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ABSTRACT

Numerous applications such as financial transactions (e.g., stock

trading) are write-heavy in nature. The shift from reads to writes in

web applications has also been accelerating in recent years. Write-

ahead-logging is a common approach for providing recovery capa-

bility while improving performance in most storage systems. How-

ever, the separation of log and application data incurs write over-

heads observed in write-heavy environments and hence adversely

affects the write throughput and recovery time in the system.

In this paper, we introduce LogBase – a scalable log-structured

database system that adopts log-only storage for removing the write

bottleneck and supporting fast system recovery. It is designed to

be dynamically deployed on commodity clusters to take advantage

of elastic scaling property of cloud environments. LogBase pro-

vides in-memory multiversion indexes for supporting efficient ac-

cess to data maintained in the log. LogBase also supports trans-

actions that bundle read and write operations spanning across mul-

tiple records. We implemented the proposed system and compared

it with HBase and a disk-based log-structured record-oriented sys-

tem modeled after RAMCloud. The experimental results show that

LogBase is able to provide sustained write throughput, efficient

data access out of the cache, and effective system recovery.

1. INTRODUCTION
There are several applications that motivate the design and im-

plementation of LogBase, such as logging user activity (e.g., visit

click or ad click from high volume web sites) and financial transac-

tions (e.g., stock trading). The desiderata for the backend storage

systems used in such write-heavy applications include:

• High write throughput. In these applications, a large num-

ber of events occur in a short period of time and need to be

durably stored into the backend storage quickliest possible

so that the system can handle a high rate of incoming data.

• Dynamic scalability. It is desirable that the storage sys-

tems are able to support dynamic scalability for the increas-

ing workload, i.e., the ability to scale out and scale back on

demand based on load characteristics.

• Efficient multiversion data access. The support of multi-

version data access is useful since in these applications users

often perform analytical queries on the historical data, e.g.,

finding the trend of stock trading or users’ behaviors.

• Transactional semantics. In order to relieve application de-

velopers from the burden of handling inconsistent data, it is

necessary for the storage system to support transactional se-

mantics for bundled read and write operations that possibly

access multiple data items within the transaction boundary.

• Fast recovery from machine failures. In large-scale sys-

tems, machine failures are not uncommon, and therefore it

is important that the system is able to recover data and bring

the machines back to usable state with minimal delays.

Storage systems for photos, blogs, and social networking com-

munications in Web 2.0 applications also represent well-suited do-

mains for LogBase. The shift from reads to writes has been accel-

erating in recent years as observed at Yahoo! [25]. Further, since

such data are often written once, read often, and rarely modified, it

is desirable that the storage system is optimized for high aggregate

write throughput, low read response time, faut-tolerance and cost-

effectiveness, i.e., less expensive than previous designs in storage

usage while offering similar data recovery capability.

Previous designs for supporting data durability and improving

system performance, which we shall discuss in more depth in Sec-

tion 2, do not totally fit the aforementioned requirements. Copy-

on-write strategy used in System R [14] incurs much overhead of

copying and updating data pages, and therefore affects the write

throughput. In POSTGRES [26], a delta record is added for each

update, which would increase read latency since records have to be

reconstructed from the delta chains. In write-ahead-logging (WAL)

[19], in order to improve system performance while ensuring data

durability, updates are first recorded into the log presumably stored

in “stable storage”, before being buffered into the memory, which

can be flushed into data structures on disks at later time. We refer to

this strategy as WAL+Data approach. Although this approach can

defer writing data to disks, all the data have to be persisted into the

physical storage eventually, which would result in the write bottle-

neck observed in write-heavy applications. In addition, the need to

replay log records and update corresponding data structures when

recovering from machine failures before the system becomes ready

for serving new requests is another source of delay.

LogBase instead adopts log-only approach, in which the log

serves as the unique data repository in the system, in order to re-

move the write bottleneck. The essence of the idea is that all write

operations are appended at the end of the log file without the need

of being reflected, i.e., updated in-place, into any data file. There

are some immediate advantages from this simple design choice.
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First, the number of disk I/Os will be reduced since the data only

need to be written once into the log file, instead of being written

into both log and data files like the WAL+Data approach. Second,

all data will be written to disk, i.e., the log file, with sequential

I/Os, which is much less expensive than random I/Os when per-

forming in-place updates in data files. As a consequence, the cost

of write operations with log-only approach is reduced considerably,

and therefore LogBase can provide the much needed high write

throughput for write-heavy applications. Log-only approach also

enables cost-effective storage usage since the system does not need

to store two copies of data in both log and data files.

Given the large application and data size, it is desirable that the

system can be dynamically deployed in a cluster environment so

that it is capable of adapting to changes in the workload while

leveraging commodity hardware. LogBase adopts an architec-

ture similar to HBase [1] and BigTable [8] where a machine in the

system, referred to as tablet server, is responsible for some tablets,

i.e., partitions of a table. However, LogBase is different in that

it leverages the log as its unique data repository. Specifically, each

tablet server uses a single log instance to record the data of the

tablets it maintains. LogBase stores the log in an underlying dis-

tributed file system (DFS) that replicates data blocks across nodes

in the cluster to guarantee that the probability of data loss is ex-

tremely unlikely, except catastrophic failures of the whole cluster.

Consequently, LogBase’s capability of recovering data from ma-

chine failures is similar to traditional WAL+Data approach.

Since data, which are sequentially written into the log, are not

well-clustered, it is challenging to process read operations effi-

ciently. To solve this problem, tablet servers in LogBase build

an index per tablet for retrieving the data from the log. Each index

entry is a < key, ptr > pair where key is the primary key of the

record and ptr is the offset that points to the location of that record

in the log. The index of each tablet can be maintained in memory

since the size of an index entry is much smaller than the record’s

size. The in-memory index is especially useful for handling long

tail requests, i.e., queries that access data not available in the cache,

as it reduces I/O cost of reading index blocks. The interference of

reads and writes over the log is affordable since reads do not occur

frequently in write-heavy applications. As machines in commod-

ity environments are commonly not equipped with dedicated disks

for logging purpose, most scalable cloud storage systems such as

HBase [1] also store both log and application data in a shared DFS

and hence observe similar interferences.

LogBase utilizes the log records to provide multiversion data

access since all data are written into the log together with their ver-

sion number, which is the commit timestamp of the transactions

that write the data. To facilitate reads over multiversion data, the

indexes are also multiversioned, i.e., the key of index entries now is

composed of two parts: the primary key of the record as the prefix

and the commit timestamp as the suffix. Furthermore, LogBase

supports the ability to bundle a collection of read and write opera-

tions spanning across multiple records within transaction boundary,

which is an important feature that is missing from most of cloud

storage systems [7].

In summary, the contributions of the paper are as follows.

• We propose LogBase – a scalable log-structured database

system that can be dynamically deployed in the cloud. It pro-

vides similar recovery capability to traditional write-ahead-

logging approach while offering highly sustained throughput

for write-heavy applications.

• We design a multiversion index strategy in LogBase to pro-

vide efficient access to the multiversion data maintained in

the log. The in-memory index can efficiently support long

tail requests that access data not available in the cache.

• We further enhance LogBase to support transactional se-

mantics for read-modify-write operations and provide snap-

shot isolation – a widely accepted correctness criterion.

• We conducted an extensive performance study on LogBase

and used HBase [1] and LRS, a log-structured record-oriented

system that is modeled after RAMCloud [22] but stores data

on disks, as our baselines. The results confirm its efficiency

and scalability in terms of write and read performance, as

well as effective recovery time in the system.

The paper proceeds as follows. In Section 2, we review back-

ground and related work. In Section 3, we present the design and

implementation of LogBase. We evaluate the performance of

LogBase in Section 4 and conclude the paper in Section 5.

2. BACKGROUND AND RELATED WORK
In this section, we review previous design choices for supporting

data durability while improving system performance. We also dis-

cuss why they do not totally fit the aforementioned requirements of

write-heavy applications.

2.1 No­overwrite Strategies
Early database systems such as System R [14] use shadow pag-

ing strategy to avoid the cost of in-place updates. When a transac-

tion updates a data page, it makes a copy, i.e., a shadow, of that page

and operates on that. When the transaction commits, the system

records the changes to new addresses of the modified data pages.

Although this approach does not require logging, the overheads of

page copying and updating are much higher for each transaction,

and adversely affect the overall system performance.

Another no-overwrite strategy for updating records is employed

in POSTGRES [26]. Instead of performing in-place updates to the

page, a delta record is added to store the changes from the previ-

ous version of the record. To perform a record reading request,

the system has to traverse the whole chain from the first version

to reconstruct the record, which affects the read performance con-

siderably. Further, POSTGRES uses a force buffer policy, which

requires the system to write all pages modified by a transaction

into disk at commit time. Such high cost of write operations is

inadequate for write-heavy applications.

2.2 WAL+Data
ARIES [19] is an algorithm designed for database recovery and

enables no-force, steal buffer management, and thus improves sys-

tem performance since updates can be buffered in memory with-

out incurring “update loss” issues. The main principle of ARIES

is write-ahead-logging (WAL), i.e., any change to a record is first

stored in the log which must be persisted to “stable storage” before

being reflected into the data structure.

WAL is a common approach in most storage systems ranging

from traditional DBMSes, including open source databases like

MySQL and commercial databases like DB2, to the emerging cloud

storage systems such as BigTable [8], HBase [1] and Cassandra

[16]. The main reason why this approach is popular is that while

the log cannot be re-ordered, the data can be sorted in any order

to exploit data locality for better I/O performance (e.g., data ac-

cess via clustered indexes). However, this feature is not necessary

for all applications, and the separation of log and application data

incurs potential overheads that would reduce the write throughput

and increase the time for system recovery.

1005



In particular, although this design defers writing the application

data to disks in order to guarantee system response time, all the data

buffered in memory have to be persisted into the physical storage

eventually. Therefore, the system might not be able to provide high

write throughput for handling a large amount of incoming data in

write-heavy applications. In addition, when recovering from ma-

chine failures the system needs to replay relevant log records and

update corresponding data before it is ready for serving new user

requests. As a consequence, the time for the system to recover from

machine failures is delayed.

2.3 Log­structured Systems
Log-structured file systems (LFS) pioneered by Ousterhout and

Rosenblum [24] for write-heavy environments have been well stud-

ied in the OS community. More recently, BlueSky [30], a network

file system that adopts log-structured design and stores data persis-

tently in a cloud storage provider, has been proposed.

Although LogBase employs the ideas of LFS, it provides a

database abstraction on top of the segmented log, i.e., fine-grained

access to data records instead of data blocks as in LFS. LogBase

uses files, which are append-only, to implement its log segments,

while LFS uses fixed size disk segments for its log. More impor-

tantly, LogBase maintains in-memory indexes for efficient record

retrieval, and hence its log management is simpler than LFS as

the log does not need to store metadata (e.g., inode structure) to

enable random data access. To further facilitate database applica-

tions, LogBase clusters related records of a table during its log

compaction for efficient support of clustering access.

Contemporary log-structured systems for database applications

include Berkeley DB (Java Edition) and PrimeBase1 – an open

source log-structured storage engine for MySQL. Both systems are

currently developed for single machine environment and use disk-

resident indexes, which restricts system scalability and performance.

Recent research systems for scalable log-structured data manage-

ment include Hyder [5] and RAMCloud [22]. Hyder takes advan-

tage of new advent of modern hardware such as solid-state drives

to scale databases in a shared-flash environment without data par-

titioning. In contrast, LogBase aims to exploit commodity hard-

ware in a shared-nothing cluster environment. Similarly, RAM-

Cloud, which is a scalable DRAM-based storage system, requires

servers with large memory and very high-speed network to meet la-

tency goals, whereas LogBase is a disk-based storage system that

is inherently designed for large-scale commodity clusters.

Following no-overwrite strategies introduced by early database

systems, log-structured merge tree (LSM-tree) [21], which is a hi-

erarchy of indexes spanning across memory and disk, is proposed

for maintaining write-intensive and real-time indexes at low I/O

cost. The log-structured history data access method (LHAM) [20]

is an extension of LSM-tree for hierarchical storage systems that

store a large number of components of the LSM-tree on archival

media. bLSM-tree [25], an optimization of LSM-tree that uses

Bloom filters to improve read performance, has been recently pro-

posed. LSM-tree and bLSM-tree complement our work and can

be exploited to extend the index capability of LogBase when the

memory of a tablet server is scarce. We shall investigate this option

in our experiments.

It is also noteworthy that LSM-trees are designed with the as-

sumption that external write ahead logs are available. Therefore,

although some cloud storage systems, such as HBase [1] and Cas-

sandra [16], have adopted LSM-trees for maintaining their data,

instead of performing in-place updates as in traditional DBMSes,

1http://sourceforge.net/projects/pbxt/

they have not totally removed potential write bottlenecks since the

separation of log and application data still exists in these systems.

3. DESIGN AND IMPLEMENTATION
In this section, we present various issues of the design and imple-

mentation of LogBase including data model, partitioning strategy,

log repository, multiversion index, basic data operations, transac-

tion management, and system recovery method.

3.1 Data Model
Cloud storage systems, as surveyed in [7], represent a recent evo-

lution in building infrastructure for maintaining large-scale data,

which are typically extracted from Web 2.0 applications. Most

systems such as Cassandra [16] and HBase [1] employ key-value

model or its variants and make a trade-off between system scala-

bility and functionality. Recently, some systems such as Megastore

[3] adopt a variant of the abstracted tuples model of an RDBMS

where the data model is represented by declarative schemas cou-

pled with strongly typed attributes. Pnuts [9] is another large-scale

distributed storage system that uses the tuple-oriented model.

Since LogBase aims to provide scalable storage service for

database-centric applications in the cloud, its data model is also

based on the widely-accepted relational data model where data are

stored as tuples in relations, i.e., tables, and a tuple comprises of

multiple attributes’ values. However, LogBase further adapts this

model to support column-oriented storage model in order to exploit

the data locality property of queries that frequently access a subset

of attributes in the table schema. This adaptation is accomplished

by the partitioning strategy presented in the below section.

3.2 Data Partitioning
LogBase employs vertical partitioning to improve I/O perfor-

mance by clustering columns of a table into column groups which

comprise of columns that are frequently accessed together by a set

of queries in the workload. Column groups are stored separately

in different physical data partitions so that the system can exploit

data locality when processing queries. Such vertical partitioning

benefits queries that only access a subset of columns of the table,

e.g., aggregate functions on some attributes, since it saves signifi-

cant I/O cost compared to the approach that stores all columns in

the schema into a single physical table.

This partitioning strategy is similar to data morphing technique

[15] which also partitions the table schema into column groups.

Nevertheless, the main difference is that data morphing aims at de-

signing a CPU cache-efficient column layout while the partition-

ing strategy in LogBase focuses on exploiting data locality for

minimizing I/O cost of a query workload. In particular, given a

table schema with a set of columns, multiple ways of grouping

these columns into different partitions are enumerated. The I/O

cost of each assignment is computed based on the query workload

trace and the best assignment is selected as the vertical partitions of

the table schema. Since we have designed the vertical partitioning

scheme based on the trace of query workload, tuple re-construction

is only necessary in the worst case. Moreover, each column group

still embeds the primary key of data records as one of its compo-

nential columns, and therefore to reconstruct the tuple, LogBase

collects the data in all column groups using the primary key as se-

lection predicate.

To facilitate parallel query processing while offering scale out

capability, LogBase further splits the data in each column group

into horizontal partitions, referred to as tablets. LogBase designs

the horizontal partitioning scheme carefully in order to reduce the

number of distributed transactions across machines. In large-scale

1006



applications, users commonly operate on their own data which form

an entity group or a key group [3, 12, 28]. By cleverly designing

the key of records, all data related to a user could have the same key

prefix, e.g., the user’s identity. As a consequence, data accessed by

a transaction are usually clustered on a physical machine. In this

case, executing transactions is not expensive since the costly two-

phase commit can be avoided.

For scenarios where the application data cannot be naturally par-

titioned into entity groups, we can implement a group formation

protocol that enables users to explicitly cluster data records into key

groups [12]. Another alternative solution is workload-driven ap-

proach for data partitioning [11]. This approach models the trans-

action workload as a graph in which data records constitute vertices

and transactions constitute edges. A graph partitioning algorithm

is used to split the graph into sub partitions while reducing number

of cross-partition transactions.

3.3 Architecture Overview
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Figure 1: System architecture.

Figure 1 illustrates the overall architecture of LogBase. In this

architecture, each machine – referred to as tablet server – is respon-

sible to maintain several tablets, i.e., horizontal partitions of a table.

The tablet server records the data, which might belong to the dif-

ferent tablets that it maintains, into its single log instance stored in

the underlying distributed file system (DFS) shared by all servers.

Overall, a tablet server in LogBase consists of three major func-

tional layers, including transaction manager, data access manager,

and log repository.

Log Repository. At the bottom layer is the repository for main-

taining log data. Instead of storing the log in local disks, the

tablet servers employ a shared distributed file system (DFS)

to store log files and provide fault-tolerance in case of ma-

chine failures. The implementation of Log Repository is de-

scribed in Section 3.4.

Data Access Manager. This middle layer is responsible to serve

basic data operations including Insert, Delete, Update,

and Get a specific data record. Data Access Manager also

supports Scan operations for accessing records in batches,

which is useful for analytical data processing such as pro-

grams run by Hadoop MapReduce2. In LogBase tablet sev-

ers employ in-memory multiversion indexes (cf. Section 3.5)

for supporting efficient access to the data stored in the log.

The processing of data operations is discussed in Section 3.6.

Transaction Manager. This top layer provides interface for ap-

plications to access the data maintained in LogBase via

2http://hadoop.apache.org/mapreduce

transactions that bundles read and write operations on mul-

tiple records possibly located on different machines. The

boundary of a transaction starts with a Begin command and

ends with a Commit or Abort command. Details of trans-

action management is presented in Section 3.7.

The master node is responsible for monitoring the status of other

tablet servers in the cluster, and provides the interface for users to

update the metadata of the database such as create a new table and

add column groups into a table. To avoid critical point of failures,

multiple instances of master node can be run in the cluster and the

active master is elected via Zookeeper [2], an efficient distributed

coordination service. If the active master fails, one of the remain-

ing masters will take over the master role. Note that the master

node is not the bottleneck of the system since it does not lie on the

general processing flow. Specifically, a new client first contacts the

Zookeeper to retrieve the master node information. With that infor-

mation it can query the master node to get the tablet server informa-

tion and finally retrieve data from the tablet server that maintains

the records of its interest. The information of both master node and

tablet servers are cached for later user and hence only need to be

looked up for the first time or when the cache is stale.

Although LogBase employs a similar architecture to HBase

[1] and Bigtable [8], it introduces several major different designs.

First, LogBase uses the log as data repository in order to remove

the write bottleneck of the WAL+Data approach observed in write-

heavy applications. Second, tablet servers in LogBase build an

in-memory index for each column group in a tablet to support effi-

cient data retrieval from the log. Finally, LogBase provides trans-

actional semantics for bundled read and write operations accessing

multiple records.

3.4 Log Repository
As discussed in Section 1, the approach that uses log as the

unique data repository in the system benefits write-heavy appli-

cations in many ways, including high write throughput, fast sys-

tem recovery and multiversion data access. Nevertheless, there

could be questions about how this approach can guarantee the prop-

erty of data durability in comparison to the traditional write-ahead-

logging, i.e., WAL+Data approach.

GUARANTEE 1. Stable storage. The log-only approach pro-

vides similar capability of recovering data from machine failures

compared to the WAL+Data approach.

Recall that in the WAL+Data approach, data durability is guar-

anteed with the “stable storage” assumption, i.e., the log file must

be stored in a stable storage with zero probability of losing data.

Unfortunately, implementing stable storage is theoretically impos-

sible. Therefore, some methods such as RAID (Redundant Array of

Independent Disks [23]) have been proposed and widely accepted

to simulate stable storages. For example, a RAID-like erasure code

is used to enable recovery from corrupted pages in the log repos-

itory of Hyder [5], which is a log-structured transactional record

manager designed for shared flash.

To leverage commodity hardware and dynamic scalability de-

signed for cluster environment, LogBase stores the log in HDFS3

(Hadoop Distributed File System). HDFS employs n-way replica-

tion to provide data durability (n is configurable and set to 3-way

replication as default since it has been a consensus that maintain-

ing three replicas is enough for providing high data availability in

distributed environments). The log can be considered as an infinite

3http://hadoop.apache.org/hdfs
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sequential repository which contains contiguous segments. Each

segment is implemented as a sequential file in HDFS whose size is

also configurable. We set the default size of segments to 64 MB as

in HBase [1].

Replicas of a data block in HDFS are synchronously maintained.

That is, a write operation to a file is consistently replicated to n ma-

chines before returning to users. This is equivalent to RAID-1 level

or mirroring disks [23]. Further, the replication strategy in HDFS

is rack-aware, i.e., it distributes replicas of a data block across the

racks in the cluster, and consequently guarantees that the probabil-

ity of data loss is extremely unlikely, except catastrophic failures

of the whole cluster. Therefore, the use of log-only approach in

LogBase does not reduce the capability of recovering data from

machine failures compared to the other systems. Note that HBase

[1] also stores its log data (and its application data) in HDFS.

Each tablet server in LogBase maintains several tablets, i.e.,

partitions of a table, and record the log data of these tablets in

HDFS. There are two design choices for the implementation of the

log: (i) a single log instance per server that is used for all tablets

maintained on that server and (ii) the tablet server maintains sev-

eral log instances and each column group has one log instance. The

advantages of the second approach include:

• Data locality. Since LogBase uses log as the unique data

repository, it needs to access the log to retrieve the data. If

a log instance contains only the data that are frequently ac-

cess together, e.g., all rows of a column group, it’s likely

to improve the I/O performance for queries that only access

that column group. On the contrary, in the first approach,

the system needs to scan the entire log containing rows of all

column groups.

• Data recovery. If a tablet server fails, its tablets will be as-

signed to other servers. In the second approach, one log rep-

resents one column group, and therefore, other servers only

need to reload the corresponding index file and check the tail

of that log (from the consistent point immediate after the lat-

est checkpoint). Otherwise, in the first approach, the log has

to be sorted and split by column group, and then scanned by

the corresponding servers as in BigTable [8] and HBase [1].

However, the downside of the second approach is that, the un-

derlying distributed file system has to handle many read/write con-

nections that are used for multiple log instances. In addition, it also

consumes more disk seeks to perform writes to different logs in the

physically storage. Since LogBase aims at write-heavy applica-

tions that require sustained write throughput, we choose the first

approach, i.e., each tablet server uses a single log instance for stor-

ing the data from multiple tablets that it maintains. Moreover, this

approach still can support data locality after the log compaction

process (cf. Section 3.6.5) which periodically scans the log, re-

moves out-of-date data and sorts the log entries based on column

group, primary key of the record, and timestamp of the write. That

is, all data related to a specific column group will be clustered to-

gether after the log compaction.

A log record comprises of two components < LogKey, Data >.

The first component, LogKey, stores the information of a write op-

eration, which includes log sequence number (LSN), table name,

and tablet information. LSN is used to keep track of updates to the

system, and is useful for checkpointing and recovery process (cf.

Section 3.8). LSN either starts at zero or at the last known LSN

persisted in the previous consistent checkpoint block. The sec-

ond component, Data, is a pair of < RowKey, V alue > where

RowKey represents the id of the record and V alue stores the con-

tent of the write operation. RowKey is the concatenation of the

record’s primary key and the column group updated by the write

operation, along with the timestamp of the write. Log records are

to be persisted into the log repository before write operations can

return to users.

3.5 In­memory Multiversion Index
Since LogBase records all writes sequentially in the log reposi-

tory, there is no clustering property of data records stored on disks.

As a result, access to data records based on their primary keys is

inefficient as it is costly to scan the whole log repository only for

retrieving some specific records. Therefore, LogBase builds in-

dexes over the data in the log to provide efficient access to the data.

<a,t2,value> <k,t8,value> <a,t18,value>… … ……

a,t2,p a,t18,p d,t20,p… k,t8,p k,t32,p z,t46,p…

(Log)

Figure 2: Multiversion index over the log repository.

In particular, tablet servers build a multiversion index, as illus-

trated in Figure 2, for each column group in a tablet. LogBase

utilizes the log entries to provide multiversion data access since all

data are written into the log together with their version numbers,

i.e., the timestamp of the write. To facilitate reads over multiver-

sion data, the indexes are also multiversioned. The indexes resem-

ble Blink-trees [17] to provide efficient key range search and con-

currency support. However, the content of index entries is adapted

to support multiversion data. In our indexes, each index entry is

a pair of < IdxKey, P tr >. The IdxKey is composed of two

parts: the primary key of the record as the prefix and the times-

tamp as the suffix. Ptr is the offset that points to the location of

a data record in the log, which includes three information: the file

number, the offset in the file, the record’s size.

We design an index key as a composite value of record id and

timestamp so that the search for current as well as historical ver-

sions of particular data records, which is the major access pattern

in our applications, can be done efficiently. Historical index entries

of a given record id, e.g., key a in Figure 2, are clustered in the in-

dex and can be found by performing an index search with the data

key a as the prefix. Among the found entries, the one that has the

latest timestamp contains the pointer to the current version of the

data record in the log.

The ability to search for current and historical versions efficiently

is useful for developing the multiversion concurrency control in

LogBase (cf. Section 3.7). Although multiversion indexes can

be implemented with other general multiversion access methods,

e.g., Time-Split B-tree (TSB-tree) [18], these methods are mainly

optimized for temporal queries by partitioning the index along time

and attribute value dimensions, which increases the storage space

and insert cost considerably.

The indexes in LogBase can be stored in memory since they

only contain the < IdxKey, P tr > pairs whose size are much

smaller than the record’s size. For example, while the size of records,

e.g., blogs’ content or social communications, could easily exceed

1 KB, the IdxKey only consumes about 16 bytes (including the

record id and timestamp of long data type) and Ptr consumes about

8 bytes (including the file number and record size as short data type,

and the file offset as integer data type), which makes a total size of
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24 bytes each index entry. Assuming that the tablet server can re-

serve 40% of its 1 GB heap memory for in-memory indexes (HBase

[1] uses a similar default setting for its memtables), the indexes of

that server can maintain approximately 17 million entries.

There are several methods to scale out LogBase’s index capa-

bility. A straight-forward way is to increase either the heap mem-

ory for the tablet server process or the percentage of memory usage

for indexes (or both). Another solution is to launch more tablet

server processes on other physical machines to share the workload.

Finally, LogBase can employ a similar method to log-structured

merge-tree (LSM-tree) [21] for merging out part of the in-memory

indexes into disks, which we shall investigate in the experiments.

A major advantage of the indexes in LogBase is the ability to

efficiently process long tail requests, i.e., queries that access data

not available in read cache. LogBase uses in-memory indexes for

directly locating and retrieving data records from the log with only

one disk seek, while in the WAL+Data approach (e.g., in HBase

[1]) both application data and index blocks need to be fetched from

disk-resident files, which incurs more disk I/Os.

The downside of in-memory indexes is that their content are to-

tally lost when machines crash. To recover the indexes from ma-

chine failures, the restarted server just scans its log and reconstructs

the in-memory index for the tablets it maintains. In order to reduce

the cost of recovery, LogBase performs checkpoint operation at

regular times. In general, tablet servers periodically flush the in-

memory indexes into the underlying DFS for persistence. Con-

sequently, at restart time the tablet server can reload the indexes

quickly from the persisted index files back into memory. We de-

scribe the details of LogBase’s recovery technique in Section 3.8.

3.6 Tablet Serving
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Figure 3: Tablet serving of LogBase (left) vs. HBase (right).

Now we present the details of a tablet server in LogBase, which

uses only log files to facilitate both data access and recovery. As il-

lustrated in Figure 3, each tablet server manages two major compo-

nents, including (i) the single log instance (consisting of sequential

log segments) which stores data of multiple tablets maintained by

the server, and (ii) the memory index for each column group which

map the primary key of data records to their location in the log.

Another major component (not shown) is the transaction manager

whose details will be described in the next section.

LogBase differs from HBase [1] on every aforementioned com-

ponent. More specifically, HBase stores data in data files which are

separate with the log and uses memtables to buffer recently updated

data, in addition to the fact that it does not support transactional

semantics for bundled read and write operations. The benefits of

log-only approach compared to WAL+Data approach when serving

write-heavy applications have been briefly discussed in Section 1.

In the following, we shall describe how LogBase performs basic

data operations such as write, read, delete, and scan over the tablets

as well as tablet compaction operation.

3.6.1 Write

When a write request (Insert or Update) arrives, the request

is first transformed into a log record of < LogKey, Data > for-

mat, where LogKey contains meta information of the write such

as log sequence number, table name, and tablet information while

Data stores the content of the write, including the record’s primary

key, the updated column group, the timestamp of the write, and the

new value of data. Then the tablet server writes this log record into

the log repository.

After the log record has been persisted, its starting offset in the

log along with the timestamp are returned so that the tablet server

subsequently updates the in-memory index of the corresponding

updated column group. This guarantees that the index are able to

keep track of historical versions of the data records. The indexes

are used to retrieve the data records in the log at later time.

In addition, the new version of data can also be cached in a read

buffer (not shown in Figure 3) so that LogBase can efficiently

serve read requests on recently updated data. While the in-memory

index is a major component and is necessary for efficient data re-

trieval from the log, read buffer is only an optional component

whose existence and size are configurable parameters. The read

buffer in LogBase is different from the memtable in HBase [1] in

that the read buffer is only for improving read performance while

the memtable stores data and needs to be flushed into disks when-

ever the memtable is full, which incurs write bottlenecks in write-

intensive applications.

A counter is maintained to record the number of updates that

have occurred to the column group of a tablet. If the number of

updates reaches a threshold, the index can be merged out into an

index file stored in the underlying DFS and the counter is reset to

zero. Persisting indexes into index files helps to provide a faster

recovery from failures, since the tablet servers do not need to scan

the entire log repository in order to rebuild the indexes. Note that

the DFS with 3-way synchronous replication is sufficient to serve as

a stable storage for index files (as the case of log files and discussed

in Section 3.4).

3.6.2 Read

To process a Get request, which retrieves data of a specific

record given its primary key, the tablet server first checks whether

the corresponding record exists in the read buffer. If the value is

found, it is returned and the request is completed. Otherwise, the

server obtains the log offset of the requested record from the in-

memory index. With this information, the data record is retrieved

from the log repository, and finally returned to clients. By default,

the system will return the latest version of the data of interest. To

access historical versions of data, users can attach a timestamp tq

with the retrieval request. In this case, LogBase fetches all index

entries with the requested key as the prefix and follows the pointer

of the index entry that has the latest timestamp before tq to retrieve

the data from the log.

Meanwhile, the read buffer also caches the recent fetched record

for serving possible future requests. Since there is only one read

buffer per tablet server and the size of the read buffer is limited,

an effective replacement strategy is needed to guarantee the read

buffer is fully exploited while reducing the number of cache misses.

In our implementation, we employ the LRU strategy which discards

the least recently used records first. However, we also design the re-

placement strategy as an abstracted interface so that users can plug

in new strategies that fit their application access patterns. With the

use of read buffer, LogBase can quickly answer queries for data

that have recently been updated or read, in addition to the ability to

process long tail requests efficiently via in-memory indexes.
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Note that the vertical partitioning scheme in LogBase, as dis-

cussed in Section 3.2, is designed based on the workload trace, and

therefore most queries and updates will access data within a col-

umn group. In the case where tuple reconstruction is necessary,

LogBase collects componential data of a record from all corre-

sponding column groups.

3.6.3 Delete

A tablet server in LogBase performs a Delete operation given

a record primary key in two steps. First, it remove all index en-

tries associated with this record key from the in-memory index.

By doing this all incoming queries at later time cannot find any

pointer from the index in order to access the data record in the log

repository. However, in the event of tablet server’s restart after fail-

ures, the index is typically reloaded from the previous consistent

checkpoint file, which still contains the index entries that we have

attempted to remove in the first step.

Therefore, in order to guarantee durable effect of the Delete op-

eration, LogBase performs a second step which persists a special

log entry, referred to as invalidated log entry, into the log repository

to record the information about this Delete operation. While this

invalidated log entry also contains LogKey similar to normal log

entries, its Data component is set to null value in order to repre-

sent the fact that the corresponding data record has been deleted.

As a consequence, during the restart of the tablet server, this inval-

idated log entry will be scanned over and its deletion effect will be

reflected into the in-memory index again.

3.6.4 Scan

LogBase supports two types of scan operations, including range

scan and full table scan. A range scan request takes a start key

and an end key as its input. If the query range spans across tablet

servers, it will be divided into subranges which are executed in par-

allel on multiple servers. Each tablet server process a range scan

as follows. First, it traverses the in-memory index to enumerate

all index entries that satisfies the query range. Then, it follows the

pointers in the qualified index entries to retrieve the data from the

log repository. Since the data in the log are not clustered based on

the search key, it is not efficient when handling with large range

scan queries. However, LogBase periodically performs log com-

paction operation which will be discussed below. After this com-

paction, data in the log are typically sorted and clustered based on

the data key. Therefore, LogBase can support efficient range scan

queries, i.e., clustering access on the primary key of data records,

if the log compaction operation is performed at regular times.

In contrast to range scan queries, full table scans can be per-

formed efficiently in LogBase without much optimization. Since

full table scans do not require any specific order of access to data

records, multiple log segments, i.e., log files, in the log repository

of tablet servers are scanned in parallel. For each scanned record,

the system checks its stored version with the current version main-

tained in the in-memory index to determine whether the record con-

tains latest data.

3.6.5 Compaction

In the log-only approach, updates (and even deletes) are sequen-

tially appended as a new log entry at the end of the log repository.

After a period of time, there could be obsolete versions of data that

are not useful for any query, but they still consume storage capac-

ity in the log repository. Therefore, it is important to perform a

vacuuming process, referred to as compaction, in order to discard

out-of-date data and uncommitted updates from the log repository

and reclaim the storage resources.

original  log
1. Remove out-of-date data 

original log

Sorted log

Sorted log

Sorted log’

Compact

2. Sort and merge the log 

by <key, timestamp>

Sorted log’

Figure 4: Log compaction.

Compaction could be done periodically as background process

or more frequently when the system has spare CPU and I/O band-

width. Figure 4 illustrates the compaction process performed by

a tablet server in LogBase. In particular, LogBase performs a

MapReduce-like job which takes the current log segments (some

of them are sorted log segments, resulted from the previous com-

paction) as its input, removes all obsolete versions of data and in-

validated records, and finally sorts the remaining data based on the

following criteria (listed from the highest to lowest priority): table

name, column group, record id, and timestamp. The result of this

job is a set of sorted log segments in which data are well-clustered.

Then, each tablet server builds the in-memory indexes over these

new log segments. After the indexes have been built, the tablet

server now can efficiently answer clients’ queries on the clustered

data in the sorted log segments.

Note that until this time point, old log segments and in-memory

indexes are still in use and all clients’ update requests from the start

of the running compaction process are stored in new log segments

which will be used as inputs in the next round of compaction. That

is, LogBase can serve clients’ queries and updates as per nor-

mal during the compaction process. After the compaction process

has finished, i.e., the resulted sorted segments and in-memory in-

dexes are ready, the old log segments and in-memory indexes can

be safely discarded.

An additional optimization is adopted during the compaction

process to decrease the storage consumption of log segments and

further improve I/O performance for queries. Specifically, since the

data in the resulting log segments are clustered by table name and

column group already, it is not necessary to store this information in

every log entries any more. Instead, the tablet server only needs to

maintain a metadata which maps the table name and column group

information to a list of log segments that store its data.

3.7 Transaction Management and Correctness
Guarantees

In the previous section, we have presented LogBase’s basic

data operations, which only guarantee single row ACID properties

similar to other cloud storage systems such as Pnuts [9], Cassandra

[16] and HBase [1]. We now present how LogBase ensures ACID

semantics for bundled read and write operations spanning across

multiple records.

3.7.1 Concurrency Control and Isolation

The Rationale of MVOCC. Recall that LogBase is designed

with a built-in function of maintaining multiversion data. In addi-

tion, the careful design of the data partitioning scheme in LogBase,

which is based on application semantics and query workload, clus-

ters data related to a user together, and thus reduces the contention

between transactions as well as the number of distributed transac-

tions. Consequently, we employ a combination of multi-version

and optimistic concurrency control (MVOCC) to implement isola-

tion and consistency for transactions in LogBase.

A major advantage of MVOCC is the separation of read-only

and update transactions so that they will not block each other. In
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particular, read-only transactions access a recent consistent snap-

shot of the database while update transactions perform on the latest

version of the data. Therefore, read-only transactions always com-

mit successfully, whereas an update transaction after finishing its

read phase has to validate its possible conflicts with other concur-

rently executing update transactions before being allowed to enter

the write phase.

While traditional OCC needs to maintain old write-sets of com-

mitted transactions in order to verify data conflicts, the MVOCC in

LogBase provides another advantage that in the validation phase

of update transactions, the transaction manager can use the version

numbers of data records to check for conflicts with other update

transactions. In particular, to commit an update transaction T , the

transaction manager checks whether T ’s write set are updated by

other concurrent transactions that have just committed by compar-

ing the versions of the records in T ’s write set that T has read be-

fore (there is no blind write) with the current version of the records

maintained in the in-memory indexes. If there is any change in the

record versions, then the validation fails and T is restarted. Oth-

erwise, the validation return success and T is allowed to enter the

write phase and commit.

Validation with Write Locks. To avoid possible conflicts of

concurrent writes, LogBase embeds write locks into the valida-

tion phase of MVOCC. In particular, an update transaction first ex-

ecutes its read phase as per normal; however, at the beginning of

validation phase, the transaction manager will request write locks

over the data records for its intention writes. If all the locks can be

obtained and the validation succeeds, the transaction can execute its

write phase, and finally release the locks. Otherwise, if the transac-

tion manager fails to acquire all necessary write locks, it will still

hold the existing locks while re-executing the read phase and trying

to request again the locks that it could not get in the first time. This

means that the transaction keeps pre-claiming the locks until it ob-

tains all the necessary locks, so that it can enter the validation phase

and write phase safely. Deadlock can be avoided by enforcing each

transaction to request its locks in the same sequence, e.g., based on

the record key’s order, so that no transaction waits for locks on new

items while still locking other transactions’ desired items.

LogBase delegates the task of managing distributed locks to a

separate service, Zookeeper [2], which is widely used in distributed

storage systems, such as Cassandra [16] and HBase [1], for provid-

ing efficient distributed synchronization. In addition, LogBase

employs Zookeeper as a timestamp authority to establish a global

counter for generating transaction’s commit timestamps and there-

fore ensuring a global order for committed update transactions.

Snapshot Isolation in LogBase. The locking method during

validation ensures “first-committer-wins” rule [4]. Therefore, the

MVOCC in LogBase provides similar consistency and isolation

level to standard snapshot isolation [4].

GUARANTEE 2. Isolation. The hybrid scheme of multiversion

optimistic concurrency control (MVOCC) in LogBase guarantees

snapshot isolation.

Proof Sketch: The MVOCC in LogBase is able to eliminate incon-

sistent reads, including “Dirty read”, “Fuzzy read”, “Read skew”

and “Phantom”, and inconsistent writes, including “Dirty write”

and “Lost update”, while still suffers from “Write skew” anomaly,

thereby follows strictly the properties of Snapshot Isolation. De-

tailed proof could be found in [29]. ✷

The multiversion histories representing these phenomena when

executing transactions in LogBase are listed below. In our no-

tation, subscripts are used to denote different versions of a record,

e.g., xi refers to a version of x produced by transaction Ti. By con-

vention, T0 is an originator transaction which installs initial values

of all records in the system.

Dirty read: w1[x1]...r2[x0]...((c1 or a1) and (c2 or a2) in any order)

Fuzzy read: r1[x0]...w2[x2]...((c1 or a1) and (c2 or a2)– any order)

Read skew: r1[x0]...w2[x2]...w2[y2]...c2...r1[y0]...(c1 or a1)

Phantom: r1[P ]...w2[y2 in P ]...c2...r1[P ]...c1

Dirty write: w1[x1]...w2[x2]...((c1 or a1) and (c2 or a2) in any or-

der)

Lost update: r1[x0]...w2[x2]...w1[x1]...c1

Write skew: r1[x0]...r2[y0]...w1[y1]...w2[x2]...(c1 and c2)

�� ��

�����

���	�

Figure 5: Multiversion serialization graph for write skew.

Under dependency theory [13], an edge from transaction T1 to

transaction T2 is added into the multiversion serialization graph

(MVSG) to represent their data conflicts in three scenarios: (1)

ww-dependency where T1 installs a version of x and T2 installs a

later version of x, (2) wr-dependency where T1 installs a version of

x and T2 reads this (or a later) version of x, and (3) rw-dependency

where T1 reads a version of x and T2 installs a later version of x.

The MVSG of “Write skew”, as depicted in Figure 5, contains a

cycle between T1 and T2, showing that the MVOCC in LogBase

suffers from this anomaly. On the contrary, the MVSG of the

remaining phenomena (not shown) is acyclic, which means that

LogBase is able to prevent those inconsistent reads and incon-

sistent writes. Therefore, LogBase provides snapshot isolation

semantics for read-modify-write transactions.

Since snapshot isolation is a widely accepted correctness crite-

rion and adopted by many database systems such as PostgreSQL,

Oracle and SQL Server, we hypothesize that it is also useful for

large-scale storages such as LogBase. If strict serializability is re-

quired, read locks also need to be acquired by transactions [27],

but that will affect transaction performance as read locks block

the writes and void the advantage of snapshot isolation. Another

method which prevents cyclic “read-write” dependency at runtime

is conservative and may abort transactions unnecessarily [6].

3.7.2 Commit Protocol and Atomicity

GUARANTEE 3. Atomicity. The LogBase’s commit protocol

guarantees similar atomicity property to the WAL+Data approach.

The commit procedure for an update transaction T proceeds as fol-

lows. After executing T ’s read phase, the transaction manager runs

the validation algorithm to determine if T conflicts with other com-

mitted transactions or not. If the validation fails, then T is restarted.

Otherwise, the transaction manager gets a commit timestamp from

the timestamp authority and persists T ’s writes along with the com-

mit record into the log repository. In addition, relevant in-memory

index entries are updated accordingly to reflect the changes, and all

the write locks held by T are released.

Note that if the transaction manager fails to persist the final com-

mit record into the log repository (due to errors of the log), T is still

not completed as in the WAL+Data approach. Although uncommit-

ted writes could have been written to the log, they are not reflected

in the index and thus cannot be accessed by users. Scan opera-

tions also check and only return data whose corresponding commit

record exists. The uncommitted writes will be totally removed out
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of the log when the system performs log compaction. In summary,

all or none of the updates of a transaction are recorded into the sys-

tem, i.e., LogBase guarantees similar atomicity property to the

WAL+Data approach.

Since the number of distributed transactions has been reduced at

most by the use of smart data partitioning, the costly two-phase-

commit protocol only happens in the worst case. LogBase further

embeds an optimization technique that processes commit and log

records in batches, instead of individual log writes, in order to re-

duce the log persistence cost and therefore improve write through-

put. More details of the concurrency control and commit algorithm

are presented in our technical report [29].

3.8 Failures and Recovery
We have shown how LogBase ensures atomicity, consistency

and isolation property. In the following, we present the data dura-

bility property of LogBase, which guarantees all modifications

that have been confirmed with users are persistent in the storage.

GUARANTEE 4. Durability. The LogBase’s recovery proto-

col guarantees similar data durability property to the WAL+Data

approach.

When a crash occurs, the recovery is simple in LogBase since

it does not need to restore the data files as in the WAL+Data ap-

proach. Instead, the only instance in LogBase that needs to be

recovered is the in-memory indexes. As a straightforward way, the

restarted server can scan its entire log and rebuild the in-memory

indexes accordingly. However, this approach is costly and infeasi-

ble in practice. In order to reduce the cost of recovery, LogBase

performs checkpoint operation at regular times or when the number

of updates has reached a threshold.

In the checkpoint operation, tablet servers persist two important

information into the underlying DFS to enable fast recovery. First,

the current in-memory indexes are flushed into index files stored

in DFS for persistence. Second, necessary information, including

the current position in the log and the log sequence number (LSN)

of the latest write operation whose effects have been recorded in

the indexes and their persisted files in the first step, are written into

checkpoint blocks in DFS so that LogBase can use this position

as a consistent starting point for recovery.

With the checkpoint information, recovery from machine fail-

ures in LogBase can be performed fast since it only needs to do

an analysis pass from the last known consistent checkpoint towards

the end of the log where the failures occurred. At restart time the

tablet server can reload the indexes quickly from the persisted in-

dex files back into the memory. Then a redo strategy is employed to

bring the indexes up-to-date, i.e., the tablet server analyzes the log

entries from the recovery starting point and updates the in-memory

indexes accordingly. If the LSN of the log entry is greater than the

corresponding index entry in the index, then the pointer in the index

entry is updated to this log address. Performing redo is sufficient

for system recovery since LogBase adopts optimistic concurrency

control method, which defers all modifications until commit time.

All uncommitted log entries are ignored during the redo process

and will be discarded when the system performs log compaction.

In addition, in the event of repeated restart when a crash occurs

during the recovery, the system only needs to redo the process.

Note that if a tablet server fails to restart within a predefined pe-

riod after its crash, the master node will consider this as permanent

failures and re-assign the tablets maintained by this failed server

to other healthy tablet servers in the system. The log of the failed

servers, which is stored in the shared DFS, is scanned (from the

consistent recovery starting point) and split into separate files for

each tablet according to the tablet information in the log entries.

Then the healthy tablet servers scan these additional assigned log

files to perform the recovery process as discussed above.

4. PERFORMANCE EVALUATION

4.1 Experimental Setup
Experiments were performed on an in-house cluster including 24

machines, each with a quad core processor, 8 GB of physical mem-

ory, 500 GB of disk capacity and 1 gigabit ethernet. LogBase

is implemented in Java, inherits basic infrastructures from HBase

open source, and adds new features for log-structured storages in-

cluding access to log files, in-memory indexes, log compaction,

transaction management and system recovery. We compare the per-

formance of LogBase with HBase (version 0.90.3). All settings

of HBase are kept as its default configuration, and LogBase is

configured to similar settings. Particularly, both systems use 40%

of 4 GB heap memory for maintaining in-memory data structures

(the memtables in HBase and in-memory indexes in LogBase),

and 20% of heap memory for caching data blocks. Both systems

run on top of Hadoop platform (version 0.20.2) and store data into

HDFS. We keep all settings of HDFS as default, specifically the

chunk size is set to 64 MB and the replication factor is set to 3.

Each machine runs both a data node and a tablet server process.

The size of datasets is proportional to the system size, and for every

experiment we bulkload 1 million of 1KB records for each node

(the key of each record takes its value from 2 ∗ 109 which is the

max key in YCSB benchmark [10]). For scalability experiments,

we run multiple instances of benchmark clients, one for each node

in the system. Each benchmark client submits a constant workload

into the system, i.e., a completed operation will be immediately

followed by a new operation. The benchmark client reports the

system throughput and response time after finishing a workload of

5,000 operations. Before running every experiments, we execute

about 15,000 operations on each node to warm up the cache. The

default distribution for the selection of accessed keys follows Zip-

fian distribution with the co-efficient set to 1.0.

4.2 Micro­benchmarks
In this part, we study the performance of basic data operations

including sequential write, random read, sequential scan and range

scan of LogBase with a single tablet server storing data on a 3-

node HDFS. We shall study the performance of LogBase with

mixed workloads and bigger system sizes in the next section.

4.2.1 Write Performance
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Figure 6: Write performance.

Figure 6 plots the write

overhead of inserting 1 mil-

lion records into the sys-

tem. The results show

that LogBase outperforms

HBase by 50%. For each

insert operation, LogBase

flushes it to the log and then

update the memory index. It

thus only writes the data to

HDFS once. On the con-

trary, besides persisting the

log information (which includes the record itself) into HDFS,

HBase has to insert the record into a memtable, which will be writ-

ten to the data file in HDFS when the memtable is full (64 MB

as default setting). As a result, HBase incurs more write overhead

than LogBase.
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4.2.2 Random Access Performance

Figure 7 shows the performance of random access without any

cache used in both systems. The performance of LogBase is su-

perior to HBase, because LogBase maintains a dense in-memory

index and each record has a corresponding index entry containing

its location in the log. With this information, LogBase is able to

seek directly to the appropriate position in the log and retrieve the

record. In contrast, HBase stores separate sparse block indexes in

different data files, and hence after seeking to the corresponding

block in one data file, it loads that block into memory and scan

the block to get the record of interest. Further, the tablet server in

HBase has to check its multiple data files in order to get the proper

data record. Therefore, LogBase can efficiently support long tail

requests that access data not available in the cache.
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Figure 7: Random access

(without cache).
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Figure 8: Random access

(with cache).

As shown in Figure 8, the performance gap between LogBase

and HBase reduces when the block cache is adopted in the system.

The main reason is that, if the block containing the record to be

accessed is cached from previous requests, HBase does not need to

seek and read the entire block from HDFS. Instead, it only reads

the proper record from the cached block. Note that with larger data

domain size in distributed YCSB benchmark as will be discussed in

the next section, the cache has less effect and LogBase provides

better read latency for the support of in-memory indexes.

4.2.3 Scan Performance

Sequential scan. Figure 9 illustrates the result of sequential scan

the entire data. The performance of LogBase is slightly slower

than HBase. LogBase scans the log files instead of the data files

as HBase, and each log entry contains additional log information

besides the data record such as the table name and column group.

As such, a log file has larger size than a data file and LogBase has

to spend slightly more time to scan the log file.
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Figure 9: Sequential scan.
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Range scan. The downside of LogBase is that it is not as ef-

ficient as HBase when processing range scan query as shown in

Figure 10. In HBase, data in memtables are kept sorted by key

order and persisted into data files, and hence facilitates fast range

scan query. LogBase, on the contrary, sequentially writes data

into the log without any clustering property and might need to per-

form multiple random access to process a single range scan query.

However, it is notable that after the compaction process, data in the

log are well-clustered and LogBase is able to provide even better

range scan performance than HBase for its ability to load the cor-

rect block quickly with the support of dense in-memory indexes.

4.3 YCSB Benchmark
In the following, we examine the efficiency and scalability of

LogBase with mixed workloads and varying system sizes using

YCSB benchmark [10]. The system size scales from 3 to 24 nodes

and two write-heavy mix workloads (95% and 75% of update in the

workload) are tested.

In the loading phase of the benchmark, multiple instances of

clients are launched to insert benchmark data in parallel. Similar

to the result of sequential write in the micro-benchmark, Figure

11 shows that LogBase outperforms HBase when parallel loading

data and only spends about half of the time to insert data. This con-

firms that LogBase can provide highly sustained throughput for

write-heavy environments.
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Figure 11: Data loading

time.
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Figure 12: Mixed through-

put.

In the experiment phase, the benchmark client at each node will

continuously submit a mixed workload into the system. An oper-

ation in this workload either reads or updates a certain record that

has been inserted in the loading phase. The system overall through-

put with different mixes is plotted in Figure 12 and the correspond-

ing latency of update and read operations is shown in Figure 13

and Figure 14 respectively. The results show that both LogBase

and HBase achieve higher throughput with the mix that has higher

percentage of update since both systems perform write operations

more efficient than read operations.
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Figure 13: Update latency.
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In addition, for each mix, LogBase achieves higher throughput

than HBase for its ability to support both write and read efficiently.

In HBase, if the memtable is full and a minor compaction is re-

quired, the write has to wait until the memtable is persisted suc-

cessfully into HDFS before returning to users and hence the write

response time is delayed. LogBase provides better read latency

for the support of in-memory indexes as we have shown in the

micro-benchmarks. Although HBase employs cache to improve

read performance, the cache has less effect in this distributed ex-

periment since both data domain size and experimental data size

are large, which affects read performance.

Figure 13 and Figure 14 also illustrate the elastic scaling prop-

erty of LogBase where the system scales well with flat latency.

That is, the more workload can be served by adding more nodes

into the system.
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4.4 TPC­W Benchmark
In this experiment, we examine the performance of LogBase

when accessing multiple data records possibly from different ta-

bles within the transaction boundary. In particular, we experiment

LogBase with TPC-W benchmark which models a webshop ap-

plication workload. The benchmark characterizes three typical mixes

including browsing mix, shopping mix and ordering mix that have

5%, 20% and 50% update transactions respectively.
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tency.
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Figure 16: Transaction

throughput.

A read-only transaction performs one read operation to query the

details of a product in the item table while an update transaction

executes an order request which bundles one read operation to re-

trieve the user’s shopping cart and one write operation into

the orders table. Each node in the system is bulk loaded with 1

million products and customers before the experiment. We stress

test the system by using a client thread at each node to continuously

submit transactions to the system and then benchmark the transac-

tion throughput and latency.

As can be seen in Figure 15, under browsing mix and shop-

ping mix, LogBase scales well with nearly flat transaction la-

tency when the system size increases and as a result, the transaction

throughput (shown in Figure 16) scales linearly under these two

workloads. The low overhead of transaction commit is attributed

to this result since in these two workloads, most of the transactions

are read-only and always commit successfully without the need of

checking conflicts with other transactions for the use of MVOCC.

4.5 Checkpoint and Recovery
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Figure 18: Recovery time.

We now study the cost of checkpoint operation and the recov-

ery time in a system of 3 nodes. Figure 17 plots the time to write

a checkpoint and reload a checkpoint with varying thresholds at

which a tablet server performs the checkpoint operation. LogBase

takes less time to write a checkpoint (persist in-memory indexes)

than to reload a checkpoint (reload the persisted index files into

memory) because HDFS is optimized for high write throughput.

This is useful because checkpoint writing is to be performed more

frequently in LogBase, whereas checkpoint loading only happens

when the system recovers from tablet servers’ failures.

The time to recover varying amount of data maintained by a

failed tablet server is shown in Figure 18. The checkpoint was

taken at a threshold of 500 MB before we purposely killed the tablet

server when its amount of data reached 600 MB to 900 MB. The

results show that the recovery time in the system with checkpoint

is significantly faster than without checkpoint. In the former ap-

proach, the system only needs to reload the checkpoint and scan a

little additional log segments after the checkpoint time to rebuild

the in-memory indexes, whereas in the latter approach the system

has to scan the entire log segments.

LogBase does not support as efficient recovery time as RAM-

Cloud [22] because the two systems make different design choices

for targeting at different environments. In RAMCloud, both in-

dexes and data are entirely stored in memory while disks only serve

as data backup for recovery purpose. Therefore, RAMCloud back-

ups log segments of a tablet dispersedly to hundreds of machines

(and disks) in order to exploit parallelism for recovery. In contrast,

LogBase stores data on disks and hence cannot scatter log seg-

ments of a tablet to such scale in order to favor recovery as it would

adversely affect the write and read performance of the system.

4.6 Comparison with Log­structured Systems
As we have reviewed in Section 2, recent scalable log-structured

record-oriented systems (LRS) such as RAMCloud [22] and Hy-

der [5] target at different environments with LogBase. Specifi-

cally, RAMCloud stores its data and indexes entirely in memory

while Hyder scales its database in shared-flash environments with-

out data partitioning. Therefore, we cannot compare their perfor-

mance directly with LogBase. Here, for comparison purpose as

well as exploring the opportunity of scaling the indexes beyond

memory, we examine a system, referred to as LRS, which has a dis-

tributed architecture and data partitioning strategy similar to RAM-

Cloud and LogBase but stores data on disks and indexes them

with log-structured merge trees (LSM-tree) [21] to deal with sce-

narios where the memory of tablet servers is scarce. Particularly, in

this experiment we use LevelDB 4, a variant LSM-tree open source

by Google, with all settings kept as default.
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Figure 19: Sequential write.
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The results of comparison between LogBase and LRS in a sys-

tem of 3 nodes are shown in Figure 19, Figure 20, and Figure 21 re-

spectively for sequential write, random access, and sequential scan.

The comparison results with varying system sizes are also plotted

in Figure 22. Overall, the sequential write and random access per-

formance of LRS are only slightly lower than that of LogBase

because LevelDB is highly optimized for a variety of workloads

and can provide efficient write and read performance with moderate

4http://code.google.com/p/leveldb/
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write and read buffer (4 MB and 8 MB respectively in the experi-

ment). This leads us to conclude that it is possible for LogBase to

scale its indexes beyond memory (by the use of LSM-trees) without

paying much cost of reduction in the system throughput.

LogBase also achieves higher sequential scan performance than

LRS. Recall that for each scanned record, the system needs to check

its stored version against the current version maintained in the in-

dexes to determine whether the record contains the latest data. Such

cost of accessing indexes is attributed to the difference in the scan

performance of the two systems. Note that after log compaction,

historical versions of a record are clustered together and hence

the number of version checking with indexes is minimized, which

would reduce the scan performance gap.

5. CONCLUSION
We have introduced a scalable log-structured database system

called LogBase, which can be elastically deployed in the cloud

and provide sustained write throughput and effective recovery time

in the system. The in-memory indexes in LogBase support effi-

cient data retrieval from the log and are especially useful for han-

dling long tail requests. LogBase provides the widely accepted

snapshot isolation for bundled read-modify-write transactions. Ex-

tensive experiments on an in-house cluster verifies the efficiency

and scalability of the system. Our future works include the design

and implementation of efficient secondary indexes and query pro-

cessing for LogBase.
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