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Abstract

In this article, we prove that the height function associated with the square-ice model (i.e. the
six-vertex model with a = b = c = 1 on the square lattice), or, equivalently, of the uniform
random homomorphisms from Z2 to Z, has logarithmic variance. This establishes a strong form
of roughness of this height function.

1 Introduction

1.1 Main results

Two-dimensional models for random surfaces are one of the main subjects of interest of modern
statistical physics. These models often undergo a phase transition between a localized phase where
the random surface does not fluctuate (or equivalently, the variance of the height function at a
point remains bounded), and a delocalized phase where it does, in the sense that the variance goes
to infinity as the domain grows. In the latter, the model is usually predicted to have a Gaussian
behaviour and to converge in the sense of distributions in the scaling limit to the Gaussian Free
Field (GFF).

There are many models of random surfaces but only a few for which it is known whether the
model is in its localized or delocalized phase. Even in cases where the random surface was proved
to be delocalized, the convergence to GFF is far from understood in the majority of cases. The
situation is particularly catastrophic in models where the surface is modeled as a function h from the
vertices of a graph G to the integers such that |hv−hu| = 1. We call such functions homomorphisms
or height functions.

The six-vertex model was initially proposed by Pauling in 1935 in order to study the thermo-
dynamic properties of ice, and in this paper we study a special case of this model. Fix an integer n
and consider the torus Tn := (Z/nZ)2 and its dual graph T∗n. Let ω be an arrow configuration on
the edges of T∗n assigning one of two orientations to each edge of the graph. The six-vertex model is
given by restricting ω to configurations that have an equal number of arrows entering and exiting
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Figure 1: The 6 possibilities for vertices in the six-vertex model. Each possibility comes
with a weight a, b or c.

each vertex of T∗n – a relation we call the ice rule. The rule leaves six possible configurations at
each such vertex, depicted in Figure 1. Assign the weight a to configurations 1 and 2, b to 3 and 4,
and c to 5 and 6. The six-vertex model with weights a, b, c consists in picking such a configuration
at random with probability proportional to an1+n2bn3+n4cn5+n6 , where ni is the number of vertices
with configuration i in ω, if ω satisfies the ice-rule, and zero otherwise.

Thanks to the ice-rule, six-vertex configurations are naturally associated with a height function
h on Tn defined by the property that the increment between the endpoints u and v of the edge e
is +1 if the associated arrow of the dual edge e∗ is crossed from left to right when going from u
to v. The height function is technically defined on Z2, which is the cover of Tn, as a lift of the
gradient, which provides a natural definition for hu − hv for any u, v ∈ Tn. On the subset of arrow
configurations with as many up arrows as down arrows on each line, and as many left arrows as
right arrows on each row, we obtain a well defined height function on Tn. Note that h is defined up
to constant, and we will therefore often consider equivalence classes of h for the relation ∼, where
h ∼ h′ if and only if h − h′ is constant. Also note that the height function partitions the lattice
Z2 into vertices which always take odd values and vertices which always take even values. We call
them respectively odd vertices and even vertices. Throughout the article, we fix the convention
that {(i, j) ∈ Z2 : (i + j) mod 2 = 0} is the set of even vertices, and that homomorphisms take
even values on even vertices.

When a = b = 1 and c is arbitrary, the logarithm of the probability of h is proportional to the
number of diagonally connected vertices u and v for which hu = hv. In particular, when c = 1,
which corresponds to the famous square-ice model, the distribution of h is the uniform measure.

The six-vertex model became the archetypical example of an integrable model after Lieb’s
solution of the model in 1967 in its anti-ferroelectric and ferroelectric phases [24, 25, 26] using the
Bethe ansatz (see [13] and references therein for a review). Since its exact solution, the model
has been intensively studied, yet most of the results had fallen short of addressing the question
of localization/delocalization of the associated height function. The situation changed in the last
two decades. The model at its free fermion point (i.e. when c =

√
2) was directly related to

the dimer model, and the height function was proved to converge to GFF (see [9] and reference
therein). For c ≥

√
3, the model is related to the critical random-cluster models with q ≥ 1, where

a discontinuous/continuous phase transition was proved in [12] and [11] for q > 4 and 1 ≤ q ≤ 4,
respectively (see also [7]). This immediately implies that the associated height function of the
six-vertex model is localized for c > 2 and delocalized for c = 2 (see, for example, [22]). Finally
[10], borrowing ideas from [31] proved that the square-ice height function is delocalized.

In this paper, we wish to study the behaviour of the height function in the delocalized phase.
We start by the following result. Let φTn be the uniform distribution for height function on the
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torus1.

Theorem 1.1. There exist c, C ∈ (0,∞) such that for every n ≥ 1 and every u, v ∈ Tn,

c log ‖u− v‖1 ≤ φTn [(hu − hv)2] ≤ C log ‖u− v‖1,

where ‖ · ‖1 is the L1 distance in Tn.

In order to state the main result of this paper, we need some more notation. A path (×-path) is
a sequence of vertices v0, . . . , vn in Z2 such that for every 0 ≤ i < n, vi and vi+1 are at a Euclidean
distance 1 (resp.

√
2) of each other. When vn = v0, we call a ×-path a circuit. Throughout the

paper, we will assume that (vi, vi+1) 6= (vj , vj+1) whenever i 6= j, and that the ordering is chosen so
that the induced continuous circuit2 is not self-crossing (though it may be self-touching). We will
often use the notation [vivj ] (resp. (vivj)) for the subpath of the path made of the vertices vi, . . . , vj
(resp. vi+1, . . . , vj−1). Given a circuit, we define a domain D to be the finite subset of Z2 that is
enclosed by the circuit; if the circuit is made up of even (resp. odd) vertices, we call the domain
an even (resp. odd) domain. We will denote the circuit which defines the domain D by ∂D; we will
refer to this circuit as the boundary of the domain. A quad (D, a, b, c, d) is given by a domain with
four marked points in ∂D, appearing in the order induced by the circuit. Throughout the paper,
we refer to certain subgraphs of Z2 colloquially as ‘domains’ even though the subgraphs may not
precisely coincide with the description here. In each such case, the subgraph is explicitly described
so there should be no confusion.

For a quad (D, a, b, c, d), the event Ch∈I(D, a, b, c, d) is the event that there exists a path of
vertices in D with height in I that connects [ab] to [cd] (we emphasize that [ab], [cd] are ×-paths).
We use the shortcut h = m, h ≥ m and |h| > 0 when I = {m}, I = [m,∞) and I = Z \ {0}. We
extend this definition to ×-paths by introducing the notation C×h∈I(D). When D is a rectangle R,

we introduce H#
#(R) := C#

#(R, a, b, c, d) and V#
# (R) = C#

#(R, b, c, d, a), where a, b, c, d are the four
corners of R indexed in counter-clockwise order starting from the top-left one, corresponding to
the existence of horizontal and vertical crossings of the rectangle. We write Λx,y for Λbxc,byc for
x, y ∈ R and Λx in short for Λx,x.

Let φ0
D be the uniform distribution on height functions defined on an even domain D which

are equal to 0 on ∂D. This model corresponds to the height function of square-ice when the arrow
configurations are defined on the set E∗ of edges of (Z2)∗ bordering the faces of (Z2)∗ centred
on vertices in D, and one applies the generalized ice-rule stating that every vertex has the same
number of incoming and outgoing arrows. We consider two possible behaviours:

B1 There exist C, c > 0 such that for every k and every even domain D

φ0
D[|h0| > k] ≤ C exp(−kc).

B2 For every ε,R, ρ, k > 0, there exists c = c(ε,R, ρ, k) > 0, C = C(ρ, k) > 0 such that for every
n ≥ C and every even domain D ⊂ ΛRn such that the distance between Λρn,n and ∂D is at
least εn,

c ≤ φ0
D[Hh≥k(Λρn,n)] ≤ 1− c, (1.1)

c ≤ φ0
D[H×h=k(Λρn,n)] ≤ 1− c. (1.2)

1Technically, such a distribution is only defined up to a translation — we will assume hu = 0 for some fixed u,
and note that all terms in the theorem below do not depend on the choice of u.

2The continuous path is made by joining the vertices by straight lines in R2.
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The first case corresponds to a strongly localized behaviour, while the second one corresponds
to a delocalized one. For instance, we will see that B2 implies Theorem 1.1 very easily. In fact,
it also implies that φ0

D[h2
0] is growing logarithmically in the distance to ∂D. Let us mention that

it also easily implies tightness of the family of uniformly chosen height functions when taking the
scaling limit of the model, a fact which may be useful to prove convergence to GFF.

We now state what we consider to be the main contribution of this paper.

Theorem 1.2. For the height function of square-ice, either B1 or B2 occurs.

We insist on stating this result as a dichotomy between two possible behaviours since we believe
that this result can be extended to more general random height functions (see Question 1.5 below).
Nevertheless, the result of [10, 31] excludes B1, so that we get the following immediate corollary.

Corollary 1.3. For the height function of square-ice, B2 occurs.

At a high level, our strategy to prove Theorem 1.2 follows [11], with some inspiration from [16].
It is based on a renormalization argument (which is made more complicated by the height-function
structure, see the discussion in Section 4.2) and a Russo-Seymour-Welsh (RSW) theory for height
functions. The RSW theory is a study of probabilities of crossing events in planar percolation
models. This theory was initially created for the study of Bernoulli percolation [29, 30, 6]. It has
blossomed in the past decade and now applies to a wide variety of percolation models [8, 3, 33, 15,
11, 14, 20]. In this paper, we provide the first adaptation of the theory to the study of random
height functions.

Theorem 1.4. For every ρ > 0, there exists c = c(ρ) > 0 and C = C(ρ) > 0 such that for every
n ≥ C(ρ) and every even domain D containing Λρn,n,

φ0
D

[H×h≥2(Λρn,n)] ≥ cφ0
D[V×h≥2(Λρn,n)]1/c, (1.3)

where D is an even domain containing all the translates of D by (k, 0) with |k| ≤ 4ρn.

The previous theorem is called a RSW theorem in the sense that it bounds the probability of
crossing rectangles in the ‘hard’ direction in terms of the probability of crossing rectangles in the
‘easy’ direction. With a little more work, one may replace the right-hand side by a quantity that
tends to 1 when the probability of a vertical crossing tends to 1. We will also see that the theorem
adapts trivially to other geometry, such as the infinite strip.

1.2 Related results and open questions

The uniform measure on homomorphisms was also introduced independently of the six-vertex model
by Benjamini, Häggström and Mossel in [1] (see also [2] for a prior work focusing on the tree) and
further investigated in [4, 23, 27, 19, 5, 17, 28] on arbitrary graphs (for which there is no a priori
connection to square-ice). As mentioned above [31, 10], the model is delocalized on Z2. In fact,
the model undergoes a roughening phase transition; in [28], it was proved that, for every k ≥ 2 and
sufficiently large d, the height function on Tn × (Z/kZ)d is localized.

Related studies consider the behaviour of the class of integer-valued 1-Lipschitz functions. When
the base graph is the triangular lattice, delocalization and logarithmic variance has been established
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through a correpondence with the loop O(2) model with edge weight x = 1 [20]. Another delo-
calization result is obtained in [14] for the height function of the loop O(2) model with weight
1/
√

2.
It is natural to ask to which extent the techniques developed in this paper help understand the

height function of the six-vertex model for different values of c. We believe that one of the main
contributions of the paper lies in the use of the FKG inequality for |h| to implement comparison
between boundary conditions and obtain the RSW theory and the renormalization for crossing
probabilities. This FKG for h and |h| are valid for every six-vertex model with a = b = 1 and c ≥ 1.
We therefore believe that an argument similar to the present paper could lead to an equivalent of
Theorem 1.2 in the regime a = b = 1 and c ≥ 1. This would be particularly interesting since some
range of c ≥ 1 corresponds to the random-cluster model with q ∈ (0, 1) which is known not to
satisfy the FKG inequality as a percolation model. Unfortunately, the present techniques do not
extend in a trivial fashion due to the lack of spatial Markov property when c > 1. More precisely,
take the example of an even domain. For c = 1, the value of h on ∂V is sufficient to decorrelate
the outside from the inside, while this is no longer the case for c > 1 (one needs to know what are
the values in diagonals as well). For this reason, we leave the following interesting problem open.

Question 1.5. Prove Theorem 1.2 for the height function of the six-vertex model with a = b = 1
and c ≥ 1.

Of course, we do not address the important open question of proving GFF fluctuations.

Question 1.6. Prove that the square-ice height function in an even domain Ωδ ⊂ δZ2 approxi-
mating a simply connected open set Ω converges weakly to the GFF on Ω with Dirichlet boundary
condition 0 on ∂Ω.

Organisation of the paper Section 2 contains some preliminaries (FKG and duality properties).
Section 3 deals with the proof of Theorem 1.4 while Section 4 presents the proof of the other
theorems.

Acknowledgments The first author is supported by the ERC CriBLaM, the NCCR SwissMAP,
the Swiss NSF and an IDEX Chair from Paris-Saclay. The second author was supported in part
by the European Research Council starting grant 678520 (LocalOrder), and the Zuckerman STEM
leadership Postdoctoral Fellowship. The last author is supported in part by NSERC 50311-57400.
This project was initiated during the visit of the last author in IHES. The authors would like to
express their gratitude to IHES for its support. Finally, we thank Alex Karrila and the anonymous
referee for carefully reading the manuscript.

2 Preliminaries

In this section, we gather some simple facts about homomorphisms. More precisely, the first
part proves the FKG inequality while the second discusses certain connectivity issues that will be
important in the following sections.

In order to properly state these properties, we introduce a general notion of boundary condition.
For B ⊂ D with D a domain and κ a function from B into the subsets of Z, define Hom(D,B, κ)
to be the set of homomorphisms h on D such that hv ∈ κv for every v ∈ B. We emphasize that
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B need not be a subset of ∂D in this definition. For a, b ∈ R, we use the notation κv = [a, b]
for κv = [a, b] ∩ Z. We call (B, κ) a boundary condition and say that the boundary condition is
admissible if Hom(D,B, κ) 6= ∅ is finite. For admissible boundary condition (B, κ), we set φB,κD for
the uniform measure on Hom(D,B, κ). When B = ∂D, we drop it from the notation.

2.1 Monotonicity properties of uniform homomorphisms

We call a function F : ZD 7→ R increasing if for any h, h′ ∈ ZD satisfying hv ≥ h′v for all v ∈ D,
F (h) ≥ F (h′).

Proposition 2.1 (monotonicity for h). Consider D ⊂ Z2 and two admissible boundary conditions
(B, κ) and (B, κ′) satisfying that for every v ∈ B, κv = [av, bv] and κ′v = [a′v, b

′
v] with av ≤ a′v and

bv ≤ b′v (the previous integers may be equal to ±∞), then

(CBC) For every increasing function F , φB,κ
′

D [F (h)] ≥ φB,κD [F (h)];

(FKG) For any two increasing functions F,G, φB,κD [F (h)G(h)] ≥ φB,κD [F (h)]φB,κD [G(h)].

The first property is called the comparison between boundary conditions, and the second the
Fortuin-Kasteleyn-Ginibre (FKG) inequality.

Proof. These results follow from Holley’s criterion, see [32, Theorem 4.8], since our definition of
height function specifies even height on the even sublattice and therefore implies irreducibility (a
fact which is required for Holley’s criterion). Note that the conditions on the boundary conditions
are designed so that Holley’s criterion holds for boundary vertices.

We also crucially use monotonic properties for |h| instead of h. In order to properly state the
conditions for such an inequality, we introduce some new notation. We say that the boundary
condition κ is |h|-adapted if there exists a partition Bpos(κ) tBsym(κ) of B such that

• for any v ∈ Bpos(κ), κv ⊂ Z+ := {1, 2, . . . };
• for any w ∈ Bsym(κ), κw = −κw.
Let Hom≥0(D,B, κ) be the set of all ξ ∈ Hom(D,B, κ) with ξv ≥ 0 for all v ∈ D. Let us

first make the following simple observation. For any ξ ∈ Hom≥0(D,B, κ) where κ is a |h|-adapted
boundary condition, let k(ξ) denote the number of connected components (with regular connectivity
of Z2) of the set of sites with ξv ≥ 1 which do not intersect Bpos. Note that the sign of h is the
same for each such cluster and could be either + or − with equal weight. Consequently

φB,κD (|h| = ξ) =
2k(ξ)

|Hom(D,B, κ)|
(2.1)

where | · | in the denominator denotes the cardinality of the set.

Proposition 2.2 (monotonicity for |h|). Consider D ⊂ Z2 and two admissible |h|-adapted boundary
conditions (B, κ) and (B, κ′) satisfying Bpos(κ) ⊆ Bpos(κ

′) and for every v ∈ B, [av, bv] := κv ∩
(Z+ ∪ {0}) and [a′v, b

′
v] := κ′v ∩ (Z+ ∪ {0}) satisfy av ≤ a′v and bv ≤ b′v,

(CBC) For every increasing function F , φB,κ
′

D [F (|h|)] ≥ φB,κD [F (|h|)];

(FKG) For any two increasing functions F,G, φB,κD [F (|h|)G(|h|)] ≥ φB,κD [F (|h|)]φB,κD [G(|h|)].
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Proof. Fix a vertex v. Using [32, Theorem 4.8] and references therein, it is sufficient to prove that
for any ξ (resp. η) which are restrictions to D \ {v} of configurations in Hom≥0(D,B, κ) (resp.
Hom≥0(D,B, κ′)) such that ξv ≤ ηv for all v, and every k ≥ 0,

φB,κD

[
|hv| ≥ k

∣∣|h|D\{v}| = ξ
]
≤ φB,κ

′

D

[
|hv| ≥ k

∣∣|h|D\{v}| = η
]
. (2.2)

Suppose first that ξu 6= ξu′ for two neighbours of u 6= u′ of v. In this case because of parity
constraints they must differ by 2 and the value of ξv is deterministic. Also if ξu = m for all
neighbours of v with m ≥ 2, the conditional distribution of |hv| on the left hand side of (2.2) is
equally likely to be m− 1 or m+ 1 if both {m− 1,m+ 1} is in κv(using (2.1)). Indeed k(ξ) defined
in (2.1) does not change if ξv = m − 1 or m + 1 (even if v ∈ Bpos). On the other hand if exactly
one of m− 1 or m+ 1 is in κv, then |hv| is deterministically that value. Using these two facts, it is
easy to verify (2.2) unless ξu = ηu = 1 for all neighbours u of v.

Thus, let us now consider the case ξu = ηu = 1 for every neighbour u of v. Define kv(ξ) (resp.
kv(η)) to be the number of connected components in D \ {v} of {u : ξu ≥ 1} (resp. {u : ηu ≥ 1})
containing at least one neighbour of v and that is not intersecting Bpos(κ) (resp. Bpos(κ

′)). Let
B(κ) be the event that at least one of the components of {u : ξu ≥ 1} containing at least one
neighbour of v intersects Bpos(κ) and similarly define B(κ′). Note that since Bpos(κ) ⊆ Bpos(κ

′)
and ξv ≤ ηv for all v, B(κ) ⊆ B(κ′). If {0, 2} 6⊆ κv or {0, 2} 6⊆ κ′v, the value at v is deterministic
and we are done by conditions on κ, κ′. In the other cases, it is easy to deduce from (2.1)

φB,κD

[
|hv| = 0

∣∣|h|D\{v}| = ξ
]

=


0 if v ∈ Bpos

2kv(ξ)/(2 + 2kv(ξ)) if ξ /∈ B(κ), v /∈ Bpos

2kv(ξ)/(1 + 2kv(ξ)) if ξ ∈ B(κ), v /∈ Bpos

and the same is true if we replace ξ by η and κ by κ′. In the first case v ∈ Bpos we are
immediately done by the definition of |h|-adapted boundary condition. Observe that kv(ξ) ≥ kv(η)
since ηv ≥ ξv for all v. If there is strict inequality kv(ξ) > kv(η) then the above expression for ξ
is at least that for η in all the cases by monotonicity of x 7→ x/(1 + x) and x 7→ x/(2 + x) and
the fact that 2k/(2 + 2k) ≥ 2k

′
/(1 + 2k

′
) if k ≥ k′ + 1. So assume kv(ξ) = kv(η). If ξ, η are both

in B(κ) or both not in B(κ), we are also done for similar reasons. So the only case remaining is if
η ∈ B(κ′) but ξ /∈ B(κ) (recall B(κ) ⊆ B(κ′)). But in this case, the strict inequality kv(ξ) > kv(η)
must hold as there is a neighbour of v whose cluster intersects Bpos(κ

′) and is not counted in kv(η)
but every neighbour cluster is counted in ξ as none of them intersect Bpos(κ). Thus we are back
to the previous case, and the proof is complete.

Remark 2.3. The non-trivial case of the proof above is reminiscent of the proof of FKG for the
FK-Ising model and the condition Bpos(κ) ⊆ Bpos(κ

′) is equivalent to “wiring” more subsets of the
boundary. In fact, the proof can be generalized to a case in which the boundary condition specifies
an arbitrary ‘wiring’ – i.e. forcing an arbitrary partition of the boundary to take on the same sign
without choosing the particular sign.

2.2 Connectivity properties of lattice paths

Our analysis will deal with paths of vertices in the square lattice and will crucially rely on the
property that if a certain path does not connect two arcs of a quad, then there must exist a
blocking path connecting the two other arcs. The study will be complicated here by the fact that
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these blocking paths will not necessarily be of the same kind as the original paths. We therefore
gather a few technical statements to which we will refer in the next sections.
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Figure 2: Duality in a square. A top to bottom h ≥ 2 ×-path blocks a left to right h ≤ 1
path (the cluster of h ≤ 1 containing the left boundary is shaded). This is a square with
symmetric boundary condition (depicted in red) so that the top and bottom boundaries
have value 4 and the left and right boundaries have value 0, appropriately modified at the
corners. By this duality and symmetry, in a uniform homomorphism, a top to bottom h ≥ 2
×-path occurs with probability at least 1/2.

It will be convenient for proofs to introduce a notion of connectivity which is dual to the ×-
paths. We will say that a path is a ∗-path if successive vertices are at graph distance exactly 2 of
each other on Z2. We introduce the events C∗h∈I(D) with the notion of ∗-path. The proof of the
following lemma is straightforward and left as an exercise (see Figure 2 for an illustration).

Lemma 2.4. For a quad (D, a, b, c, d) and m ∈ Z, we have the following properties

• We have

C×h>m(D, a, b, c, d)c = Ch≤m(D, b, c, d, a) = C∗h<m(D, b, c, d, a) ⊃ C×h<m(D, b, c, d, a).

If [bc], [da] are paths with the same parity as m, the notation C∗h<m(D, b, c, d, a) means that
there is a ∗-path joining two neighbours of [bc], [da] inside D.

• if (∂D, κ) is an admissible boundary condition which satisfies κv ⊂ [k,∞] for each v ∈ [ab] ∪
[cd] and κv ⊂ [−∞, k] for each v ∈ [bc] ∪ [ad], then for any m ≥ k, on Hom(D, ∂D, κ),

Ch≥m(D, a, b, c, d) = Ch∈{m,m+1}(D, a, b, c, d) = C∗h=m+1(D, a, b, c, d), (2.3)

C×h≥m(D, a, b, c, d) = C×h=m(D, a, b, c, d); (2.4)

• If m is further assumed to be strictly positive,

C|h|≥m(D, a, b, c, d) = Ch≥m(D, a, b, c, d) ∪ Ch≤−m(D, a, b, c, d).
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Remark 2.5. The last item tells us that the existence of a h ≥ m crossing is nearly measurable
with respect to the absolute value for any m ≥ 1. Indeed, |h| determines the connected structure of
h 6= 0, up to the sign of each cluster. Now, if Hom(D,B, κ) is chosen in a manner that determines
the sign of a crossing from [ab] to [cd], the event becomes truly measurable with respect to |h|.
Note that this property does not generalize to every type of connections: while ×-crossings of h ≥ 2
or h ≤ −2 can be decided by |h|, the same is not true for ×-crossings of h ≥ 1 (or h ≤ −1) since
×-neighbours may have different signs.

3 Russo-Seymour-Welsh theory

In this section, we prove Theorem 1.4. In Section 3.1, we start by presenting the proof subject to
two propositions that we prove in Sections 3.2 and 3.3.

3.1 Proof of Theorem 1.4

We prove the result for the rectangle Λ3ρn,3n. We introduce the rectangles

R−n = [−3ρn, 3ρn]× [−3n,−n],

R0
n = [−3ρn, 3ρn]× [−n, n],

R+
n = [−3ρn, 3ρn]× [n, 3n].

For ε < min{1/11, ρ/100} and k, we set the notations (we keep the dependence on n hidden in the
notations)

Ik := [(2k − 1)εn, (2k + 1)εn]× {−3n},
Jk := [(2k − 1)εn, (2k + 1)εn]× {−n},
Kk := [(2k − 1)εn, (2k + 1)εn]× {n},
Lk := [(2k − 1)εn, (2k + 1)εn]× {3n}.

Let us start by a simple observation that will motivate our reasoning below. Set Ai to be the
event that Ii and Ii+2 are connected by a ×-path of |h| ≥ 2 staying between heights −3n and 3n.
Recall that D is an even domain containing all the translates of D by (k, 0) with |k| ≤ 4ρn. The
±-symmetry and the FKG inequality for |h| implies that

2φ0
D

[H×h≥2(Λ3ρn,3n)] ≥ φ0
D

[H×|h|≥2(Λ3ρn,3n)] ≥
d3ρ/εe∏

j=−d3ρ/εe−1

φ0
D

[Aj ]. (3.1)

Furthermore, for every i0 and i, the FKG inequality for |h| implies that

φ0
D

[Ai0 ] ≥ φ0
D

[Ai0 |h|∂D̃i0−i = 0] = φ0
D̃i0−i [Ai0 ] = φ0

D̃
[Ai], (3.2)

where D̃ is the union of the translations of D by (4kεn, 0) with −2 ≤ k ≤ 3 and D̃i is the translate
by (2εi, 0) of D̃. The reason for introducing D̃ will become clear after (3.8). Therefore, our goal is
to find a constant c = c(ρ) such that for all n ≥ 1

max
i
φ0
D̃

(Ai) ≥ cφ0
D[V×h≥2(Λ3ρn,3n)]1/c (3.3)

as then for every j in the product of (3.1), we can apply (3.2) with i0 = j and i = the index which
attains the max in (3.3) to obtain the desired result.
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In order to prove (3.3), let Eijk` be the event that there is a vertical ×-crossing of |h| ≥ 2 in
Λρn,3n that starts from Ii and ends at L`, and which contains a sub-path crossing going from Jj
to Kk in R0

n. We further define Ei to be the event that there is a vertical ×-crossing of |h| ≥ 2 to
Z× {3n} with no further restrictions on the geometry.

I0

J2

K−2

L0

(0,−3n)(−11εn,−3n) (11εn,−3n)

Figure 3: A vertical crossing which realizes the event Eαβγijk` with α = −, β = 0, γ = + and
i = 0, j = 2, k = −2, ` = 0.

For α, β, γ ∈ {−, 0,+}, introduce the event Eαβγijk` that Eijk` occurs and in the ×-cluster of |h| ≥ 2
in Λρn,3n starting from Ii, one can find (see Figure 3)

• a vertical ×-crossing of R−n starting from Ii and staying in [(2i − 11)εn, (2i + 11)εn] × Z
(resp. intersecting {(2i− 11)εn} × Z or {(2i+ 11)εn} × Z) if α = 0 (resp. α = + or α = −);

• a vertical ×-crossing of R0
n starting from Jj and staying in [(2j − 11)εn, (2j + 11)εn] × Z

(resp. intersecting {(2j − 11)εn} × Z or {(2j + 11)εn} × Z) if β = 0 (resp. β = + or β = −);
• a vertical ×-crossing of R+

n starting from Kk and staying in [(2k − 11)εn, (2k + 11)εn] × Z
(resp. intersecting {(2k − 11)εn} × Z or {(2k + 11)εn} × Z) if γ = 0 (resp. γ = + or γ = −).

The square-root trick3 implies that there exist i, j, k, ` and α, β, γ such that

φ0
D[Eαβγijk` ] ≥ 1−

(
1− φ0

D[V×|h|≥2(Λ3ρn,3n)]
)1/C

, (3.4)

where C = C(ε, ρ) ≥ 27d3ρ/εe4. From now on, we fix i, j, k, `, α, β, γ such that (3.4) holds, and set

E := Eαβγijk` and Ē = Ei (so that E ⊂ Ē , and the latter event does not restrict the geometry or the
subpaths comprising the vertical crossing, except the initial intersection with Ii).

3We prefer the use of the square-root trick to the use of the union bound since we will refer to this argument
later with events having a probability close to 1. We recall that the square-root trick yields that for increasing events
A, . . . ,As and a measure P satisfying the FKG inequality,

max
i≤s

P[Ai] ≥ 1− (1− P[A1 ∪ · · · ∪ As])1/s.
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If
max{φ0

D̃
[Ai−2], φ0

D̃
[Ai+2]} ≥ 1

3φ
0
D[E ]4 (3.5)

then by (3.4)

(3 max
i
φ0
D̃

[Ai])1/4 ≥ 1−
(

1− φ0
D[V×|h|≥2(Λ3ρn,3n)]

)1/C
(3.6)

which implies (3.3).
For the remainder of the proof, assume (3.5) does not hold. We also introduce the translate Ek

and Ēk of E and Ē by (2kεn, 0). First note that

φ0
D̃

[E−2 ∩ Ē ∩ Ē2 ∩ E4 ∩ (Ai−2)c ∩ (Ai+2)c] ≥ φ0
D̃

[E−2 ∩ Ē ∩ Ē2 ∩ E4]− φ0
D̃

[Ai−2 ∪ Ai+2] (3.7)

The FKG inequality for |h| implies that, as in (3.1),

φ0
D̃

[E−2 ∩ Ē ∩ Ē2 ∩ E4] ≥ φ0
D[E ]4. (3.8)

We remark that the domain D̃ was introduced precisely to make this inequality manifest. Therefore
the negation of (3.5) implies that

φ0
D̃

[E−2 ∩ Ē ∩ Ē2 ∩ E4 ∩ (Ai−2)c ∩ (Ai+2)c] ≥ 1

3
φ0
D[E ]4 (3.9)

The rest of the proof will be devoted to the proof of the following inequality:

φ0
D̃

[Ai|E−2 ∩ Ē ∩ Ē2 ∩ E4 ∩ (Ai−2)c ∩ (Ai+2)c] ≥ 1
32 . (3.10)

Once this inequality is established, we can conclude the proof of the theorem, since it can be
combined with (3.9) and (3.4) to prove (3.3).

In order to prove (3.10), we first state two propositions that will be proved in Sections 3.2 and
3.3 respectively. Recall the definition of even quads and given an even quad (D, a, b, c, d) we define
[ab] to be the path in the boundary ×-circuit connecting a and b and the same for [bc], [cd], [da].

Proposition 3.1. Fix n ≥ 100 and suppose (D, a, b, c, d) is an even quad with the following prop-
erties.

• a, d ∈ Z× {n}, b, c ∈ Z× {−n},

• [ab] and [cd] are in Z× [−n, n].

• [bc] and [da] are in Z× {−n− 1,−n} and Z× {n, n+ 1} respectively.

Set boundary condition κ to be 2 on [ab] ∪ [cd] and 0 on (bc) ∪ (da). Then

φκD[Ch≥1(D, a, b, c, d)] ≥ 1
2 ,

if D is in one of the following three configurations:

(i) [ab] ∪ [cd] is contained in Λn/2,n,

(ii) [ab] intersects the vertical line containing c,

(iii) [cd] intersects the vertical line containing b.

11



a

b c

d

Figure 4: A mixed domain; even vertices are marked with circles, while odd vertices are
marked with boxes. The grey vertices indicate the interior.

A quad (D, a, b, c, d) is called mixed if [ab] and [cd] are even ×-paths, and (bc) and (da) are
odd ×-paths. Note that in this case D is not quite a domain according to the definition of the
introduction, we will therefore refer to it as a mixed-domain (see Figure 4).

Proposition 3.2. Fix n ≥ 100 and a mixed-quad (D, a, b, c, d) with the following properties.

• a, d ∈ Z× {n}, b, c ∈ Z× {−n+ 1}.

• [ab] and [cd] are in Z× {−n+ 1,−n}.

• Let H be the set of vertices enclosed by [ab], [cd], Z×{n}, and Z×{−n+ 1}. Then (bc) and
(da) do not intersect H.

Set κ to be the boundary condition equal to 2 on [ab] ∪ [cd] and 1 on (bc) ∪ (da). Then

φκD[C×h≥2(D, a, b, c, d)] ≥ 1
2 ,

if D is in at least one of the following three configurations:

(i) [ab] ∪ [cd] is contained in Λn/2,n,

(ii) [ab] intersects the vertical line containing c+ (1
2 , 0),

(iii) [cd] intersects the vertical line containing b− (1
2 , 0).

Here by ‘intersects’ we mean the path obtained by linearly interpolating between the vertices intersect
the vertical lines.

We refer the reader to the top left figure of Figure 8 for an example of a domain which satisfies
the conditions of Proposition 3.2.

With these two propositions at hand, let us deduce (3.10). The argument is divided in three
steps: first, we transform our problem into the existence of a ×-crossing of h ≥ 2 in a domain with
boundary condition 0/2/0/2. Then, we prove the existence of two crossings of h ≥ 1 in the ‘top
1/3’ and ‘bottom 1/3’ of the domain using the first proposition twice. Finally, we use the second
proposition to create a ×-crossing of h ≥ 2 in the domain enclosed by the top and bottom crossings
of 1. In each step, there is widespread use of domain Markov property and FKG for |h|.
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Let us now come back to the proof of (3.10) which we restate here for the reader’s convenience:

φ0
D̃

[Ai|E−2 ∩ Ē ∩ Ē2 ∩ E4 ∩ (Ai−2)c ∩ (Ai+2)c] ≥ 1
32 .

where E is the short form of Eαβγijkl given by (3.4) and Ē is the short form of the (strictly larger)
event that only requires Ii to be connected to the top (with no additional geometric restriction).

Let us now consider the leftmost- and rightmost-crossings which connect Ii and Ii+2 to the top.
We now explore |h| from the left and right boundaries of Λ3ρn,3n until we find these outermost
crossings. We orient these paths so that the leftmost-crossing connecting Ii to the top begins at
Z×{3n}, and continues along the counterclockwise-most available edge; it is straightforward to see
that the continuous path induced by this orientation may be self-touching, but will not self-cross.
We orient the rightmost-crossing connecting Ii+2 to the top starting at Z× {−3n}, with the same
counterclockwise-most convention. This defines the ×-path [ab] (on the left) and [cd] (on the right).
We also explore |h| on the complement of Λ3ρn,3n. If the exploration fails (i.e. there is no such
vertical crossing connecting the appropriate intervals), we explore |h| on all vertices of D̃. We now
define F to be the σ-algebra generated by this exploration.

We observe that E−2 ∩ (Ai−2)c is F measurable. To see this, suppose that there is a ×-path of
|h| ≥ 2 that connects [ab] to Ii−2. Then the event Ai−2 has occurred. If no such path exists, then
all the connected components of |h| ≥ 2 that intersect Ii−2 must be revealed by the exploration,
and all are separated from [ab] by a |h| ≤ 1 path from Ii−1 to Z × {3n}. In this scenario, we
can determine whether there are paths connecting Ii−2, Jj−2, Kk−2, and L`−2 with the geometric
constraints required by the index triplet αβγ, and thus E−2 ∩ (Ai−2)c is F-measurable. Similarly,
E4 ∩ (Ai+2)c is F-measurable.

Remark 3.3. We digress a bit with a crucial remark about the geometry of the paths [ab], [cd]
and their relationship with Propositions 3.1 and 3.2. When E−2 ∩ (Ai−2)c and E4 ∩ (Ai+2)c occur,
the geometry of the paths [ab] and [cd] are severely constrained. Let us first discuss the restriction
of the geometry to R−n and its behavior given the value of α (an analogous statements hold for
R+
n and γ). If α = 0, it is immediate from the definition that every subpath of [ab] and [dc] that

crosses R−n must stay inside Λn/2,n + (2iεn,−3n) — that is, the rectangle of height n and width
n/2, centered around Ii. Let us move on to the case α = +. Set d̄ to be the final intersection of
[dc] and Z × {−n} (note that the path is oriented from top-to-bottom). If α = +, the path [d̄c]
must intersect the vertical line containing b, and thus also the line containing b + (1

2 , 0) (since it
is part of the rightmost path and there is a path to the right of it which intersects (2i − 11)εn).
A similar statement holds for the path [āb], defined analogously, and the vertical line containing c
when α = −. These constraints will be useful later when we apply Proposition 3.1, in particular
the fact that one of the items (i)-(iii) there must occur for [ab], [cd].

For the R0
n case, we must be more careful in defining the appropriate crossings. Let us consider

subpaths of [ab] and [dc] which cross R0
n from ∪4

x=−2Jj+x to ∪4
x=−2Kk+x remaining inside Z×[−n, n].

Topological constraints force such subpaths to exist if E−2∩ (Ai−2)c and E4∩ (Ai+2)c occurs (recall
Ek is a translate of Eijkl which forces a subpath to connect Jj−2,Kk−2 and Jj+4,Kk+4 inside
Z × [−n, n]). Take one such subpath and we denote the b′ and c′ to be the intersection of these
paths with Z×{−n}. If β = 0, both of these subpath are included in Λn/2,n + (2jεn,−n). Indeed,
note that on Aci−2∩Aci+2, there exist |h| ≤ 1 crossings on both sides of these subpaths, and if β = 0
these |h| ≤ 1 crossings are ‘almost vertical’ by design which forces these subpaths to stay inside the
said thin rectangle. For the same reason, if β = +, the subpath of [dc] must intersect the vertical
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u v

Figure 5: The surgery in the definition of Ω− (shaded grey). The black paths are even
×-paths with value 2 and the red paths are even ×-paths with value 0.

line containing b′; the analogous statement holds for β = −, the subpath of [ab], and c′. Therefore,
for such crossings, one of the items (i)-(iii) in Proposition 3.2 must occur. We emphasise that these
topological constraints are forced on any such subpath of [ab] and [dc]. Later on we will choose
two special such crossings which are ‘closest’ to each other in some sense to define the domain on
which we apply Proposition 3.2.

We define Ω0 to be the domain enclosed by these two paths and the two even ×-paths [bc] and
[da] between b and c and d and a in Z × {−3n,−3n − 1} and Z × {3n, 3n + 1}, respectively. We
observe that, thanks to the convention chosen above, (Ω0, a, b, c, d) is a quad. Setting B = ∂Ω0∪Ωc

0,
we let ξ denote the value of |h| on B.

Let us come back to the proof of eq. (3.10). The conclusion of the above discussion about
measurability of the exploration is that it is now sufficient to show that for every ξ ∈ E−2 ∩ Ē ∩
Ē2 ∩ E4 ∩ (Ai−2)c ∩ (Ai+2)c,

φB,ξ
D̃

[Ai] ≥ 1/32.

Let (B, ξ0) be the |h|-adapted boundary condition equal to |h| = 2 on [ab] ∪ [cd] and 0 on the
rest of the even vertices in B. The comparison between boundary conditions for |h| shows that,

φB,ξ
D̃

[Ai] ≥ φB,ξ0
D̃

[Ai] ≥ 1
4φ

κ0
Ω0

[C×h≥2(Ω0, a, b, c, d)], (3.11)

where κ0 is the boundary condition on Ω0 equal to 2 on [ab]∪[cd] and 0 on (bc)∪(da). To see the final
inequality, we begin by noting that, under the assumed boundary conditions, C×|h|≥2(Ω0, a, b, c, d)

implies Ai. We then observe that

φB,ξ0
D̃

[C×|h|≥2(Ω0, a, b, c, d)] ≥ φB,ξ0
D̃

[C×|h|≥2(Ω0, a, b, c, d)|h|[ab] = 2, h|[cd] = 2]·φB,ξ0
D̃

[h|[ab] = 2, h|[cd] = 2].

From the domain Markov property, the first probability above is exactly φκ0Ω0
[C×h≥2(Ω0, a, b, c, d)].

Meanwhile, φB,ξ0
D̃

[h|[ab] = 2, h|[cd] = 2] is either 1/2 or 1/4, depending on whether the left and right

boundary are connected by a |h| ≥ 1 path; regardless, the probability is at least 1/4.
Overall, we see that, in order to conclude the proof, it is sufficient to show that, for any

realization of Ω0,

φκ0Ω0
[C×h≥2(Ω0, a, b, c, d)] ≥ 1

8 . (3.12)
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Let u and v be the vertices of [ab] and [cd] which are the last vertices of Z × {−n} which they
intersect respectively (oriented top to bottom). Consequently, [ub] and [cv] are vertical crossings
of the strip between height −3n and −n and let Ω− be the part of Z2 enclosed by [ub] ∪ [bc] ∪ [cv]
and the even ×-path [vu] between u and v in Z × {−n,−n + 1} with boundary condition κ−
equal to 0 on the bottom and top arcs, and 2 on the rest of the boundary. We now write down a
chain of inequalities, which is a common theme in the rest of the proofs. Essentially, the logic is a
combination of exploiting measurability of events with respect to absolute value of h and modifying
the geometry of domains using FKG for |h| or simply h as appropriate. We first write the chain of
inequalities, and provide the explanations for each line below.

φκ0Ω0
[Ch≥1(Ω−, u, b, c, v)] ≥ φκ0Ω0

[Ch≥1(Ω−, u, b, c, v)|h|∂Ω−\∂Ω0
= 0]

= φκ0Ω0
[C∗h=2(Ω−, u, b, c, v)|h|∂Ω−\∂Ω0

= 0]

≥ φκ−Ω−
[C∗h=2(Ω−, u, b, c, v)]

= φ
κ−
Ω−

[Ch≥1(Ω−, u, b, c, v)]. (3.13)

• In the first line, we use FKG for |h|. Indeed, with the boundary conditions κ0, horizontal
crossing by a path of h ≥ 1 is equivalent to crossing by |h| ≥ 1 (recall that, since the path
has regular Z2 connectivity, its existence is measurable with respect to absolute value). Also
notice that κ0 is |h|-adapted with top and bottom arcs being Bsym (with κ ≡ {0}) and the
left and right arcs being Bpos (with κ ≡ {2}). As per Proposition 2.2, we can introduce
new vertices with boundary value 0, thereby decreasing the probability of the crossing, since
|h| ≥ 1 is an increasing event in absolute height value.

• The equality in the second line simply follows from Lemma 2.4.

• For the third inequality, we note that the map h 7→ 2 − h send a h = 2 ∗-path to a h = 0
∗-path while exchanging the 2’s and 0’s on the boundary. Now, we notice that we have a
|h|-adapted boundary condition and the crossing by a ∗-path of h = 0 is actually a decreasing
function of |h|. Hence, we can remove the optimal conditioning 0 on ∂Ω0 \ ∂Ω− and make
them ‘free’ (κ ≡ Z) thereby decreasing the probability. Globally adding 2 and flipping the
sign, we get the required probability in the third line. For later use of a similar step, we
will simply say ‘by FKG for |h − 2|, we get the third inequality by pushing away the h = 2
boundary’.

• The fourth line is Lemma 2.4, again.

Thanks to Remark 3.3, we know that Ω− satisfies the geometry required in Proposition 3.1
(exactly which of the three conditions occurs depends on the value of α, as described in the remark).
Thus, the proposition allows us to deduce that, with probability 1/2, there is a crossing of h ≥ 1
from [ub] to [cv] in Ω−. One can do the same in a domain Ω+ defined in a similar fashion in the
strip Z × [n, 3n], and FKG for height implies that both crossings occur with probability at least
1/4.

We now assume that the event C(Ω−, u, b, c, v) and the analogous event for the top domain
occur in Ω0. By Lemma 2.4, this implies that Ω− and Ω+ both contain a ×-crossings of h = 1 from
[ub] to [cv]. Further observe that, because of the boundary conditions, one can find such crossings
inside Ω0. Condition on the bottom-most and top-most such ×-crossings of h = 1 and let Ω1 be the
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a′

b′ c′

d′ a′

b′ c′

d′

Figure 6: The black paths are even ×-paths with value 2 and the blue paths are odd ×-
paths with value 1. Left: The domain Ω1. Right: The domain Ω2 in shaded grey obtained
after the surgery.

subdomain of Ω0 enclosed between these paths (we need to further explore inside Ω0 to find these
paths, and orient them appropriately to obtain a quad). We denote by κ1 the boundary condition
induced by the conditioning, which is 2 on the even vertices of the boundary and 1 on the odd
ones. Let [a′b′] and [d′c′] be subpaths of [ab] and [dc] such that

• are contained in Z× [−n, n],
• are crossing Z× [−n, n] from ∪4

x=−2Jj+x to ∪4
x=−2Kk+x from top to bottom,

• are such that [a′b′] is on the left of [d′c′] and there is no additional crossing of Z× [−n, n] in
[ab] ∪ [cd] in between.

The existence of such paths is easy to see. Indeed, the first item and third items are obvious
and the second item is already explained in Remark 3.3. Let Ω′1 be the vertices of Z × [−n, n]
between [a′b′] and [c′d′]. Let Ω2 be the union of the vertices of Ω1 and Ω′1, as well as all the vertices
surrounded by them (the gray domain in Figure 6). In words, Ω2 corresponds to cutting all the
“tongues” of [ab] and [cd] entering Ω′1 by “pushing them away”. Note that, since we took [a′b′] and
[c′d′] to be successive crossings, none of these tongues crosses Ω′1.

We now make the observation that in the bottom strip, no part of the boundary with h = 1 is
affected by this procedure. Consequently, we have that h ≥ 2 on ∂Ω1 \ ∂Ω2 (this is crucial for the
FKG application later). Indeed, on the one hand any boundary vertex with h = 1 is connected to
Z× {−3n} or Z× {3n} by a path staying in Ω0 ∩ (Z× [−3n,−n]) (or Ω0 ∩ (Z× [n, 3n])). On the
other hand, by definition ∂Ω1 \ ∂Ω2 ⊂ Z× [−n, n] and any vertex in Ω2 \ ∂Ω′1 is disconnected from
Z× {−3n, 3n} by ∂Ω′1. Let κ2 be the boundary condition equal to 2 on even vertices of ∂Ω2, and
1 on odd ones.

Exactly as for (3.13), FKG for |h − 2| enables us to push away the h = 2 boundary condition
to get that

φκ1Ω1
[H×h≥2(Ω1, a, b, c, d)] = φκ1Ω1

[H×h=2(Ω1, a, b, c, d)]

= φκ2Ω2
[H×h=2(Ω1, a, b, c, d)|h|∂Ω1\∂Ω2

= 2]

≥ φκ2Ω2
[H×h=2(Ω2, a, b, c, d)]

= φκ2Ω2
[H×h≥2(Ω2, a, b, c, d)]

≥ φκ2Ω2
[H×h≥2(Ω2, a

′, b′, c′, d′)]. (3.14)

16



Let us elaborate a bit. In the first equality, we used the second item of Lemma 2.4, the second
equality is simply using the spatial Markov property, the first inequality is FKG for |h − 2| and
inclusion (a horizontal crossing of Ω2 guarantees a horizontal crossing of Ω1 because of the boundary
condition). The last equality is again the second item of Lemma 2.4 and the final inequality is simply
inclusion.

Now, let Ω3 be the mix-domain composed of Ω2 together with the odd vertices outside Z×[−n, n]
that are on the exterior boundary of Ω2 (meaning that they do not belong to the set but are
neighbours of a vertex belonging to the set). If κ3 is the boundary condition on Ω3 equal to 2 on
[a′b′] ∪ [c′d′] and 1 on (b′c′) ∪ (d′a′). We see that

φκ2Ω2
[H×h≥2(Ω2, a

′, b′, c′, d′)] = φκ3Ω3
[H×h≥2(Ω2, a

′, b′, c′, d′)|h|∂Ω2\∂Ω3
= 2]

≥ φκ3Ω3
[H×h≥2(Ω3, a

′, b′, c′, d′)]. (3.15)

The inequality is clear using FKG for h, since the boundary condition on ∂Ω2 \ ∂Ω3 = 2 is the
highest possible height one can put on these vertices while maintaining the constraint forced by κ3.

As explained in the second paragraph of Remark 3.3, we now have a quad which is in the first
configuration of Proposition 3.2 if β = 0 (resp. second if β = +, third if β = −). We deduce that

φκ3Ω3
[H×h≥2(Ω3, a

′, b′, c′, d′)] ≥ 1
2 ,

which together with (3.15), concludes the proof of (3.10), and consequently that of Theorem 1.4.

3.2 Proof of Proposition 3.1

We prove the first two cases of the proposition; the third can be proven analogously to the second.

First case. Let Λeven
n be the set of vertices inside (or on) the even circuit in Λn+1\Λn−1 surround-

ing the origin. Consider the boundary condition ξ on Λeven
n equal to 2 on left and right (including

vertices on y = x), and 0 on the rest. By the second item of Lemma 2.4, and FKG for |h− 2| (the
reasoning is the same as in (3.13)), we find that

φκD[Ch≥1(D, a, b, c, d)] = φκD[C∗h=2(D, a, b, c, d)] ≥ φξΛeven
n

[H∗h=2(Λeven
n )] = φξΛeven

n
[Hh≥1(Λeven

n )].

(3.16)

Now, using the first item of Lemma 2.4 again, we find that

φξΛeven
n

[Hh≥1(Λeven
n )] = 1− φξΛeven

n
[V×h≤0(Λeven

n )]

≥ 1− φξΛeven
n

[Vh≤1(Λeven
n )],

≥ 1− φξΛeven
n

[Hh≥1(Λeven
n )]. (3.17)

In order to deduce the last inequality, we used the FKG inequality for h and the symmetry
of Λeven

n by π/2 rotation and the fact that the boundary condition ξ′ obtained by rotating and
applying the transformation 2−h is smaller than the boundary condition ξ. Overall, (3.17) implies

that φξΛeven
n

[Hh≥1(Λeven
n )] ≥ 1

2 , which concludes the proof.
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a

b
c

d

a′

d′

σ(b)

Figure 7: The black paths are even paths with value 2 and the blue paths are odd paths
with value 1. The symmetric domain Ω is shaded grey.

Second case. Let ` be the vertical line passing by c. Assume that [ab] and [cd] do not intersect —
otherwise, there is nothing to prove. Denote the reflection with respect to the line ` by σ, and note
that σ maps the even lattice to itself. Let a′ be the first intersection of [ab] when going from bottom
to top (i.e. when going from b to a) with ` and let Ω be the quad enclosed by [a′b], σ([a′b]) and the
×-path of even vertices in Z× {−n− 1,−n} between b and σ(b). By definition, (Ω, b, c, σ(b), a′) is
symmetric under σ.

The idea is to apply the ideas of (3.16), (3.17), but with the even domain (Ω, b, c, σ(b), a′)
playing the role of the ‘square’ domain Λeven

n with boundary condition 2 on [a′b] ∪ [cσ(b)] and 0 on
(bc)∪ (σ(b)a′). The symmetry about π/2-rotation for the ‘square’ domain is replaced by reflection
about the line ` for (Ω, b, c, σ(b), a′). Apart from these differences, the proof is analogous to the
first case. We provide the details below.

Let D′ be the domain bounded by [a′b], [bc], [cd′], where d′ the first intersection of [cd] with
σ([a′b]), and [d′a′], which is a segment in σ([a′b]).

First observe that, because of boundary conditions and inclusion, we have the following inequal-
ity

φκD[Hh≥1(D, a, b, c, d)] ≥ φκD[Hh≥1(D′, a′, b, c, d′)].

Now applying FKG inequality to |h| (note that the event Hh≥1(D′) = H|h|≥1(D′) is increasing in
terms of |h|), we find that, like in (3.13),

φκD[Hh≥1(D′, a′, b, c, d′)] ≥ φκD[Hh≥1(D′, a′, b, c, d′)|h|∂D′\∂D = 0]

= φκ
′
D′ [Hh≥1(D′, a′, b, c, d′)],

where κ′ is the boundary condition equal to 2 on [a′b]∪ [cd′], and 0 on (bc)∪ (d′a′). Now, following
a reasoning similar to (3.16) and then (3.17), we find that

φκ
′
D′ [Hh≥1(D′, a′, b, c, d′)] ≥ φξΩ[H∗h=2(Ω, a′, b, c, σ(b))] ≥ 1

2 ,

where ξ is the boundary condition equal to 2 on [a′b] ∪ [cσ(b)] and 0 on (bc) ∪ (σ(b)a′).

3.3 Proof of Proposition 3.2

Again, we prove the first two cases of the proposition, as the third is analogous to the second.
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Before embarking on the proof of the first case, we recall that the proof of Proposition 3.1 used
symmetries that mapped even vertices to even vertices, and and symmetric even-domains with
boundary condition that are made of 0s and 2s. In this section, we will use symmetries that are
mapping even vertices to odd vertices, and symmetric mix-quads with boundary condition that are
made of 1s and 2s. Furthermore, unlike the proofs in Section 3.2, we are not allowed to ‘push in’
boundary condition larger than or equal to 1 on top and bottom, because ×-crossings of h ≥ 1
cannot be transformed into increasing events in |h|. We therefore need to symmetrize the domain
D by pushing boundary condition 2 away only.

First case. Let Λmix
n be the domain enclosed between (see the bottom figure in Figure 8)

• the even ×-paths in {n, n + 1} × Z connecting (n, n) and (n,−n) (call it [vu]) and the even
times path in {−n,−n+ 1}×Z connecting the vertices (−n+ 1,−n+ 1) and (−n+ 1, n+ 1)
(call this path [sr])

• The two odd paths obtained by rotating [uv] and [rs] by π/2 about the point (1
2 ,

1
2).

This represents the ‘mixed square domain’, which is necessary to maintain the correct parity in the
boundary conditions later in the proof.

a d

b c

r

s
u

v

u

v

s

r

Figure 8: Top figures: Blue paths are odd paths with h = 1 and black paths are even
paths with h = 2. Left: The domain D with the square Λn in shaded grey. Right: The
symmetric domain Ω. Bottom: The symmetric ‘mixed square’; the circles are even vertices,
and the boxes are odd vertices.

Let Utop be the domain enclosed by the (odd) ×-path [da] in the quad D and the (odd) ×-path
from a to d in Z×{n, n+ 1} (the shaded blue domain in Figure 8). We define Uright as the rotation
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of Utop by −π/2 about the point (1
2 ,

1
2) (shaded red in Figure 8). Similarly, we define Ubottom and

Uleft to be rotation of Ubottom by −π/2 about the point (1
2 ,

1
2) (shaded light green and yellow ochre

respectively in Figure 8). Notice that it is possible to define this domain because of the geometric
constraints on the paths [rs], [uv] specified by the first case, namely these paths are contained in
the square Λn/2,n.

We now introduce
Ω = Λmix

n

⊎
Utop

⊎
Uleft

⊎
Ubottom

⊎
Uright,

where
⊎

denotes the disjoint gluing of the graphs along the top and bottom parts of Λmix
n . Note

that Ω is planar but may not be properly embeddable in an isometric fashion in R2, and that it
contains a natural copy of the graph D. The graph Ω also satisfies symmetry with respect to the
rotation operation above. Let ξ be the boundary condition on Ω equal to 2 on even vertices of ∂Ω
and 1 on odd ones.

Using the same reasoning as in (3.13), we find that

φκD[C×h≥2(D, a, b, c, d)] ≥ φξΩ[C×h≥2(Ω, r, s, u, v)]. (3.18)

It remains to observe that by the first item of Lemma 2.4,

φξΩ[C×h≥2(Ω, r, s, u, v)] = 1− φξΩ[Ch≤1(Ω, v, r, s, u)]

≥ 1− φξΩ[C×h≤1(Ω, v, r, s, u)]. (3.19)

By symmetry, this implies that the probability of the former is larger than 1
2 . This concludes the

proof.

Second case Let `′ be the vertical line passing by c+ (1
2 , 0). We start by defining an equivalent

of the symmetric domain introduced in the second case of Proposition 3.1. Assume that [ab] and
[cd] do not intersect otherwise there is nothing to prove. Denote the reflection with respect to the
vertical line `′ passing by c + (1

2 , 0) by σ′ (σ′ maps the even lattice to the odd lattice). We now
define a domain which will play the role of the domain Λmix

n from the first case. This domain will be
symmetric about `′ so we do not need to shift the reflected paths to maintain the parity constraints.
We suggest that the reader refer to Figure 9 while reading the definitions below.

Let a′ be the vertex just before the first intersection of [ab] (when going from bottom to top
and when seen as a continuous path) with `′ and let S be the quad enclosed by

• [a′b],

• σ′([a′b]),

• the odd ×-path of Z×{−n,−n+ 1} between the right neighbour of b and the left neighbour
of c,

• and the even ×-path between c and σ′(b).

Finally, let d′ be the last vertex of [cd] before it exits S for the first time.
Let Utop−right be the union of odd domains whose boundaries are defined as follows. Let s be

the odd path defined as the union of
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b b

a a

c c

d

a′ a′

d′ d′

d

Figure 9: Blue curves denote odd × paths with boundary condition 1 while the black
curves are even × paths boundary condition 2. Top left: The symmetric domain S shaded
in grey. Top right: The portion Utop−right is shaded blue and Ubottom−left is shaded green.
Bottom: The final symmetric domain Ω. Utop−left is shaded orange and Ubottom−right is
shaded red.

• the path from a neighbour of d′ to neighbour of d using the odd vertices which are neighbours
of the vertices of [dd′] from the exterior of D,

• the odd path (da),

• the odd vertices neighbouring from the exterior of D the vertices of [aa′].

Let t be the odd ×-path going along σ([a′b]) from d′ to the neighbour of a′ and observe that t∩D
is divided into segments. Now, let [u1v1], . . . , [uivi] be the segments of t that can be reached from a′

(or equivalently d′) while staying in D∩S. For 1 ≤ j ≤ i, consider the domain Uj enclosed by [ujvj ]
and the part of s going from uj to vj . We then define Utop−right to be the union of the Uj for 1 ≤ j ≤ i
and Utop−left = σ′(Utop−right). Similarly, we define Ubottom−left and Ubottom−right = σ′(Ubottom−left)
in a straightforward fashion (in this case the definition is even simpler: there is only one domain
since (bc) does not cross the odd ×-path of Z×{−n,−n+ 1} between the right neighbour of b and
the left neighbour of c).

Introduce
Ω = S

⊎
Utop−left

⊎
Ubottom−left

⊎
Ubottom−right

⊎
Utop−right
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(the gluing of the different pieces is made along the segments [ujvj ] defined above for the top pieces,
and the odd ×-path of Z× {−n,−n+ 1} between the right neighbour of b and the left neighbour
of c for the bottom parts). Let ξ be the boundary condition on Ω equal to 2 on even vertices of
the boundary and 1 on odd ones.

To complete the proof, we must compare the crossing probabilities in D′ and Ω by pushing
away the boundary condition h = 2, and then applying a symmetry argument. The proof follows
the same procedure as the previous case, and we therefore omit the details for the sake of brevity.

4 Proofs of the theorems

4.1 Two useful crossing probabilities

Proposition 4.1. For every ρ > 0, there exists c = c(ρ) > 0 such that for every n and every even
domain D containing Λρn,n,

φ0
D[Hh≥0(Λρn,n)] ≥ c. (4.1)

Remark 4.2. It is worth mentioning that we do not require ∂D to be far away from Λρn,n. In
fact, the boundary of ∂D may partially coincide with the boundary of Λρn,n without raising any
issues.

Proof. The first item of Lemma 2.4 implies that

p := φ0
D[Hh≥0(Λρn,n)] = 1− φ0

D[V×h<0(Λρn,n)].

The idea now is the following.

• On the one hand, the square root trick implies that several vertical ×-crossings of h <
0, localized to intersect specific locations in the bottom boundary of the rectangle, occur
simultaneously with positive probability which converges to one as p goes to zero. By sign
flip symmetry and the union bound, we may deduce that similar h > 0 crossings occur in an
interlacing fashion with the h < 0 with positive probability which also goes to one as p goes
to zero.

• On the other hand, the h < 0 ×-crossings can be bridged by h ≤ 0 paths with positive
probability (uniformly in p), using same arguments as in Section 3.1. However, the existence of
interlacing h > 0 ×-vertical paths preclude the occurrence of such bridging paths. Combining
these estimates lead to a lower bound on p.

We now provide the details. For the bridging part of the argument, we only need to bridge using
h ≤ 0 path, so we only need the arguments of Proposition 3.1, and hence we do not require to divide
the rectangle into three parts as in Section 3.1. To that end recall the definition of Ik, Lk from
Section 3.1, where we replace 3n by n where appropriate. We furthermore recall the definition
of α from Section 3.1, which specified the geometry of the vertical paths. Now define E = Eαi`
analogously to Eαβγijk` , replacing |h| ≥ 2 by h < 0 and requiring only one geometric index α (instead
of the triplet α, β, γ). We trust the reader to make the appropriate modification required in these
definitions. As in (3.4), the square-root trick implies that there exist i, `, α and C = C(ρ) such that

φ0
D[E ] ≥ 1− p1/C ,
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For the rest of the proof, call a ×-path γ achieving if it guarantees the occurrence of E . For a subset
I of Ii, let E(I) be the event that there exists an achieving ×-path starting from I.

We now claim that Ii can be split in eight intervals I1, . . . , I8 ordered from left to right and
intersecting at their extremities (they may have different sizes) such that

φ0
D[E(Ik)] ≥ 1− p1/(8C) for each k.

Indeed, first split the interval Ii = [ab] in two by choosing the left-most x such that the probability
that φ0

D[E([ax])] ≥ φ0
D[E((xb])]. Then, the square-root trick implies that both φ0

D[E([ax])] and
φ0
D[E([xb])] are larger than 1− p1/(2C). One can iterate this reasoning to get the claim.

If Ẽ(I) denotes the image of the event E(I) after flipping all the signs, the flip symmetry and
the union bound give that

φ0
D[E(I1) ∩ Ẽ(I2) ∩ E(I3) ∩ Ẽ(I4) ∩ E(I5) ∩ Ẽ(I6) ∩ E(I7)] ≥ 1− 7p1/(8C). (4.2)

We now describe how to use the bridging arguments of Section 3.1 to obtain an upper bound of
the probability of the event above. Let Ai be the event that Ii and Ii+2 are connected by a h ≤ 0
path in Λρn,n. Now observe that if Ẽi+1 occurs, Ai cannot occur by duality (Lemma 2.4). Thus, if
the equality

max{φ0
D(A1), φ0

D(A5)} > 1

3
(φ0
D(E(I1)))4 ≥ 1

3
(1− p1/(8C))4. (4.3)

holds, then

φ0
D[E(I1) ∩ Ẽ(I2) ∩ E(I3) ∩ Ẽ(I4) ∩ E(I5) ∩ Ẽ(I6) ∩ E(I7)] ≤ min(φ0

D(Ac1), φ0
D(Ac5))

≤ 1− 1

3
(1− p1/(8C))4.

Combining this upper bound with (4.2), we easily obtain a lower bound of p depending only on
C = C(ρ) which completes the proof of the proposition.

Let us assume that (4.3) does not hold. In that case

φ0
D[E(I1) ∩ Ac1 ∩ E(I3) ∩ E(I5) ∩ Ac5 ∩ E(I7)] ≥ 1

3
(φ0
D(E(I1)))4 ≥ 1

3
(1− p1/(8C))4 (4.4)

Let Ē ⊃ E be the event E but with no restriction on the geometry or the location where the
path hits the top boundary of the rectangle; that is, we only restrict that the starting point of the
crossing must be in Ii.

φ0
D[E(I1) ∩ Ẽ(I2) ∩ E(I3) ∩ Ẽ(I4) ∩ E(I5) ∩ Ẽ(I6) ∩ E(I7)] (4.5)

≤φ0
D[E(I1) ∩ Ac1 ∩ Ē(I3) ∩ Ac3 ∩ Ē(I5) ∩ Ac5 ∩ E(I7)] (4.6)

≤1− φ0
D[E(I1) ∩ Ac1 ∩ Ē(I3) ∩ A3 ∩ Ē(I5) ∩ Ac5 ∩ E(I7)] (4.7)

=: 1− φ0
D[E ∩ A3] (4.8)

where we emphasize that Ac3 changes to A3 in the final inequality above. Furthermore, we have

φ0
D[E ∩ A3] = φ0

D[A3|E] · φ0
D[E] ≥ φ0

D[A3|E] · 1

3
(1− p1/(8C))4 (4.9)
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where in the last line we used (4.4). Now we claim that

φ0
D[A3|E] ≥ 1

8
. (4.10)

Indeed, we are exactly in the setup of (3.10), except we are in a strictly easier case. Firstly mapping
h 7→ 1 − h, the above event is the same as connecting two vertical ×-paths of h ≥ 2 by a path
of h ≥ 1 with boundary condition h = 1 on the boundary of D. By FKG for h, this event has
strictly larger probability than the same with boundary condition equal to 0. We now proceed in
the same way as in the proof of Theorem 1.4 in Section 3.1. First, we explore to reduce to the
case in (3.11) with h ≥ 2 replaced by h ≥ 1 thereby losing a factor of 1

4 (notice that connecting
two vertical h ≥ 2 ×-paths by a |h| ≥ 1 path is the same event as connecting them by h ≥ 1 path,
hence using FKG for absolute value Proposition 2.2 we can push the 0 boundary in). Then we can
apply Proposition 3.1 to show that this event has probability at least 1

2 . Thus overall, we get a
lower bound of 1

8 . 4 Inserting (4.10) into (4.9), and further inserting that in (4.7) and applying
(4.2), we see that

1− 1

24
(1− p1/(8C))4 ≥ 1− 7p1/(8C).

This easily yields a lower bound on p depending only on C = C(ρ), thereby completing the proof.

The second estimate we wish to obtain could be thought of as an enhancement of Proposition 4.1
when D is a rectangle. We wish to show that in a rectangle (with any aspect ratio) with boundary
condition 0 on the left, right and top boundary and any integer g ≥ 0 on the bottom boundary, the
probability of obtaining a ×-crossing of h ≤ 0 in an arbitrarily thin rectangle close to the bottom
boundary is positive (depending only on the aspect ratios and g, but not on the scale). We first
define the rectangle and the boundary conditions in a proper way as there are (mild) technical
issues with the parity of the paths and the compatibility of boundary condition for an arbitrary g
(for example, we cannot require g > 2 to be a ×-neighbour of 0).

When n is even, consider the approximation Rgn,m of [−n, n] × [0,m] obtained by taking what
is inside

• the even ×-path going from (n, 0) to (−n, 0) following {n, n + 1} × Z, then Z × {m,m + 1}
and finally {−n− 1,−n} × Z,

• if g is even (resp. odd), the even (resp. odd) ×-path from (n, 0) to (−n, 0) in Z× {−1, 0}.
A similar approximation can easily be defined for n odd by replacing n above by 2bn/2c. Also,
let 0/g be the boundary condition equal to g on the bottom of Rgn,m, 0 on the left, right and top
boundary, except at the bottom-left and bottom-right corners where the boundary condition is
interpolating between 0 and g in the shortest way. Since the superscript will always be obvious
from context (for instance because it is the only one compatible with the boundary conditions), we
will write Rn,m instead of Rgn,m. We will abuse terminology here and call Rn,m a domain in what
follows.

Proposition 4.3. For any g ∈ N, H > δ > 0, there exits c = c(H, δ, g) > 0 such that for all n ≥ 1,

φ
0/g
Rn,Hn

[H×h=0(Rn,δn)] ≥ φ0/g
Rn,Hn

[Hh≤0(Rn,δn)] ≥ c.
4In (3.10), we needed to apply Proposition 3.1 twice and Proposition 3.2 once which gave a factor of 1

32
instead

of 1
8
.
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Proof. The first inequality clearly follows by inclusion. The second inequality will follow from two
steps. In step 1, we assume the result is true for g = 1, and then induct on g. In step 2, we prove
the base case g = 1.

Step 1: Induction step assuming result for g = 1. This step is simply an application of FKG
for |h| iteratively. Indeed, assume that we already proved the existence of c(H, δ, 1) > 0. Then
we immediately see that we can find a h ≤ g − 1 crossing within Rn,δn with positive probability
c(H, δ, 1) > 0. Indeed, notice that if g is odd, we can consider the boundary condition φg−1/g

which is an overall increase of the boundary values which implies the lower bound of the required
probability by FKG for h and the existence of c(H, δ, 1). If g is even, the required application of
FKG is not much more complicated: we can first increase the 0 boundary values to g − 2, and
then using domain Markov property put values g − 1 on the exterior boundary of the top, bottom
and left, and then drop the boundary condition with value g− 2. All these operations decrease the
probability of h ≤ g − 1 crossing. We leave the details of this to the reader for brevity.

Now condition on the bottom-most crossing of h ≤ g − 1 (we explore from the bottom in a
Markovian way as usual). We wish to find a crossing of h ≤ g− 2 above this crossing. Noting that
the event “there exists a crossing of Rn,2δn \Rn,δn of h ≤ g−2” is increasing in terms of |h− g+ 1|,
we can use FKG for |h−g+1| to push the boundary conditions to get the translate of the 0/(g−1)
boundary condition on the translate by (0, δn) of Rn,(H−δ)n, so that the conditional probability of
finding a crossing of h ≤ g − 2 inside Rn,2δn \ Rn,δn (and therefore inside Rn,2δn) is bounded from
below by c(H − δ, δ, 1). Iterating, we see that we can find a crossing of h ≤ 0 inside Rn,gδn with
probability at least c(H, gδ, g) :=

∏
k c(H − kδ, δ, 1) > 0.

Step 2: proof for g = 1. We now focus on proving the existence of c(H, δ, 1) > 0. Assume
without loss of generality that Hn is divisible by 4. Let Sn be the infinite strip bounded by the
even vertices of Z × {Hn + 1, Hn + 2} and the odd vertices of Z × {0,−1} and let 0/1 be the

boundary condition equal to 0 on the top and 1 on the bottom. The existence of the measure φ
0/1
Sn

is a straightforward exercise as the domain is essentially one dimensional and the homomorphism
model enjoys a version of the finite energy property. Let R′n := [−n, n]× [1

4Hn,
3
4Hn].

We claim that there exists a constant c = c(H) > 0 such that for all n ≥ 1,

φ
0/1
Sn

[H×h=0(Rn,3Hn/4)] ≥ φ0/1
Sn

[H×h≤0(R′n)] ≥ c. (4.11)

Indeed, the first inequality follows from the inclusion of events (induced by boundary conditions).
For the second, assume that it does not hold with c = 1/2. Then, the first item of Lemma 2.4 and
the symmetry of the measure imply that

φ
0/1
Sn

[V×h≤0(R′n)] ≥ φ0/1
Sn

[Vh≤0(R′n)] = φ
0/1
Sn

[Vh≥1(R′n)] = 1− φ0/1
Sn

[H×h≤0(R′n)] > 1
2 .

We now repeat the proof of Theorem 1.4 to show that, given the lower bound on the probability of
vertical crossings, we can produce a lower bound on the probability of horizontal crossings. First,
we use the +/− and translation symmetries and the FKG inequality in h to observe that

2φ
0/1
Sn

[H×h≤0(R′n)] = 2φ
2/1
Sn

[H×h≥2(R′n)] ≥ φ2/1
Sn

[H×|h|≥2(R′n)]. (4.12)

From here, we assume that there exist there vertical ×-crossing of R′n with h ≤ 0, localized to begin
at distinct intervals of length 2εn on the bottom, and explore the outermost realizations of such
crossings (as we did in Section 3.1). From here, the remaining argument follows, mutatis mutandis.
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The FKG inequality for |h| enables us to bring boundary conditions in to find that

φ
0/1
Rn,Hn

[H×h=0(Rn,3Hn/4)] ≥ φ0/1
Sn

[H×h=0(Rn,3Hn/4)] ≥ c. (4.13)

Now, condition on the top-most horizontal ×-crossing of h = 0 in Rn,3Hn/4 (as usual by exploring
in a Markovian way starting from the top boundary). Applying spatial Markov property and FKG
of |h|, the probability of seeing a ×-crossing of h = 0 in Rn,(3/4)2Hn is larger than c(3

4H) since, in
this case, we can ‘straighten’ the top boundary by pushing it inside using FKG for |h|. We iterate
this step to find that for all n ≥ 1,

φ
0/1
Rn,Hn

[H×h=0(Rn,δn/2)] ≥
∏

k≤log4/3(2H/δ)

c((3
4)kH) > 0.

To conclude, it remains to create a h ≤ 0 crossing in Rn,δn from the weaker h ≤ 0 ×-crossing
analyzed above. Explore from the bottom to find the lowest such ×-crossing of h = 0 and call
the domain above it D. Conditioned on this lowest crossing, the boundary condition on D is 0
everywhere. We therefore can apply Proposition 4.1 to show that the probability of a crossing of
h ≤ 0 in Rn,δn \Rn,δn/2 is bounded from below by c′ > 0 (this is where we used that the boundary
of D in Proposition 4.1 can touch the boundary of the rectangle), thus proving that

φ
0/1
Rn,Hn

[Hh≤0(Rn,δn)] ≥ c′φ0/1
Rn,Hn

[H×h=0(Rn,δn/2)].

Combined with the previous displayed equation, this concludes the proof.

4.2 The renormalization proposition

As described in the introduction, we wish to follow the renormalisation argument from [11] to
complete the argument. Unfortunately, a new difficulty appears in our setting: one could imagine
that the existence of a long ×-crossing of h ≥ 2 inside a box forces the height function to be much
larger than 2 everywhere inside. In practice, it manifests in the fact that to apply Proposition 4.3,
we need a bound on the boundary values which is not a priori clear.

To deal with this issue, we distinguish two cases. If the probability of a crossing of h ≥ 2 is
similar to the one of a ×-crossing of 2 ≤ h ≤ g for some g, which is the expected behaviour, we
can apply the original argument of [11] with appropriate modifications. If not, then the cost of a
×-crossing of h ≥ 2 is similar to the cost of a crossing of h ≥ g. In this case we obtain (g − 2)/2
crossings “for free”, an event whose probability can be easily bounded.

Define An to be the event that there exists a ×-loop of h ≥ 2 in the annulus An := Λ2n \Λn and
let an := φ0

Λ5n
[An]. We also let An(x) denote the event An shifted by (x, 0). Finally, we introduce

Λn(x) and An(x) for the box Λn and the annulus An shifted by (x, 0).

Remark 4.4. By Proposition 4.1 and duality Lemma 2.4, we have that an ≤ 1−c for some constant
c > 0 independent of n.

Proposition 4.5. There exists a constant C > 0 such that for all n ≥ 1,

a10n ≤ Ca2
n. (4.14)

We start with a lemma. Let E×h≥k(n) be the event that there exists a ×-cluster of h ≥ k of
diameter at least n.
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Lemma 4.6. There exists ρ > 0 such that the following holds. For any r > 10, there exists
C = C(r) > 0 such that for any k and n,

φ0
Λrn

[E×h≥k(n)] ≤ (Can)k/(8ρ). (4.15)

A B

C D

E F G H

I

J

K L M N

O

P

Figure 10: The red curve has diameter at least n and hence has to exit the square EKNH.
Without loss of generality let the curve exit the square ABCD for the last time through
AB before it exits EKNH. After this assume it exits the square AFGB through AF or GB,
since otherwise we are done and without loss of generality assume it is AF. Then we can
assume it exits IBGE through IA since otherwise we are also done. After this, the curve
must necessarily include an easy crossing of either IJDB or EJCF before exiting EKNH.

Proof. In any configuration of E×h≥k(n), there must exist k/2 nested ×-loops with increasing heights
2i ≤ k. Let D2i be the interior of the outer-most ×-loops of h = 2i in Λrn and let κi denote the
boundary condition equal to 2i on D2i. On the event described above, the domains D2i exist for
every 2i ≤ k and if the diameter of the largest connected component of these domains is denoted
by d2i, we find that

φ0
Λrn

[E×h≥k(n)] ≤ φ0
Λrn

[
1d2≥nφ

κ2
D2

[1d4≥nφ
κ4
D4

[· · · ]]
]
.

Using the symmetry in D2i with respect to 2i and the FKG for |h− 2i|, we may upper bound each
expectation by 2φ0

Λrn
[d2 ≥ n] (the factor 2 arises from switching between |h| and h), giving overall

φ0
Λrn

[E×h≥k(n)] ≤ (2φ0
Λrn

[d2 ≥ n])k/2. (4.16)

Consider the set T of translates of rectangles included in Λrn of sizes n × n/2 and n/2 × n by
vertices in n

2Z
2. A topological argument (see Figure 10) easily implies that if d2 ≥ n, there exists

a rectangle in T that is crossed in the ‘easy’ direction, meaning vertically if it has size n× n/2 or
horizontally if it has size n/2 × n. For this reason, in order to bound φ0

Λrn
[d2 ≥ n], it suffices to

consider a rectangle R in T , which we assume without loss of generality has size n × n/2, and to
prove that there exists C0 > 0 such that

φ0
Λrn

[V×h=2(R)] ≤ C0a
1/(4ρ)
n . (4.17)

Let A be the event that there exists a ×-circuit of h ≤ 0 surrounding R in the n neighbourhood
of R (if R intersects the boundary, the ×-circuit can use the boundary of Λrn, which has value 0).
We have that

φ0
Λrn

[V×h=2(R)] ≤
φ0

Λrn
[V×h≥2(R)|A]

φ0
Λrn

[A|V×h=2(R)]
≤
φ0

Λ2n
[V×h≥2(Λn,n/2)]

φ0
Λrn

[A|V×h=2(R)]
≤ C1φ

0
Λ2n

[V×h≥2(Λn,n/2)]. (4.18)
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Indeed, the first inequality follows from inclusion. The second holds because the ×-loop of h ≤ 0
induced by A can be replaced by a ×-loop of h = 0 by FKG for h and then pushed away using
FKG for |h| (we already presented several arguments like that and omit the details). In the third
inequality, we lower bound the probability of the denominator as follows. Condition on |h − 2| in
the even vertices Reven in R. Any realization of this conditioning is a measure of the form φκΛrn\Reven

with κ being |h|-adapted (the intervals are containing one value on ∂Λrn and two symmetric values
in Reven). Since the single-valued vertices all receive value h = 0, we may use the comparison
between boundary conditions with h = 2 on ∂Reven to bound the conditional probability from
below by the φ0

Λrn\Reven-probability in Λrn \ Reven with boundary condition equal to 2 on ∂Reven

and 0 in ∂Λrn. Using Proposition 4.3, we have a positive probability that A occurs, hence the third
inequality (we can bring in the 0 boundary using FKG for |h| to apply Proposition 4.3 four times,
followed by FKG inequality).

Now, Theorem 1.4 implies that

φ0
Λ5n,2n

[H×h≥2(Λ2n,n/2)] ≥ c0φ
0
Λ2n

[V×h≥2(Λn,n/2)]ρ. (4.19)

Finally, FKG for h implies that

an ≥ φ0
Λ5n,2n

[H×h≥2(Λ2n,n/2)]4. (4.20)

Equations (4.18) and (4.19) and (4.20) can be combined to deduce (4.17); this, in turn, can be
combined with (4.16) to imply (4.15) and complete the proof.

3n

4n

7n

5n

Figure 11: The red paths are even ×-loops of h ≥ 2 coming from the event An(−7n) ∩
An(7n). The blue paths are ×-paths of h ≤ 0 coming from the events (4.23)–(4.26)
(i.e. the event C).

Proof of Proposition 4.5. We start by claiming that there exists c1 > 0 such that for all n ≥ 1,

a10n ≤ c1φ
0
Λ50n

[An(−7n) ∩ An(7n)] (4.21)
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since A10n implies that there exists a ×-loop of h = 2 in Λ50n \ Λ10n and hence we can apply
Proposition 4.1.

Define events Bn(x) similarly to An(x), where we add the restriction that the ×-loops must
satisfy 2 ≤ h ≤ k0 := 2`0 , where k0 > 16ρ with ρ provided by Lemma 4.6. With this choice of k0,
Lemma 4.6 gives that

φ0
Λ50n

[An(±7n) \ Bn(±7n)] ≤ φ0
Λ50n

[E×h≥k0(n)] ≤ C1a
2
n.

In order to conclude the proof, we now need to prove that

φ0
Λ50n

[Bn(−7n) ∩ Bn(7n)] ≤ C2a
2
n. (4.22)

Suppose we are on the event Bn(−7n)∩Bn(7n) and let `± be the two innermost ×-loops with values
in 2 ≤ h ≤ k0 in Λn(±7n).

Consider the event C (see Figure 11) which is the intersection of the following four events

H×h≤0([−50n, 50n]× [2n, 3n]), (4.23)

H×h≤0([−50n, 50n]× [−3n,−2n]), (4.24)

V×h≤0([−10n,−9n]× [−50n, 50n]), (4.25)

V×h≤0([9n, 10n]× [−50n, 50n]). (4.26)

Conditionally on `+ and `− (which involves information on h inside the two loops only), we claim
that the φ0

Λ50n
-probability of C is at least c3 > 0. Let us provide a lower bound on the conditional

probability of the first event, since the bound for the others is similar and that one can use FKG
to deduce a bound on φ0

Λ50n
[C]. Since the values of h on the loops `+ and `− are between 2 and

k0 we can first assume that the value is uniformly k0 on `+ and `− by FKG for h since this
lowers the probability of the h ≤ 0 crossing by FKG for h (this is where the upper bound of k0 is
crucially used.) Next, the FKG inequality for |h − k0| enables us to bound the probability of the
first event in C from below if we assign (the translate of) boundary condition 0/k0 on the rectangle
[−50n, 50n]× [2n, 50n] as in Proposition 4.3 (we interpolate the values between k0 and 0 near the
corners of the rectangle as in Proposition 4.3, and it is easy to see that this is the worst possible
boundary value for the required event in terms of FKG for absolute value). In other words, it is
enough to prove the lower bound for the same event but in the domain [−50n, 50n]× [2n, 50n] with
0/k0 boundary condition, which is exactly what is given by Proposition 4.3.

Remark 4.7. Note that this step crucially relies on the fact that the values on `+ and `− are
bounded between 2 and k0 since applying FKG for |h−k0| requires all the boundary values to have
the same sign in Proposition 2.2.

Overall, the argument in the previous paragraph gives us the existence of c4 > 0 such that for
all n,

φ0
Λ50n

[C|Bn(−7n) ∩ Bn(7n)] ≥ c4. (4.27)

On C ∩Bn(−7n)∩Bn(7n), let Ω be the connected component of the origin inside the outermost
realisations of the crossings in (4.23), (4.24), (4.25), (4.26) minus the loops `+ and `− (see Figure 11)
(we do a standard Markovian exploration from outside inwards to achieve this). As in [11], we want
to separate `+ and `− with an h ≤ 0 ×-path. However, since the values on `− and `+ can be as
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high as k0, we need several steps to find this path. We do so iteratively, each time dividing the
value of the separating path by a factor of 2.

We now provide the details. Let R−, R0 and R+ be the subsets of Ω made of vertices with
first coordinates in [−4n,−3n], [−3n, 3n], and [3n, 4n] respectively. We write V×

h≤2k
(R#) for the

existence of a vertical ×-crossing of this quad between the bottom and top boundaries of ∂Ω. Let

D(k) := C ∩ V×
h≤2k

(R−) ∩ V×
h≤2k

(R+),

and on this event, set Ωk to be the part of Ω between the left-most vertical ×-crossing of h ≤ 2k

of R− and the right-most vertical ×-crossing of R+. We also use the conventions D(`0) = C and
Ω`0 := Ω.

We wish to show iteratively that there exist c`0 , . . . , c1 > 0 such that for every 1 ≤ k < `0,

φ0
Λ50n

[D(k)|C ∩ Bn(−7n) ∩ Bn(7n)] ≥ ck. (4.28)

Fix k ≥ 1 and assume that the previous result was obtained for every `0 ≥ k′ > k. The boundary
condition induced on Ωk is such that

V×
h≤2k

(R0) = V×|h−2k+1|≥2k
(R0)

since the sign of the path must be the same as the boundary by the third item of Lemma 2.4.
Therefore, we can put boundary conditions 2k+1 on the left and right sides of R0 using FKG for
|h|. Rewriting this event as |h| ≤ 2k using Lemma 2.4 again, we can push out the zeros on ∂Ω to the
top and bottom boundaries of R0 (again, it is easy to check that if n ≥ 2k+1, it is possible to design
boundary conditions that interpolate between 2k+1 and 0 in a symmetric fashion in the corners but
we voluntarily suppress this issue for the sake of clarity). By duality (like in the argument for the
first case of Proposition 3.1), we deduce that

φ0
Λ50n

[V×
h≤2k

(R0)|D(k + 1) ∩ Bn(−7n) ∩ Bn(7n)] ≥ 1
2 ,

which together with the induction hypothesis gives

φ0
Λ50n

[V×
h≤2k

(R0)|C ∩ Bn(−7n) ∩ Bn(7n)] ≥ 1
2c(k + 1).

On this event, let Ω+ be the subregion of Ω on the right of the left-most vertical ×-crossings of
R0 of h ≤ 2k. Conditionally on Ω+, we can make the event V×

h≤2k
(R+) less probable by putting

boundary conditions 2k to the left, top and bottom sides of [−3n, 4n] × [−3n, 3n], and k0 to the
right (which is again made compatible near the corners and the parity chosen appropriately) by
using

• FKG for |h− k0| (V×
h≤2k

(R+) = V×|h−k0|≥k0−2k
(R+) is increasing in |h− k0| for the boundary

conditions on Ω+) to put h = k0 boundary conditions on the right of Ω′+ := Ω+ ∩ (R0 ∪R+),
• Comparison between boundary conditions for h (V×

h≤2k
(R+) is decreasing in h) to put h = 2k

on the rest of ∂Ω′+,
• FKG for |h − 2k| (V×

h≤2k
(R+) = V×

h=2k
(R+) is decreasing for |h − 2k| for the boundary

conditions) to push the boundary conditions to the top, left, and bottom of the rectangle
[−3n, 4n]× [−3n, 3n].
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We can apply Proposition 4.3 to get that

φ0
Λ50n

[V×
h≤2k

(R+)|V×
h≤2k

(R0) ∩ C ∩ Bn(−7n) ∩ Bn(7n)] ≥ c1. (4.29)

Similarly, one can condition on the right of the right-most crossing of V×
h≤2k

(R0) to get

φ0
Λ50n

[V×
h≤2k

(R−)|V×
h≤2k

(R+) ∩ V×
h≤2k

(R0) ∩ C ∩ Bn(−7n) ∩ Bn(7n)] ≥ c1. (4.30)

Forgetting the occurrence of V×
h≤2k

(R0), we deduce (4.28) for c(k) := 1
2c

2
1c(k + 1) > 0.

3n

4n

7n

5n

Figure 12: The event D(k) involves finding the orange ×-paths depicted above taking
value at most 2k. Given D(1), we wish to find a blue ×-path between them taking value
at most 0 using the bridging Proposition 3.1.

Now that we have the existence of c(1) > 0, suppose we are on D(1) ∩ Bn(−7n) ∩ Bn(7n). The
first case of Proposition 3.1 in Ω1 implies that with probability 1/2, one can construct vertical ×-
crossings of h ≤ 0 in R := R−∪R0∪R+. Forgetting about the occurrence of D(1) and conditioning
on the left-most ×-crossing of h ≤ 0 in R, we can again construct a domain Ω+ and this time
deduce the existence of a ×-crossing of h ≤ 0 in [4n, 5n]× [−3n, 3n] via a reasoning similar to the
one leading to (4.29). Then, one conditions on the right-most ×-crossing and deduces a similar
claim for [−5n,−4n] × [−3n, 3n]. Overall, if E is the event that A2n(−7n) and A2n(7n) contain
×-circuits of h ≤ 0, the previous reasoning together with (4.28) gives that

φ0
Λ50n

[C ∩ Bn(−7n) ∩ Bn(7n)] ≤ C2φ
0
Λ50n

[E ∩ An(−7n) ∩ An(7n)]. (4.31)

As in [11], conditioned on the outer-most circuits of h ≤ 0 in Λ5n(−7n) and Λ5n(7n), the FKG for
|h| implies that An(−7n) and An(7n) are decoupled events and the probability of An(−7n) and
An(7n) are each bounded by φ0

Λ5n
[An], so that

φ0
Λ50n

[E ∩ Bn(−7n) ∩ Bn(7n)] ≤ Ca2
n.

Combining this inequality with (4.27) and (4.31), we obtain (4.22), a fact which conclude the
proof.
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4.3 Proofs of the theorems

Proof of Theorem 1.2. Assume that there exists m0 such that am0 < (2C)−1 with C being the
constant from the renormalisation equation (Proposition 4.5). Iterating (4.14), there exist c1, C1 >
0 such that for every r ∈ Z+,

a10rm0 ≤ C1 exp(−c12r). (4.32)

Using RSW and FKG (similarly to the proof of Lemma 4.6), there exist C0, ρ0 > 0 such that for
all m ≥ 1,

φ0
Λ5m

[V|h|≥1(Λ2m,m/2)] ≤ C0φ
0
Λ10m

[∃ circuit of |h| ≥ 1 surrounding Λm]ρ0 . (4.33)

Now, consider m′ to be the smallest integer of the form 20rm0 which is larger than 20m. Using the
FKG inequality for |h|, one may combine such circuits in Λ20m to get the existence of C1, ρ1 such
that

φ0
Λ20m

[∃ circuit of |h| ≥ 1 surrounding Λm] ≤ C1φ
0
Λ5m′

[∃ circuit of |h| ≥ 1 surrounding Λ2m′ ]
ρ1 .

Conditioning on the exterior-most ×-circuit of 1 and using FKG for |h− 1| and (4.33), we deduce
that there exist C3, ρ3 > 0 such that

φ0
Λ5m

[V|h|≥1(Λ2m,m/2)] ≤ C3a
ρ3
m′ .

Together with (4.32), we find that there exist C2, c2 > 0 such that for every m,

φ0
Λ5m

[V|h|≥1(Λ2m,m/2)] ≤ C2 exp(−mc2).

Now, the first item of Lemma 2.4 can be trivially adapted to state that there is a crossing of |h| ≥ 1
from ∂Λm to ∂Λ2m if and only if there is no ×-loop of h = 0 in Am surrounding 0, so that the
φ0

Λ5m
-probability of this event is bounded by 4φ0

Λ5m
[V|h|≥1(Λ2m,m/2)] ≤ 4C2 exp(−mc2).

The event that |h(0)| ≥ 2k implies that there is no ×-loop of 0 (in fact no 0 at all) in Ak
surrounding 0. As a consequence, there exists an integer r ≥ 0 such that there is no ×-loop of
h = 0 in A2rk surrounding 0 but there is one in A2r+1k. Conditioning on the exterior-most such
loop and using the FKG inequality (to push the zero in) and the estimate above, we deduce that

φ0
Λn

[|h(0)| ≥ 4k] ≤
∑
r≥0

4C2 exp(−(2rk)c2) ≤ C3 exp(−kc3).

We now assume that an ≥ (2C)−1 for every n. Note that the first inequality follows trivially
from the second one applied to k+ 2 so we only focus on the second inequality. Fix ε, ρ > 0 and k.

First, observe that using loops in successive annuli, there exists a constant c0 = c0(k) > 0 such
that for all n,

φ0
Λεn

[∃ ×-loop in Aε2−k−1n of h ≥ k] ≥ c0.

Define the annulus A := Λ(ρ+ε)n,n \ Λ(ρ+ε/2)n,n/2. The FKG inequality and the concatenations of
small ×-loops with value h ≥ k give the existence of c1 = c1(k, ε, ρ) > 0 such that

φ0
D[∃ ×-loop in A of h ≥ k] ≥ c1.

Remark 4.4 and Lemma 4.6 enable us to fix k0 sufficiently large that

φ0
D[E×h≥k0(εn)] ≤ 1

2c1.
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Altogether, we conclude that

φ0
D[∃ ×-loop in A of h ∈ [k, k0)] ≥ 1

2c1.

Condition on the exterior-most such ×-loop and let Ω be the domain inside. The boundary condi-
tions induced by the conditioning are between k and k0. Now, combining small ×-loops of h ≤ k,
we may construct a crossing of Λρn,n/2 with probability c2 = c2(ε, ρ, k, k0) > 0. If this happens,
we automatically obtain a ×-crossing of R of h = k. We deduce that this occurs with probability
1
2c1c2, which is independent of n as desired.

We now prove logarithmic bounds for the variance of the height function. We first prove them
in a box Λeven

n introduced in Section 3.2 (a similar statement can easily be obtained in a generic
domain).

Proposition 4.8. There exist c, C > 0 such that for every n,

c log n ≤ φ0
Λeven
n

[h2
0] ≤ C log n.

Proof. Let vn = φΛeven
n

[h2
0]. We start with the lower bound. Let Gn be the event that there is a

|h| = 2 ×-loop inside An which by Corollary 1.3 has φ0
Λeven
2n

-probability at least c independent of n.

On Gn, call the vertices lying inside the outermost |h| = 2 ×-loop Ωn. The bound vn ≥ c log n for
some c > 0 follows by iterating the inequality

v2n = φ0
Λeven
2n

[h2
01Gn ] + φ0

Λeven
2n

[h2
01Gcn ]

= φ0
Λeven
2n

[
φ0

Ωn
[(h0 + ξ)2]1Gn

]
+ φ0

Λeven
2n

[
φ0

Λeven
2n

[h2
0|h|∂Λeven

n
]1Gcn

]
= φ0

Λeven
2n

[
(φ0

Ωn
[h2

0] + 4)1Gn
]

+ φ0
Λeven
2n

[
φ0

Λeven
2n

[h2
0|h|∂Λeven

n
]1Gcn

]
≥ (φ0

Λeven
n

[h2
0] + 4)φ0

Λeven
2n

[Gn] + φΛeven
n

[h2
0]φ0

Λeven
2n

[Gcn]

= vn + 4φ0
Λeven
2n

[Gn] ≥ vn + 4c.

where ξ is a random variable taking values ±2 with equal probability independent of everything
else. The justification of this sequence of inequalities is the following. To see the second equality,
note that on the event Gn we can explore |h| until we discover Ωn. The third one follows from
the spatial Markov property, the independence of h and ξ, and the fact that φ0

Ωn
[h0] = 0. The

inequality follows from the comparison between boundary conditions and the FKG inequality for
|h|.

Let us now turn to the upper bound. One can implement a proof which is quite similar to
the lower bound here, but we choose a different road which extends trivially to the torus case.
Consider `k to be the outer-most ×-loop of h ≥ 2k surrounding the origin, if it exists. Also, for
each i ≤ log2 n (here we forget the rounding since it does not impact the rest of the proof), let Ni

be the number of indexes k such that the maximal distance between a vertex in `k and the origin
is between 2i and 2i+1. Observe that

φ0
Λn

[h0 ≥ 2N ] ≤
∑

N1+···+Nlog2 n=N

φ0
Λn

[Ni = Ni,∀i ≤ log2 n]. (4.34)

We claim that for every ε > 0, there exists C0 > 0 such that

φ0
Λn

[Ni = Ni|N1 = N1, . . . ,Ni−1 = Ni−1] ≤ C0ε
Ni . (4.35)
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Plugging this estimate into (4.34) and using that
(
a
b

)
≤ (ea/b)b implies that

φ0
Λn

[h0 ≥ 2N ] ≤ (1 + logn
N )NC

log2 n
0 (eε)N .

Since we may choose ε as small as we wish, this quantity decays exponentially fast in N ≥ C1 log n,
thus concluding the proof. We therefore turn to the proof of (4.35).

Fix r > 0. Let Ωk be the domain enclosed by `k and set ki := N1+· · ·+Ni. Pave the annulus A2i

by balls of size 2i−r centred at x0, . . . , xR. Let Mk be the number of such balls that are intersecting
Ωk. We claim that there exists a constant c0 > 0 such that for every k ∈ (ki−1, ki),

φ0
Λn

[Mk+1 = Mk > 0|`1, . . . , `k] ≤ (1− c0)r a.s.. (4.36)

Indeed, the conditional measure is, up to a sign, equal to φ2k
Ωk

. Now, since Mk > 0 and `k intersects

the annulus, one may choose xk such that the ball of radius 2i−r around it intersects `k. Note that
Mk+1 = Mk > 0 imposes the occurrence, for every 1 ≤ s ≤ r, of the event Es that there exists a
×-crossing of h = 2k + 2 in the annulus As around xk of inner and outer radii 2i−s−1 and 2i−s.
Using the FKG for |h− 2k − 2|, we therefore deduce that

φ0
Λn

[Mk+1 = Mk > 0|`1, . . . , `k] ≤ φ2k
Ωk

[ r⋂
s=1

Es
]
≤

r∏
s=1

φκsAs∩Ωk
[Es], (4.37)

where κs is the boundary conditions equal to h = 2k + 2 on the inner and outer boundaries of
As, and h = 2k on the rest of the boundary. Since the existence of the ×-crossing of h = 2k + 2
from inside to outside is the complement under these boundary conditions of the existence of a
∗-path of 2k from `k to itself, we may use the FKG inequality for |h − 2k| and the shifting of the
height-function down by 2k, to bound the probability of the event Es by the event that there exists
a ∗-circuit of 0 surrounding the origin in an annulus with boundary conditions 2. This probability
is bounded by 1− c0 using Corollary 1.3, and we therefore obtain (4.36).

Now, if one finds Ni loops with radius between 2i and 2i+1, there must be at least Ni − C2

indexes k ∈ (ki−1, ki) for which Mk+1 = Mk > 0, where C2 is a function of r only. We deduce that

φ0
Λn

[Ni = Ni|N1 = N1, . . . ,Ni−1 = Ni−1] ≤ NC2
i e−r(Ni−C2)

which implies (4.35) with ε and a constant C0 = C0(ε) > 0 provided that we select r large
enough.

We conclude this article with the proof of Theorem 1.1.

Proof of Theorem 1.1. Fix a representative of the equivalence class of each homomorphism by set-
ting h(x) = 0. Using FKG for |h|, we deduce that

φTn [(h(y)− h(x))2] = φ
{x},0
Tn

[h(y)2] ≥ φ0
Λ|x−y|(y)[h(y)2] ≥ c log |x− y|.

The upper bound can be deduced by an argument similar to the one developed in the last proof
(defining the circuits starting from 0 in an outward direction; any non-contractible loops which
separate 0 from y are also included in this list).
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[18] J. Fröhlich and T. Spencer. The Kosterlitz-Thouless transition in two-dimensional abelian spin
systems and the Coulomb gas. Comm. Math. Phys., 81(4):527–602, 1981.

[19] D. Galvin. On homomorphisms from the Hamming cube to Z. Israel J. Math., 138(1):189–213,
2003.

[20] A. Glazman and I. Manolescu. Uniform Lipschitz functions on the triangular lattice have
logarithmic variations. arXiv:1810.05592, 2018.

[21] G. Grimmett. Percolation, volume 37 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition,
1999.

[22] A. Glazman and R. Peled. On the transition between the disordered and antiferroelectric phases
of the 6-vertex model arXiv:1909.03436, 2019.

[23] J. Kahn. Range of cube-indexed random walk. Israel J. Math., 124:189–201, 2001.

[24] E.H. Lieb. Exact Solution of the Two-Dimensional Slater KDP Model of a Ferroelectric.
Physical Review, 19(3):108–110, 1967.

[25] E.H. Lieb. Residual entropy of square ice. Physical Review, 162(1):162, 1967.

[26] E.H. Lieb. Exact solution of the F model of an antiferroelectric. Condensed Matter Physics
and Exactly Soluble Models, 453-455, 1967.
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