Contents

1 Introduction and Overview

2 Predicate Logic and Theorem Proving
L2l Prehralelamm : ciiia in e se s ne it dir e e e e e S

B2 TR PRI . o 055w e s e TR R e R o ot e

3 The Organizational Submodel
31 Represenbmp the Subowoadel . 0o o0l G a0 S B el e e aTe e Rl
32 Provessitythe Submodel icnn ain 5mie e e we i e a i e
3.21 Processing Single Classifier Subtrees

3.2.2 Processing Multiple Classifier Subtrees,

4 The Formal Organizational Submodel
4.1 Representing the Formal Submodel M(L,A)o enn.
411 The FormalEanguage: £ . . o2 o ow osdiiaisie s sin i oea alara win o -
RIS T LTS R e e e e e s e e e
4.2 Reasoning aboutthe FormalSubmodelc.0...
421 Reasoning about Single Classifier Subtrees

4.2.2 Reasoning about Multiple Classifier Subtrees

5 A Logic Programming Implementation

8 Summary

7 Acknowledgment

10

12

15

18

21

21

24

A Logic-Based Approach for Modeling
the Organization of Design Standards

William J. Rasdorf; Member, ASCE
Sivand Lakmazaheri! Associate Member, ASCE

Abstract

Several studies have been conducted on representing and processing design standards for design
automation. One of the main outcomes of these studies is the Standards Analysis, Synthesis, and
Ezpression (SASE) model. To eztend the wtility of the SASE model for processing (reasoming
about) design standards a logic-based approach is proposed. This approach provides (1) a formal
language, founded on predicate logic, for representing the standard and (2) a mechanical means
for reasoning about the standard wsing the language. The formal language is used o model the
overall organization of a portion of the AISC design specification. The model, called the formal
organizational submodel, is composed of a set of arioms which capture the relationships belween the
classifiers and the provisions of the standard. Reasoning about the formal organizational submodel
is accomplished using the resolution theorem proving strategy.

This paper’s main contribution is ils use of predicate logic and theorem proving for representing
and reasoning aboul the organizalion of design standards, respectively. This approach facilitates the
processing of the organization of design standards in ways which have not been addressed before.

Keywords: Automated Reasoning, Predicate Logic, Theorem Proving, Standards Processing.

1 Introduction and Overview

In general, a design standard is composed of a set of provisions, where each provision defines a
set of rules (constraints) that have to be satisfied in a given design circumstance. The processing
of a design standard involves identifying and satisfying the applicable constraints in a design cir-
cumstance. Automating the processing design standards has been an important research area in
civil engineering since the late 1960’s. One of the outcomes of the research efforts in this area has
been the SASE model [Fenves87)] for representing and processing design standards. A number of
other related research and development efforts have been directed towards automating this model
[NymanT73,Garrett86,Rasdorf87,Dym88,Cronembold88,Lopez89].

The SASE model consists of two submodels: a submodel for the overall organization of the design
standard and a submodel for representing and processing the standard’s provisions. The first

*Assocate Professor, Departments of Civil Engincering and Compuier Science, North Carolina Siaie University,

Raleigh, NC 27695
"Research Assistant, Department of Civil Engineering., Nosth Carclina State University, Raleigh, NC 17695

submodel, herein referred to as the organizational submodel, involves relating a set of classifiers to
the set of provisions of the standard. In a design situation, given the appropriate set of classifiers,
it is possible to determine the applicable provisions using this submodel. The second submodel
defines the logic of the content of a standard’s provisions using a set of rules which it processes. In
a design situation, given the set of applicable provisions, the rules associated with each provision
are processed (1) to check the conformity of the structural component with the standard or (2) to
design the structural component based on the standard.

Using the SASE model for designing involves three steps:

1. Identifying the appropriate classifiers,
2. Determining ihe applicable provisions given the classifiers, and

3. Processing provisions using rules.

The first and second steps define the processing of the organizational submodel of the standard,
and the third step defines the processing of the standard’s provisions.

Automatic identification of a standard’s classifiers has not been effectively dealt with in the past,
and only recently has it begun to emerge as a research issue [Elam88,Lopez89]. However, automa-
tion of Steps 2 and 3 has been addressed by many researchers for structural component design
[Fenves69,Garrett86,Rasdorf87,Elam88, Cronembold8E].

This paper is concerned with processing (reasoning about) the organizational submodel of the
AISC design specification [ATSC80] (step 2 above) by establishing the relationships between the
classifiers and the provisions of a portion of the Specification. The conventional approach for
processing this organizational submodel has involved using a classifier or a set of classifiers to
determine the applicable provisions. However, this paper takes a different approach: we propose
to draw all the logical conclusions that can be drawn from the relationships between the classifiers
and the provisions of the AISC design Specification.

Heasoning (deductive reasoning) involves drawing conclusions from known knowledge. To antomate
reasoning one needs to have a language for representing knowledge and a mechanism for manipu-
lating knowledge in order to draw a conclusion [Wos84]. In the context of the AISC organizational
submodel, reasoning involves viewing the submodel as a collection of facts and drawing conclusions
based on the facts. Hence, to automate reasoning about the AISC organizational submodel, one
has to have a langnage for representing the submodel and a mechanical means for manipulating
the submodel.

One powerful way for representing and manipulating, and thus reasoning about, the organizational
submodel is predicate logic and theorem proving. One use of predicate logic and theorem proving,
in the context of design standards, for checking the robustness of the logic of provisions has been
demonstrated by Jain, Law, and Krawinkler [Jain89].

Predicate logic is used for developing a formal language (L) for representing the organizational
submodel of the AISC design specification. Using £, a set of statements (axioms), denoted by A, is
developed that represent the relationships between the classifiers and the provisions of the standard.

The formal language and the axioms constitute the formal organizational submodel (M(L, A)) of
the standard. Using this formal submodel it is possible to deductively reason about the organization
of the standard in many ways. This paper discusses the formal organizational submodel for the
AISC design specification and the ability of the submodel to reason about the organization of the
standard,

To set the stage for describing M(L, A) and to show the utility of the model in reasoning about
its domain of discourse (i.e., the organization of the AISC design specification), predicate logic and
theorem proving are discussed in Section 2. A conceptual view of the organizational submodel is
provided in Section 3. The formal organizational submodel is presented in Section 4 and a logic
programming implementation of M(L, A) is presented in Section 5. A summary of the paper is
provided in Section 6.

2 Predicate Logic and Theorem Proving

This section presents a brief overview of the use of predicate logic for knowledge representation and
the unification strategy for theorem proving.

2.1 Predicate Logic

Mathematical logic is a means for representing and reasoning about a problem of interest in a formal
way. This involves identifying and representing the set of objects and their inter-relationships that
constitute the problem and employing an inference strategy for reasoning about the problem’s
domain. The term “object” has a broad usage, for it can be taken to mean either a physical or an
abstract entity. In short, an object is referred to any entity that we want to say something about.
Herein, the set of all objects in the domain of interest is called the universe of discourse or simply
Ua.

Predicate logic provides a systematic way for representing a [; using a limited number of constructs.

These constructs, described below, are variables, object constants, function constants, relation
constants, functional expressions, atomic formulas, logical operators, and quantifiers.

A variable is a symbol that can be instantiated to any object in Uy.

An object constant is a symbol representing an object in Uj;.
s A function constant (e.g., +) defines a function on a subset of Uj.
e A relation constant (e.g., >) defines a relation on a subset of Uy.

* A functional expression is an statement consisting of a function constant and several object
constant and/or variables. For example, the expression +(3, 4) is a functional expression that
maps the object constants 3 and 4 to the object constant 7. The number of object constants
and variables in a functional expression is called the function constant’s arity. In the above
example the function constant + has an arity of 2; it is a binary function.

e An atomic formula is formed using a relation constant and a set of object constants and [or
variables. For example, > (2,1) is an atomic formula where > is a relation constant, and
2 and 1 are object constants. The number of object constants and variables in an atomic
formula is called the relation constant’s arity. In the above example the relation constant >
has an arity of 2; it is a binary relation.

¢ The logical operators mainly used are negation (=), disjunction (V), conjunction (A), and
implication (=).

¢ Two quantifiers are commonly used in predicate logic: the universal quantifier (v) and the
existential quantifier (3). Quantifiers provide a way of referring to the objects in a U; without
specifically identifying the individual objects [Genesereth88)].

Using the above constructs it is possible to represent the objects and their inter-relationships in
a Uy using expressions called well-formed formulas or wffs. Well-formed formulas are defined as
follows [Lloyd87], with variables and object constants being called terms.

e If f is an n-ary function constant and t;, {,, ---, and ¢, are terms, then f(t;,25.---,1,)isa
term.

e If p is a relation constant and t,, ta, - - -, and ¢, are terms, then p(ty,t3,---,t,) is a wff.
e If A and B are wffs, then A, AV B, ANB,and A = B are wffa.

e [fAisawff and z is a variable appearing in A, then V.4 and 3,4 are wffs.

2.2 Theorem Proving

Theorem proving is a mechanical procedure for proving that a given wff called a theorem is a
logical consequence of a set of wf fs called azioms. Let A represent a set of axioms and T represent
a wff. Then, 7 is said to be a theorem of A if it can be logically deduced from A. The notation
A b r signifies that 7 is a theorem of A [Genesereth88].

Resolution is a theorem proving strategy which proves a theorem by refutation. That is, the negated
theorem is proved to contradict the axioms. In resolution a set of wffs called clauses are used to
express both A and . A clause is a wff with only two types of logical operators: the negation
(—) and the disjunction (V).

The resolution proof procedure is iterative in nature. In each iteration two clauses are resolved into
one. The procedure yields the empty clause ({}) when A + 1. To resolve two clauses a generalized
modus ponens rule and a substitution procedure are used [Loveland78]. The generalized modus
ponens rule is “from (-AV C) and (A Vv B) deduce (B v C).” The substitution procedure involves
finding a substitution for the variables such that two unit clauses are made syntactically identical.
For example, consider the two unit clauses 4(2, f(z)) and A(z,y); a substitution, 8, that makes
the two clauses identical is 6 = {z/2,y/f(2)}. That is, for £ = 2 and y = f(2) the two clauses
become syntactically identical. The procedure for finding a substitution is called unification.

The following example illustrates the resolution theorem proving strategy. In this example variables
are shown in lowercase Roman letters, relation constants are shown in uppercase Roman letters,
and object constants are shown in lowercase Greek letiers.

Let A = {A4;, A3, A3, A4} where

4y = {C(y,2) v ~B(z,z) V ~A(z,¥)}
As = {D(z) v =B(z,z) v -C(y, 2)}
Az = {B(“!EJ}
As = {A(a,7)}
and let = = {D(z)}. The following steps demonstrate the deduction process.

Step 0: Negate 7. That is, {~D(z)}.
Step 1: From {-~D(z)} and 4, deduce {-B(z,z) v ~C(y, 2)}.

Step 2: From {~B(z, z)V~C(y, z)} and A3 and substitution @ = {z/a, z/8}, deduce {~C(y, 8)}.
Step 3: From {~C(y,8)} and A, and substitution 8 = {z/8}, deduce {~B(z,8) vV ~A(z,y)}.
Step 4: From {~B(z, 3) V ~A(z,y)} and Az and substitution 8 = {z/a}, deduce {~A(a,y)}-
Step 5: From {—~A(e,y)} and 4, and substitution 8 = {y/7}, deduce {}.

Thus, —r contradicts A, therefore, A F 7.

3 The Organizational Submodel

This section presents a conceptual model for representing and processing the organizational sub-
model of a portion of the AISC design Specification.

3.1 Representing the Submodel

An organizational submodel is composed of a set of tree structures, a set of provisions, and the
relationship between the trees and the provisions. Figure 1 depicts an organizational submodel
for a portion of the AISC Specification. The relationship between the trees and the provisions
of the submodel is shown by the links that connect the provisions to the leaf nodes of the trees.
The organizational submodel of Figure 1 is described in terms of identifiers, classifier subtrees,
subclassifiers, and classifiers.

Identifiers: The nodes of the tree structures in the organizational submodel are called identifiers.
Identifiers are keywords used for describing (characterizing) design circumstances and for identifying
the applicable design standard’s provisions in a design circumstance. The organizational submodel
can be viewed as a set of identifier hierarchies, as shown in Figure 1, coupled with a subset of the
standard’s provisions.

Classifier Subtrees: The tree structured identifier hierarchies of the organizational submodel
are called classifier subtrees. The three classifier subtrees in the organizational submodel of Figure
1 are the objeci-type subtree, the limit-stafe subtree, and the stress-state subtree. Each subtree
depicts the overall hierarchical organization of its identifiers. For example, consider the limit-state
classifier subtree shown in Figure 1. This subtree is composed of six identifiers, namely, limit-state,
yield, buckling, local, global, and tearout. Furthermore, the child nodes of the subtree are considered
to be instances of their respective parent node. For example, yield, buckling, and fearouf are three
instances of imit-siale, and local and global are two instances of buckling.

These classifier subtrees organize the identifiers in such a way that any design circumstance can
be characterized using the limit-state, object-type, and stress-state identifiers associated with a
structural component of interest. The organization of the AISC design Specification has been
successfully modeled using these three classifier subtrees [NymanT3).

Subeclassifiers: A subclassifier is a complete path from the root node to a leaf node of a subtree.
For example,

fimit-state
buckling

loeal

is a snbclassifier of the limit-state sublree shown in Figure 1. Herein, the set notation is used for
representing subclassifiers. The above subclassifier is represented using the set

{timit —state, buckling, local}.

In general, each leaf node of a classifier subtree is connected to a set of provisions as shown in
Figure 1. This implies that the provisions that are connected to the leal node apply to the design
circumstance that is partially characterized by the subclassifier whose last element is the leaf node.
For example, if the subclassifier {limit—state, buckling, local} is used to partially characterize a
design circumstance, then Figure 1 shows that {AISC1.10.5, A75C1.9.1.2, AT15C1.9.2.1} is the set
of applicable provisions in that circumstance.

Classifiers: To completely characterize any design circumstance, a subclassifier from each classi-
fier subtree is needed. The set of subclassifiers that completely characierize a design circumstance
is called a classifier. For example, the three subclassifiers

{object—type, steel, i—shaped, hol—rolled, column},

{limit—state, buckling, global}, and

{stress—state, arial, compression}

of Figure 1 completely define a design circumstance, thus forming a classifier. The applicable
provisions of a classifier are derived from the set intersection of the provision sets associated with
each of its three constituent subelassifiers. That is,

{AIS§C1.5.1.3.1, AISC1.5.1.3.2} N {AI5C1.5.1.3.1, AISC1.5.1.3.2, Al §C1.5.1.4.5} N
{AISC1.5.1.3.1, AISC1.5.1.3.2},

which yields
{AISC1.5.1.3.1, AISC1.5.1.3.2}.

Since the organizational submodel of Figure 1 is composed of three classifier subtrees, all the
classifiers associated with this submodel have to be defined using three subelassifiers,

3.2 Processing the Submodel

Generally, the organizational submodel of a design standard as presented above can be processed
in two ways: (1) by processing a single classifier subtree and (2) by processing multiple classifier
subtrees. All examples in this section refer to Figure 1.

3.2.1 Processing Single Classifier Subirees

A single classifier subtree can be processed in several ways, as discussed below.

A: Given a complete or an incomplete subclassifier, determine its corresponding provisions. This
is done by traversing the subtree, starting from the root node, until a leaf node is reached.
Then determine the applicable provisions by following the path from the leaf node to the
provision set. For example, given the subclassifier {limit—state, yield}, the limit-state subtree
can be traversed to obtain the provision set {A/5C1.5.1.2.1, AISC1.5.1.4}. Or, given the
incomplete subclassifier {limitstate, buckling, X}, the limit-state subtree can be traversed to
obtain all the applicable provisions. Two sets of provisions can be found. One of the sets is
{AI5C1.5.1.2.1, AISC1.5.1.4} which corresponds to the subclassifier when X instantiates to
local. The other set of provisions is {415C1.5.1.3.1, AISC1.5.1.3.2, AISC1.5.1.4.5} which
corresponds to the subclassifier when X instantiates to global.

B: Given a provision or a set of provisions, determine their corresponding subclassifier(s), thus
partially describing the design circumstance(s) ander which a set of provisions become appli-
cable. This is done by following the path from the given provision(s) to their corresponding
leaf node of the subtree and traversing the tree from the leaf node to its root node. For
example, given the provision “AISC 1.5.1.2.2", the limit-state subtree can be traversed to
define {limit—state,tearout} as the subclassifier for the given provision.

The above items deal with identifyving one part of the organizational submodel given another part of
the submodel. It is also possible to process the submodel for detecting certain properties associated
with the subclassifier submeodel itself. Two such properties are discussed below.

C: The property of having more than one subclassifier in a classifier subtree is attributed to the
standard’s provisions and it is called the abundance property. A provision is abundant if
it has more than one subclassifier in a classifier subtree. One of the desired characteris-
tics of an organizational submodel is the absence of abundant provisions. Since this is not
an inherent characteristic of design standards, it can be checked using the organizational
submodel of the standard. The submodel presented in Figure 1 is free of abundant provi-
sions. However, to exemplify the abundance property, let us assume that the provision “AISC
1.5.1.47 is also connected to the “tearout™ leaf node of the limit-state subtree. Then, the pro-
vision “AISC 1.5.1.4" would be abundant since it would have two subclassifiers, namely,
{limit—state, tearout} and {limit—state, yield}.

D: Another desired characteristic of the organizational submodel is the association of each of its
subclassifiers with one or more provisions. A subclassifier which is not connected to any
provision is called free. The existence of a free subclassifier indicates the presence of a design
circumstance not addressed by the standard. Free subclassifiers can be identified by traversing
every branch of the subtrees until a leaf node is reached. For example, the subclassifier

{object—type, steel, i—shaped, hot—rolled, beam—column}
in the object-type subtree and the subclassifier
{stress— state, azial, tension}

in the stress-state subtree are free.

3.2.2 Processing Multiple Classifier Subirees

Multiple classifier subtrees can be processed in several ways as discussed below,

E: Given a classifier (i.e., a set of subclassifiers), determine its corresponding provisions. This
involves identifying the applicable provisions for each subclassifier and determining their set
intersection as discussed in Section 3.1.

F: Given a provision or a set of provisions, determine their corresponding classifier(s). This in-
volves identifying the set of subclassifiers (one subclassifier for each classifier subtree) that is
associated with with the provisions. For example, given the provision set

{AISC1.5.1.3.1, AISC1.5.1.3.2},

the corresponding design circumstance is characterized by the following classifier (i.e., three
subclassifiers):

{limit—state, buckling, global},
{stress— state, azial, compression}, and
{object—type, steel, i—shaped, hot —rolled, column}.

G: Given an incomplete classifier (a classifier with some known and some unknown subclassifiers),
determine all of its unknown subclassifiers, thus completing a characterization of a given

design circumstance that is initially incomplete. This is accomplished by first finding the
provision set associated with the known part of the classifier and then determining the un-
known part of the classifier based on the determined provision set. For example, given a
classifier with one known subclassifier {limit—state, tearout} and two unknown subclassifiers
(X.Y), the unknown subclassifiers are determined as follows. First, the provision set associ-
ated with the known subclassifier is identified, that is, {475C1.5.1.2.2}. Then, the unknown
subclassifiers are determined using the set {AISC1.5.1.2.2}. This gives

X = {object—type, steel, i—shaped, hot - rolled, beam}
Y = {stress—state, bending, shear}.

Again, the above items deal with identifying one part of the organizational submodel given another
part of the submodel. It is also possible to process the submodel for detecting certain properties
associated with the classifier submodel itsell. Two such properties are discussed below.

H: A provision which has the same number of subclassifiers as there are classifier subtrees is
complete if each of its subclassifiers belongs to a distinct classifier subtree. This is referred
to as the completeness property. If there exists a classifier subiree such that none of its
subclassifiers are associated with a particular provision that is present in all other classifier
subtrees, then the provision is incomplete. If a provision is not incomplete, then it is complete.
The provisions shown in Figure 1 are all complete. However, to exemplify the incompleteness
of a provision, assume that the provision “AISC 1.5.1.2.2" is not connected to the “tearoud™
leaf node of the limit-state subiree. Then, provision “AISC 1.5.1.2.2" would be incomplete
since it does not have a subclassifier in the limit-state subtree.

I: A complete and not-abundant provision is said to be unique. Uniqueness is a desired property
for all of a standard’s provisions. However, in general, unigueness which is not an inherent
property of design standards, needs to be checked using the organizational submodel of the
standard.

As seen above, the organizational submodel for a design standard can be processed in several ways.
In the past, the processing of an organizational submodel was limited to (1) identifying applicable
provisions given the classifiers, and (2) identifying the corresponding classifiers given the provisions
[Garrett86.Elam88]. In this paper additional processing is made possible by allowing the submodel
to be processed in the extended manner as discussed in items A through H above.

4 The Formal Organizational Submodel
In this section we illustrate how the organizational submodel of Figure 1 can be formally represented

using predicate logic and how it can be reasoned about using theorem proving.

4.1 Representing the Formal Submodel M(L,A)

The organizational submodel is viewed as two sets: the set of classifiers (C) and the set of provisions
(P) as shown in Figure 2. The submodel also embodies the relations between the two sets. Notice

that the elements of C themselves are sets. That is, each C; is composed of three elements, 5;,, S;,,
S;,, where 5;_ is a subclassifier. In turn, each S;, is a set of identifiers. The formal organizational
submodel is formmulated by capturing these sets and their interrelationship using predicate logic.

The formal organizational submodel is composed of the formal language £ and a set of axioms A,
both of which are discussed below.

4.1.1 The Formal Language: £

A language of predicate logic is used for representing the formal organizational submodel. This
language is denoted by [; its vocabulary is composed of a set of functions, a set of relations, a set
of logical operators, and two quantifiers; and itz well-formed formulas are defined as discussed is
Section 2.1.

Functions

¢ head(X): This function returns the first element of the set X.

e tail(X): This function returns all of the elements of the set X except its first element.

Relations

Problem Dependent

e abundant(P): P is an abundant provision.

e complete(P): P is a complete provision.

o roof{B): B is the root node of a classifier subtree.

e cset(C,B): C is the set of subclassifiers in the subtree whose root node is B.

o connected(X,P): X is a leaf node connected to the provision P.

o free(C,B}): C is a free subclassifier in the classifier subtree whose root node is B.
e identifier(X): X is an identifier.

o leafnode(X): X is a leal node of a classifier subtree.

o link(X,Y): X is the parent of ¥ in a classifier subtree.

s r1I{X,P): X is a subclassifier for the provision P.

o rin(X,T,5): X is a subclassifier for the set of provisions T. T is a subset of 5§ where S is the
set of all the standard's provisions.

10

e rnl(T,P,B,C}): T is a set of subclassifiers for the provision P in the classifier subtree whose
root node is B. T is a subset of ¢ where C is the set of all the subclassifiers in the subtree.

o path(X,T): T is a set of identifiers defining a path from the node X toa leaf node of a classifier
subtiree.

e provision{P): P is a provision.
e pset(P): P is the set of all the standard’s provisions.
s subclassifier{X): X is a subclassifier.

o unique(P): P is a unique provision.

Problem Independent

belongsto{X,Y): X is an element of the set 1.

s equal(X,Y): X and ¥ are identical.

o intersect(X,Y,L): L is the set intersection of X and }.
s lasi(L,Z): Z is the last element of the set L.

o union(X,Y,Z): Z is the set union of X and ¥.

Logical Operators

¢ Implication (=)
¢ Conjunction (A)
¢ Disjunction (V)

s Negation ()

Quantifiers

¢ Universal quantifier (V)

+ Existential quantifier (3)
Although the above quantifiers are a part of the language, they are not explicitly nsed in writing
the valid statements of the language. Rather, they are used implicitly in expressing axioms and

theorems. All the variables in the axioms are universally quantified. All the variables in the
theorems are existentially quantified.

11

4.1.2 The Axioms: A

The axioms of the formal organizational submode| are defined using two types of w f fs: unit clauses
and proper azioms. A unit clause, or a fact, is a special kind of axiom which is composed of a single
relation; an axiom with no logical operators. The facts and the proper axioms of M(L,A) are
discussed below.

Facts: Facts, used to express a portion of M(L, A), represent the following: Identifiers, provisions,
the parent-child relationship between the nodes of the classifier subtrees, the root node of the
subtrees, leaf nodes of the subtrees, and the connection between leaf nodes and provisions.

Identifiers are represented using the relation ‘identifier,’ as shown below.

identi fier(limit—state)
identi fier(yield)

identi fier(buckling)
identi fier(local)

identi fier(global)

identi fier(tearout)
identifier(stress— state)

identi fier(object—type)

Provisions are represented using the relation “provision.” as shown below.

provision(“AI5C1.5.1.2.1")
provision(“AISC1.5.1.4")
provision(“AISC1.10.57)

The parent-child relationship between classifier subiree nodes is represented using the relation ‘link,’
as shown below.

link(limit—state, yield)
link(limit—state, buckling)
link(buckling, local)
link(buckling, global)
link(limit—siate, tearout)
link(stress—state, azial)

12

link(object—type, steel)

Root nodes of the subtrees are represented using the relation ‘root,” as shown below.

root(limit—state)
root(stress—state)
root(object—type)

Leaf nodes of subtrees are represented using the relation ‘leafnode,” as shown below.

lea fnode(yield)
lea fnode(local)
lea fnode(global)
lea fnode(tearout)

The connection between leaf nodes and provisions is represented using the relation ‘connected,” as
shown below.

eonnected(yield, “AI1SC1.5.1.2.17)
connected(yield, “A15C1.5.1.47)

The set of all the facts given above is denoted by F and represents a portion of M(L, A).

Proper Axioms: Above, a set of relations is used for representing a portion of M(L, A) in terms
of the set of facts F. Using those relations it is possible to deductively define the remaining portion
of the submodel. That portion of M(L, A) involves defining the subclassifiers, the relationship
between single subclassifiers and single provisions, the relationship between single subclassifiers
and multiple provisions, the relationship between multiple subclassifiers and single provisions, and
the abundance, freedom, completeness, and uniqueness properties.

The relation ‘subclassifier’ is used for defining the subclassifiers. The relation ‘ry,’ is used for
defining the relationship between single subclassifiers and single provisions. The relationship ry, is
used for defining the relationship between single subclassifiers and multiple provisions. The relation
*fu1’ is used for defining the relationship between multiple subclassifiers and single provisions. The
relation ‘cbundant’ is used for checking the abundance property of the provisions. The relation
‘free’ is used for checking the freedom property of the subclassifiers. The relation ‘complete’ is
used for checking the completeness property of the provisions. And the relation ‘unique’ is used for
checking the unigueness property of the provisions. These relations are deductively derived from

F using the following proper axioms.

13

Axiom 1

identi fier(X) A identifier(head(Z)) A link(X, head(Z)) A (path(head(Z), tail(Z))V

(lea fnode(head(Z)) A equal(tail(Z),0))) = path(X, Z)
If X is an identifier and head(Z) is an identifier and X is the parent of head(Z) in a classifier
subtree and (tail(Z) is a path from head(Z) to a leafl node of the subtree or (head(Z) is a leaf
node of the subtree and tail(Z) is null)), then Z is the path from X to a leaf node of the classifier
subtree.

Axiom 2
root(head(Z)) A path(head(Z), tail(Z)) = subclassifier(Z)

If head(Z) is a root node identifier and tail(Z) is the path from head(Z) to a leaf node of a subtree,
then Z is a subclassifier in the classifier subiree.

Axiom 3
last(C, M) A connected(M, P) = r11(C, P)

If the last element of the set C is M and M is connected to the provision P, then C is a subclassifier
for P.

Axiom 4
provision(head(P)) A r11(X, head(P)) A belongsto(head(P), S) A r1n(X, tail(P), 5)
= rin(X, B, §)
If head(P) is a provision and X is a subclassifier of the provision head(P) and head(P) is a

member of the set of provisions § and X is a subclassifier for the set of provisions tail{ P), then X
is a subclassifier for the set of provisions P.

Axiom 5
subclassi fier(head(C)) A ryy(head(C), P) A belongsto(head(C), §)A
ra1(tail(C), P, head(head(C)), §) = v (C, P, head(C), 5)
If head(C) is a subclassifier and head(C) is associated with the provision P and head(C) is an

element of the set of subclassifiers § and the provision P is identified by the set of subclassifiers
tail(C), then the provision P is identified by the sei subclassifiers C.

Axiom 6
root(B) A subclassifier(X)) A subclassifier(Y) A equal(B, head(X)) A equal(B, head(Y)
ri1(X, P) A r11(Y, P) A ~equal(X,Y) = abundant(P)
If B is the root node of a classifier subtree agd X is a subclassifier and ¥ is a subclassifier and
First element of X is equal to B and First element of ¥ is equal to B and X is a subclassifier for

the provision P and Y is a subclassifier for the provision P and X is not equal to ¥, then Pisan
abundant provision.

14

Axiom T
=r11(C, P) = free(C)
If C is not a subclassifier for a provision, then C is free.

Axiom 8 A provision is complete if it is not incomplete. The incompleteness of a provision can
be expressed using the following wff.

root(head(X)) A ~(subclassi fier(X) A r1:(X, P))

That is, head(X) i= the root node of a classifier subtree and in that subtree there is a provision
P which does not have any subclassifier. The completeness property is expressed in terms of the
following axiom using the above w f f.

—(root{ head(X)) A —(subclassifier(X) A ry1(X, P))) = complete(P)
If the incompleteness property does not hold for a provision, then the provision is complete.

Axiom 9
complete(P) A —~abundant(P) = unique(P)
Ii the provision P is complete and the provision P is not abundant, then P is unigque.

The above axioms and the set of facts F are denoted by A. The formal organization submodel is
the pair < £, A > and is denoted by M(L, A). The relations belongsto, equal, intersect, last, and
union are problem independent and their axiomatic definitions are not given here.

4.2 Reasoning about the Formal Submodel

Processing (reasoning about) the formal organizational submodel M(L, A) involves defining theo-
rems using £ and proving the theorems based on A using the resolution theorem proving strategy.
A theorem is a valid expression of L. Several theorems of interest which correspond to the items
discussed in Section 3.2 are presented in this section. Each item below provides an example for its
corresponding item in Section 3.2.

4.2.1 Reasoning about Single Classifier Subtrees

A: Suppose we are given the completely defined subclassifier {limit—state, buckling, local} and
we are asked to determine its corresponding provisions. This can be forrnulated using the
following theorem.

Theorem 1

rool(limitstate) A subclassi fier({limit—staie, buckling, local}) A pset(S)A
rin({limit—state, buckling, local}, P, S).

15

That is, is it true that [imil—state is a root node identifier and {limit - state, buckling, local}
is a subclassifier and 5 is the set of all the provisions and {limit-state,buckling, local} is the
subclassifier for the set of provisions P. The result of proving this theorem is

P = {AISC1.10.5,AISC1.9.1.2, AISC1.9.2.1},

where P is the set of provisions corresponding to the given subclassifier.

Now, suppose we are given the incomplete subclassifier {limit— state, buckling, X } where X
denotes the unknown part of the subclassifier, and we are asked to determine its corresponding
provisions. This is forrmlated using the following theorem.

Theorem 2

root(limii—state) A subclassi fier({limit—state, buckling, X}) A pset(S)A
r1a({limii—state, buckling, X }, P. S).
That is, is it true that limit—state is a root node identifier and {limit—state, buckling, X}
is a subclassifier and S is the set of all the provisions and {limit-state buckling, X} is the
subclassifier for the set of provisions P. The result of proving this theorem is
P = {AISC1.10.5, A15C1.9.1.2, AI5C1.9.2.1}
and
P = {AISC1.5.1.3.1, AI5C1.5.1.3.2, AISC1.5.1.4.5}
X = {global}
Two sets of results are obtained. In each set of results P is the set of applicable provisions,

and X denotes the unspecified portion of the subclassifier which was obtained as a result of
proving the theorem.

B: Suppose we are given the provision “AISC 1.5.1.2.1” and we are asked to determine its subclas-
sifier in the object-type classifier subtree. This is accomplished by formulating the following
theorem.

Theorem 3

provision(“AISC1.5.1.2.1%) A root(object—type) A cset(S, object—type)A
ra1(X, “AI5C1.5.1.2.17, object—type, §).

That is, is it true that “A75C1.5.1.2.1" is a provision and object —type is a root node identifier
of a subiree and the set of subclassifiers in that subtree is § and X is the set of subelassifiers
which corresponds to P. The result of proving this theorem is

X = {{object—type, steel, i—shaped, hol—rolled, beam}}

where X is the set of subclassifiers in the object-type subtree for the provision “AISC
1.5.121".

C: To determine the abundant provisions the following theorem is used.

16

Theorem 4
provision(P) A abundant(P).
That is, is it true that P is a provision and P is abundant. This theorem cannot be proven
true because no abundant provision exists in the organizational submodel of Figure 1.
To determine the non-abundant provisions the following theorem can be used.

Theorem §
provision(FP) A —abundant(P).
The result of proving the above theorem is
P = AISC1.5.1.2.1
P = AISC1.5.14
P = AISC1.10.5
P = AISC1.9.1.2
P = AISC1.9.2.1
P = AISC1.5.145
P = AISC1.5.1.2.2
P=AIS5C1.5.1.3.1
P = AISC1.5.1.3.2
That is, the above provisions are not abundant.
D: To identify the free subclassifiers in a specific classifier subtree (e.g., the object-type subtree)
the following theorem is used.
Theorem 6
root{object—type) A equal(object—type, head(X)) A subclassifier(X) A free(X).
That is, is it true that object—type is a root node identifier and object—type is the first

element of a set named X and X is a subclassifier and X is free. The result of proving the
above theorem is

X = {object—type, steel, i—shaped, hot—rolled, beam—column}
To identify all the free subclassifiers in the organizational submodel it is sufficient to replace
the object constant object-type with a variable in the above theorem:

root(B) /A equal(B, head(X)) /A subclassi fier(X) A free(X)
That is, is it true that B is a root node identifier and P is the first element of a set named
X and X is a subclassifier and X is free. The result of proving the above theorem is

X = {object—type, steel, i—shaped, hot —rolled, beam—column}

B = object—type
and

X = {stress—state, azial, tension}

B = stress—stale

That is, there are two free subclassifiers in the submodel: one is in the object-type subtree,
and the other is in stress-state subtree.

17

4.2.2 Reasoning about Multiple Classifler Subtrees

E: To determine the applicable provisions for the classifier whose three subclassifiers are

{object—iype, steel,i—shaped, hot—rolled, column},
{limit - state, buckling, global}, and
{stress— state, azial, compression}

the following theorem is used.

Theorem 7T

pset(5) A root(object—type) A root(limit—state) A root(stress— state)/
subclassi fier({object—type, steel, i—shaped, hot—rolled, column})
subclassi fier({limit—state, buckling, global})"
subclassifier({stress—state, azial, compression})A

rin({object —type, steel, i—shaped. hoi—rolled, column}, P1, 5)A

rinl {limit—state, buckling, global}, P2, §)/

rin({stress— state, azial, compression}, P3, 5)A

intersect(P1, P2, P0) A intersect(P0, P3, P).

That is, is it true that § is the set of all the provisions and object-type is a root node
identifier and limit—state is a root node identifier and stress— stale is a root node identi-
fier and {object—type, steel,i—shaped, hot—rolled, column}, {limit—astate, buckling, global},
and {stress—state, azial, compression} are three subclassifiers and P1 is a set of provisions
associated with the subclassifier {object—type, steel, i—shaped, hot—rolled, column} and F2
is a set of provisions associated with the subclassifier {stress— state, arial, compression} and
P3 is a set of provisions associated with the subclassifier {stress—state, azial, compression}
and the set intersection of P1 and P2 is P0 and the set intersection of P3 and P0 is P. The
result of proving the above theorem is

P = {AI5C1.5.1.3.1, AI5C1.5.1.3.2},

where P is the set of provisions applicable to the design circumstance characterized by the
classifier.

F: Suppose we are given the provision “AISC 1.5.1.2.2", and we are asked to determine its corre-
sponding classifier. This can be done using the following theorem.

Theorem 8

provision(“AISC1.5.1.2.27 A

root(limit—state) A root(stress—siate) A\ root(objeci—type)r
subelassifier(L) A subclassifier(S) / subclassifier(O)A
equal(limit—state, head(L)) A equal(stress—state, head(S))A
equal(object—type, head(O)) A ry1(L, “ATSC1.5.1.2.2")A
r11(S, “AISC1.5.1.2.2") A riy (0, “AISC1.5.1.2.27).

18

That is, is it true that “AISC 1.5.1.2.2" is a provision and limit—state is a root node identifier
and stress—state is a root node identifier and object—iype is a root node identifier and
limit—state is the first element of a set named I and stress—stale is the first element of a
set named S and object—type is the first element of a set named O and L is a subclassifier
for the provision “AISC 1.5.1.2.2" and § is a subclassifier for the provision “AISC 1.5.1.2.27
and () is a subclassifier for the provision “*AISC 1.5.1.2.2". The result of proving the above
theorem is

L = {limit—state, tearout}
§ = {stress—state, bending, shear}
O = {object—type, steel, i—shaped, hot—rolled, beam},

where O, L, and § are the subclassifiers of the classifier corresponding to the provision “AISC
1.5.1.2.2%,

G: Suppose we are given a classifier with one known and two unknown subclassifiers and we are
asked to determine the unknown subclassifiers. Let {limit—state, buckling, local} represent
the known, and X and V" denote the unknown subclassifiers. The following theorem can be
used to determine X and V.

Theorem 9

pset(S) A root(limit—state) A root(object—type) A root(stress— state)/

subclassi fier({limit—state, buckling, local}) A subclassi fier(X) A subclassifier(¥)A

equal(object—type, X) A equal(stress—state, V')A

rin({limit—state, buckling, local}, P1, §) A rin(X, P2, §) A rin(Y, P3, S)A

intersection(P1, P2, P0) A intersection(P3, PO, P) A —equal(F,)
That is, is it true that § is the set of all the provisions and limit—state is a root node identifier
and objeci—type is a root node identifier and stress—state is a root node identifier and
{limit—state, buckling, local} is a subclassifier and X is a subclassifier and ¥ is a subclassifier
and object—type is the first element of X and stress—state is the first element of ¥ and
{limit—state, buckling, local} is a subclassifier for the provision set P1 and X is a subelassifier
for the provision set P2 and Y is a subclassifier for the provision set F3 and FP0 is the set
intersection of P1 and P2 and P is the set intersection of P3 and P0 and P is not an empty
set.

The result of proving this theorem is

X = {object—type, steel, i—shaped, hot—rolled, column}
Y = {stress—stale, bending, shear}

and

X = {object—type, steel,i—shaped, hot—rolled, column}
Y = {stress—state, bending, compressive}.

Note that any of the above answers satisfies the specified theorem.

19

H : The completeness of provisions can be examined using the following theorem.

Theorem 10

provision(P) A complete(P).
That is, is it true that P is a provision and P is complete. The result of proving this theorem
is

P = AIS§C1.5.1.2.1

P=AISC1.5.14

P = AISC1.10.5

P = AISC1.9.1.2

P = AI5C1.9.2.1

P = AI§5C1.6.1.4.5

P = AI5C1.5.1.2.2

P = AISC1.5.1.3.1

P = AISC1.5.1.3.2

which implies that the above provisions are complete.
To identify the incomplete provisions the following theorem is used.

Theorem 11

provision(P) A\ ~complete(P).
That is, is it true that P is a provision and P is not complete. This theorem cannot be proven
true since no incomplete provision exists in the given submodel.

I: To check the uniqueness of the standard’s provision the following theorem is used.

Theorem 12

provision(P) A unigue({ P).
That is, is it true that P is a provision and P is unique. The result of proving the above
theorem is

P = AISC1.5.1.2.1

P= AI5C1.5.14

P = AIS5C1.105

P = AI5C19.1.2

P=AISC1.9.2.1

P = AI5C1.5.1.4.5

P = AISC1.5.1.2.2

P = AIS5C1.5.1.3.1

P = AISC1.5.1.3.2

which implies the above provisions are unique.

20

To identify the non-unique provisions the following theorem is used.

Theorem 13
provision(P) A —unique(FP).

That is, is it true that P is a provision and P is not unique. This theorem cannot be proven
to be true since all the provisions are unique.

The above theorems contain object constants and variables. In general, a theorem can be used in
two ways: (1) given a wf f containing only object constants, check the truth value of the wf f; and
(2) given a w f f containing several variables, generate a value for each variable such that the wf f
becomes true. This dual nature of theorems makes it possible to use theorem proving as a means
for checking a design and for generaling values for the design variables.

In this section several theorems of interest were discussed. Realize that these are not the only
provable theorems of A. In fact any valid expression of the language £ can be considered as a
theorem and can be proven true or false in A. Thus, a general langnage for representing and
reasoning about the organization of a design standard can be developed using predicate logic, and
the language can be used to reason about the organization of the standard via theorem proving.
In this paper one such language for representing and reasoning about the organization of a portion
of the ATSC design specification was discussed.

5 A Logic Programming Implementation

In this section a logic programming implemeniation of A and its use are discussed. Since this
implementation differs in some ways from A we refer to it as A",

5.1 The Program

A’ consists of a set of rules that model Axioms | through 4, a set of rules that are not found in
A but are used to facilitate user interaction with the program, and a set of facts corresponding to
those defined in A.

In the following program the symbol ‘,” denotes the conjunction (A) operator, the symbol *;’ denotes
the disjunction (V) operator, the symbol ‘:-* denotes the reverse implication (<), and [] denotes
the empty list. Also, X.T denotes a list where X is the first element of the list (X = head(X.T))
and T is the remaining element of the list (T = tail(X.T)).

Axiom 1 is modeled using the following rule.

path(I,Y.L):- identifier(X), identifier(Y), limk(X,Y),
(path(Y,L); leafnode(Y), L = []).

Axiom 2 is modeled using the following rule.

21

subclassifier(X.T):- root(X), path(X,T).
Axiom 3 is modeled using the following rule.

ri1(Cc,P):- 1last(C,M), connected(M,P).
Axiom 4 is modeled using the following two rules.

rin(1,P1.T,5):- provision(P1), r11(I,P1), belongsto(P1,5,true),
subtract(P1,5,.¥), zia(X,T,.W).
rinl_.0..)-

The first rule above differs from Axiom 4 in that instead of using the set of all the provisions (5)
in the relation rln in the body of the rule, a subset of § is nused. This subset is denoted by W
and is defined by subtracting the first element of P (which is denoted by P1 in the rule) from S.
This change was necessary to facilitate the generation of the provision set P1.T (i.e., the set P in
Axiom 4) with distinct elements. The second rule is used to stop the recursion in the first rule.

Axiom 5 is modeled using the following rules.

ra1(C1.T,P,B,S):- subclassifier(B.C1), r11(B.C1,P), belongsto(Ci,S,true),
Bubtrnﬂ(l:l.s,“}. n;{TlprBrH}v
rad (B, . o0)

A modification similar to the previous rule is also made for this rule. That is, instead of using S in
the relation rnl in the body of the rule, I is used where W is obtained by subtracting C1 from 5.

Axiom 6 is modeled using the following rule.

abundant(P):- reot(B), subclassifier(B.X), subclassifier(B.Y),
rii(B.I,P), r11(B.Y,P), mot X = Y.

In this rule the infix operator “=" is used instead of the “egual” relation in the axiom.

Axiom 7 is modeled using the following rule.

free(C):- not rii(C,P).
Axiom 8 is modeled using the following rule.

complete(P):- not (root(B), not(subclassifier(B.X), rii(B.X,P))).
Axiom 9 is modeled using the following rule.

22

unique(P):- complete(P), not abundant(P).
pset(S):— findall(X,provision(l),S).

This rule is used to generate the set of all the provisions. The relation findall has the following
interpretation. findall(XX,G(X), P) implies P is the set of elements .X such that the goal G(X) is
satisfied.

cset(S,B):- findall(X,subclassifier(B.I),S).

This rule is used to generate the set of all the subclassifiers for the classifier subtree B.

To demonstrate how the formal organizational submodel handles abundance, incompleteness, and
uniqueness properties, two modifications are made to the set of facts F. The provision “AISC1.5.1.4"
is connected to the leaf node ‘local’ and the provision “Al§C1.5.1.3.1" is disconnected from the
leaf node ‘global’ in the limit-state subtree. These modifications are reflected in the following facts.

identifier(limitstate). identifier(objectype).
identifier(stresstate). identifier(ishaped).
identifier(yield). identifier(steel).
identifier(buckling). identifier(tearout).
jidentifier(local). identifier(global).
identifier(hotrolled). identifier(beam).
identifier(axial). identifier(column).
identifier(bending). identifier(beamcolumn).
identifier(compression). identifier(objectype).
identifier(tension). identifier(shear).
identifier(compressive). identifier(tensile).
provision("AISC 1.5.1.3.1"). link(limitstate,yield).
provision("AISC 1.5.1.3.2"). link(limitstate,buckling).
provision("AISC 1.5.1.4"). link(limitstate,tearcut).
provision("AISC 1.5.1.2.1"). link(buckling,local).
provision(“AISC 1.6.1.2.2"). link(buckling,global).
provision("AISC 1.10.5"). link(yield,"AISC 1.5.1.2.1").
provision("AISC 1.9.1.2"). link(yield,"AISC 1.5.1.4").
provision("AISC 1.9.2.1"). link(local,"AISC 1.10.5").
provision("AISC 1.5.1.4.4"). link(compression,"AISC 1.5.1.3.2").
root(limitstate). link(local,"AISC 1.9.1.2").
root(stresstate). link(local ,"AISC 1.9.2.1").
root(objectype). link(global,"AISC 1.5.1.4.5").
leafnode(yield). link(beam,"AISC 1.5.1.4.5").
leafnode(local). link(beam,"AISC 1.9.1.2").
leafnode(global). link(bending,tensile).
leafnode(tearout). link(beam,"AISC 1.5.1.2.1").
lsafnode(beax). link(column,"AISC 1.5.1.3.1").

23

leafnode(column).
leafnode(beamcolumn).
leafnode(axial).
leafnode(compression).
leafnode(shear).
leafnode(tensile).
leafnode(compressive).
link(global,"AISC 1.5.1.3.2").

link(tearont,"AISC 1.5.1.2.2").

link(hotrolled,beam).
link(hotrolled,column).
link(objectype,stesl).
link(steel,ishaped).
link(ishaped,hotrolled).
link(beam,"AISC 1.5.1.2.2").
link(beam,"AISC 1.10.5").
link(beam,"AISC 1.5.1.4").

5.2 Some Illustraiive Examples

In this section we illustrate the use of logic programming for proving the theorems expressed in

link(compressive,"AISC 1.5.1.4.5").
link(column,"AISC 1.5.1.3.2").
link(beam,"AISC 1.9.2.1").
link(shear,"AISC 1.5.1.4").
link(shear,"AISC 1.10.5").
link(shear,"AISC 1.5.1.2.2").
link(compressive,"AISC 1.9.1.2").
link(global,"AISC 1.5.1.3.1").
link(stresstate,axial).
link(stresstate,bending).
link(axial,compression).
link(tensile,"AISC 1.5.1.2.1").
link({compressive,"AISC 1.9.2.1").
link(compression,"AISC 1.5.1.3.1").
link(axial,tension).
link(bending,shear).
link(bending,compressive).

Section 4.2. In logic programming the term goal replaces the term theorem.

Theorem 1

? root(limitstate), subclassifier([limitstate,buckling,local]),
pset(5), rin([limitstate,buckling,local]l,P,S).

In response to the above goal the system returns

P = [AISC 1.5.1.4,ATSC 1.10.5,ATSC 1.9.1.2,AISC 1.9.2.1]

Theorem 2

? root(limitstate), subclassifier(limitstate.buckling.X),
pset(S), rin(limitstate.buckling.X P,S).

In response to the above goal the system returns

P =

I = local

P = [AISC 1.5.1.3.2,AI5C 1.5.1.4.5]
I = global

24

[AISC 1.5.1.4, ATISC 1.10.5,ATISC 1.9.1.2,AT5C 1.9.2.1]

Theorem 3

? provision("ATSC 1.5.1.2.1"), root(objectype), cset(S,cbjectype),
rn1(C,"AISC 1.5.1.2.1",0bjectype,S).

In response to the above goal the system returns

C = [[objectype,steel,ishaped,hotrolled,beam]]

Theorem 4
? provision(P), abundant(P).
In response to the above goal the system returns

P = ATSC 1.5.1.4

Theorem &
? provision(P), not abundant(F).
In response to the above goal the system returns

= AISC
= ATSC
= ATSC
AISC
= AISC
= AISC
= AISC
= AISC

o o g om g g
i

O e e e e

DWW

T P A

B T kS

o N e

Theorem 6

? root(objectype), subclassifier(objectype.l), free(I).
In response to the above goal the system returns

P = [objectype,steel,ishaped,hotrolled,beancolu=n]

25

F |

root(B), subclassifier(B.I), free(I).

In response to the above goal the system returns

P = [stresstate,axial,tension]
P = [objectype,steel,ishaped,hotrolled,beamcolumn]
Theorem T

 §

pset(S), pset(S1), pset(S2),

root{objectype), root(limitstate), root(stresstate),
subclassifier([objectype,steel,ishaped, hotrolled,column]),
subclassifier([limitstate,buckling,globall),
subclassifier([stresstate,axial,compression]),

rin(C1, [objectype,steel,ishaped, hotrolled,column] ,51),
rin(C2, [linitstate,buckling,global] ,52),

rin(C3, [stresstate,axial,compression] ,53),
intersect(P1,P2,P0), intersect(P3,P0,P).

In response to the above goal the system returns

P

= [AISC 1.5.1.3.2]

Theorem 8

4

provision("AISC 1.10.5"),
subclassifier(limitstate.L),
subclassifier(objectype.0),
subclassifier(stresstate.S),
rii(limitstate.L,P),
rii(objectype.D,P),
rii(stresstate.5,P).

In response to the above goal the system returns

L]

[limitstate,buckling,local]
[stresstate,bending,shear]
[ocbjectype,steel,ishaped,hotrolled, beax]

26

Theorem 9

7 pset(S), pset(S1), pset(S2),
subclassifier([limitstate,buckling,locall),
subclassifier(cbjectype.X),
subclassifier(stresstate.Y),
rin([limitstate,buckling,local] ,P1,51),
rin(objectype.X,P2,52),
rin(stresstate.Y,P3,53),
intersection(P1,P2,P0),
intersection(P3,P0,P),
not (P = [O).

In response to the above goal the system returns

[cbjectype,steel,ishaped, hotrolled,beaxn]
[stresstate,bending,shear]

vl
o

b
n

[objectype,steel,ishaped,hotrolled,beam]
[stresstate,bending,compressive]

]
n

=
]

[objectype,steel,ishaped, hotrolled ,baan]
[stresstate,bending,tensile]

=}
]

Theorem 10
? provision(P), complete(P).

In response to the above goal the system returns

ha

= ATSC
= AISC
= ATSC
= ATSC
= AISC
= ATSC
= AISC

R
e e
D b W
i

-10.5

b I I I - I - - L+
B b b ek ek s
W oW e
Ry s
(= S

Theorem 11
? provision(P), not complete(P).
In response to the above goal the system returns

27

P =1A4I5C 1
P=14I5C 1

5 e S5 i
H.l.2:1
Theorem 12

? provision(P), unique(P).

In response to the above goal the system returns

AISC
AISC
= AISC
= AISC
ATSC
= ATSC

o o
[T
0w
NN

-10.5

b I - - - B
[[
(L TV I
L
T]

A S T
AT T i

Theorem 13
? provision(P), not unique(P).

In response to the above goal the system returns

P=1.5.1.3.1
P=1.5.1.2.1
P=1.5.1.4

6 Summary

The overall organization of a portion of the AISC design specification is formally modeled using
predicate logic. This model called the formal organizational submodel of the AISC design specifi-
cation, is composed of a formal language and a set of axioms. Reasoning about the organization of
the AISC design specification is accomplished using the formal language to first formulate expres-
sions called theorems and then to prove the theorems via the resolution theorem proving strategy.
Theorems are used (1) to prove the uniqueness and completeness of the provisions and (2) to query
the formal submodel.

A logic programming implementation of the submodel is presented and is used to prove the theorems
discussed in Section 4.2.1.

28

7 Acknowledgment

This work was sponsored by the National Science Foundation under grant M5M-8451465, a Presi-
dential Young Investigator Award. The support of NSF is gratefully acknowledged.

References

[AISCS0]

[Cronembold88)

[Dym85]

[Elam88]

[Fenves69]

[Fenves87]

[Garrett86]

[Genesereth88]

‘Harris81]

[Jain89]

[Lloyd8T7]

Manual of Steel Construction, Eight Edition, American Institute of Steel Con-
struction, 1980.

Cronembold, J.R., and Law, K.H. (1988). “Automated Processing of Design Stan-
dards,” Journal of Computing in Civil Engineering, Volume 2, Number 3, Pages
255-273.

Dym, C.L., Henchey, R.P., Delis, E.A., and Gonick, S. (1988). “A Knowledge-
Based System for Automated Architectural Code Checking,” Computer Aided
Design, Volume 20, Number 3, Pages 137-145.

Elam, S.L., and Lopez, L.A. (1988). “Knowledge Based Approach to Checking
Designs for Conformance with Standards,” Civil Engineering Studies, Civil En-
gineering Systems Laboratory, Research Series Number 9, University of Illinois,
Urbana, lllinois.

Fenves, S.J., Gaylord, E.H., and Geel, S.K. (1969). “Decision Tables Formulation
of the 1969 AISC Specification,” Civil Engineering Studies, Structural Research
Series, Number 347, University of Illinois, Urbana, Illinois.

Fenves, S.J., Wright, R.N., Stahl, F.I., and Reed, K.A. (1987). “Introduction
to SASE: Standards Analysis, Synthesis, and Expression,” National Burean of
Standards, NBSIR 87-3513.

Garrett, J.H., and Fenves, §.J. (1986). “A Knowledge-Based Standards Processor
for Structural Component Design,” Report R-86-157, Civil Engineering Depart-
ment, Carnegie-Mellon University, Pittsburgh, Pennsylvania.

Genesereth, M.R., and Nilsson, N.J. (1988). Logical Foundations of Artificial In-
telligence, Morgan Kaufmann.

Harris, J.R., and Wright, R.N. (1981). “Organization of Building Standards: Sys-
tematic Techniques for Scope and Arrangement,” National Bureau of Standards,
Building Science Series 136.

Jain, D., Law, K.H., and Krawinkler, H. (1989). “On Processing Standards with
Predicate Calculus,” Proceedings of the Sixth Conference on Computing in Civil
Engineering, Will, K. (Editor), Atlanta, Georgia.

Lloyd, J.W. (1987). Foundations of Logic Programming, Second extended Edition,
Springer-Verlag.

29

[Lopez&9]

[Loveland 78]

[Nyman73]

[Rasdorfs7]

[Wos84]

Lopez, L.A., Elam, S., and Reed, K. (1989). “Software Concept for Checking
Engineering Designs for Conformance with Codes and Standards,” Engineering
with Computers, Volume 5, Number 2, Pages 63-78.

Loveland, D. (1978). Automated Theorem Proving: A Logical Basis, North-
Holland.

Nyman, D.J., and Fenves, §.J. (1973). “An Organizational Model for Design Spec-
ification,” Technical Report R73-4, Department of Civil Engineering, Carnegie-
Mellon University, Pittsburgh, Pennsslvania.

Rasdorf, W.J., and Wang, T. (1987). “Generic Design Standards Processing in a
Knowledge-Based Expert System Environment,” Proceedings of the NSF Work-
shop on the Design Process, Waldron, M.B., (Editor), Ohioc State University,
Columbus, Ohio, Pages 267-291.

Wos, L., Overbeek, R., Lust, E., and Boyle, J. (1984). Auiomaied Reasoning
Introduction and Applications, Prentice-Hall Inc.

30

object-type
steel concrete
i
l-shaped C-shaped
/\ H
hot-rolled welded
/‘r\ :
beam column beam-column
-
! : limit-state
|
| /_/"f’T\
.-"""___""-._ ,-"'-_'_-_' .'"--___
-'/-'-(:J.usc e, /omsc151.a0° \.,
_ S | "AISC15.1.3.2" /e' yield buckling tearout
AISC151.4° \H.h_ = A
“AISC 1105
e local global
AEC192 71
"WSC1.51.45 — T e ; TRt e =
“WSC15127 AISC 15127 WSC 1105 1\ [CAISC 15T ASC 15122
i ~ | =AISC 15.1.4° - cAscieaz || wscisiaz b | i
s T N mscia2 |"f,»’f NIAISC 1.5.1.4.5
stress-state
axial bending
compression tension shear compressive tensile
: |
i |
| l |
e e --"f___h_““x _.f"_'__h""\\ P
{ SC151aT WSC 1512 7" MSC 18 &y . AISC 1S e
WSC151aF WISC 1105 msCis2T e e
e SO A 15127 TAISC 15145,
Tt A S

Figure 1: An Organizational Submodel for a Portion of the AISC Desing Specification

\gradisivand paper FpaperdiZ gem

3 -
C N
G
Cg |
C5 {
Cq ;
& 2
o 4 ///

C: = {511, 512, 513}
Cz = {521, S22, S23}
C3 = {531, 32, Saa}
Cy = {821, 543, Sas}
Cs = {551, 552, Ss3}
Ce = {561, S62: Se3}
Cy = {571, S12, 513}

where

e S
7 "AISC 1.5.1.4.5

/*AISC 1.5.1.2.2°
“AISC 1.9.1.2"

*AISC 1.5.1.4"
"AISC 1.5.1.2.1"

*AISC 1.5.1.3.2°
*AISC 1.5.1.3.1"

_ "AISC 1.9.2.1"

y

511 = {object—type, steel, i—shaped, hot—rolled, beam}

512 = {“mff—"-&fﬂiE, ylﬂf-d}
§,3 = {stress—state, bending, shear}

Sa1 = Sn
S22 = S12
Sa3 = {stress—staie, bending, tensile}

S'.'3,1 = 511
Sa; = {limit—siate, buckling, local}
S33 = 513
84 =51
542 = Sas

Sa3 = {stress—state, benidng, compressive}

LS /"/z
S fSE e

Ss1 = 511
S5z = {limit—state, buckling, global}
Ss3 = S43
Se1 = 511
Sg2 = {limit—state, tearout}
Sez = 513

871 = {object—type, steel, i—shaped, hot—rolled, column}
S72 = Ss2
Stz = {stress— state, arial, compression}

Figure 2: Classifier (C) and Provision (P) Sets

