · × τn ×
∏

M1(τ)′

Z ,

where mσ denotes the integer satisfying the equality vi(σ) − vj(σ) = mσuσ.

Proof. Let us provisionally denote the monoid
{

(v0, . . . , vn,mσ : vi(σ) − vj(σ) = mσuσ)
}

by S, to simplify the notation. A map Qτ → S is obtained by mapping a vector v ∈ Qτ to the
element

(

v0, . . . , vn, (vi(σ) − vj(σ))/uσ
)

, where by (vi(σ) − vj(σ))/uσ we mean the multiplemσ such
that vi(σ) − vj(σ) = mσuσ. That this is well defined is equivalent to saying that Definition 3.12 is
not a nonsensical definition, which follows from Lemma 3.10.

An inverse map is provided by mapping (v0, . . . , vn,mσ) to the common image

p(v0) = · · · = p(vn) ∈ Q .

Note that the images of all the vi are indeed the same. Indeed, the images of any two adjacent
vi are the same, as then they are in the two faces of a cone in N1(σ), hence differ by an element
uσ of L; and by Lemma 3.13, any two cones τi, τj are comparable. The theorem will then follow
if we can show that p(v0) = · · · = p(vn) is indeed in Qτ .

We first show that the image is in τ . Assume that the vector vi is in the interior of τi
for all i. To say that p(vi) is in the interior of τ is almost tautological: it means that the set
N(vi) = {σ : vi + L ∩ σo = pt} is the collection τ0, . . . , τn. Certainly the collection is a subset
of N(vi). On the other hand, this is true for some choice of vi, namely any mapping into τ o,
which exists by definition of N0(τ); but the collection N(vi) is constant as long as vi+L varies in
the interior of all τi, which is as desired. To complete the proof we need to show that p(vi) ∈ Qτ ;
this is true since vi ∈ Nτi and Qτ = ∩τip(Nτi)

Remark 3.19. The above theorem shows that the dual cone of the basic monoid is the moduli
space of tropical broken toric varieties of the given type.
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Before stating the final corollary, we recall the definition of a minimal (or basic) logarithmic
structure.

3.7 Minimal logarithmic structures

One of the major insights of [GrS13] is the construction of a basic or minimal logarithmic struc-
ture on the fixed base. It is minimal in the following sense: suppose that we have a logarithmic
map X → S = Spec(k), where X is any logarithmic scheme and S is a point with an arbi-
trary logarithmic structure. Additionally, suppose that Smin is the same point with the minimal
logarithmic structure. Then minimality requires the following diagram to be cartesian:

X −−−−→ Xmin





y





y

S −−−−→ Smin .

That is, any logarithmic structure on X → S is obtained via pullback from the minimal one.
In general, the existence of these minimal objects is equivalent to the existence of a logarithmic
algebraic stack representing the moduli problem. For a more general approach to minimality
see [Gil12].

Corollary 3.20. Assume that the dimension of the torus H is one. Then the monoids Qτ are
minimal in the sense of Gross and Siebert.

We will now discuss the other side of the story: the moduli space of stable toric varieties.

4. Moduli space of stable toric varieties

First we will define the main objects of the moduli space in question, stable toric varieties.
See [AB06] and [Ale02] for both details and proofs.

4.1 Stable toric varieties

Definition 4.1. A polarized toric variety is a pair (X,L) of a normal projective toric variety X
(with torus T ) and an ample line bundle L on X.

Recall that every line bundle on a toric variety is linearizable; that is, the T -action on X
lifts to a T -action on any line bundle L on X. Furthermore, recall that there is a one-to-one
correspondence between polarized toric varieties (X,L) with linearized line bundle L and integral
polytopes P with vertices in the dual lattice M . Here, one has dimX = dimP .

Definition 4.2. A variety X is seminormal if any finite morphism f : X ′ → X which is a bijec-
tion is an isomorphism.

For example, a curve is seminormal if and only if it is locally biholomorphic to the union of n
coordinate axes in A

n.

Definition 4.3. A polarized stable toric variety is a pair (X,L) of a projective variety with
a linearized ample line bundle such that

(i) X is seminormal;

(ii) (Xi, Li = L|Xi
) is a polarized toric variety for every i.

309



K. Ascher and S. Molcho

The connection between toric varieties and combinatorics yields a lattice polytope for each
irreducible component (Xi, Li). The stable toric varieties can be thought of as a seminormal
union of toric varieties glued along T -invariant subspaces. Combinatorially, this is equivalent to
gluing polytopes along faces.

Figure 1. Polytopes, from left to right: P1, P1 ∪ P
1, P2, P2 ∪ F1.

Definition 4.4. The topological type of a stable toric variety is the topological space |P | = ∪Pi,
a union of polytopes glued according to X = ∪Xi, together with a finite map ρ : |P | →MR such
that ρ|Pi

: Pi →MR is the embedding of the lattice polytope corresponding to (Xi, Li) for every
i.

In addition to considering polarized stable toric varieties, we can define stable toric varieties
over projective space, or more generally a projective variety.

Definition 4.5. Let Pn be a projective space together with a T -linearized sheaf O(1), where T
is the maximal torus of Pn. A stable toric variety over Pn is a stable toric variety X with a finite
morphism f : X → P

n and an isomorphism L ∼= f∗O(1) of T -linearized ample sheaves.

More generally, one can consider a T -invariant subvariety V ⊂ P
n with the sheaf OV (1) =

OPn(1)|V . This set-up naturally allows us to talk about maps (and later logarithmic maps) of
stable toric varieties.

Theorem 4.6 ([AB06, Sections 4.1.1 and 4.1.2]). There exists a projective scheme AB(V ) which
is a coarse moduli space of stable toric varieties over V with topological type |Q|. Furthermore,
families of stable toric varieties over V of topological type |Q| form a proper algebraic stack of
finite type.

Remark 4.7 ([Ale06]). The moduli space AB(V ) contains an open subset which is the moduli
space of toric varieties over V , and the closure of this open subset is an irreducible component
of AB(V ). In general, for some polytopes Alexeev’s moduli space will have several irreducible
components. For example, this will occur if one takes a non-convex subdivison of P . In what
follows, we will refer to AB(V )main as the main component. As alluded to in the introduction,
the logarithmic structure that we add will carve out the main component.

We recall the following result.

Lemma 4.8 ([AB06, Lemma 5.3.5]). The variety V //C H is the normalization of AB(V )main.

Remark 4.9. In fact, the normalization map above extends to a map on universal families:

U −−−−→ X




y





y

V //C H −−−−→ AB(V )main .

In the following section we describe the logarithmic structure we endow this moduli space
with.

310



Logarithmic stable toric varieties and their moduli

4.2 Logarithmic structure

We begin by defining logarithmic stable maps of toric varieties prior to constructing the loga-
rithmic stack that parametrizes them. For the remainder of this paper, unless otherwise stated,
the notation X will refer to a scheme with a logarithmic structure and X will denote the scheme
underlying a logarithmic scheme.

Definition 4.10. A logarithmic stable map f (of toric varieties) to a fixed projective toric
variety V over a logarithmic scheme S is a diagram of logarithmic schemes

X
f

−−−−→ V




y

S

such that X → S is a stable toric variety. We require that the map X → S is flat and logarith-
mically smooth with fibers reduced stable toric varieties. This is equivalent to an integral and
saturated morphism in the category of logarithmic schemes.

Suppose that we have two stable logarithmic maps of toric varieties,X → S and Y → S′, both
with logarithmic maps to V denoted by f and g, respectively. Then a morphism of logarithmic
stable maps is defined with the following commutative diagram:

X Y V

S S′ .

f

g

Definition 4.11. Fix an integral polytope Q and a projective toric variety V . Let AB(V ) denote
the category fibered in groupoids over LogSchfs of stable toric varieties with discrete data defined
by Γ = (T, V,Q).

Here, LogSchfs denotes the category of fine and saturated logarithmic schemes. More explic-
itly, it takes a base scheme S with a fine and saturated logarithmic structure MS and associates
with it the set of all families of T -equivariant maps of stable toric varieties over S with topological
type Q to a fixed target V that are flat and logarithmically smooth with reduced fibers.

We now wish to show that AB(V ) is a logarithmic algebraic stack. This follows from the
main theorem of the recent work of Wise [Wis14], where the author constructs logarithmic Hom
spaces of logarithmic schemes. We summarize the results in the following two statements.

Theorem 4.12 ([Wis14, Theorem 1.1]). Let π : X → S be a proper, flat, geometrically reduced
integral morphism of fine logarithmic algebraic spaces. Let V be a (not necessarily algebraic)
logarithmic stack over S. Then the morphism

Hom
LogSchfs

S

(X,V ) → Hom
LogSchfs

S

(X,V )

is representable by logarithmic algebraic spaces.

Corollary 4.13 ([Wis14, Corollary 1.1.1]). As in the previous theorem, if additionally V → S is
locally of finite presentation with quasi-compact, quasi-separated diagonal and affine stabilizers,
and if X → S is of finite presentation, then Hom

LogSchfs
S

(X,V ) is represented by a logarithmic

algebraic stack.
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Before proving that the category AB(V ) is a logarithmic stack, we will first describe the
logarithmic structures on X and V , as the theorem requires as input X and V as logarithmic
schemes. Since V is a fixed toric variety, its logarithmic structure is the standard one coming
from the toric structure. As (X,L ∼= f∗OV (1)) is a polarized stable toric variety, we can apply
the logarithmic structure defined in [Ols08, Section 3.1.12].

Theorem 4.14. The category AB(V ) is a logarithmic algebraic stack.

Proof. In [Wis14], Wise considersX as the schemeX with the trivial logarithmic structure. Since
a logarithmic map is a map of schemes and a map of logarithmic structures, in this case we see that
determining the algebraicity of Hom

LogSchfs
S

(X,V ) is tantamount to showing the algebraicity of

HomSchS (X,V ). This is because one has a morphism from the category LogSchS to SchS and then
Hom

LogSchfs
S

(X,V ) arises as the pullback of HomSchS (X,V ) through this map. Note that AB(V )

is the same as HomSchS (X,V ), and the Hom space on the left is nothing other than AB(V ).

As AB(V ) is an algebraic stack (see [AB06, Remark 4.1.2]), the previous corollary allows us
to conclude that AB(V ) is a logarithmic algebraic stack.

5. The equivalence

5.1 Proof of the main theorem

We begin by discussing the two desired maps between the logarithmic stacks.

Proposition 5.1. There exists a map of logarithmic stacks [V //C H] → AB(V ).

Proof. The existence of this map follows from the fact that the Chow quotient stack is itself a
family of logarithmic stable toric varieties mapping to V .

Before discussing the second desired map between the logarithmic stacks, we show that they
are bijective on geometric points.

Lemma 5.2. The map of stacks i : [V //C H] → AB(V ) is bijective on geometric points.

Proof. It suffices to show that every family over Spec(C), that is, f : X → V from a stable toric
variety X to a projective toric variety V over Spec(C), comes from the Chow quotient stack. To
show this, we apply the universal property of the Chow quotient stack discussed above.

In [Ols08] (see, in particular, the proof of Lemma 3.7.6), Olsson proves that any stable toric
variety X over Spec(C) is pulled back from one of the standard families :

Y → S = A(P )

for some P . Notice that a logarithmic map Spec(C) → A(P ) corresponds to a homomorphism of
monoids P → R, where R is the chart defining the logarithmic structure on Spec(C). Therefore
the stable toric variety X over Spec(C) is a fiber of the family A(R) ×A(P ) A(R) considered as
a logarithmic map.

Since AB(V ) is logarithmically smooth (see Lemma 5.5), the map on the fiberX → V extends
étale locally to a map around Spec(C) ∈ A(R) and thus we can apply the universal property of
the Chow quotient to get that X → Spec(C) is actually pulled back from the Chow quotient
stack.

To show the existence of a map in the other direction we use the universal property of the
Chow quotient stack, Theorem 3.8. However, since the universal property requires toric structure,
we are first required to prove that AB(V ) is a toric stack.
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Theorem 5.3. The stack AB(V ) is a toric stack.

Proof. We will first show that the stackAB(V ) satisfies the conditions of Theorem 2.8, thus show-
ing that it is a GS toric stack. Then, it follows that AB(V ) is also a toric stack via Remark 2.9.

We are first required to exhibit the existence of an action of a torus, T ′, on AB(V ) and
a dense open substack which is T ′-equivariantly isomorphic to T ′. First notice that T acts on
a map f : X → V by translating the map f 7→ t · f , where t ∈ T . Now we must show that this
action descends to an action of T ′; that is, we need to show that h · f = f , where h ∈ H. This
requires an isomorphism V → V commuting with the maps f : X → V and h · f : X → V . But
this map is multiplication by h:

X
id

−−−−→ X

f





y





y

h·f

V
h

−−−−→ V .

Recall from Theorem 2.8 that we must show that AB(V ) is normal and has affine diagonal,
and that its geometric points have linearly reductive stabilizers.

Before proving normality, we recall the following theorem from [Ale02].

Theorem 5.4 ([Ols08, Corollary 3.1.26]). Let X be a stable toric variety, then Hp(X,OX) = 0
for all p > 0.

Now normality follows from proving that AB(V ) is logarithmically smooth.

Lemma 5.5. The logarithmic algebraic stack AB(V ) is logarithmically smooth, hence normal.

Proof. The logarithmic deformation theory of a logarithmic map f : X → V of two logarith-
mically smooth schemes is governed by the cohomology groups of the cone of the complex
f∗T log

V → T log
X . The cohomology long exact sequence for the cone becomes

0 → H0
(

f∗T log
V

)

→ H0
(

T log
X

)

→ Def(f) → H1
(

f∗T log
V

)

→ H1
(

T log
X

)

→ Ob(f) → · · · .

The logarithmic tangent bundle on a stable toric variety X is Od
X , where d = dimX. Therefore,

by Theorem 5.4, all higher cohomology of the logarithmic tangent bundle of a stable toric variety
vanishes. Since V is a toric variety and X is a stable toric variety, the obstruction group Ob(f)
is trivial for every geometric point f ∈ AB(V ). It follows that the obstruction sheaf on AB(V )
vanishes, and thus AB(V ) is logarithmically smooth.

Before discussing properties of the diagonal morphism, we must show that adding a log-
arithmic structure does not alter the automorphisms of the underlying objects. This follows
immediately from the representability statement of [Wis14] mentioned in Theorem 4.12.

To show that the logarithmic algebraic stack AB(V ) has affine diagonal, we will first show
that the diagonal is quasi-finite. We will then show properness, which then allows us to conclude
that the diagonal map is finite. Finally, note that finite diagonal implies affine diagonal and so
this is sufficient.

Lemma 5.6. The logarithmic algebraic stack AB(V ) has quasi-finite diagonal.

313



K. Ascher and S. Molcho

Proof. Consider the following cartesian diagram for any map g:

AB(V )×AB(V )×AB(V ) Spec(k) Spec(k)

AB(V ) AB(V )×AB(V ) .

g

Then quasi-finite diagonal would follow from the fiber product being a finite set. Elements
of the fiber product are of the form (f, p, φ), where f ∈ AB(V ), p is the point Spec(k), and φ
is an isomorphism from the pair (f, f) to (h, k), where (h, k) is the image of the point p under
the above map g. Then this is nothing but a pair of isomorphisms (f → h, f → k) and, if we
can show that there are finitely many automorphisms in AB(V ), it would follow that this fiber
product is a finite set.

Since the map AB(V ) → AB(V ) is representable by Theorem 4.12, and since AB(V ) has
finite automorphisms [AB06, Remark 4.1.2(3)], it follows that AB(V ) does as well. Consequently,
the diagonal of AB(V ) is quasi-finite.

Lemma 5.7. The logarithmic algebraic stack AB(V ) is proper and therefore has finite diagonal.

Proof. We verify the valuative criterion. Since AB(V ) has an open dense torus acting on it, it
suffices to check on one-parameter subgroups. Take a one-parameter subgroup in λ in AB(V )
and consider its lift to [V //C H] using the map defined in Proposition 5.1. Since the Chow
stack [V //C H] is proper, there is a unique limit of this lift. We will show that the map
[V //C H] → AB(V ) is bijective on geometric points, which allows us to conclude that the
image of this limit in AB(V ) must also be unique.

Since by Lemma 5.2, the map i : [V //C H] → AB(V ) is bijective on geometric points, we
conclude that the stack AB(V ) satisfies the valuative criterion of properness. Properness will
follow from demonstrating that the stack AB(V ) is of finite type.

The stack AB(V ) is locally of finite type by Theorem 4.12, so to show finite type it suffices
to show that AB(V ) is quasi-compact. By [SP, Tag 04YA] this will follow if we have a surjective
morphism V → AB(V ) such that V is of finite type. We will choose V to be a Chow stack, as it is
of finite type, and Theorem 5.2 shows that we have a surjective morphism on geometric points.
By [GD71, Section 3.5.3], surjectivity of a morphism on geometric points implies surjectivity
everywhere (over C).

Thus AB(V ) has finite diagonal as it is proper and has quasi-finite diagonal (Lemma 5.6).

Finally, we must show that the logarithmic algebraic stack AB(V ) has linearly reductive sta-
bilizers, but this follows (in characteristic zero) since the automorphism groups are finite. Thus,
we have shown that AB(V ) is a GS toric stack. Therefore, by Remark 2.9 the stack AB(V ) is
a toric stack.

We now show that the universal family X → AB(V ) is also a toric stack.

Proposition 5.8. The universal family X is a toric stack.

Proof. First, note that by the definition of the moduli problem, the universal projection mor-
phism π : X → AB(V ) is flat, logarithmically smooth, proper, and representable. Since we have
shown above that AB(V ) is logarithmically smooth and proper with finite diagonal, it follows
that X is also logarithmically smooth (hence normal) and proper with finite diagonal.

314

http://stacks.math.columbia.edu/tag/04YA


Logarithmic stable toric varieties and their moduli

Finally, by the chart criterion of logarithmic smoothness [Kat89, Section 3.5], the projection
X → AB(V ) is locally a toric variety over a toric stack, so locally of global type. Thus, to show
that X is a toric stack it suffices to show that there is an open dense torus inside X acting on X
whose action extends the action of the torus to itself. We begin by describing the action.

Describing an action of a group G on a stack X is equivalent to describing a G-action on
Hom(S,X ) for each S. Note that a morphism

S // X

π

��

AB(V )

is equivalent to the data of the composed map S → AB(V ) and a section

S → X ×AB(V ) S

of the projection X ×AB(V ) S → S. Since a map S → AB(V ) is a family of broken toric varieties
to V , we see that the S-points of X are diagrams

X
f

//

p

��

V

S

s

HH

as above, where p ◦ s = id is a section. We are going to define an action of the torus T of V on
such diagrams. Choose an isomorphism T ∼= T/H ×H, where H ⊂ T is the original subgroup,
and where T/H abusively denotes a complementary subgroup, which will be isomorphic to T/H.
We may then uniquely write every t ∈ T as t1h1, where t1 ∈ T/H and h1 ∈ H. Then t acts on
the family (f, s) by (t1f, h1s):

X
t1f

//

p

��

V

S .

h1s

HH

Observe that this does not depend on the choice of splitting: if we write t = t1h1 = t2h2, we have
a commutative diagram

X
h2h

−1

1
// X

t2f
//

p

��

V

S

h1s

HH

=
// S

h2s

HH

and thus an isomorphism of (t1f, h1s) with (t2f, h2s). This defines an action of T on X . We
now claim that X contains an open dense torus T , and this action restricts to the canonical
multiplication action of T on itself. Thus X is a toric stack.

Lemma 5.9. The torus T is open and dense.
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Proof. Consider the commutative diagram

U
j

//

��

X

��

f
// V

[V//CH]
i

// AB(V ) .

Denote the composed map U → V by g. We evidently have T ∼= g−1(T ) by the explicit combi-
natorial description of the morphism g on the level of fans. But then

g−1(T ) = j−1f−1(T ) .

Since i is bijective, so is j, and thus T is identified with f−1(T ) ⊂ X , which is open. Furthermore,
note that since T is dense in U , it also is in X .

The torus f−1(T ) can be identified with the functor that assigns to a scheme S a diagram

X
f

//

p

��

V

S ,

s

HH

where now each fiber of X is unbroken, and s maps into the locus where the action of H is free,
that is, the torusH. Such a diagram is identified with an element of Hom(S, T ) by sending a point
p ∈ S to f ◦ s(p) ∈ T . Conversely, given a map m : S → T , we define the family H × S → V ,
mapping each point (h, p) to h ·m(p), with the constant section (1, p).

Lemma 5.10. The action of T on f−1(T ) defined above is the natural action of T on itself.

Proof. Consider a family

X
f

//

p

��

V

S ,

s

HH

which corresponds to the map S → T mapping p to f ◦ s(p). An element of t acts on f ◦ s(p) by
sending it to t

(

f ◦ s
)

(p). On the other hand, if we write t = t1h1, the action we defined above
sends the family to

X
t1f

//

p

��

V

S ,

h1s

HH

which corresponds to the map S → T sending p to
(

t1f
)

◦
(

h1s)(p) = t1h1
(

f ◦ s
)

(p) = t
(

f ◦ s
)

(p)
since f is by definition H-equivariant.

Thus, we have demonstrated that X → AB(V ) is also a toric stack, which puts us in a position
to use Theorem 3.8.

Combining Theorem 5.3 with Theorem 3.8 gives us the following result.
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Proposition 5.11. There exists a map AB(V ) → [V //C H] such that any family in AB(V )
is obtained via pullback through the universal family U → [V //C H]. We have the following
commutative diagram:

X −−−−→ U




y





y

AB(V ) −−−−→ [V //C H] .

Proof. We have that X → AB(V ) is a toric stack with a map to V . Furthermore, both toric
stacks AB(V ) and [V //C H] are equipped with the same underlying torus. Thus, we are able
to use the universal property of the Chow quotient stack (Theorem 3.8). This yields a map
AB(V ) → [V //C H] which factors through the universal family, since by Theorem 3.8, the stack
[V //C H] is the terminal object in the category of toric families of H-toric stacks with a map
to V .

The existence of this map above, combined with the existence of the map in Proposition 5.1,
is enough to conclude our main theorem.

Theorem 5.12. The two toric stacks AB(V ) and [V //CH] are isomorphic. Furthermore, AB(V )
is a logarithmically smooth, proper, irreducible algebraic stack with finite diagonal.

Proof. First we note that the two toric stacks and their universal families, X → AB(V ) and
U → [V //C H], have the same underlying tori. This shows that the two stacks have the same
lattices, as the lattices are completely determined by the tori underlying the stacks. Furthermore,
the maps given in Propositions 5.1 and 5.11 yield maps between the fans defining the stacks.
Therefore, the conditions of Lemma 2.10 are satisfied and so the stacks are isomorphic.

Theorem 5.13. The logarithmic algebraic stack AB(V ) is isomorphic to AB(V )main, the nor-
malization of the irreducible main component of AB(V ).

Proof. SinceAB(V ) is isomorphic to the toric stack [V //CH], the forgetful mapAB(V ) → AB(V )
has finite fibers. As this map is an isomorphism over the (dense) locus of toric varieties, the
map is birational. Furthermore, since AB(V ) is normal by Lemma 5.5 and the forgetful map
is representable by Theorem 4.12, Zariski’s main theorem implies that this map must be the
normalization map.
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