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Abstract—3D laser scanning is becoming a standard tech-
nology to generate building models of a facility’s as-is con-
dition. Since most constructions are constructed upon planar
surfaces, recognition of them paves the way for automation
of generating building models. This paper introduces a new
logarithmically proportional objective function that can be
used in both heuristic and metaheuristic (MH) algorithms to
discover planar surfaces in a point cloud without exploiting
any prior knowledge about those surfaces. It can also adopt
itself to the structural density of a scanned construction. In
this paper, a metaheuristic method, genetic algorithm (GA), is
used to test this introduced objective function on a synthetic
point cloud. The results obtained show the proposed method
is capable to find all plane configurations of planar surfaces
(with a wide variety of sizes) in the point cloud with a minor
distance to the actual configurations.
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I. INTRODUCTION

Building models of the as-is conditions of a facility is
a substantial need in the Architecture, Engineering, and
Construction (AEC) domains for diverse applications, such
as planning renovations, space usage planning, and man-
aging building maintenance [1]; moreover, public security,
navigation systems, and virtual tourism can also benefit from
that [2]. Because of as-built/-is conditions of a construction
generally can be different from the design drawings, con-
structing building models from available documents, e.g.,
CAD models, is not sufficient. Furthermore, that is neither an
option in non-engineered buildings, nor an option in heritage
constructions. 3D laser scanning is becoming a standard
technology to generate building models of a facility’s as-
is condition, because of its rapid, dense, and accurate
measurement [3]. The current techniques to create building
models from laser-scanners data (point cloud) are manual,
subjective, labor-intensive, time-consuming, and error-prone
process. Since most frequent surface shape of man-made
constructions is planar surface, recognition of that is often
the first step to extract building information from 3D point
clouds.

Planar surfaces recognition methods are often using
bottom-up approach, where they first group points into
locally similar patches (segments), and thereafter, patches
that are sufficiently planar can be grouped together based
on their similarity [3]. The objective of these techniques is
to find a plane containing the maximum number of points,
while the accuracy of the plane parameters, regarding to
their relative points, is their second interest. Since these
methods attempt to find a plane with the maximum number
of points, if a segment contains more than one plane, these
methods are highly affected by points that do not belong
to the same plane. Increasing the number of segments to
avoid this problem, at its turn, will expand the complexity
of the post processing for joining small patches. Top-down
methods formulate the problem without chopping up planar
surfaces to small patches; it benefits them from avoiding
post processing over discovered small patches.

This paper describes the design of a logarithmically
proportional objective function that can adapt itself to scale
of the scanned construction without using segmentation.
The proposed function is sufficient to be used in top-
down approaches; so it does not need to break down a
surface to small pieces (segmentation is not needed). It
also gives the same interest to the number of points fitted
on a plane and the precision of the plane parameters. On
the other hand, it provides a technique to prevent objective
function from getting affected by points that are not in the
region of a plane. It can also distinguish small changes
among plane parameters. Furthermore, this new objective
function can adapt itself to the structural density of a scanned
construction.

The paper is organized as follows. Section II presents
a brief review of related work that has been proposed to
address the planar surfaces recognition and their objective
functions. In Section III, we describe our logarithmically
proportional objective function, as well as the technique to
seize the effect of those points that are not in the region of
a plane. With employing a genetic algorithm, we tested this
objective function and results are presented and discussed in
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Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

There are variety of techniques for planar surface recog-
nition in 3D point cloud. Most of these methods are made
robust by means of segmentation. In addition, if a point
cloud contains more than one planar surface, segmentation
is not an option, but a necessity. Their process is as the
following. A point cloud at first is split into smaller parts
(segments) by using a segmentation method, and thereafter
one of these surface recognition methods is applied to each
part separately. Finally, the similar planar surfaces, that
were found in each segment, are merged by using plane
growing [4], [5] or triangulated irregular network (TIN)
meshes [6]. Three state-of-the-art approaches for planar
surface recognition are region growing, Hough-transform,
and RANSAC algorithms.

Region growing is a simple segmentation method which
intends to group points into locally similar patches [7].
It examines neighboring points of an initial point, seed
point, and determines whether the point neighbors should be
added to the region. It uses local estimate of surface shape,
e.g., flatness [8] or surface curvature [9], to group points
that locally represent similar surface. Thereafter, those local
planar patches are grouped based on their normal vectors
similarity to create a bigger surface. Identifying suitable seed
points is crucial to the success of this approach.

The 3D Hough-transform is an extension of the 2D
Hough-transform [10] which is used for the line recognition
problem in 2D images. In the 3D Hough-transform, each
point in a point cloud defines a plane, 𝑧 = 𝑠𝑥𝑥+ 𝑠𝑦𝑦+𝑑 in
the 3D parameter space; where 𝑠𝑥 and 𝑠𝑦 are the slopes
with 𝑥 and 𝑦 axes, respectively, and 𝑑 is the vertical
distance of the plane to the origin (0, 0, 0). If a point cloud
contains points of a planar surface, planes of those points
in the parameter space will intersect at the position that
corresponds to the slopes and distance of their relative planar
surface. The best found plane by this method is not the
most probable plane calculated according to the least squares
theory [11], [12], but instead it means the plane containing
the maximum number of points [13], [14], [5].

The principle of RANdom SAmple Consensus
(RANSAC) algorithm [15] is as the following. It starts
with picking up 3 points randomly from a point cloud,
and calculating the parameters of the corresponding plane.
Thereafter, with respect to a given threshold, it detects those
points that belong to the calculated plane. It repeats this
procedures 𝑁 times and each time, it compares the obtained
results with the previous one. In case of improvement, it
replaces the previous plane configuration with the new
one. This method is a problem-dependent technique; it can
not find the number of trial 𝑁 by itself, and it is often
calculated based on a pure probability law, which yields
different 𝑁 from one point cloud to another. Nonetheless, it

provides satisfying results in compare to Hough-transform
methods [14].

III. OBJECTIVE FUNCTION

This section introduces a new logarithmically proportional
objective function which can be used in both heuristic and
metaheuristic algorithms. This function has a dynamic layout
that enables it to adapt itself to the scale of the scanned
construction without using segmentation. It also describes a
technique to seize the influence of those points that are not
in the region of a sampled plane on the objective function.

The proposed objective function is used in the process
to find a closest planar surface to a hypothesized planar
surface in the 3D point cloud. The most accurate way
to do so is to calculate the volume between two planar
surfaces with closed boundaries. The sampled plane with
the smallest volume is the most closest to the hypothesized
planar surface. The volumetric technique can be applied
if and only if sampled and hypothesized planar surfaces
are defined by continuous functions. Unlike sampled planar
surfaces that are represented by 4 variables of the geometric-
plane formula, 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0, planar surfaces
in the 3D point cloud (hypothesized planar surfaces) have
discrete topology, because points are isolated from each
others; hence, the volumetric technique cannot be applied
to the problem at hand.

The total least squares (TLS) criterion are often used
for this purpose [12]. It represents the sum of squares of
Euclidean distances between all points in the point cloud (or
a segment of it) and the sampled plane. Point clouds with
different structural densities are treated in the same way by
using TLS. Since it uses square form of Euclidean distances,
points that are far from the sampled plane have more effect
than those are close to it. In other words, noises (those
points that are far from a sampled planar surface) have a
very high impact on the objective function evaluation, while
small changes around a solution do not have much effect
on TLS. We propose a logarithmic function that behaves
the opposite way TLS does. It is very sensitive about small
changes around a sampled plane, while noises do not have
much impact on the function evaluation.

In the next subsections, we first describe the logarithmic
objective function, and thereafter we give a formula to
calculate the base of the logarithmic function according
to the structural density of the scanned construction to
guarantee the dynamic layout of the function.

A. Logarithmic Objective Function

Since points in point clouds are isolated from each other
and are defined in a discrete space, their relative Euclidean
distances to a sampled plane are also defined in the discrete
space. We want to transform those discrete distances to
one value in the continuous space, which makes different
sampled planar surfaces possible to be compared with each
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other. We sum the logarithmic form of Euclidean distances
for this purpose.

Logarithmic functions are often used in science and
engineering to scale very large/small numbers into numbers
that are easier to comprehend and compare [16]. They are
continuous functions, and according to intermediate value
theorem, a continuous function that produces two values 𝑚
and 𝑛 also produces any value that lies between 𝑚 and 𝑛. We
want that value to be obviously distinguishable from 𝑚 and
𝑛 while they are very small and very close to each other; a
logarithmic function which is strictly decreasing as 𝑥 → 0+

can fulfill this aim. The other reason of using logarithm is
to decrease the impact of noises. In ℎ(𝑥) = log𝑏 𝑥, though
ℎ(𝑥) → ±∞ on the interval ]0,+∞[ and when 𝑏 > 1, the
decay rate for 𝑥 ≤ 𝑏 as 𝑥 → 0+ is dramatically higher
than the growth rate for 𝑥 > 𝑏 as 𝑥 → +∞. Thus, in order
to decrease the impact of noise, we need to formulate the
problem in which very close points to a sampled plane yield
values on the interval ]−∞, 0], and far points (noises) yield
positive values.

This proposed objective function has two critical construc-
tional parameters that need to be determined by an architect
or whomever is familiar with the scanned construction
as well as its structural density. Those parameters are as
follows:

∙ Plane tolerance threshold: it is the maximum acceptable
distance between a sampled plane and those points
in the point cloud that are identified as fitted on the
sampled planes. In real data, this parameter is related
to the altimetric accuracy of the point cloud [14], used
building materials in constructing planar surfaces, and
precision in constructing planar surfaces.

∙ Plane region: since point clouds often contain several
planar surfaces, not all the points in the point cloud
should play a part in the objective function evaluation
of a sampled plane. Only those that are in the region of
a sampled plane must be considered for this evaluation.
Note that the radius of plane region must be bigger than
the plane tolerance threshold. The radius of sampled-
plane region needs also to be determined by an expert
familiar with the structural density of the scanned
construction.

With respect to the above-mentioned factors, the objective
function is formulated in two steps as follows:

𝛽 =
1

∣𝑅∣

⎛
⎝ ∑

𝑥𝑖∈𝑅, 𝑥𝑖 ∕=0

(log𝑏 𝑥𝑖 − log𝑏 𝑡)

⎞
⎠ , ∣𝑅∣ ∕= 0 , (1)

𝑜𝑏𝑗. 𝑓𝑢𝑛. =

⎧⎨
⎩

1
∣𝐹 ∣ × 𝛽 if 𝛽 > 0 ,

∣𝐹 ∣ × 𝛽 if 𝛽 < 0 ,

𝑓(𝑥) if 𝛽 = 0, or ∣𝐹 ∣ = 0 ,

(2)

where 𝑥𝑖 is the Euclidean distance between a point and a
sampled plane, 𝑡 is the plane tolerance threshold. The base

of the logarithm, 𝑏, is a constant value, an its calculation
based on the radius of the plane region and the plane
tolerance threshold will be studied in the next subsection.
𝐹 and 𝑅 are two subsets of a point cloud in which set 𝐹
represents fitted points on the sampled plane according to the
plane tolerance threshold and set 𝑅 represents points inside
of the plane region; hence, the relationship between them is
as 𝐹 ⊆ 𝑅. ∣𝐹 ∣ and ∣𝑅∣ are the cardinalities of those subsets,
i.e. the numbers of points in subsets 𝐹 and 𝑅, respectively.

Equation (1) calculates the average of logarithmic form
of Euclidean distances of those points that are placed in
the region of a plane. In addition, in order to decrease the
impact of noises, the logarithmic function is translated by
using − log𝑏 𝑡; so that, fitted points on the sampled plane
yield negative values, while those none-fitted points inside
of the plane region (𝑅−𝐹 ) yield positive values. Since (1)
calculates the average, the planar surface’s size in a point
cloud (number of the points on the planar surface) does not
stress on 𝛽. Rather, it gets tremendously affected by the
closeness of hypothesized and sampled planes. The closer
the two planes are, the better 𝛽 is; and 𝛽 is better as it tends
toward −∞.

Once the average is obtained by Equation (1), if ∣𝐹 ∣ ∕= 0,
𝛽 will be weighted with using the number of fitted points
on a sampled plane, as shown in Equation (2), in favor
of sampled planes with the higher number of fitted points.
Since the objective function gives smaller values to better
sampled planes, if 𝛽 > 0, which can only happen when there
are a few number of fitted points on the sampled plane,
𝛽 should proportionally decrease by dividing it by ∣𝐹 ∣; if
𝛽 < 0, which can happen when there are more fitted points
on the sampled plane, 𝛽 should proportionally decrease
by multiplying it by ∣𝐹 ∣. Hence, unlike Equation (1), the
planar surface’s number of points in a point cloud has a
direct impact on Equation (2) (objective function); in simpler
terms, if two sampled planes have the same distance to their
relative hypothesized planes, the plane with more points
would be evaluated better. In consequence, those heuristic
and metaheuristic algorithms that use this objective function
generally would find planar surfaces with bigger number of
points sooner than planar surfaces with smaller number of
points. This results in searching through smaller point cloud
as long as the search process carries on.

In this objective function there are three cases that might
very rarely happen, but worth to be considered and give
solutions to them. First, when a sampled plane does not
contain any point in its region, i.e. sampled plane does not
pass through the point cloud (∣𝑅∣ = 0); thus, it will be
evaluated by the worst value, i.e. +∞. Second, 𝛽 = 0 which
happens either when all the points in the point cloud have
the same distance as the tolerance threshold to a sampled
plane, or when the sum of the logarithmic form of distances
becomes zero. Since the sampled planes’ configurations and
the points’ coordinates are represented by real values, the
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occurrence of 𝛽 = 0 is scarce; and if it happens the result of
Equation (1) would be considered as the objective function
value without weighting. The final special case is when 𝑥𝑖 =
0, which means a point is exactly located on the sampled
plane (having an Euclidean distance of zero). It is important
to note that it does not mean the sampled plane is the best
match to any hypothesized plane. Speaking informally, with
using real values that might occur once in a blue moon.
Nevertheless, if it happens, that point won’t be involved in
the objective function evaluation.

After elaborating the objective function, here we give an
example to compare the behavior of this proposed objective
function with total least squares. For the sake of simplicity,
assume there are only two parallel planar surfaces in the
point cloud with the same shape, size, number of points,
right in front of each other, and of course inside of plane
region with a radius much smaller than the size of plane. In
spite of the fact that the best planar surfaces’ configurations
should have the same configurations as those planar surfaces
in the point cloud, the optimal planar surface according to
TLS criterion is a planar surface, parallel to those two planar
surfaces in the point could, and exactly in the middle of
them. In the same problem, if the logarithmically propor-
tional objective function is applied, the location of any of
those planar surfaces in the point cloud is the best solution
without any privilege; and after locating one and removing
its corresponding points from the point cloud, we can go for
the second one. The logarithmically proportional objective
function makes any of those planar surfaces to see the other
one as noise. Note that in general, from the perspective
of any planar surface in a point cloud, other surfaces are
noises. This example shows that using the logarithm makes
the objective function able to effectively deal with this fact.

B. Base of the Logarithmic Objective Function

In the previous subsection we have explained the proposed
objective function and its features. Now we are ready to
present you a formula to calculate the base of the logarithm
of the Equation (1) according to the structural density of a
scanned construction.

The logarithmic part of Equation (1) is as the following:

𝑓(𝑥) = log𝑏 𝑥− log𝑏 𝑡 , (3)

where x is the Euclidean distance. Since log𝑏 𝑡 is a constant
value, the derivative of (3) is expressed as:

𝑑

𝑑𝑥
𝑓(𝑥) =

1

𝑥 ln 𝑏
. (4)

Equation (4) indicates that the decay/growth rates of (3) on
the interval ]0, 𝑟], where 𝑟 is the given radius of a plane
region, depends on 𝑏. In other words, the log function has
a very high growth rate under horizontal axis, where 𝑥 is
on the interval ]0, 𝑡], and above of the axis as 𝑥 → +∞
that rate extremely decreases; and we want to cut the log
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Figure 1. Intersection of Equations (3), and (5), where 𝑡 = 0.01𝑚 and
𝑟 = 0.5𝑚. Applying the given plane tolerance threshold (𝑡) and radius of
plane region (𝑟) to Equation (6) yields a base of 2500. The effect of using
− log𝑏 𝑡 in Equation (3) is also shown in this figure.

function from where it still has an effective growth rate.
The inverse of log function, 𝑓−1, reverse its behavior. That
means it has very low growth rate and then tremendously
increase the rate as 𝑥 → +∞; hence, 𝑟 should be located
on the intersection of 𝑓 and 𝑓−1. The inverse function of
Equation (3) is:

𝑓(𝑥)−1 = 𝑡𝑏𝑥 . (5)

The graph of 𝑓 and 𝑓−1 are reflection of one another
about the line 𝑦 = 𝑥 (Figure 1). Thus, the 𝑥 value of the
second intersection of the Equations (5), and line 𝑦 = 𝑥
should be 𝑟, and the base of logarithm with applying 𝑥 = 𝑦
to (5) is obtained as the following:

𝑏 = 𝑟
√

𝑟/𝑡 . (6)

The base of this logarithmic function has the same unit as
given Euclidean distances. That means 𝑡 and 𝑟 should have
the same unit as Euclidean distances to apply to (6).

IV. EXPERIMENTAL RESULTS

This section presents the experimental results from testing
the proposed objective function on the synthetic point cloud
by means of GA. Although the aim of this work is not
to study the GA behavior on the problem at hand, which
can be a topic of another study, it is interesting to see the
logarithmically proportional objective function in practice.

The synthetic point cloud that is used in this experiment
represents a one-floor house with two rooms, and a hip-
roof on a rectangular plan; furthermore, it contains a total
of 31657 points. Those points represent 22 planar surfaces
with different sizes from ∼200 points to ∼10000 points
(Figure 2). Points are uniformly distributed on the surfaces
and there are almost 50 points per square meter. Since
we deal with synthetic point cloud, the tolerance threshold
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0.01m is the maximum distance that we accept to consider
points as laid on the sampled plane. Half of the narrowest
width of a construction space, i.e. 0.50m, is picked as
the radius of plane region. With applying the given plane
tolerance threshold (t), and radius of plane region (r) to the
Equation (6), it gives 2500 as the base of logarithm (see
Figure 1).

a

b

Figure 2. (a) An outline of the house which is built of eight walls, each
of which is represented by two planar surfaces, one base rectangular plan
that contraction is on it, and a four-sides hip-roof on one rectangular plan.
(b) shows some of the discovered planar surfaces by using logarithmic
objective function, going from bigger to smaller.

The geometric-plane formula, 𝑎𝑥+𝑏𝑦+𝑐𝑧+𝑑 = 0, is de-
fined by four parameters, 𝑎, 𝑏, 𝑐, and 𝑑. A candidate solution
for the GA is therefore represented by a chromosome vector
with four genes, each a real number. We used restricted
tournament selection (RTS) proposed by Harick [17] with
windowsize of 88, uniform crossover [18], and Polynomial
mutation which was designed by Deb and Goyal with
distribution index 100 [19]. The crossover probability was
set to 0.5 with uniform exchange rate of 0.5, and the
mutation rate was set to 1/𝑙, i.e. 0.25. For replacement we
join current population and the newly generated solutions
together, sort them, and keep the best half. This replacement
strategy makes the GA elitist, never losing the best solution

found so far. This GA employs a restarting mechanism
which works as the following; when the population fully
converges, that is when all the individuals have the same
number of points in their tolerance threshold, it saves the
best solution, removes its fitted points from the point cloud,
and restarts the population. It keeps doing that until there is
no more point left in the point cloud. The experiments were
performed with populations of size 100, 200, 300, 400, and
500 individuals, and for each size, 100 independent runs
were executed.

The planes’ configurations collected by using GA were
compared with the ground truth in order to find their
corresponding planar surfaces in the point cloud. It was done
by calculating the dihedral angle between any discovered
plane and all the planar surfaces in the point cloud (the
ground truth). The one with the lowest angle which also
share at least one point with the discovered plane and having
the same number of points in its plane tolerance threshold is
the corresponding one. Thereafter, we calculated the success
rate, the percentage of runs able to locate correctly all the
22 planar surfaces in the point cloud, as well as the average
distance error, over the 100 runs, between points in the
point cloud and their relative discovered planar surfaces. The
results are summarized in Table I.

Table I
RESULTS FROM TESTING THE LOGARITHMICALLY PROPORTIONAL

OBJECTIVE FUNCTION ON THE SYNTHETIC POINT CLOUD BY MEANS OF

GA. THEY ARE AVERAGED OVER 100 INDEPENDENT RUNS.

Population
Success

Average of
Average of

size
rate

function evaluations
distance errors

(%) (cm)

100 95.4 97618 0.0594

200 99.7 156794 0.0287

300 99.9 208773 0.0166

400 100.0 255496 0.0130

500 100.0 315135 0.0113

Table I shows that increasing the population size does help
the GA to obtain higher success rates, and reach a 100%
success rate in population sizes 400, and 500. In accordance
to population sizing theory of GAs [20], larger populations
sizes tend to produce a better solution quality, but also at
the expense of more processing time. The improvement of
solutions quality by increasing population size can be also
observed in the average distance errors.

V. SUMMARY AND CONCLUSION

This paper presented a new objective function for planar
surface recognition in 3D point cloud that can be used in any
heuristic and metaheuristic algorithms without having any
prior knowledge about those surfaces or applying segmenta-
tion. By paying close attention to the features of most part
of built environments, one can realize that planar surfaces
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occur quite often. Most of the methods that are being used
to deal with the problem of planar surface recognition are
basically dependent on segmentation.

This paper approaches the problem from a different angle.
The proposed logarithmic objective function makes any
planar surface in the point cloud to see other surfaces as
noise. Thus, segmentation won’t be needed as well as this
method can be used in any type of point cloud data. The use
of the logarithmic form of Euclidean distances decreases the
impact of noises on the objective function evaluation, while
it increases the impact of points very close to the sampled
plane. This function gives the same interest to the number
of points fitted on a sampled plane and their precision.
However, it tends to find bigger planar surfaces (surfaces
with more points) at the early stage of run, which also
benefits the algorithm from searching through smaller point
cloud as long as it’s going forward. The given formula for
calculating the base of the logarithm according to the plane
tolerance threshold and plane region gives a dynamic layout
to the objective function that enables it to adapt itself to
the scale of the scanned construction. The results presented
in this paper do give evidence that the proposed objective
function can perfectly cope with the problem as well as
with choosing a large-enough population size it can find
all the planar surfaces with a very minor error to the actual
configurations. More important, it could find planar surfaces
with different sizes and different dihedral angles between
them.
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