
LogGOPSim – Simulating Large-Scale

Applications in the LogGOPS Model

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine

Presented at the Workshop on Large-Scale System and

Application Performance (LSAP’10) on June 21st 2010

Motivation – Why Simulation?

• Analytic methods can quickly become too
complex and infeasible

• White-box analysis of application
performance (count events, trace backwards)

• Understand complex phenomena in parallel
programs (e.g., chained collectives)

• Save on expensive experiments or predict
future systems (e.g., Blue Waters)

Why LogP, LogGP, LogGPS?
• The LogGPS model is well established

• “S” introduces eager/rendezvous protocols

And now LogGOPS?
• CPU overhead “o” is constant in the LogGPS model

(independent of message size)

• Netgauge “loggp” benchmark results:

• O = time per byte!

• Systems:

– Odin @ IU (InfiniBand)

– Big Red @ IU (Myrinet)

– BlueGene/P @ ANL

– Jaguar @ ORNL (Sea Star)

Overhead = o+s*O
6.2ns

2.5 ns

1.4 ns

0.6 ns

O

How to model message passing?
• Must support MPI but should be independent

• Used Global Operation Assembly Language
rank 0 {

l1: calc 100 cpu 0

l2: send 10b to 1 tag 0 cpu 0 nic 0

l3: recv 10b from 1 tag 0 cpu 0 nic 0

l2 requires l1

}

• Can easily be generated manually, by scripts, or from

any MPI trace

• Is compiled into an efficient binary format for simulation

Design for Speed and Scalability
• Support MPI message semantics

– Matching: source, tag + any_source, any_tag

– Nonblocking send/recv (keyword irequires)

• Simulate eager/rendezvous protocols

– eager: recv depends on send only

– rndvz: send depends on recv and vice versa

• Semantics require two queues per process:

– Unexpected queue (UQ): received eager msgs

– Receive queue (RQ): posted receives

• Each proc has virtual time for o and g

– Supports multiple CPUs and multiple NICs per process

Simulator Core Control Flow
• Single queue design

– Fast priority queue

1. Find executable ops

– send, recv, msg, or loclop

2. Insert with current time

3. Fetch (globally) next op

– check if it can be executed

– match send/recv

– re-insert if o, g not available

4. Lather, rinse, repeat

Limitations and Assumptions
• LogGOPSim ignores congestion

– assumed full bisection bandwidth by definition

– High effective bisection topologies (e.g., Fat Tree,

Clos, Kautz) are accurately simulated

• Often have >70% effective bisection bandwidth

– Congestion simulation is implemented

• comes at the cost of speed

• Messages are delayed until o, g are available
at receiver (this is undefined in LogGPS)

• I/O is not considered

Verification – Linear Scatter

• LogGOPS makes verification simple

Verification - Gather

Verification – Binomial Tree

Verification - Dissemination

Experimental Evaluation
• Odin:

• Big Red:

1 B Messages 128 kiB Messages

<1% avg. error

<16% error (congestion)

Application Simulation Accuracy
• Sweep3D and MILC weak scaling on Odin

• <2% average error

6.4% comm.

13.4% comm.

14.5% comm.

18.3% comm.

Simulation Speed

• Tested on 1.15 GHz Opteron (slow!)
– 1024 – 8 million processes

– Binomial (msgs)

– Dissemination (msgs)

• > 1 million events per
second

– Can demo it on my laptop

later

Application Trace Extrapolation

• Supports simple extrapolation scheme:

Application Simulation Performance

• 37.7 s Sweep3D extrapolated from 40-28k CPUs

– 0.4 Mio msgs → 313 Mio msgs

40 CPUs – 2.43 s

4k CPUs – 10 min

28k CPUs – 9.7h (swap)

Main memory is an issue!
hits swap at 8k CPUs

Some More Use-Cases

1. Estimating an application’s potential for
overlapping communication/computation

2. Estimating the effect of a faster/slower
network on application performance

3. Demonstrating the effects of pipelining in
current benchmarks for collectives

4. Estimating the effect of Operating System
Noise at very large scale

Application Overlap Potential

• Choose overhead appropriately:

– full overlap:

• o=0

• O=0

– no overlap:

• o=g

• O=G

Influence of Network Parameters

• Adjust L (latency) and G (bandwidth)

Both are much more

sensitive to bandwidth

than to latency!

Explaining Benchmark Problems

• Collective operations are often

benchmarked in loops:
start= time();

for(int i=0; i<samples; ++i) MPI_Bcast(…);
end=time();

return (end-start)/samples

• This leads to pipelining and thus wrong

benchmark results!

Pipelining? What?
Binomial tree with 8 processes and 5 bcasts:

start

end

Linear broadcast algorithm!

This bcast must be really fast, our benchmark says so!

Root-rotation! The solution!

• Do the following (e.g., IMB)

start= time();

for(int i=0; i<samples; ++i)

MPI_Bcast(…,root= i % np, …);
end=time();

return (end-start)/samples

• Let’s simulate …

D’oh!

• But the linear bcast will work for sure!

Well … not so much.

But how bad is it really? Simulation can show it!

Absolute Pipelining Error
• Error grows with the number of processes!

• Details in:

Hoefler et al.: “LogGP in Theory and Practice”

In: Journal of Simulation

Modelling Practice and

Theory (SIMPAT).

Vol 17, Nr. 9

Assessing the Influence of OS Noise

• OS Noise or Jitter is “the influence of the
OS on large parallel applications”

• The noise-bottleneck limits scaling

• Consequences are non-trivial:

Influence on Collectives

Noise on Jaguar
Netgauge noise trace + LogGOPSim =

Allreduce on Jaguar
LogGOPSim supports noise

injection.

OS Noise and full Applications

• AMG2006 slowed down by >4% on 8k CPUs

• Details in:

Hoefler et al. “Characterizing
the Influence of System Noise

to Large-Scale Applications

by Simulation” Accepted at
IEEE/ACM Supercomputing

(SC10). Best Paper finalist.

Summary and Outlook
• LogGOPSim is a fast and scalable message

passing simulator
– supports MPI semantics but is not limited

• Simulates single collectives up to 16 Mio and
application kernels up to 32k processes
– >1 Mio events/sec

• We showed different interesting use-cases

• Future work:
– Experience with congestion models

– Parallelization (?)

Thanks and try it!!!
• LogGOPSim (the simulation framework)

http://www.unixer.de/LogGOPSim

• Netgauge (measure LogGP parameters + OS Noise)

http://www.unixer.de/Netgauge

Questions?

http://www.unixer.de/LogGOPSim
http://www.unixer.de/Netgauge

