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1 Introduction

The current study examines the generative power of Autosegmental Phonology (Goldsmith, 1976, 1979,
1990) in the framework of Formal Language Theory, with whichwe can study the computational complexity
of phonological phenomena and formalisms independent of specific theoretical frameworks in phonology.
A methodology for a model-theoretic study of autosegmentalphonology with monadic second-order logic
is introduced. Monadic second order logic is chosen becauseit provides a mathematically rigorous way of
studying autosegmental formalisms, and its complexity is well understood. The preliminary conclusion is
that autosegmental diagrams which conform to the well-formedness constraints defined here likely describe
at mostregularsets of strings.

The structure of this paper is as follows. Section 2 motivates the current work and reviews related
research. Section 3 details the proposal, and Section 4 concludes, outlining directions for further work.

2 Background

2.1 Formal studies of phonologyThis paper takes the view that it is important to have a formal
understanding of phonological models in order to have precise knowledge of what they predict. This is
not a new view; Potts & Pullum (2002) and de Lacy (2011), for example, propose explicit descriptions
of the content of OT constraints, and Graf (2010a,b) compares the descriptive power of Sound Pattern of
English (henceforth SPE; Chomsky & Halle, 1968)–style rewrite rule formalisms and those of Government
Phonology (Kaye et al., 1990).

It is important, of course, to have some way of measuring the ‘descriptive power’ of phonological
formalisms. To this end, this paper utilizes a Formal Language Theoretic (FLT) perspective, which classifies
patterns of symbols according to their complexity. FLT is apposite for studying the complexity of linguistic
formalisms because a) it provides well-studied, mathematically rigorous method of studying complexity and
b) its application to natural language patterns has alreadyyielded results, as to be detailed below. The core
of FLT is a nested complexity hierarchy of classes of patterns called theChomsky hierarchy, after its original
development by Chomsky (1956; for a more recent discussion for the hierarchy its application to natural
language, see Partee et al., 1993). This hierarchy is shown in Figure 1.

The regions represented by the concentric circles in Figure1 are of increasing complexity as one moves
out from the center. For example, theregular region, shaded in gray in Figure 1, is strictly less complex
than thecontext-freeregion, represented by the next largest circle. To give a concrete examples of what this
means, the pattern in (1) is a regular pattern (1a) of ‘a’s and‘b’s, whereas (1b) is context-free:

(1) a. λ b. λ

ab ab
abab aabb
ababab aaabbb
abababab aaaabbbb
... ...
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Figure 1: The Chomsky Hierarchy

The pattern in (1a) can be described as any number (includingzero—λ above represents a string of length
zero) of repetitions of the sequence ‘ab’; (1b) is any sequence of ‘a’s followed by a sequence of ‘b’s of the
same length (this is often referred to as anbn). The reason (1a) is considered to be less complex than (1b) is
that a grammar formalism powerful enough to generate (1b) will also be able to generate (1a), but not vice
versa. ‘Grammar formalism’ can mean any number of methods for describing patterns, and part of FLT deals
with how grammar formalisms relate to each other. One commonly referred-to formalism is thefinite-state
machine, an abstract machine that can check whether or not a string (or tuple of strings) is in a pattern. A
finite-state acceptor(henceforth FSA), which checks strings one at a time, for (1a) is given in Figure 2.

b a
a

b

Figure 2: FSA for (1a)

FSAs, like the one in Figure 2, check strings by reading them left-to-right, one symbol at a time, with
the symbols triggering transitions from state to state. When the string ends, the FSA accepts the string if it is
in a final state (marked with double circles), otherwise it rejects the string. Taking the string ‘abab’ through
Figure 2, the machine starts on the state labelledb (the unlabelled arrow marks it as a start state), takes the
‘a’ transition on the first ‘a’ of the string, then the ‘b’ transition back to ‘b’, then repeats these two steps, then
ends on theb state. Becauseb is a final state, the FSA accepts the string—and it will do so for all the strings
in (1a) andonly the strings in (1a).

A key property of FSAs, and finite-state machines in general,is that they have a finite memory,
represented by their states. For example, the FSA in Figure 2can only ‘remember’ whether or not it has
just seen an ‘a’ or a ‘b’. This property restricts the kinds ofpatterns it can describe—no FSA can describe the
pattern in (1b), because it would have to remember exactly how many ‘a’s it has seen in order to check that
there are the same number of ‘b’s. Because there can beanynumber of ‘a’s, there is no bound on the memory
required to check a string in pattern (1), and thus it cannot be done in a finite number of states. Thus, an FSA
can describe the regular pattern in (1a), but not the context-free one in (1b). In fact, FSAs describe exactly
the regular patterns, and nothing more complex.

An important observation regarding natural language phonology from the FLT perspective, originally
attributable to Johnson (1972) and Kaplan & Kay (1994), is that its computational complexity is likely to
be at most regular. This can be thought of intuitively by taking the regular repeating ‘ab’ pattern in (1a)
and replacing the ‘a’s with ‘C’s and the ‘b’s with ‘V’s—we suddenly get a familiar phonological pattern.
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In contrast, most phonologists would likely agree that nothing like the context-free anbn pattern in (1b) is
attested in natural language phonology (although it is in syntax, in the form of nested embedding sentences
like “The dog the cat the rat bit chased ran away”). More concretely, Johnson (1972) and Kaplan & Kay
(1994) proved that, with the restriction that they cannot apply to their own output, SPE-style rewrite rules
cannot have a pattern like (1b) in either their output or their input. Since SPE is generally considered powerful
enough to capture any phonological alternation, it is reasonable to presume that phonology is regular. More
recent research has pushed this hypothesis further, arguing that phonology issub-regular (Heinz, 2009, 2010;
Graf, 2010b; Heinz & Lai, 2013; Rogers et al., 2013).

Given these hypotheses, we likewise expect that Autosegmental Phonology (AP) should not be able
to produce non-regular strings. The current proposal explores the complexity of AP. This is not the first
work to examine the complexity of AP; as surveyed in the next section, this territory has been travelled
before. However, like Kaplan & Kay (1994), Heinz (2009), andothers, the work exploring the computational
complexity of AP uses an automata-theoretic perspective, which equates regularity with the ability to be
described with finite-state machines. For the reasons to be outlined below, the current paper departs from this
work and, like Potts & Pullum (2002) and Graf (2010a,b), utilizes a model-theoretic perspective.

2.2 Computational studies of autosegmental phonologyAutosegmental Phonology (henceforth AP;
Goldsmith, 1976, 1979, 1990) is a representational theory of phonology in which phonological units on
multiple autonomous tiers may be associated to each other ina many-to-one fashion. The usual graphical
convention is to represent tiers as vertically separated strings of symbols, with the association relation shown
as lines drawn between symbols on different tiers, as in (2) below.

(2) a. A B b. A
★★ ❝❝

C B C

The late 1980s and early 1990s AP saw a flurry of work examiningAP from a formal perspective. Some
work focused on the semantic interpretation of associationrelations (Sagey, 1986, 1988; Bird & Klein, 1990),
while others dicussed the formal groundwork for computational implementation of AP (Kay, 1987; Kornai,
1991; Wiebe, 1992; Bird & Ellison, 1994; Kornai, 1995). Thislatter work is highly relevant to the current
paper, as while the computational complexity of AP was not its primary focus, the topic featured heavily in
the discussion, with the aforementioned researchers disagreeing as to whether or not AP could be managed
in a finite-state framework. It is thus important to first summarize this work.

The first to attempt the problem was Kay (1987), who devised a scheme for representing the
nonconcatenative morphology of Arabic with a four-tape finite-statetransducer, which checks not single
strings but tuples of strings. In brief, his proposal assigns each autosegmental tier—the consonantal root
morpheme, the vowel inflection morpheme, and the CV tier to which the former two are associated—its
own ‘tape’, a string of symbols readable by a finite-state machine. In this way, the machine is able to check
these three strings and a string on the fourth ‘output’ tape representing the linearized surface string. While
Kay’s proposal was restricted to Arabic morphology, Wiebe (1992) generalized the multi-tape method to
AP proper, but noted that these multi-tape machines are formally more powerful than standard finite-state
transducers, which by definition have only two tapes. Wiebe argued that this power is necessary, and as such
autosegmental phonology is necessarily not finite-state and non-regular.

In contrast, Kornai (1991, 1995) and Bird & Ellison (1994) each developed formal implementations of
AP they claimed are finite-state. Kornai (1991, 1995) developed a linearized representation of autosegmental
‘bistrings’ (pairs of associated tiers and their association), representing movements through a two-tape
‘biautomaton’, a two-tape finite state machine which advances through the tapes based on associations
between symbols on the tapes. As these biautomata are not finite-state transducers in the strict sense, Kornai
(1991, 1995) tackles the question of their generative capacity by giving an algebraic definition of regularity
for sets of bistrings. He argues that by this metric, his implementation is indeed regular, and is thus in
some sense ‘finite-state’. Bird & Ellison (1994) question this result, arguing that Kornai’s representations
cannot handle some autosegmental diagrams, and further state that the ‘the association mechanism for coded
autosegmental representations is not finite state’ (p. 83).They instead argue for their declarative model of
phonology, which represents autosegmental information with special finite-state acceptors whose states are
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‘synchronized’. However, again, it is unclear how these acceptors compare to standard finite-state acceptors,
and as such it is hard to evaluate their claims regarding complexity.

It is now clear that an important reason for the differing results in the above work regarding the
complexity of AP is that all use non-standard variations of the finite-state machine in order to deal with
the non-linearity. As such, it is hard to directly compare the computational complexity to results measuring
the computational complexity of phonology with standard finite-state acceptors and transducers, which deal
with linear strings and pairs of strings, respectively. Thecurrent proposal deals these problems in two ways.
First, it defines AP in a logical framework independent of automata; this avoids the problems implementing
non-linear representations in finite-state machines. Second, with logic, it is able to define a linearyield of an
autosegmental diagram, which is simply the surface string resulting from the diagram. Thus, the yields of a set
of autosegmental diagrams make up a pattern like those in (1), and thus are straightforwardly comparable to
other patterns in the usual formal language-theoretic sense. Section 3 details how this is done, but first a brief
introduction to Monadic Second Order Logic is necessary; this is the concern of the following subsection.

2.3 Monadic Second Order LogicMonadic Second Order Logic (MSO) is a boolean logic utilizing
the usual operators (¬,∧,∨, from which→ and↔ can also be derived) and quantification (∀, ∃) of both
variables (x) and sets of variables (X). When applied to strings, these variables refer to positions in the
string, and monadic predicates can evaluate whether or not aposition belongs to a set of variables (X(x)) or
has a particular symbol value (a(x), wherea is a symbol in the alphabet). A classic FLT result is that setsof
strings definable with MSO predicates and a precedence relation between positions are exactly regular (Büchi,
1960). Thus, MSO is an apt methodology for studying phonological formalisms; not only is it mathematically
explicit and rigorous, but its complexity is well-known.

3 Autosegmental Phonology in Monadic Second-Order Logic

The following defines AP in MSO in order to measure its computational complexity. It is important
to note that this is not the first model-theoretic treatment of AP; Bird & Klein (1990) and Kornai (1991,
1995) view AP from a model-theoric perspective. However, inaddition to some implementational differences
discussed below, this proposal is unique in that it defines a yield of autosegmental diagrams in order to discuss
their generative power. This section is structured as follows. Section 3.1 describes how to build models of
AP diagrams to which MSO predicates can refer; Section 3.2 builds a set of such predicates; Section 3.3 uses
these predicates to define axioms restricting the set of well-formed AP models; Section 3.4 defines the string
yields of AP models; and Section 3.5 concludes with a conjecture that these axioms restrict us to sets of AP
diagrams whose yields are regular.

3.1 Autosegmental diagrams as word modelsIn autosegmental diagrams, in the most general sense,
there can be a one-to-many relationship between autosegments on one tier and on autosegments on another.
As examples, we consider autosegmental diagrams in which segmental tone-bearing units (TBUs) (whose
positions are marked withσs) are associated with some tones on a tonal tier (τs). For the purposes of
simplictity, for now the segmental alphabetΣ will only be {µ}, as the mora is a phonological structural unit
commonly analyzed as a TBU. The tonal alphabet T will be{H, L}. The following examples are artificial
illustrations of how the formalism works; however, they areinspired by real-world examples such as the
classic case of tonal melodies associating to vowels in Mende (Leben, 1973, 1978).

In (3), multiple positions on the tonal tier (specifically,τ1, τ2, andτ3) are associated to a single position
on the segmental tier (σ1). In (4), shows another possibility, with multiple positions on the segmental tier
(σ1,σ2, andσ3) associated to one position on the tonal tier (τ1).

(3) τ0 τ1 τ2 τ3
H L H L

❍❍❍
✟✟✟

µ µ

σ0 σ1

(4) τ0 τ1
L H

❜❜❜
PPPPP

µ µ µ µ

σ0 σ1 σ2 σ3

We can treat such diagrams as the association between two word modelsW , each a tuple with a set
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of positionsW (canonically an initial segment of the natural numbersN), a linear less-than-or-equal-to
precedence relation⊳∗ (i.e., it is both reflexive and transitive), an immediate association relation△ (which is
neither reflexive nor transitive), and a set of predicates defining the symbol assigned to each position.

(5) WT = 〈WT, ⊳
∗, PT〉

WΣ = 〈WΣ, ⊳
∗, PΣ〉

A = 〈WT,WΣ,△〉

For example, (3) above corresponds to the following model:

(6) WT =
〈
{0, 1, 2, 3}WT

, {(0 ⊳∗ 0), (0 ⊳∗ 1), (0 ⊳∗ 2), ..., (3 ⊳∗ 3)}⊳∗ , {0, 2}H , {1, 3}L

〉

WΣ = 〈{0, 1}WΣ
, {(0 ⊳∗ 0), (0 ⊳∗ 1), (1 ⊳∗ 1)}⊳∗ , {0, 1}µ〉

A =
〈
WT,WΣ,

{
(0 △ 0), (1 △ 1), (2 △ 1), (3 △ 1)

}

△

〉

The associationA is thus like the bistring models of Kornai (1991, 1995), which were three-tuples made
up of two autosegment tiers and their association relation.Here, because each tier is defined with MSO and
the precedence relation⊳∗, we know from Büchi (1960)’s result that the set of possiblestrings on each tier is
a regularstringset. Crucially, no precedence is definedbetweenthe tiers (unlike Bird & Klein, 1990); without
this restriction, it is not clear how powerful the formalismwill be.

As of yet, the association relation△ is yet unrestricted, and can describe any number of associations
between the tiers. As a first step, we want to at a bare minimum be able to restrict the possible models to
those that conform to the No-Crossing Constraint part of Goldsmith (1976)’s Well-Formedness Condition
(WFC), as well as directional, One-to-One Association, which makes explicit the constraint that tonemes
can only associate ‘after’ all preceding tonemes have been associated (‘after’ meaning in the direction of
association, which can apply either right-to-left or left-to-right):

(7) 1. The No-Crossing Constraint.Association lines do not cross.

2. One-to-One Association.Autosegments associate one-to-(at least) one, right-to-left or
left-to-right.

We will show that with these two constraints, it appears thatthe yields of AP diagrams will be at most
regular. What follows uses MSO to define these constraints asaxioms which restrict us to only those models
whose association relation△ follows the constraints in (7).

3.2 Definitions The following define propositions to be used in the two well-formedness axioms. The
first goal to first extend the association relation△, which is defined as a relation between single positions, to
a relation between sets on the tonal tier and positions on thesegmental tier. This allows the axioms to refer to
many-to-one associations between tonal autosegments and segments. The final goal is to build, using MSO,
the machinery necessary to define the two axioms, the No-Crossing Constraint and One-to-One Association,
which restrict us to the well-formed autosegmental representations. Note that all are built out of more basic
MSO statements; as such, they do not expand the power of the formalism.

The first show that irreflexive precedence,⊳+, and immediate precedence,⊳, can be defined from⊳∗.

(8) x ⊳+ y
def
= (x ⊳∗ y) ∧ (¬∃z) [(x ⊳∗ z) ∧ (z ⊳∗ y)]

(9) x ⊳ y
def
= (x ⊳+ y) ∧ (¬∃z) [(x ⊳+ z) ∧ (z ⊳+ y)]

The next definitions extend precedence to sets of variables.In order to do this, we need to be able to pick
out the first and last variables in a set, as well as sets containing these variables:

(10) First(X, x)
def
= X(x) ∧ (∀z) [X(z) → (x ⊳∗ z)]

(11) Last(X, x)
def
= X(x) ∧ (∀z) [X(z) → (z ⊳∗ x)]

(12) First(X,Y )
def
= (∃x) [First(Y, x) ∧X(x)]
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(13) Last(X,Y )
def
= (∃x) [Last(Y, x) ∧X(x)]

One setX precedes (⊳+) another setY if all members ofX precede all members ofY . A set X
immediatelyprecedes another setY if it both precedesY and the last member ofX immediately precedes
the first member ofY .

(14) X ⊳+ Y
def
= (∀x, y) [X(x) ∧ Y (y) → x ⊳+ y]

(15) X ⊳ Y
def
= (X ⊳+ Y ) ∧ (∀x, y) [(Last(X, x) ∧ First(Y, y)) → x ⊳ y]

Next, we definecontiguoussets, as we are not interested in arbitrary sets of positions. A contiguous set
of positions is one in which there are two endpoints in between which all positions in the set lie.

(16) Contig(X)
def
= ∃(x, y)(∀z) [(X(x) ∧X(y)) ∧ ((x ⊳∗ z) ∧ (z ⊳∗ y) ↔ X(z))]

We will also want to isolatemaximalassociated sets, which requires a notion of a subset relation between
sets. We are also going to want to pick out unary sets.

(17) X ⊆ Y
def
= (∀x) [X(x) → Y (x)]

(18) Unary(X)
def
= (∀x, y) [(X(x) ∧X(y)) → (x ≈ y)]

We can now begin to define association between sets of symbolson the tonal tier and individual positions
on the segmental tier. First, it is necessary to define a set that ispotentiallyassociated to a position. A set of
tonal autosegmentsX is potentially associated with a TBUy if all members of the set are associated with it.

(19) Pot(X, y)
def
= (X ⊆ WT) ∧ (y ∈ WΣ)∧

(∀x) [X(x) → x △ y]

We then define association between a set of positions and a single position as only true if the set is
potentially associated with that position, contiguous, and maximal(i.e., if X △ y, all sets that are also
potentially associated withy are subsets ofX).

(20) X △ y
def
= (∀x)[X(x) → (x △ y)]∧

Contig(X)∧
(∀Z) [Pot(Z, y) → (Z ⊆ X)]

Note that association is in this way asymmetrical; this explicitly defines the association of a set of tonal
phonemes to a single TBU, but not the other way around. In Section 3.4, which defines the yield, the reasons
for this are made clear.

It is also important to talk about different kinds of association. It will be important to distinguish between
one-to-one and one-to-many associations.

(21) One-to-one(X, x)
def
= [(X △ x) ∧ Unary(X) ∧ (∀y) [(X △ y) → (x ≈ y)]]

Note that weneverwant to count many-to-many associations as a single association. This will actually
constitute our first axiom, as it always needs to be true.

Axiom 1 Many-to-many associations are disallowed.

(∀X, x) [(X △ x) → (Unary(X) ∨ (∀y) [(X △ y) → (x ≈ y)])]

We can now define our well-formedness axioms.
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3.3 Well-formedness axiomsThe axiomatic definitions of the constraints on AP representations given
in (7) are as follows:

Axiom 2 The No-Crossing Constraint (=7a).If v is associated withx, andw with y, v ⊳∗ w if and only if
x ⊳∗ y.

(∀v, w, x, y) [((v △ x) ∧ (w △ y)) → ((v ⊳∗ w) ↔ (x ⊳∗ y))]

An axiom like Axiom 2 above appears in Bird & Klein (1990), however theirs refers to precedence
betweentiers; i.e., it refers to tonal symbols preceding or following segmental symbols. We consider this a
crucial difference between the work here and that of Bird & Klein (1990); for one, it is not clear whether
thereshouldbe a precedence relation between tiers. Not only does it not appear necessary, but, as already
mentioned, it may increase the formalism beyond the expressive power that we want.

Axiom 3 One-to-One Association (either left to right or right to left) (7b). For all associatedX andx, if
there is ay that precedes (or follows)x, there must be someY associated with it, andX must be unary unless
x orX is the last (first) symbol in the segmental tier.

(∀X, x)
[
(X △ x) → (∀y) [(y ⊳ x) → (∃Y ) [Y △ y]]∧
(One-to-one(X, x) ∨ (Last(WΣ, x) ∨ Last(X,WΣ)))

]

∨ (∀X, x)
[
(X △ x) → (∀y) [(x ⊳ y) → (∃Y ) [Y △ y]]∧
(One-to-one(X, x) ∨ (First(WΣ, x) ∨ First(X,WΣ)))

]

As both right-to-left and left-to-right association are attested, this axiom must come in the form of a
conjunction, with individual languages being able to choose from one side of the conjunction.

Let us confirm how the example in (3) conforms to these two axioms. Example (3) and its model (6) are
repeated below in (22):

(22) τ0 τ1 τ2 τ3
H L H L

❍❍❍
✟✟✟

µ µ

σ0 σ1

WT =
〈
{0, 1, 2, 3}WT

, {(0 ⊳∗ 0), ..., (3 ⊳∗ 3)}⊳∗ , {0, 2}H , {1, 3}L

〉

WΣ = 〈{0, 1}WΣ
, {(0 ⊳∗ 0), (0 ⊳∗ 1), (1 ⊳∗ 1)}⊳∗ , {0, 1}µ〉

WA =
〈
WT,WΣ,

{
(0 △ 0), (1 △ 1), (2 △ 1), (3 △ 1)

}

△

〉

The reader can confirm that the two sets on the T tier associated with a position on theΣ tier are{τ0} △

σ0 and{τ1, τ2, τ3} △ σ1. Note that they are contiguous and maximal. These two set-position relations also
conform to the two axioms; the model obeys Axiom 2 becauseτ0 precedesτ1, τ2, andτ3 andσ0 precedesσ1

on theΣ tier, and it obeys Axiom 3 becauseσ0, which precedesσ1, has a set (namely{τ0}) associated with
it. Also, onlyσ1, which is the last symbol on its tier, is associated with morethan one tone. The reader can
also confirm that the other example, (4), also obeys these twoaxioms.

3.4 Yield We can then represent a linearizedyieldof the diagram by creating a new alphabet based on the
associated sets of segments. Returning to the example in (3)/(22), recall that the associated sets are{τ0} △ σ0

and{τ1, τ2, τ3} △ σ1; replacing the positions with their respective symbols, wecan write the associations as
({H} , µ) and({LHL} , µ). In the other example (4), repeated below in (23) the associated sets are({L} , µ),
({H} , µ), ({H} , µ), and({H} , µ).

(23) τ0 τ1
L H

❜❜❜
PPPPP

µ µ µ µ

σ0 σ1 σ2 σ3
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In this way, we can encode the surface results of association—for example, morae whose vowels have
a tonal contour. In example (22), the surface form of({LHL} , µ) would be a mora with a falling-rising
tone, which may be transcribed asµ̌. Note that this is why there is an asymmetry between the many-to-one
associations defined in Section 3.2 and 3.3; the TBUs act as timing segments forming the basis of the yield
alphabet, and in this way it is important to keep track of the associations to each TBU.

In order to keep track of symbols likěµ, which represent associated segments, we first define thegeneral
yield alphabetΓ as the set of all possible associations. Below, T∗ refers to the set of all possible strings of
symbols in the alphabet T.

Definition 1 Thegeneral yield alphabetis Γ = T∗ × Σ

Note thatΓ is an infinite alphabet. Assuming that languages only employfinite alphabets for their surface
representations,ΓL for some language will be a finite subset ofΓ. In the examples above,({LHL} , µ) ∈ ΓL,
for example, but({HLHLHHHLHLH } , µ) might not be inΓL. In the notation below,|w| refers to the length
of stringw; max(S) andcard(S) refer to the length of the longest string in a setS and the cardinality ofS,
respectively.

Lemma 1 A language-specific yield alphabetΓL ⊆ Γ of a language is finite iff there is some maximum bound
on the length of strings in its left projection,π0(ΓL):1

(∃n ∈ N) [|ΓL| = n] ⇐⇒ (∃m ∈ N) [max (π0 (ΓL)) = m]

This leads us to one final universal axiom:

Axiom 4 For any set of autosegmental diagrams in a language,ΓL must be finite.

We can then build a linearyield of an autosegmental modelW :

Definition 2

Yield(WA) = γ0γ1...γn ∈ Γ∗

L whereγi = (w ∈ T∗, σi ∈ Σ) s.t.w △ σi

3.5 Axioms and the regularity conjectureWith the three axioms and our yield defined, it is now
possible to discuss the computational complexity of autosegmental diagrams. We considerseetsof AP
association models; the set of the combined yields of a set ofAP models is a set of strings. As such, we
can classify the complexity of these sets of strings just as any other set of strings.

As an example, the following diagram represents an infinite set of AP association models in which there
are2n µ TBUs,n being any integer, from the center of which an H and and L spread outwards.

(24) H
✘✘✘✘✘✘
✑

✑

µ ... µ µ
︸ ︷︷ ︸

n

L
❩
❩

❳❳❳❳❳❳

µ µ ... µ
︸ ︷︷ ︸

n

This is clearly an odd example not expected to be seen in natural language, and it blatantly violates
One-to-One Association, Axiom 3, as both the first and last members of the tonal tier are part of non-unary
associations. However, without this axiom, it is a logically possible set of diagrams. The yield of this set of
diagrams, with́µ representing{H,µ} associations and̀µ representing{L, µ} associations, looks like this:

1 The proof of Lemma 1 is as follows:

Proof: For (∃n ∈ N) [|ΓL| = n] ⇒ (∃m ∈ N) [max (π0 (ΓL)) = m]:
If |ΓL| is finite, then there is some memberw of π0 (ΓL) such that(∀v ∈ π0 (ΓL)) [|w| ≥ |v|]. The length ofw is then
m ∈ N s.t.max (π0 (ΓL)) = m.

For (∃n ∈ N) [|ΓL| = n] ⇐ (∃m ∈ N) [max (π0 (ΓL)) = m]:
If there is somew = max (π0 (ΓL)), only a finite number of strings can be of equal or lesser length thanw, given that T

is a finite alphabet. AsΣ is also finite, the maximum size ofΓL is Card

(

T≥|w| × Σ
)

, which is equal to somen ∈ N.

�
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(25) µ́ ... µ́ µ́
︸ ︷︷ ︸

n

µ̀ µ̀ ... µ̀
︸ ︷︷ ︸

n

This is thus a homomorphism of the context-free pattern in (1b), anbn. However, Axiom 3, sets of AP
diagrams that generate this stringset are legal. In general, it appears that the well-formedness conditions
originally posited for AP will keep the stringset yields of sets of AP models conforming to Axioms 1, 2, 3,
and 4 within the regular region of complexity. This is formalized below in Conjecture 1.

Conjecture 1 The set of strings resulting from the yields of any set of autosegmental representations which
at least follow Axioms 1, 2, 3, and 4 will be regular.

4 Conclusions and Further Work

This paper has presented the beginnings of a framework to examine the complexity of Autosegmental
Phonology. It has also formalized a conjecture that the yields of AP diagrams corresponding to the well-
formedness axioms stay within the regular region. There remains much work to be done. The first step
is proving the conjecture; given that everything discussedhere has been rigorously defined, the formal
machinery for this is in place. However, as the MSO constraints discussed in this paper are as general as
possible, the next step is empirical exploration of language-specific constraints, to see whether or not they
can be encoded into MSO, or, as a next step, whether the entireenterprise can be accomplished with less
powerful logics, such as first order logic.

The current proposal deals solely with single autosegmental diagrams and their resulting strings;
however, of course, like other phonological theories, changes from underlying form to surface representation
are a central part of AP. An interesting potential for the framework proposed here is the ability to look at
UR/SRpairsof diagrams, and likwise, UR/SR pairs of their yields. In this way, AP processes can be directly
compared to recent work (Chandlee & Heinz, 2012; Heinz & Lai,2013; Chandlee, in prep.) studying the
computational properties of linear UR/SR pairs.
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