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Abstract—Modern IT systems often produce large volumes of 

event logs, and event pattern discovery is an important log 

management task. For this purpose, data mining methods have 

been suggested in many previous works. In this paper, we present 

the LogCluster algorithm which implements data clustering and 

line pattern mining for textual event logs. The paper also 

describes an open source implementation of LogCluster. 

Keywords—event log analysis; mining patterns from event logs; 
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I. INTRODUCTION 

During the last decade, data centers and computer networks 
have grown significantly in processing power, size, and 
complexity. As a result, organizations commonly have to 
handle many gigabytes of log data on a daily basis. For 
example, in our recent paper we have described a security log 
management system which receives nearly 100 million events 
each day [1]. In order to ease the management of log data, 
many research papers have suggested the use of data mining 
methods for discovering event patterns from event logs [2–20]. 
This knowledge can be employed for many different purposes 
like the development of event correlation rules [12–16], 
detection of system faults and network anomalies [6–9, 19], 
visualization of relevant event patterns [17, 18], identification 
and reporting of network traffic patterns [4, 20], and automated 
building of IDS alarm classifiers [5]. 

In order to analyze large amounts of textual log data 
without well-defined structure, several data mining methods 
have been proposed in the past which focus on the detection of 
line patterns from textual event logs. Suggested algorithms 
have been mostly based on data clustering approaches [2, 6, 7, 
8, 10, 11]. The algorithms assume that each event is described 
by a single line in the event log, and each line pattern 
represents a group of similar events.  

In this paper, we propose a novel data clustering algorithm 
called LogCluster which discovers both frequently occurring 
line patterns and outlier events from textual event logs. The 
remainder of this paper is organized as follows – section II 
provides an overview of related work, section III presents the 
LogCluster algorithm, section IV describes the LogCluster 
prototype implementation and experiments for evaluating its 
performance, and section V concludes the paper.  

II. RELATED WORK 

One of the earliest event log clustering algorithms is SLCT 
that is designed for mining line patterns and outlier events from 
textual event logs [2]. During the clustering process, SLCT 
assigns event log lines that fit the same pattern (e.g., Interface 
* down) to the same cluster, and all detected clusters are 
reported to the user as line patterns. For finding clusters in log 
data, the user has to supply the support threshold value s to 
SLCT which defines the minimum number of lines in each 
cluster. SLCT begins the clustering with a pass over the input 
data set, in order to identify frequent words which occur at 
least in s lines (word delimiter is customizable and defaults to 
whitespace). Also, each word is considered with its position in 
the line. For example, if s=2 and the data set contains the lines 

Interface eth0 down 

Interface eth1 down 

Interface eth2 up 

then words (Interface,1) and (down,3) occur in three and 
two lines, respectively, and are thus identified as frequent 
words. SLCT will then make another pass over the data set and 
create cluster candidates. When a line is processed during the 
data pass, all frequent words from the line are joined into a set 
which will act as a candidate for this line. After the data pass, 
candidates generated for at least s lines are reported as clusters 
together with their supports (occurrence times). Outliers are 
identified during an optional data pass and written to a user-
specified file. For example, if s=2 then two cluster candidates 
{(Interface,1), (down,3)} and {(Interface,1)} are detected with 
supports 2 and 1, respectively. Thus, {(Interface,1), (down,3)} 
is the only cluster and is reported to the user as a line pattern 
Interface * down (since there is no word associated with the 
second position, an asterisk is printed for denoting a wildcard). 
Reported cluster covers the first two lines, while the line 
Interface eth2 up is considered an outlier.  

SLCT has several shortcomings which have been pointed 
out in some recent works. Firstly, it is not able to detect 
wildcards after the last word in a line pattern [11]. For instance, 
if s=3 for three example lines above, the cluster {(Interface,1)} 
is reported to the user as a line pattern Interface, although most 
users would prefer the pattern Interface * *. Secondly, since 
word positions are encoded into words, the algorithm is 
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sensitive to shifts in word positions and delimiter noise [8]. For 
instance, the line Interface HQ Link down would not be 
assigned to the cluster Interface * down, but would rather 
generate a separate cluster candidate. Finally, low support 
thresholds can lead to overfitting when larger clusters are split 
and resulting patterns are too specific [2].  

Reidemeister, Jiang, Munawar and Ward [6, 7, 8] 
developed a methodology that addresses some of the above 
shortcomings. The methodology uses event log mining 
techniques for diagnosing recurrent faults in software systems. 
First, a modified version of SLCT is used for mining line 
patterns from labeled event logs. In order to handle clustering 
errors caused by shifts in word positions and delimiter noise, 
line patterns from SLCT are clustered with a single-linkage 
clustering algorithm which employs a variant of the 
Levenshtein distance function. After that, a common line 
pattern description is established for each cluster of line 
patterns. According to [8], single-linkage clustering and post-
processing its results add minimal runtime overhead to the 
clustering by SLCT. The final results are converted into bit 
vectors and used for building decision-tree classifiers, in order 
to identify recurrent faults in future event logs. 

Another clustering algorithm that mines line patterns from 
event logs is IPLoM by Makanju, Zincir-Heywood and Milios 
[10, 11]. Unlike SLCT, IPLoM is a hierarchical clustering 
algorithm which starts with the entire event log as a single 
partition, and splits partitions iteratively during three steps. 
Like SLCT, IPLoM considers words with their positions in 
event log lines, and is therefore sensitive to shifts in word 
positions. During the first step, the initial partition is split by 
assigning lines with the same number of words to the same 
partition. During the second step, each partition is divided 
further by identifying the word position with the least number 
of unique words, and splitting the partition by assigning lines 
with the same word to the same partition. During the third step, 
partitions are split based on associations between word pairs. 
At the final stage of the algorithm, a line pattern is derived for 
each partition. Due to its hierarchical nature, IPLoM does not 
need the support threshold, but takes several other parameters 
(such as partition support threshold and cluster goodness 
threshold) which impose fine-grained control over splitting of 
partitions [11]. As argued in [11], one advantage of IPLoM 
over SLCT is its ability to detect line patterns with wildcard 
tails (e.g., Interface * *), and the author has reported higher 
precision and recall for IPLoM. 

III. THE LOGCLUSTER ALGORITHM 

The LogCluster algorithm is designed for addressing the 
shortcomings of existing event log clustering algorithms that 
were discussed in the previous section. Let L = {l1,...,ln} be a 
textual event log which consists of n lines, where each line li 
(1 ≤ i ≤ n) is a complete representation of some event and i is a 

unique line identifier. We assume that each line li  L is a 
sequence of ki words: li = (wi,1,…,wi,ki). LogCluster takes the 

support threshold s (1 ≤ s ≤ n) as a user given input parameter 
and divides event log lines into clusters C1,…,Cm, so that there 
are at least s lines in each cluster Cj (i.e., |Cj| ≥ s) and O is the 

cluster of outliers: L = C1  ...  Cm  O, O  Cj = , 

1 ≤ j ≤ m. LogCluster views the log clustering problem as a 
pattern mining problem – each cluster Cj is uniquely identified 
by its line pattern pj which matches all lines in the cluster, and 
in order to detect clusters, LogCluster mines line patterns pj 
from the event log. The support of pattern pj and cluster Cj is 
defined as the number of lines in Cj: supp(pj) = supp(Cj) = |Cj|. 
Each pattern consists of words and wildcards, e.g., Interface 
*{1,3} down has words Interface and down, and wildcard 
*{1,3} that matches at least 1 and at most 3 words.  

In order to find patterns that have the support s or higher, 
LogCluster relies on the following observation – all words of 
such patterns must occur at least in s event log lines. Therefore, 
LogCluster begins its work with the identification of such 
words. However, unlike SLCT and IPLoM, LogCluster 
considers each word without its position in the event log line. 
Formally, let Iw be the set of identifiers of lines that contain the 

word w: Iw = {i | li  L, 1 ≤ i ≤ n, j wi,j = w, 1 ≤ j ≤ ki}. The 
word w is frequent if |Iw| ≥ s, and the set of all frequent words 
is denoted by F. According to [2, 3], large event logs often 
contain many millions of different words, while vast majority 
of them appear only few times in event logs. In order to take 
advantage of this property for reducing its memory footprint, 
LogCluster employs a sketch of h counters c0,…,ch-1. During a 
preliminary pass over event log L, each unique word of every 
event log line is hashed to an integer from 0 to h-1, and the 
corresponding sketch counter is incremented. Since the hashing 
function produces output values 0…h-1 with equal 
probabilities, each sketch counter reflects the sum of 
occurrence times of approximately d / h words, where d is the 
number of unique words in L. However, since most words 
appear in only few lines of L, most sketch counters will be 
smaller than support threshold s after the data pass. Thus, 
corresponding words cannot be frequent, and can be ignored 
during the following pass over L for finding frequent words. 

After frequent words have been identified, LogCluster 
makes another pass over event log L and creates cluster 
candidates. For each line in the event log, LogCluster extracts 
all frequent words from the line and arranges the words as a 
tuple, retaining their original order in the line. The tuple will 
serve as an identifier of the cluster candidate, and the line is 
assigned to this candidate. If the given candidate does not exist, 
it is initialized with the support counter set to 1, and its line 
pattern is created from the line. If the candidate exists, its 
support counter is incremented and its line pattern is adjusted 
to cover the current line. Note that LogCluster does not 
memorize individual lines assigned to a cluster candidate. 

For example, if the event log line is Interface DMZ-link 
down at node router2, and words Interface, down, at, and node 
are frequent, the line is assigned to the candidate identified by 
the tuple (Interface, down, at, node). If this candidate does not 
exist, it will be initialized by setting its line pattern to Interface 
*{1,1} down at node *{1,1} and its support counter to 1 
(wildcard *{1,1} matches any single word). If the next line 
which produces the same candidate identifier is Interface HQ 
link down at node router2, the candidate support counter is 
incremented to 2. Also, its line pattern is set to Interface *{1,2} 
down at node *{1,1}, making the pattern to match at least one 
but not more than two words between Interface and down. Fig. 
1 describes the candidate generation procedure in full details. 



Procedure: Generate_Candidates 

Input: event log L = {l1,…,ln} 

       set of frequent words F 

Output: set of cluster candidates X 

 

X :=  
for (id = 1; id <= n; ++id) do 

  tuple := () 

  vars := () 

  i := 0; v := 0 

  for each w in (wid,1,…,wid,kid) do 

    if (w  F) then 
      tuple[i] := w 

      vars[i] := v 

      ++i; v := 0 

    else 

      ++v 

    fi 

  done 

  vars[i] := v 

  k := # of elements in tuple 

  if (k > 0) then 

    if (Y  X, Y.tuple == tuple) then 
      ++Y.support 

      for (i := 0; i < k+1; ++i) do 

        if (Y.varmin[i] > vars[i]) then 

          Y.varmin[i] := vars[i] 

        fi 

        if (Y.varmax[i] < vars[i]) then 

          Y.varmax[i] := vars[i] 

        fi 

      done 

    else 

      initialize new candidate Y 

      Y.tuple := tuple 

      Y.support := 1 

      for (i := 0; i < k+1; ++i) do 

        Y.varmin[i] := vars[i] 

        Y.varmax[i] := vars[i] 

      done 

      X := X  { Y } 
    fi 

    Y.pattern = () 

    j: = 0 

    for (i := 0; i < k; ++i) do 

      if (Y.varmax[i] > 0) then 

        min := Y.varmin[i] 

        max := Y.varmax[i] 

        Y.pattern[j] := “*{min,max}” 

        ++j 

      fi 

      Y.pattern[j] := tuple[i] 

      ++j 

    done 

    if (Y.varmax[k] > 0) then 

      min := Y.varmin[k] 

      max := Y.varmax[k] 

      Y.pattern[j] := “*{min,max}” 

    fi 

  fi 

done 

return X  

Fig. 1. Candidate generation procedure of LogCluster. 

After the data pass for generating cluster candidates is 
complete, LogCluster drops all candidates with the support 
counter value smaller than support threshold s, and reports 
remaining candidates as clusters. For each cluster, its line 
pattern and support are reported, while outliers are identified 
during additional pass over event log L. Due to the nature of its 

frequent word detection and candidate generation procedures, 
LogCluster is not sensitive to shifts in word positions and is 
able to detect patterns with wildcard tails. 

When pattern mining is conducted with lower support 
threshold values, LogCluster is (similarly to SLCT) prone to 
overfitting – larger clusters might be split into smaller clusters 
with too specific line patterns. For example, the cluster with a 
pattern Interface *{1,1} down could be split into clusters with 
patterns Interface *{1,1} down, Interface eth1 down, and 
Interface eth2 down. Furthermore, meaningful generic patterns 
(e.g., Interface *{1,1} down) might disappear during cluster 
splitting. In order to address the overfitting problem, 
LogCluster employs two optional heuristics for increasing the 
support of more generic cluster candidates and for joining 
clusters. The first heuristic is called Aggregate_Supports and is 
applied after the candidate generation procedure has been 
completed, immediately before clusters are selected. The 
heuristic involves finding candidates with more specific line 
patterns for each candidate, and adding supports of such 
candidates to the support of the given candidate. For instance, 
if candidates User bob login from 10.1.1.1, User *{1,1} login 
from 10.1.1.1, and User *{1,1} login from *{1,1} have supports 
5, 10, and 100, respectively, the support of the candidate User 
*{1,1} login from *{1,1} will be increased to 115. In other 
words, this heuristic allows clusters to overlap.  

The second heuristic is called Join_Clusters and is applied 
after clusters have been selected from candidates. For each 

frequent word w  F, we define the set Cw as follows: Cw = 

{f | f  F, Iw ∩ If ≠ } (i.e., Cw contains all frequent words that 

co-occur with w in event log lines). If w’  Cw (i.e., w’ co-
occurs with w), we define dependency from w to w’ as 
dep(w, w’) = |Iw ∩ Iw’| / |Iw|. In other words, dep(w, w’) reflects 
how frequently w’ occurs in lines which contain w. Also, note 
that 0 < dep(w, w’) ≤ 1. If w1,…,wk are frequent words of a line 
pattern (i.e., the corresponding cluster is identified by the tuple 
(w1,…,wk)), the weight of the word wi in this pattern is 
calculated as follows: weight(wi) = ∑j

k
=1 dep(wj, wi) / k. Note 

that since dep(wi, wi) = 1, then 1/k ≤ weight(wi) ≤ 1. Intuitively, 
the weight of the word indicates how strongly correlated the 
word is with other words in the pattern. For example, suppose 
the line pattern is Daemon testd killed, and words Daemon and 
killed always appear together, while the word testd never 
occurs without Daemon and killed. Thus, weight(Daemon) and 
weight(killed) are both 1. Also, if only 2.5% of lines that 
contain both Daemon and killed also contain testd, then 
weight(testd) = (1 + 0.025 + 0.025) / 3 = 0.35. (We plan to 
implement more weight functions in the future versions of the 
LogCluster prototype.) 

The Join_Clusters heuristic takes the user supplied word 
weight threshold t as its input parameter (0 < t ≤ 1). For each 
cluster, a secondary identifier is created and initialized to the 
cluster’s regular identifier tuple. Also, words with weights 
smaller than t are identified in the cluster’s line pattern, and 
each such word is replaced with a special token in the 
secondary identifier. Finally, clusters with identical secondary 
identifiers are joined. When two or more clusters are joined, 
the support of the joint cluster is set to the sum of supports of 
original clusters, and the line pattern of the joint cluster is 
adjusted to represent the lines in all original clusters. 



Procedure: Join_Clusters 

Input: set of clusters C = {C1,…,Cp} 

       word weight threshold t 

       word weight function W() 

Output: set of clusters C’ = {C’1,…,C’m}, m ≤ p 

 

C’ :=  
for (j = 1; j <= p; ++j) do 

  tuple := Cj.tuple 

  k := # of elements in tuple 

  for (i := 0; i < k; ++i) do 

    if (W(tuple, i) < t) then 

      tuple[i] := TOKEN 

    fi 

  done 

  if (Y  C’, Y.tuple == tuple) then 
    Y.support := Y.support + Cj.support 

    for (i := 0; i < k+1; ++i) do 

      if (Y.varmin[i] > Cj.varmin[i]) then 

        Y.varmin[i] := Cj.varmin[i] 

      fi 

      if (Y.varmax[i] < Cj.varmax[i]) then 

        Y.varmax[i] := Cj.varmax[i] 

      fi 

    done 

  else 

    initialize new cluster Y 

    Y.tuple := tuple 

    Y.support := Cj.support 

    for (i := 0; i < k+1; ++i) do 

      Y.varmin[i] := Cj.varmin[i] 

      Y.varmax[i] := Cj.varmax[i] 

      if (i < k AND Y.tuple[i] == TOKEN) then 

        Y.wordlist[i] :=  
      fi 

    done 

    C’ := C’  { Y } 
  fi 

  Y.pattern := () 

  j: = 0 

  for (i := 0; i < k; ++i) do 

    if (Y.varmax[i] > 0) then 

      min := Y.varmin[i] 

      max := Y.varmax[i] 

      Y.pattern[j] := “*{min,max}” 

      ++j 

    fi 

    if (Y.tuple[i] == TOKEN) then 

      if (Cj.tuple[i]  Y.wordlist[i]) then 
        Y.wordlist[i] :=  

          Y.wordlist[i]  { Cj.tuple[i] } 
      fi 

      Y.pattern[j] := “( elements of 

          Y.wordlist[i] separated by | )” 

    else 

      Y.pattern[j] := Y.tuple[i] 

    fi 

    ++j 

  done 

  if (Y.varmax[k] > 0) then 

    min := Y.varmin[k] 

    max := Y.varmax[k] 

    Y.pattern[j] := “*{min,max}” 

  fi 

done 

return C’  

Fig. 2. Cluster joining heuristic of LogCluster. 

For example, if two clusters have patterns Interface *{1,1} 
down at node router1 and Interface *{2,3} down at node 

router2, and words router and router2 have insufficient 
weights, the clusters are joined into a new cluster with the line 
pattern Interface *{1,3} down at node (router1|router2). Fig. 2 
describes the details of the Join_Clusters heuristic. Since the 
line pattern of a joint cluster consists of strongly correlated 
words, it is less likely to suffer from overfitting. Also, words 
with insufficient weights are incorporated into the line pattern 
as lists of alternatives, representing the knowledge from 
original patterns in a compact way without data loss. Finally, 
joining clusters will reduce their number and will thus make 
cluster reviewing easier for the human expert.  

Fig. 3 summarizes all techniques presented in this section 
and outlines the LogCluster algorithm. In the next section, we 
describe the LogCluster implementation and its performance. 

IV. LOGCLUSTER IMPLEMENTATION AND PERFORMANCE 

For assessing the performance of the LogCluster algorithm, 
we have created its publicly available GNU GPLv2 licensed 
prototype implementation in Perl. The implementation is a 
UNIX command line tool that can be downloaded from 
http://ristov.github.io/logcluster. Apart from its clustering 
capabilities, the LogCluster tool supports a number of data 
preprocessing options which are summarized below. In order to 
focus on specific lines during pattern mining, a regular 
expression filter can be defined with the --lfilter command line 
option. For instance, with --lfilter=’sshd\[\d+\]:’ patterns are 
detected for sshd syslog messages (e.g., May 10 11:07:12 
myhost sshd[4711]: Connection from 10.1.1.1 port 5662).  

 

Procedure: LogCluster 

Input: event log L = {l1,…,ln} 

       support threshold s 

       word sketch size h  (optional) 

       word weight threshold t  (optional) 

       word weight function W()  (optional) 

       boolean for invoking Aggregate_Supports 

                   procedure A  (optional) 

       file of outliers ofile  (optional) 

Output: set of clusters C = {C1,…,Cm} 

        the cluster of outliers O (optional) 

 

1. if (defined(h)) then  

   make a pass over L and build the word sketch 

   of size h for filtering out infrequent words 

   at step 2 

2. make a pass over L and find the set of 

   frequent words:  F := {w | |Iw| ≥ s} 

3. if (defined(t)) then 

   make a pass over L and find dependencies for 

   frequent words: {dep(w, w’) | w  F, w’  Cw} 
4. make a pass over L and find the set of cluster 

   candidates X:  X := Generate_Candidates(L, F) 

5. if (defined(A) AND A == TRUE) then  

   invoke Aggregate_Supports() procedure 

6. find the set of clusters C 

   C := {Y  X | supp(Y) ≥ s} 
7. if (defined(t)) then 

   join clusters:  C := Join_Clusters(C, t, W) 

8. report line patterns and their supports 

   for clusters from set C 

9. if (defined(ofile)) then 

   make a pass over L and write outliers to ofile 

 

Fig. 3. The LogCluster algorithm. 



If a template string is given with the --template option, 
match variables set by the regular expression of the --lfilter 
option are substituted in the template string, and the resulting 
string replaces the original event log line during the mining. 
For example, with the use of --lfilter=’(sshd\[\d+\]: .+)’ 
and --template=’$1’ options, timestamps and hostnames are 
removed from sshd syslog messages before any other 
processing. If a regular expression is given with the --separator 
option, any sequence of characters that matches this expression 
is treated as a word delimiter (word delimiter defaults to 
whitespace). 

Existing line pattern mining tools treat words as atoms 
during the mining process, and make no attempt to discover 
potential structure inside words (the only exception is SLCT 
which includes a simple post-processing option for detecting 
constant heads and tails for wildcards). In order to address this 
shortcoming, LogCluster implements several options for 
masking specific word parts and creating word classes. If a 
word matches the regular expression given with the --wfilter 
option, a word class is created for the word by searching it for 
substrings that match another regular expression provided with 
the --wsearch option. All matching substrings are then replaced 
with the string specified with the --wreplace option. For 
example, with the use of --wfilter=’=’, --wsearch=’=.+’, 
and --wreplace=’=VALUE’ options, word classes are created 
for words which contain the equal sign (=) by replacing the 
characters after the equal sign with the string VALUE. Thus, 
for words pid=12763 and user=bob, classes pid=VALUE and 
user=VALUE are created. If a word is infrequent but its word 
class is frequent, the word class replaces the word during the 
mining process and will be treated like a frequent word. Since 
classes can represent many infrequent words, their presence in 
line patterns provides valuable information about regularities in 
word structure that would not be detected otherwise. 

For evaluating the performance of LogCluster and 
comparing it with other algorithms, we conducted a number of 
experiments with larger event logs. For the sake of fair 
comparison, we re-implemented the public C-based version of 
SLCT in Perl. Since the implementations of IPLoM and the 
algorithm by Reidemeister et al. are not publicly available, we 
were unable to study their source code for creating their exact 
prototypes. However, because the algorithm by Reidemeister et 
al. uses SLCT and has a similar time complexity (see section 
II), its runtimes are closely approximated by results for SLCT. 
During our experiments, we used 6 logs from a large institution 
of a national critical information infrastructure of an EU state. 
The logs cover 24 hour timespan (May 8, 2015), and originate 
from a wide range of sources, including database systems, web 
proxies, mail servers, firewalls, and network devices. We also 
used an availability monitoring system event log from the 
NATO CCD COE Locked Shields 2015 cyber defense exercise 
which covers the entire two-day exercise and contains Nagios 
events. During the experiments, we clustered each log file three 
times with support thresholds set to 1%, 0.5% and 0.1% of 
lines in the log. We also used the word sketch of 100,000 
counters (parameter h in Fig. 3) for both LogCluster and 
SLCT, and did not employ Aggregate_Supports and 
Join_Clusters heuristics. Therefore, both LogCluster and 
SLCT were configured to make three passes over the data set, 
in order to build the word sketch during the first pass, detect 
frequent words during the second pass, and generate cluster 
candidates during the third pass. All experiments were 
conducted on a Linux virtual server with Intel Xeon E5-2680 
CPU and 64GB of memory, and Table I outlines the results. 
Since LogCluster and SLCT implementations are both single-
threaded and their CPU utilization was 100% according to 
Linux time utility during all 21 experiments, each runtime in 
Table I closely matches the consumed CPU time. 

 

TABLE I.  PERFORMANCE OF LOGCLUSTER AND SLCT 

Row 

# 

Event log type Event log size 

in megabytes 

Event log 

size in lines 

Support 

threshold 

Number of 

clusters found 

by LogCluster 

LogCluster 

runtime in 

seconds 

Number of 

clusters found 

by SLCT 

SLCT 

runtime in 

seconds 

1 Authorization messages 3800.1 7,757,440 7,757 49 3146.42 89 1969.04 

2 Authorization messages 3800.1 7,757,440 38,787 32 3070.18 37 1892.41 

3 Authorization messages 3800.1 7,757,440 77,574 9 3050.20 15 1911.93 

4 UNIX daemon messages 740.2 5,778,847 5,778 150 692.08 158 479.90 

5 UNIX daemon messages 740.2 5,778,847 28,894 40 682.95 44 462.85 

6 UNIX daemon messages 740.2 5,778,847 57,788 12 667.82 16 470.48 

7 Application messages 9363.0 34,516,290 34,516 109 5225.32 114 3674.47 

8 Application messages 9363.0 34,516,290 172,581 16 4891.51 25 3559.36 

9 Application messages 9363.0 34,516,290 345,162 5 4765.09 8 3517.67 

10 Network device messages 4705.0 12,522,620 12,522 193 3181.97 195 2015.52 

11 Network device messages 4705.0 12,522,620 62,613 31 3083.16 33 2000.98 

12 Network device messages 4705.0 12,522,620 125,226 17 3080.66 19 1945.69 

13 Web proxy messages 16681.5 49,376,464 49,376 105 8487.37 111 5409.23 

14 Web proxy messages 16681.5 49,376,464 246,882 14 8128.34 14 5277.54 

15 Web proxy messages 16681.5 49,376,464 493,764 5 8081.30 5 5244.96 

16 Mail server messages 246.0 1,230,532 1,230 129 144.42 139 96.34 

17 Mail server messages 246.0 1,230,532 6,152 40 141.83 40 96.85 

18 Mail server messages 246.0 1,230,532 12,305 21 142.34 23 94.12 

19 Nagios messages 391.9 3,400,185 3,400 45 435.76 46 316.77 

20 Nagios messages 391.9 3,400,185 17,000 39 412.08 41 320.26 

21 Nagios messages 391.9 3,400,185 34,001 19 409.87 22 318.25 

 



May 8 *{1,1} myserver dhcpd: DHCPREQUEST for 

*{1,2} from *{1,2} via *{1,4} 

 

May 8 *{3,3} Note: no *{1,3} sensors 

 

May 8 *{3,3} RT_IPSEC: %USER-3-RT_IPSEC_REPLAY: 

Replay packet detected on IPSec tunnel on *{1,1} 

with tunnel ID *{1,1} From *{1,1} to *{1,1} ESP, 

SPI *{1,1} SEQ *{1,1} 

 

May 8 *{1,1} myserver httpd: client *{1,1} request 

GET *{1,1} HTTP/1.1 referer *{1,1} User-agent 

Mozilla/5.0 *{3,4} rv:37.0) Gecko/20100101 

Firefox/37.0 *{0,1} 

 

May 8 *{1,1} myserver httpd: client *{1,1} request 

GET *{1,1} HTTP/1.1 referer *{1,1} User-agent 

Mozilla/5.0 (Windows NT *{1,3} AppleWebKit/537.36 

(KHTML, like Gecko) Chrome/42.0.2311.135 

Safari/537.36 

 

Fig. 4. Sample clusters detected by LogCluster (for the reasons of privacy, 

sensitive data have been obfuscated). 

As results indicate, SLCT was 1.28–1.62 times faster than 
LogCluster. This is due to the simpler candidate generation 
procedure of SLCT – when processing individual event log 
lines, SLCT does not have to check the line patterns of 
candidates and adjust them if needed. However, both 
algorithms require considerable amount of time for clustering 
very large log files. For example, for processing the largest 
event log of 16.3GB (rows 13-15 in Table I), SLCT needed 
about 1.5 hours, while for LogCluster the runtime exceeded 2 
hours. In contrast, the C-based version of SLCT accomplishes 
the same three tasks in 18-19 minutes. Therefore, we expect a 
C implementation of LogCluster to be significantly faster. 

According to Table I, LogCluster finds less clusters than 
SLCT during all experiments (some clusters are depicted in 
Fig. 4). The reviewing of detected clusters revealed that unlike 
SLCT, LogCluster was able to discover a single cluster for 
lines where frequent words were separated with a variable 
number of infrequent words. For example, the first cluster in 
Fig. 4 properly captures all DHCP request events. In contrast, 
SLCT discovered two clusters May 8 * myserver dhcpd: 
DHCPREQUEST for * from * * via and May 8 * myserver 
dhcpd: DHCPREQUEST for * * from * * via which still do not 
cover all possible event formats. Also, the last two clusters in 
Fig. 4 represent all HTTP requests originating from the latest 
stable versions of Firefox browser on all OS platforms and 
Chrome browser on all Windows platforms, respectively (all 
OS platform strings are matched by *{3,4} for Firefox, while 
Windows NT *{1,3} matches all Windows platform strings for 
Chrome). Like in the previous case, SLCT was unable to 
discover equivalent two clusters that would concisely capture 
HTTP request events for these two browser types. 

When evaluating the Join_Clusters heuristic, we found that 
word weight thresholds (parameter t in Fig. 3) between 0.5 and 
0.8 produced the best joint clusters. Fig. 5 displays three 
sample joint clusters which were detected from the mail server 
and Nagios logs (rows 16-21 in Table I). Fig. 5 also illustrates 
data preprocessing capabilities of the LogCluster tool. For the 
mail server log, a word class is created for each word which 

contains punctuation marks, so that all sequences of non-
punctuation characters which are not followed by the equal 
sign (=) or opening square bracket ([) are replaced with a single 
X character. For the Nagios log, word classes are employed for 
masking blue team numbers in host names, and also, trailing 
timestamps are removed from each event log line with --lfilter 
and --template options. The first two clusters in Fig. 5 are both 
created by joining three clusters, while the last cluster is the 
union of twelve clusters which represent Nagios SSH service 
check events for 192 servers. 

 

logcluster.pl --support=12305 \ 

--input=mail.log --wfilter='[[:punct:]]' \ 

--wsearch='[^[:punct:]]++(?![[=])' \ 

--wreplace=X --wweight=0.75 

 

May 8 X:X:X (myserver1|myserver2|myserver3) 

sendmail[X]: STARTTLS=client, 

(relay=relayserver1,|relay=relayserver2, 

|relay=relayserver3,) version=TLSv1/SSLv3, 

(verify=FAIL,|verify=OK,) (cipher=DHE-RSA-AES256-

SHA,|cipher=AES128-SHA,|cipher=RC4-SHA,) 

(bits=256/256|bits=128/128) 

 

May 8 X:X:X (myserver1|myserver2|myserver3) 

sendmail[X]: X: from=<myrobot@mydomain>, size=X, 

class=0, nrcpts=1, msgid=<X.X@X.X>, 

bodytype=8BITMIME, proto=ESMTP, daemon=MTA, 

(relay=relayserver1|relay=relayserver2) 

([ipaddress1]|[ipaddress2]) 

 

 

logcluster.pl --support=3400 \ 

--input=ls15.log --separator='["|\s]+' \ 

--lfilter='^(.*)(?:\|"\d+"){2}' --template='$1' \ 

--wfilter='blue\d\d' --wsearch='blue\d\d' \ 

--wreplace='blueNN' --wweight=0.5 

 

(ws4-01.lab.blueNN.ex|ws4-04.lab.blueNN.ex 

|ws4-03.int.blueNN.ex|ws4-04.int.blueNN.ex 

|ws4-02.int.blueNN.ex|ws4-05.lab.blueNN.ex 

|ws4-05.int.blueNN.ex|dlna.lab.blueNN.ex 

|ws4-01.int.blueNN.ex|ws4-02.lab.blueNN.ex 

|ws4-03.lab.blueNN.ex|git.lab.blueNN.ex) 

(ssh|ssh.ipv6) OK SSH OK - 

(OpenSSH_6.6.1p1|OpenSSH_5.9p1|OpenSSH_6.6.1_hpn1

3v11) (Ubuntu-2ubuntu2|FreeBSD-20140420|Debian-

5ubuntu1|Debian-5ubuntu1.4) (protocol 2.0)  

 

Fig. 5. Sample joint clusters detected by LogCluster (for the reasons of 

privacy, sensitive data have been obfuscated). 

V. CONCLUSION 

In this paper, we have described the LogCluster algorithm 
for mining patterns from event logs. For future work, we plan 
to explore hierarchical event log clustering techniques. We also 
plan to implement the LogCluster algorithm in C, and use 
LogCluster for automated building of user behavior profiles. 
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