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Abs t rac t 
Feature structures play an important role in 
linguistic knowledge representation in compu-
tational linguistics. Given the proliferation of 
different feature structure formalisms it is use­
ful to have a "common language" to express 
them in. This paper shows how a variety of fea­
ture structures and constraints on them can be 
expressed in predicate logic (except for the use 
of circumscription for non-monotonic devices), 
including sorted feature values, subsumption 
constraints and the non-monotonic ANY val­
ues and "constraint equations". Many feature 
systems can be completely axiomatized in the 
Schonfinkel-Bernays class of first-order formu­
lae, so the decidability of the satisfiability and 
validity problems for these systems follows im­
mediately. 

1 I n t r o d u c t i o n 
The number of different feature structure devices and 
formalisms proposed in the "unification grammar" l i t­
erature is growing so fast that it is important to find 
a "common language" in which they can be expressed. 
This paper shows how a variety of different types of fea­
ture structures and constraints on them can be expressed 
in predicate logic (or standard non-monotonic extensions 
thereof), including: 

• (parameterized) sorts, 

• subsumption constraints, and 

• non-monotonic constraints (specifically LFG "con­
straint equations"). 

These were chosen merely to give a feeling for the ease 
with which fairly complex constructions can be described 
in predicate logic; they by no means exhaust the class 
of feature structures and constraints that can be given 
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first-order axiomatizations. This suggests that instead 
of requiring radically new types of interpretations, even 
complex feature structures and constraints on them can 
be described using standard techniques. Not all these ex­
tensions have to be used in an implementation, of course, 
a reasonable policy might be to only implement the de-
cidable extensions described below, for example. Since 
feature structures are a kind of frame representation, the 
results presented here should be of interest to the wider 
A . I . community. 

The results in this paper extend those presented in 
earlier work, especially [8,9,10,20,21], wi th which (due 
to space limitations) famil iarity is presupposed. 

2 T h e Schonf inkel-Bernays Class 

One advantage of axiomatizing feature structures in first-
order predicate logic is that its proof-theoretic, model 
theoretic and computational properties are well-known. 
This paper exploits some of the results on dccidable 
classes of first-order logic [3,5] to show that the satis 
fiability and validity problems for certain types of fea­
ture structure constraints are decidable. We show that 
variety of such structures and constraints can be axioma-
tized using formulae from the Schonfinkel-Bernays class, 
(called SB below); since the satisfiability and validity 
of any formula in SB is decidable, the satisfiability and 
validity problems for these feature structure constraints 
must be decidable too. 

A formula is in SB iff it is of the form 

where is a formula containing no function or quantifier 
symbols.1 SB formulae possess the finite model property, 
i.e. if a formula has a model then it has a finite model [7]. 
Lewis [6] investigated the computational complexity of 
the decision problem for such formulae and showed that 
the satisfiability and validity problems for SB formulae 
are PSPACE-complete, and (by Proposition 3.2 of [6]) 
that the satisfiability and validity problems for SBn are 
NP-complete, where SBn is the class of SB formulae con 
taining n or fewer universal quantifiers. 

1 Because can always be expanded to disjunctive normal 
form, Schonfinkel-Bernays formulae are a generalization of Dat-
alog clauses that allow disjunctive consequents. I hope to ex-
plore this more fully in later work. 
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The conjunction (and disjunction) of two SB formulae 
is itself a SB formulae (after quantifiers have been moved 
outward). This means that SB axiomatizations of differ­
ent kinds of feature structures can be conjoined, and 
the satisfiability of the composite system is also decid-
able. For example, Johnson [10] axiomatizes 'set values* 
using SB formulae, and these axioms can be combined 
with e.g. the SB axioms for sorts given below to yield a 
system with both 'set-valued' and 'sorted' objects com­
pletely axiomatized in SB, and hence with a decidable 
satisfiability problem. 

3 Attr ibute-value features 
Attribute-value features, popularized in the work of 
Shieber [18] and others, are the most common type of 
features used in computational linguistics. The treat­
ment here is effectively the same as that in [10,20,21], so 
it is only summarized here. 

At tribute-value features are in effect partial functions 
(SEE. [12,8]), and they can be formalized in first-order 
logic either 

• as relations that obey functionality axioms (as is 
done here), or 

• as " tota l" functions over a domain that includes a 
designated element that is interpreted as an "unde­
fined" value (sec [8,9]). 

These two different formalizations reduce the satisfia­
bility problem for attribute-value feature structure con­
straints to different classes of first-order formulae, and 
lead to different insights about the original problem. 

Here, we conceptualize "pure" attribute-value features 
as instances of an "arc" relation, where arc(x,a,y) is 
true iff there is an arc labelled a from x to y. (In some 
expositions the elements x and y are called nodes and a 
is called an attribute). The following axioms express the 
constraints that the arc relation must satisfy for it to be 
an attribute-value structure. The predicate con is true 
of the attribute-value constants. 

The first axiom requires that the are relation is func­
tional. (Used as an inference rule in a forward chaining 
system, if requires the "unif ication" of the "destinations" 
of a pair of arcs labelled with the same attr ibute leaving 
the same node; see [9,10] for details). 

(1) 
The second axiom requires that requires that attr ibute-
value constants have no attributes. (This axiom is re-
sponsible for "constant-compound clashes"). 

(2) 
The attribute-value constants have special properties ex­
pressed by the next two axiom schema. These schema 
stipulate properties of the entities that the attr ibute-
value constants, a subset of the constant symbols of the 
first-order language, denote. Not every constant symbol 
will be an attribute-value constant, since it is useful to 
have constant symbols that refer to other entities as well. 

The first schema requires that every attribute-value 
constant have the property con. 

For all attribute-value constants c, con(c). (3) 

The second axiom schema requires that distinct 
attribute-value constants have distinct denotations. 
(This is sometimes called a "unique name assumption"). 

For all pairs of distinct attribute-value 
constants CT and c2, (4) 

This axiomatization is quite permissive, in that it allows 

• cyclic structures, 

• infinite structures, 
• intensional structures (i.e. different elements may 

share the same attributes and values), 

• disconnected structures, and 
• allows values to be used as attributes. 

Additional axioms could have been added to prohibit 
such structures, but because there seems to be no l in­
guistic or computational motivation for such additional 
stipulations they are not made here. (Axioms prohibit­
ing cyclic structures and attributes from being values 
can be formulated in SB, an extensionality requirement 
can be axiomatized using a first-order formula not in SB, 
while an axiom prohibit ing infinite structures cannot be 
expressed in first-order logic). 

Each node in a syntactic parse tree is associated with 
an element (different nodes can be associated with the 
same element; see Chapter 3 of Johnson [8] for full de­
tails). Lexical entries and syntactic rules constrain the 
elements associated wi th parse-tree nodes. Following 
Kaplan and Bresnan [12] we represent these constraints 
by quantifier-free formulae. 

For example, a (simplified) lexical entry for the En­
glish verb swim might require that: 

• the attribute-value element u associated with a 
node dominating the terminal item swim have a 
semantics attr ibute whose value is swim (which ab­
breviates the verb's "semantic value"), 

• that u have an agreement attr ibute whose value is, 
say, v, and 

• that the value of v's number and person attributes 
(representing the verb's agreement features) not be 
singular and and 3rd respectively (these are the fea­
tures of the inflected form swims). 

These constraints might be expressed in an extended 
PATR-I I notation (see Shieber [18]) as 

and in FDL notation (see Smolka [20,21]) as 

This paper takes no position on what notation such fea­
ture constraints should be wri t ten in, but simply sug­
gests that whatever notation is used to express this con­
straint it should mean the same thing as the following 
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(universal) quantifier-free formula. 

(In this formula u is a constant that is not an attribute-
value constant, while semantics , swim, number, 
singular, person and 3rd are attribute-value constants). 
Arbitary boolean combinations (including negation) of 
attribute-value constraints can be expressed in this 
manner.2 

Note that the axioms defining attribute-value features 
and formulae expressing attribute-value constraints are 
all in SB, so their conjunction is also (equivalent to) a 
SB formula, and hence the satisfiability of such systems 
of constraints is decidablc. Further, the only quantifiers 
appear in the axioms 1 and 2 so this conjunction is infact 
in SB7, and hence the satisfiability problem for systems 
of feature constraints is in NP.3 Since the satisfiability 
problem for arbitrary conjunctions and disjunctions of 
atomic feature structure constraints (here, arc atoms) 
is NP-complete [13], the satisfiability problem for the 
system described here is NP-complete. 

4 Sorts 
The term "sort" is used to mean different things by dif­
ferent authors. We sketch here how two common in­
terpretations of sorts can be axiomatized by considering 
some simple examples, and follow Smolka [20,21] in mod-
elling sorts by unary predicates (parameterized sorts are 
modelled by predicates of higher arity). 

First,, suppose that sorts are taken to restrict the pos­
sible attributes of an element, so that e.g. something 
of sort agr can only have the attributes number or per­
son (with perhaps restrictions on the values of these at-
tributes that for simplicity are not dealt wi th here). The 
following axiom defines this notion of sort. 

(5) 

(This one place predicate agr could be used in a more 
refined lexical entry for swim that requires agr{v), i.e. 
that v be of sort agr.) 

Second, suppose that sorts are also to require that cer­
tain attributes must have a value, so that e.g. something 
of sort agr1 must have values for the attributes number 
or person. (Axiom 5 only prevents anything satisfying 
agr from having any attributes other than person and 
number). The following axiom defines this sort. 

(6) 

2The proper treatment of negation in "feature logics" has 
been the subject of considerable discussion [15,16,1,8,9,10]: 
however I know of no linguistic application in which a classical 
interpretation of negation yields intuitively "incorrect" results. 

3The axioms 1 and 2 can be replaced with an equivalent 
axiom that "shares" the universally quantified variables, so 
systems of attribute-value constraints can be expressed as for­
mulae in SB4. 

Both kinds of sorts can be optionally augmented by an 
extensionality requirement, which stipulates that no two 
distinct elements in the same sort have identical values 
for their attributes. For example, the following axiom 
requires that no two elements of sort agr can have the 
same values for their person and number attributes. 

(7) 

Because axioms of the form of 5 and 7 are in SB, the 
satisfiability of attribute-value systems augmented with 
sort constraints of the first type is decidable, and (given 
a fixed set of sorts and hence a fixed number of universal 
quantifiers) is NP-complete. On the other hand, axioms 
of the form of 6 are not in SB. Whi le this does not imply 
undecidability, Smolka [20,21] has shown that for sys­
tems that allow parameterized sorts (i.e. sort predicates 
wi th arity greater than one) this is infact the case. 

Of course, there is no reason to restrict attention to 
unary predicates. For example, assuming that lists are 
represented in the standard attribute-value formulation 
using first and rest attributes (see Shieber [18] or John­
son [8] for details), the following axioms define the predi­
cate membcr(x,l), which is true iff x appears somewhere 
in the proper list represented by l.4 

(«) 

Again, since the axioms in 8 are in SB, they can be con 
joined with any other SB axioms and the system remains 
decidable. 

5 Subsumpt ion Const ra in ts 

This section and the next focusses on some of the most 
difficult aspects of the theory of feature structures. Sub-
sumption constraints are notoriously tr icky to formulate. 
Partly, this is because the term 'subsumptiori' is used to 
refer to two different notions in the feature structure lit­
erature. 

First, subsumption can be construed as a relation be­
tween system of constraints. subsumes U/ iff every fea­
ture structure that satisfies also satisfies (This no­
t ion of subsumption is used in the prediction step of 
generalized Earley and LR parsing algorithms for fea­
ture structure grammars, see Shieber [19,17] for details.) 
In the framework described here, and are both 

4The axioms in 8 do not require that / be (an attribute-
value encoding of) a list. A unary 'sort' predicate that docs 
require this is easily formulated, however. Among other things, 
this predicate should require that the "empty list" constant nil 
has neither first nor last arcs leaving it. (This could also be 
achieved by treating nil as an attribute-value constant). 
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quantifier-free formulae (e.g. boolean combinations of arc 
atoms), so subsumes iff 

where A is the relevant feature-structure axiomatization. 
Clearly, if A is in SB then this notion of subsumption is 
decidable. 

Second, subsumption can be construed as a relation 
between elements within a feature structure, where e 
subsumes e', wri t ten iff there is a partial en-
(lornorphism h such that h(c) = e', that preserves 
attribute value constants and attributes and their val­
ues (and possibly sorts). (This notion of subsumption 
is needed to describe the agreement agreement proper­
ties of conjoined phrases; see Shieber [19] for details.) 
It is straight-forward to axiomatize this in second-order 
predicate logic by treating the partial endomorphism h 
as a functional relation (i.e. / i(x, y) iff h(x) is defined and 
equal to y). 

Dorre and Hounds [2] have shown the undecidability of 
conjunctions of subsumption and attr ibute value con­
straints, so clearly this notion of subsumption cannot 
be axiomatized in SB. Perhaps surprisingly, positively 
occuring subsumption constraints5 can be axiomatized 
quite directly in first-order logic in a manner discovered 
jointly with John Maxwell. 

As just formulated, subsumption seems to rely on an 
existential quantification over partial endomorphisms h, 
but by 

• replacing the bicondi t ional wi th an implication 
(which does not affect satisfiability if all subsump­
tion constraints occur positively), and 

• skolemizing the embedded existential quantification 
we obtain an equivalent formulation in terms of a four-
place relation h', where (e, e', x, y) iff h(x, y), where h 
is the partial endomorphism whose existence is asserted 
by the existential in the definition of __ The first 
axiom has the same effect as requiring that  

The second axiom requires that h' preserve attributes 
and their values. 

(10) 

The th i rd axiom requires that h' preserve constants. 

( i i ) 
The fourth axiom requires that ti is functional. 

(12) 

5A subformula occurs positively iff it is in the scope of 
an even number of negation symbols. The simplification of 
a biconditional to an implication when the relation defined by 
the biconditional appears elsewhere only positively is described 
and proved not to alter satisfiability in [10). 

6 Cons t ra in t equat ions and ANY values 
Finally, we turn to perhaps the most thorny problem 
for any theoretical account of feature structures: default 
values and other non-monotonic constructions. This sec­
t ion shows how these notions can be formalized by using 
circumscription to require satisfying models to be min-
imal models6. This approach has two major advantages 
over other approaches: 

• expansion to disjunctive normal form is not re­
quired, and 

• a single notion of satisfiability is defined which 
treats the monotonic and nonmonotonic construe 
tions simultaneously. 

Several versions of circumscription are discussed in the 
literature; for an introduction see e.g. Genesereth and 
Nilsson [4]. The parallel circumscription formula <f>' for 
relations has the property that a model 

minimal model 
of ( In general </>' is a second-order formula). 

An important intuit ion guiding early work in unifi­
cation grammar (especially that of Kaplan and Bres-
nan [12] and Kay [14]) is that only the minimal feature 
structures satisfying the constraints are of linguistic in 
terest, and that lexical entries and syntactic rules may 
impose additional conditions that a minimal model has 
to satisfy in order to be well-formed. This section shows 
how these intuitions can be formalized using circumscrip­
t ion. 

For example, most current theories of natural language 
syntax posit a requirement that all noun-phrases must be 
assigned a 'case feature' by some syntactic rule or lexical 
entry. This could be implemented in a feature-structure 
based system by adding a constraint to all lexical entries 
for nouns that a minimal model is well-formed only if 
the associated feature element has a case attr ibute; this 
is sometimes called an ANY-value constraint on the case 
attr ibute. Similarly, a constraint equation between two 
entities is satisfied iff x = y in a minimal model 
of the attribute-value formulae. (See the discussion on 
pages 108-110 of Johnson [8] for a more detailed expla-
nation of such constraints.) 

"Constraint equations" and ANY values can be 
treated in the following way. We represent the constraint 
that an attr ibute a must be defined on an element x 
in a minimal model by any(x,a), and constraint equa-
tions by Now let be the conjunction of the 
equality axioms, the attribute-value axioms and all of 
the (formulae corresponding to) feature structure con 
straints from a given parse, and let be the parallel 
circumscription formula for arc, con and — in We 
circumscribe precisely these relations because a minimal 
model is one which possesses as few ares as possible, 
specifies attribute-value constants as the denotation of 
as few variables as possible, and identifies as equal or 
"unified" as few pairs of variables as possible (see the 
definition of the subsumption ordering on attribute-value 
models in [8]). 

6Fernando Pereira suggested to me that circumscription 
could be used to provide a formal account of non-monotonic 
feature structure constraints. 
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Then a model M. satisfies all of the constraints (includ­
ing the so-called "defining equations", the "constraint 
equations" and the ANY constraints) iff 

(13) 

The circumscription of equality requires that two con­
stants denote the same entity (i.e. are "unified") in a 
model ifr interpreting them as denoting distinct entities 
would result in the violation of some axiom or constraint. 
The circumscription of arc and con requires that these 
relations are also minimal. 

Note that this formulation restricts attention to "clas 
sical" minimal models. However, for some applications 
this seems to be too strong. For example, the constraint 
attached to the NP child in the LFG rule [12] 

includes an optional feature structure constraint, which 
would be represented in the framework described here as 

Now, the left-hand disjunct contributes nothing to the 
t ru th conditions if disjunction is interpreted classically 
(since , so this is clearly not the intended 
interpretation. Rather, Kaplan and Bresnan seem to in­
terpret disjunction as a kind of non-deterministic choice 
operator, so that all of the minimal models of both 
and are also minimal models of  

7 Conclusion 
This paper has shown how a wide variety of differ­
ent types of feature structures and constraints on them 
can be described using predicate logic. The decidabil­
ity of the satisfiability problem of many interesting fea­
ture structure systems follows directly from the fact 
that they can be axiomatized in the Schonfinkel-Bernays 
class. Further, axiomatizing feature structures in first-
order logic allows us to apply standard techniques to the 
formalization of nonmonotonic feature structure con­
straints. 
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