

LogCluster - A Data Clustering and Pattern Mining Algorithm for Event Logs

Risto Vaarandi and Mauno Pihelgas

© IFIP, 2015. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for

redistribution. The definitive version was published in Proceedings of the 11th International Conference on Network and Service

Management (CNSM 2015), ISBN: 978-3-901882-77-7, http://dl.ifip.org/db/conf/cnsm/cnsm2015/1570161213.pdf

LogCluster - A Data Clustering and Pattern Mining

Algorithm for Event Logs

Risto Vaarandi and Mauno Pihelgas

TUT Centre for Digital Forensics and Cyber Security

Tallinn University of Technology

Tallinn, Estonia

firstname.lastname@ttu.ee

Abstract—Modern IT systems often produce large volumes of

event logs, and event pattern discovery is an important log

management task. For this purpose, data mining methods have

been suggested in many previous works. In this paper, we present

the LogCluster algorithm which implements data clustering and

line pattern mining for textual event logs. The paper also

describes an open source implementation of LogCluster.

Keywords—event log analysis; mining patterns from event logs;

event log clustering; data clustering; data mining

I. INTRODUCTION

During the last decade, data centers and computer networks
have grown significantly in processing power, size, and
complexity. As a result, organizations commonly have to
handle many gigabytes of log data on a daily basis. For
example, in our recent paper we have described a security log
management system which receives nearly 100 million events
each day [1]. In order to ease the management of log data,
many research papers have suggested the use of data mining
methods for discovering event patterns from event logs [2–20].
This knowledge can be employed for many different purposes
like the development of event correlation rules [12–16],
detection of system faults and network anomalies [6–9, 19],
visualization of relevant event patterns [17, 18], identification
and reporting of network traffic patterns [4, 20], and automated
building of IDS alarm classifiers [5].

In order to analyze large amounts of textual log data
without well-defined structure, several data mining methods
have been proposed in the past which focus on the detection of
line patterns from textual event logs. Suggested algorithms
have been mostly based on data clustering approaches [2, 6, 7,
8, 10, 11]. The algorithms assume that each event is described
by a single line in the event log, and each line pattern
represents a group of similar events.

In this paper, we propose a novel data clustering algorithm
called LogCluster which discovers both frequently occurring
line patterns and outlier events from textual event logs. The
remainder of this paper is organized as follows – section II
provides an overview of related work, section III presents the
LogCluster algorithm, section IV describes the LogCluster
prototype implementation and experiments for evaluating its
performance, and section V concludes the paper.

II. RELATED WORK

One of the earliest event log clustering algorithms is SLCT
that is designed for mining line patterns and outlier events from
textual event logs [2]. During the clustering process, SLCT
assigns event log lines that fit the same pattern (e.g., Interface
* down) to the same cluster, and all detected clusters are
reported to the user as line patterns. For finding clusters in log
data, the user has to supply the support threshold value s to
SLCT which defines the minimum number of lines in each
cluster. SLCT begins the clustering with a pass over the input
data set, in order to identify frequent words which occur at
least in s lines (word delimiter is customizable and defaults to
whitespace). Also, each word is considered with its position in
the line. For example, if s=2 and the data set contains the lines

Interface eth0 down

Interface eth1 down

Interface eth2 up

then words (Interface,1) and (down,3) occur in three and
two lines, respectively, and are thus identified as frequent
words. SLCT will then make another pass over the data set and
create cluster candidates. When a line is processed during the
data pass, all frequent words from the line are joined into a set
which will act as a candidate for this line. After the data pass,
candidates generated for at least s lines are reported as clusters
together with their supports (occurrence times). Outliers are
identified during an optional data pass and written to a user-
specified file. For example, if s=2 then two cluster candidates
{(Interface,1), (down,3)} and {(Interface,1)} are detected with
supports 2 and 1, respectively. Thus, {(Interface,1), (down,3)}
is the only cluster and is reported to the user as a line pattern
Interface * down (since there is no word associated with the
second position, an asterisk is printed for denoting a wildcard).
Reported cluster covers the first two lines, while the line
Interface eth2 up is considered an outlier.

SLCT has several shortcomings which have been pointed
out in some recent works. Firstly, it is not able to detect
wildcards after the last word in a line pattern [11]. For instance,
if s=3 for three example lines above, the cluster {(Interface,1)}
is reported to the user as a line pattern Interface, although most
users would prefer the pattern Interface * *. Secondly, since
word positions are encoded into words, the algorithm is

This work has been supported by Estonian IT Academy (StudyITin.ee)
and SEB Estonia.

978-3-901882-77-7 © 2015 IFIP

sensitive to shifts in word positions and delimiter noise [8]. For
instance, the line Interface HQ Link down would not be
assigned to the cluster Interface * down, but would rather
generate a separate cluster candidate. Finally, low support
thresholds can lead to overfitting when larger clusters are split
and resulting patterns are too specific [2].

Reidemeister, Jiang, Munawar and Ward [6, 7, 8]
developed a methodology that addresses some of the above
shortcomings. The methodology uses event log mining
techniques for diagnosing recurrent faults in software systems.
First, a modified version of SLCT is used for mining line
patterns from labeled event logs. In order to handle clustering
errors caused by shifts in word positions and delimiter noise,
line patterns from SLCT are clustered with a single-linkage
clustering algorithm which employs a variant of the
Levenshtein distance function. After that, a common line
pattern description is established for each cluster of line
patterns. According to [8], single-linkage clustering and post-
processing its results add minimal runtime overhead to the
clustering by SLCT. The final results are converted into bit
vectors and used for building decision-tree classifiers, in order
to identify recurrent faults in future event logs.

Another clustering algorithm that mines line patterns from
event logs is IPLoM by Makanju, Zincir-Heywood and Milios
[10, 11]. Unlike SLCT, IPLoM is a hierarchical clustering
algorithm which starts with the entire event log as a single
partition, and splits partitions iteratively during three steps.
Like SLCT, IPLoM considers words with their positions in
event log lines, and is therefore sensitive to shifts in word
positions. During the first step, the initial partition is split by
assigning lines with the same number of words to the same
partition. During the second step, each partition is divided
further by identifying the word position with the least number
of unique words, and splitting the partition by assigning lines
with the same word to the same partition. During the third step,
partitions are split based on associations between word pairs.
At the final stage of the algorithm, a line pattern is derived for
each partition. Due to its hierarchical nature, IPLoM does not
need the support threshold, but takes several other parameters
(such as partition support threshold and cluster goodness
threshold) which impose fine-grained control over splitting of
partitions [11]. As argued in [11], one advantage of IPLoM
over SLCT is its ability to detect line patterns with wildcard
tails (e.g., Interface * *), and the author has reported higher
precision and recall for IPLoM.

III. THE LOGCLUSTER ALGORITHM

The LogCluster algorithm is designed for addressing the
shortcomings of existing event log clustering algorithms that
were discussed in the previous section. Let L = {l1,...,ln} be a
textual event log which consists of n lines, where each line li
(1 ≤ i ≤ n) is a complete representation of some event and i is a

unique line identifier. We assume that each line li L is a
sequence of ki words: li = (wi,1,…,wi,ki). LogCluster takes the

support threshold s (1 ≤ s ≤ n) as a user given input parameter
and divides event log lines into clusters C1,…,Cm, so that there
are at least s lines in each cluster Cj (i.e., |Cj| ≥ s) and O is the

cluster of outliers: L = C1 ... Cm O, O Cj = ,

1 ≤ j ≤ m. LogCluster views the log clustering problem as a
pattern mining problem – each cluster Cj is uniquely identified
by its line pattern pj which matches all lines in the cluster, and
in order to detect clusters, LogCluster mines line patterns pj
from the event log. The support of pattern pj and cluster Cj is
defined as the number of lines in Cj: supp(pj) = supp(Cj) = |Cj|.
Each pattern consists of words and wildcards, e.g., Interface
*{1,3} down has words Interface and down, and wildcard
*{1,3} that matches at least 1 and at most 3 words.

In order to find patterns that have the support s or higher,
LogCluster relies on the following observation – all words of
such patterns must occur at least in s event log lines. Therefore,
LogCluster begins its work with the identification of such
words. However, unlike SLCT and IPLoM, LogCluster
considers each word without its position in the event log line.
Formally, let Iw be the set of identifiers of lines that contain the

word w: Iw = {i | li L, 1 ≤ i ≤ n, j wi,j = w, 1 ≤ j ≤ ki}. The
word w is frequent if |Iw| ≥ s, and the set of all frequent words
is denoted by F. According to [2, 3], large event logs often
contain many millions of different words, while vast majority
of them appear only few times in event logs. In order to take
advantage of this property for reducing its memory footprint,
LogCluster employs a sketch of h counters c0,…,ch-1. During a
preliminary pass over event log L, each unique word of every
event log line is hashed to an integer from 0 to h-1, and the
corresponding sketch counter is incremented. Since the hashing
function produces output values 0…h-1 with equal
probabilities, each sketch counter reflects the sum of
occurrence times of approximately d / h words, where d is the
number of unique words in L. However, since most words
appear in only few lines of L, most sketch counters will be
smaller than support threshold s after the data pass. Thus,
corresponding words cannot be frequent, and can be ignored
during the following pass over L for finding frequent words.

After frequent words have been identified, LogCluster
makes another pass over event log L and creates cluster
candidates. For each line in the event log, LogCluster extracts
all frequent words from the line and arranges the words as a
tuple, retaining their original order in the line. The tuple will
serve as an identifier of the cluster candidate, and the line is
assigned to this candidate. If the given candidate does not exist,
it is initialized with the support counter set to 1, and its line
pattern is created from the line. If the candidate exists, its
support counter is incremented and its line pattern is adjusted
to cover the current line. Note that LogCluster does not
memorize individual lines assigned to a cluster candidate.

For example, if the event log line is Interface DMZ-link
down at node router2, and words Interface, down, at, and node
are frequent, the line is assigned to the candidate identified by
the tuple (Interface, down, at, node). If this candidate does not
exist, it will be initialized by setting its line pattern to Interface
*{1,1} down at node *{1,1} and its support counter to 1
(wildcard *{1,1} matches any single word). If the next line
which produces the same candidate identifier is Interface HQ
link down at node router2, the candidate support counter is
incremented to 2. Also, its line pattern is set to Interface *{1,2}
down at node *{1,1}, making the pattern to match at least one
but not more than two words between Interface and down. Fig.
1 describes the candidate generation procedure in full details.

Procedure: Generate_Candidates

Input: event log L = {l1,…,ln}

 set of frequent words F

Output: set of cluster candidates X

X :=
for (id = 1; id <= n; ++id) do

 tuple := ()

 vars := ()

 i := 0; v := 0

 for each w in (wid,1,…,wid,kid) do

 if (w F) then
 tuple[i] := w

 vars[i] := v

 ++i; v := 0

 else

 ++v

 fi

 done

 vars[i] := v

 k := # of elements in tuple

 if (k > 0) then

 if (Y X, Y.tuple == tuple) then
 ++Y.support

 for (i := 0; i < k+1; ++i) do

 if (Y.varmin[i] > vars[i]) then

 Y.varmin[i] := vars[i]

 fi

 if (Y.varmax[i] < vars[i]) then

 Y.varmax[i] := vars[i]

 fi

 done

 else

 initialize new candidate Y

 Y.tuple := tuple

 Y.support := 1

 for (i := 0; i < k+1; ++i) do

 Y.varmin[i] := vars[i]

 Y.varmax[i] := vars[i]

 done

 X := X { Y }
 fi

 Y.pattern = ()

 j: = 0

 for (i := 0; i < k; ++i) do

 if (Y.varmax[i] > 0) then

 min := Y.varmin[i]

 max := Y.varmax[i]

 Y.pattern[j] := “*{min,max}”

 ++j

 fi

 Y.pattern[j] := tuple[i]

 ++j

 done

 if (Y.varmax[k] > 0) then

 min := Y.varmin[k]

 max := Y.varmax[k]

 Y.pattern[j] := “*{min,max}”

 fi

 fi

done

return X

Fig. 1. Candidate generation procedure of LogCluster.

After the data pass for generating cluster candidates is
complete, LogCluster drops all candidates with the support
counter value smaller than support threshold s, and reports
remaining candidates as clusters. For each cluster, its line
pattern and support are reported, while outliers are identified
during additional pass over event log L. Due to the nature of its

frequent word detection and candidate generation procedures,
LogCluster is not sensitive to shifts in word positions and is
able to detect patterns with wildcard tails.

When pattern mining is conducted with lower support
threshold values, LogCluster is (similarly to SLCT) prone to
overfitting – larger clusters might be split into smaller clusters
with too specific line patterns. For example, the cluster with a
pattern Interface *{1,1} down could be split into clusters with
patterns Interface *{1,1} down, Interface eth1 down, and
Interface eth2 down. Furthermore, meaningful generic patterns
(e.g., Interface *{1,1} down) might disappear during cluster
splitting. In order to address the overfitting problem,
LogCluster employs two optional heuristics for increasing the
support of more generic cluster candidates and for joining
clusters. The first heuristic is called Aggregate_Supports and is
applied after the candidate generation procedure has been
completed, immediately before clusters are selected. The
heuristic involves finding candidates with more specific line
patterns for each candidate, and adding supports of such
candidates to the support of the given candidate. For instance,
if candidates User bob login from 10.1.1.1, User *{1,1} login
from 10.1.1.1, and User *{1,1} login from *{1,1} have supports
5, 10, and 100, respectively, the support of the candidate User
*{1,1} login from *{1,1} will be increased to 115. In other
words, this heuristic allows clusters to overlap.

The second heuristic is called Join_Clusters and is applied
after clusters have been selected from candidates. For each

frequent word w F, we define the set Cw as follows: Cw =

{f | f F, Iw ∩ If ≠ } (i.e., Cw contains all frequent words that

co-occur with w in event log lines). If w’ Cw (i.e., w’ co-
occurs with w), we define dependency from w to w’ as
dep(w, w’) = |Iw ∩ Iw’| / |Iw|. In other words, dep(w, w’) reflects
how frequently w’ occurs in lines which contain w. Also, note
that 0 < dep(w, w’) ≤ 1. If w1,…,wk are frequent words of a line
pattern (i.e., the corresponding cluster is identified by the tuple
(w1,…,wk)), the weight of the word wi in this pattern is
calculated as follows: weight(wi) = ∑j

k
=1 dep(wj, wi) / k. Note

that since dep(wi, wi) = 1, then 1/k ≤ weight(wi) ≤ 1. Intuitively,
the weight of the word indicates how strongly correlated the
word is with other words in the pattern. For example, suppose
the line pattern is Daemon testd killed, and words Daemon and
killed always appear together, while the word testd never
occurs without Daemon and killed. Thus, weight(Daemon) and
weight(killed) are both 1. Also, if only 2.5% of lines that
contain both Daemon and killed also contain testd, then
weight(testd) = (1 + 0.025 + 0.025) / 3 = 0.35. (We plan to
implement more weight functions in the future versions of the
LogCluster prototype.)

The Join_Clusters heuristic takes the user supplied word
weight threshold t as its input parameter (0 < t ≤ 1). For each
cluster, a secondary identifier is created and initialized to the
cluster’s regular identifier tuple. Also, words with weights
smaller than t are identified in the cluster’s line pattern, and
each such word is replaced with a special token in the
secondary identifier. Finally, clusters with identical secondary
identifiers are joined. When two or more clusters are joined,
the support of the joint cluster is set to the sum of supports of
original clusters, and the line pattern of the joint cluster is
adjusted to represent the lines in all original clusters.

Procedure: Join_Clusters

Input: set of clusters C = {C1,…,Cp}

 word weight threshold t

 word weight function W()

Output: set of clusters C’ = {C’1,…,C’m}, m ≤ p

C’ :=
for (j = 1; j <= p; ++j) do

 tuple := Cj.tuple

 k := # of elements in tuple

 for (i := 0; i < k; ++i) do

 if (W(tuple, i) < t) then

 tuple[i] := TOKEN

 fi

 done

 if (Y C’, Y.tuple == tuple) then
 Y.support := Y.support + Cj.support

 for (i := 0; i < k+1; ++i) do

 if (Y.varmin[i] > Cj.varmin[i]) then

 Y.varmin[i] := Cj.varmin[i]

 fi

 if (Y.varmax[i] < Cj.varmax[i]) then

 Y.varmax[i] := Cj.varmax[i]

 fi

 done

 else

 initialize new cluster Y

 Y.tuple := tuple

 Y.support := Cj.support

 for (i := 0; i < k+1; ++i) do

 Y.varmin[i] := Cj.varmin[i]

 Y.varmax[i] := Cj.varmax[i]

 if (i < k AND Y.tuple[i] == TOKEN) then

 Y.wordlist[i] :=
 fi

 done

 C’ := C’ { Y }
 fi

 Y.pattern := ()

 j: = 0

 for (i := 0; i < k; ++i) do

 if (Y.varmax[i] > 0) then

 min := Y.varmin[i]

 max := Y.varmax[i]

 Y.pattern[j] := “*{min,max}”

 ++j

 fi

 if (Y.tuple[i] == TOKEN) then

 if (Cj.tuple[i] Y.wordlist[i]) then
 Y.wordlist[i] :=

 Y.wordlist[i] { Cj.tuple[i] }
 fi

 Y.pattern[j] := “(elements of

 Y.wordlist[i] separated by |)”

 else

 Y.pattern[j] := Y.tuple[i]

 fi

 ++j

 done

 if (Y.varmax[k] > 0) then

 min := Y.varmin[k]

 max := Y.varmax[k]

 Y.pattern[j] := “*{min,max}”

 fi

done

return C’

Fig. 2. Cluster joining heuristic of LogCluster.

For example, if two clusters have patterns Interface *{1,1}
down at node router1 and Interface *{2,3} down at node

router2, and words router and router2 have insufficient
weights, the clusters are joined into a new cluster with the line
pattern Interface *{1,3} down at node (router1|router2). Fig. 2
describes the details of the Join_Clusters heuristic. Since the
line pattern of a joint cluster consists of strongly correlated
words, it is less likely to suffer from overfitting. Also, words
with insufficient weights are incorporated into the line pattern
as lists of alternatives, representing the knowledge from
original patterns in a compact way without data loss. Finally,
joining clusters will reduce their number and will thus make
cluster reviewing easier for the human expert.

Fig. 3 summarizes all techniques presented in this section
and outlines the LogCluster algorithm. In the next section, we
describe the LogCluster implementation and its performance.

IV. LOGCLUSTER IMPLEMENTATION AND PERFORMANCE

For assessing the performance of the LogCluster algorithm,
we have created its publicly available GNU GPLv2 licensed
prototype implementation in Perl. The implementation is a
UNIX command line tool that can be downloaded from
http://ristov.github.io/logcluster. Apart from its clustering
capabilities, the LogCluster tool supports a number of data
preprocessing options which are summarized below. In order to
focus on specific lines during pattern mining, a regular
expression filter can be defined with the --lfilter command line
option. For instance, with --lfilter=’sshd\[\d+\]:’ patterns are
detected for sshd syslog messages (e.g., May 10 11:07:12
myhost sshd[4711]: Connection from 10.1.1.1 port 5662).

Procedure: LogCluster

Input: event log L = {l1,…,ln}

 support threshold s

 word sketch size h (optional)

 word weight threshold t (optional)

 word weight function W() (optional)

 boolean for invoking Aggregate_Supports

 procedure A (optional)

 file of outliers ofile (optional)

Output: set of clusters C = {C1,…,Cm}

 the cluster of outliers O (optional)

1. if (defined(h)) then

 make a pass over L and build the word sketch

 of size h for filtering out infrequent words

 at step 2

2. make a pass over L and find the set of

 frequent words: F := {w | |Iw| ≥ s}

3. if (defined(t)) then

 make a pass over L and find dependencies for

 frequent words: {dep(w, w’) | w F, w’ Cw}
4. make a pass over L and find the set of cluster

 candidates X: X := Generate_Candidates(L, F)

5. if (defined(A) AND A == TRUE) then

 invoke Aggregate_Supports() procedure

6. find the set of clusters C

 C := {Y X | supp(Y) ≥ s}
7. if (defined(t)) then

 join clusters: C := Join_Clusters(C, t, W)

8. report line patterns and their supports

 for clusters from set C

9. if (defined(ofile)) then

 make a pass over L and write outliers to ofile

Fig. 3. The LogCluster algorithm.

If a template string is given with the --template option,
match variables set by the regular expression of the --lfilter
option are substituted in the template string, and the resulting
string replaces the original event log line during the mining.
For example, with the use of --lfilter=’(sshd\[\d+\]: .+)’
and --template=’$1’ options, timestamps and hostnames are
removed from sshd syslog messages before any other
processing. If a regular expression is given with the --separator
option, any sequence of characters that matches this expression
is treated as a word delimiter (word delimiter defaults to
whitespace).

Existing line pattern mining tools treat words as atoms
during the mining process, and make no attempt to discover
potential structure inside words (the only exception is SLCT
which includes a simple post-processing option for detecting
constant heads and tails for wildcards). In order to address this
shortcoming, LogCluster implements several options for
masking specific word parts and creating word classes. If a
word matches the regular expression given with the --wfilter
option, a word class is created for the word by searching it for
substrings that match another regular expression provided with
the --wsearch option. All matching substrings are then replaced
with the string specified with the --wreplace option. For
example, with the use of --wfilter=’=’, --wsearch=’=.+’,
and --wreplace=’=VALUE’ options, word classes are created
for words which contain the equal sign (=) by replacing the
characters after the equal sign with the string VALUE. Thus,
for words pid=12763 and user=bob, classes pid=VALUE and
user=VALUE are created. If a word is infrequent but its word
class is frequent, the word class replaces the word during the
mining process and will be treated like a frequent word. Since
classes can represent many infrequent words, their presence in
line patterns provides valuable information about regularities in
word structure that would not be detected otherwise.

For evaluating the performance of LogCluster and
comparing it with other algorithms, we conducted a number of
experiments with larger event logs. For the sake of fair
comparison, we re-implemented the public C-based version of
SLCT in Perl. Since the implementations of IPLoM and the
algorithm by Reidemeister et al. are not publicly available, we
were unable to study their source code for creating their exact
prototypes. However, because the algorithm by Reidemeister et
al. uses SLCT and has a similar time complexity (see section
II), its runtimes are closely approximated by results for SLCT.
During our experiments, we used 6 logs from a large institution
of a national critical information infrastructure of an EU state.
The logs cover 24 hour timespan (May 8, 2015), and originate
from a wide range of sources, including database systems, web
proxies, mail servers, firewalls, and network devices. We also
used an availability monitoring system event log from the
NATO CCD COE Locked Shields 2015 cyber defense exercise
which covers the entire two-day exercise and contains Nagios
events. During the experiments, we clustered each log file three
times with support thresholds set to 1%, 0.5% and 0.1% of
lines in the log. We also used the word sketch of 100,000
counters (parameter h in Fig. 3) for both LogCluster and
SLCT, and did not employ Aggregate_Supports and
Join_Clusters heuristics. Therefore, both LogCluster and
SLCT were configured to make three passes over the data set,
in order to build the word sketch during the first pass, detect
frequent words during the second pass, and generate cluster
candidates during the third pass. All experiments were
conducted on a Linux virtual server with Intel Xeon E5-2680
CPU and 64GB of memory, and Table I outlines the results.
Since LogCluster and SLCT implementations are both single-
threaded and their CPU utilization was 100% according to
Linux time utility during all 21 experiments, each runtime in
Table I closely matches the consumed CPU time.

TABLE I. PERFORMANCE OF LOGCLUSTER AND SLCT

Row

Event log type Event log size

in megabytes

Event log

size in lines

Support

threshold

Number of

clusters found

by LogCluster

LogCluster

runtime in

seconds

Number of

clusters found

by SLCT

SLCT

runtime in

seconds

1 Authorization messages 3800.1 7,757,440 7,757 49 3146.42 89 1969.04

2 Authorization messages 3800.1 7,757,440 38,787 32 3070.18 37 1892.41

3 Authorization messages 3800.1 7,757,440 77,574 9 3050.20 15 1911.93

4 UNIX daemon messages 740.2 5,778,847 5,778 150 692.08 158 479.90

5 UNIX daemon messages 740.2 5,778,847 28,894 40 682.95 44 462.85

6 UNIX daemon messages 740.2 5,778,847 57,788 12 667.82 16 470.48

7 Application messages 9363.0 34,516,290 34,516 109 5225.32 114 3674.47

8 Application messages 9363.0 34,516,290 172,581 16 4891.51 25 3559.36

9 Application messages 9363.0 34,516,290 345,162 5 4765.09 8 3517.67

10 Network device messages 4705.0 12,522,620 12,522 193 3181.97 195 2015.52

11 Network device messages 4705.0 12,522,620 62,613 31 3083.16 33 2000.98

12 Network device messages 4705.0 12,522,620 125,226 17 3080.66 19 1945.69

13 Web proxy messages 16681.5 49,376,464 49,376 105 8487.37 111 5409.23

14 Web proxy messages 16681.5 49,376,464 246,882 14 8128.34 14 5277.54

15 Web proxy messages 16681.5 49,376,464 493,764 5 8081.30 5 5244.96

16 Mail server messages 246.0 1,230,532 1,230 129 144.42 139 96.34

17 Mail server messages 246.0 1,230,532 6,152 40 141.83 40 96.85

18 Mail server messages 246.0 1,230,532 12,305 21 142.34 23 94.12

19 Nagios messages 391.9 3,400,185 3,400 45 435.76 46 316.77

20 Nagios messages 391.9 3,400,185 17,000 39 412.08 41 320.26

21 Nagios messages 391.9 3,400,185 34,001 19 409.87 22 318.25

May 8 *{1,1} myserver dhcpd: DHCPREQUEST for

*{1,2} from *{1,2} via *{1,4}

May 8 *{3,3} Note: no *{1,3} sensors

May 8 *{3,3} RT_IPSEC: %USER-3-RT_IPSEC_REPLAY:

Replay packet detected on IPSec tunnel on *{1,1}

with tunnel ID *{1,1} From *{1,1} to *{1,1} ESP,

SPI *{1,1} SEQ *{1,1}

May 8 *{1,1} myserver httpd: client *{1,1} request

GET *{1,1} HTTP/1.1 referer *{1,1} User-agent

Mozilla/5.0 *{3,4} rv:37.0) Gecko/20100101

Firefox/37.0 *{0,1}

May 8 *{1,1} myserver httpd: client *{1,1} request

GET *{1,1} HTTP/1.1 referer *{1,1} User-agent

Mozilla/5.0 (Windows NT *{1,3} AppleWebKit/537.36

(KHTML, like Gecko) Chrome/42.0.2311.135

Safari/537.36

Fig. 4. Sample clusters detected by LogCluster (for the reasons of privacy,

sensitive data have been obfuscated).

As results indicate, SLCT was 1.28–1.62 times faster than
LogCluster. This is due to the simpler candidate generation
procedure of SLCT – when processing individual event log
lines, SLCT does not have to check the line patterns of
candidates and adjust them if needed. However, both
algorithms require considerable amount of time for clustering
very large log files. For example, for processing the largest
event log of 16.3GB (rows 13-15 in Table I), SLCT needed
about 1.5 hours, while for LogCluster the runtime exceeded 2
hours. In contrast, the C-based version of SLCT accomplishes
the same three tasks in 18-19 minutes. Therefore, we expect a
C implementation of LogCluster to be significantly faster.

According to Table I, LogCluster finds less clusters than
SLCT during all experiments (some clusters are depicted in
Fig. 4). The reviewing of detected clusters revealed that unlike
SLCT, LogCluster was able to discover a single cluster for
lines where frequent words were separated with a variable
number of infrequent words. For example, the first cluster in
Fig. 4 properly captures all DHCP request events. In contrast,
SLCT discovered two clusters May 8 * myserver dhcpd:
DHCPREQUEST for * from * * via and May 8 * myserver
dhcpd: DHCPREQUEST for * * from * * via which still do not
cover all possible event formats. Also, the last two clusters in
Fig. 4 represent all HTTP requests originating from the latest
stable versions of Firefox browser on all OS platforms and
Chrome browser on all Windows platforms, respectively (all
OS platform strings are matched by *{3,4} for Firefox, while
Windows NT *{1,3} matches all Windows platform strings for
Chrome). Like in the previous case, SLCT was unable to
discover equivalent two clusters that would concisely capture
HTTP request events for these two browser types.

When evaluating the Join_Clusters heuristic, we found that
word weight thresholds (parameter t in Fig. 3) between 0.5 and
0.8 produced the best joint clusters. Fig. 5 displays three
sample joint clusters which were detected from the mail server
and Nagios logs (rows 16-21 in Table I). Fig. 5 also illustrates
data preprocessing capabilities of the LogCluster tool. For the
mail server log, a word class is created for each word which

contains punctuation marks, so that all sequences of non-
punctuation characters which are not followed by the equal
sign (=) or opening square bracket ([) are replaced with a single
X character. For the Nagios log, word classes are employed for
masking blue team numbers in host names, and also, trailing
timestamps are removed from each event log line with --lfilter
and --template options. The first two clusters in Fig. 5 are both
created by joining three clusters, while the last cluster is the
union of twelve clusters which represent Nagios SSH service
check events for 192 servers.

logcluster.pl --support=12305 \

--input=mail.log --wfilter='[[:punct:]]' \

--wsearch='[^[:punct:]]++(?![[=])' \

--wreplace=X --wweight=0.75

May 8 X:X:X (myserver1|myserver2|myserver3)

sendmail[X]: STARTTLS=client,

(relay=relayserver1,|relay=relayserver2,

|relay=relayserver3,) version=TLSv1/SSLv3,

(verify=FAIL,|verify=OK,) (cipher=DHE-RSA-AES256-

SHA,|cipher=AES128-SHA,|cipher=RC4-SHA,)

(bits=256/256|bits=128/128)

May 8 X:X:X (myserver1|myserver2|myserver3)

sendmail[X]: X: from=<myrobot@mydomain>, size=X,

class=0, nrcpts=1, msgid=<X.X@X.X>,

bodytype=8BITMIME, proto=ESMTP, daemon=MTA,

(relay=relayserver1|relay=relayserver2)

([ipaddress1]|[ipaddress2])

logcluster.pl --support=3400 \

--input=ls15.log --separator='["|\s]+' \

--lfilter='^(.*)(?:\|"\d+"){2}' --template='$1' \

--wfilter='blue\d\d' --wsearch='blue\d\d' \

--wreplace='blueNN' --wweight=0.5

(ws4-01.lab.blueNN.ex|ws4-04.lab.blueNN.ex

|ws4-03.int.blueNN.ex|ws4-04.int.blueNN.ex

|ws4-02.int.blueNN.ex|ws4-05.lab.blueNN.ex

|ws4-05.int.blueNN.ex|dlna.lab.blueNN.ex

|ws4-01.int.blueNN.ex|ws4-02.lab.blueNN.ex

|ws4-03.lab.blueNN.ex|git.lab.blueNN.ex)

(ssh|ssh.ipv6) OK SSH OK -

(OpenSSH_6.6.1p1|OpenSSH_5.9p1|OpenSSH_6.6.1_hpn1

3v11) (Ubuntu-2ubuntu2|FreeBSD-20140420|Debian-

5ubuntu1|Debian-5ubuntu1.4) (protocol 2.0)

Fig. 5. Sample joint clusters detected by LogCluster (for the reasons of

privacy, sensitive data have been obfuscated).

V. CONCLUSION

In this paper, we have described the LogCluster algorithm
for mining patterns from event logs. For future work, we plan
to explore hierarchical event log clustering techniques. We also
plan to implement the LogCluster algorithm in C, and use
LogCluster for automated building of user behavior profiles.

ACKNOWLEDGMENT

The authors thank NATO CCD COE for making Locked
Shields 2015 event logs available for this research. The authors
also thank Mr. Kaido Raiend, Mr. Ants Leitmäe, Mr. Andrus
Tamm, Dr. Paul Leis and Mr. Ain Rasva for their support.

REFERENCES

[1] Risto Vaarandi and Mauno Pihelgas, “Using Security Logs for
Collecting and Reporting Technical Security Metrics,” in Proceedings of
the 2014 IEEE Military Communications Conference, pp. 294-299.

[2] Risto Vaarandi, “A Data Clustering Algorithm for Mining Patterns From
Event Logs,” in Proceedings of the 2003 IEEE Workshop on IP
Operations and Management, pp. 119-126.

[3] Risto Vaarandi, “A Breadth-First Algorithm for Mining Frequent
Patterns from Event Logs,” in Proceedings of the 2004 IFIP
International Conference on Intelligence in Communication Systems,
LNCS Vol. 3283, Springer, pp. 293-308.

[4] Risto Vaarandi, “Mining Event Logs with SLCT and LogHound,” in
Proceedings of the 2008 IEEE/IFIP Network Operations and
Management Symposium, pp. 1071-1074.

[5] Risto Vaarandi and Kārlis Podiņš, “Network IDS Alert Classification
with Frequent Itemset Mining and Data Clustering,” in Proceedings of
the 2010 International Conference on Network and Service
Management, pp. 451-456.

[6] Thomas Reidemeister, Mohammad A. Munawar and Paul A.S. Ward,
“Identifying Symptoms of Recurrent Faults in Log Files of Distributed
Information Systems,” in Proceedings of the 2010 IEEE/IFIP Network
Operations and Management Symposium, pp. 187-194.

[7] Thomas Reidemeister, Miao Jiang and Paul A.S. Ward, “Mining
Unstructured Log Files for Recurrent Fault Diagnosis,” in Proceedings
of the 2011 IEEE/IFIP International Symposium on Integrated Network
Management, pp. 377-384.

[8] Thomas Reidemeister, “Fault Diagnosis in Enterprise Software Systems
Using Discrete Monitoring Data,” PhD Thesis, University of Waterloo,
2012.

[9] Wei Xu, Ling Huang, Armando Fox, David Patterson and Michael
Jordan, “Mining Console Logs for Large-Scale System Problem
Detection,” in Proceedings of the 3rd Workshop on Tackling Computer
Systems Problems with Machine Learning Techniques, 2008.

[10] Adetokunbo Makanju, A. Nur Zincir-Heywood and Evangelos E.
Milios, “Clustering Event Logs using Iterative Partitioning,” in
Proceedings of the 2009 ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1255-1264.

[11] Adetokunbo Makanju, “Exploring Event Log Analysis With Minimum
Apriori Information,” PhD Thesis, University of Dalhousie, 2012.

[12] Mika Klemettinen, “A Knowledge Discovery Methodology for
Telecommunication Network Alarm Databases,” PhD thesis, University
of Helsinki, 1999.

[13] Qingguo Zheng, Ke Xu, Weifeng Lv and Shilong Ma, “Intelligent
Search of Correlated Alarms from Database Containing Noise Data,” in
Proceedings of the 2002 IEEE/IFIP Network Operations and
Management Symposium, pp. 405-419.

[14] Sheng Ma and Joseph L. Hellerstein, “Mining Partially Periodic Event
Patterns with Unknown Periods,” in Proceedings of the 17th
International Conference on Data Engineering, pp. 205-214, 2001.

[15] James J. Treinen and Ramakrishna Thurimella, “A Framework for the
Application of Association Rule Mining in Large Intrusion Detection
Infrastructures,” in Proceedings of the 2006 Symposium on Recent
Advances in Intrusion Detection, LNCS Vol. 4219, Springer, pp. 1-18.

[16] Chris Clifton and Gary Gengo, “Developing Custom Intrusion Detection
Filters Using Data Mining,” in Proceedings of the 2000 IEEE Military
Communications Conference, pp. 440-443.

[17] Jon Stearley, “Towards Informatic Analysis of Syslogs,” in Proceedings
of the 2004 IEEE International Conference on Cluster Computing,
pp. 309–318.

[18] Adetokunbo Makanju, Stephen Brooks, A. Nur Zincir-Heywood and
Evangelos E. Milios, “LogView: Visualizing Event Log Clusters,” in
Proceedings of the 6th Annual Conference on Privacy, Security and
Trust, pp. 99-108, 2008.

[19] Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner and Kavè
Salamatian, “Anomaly Extraction in Backbone Networks using
Association Rules,” in Proceedings of the 2009 ACM SIGCOMM
Internet Measurement Conference, pp. 28-34.

[20] Eduard Glatz, Stelios Mavromatidis, Bernhard Ager and Xenofontas
Dimitropoulos, “Visualizing big network traffic data using frequent
pattern mining and hypergraphs,” Computing Vol. 96(1), Springer, pp.
27-38, 2014.

