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Abstract

Benders decomposition uses a strategy of “learning from one’s mis-

takes.” The aim of this paper is to extend this strategy to a much larger

class of problems. The key is to generalize the linear programming dual

used in the classical method to an “inference dual.” Solution of the

inference dual takes the form of a logical deduction that yields Ben-

ders cuts. The dual is therefore very different from other generalized

duals that have been proposed. The approach is illustrated by work-

ing out the details for propositional satisfiability and 0-1 programming

problems. Computational tests are carried out for the latter, but the

most promising contribution of logic-based Benders may be to provide

a framework for combining optimization and constraint programming

methods.

∗This research was partially supported by U.S. Office of Naval Research Grant N00014-
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Benders decomposition [7, 17] uses a problem-solving strategy that can

be generalized to a larger context. It assigns some of the variables trial values
and finds the best solution consistent with these values. In the process it

learns something about the quality of other trial solutions. It uses this
information to reduce the number of solutions it must enumerate to find

an optimal solution. The strategy might described as “learning from one’s
mistakes.”

The central element of Benders decomposition is the derivation of Ben-
ders cuts that exclude superfluous solutions. Classical Benders cuts are
formulated by solving the dual of the subproblem that remains when the

trial values are fixed. The subproblem must therefore be one for which dual
multiplers are defined, such as a linear or nonlinear programming problem.

The key to generalizing Benders decomposition is to extend the class
of problems for which a suitable dual can be formulated. We depart from

previous generalizations of duality by defining an inference dual for any
optimization problem. The solution of the inference dual is a proof of op-

timality within an appropriate logical formalism. Generalized Benders cuts
are obtained by determining under what conditions the proof remains valid.

Classical Benders decomposition can be seen to be a special case of this
approach if it is viewed in a different light than the usual.

Logic-based Benders decomposition can be applied to any class of opti-

mization problems, but a proof scheme and a method of generating Benders
cuts must be devised for each class. We illustrate the method by applying

it to propositional satisfiability, 0-1 programming problems, and a machine
scheduling problem. The subproblems in these cases are not the traditional

linear or nonlinear programming problems. One can therefore take advan-
tage of special structure in the subproblems that is inaccessible to the tra-

ditional Benders method.
For example, a satisfiability or 0-1 programming problem may decou-

ple into several smaller problems when certain variables are fixed. The
subproblem can therefore be solved rapidly by solving its individual compo-
nents, even though the components are themselves general satisfiability or

0-1 problems.
We address the satisfiability problem because it illustrates logic-based

Benders in a lucid way and is an important problem in its own right. We
examine the 0-1 programming problem because of the attention it has his-

torically received. None of this should suggest, however, that logic-based
Benders is applicable only to these problem classes.

For instance, Jain and Grossmann [31] recently solved machine schedul-
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ing problems using a technique that is in effect logic-based Benders de-

coposition. Because the subproblems are one-machine scheduling problems,
classical Benders cuts are unavailable. Jain and Grossmann achieved dra-

matic speedups in computation by solving the subproblems with constraint
technology. This experience suggests that logic-based Benders can provide

a natural medium for combining optimization and constraint programming.
This idea is discussed in [27, 29].

The first section below reviews related work. Section 2 presents the basic
idea of logic-based Benders decomposition. Section 3 introduces inference
duality, and Section 4 shows how linear programming duality is a special

case. The next two sections present logic-based Benders decomposition in
the abstract, followed by its classical realization. Sections 7 and 8 apply

logic-based Benders to the propositional satisfiability problem and 0-1 pro-
gramming, respectively. Section 9 presents computational results for 0-1

programming, and Section 10 describes Jain and Grossmann’s work. The
final section is reserved for concluding remarks.

1 Related Work

Various types of generalized duality have been proposed over the years. Tind
and Wolsey provided a survey in 1981 [43]. Much of this and subsequent

work [2, 3, 8, 9, 13, 48, 49] is related to the superadditive duality of Johnson
[35]. In 1981 Wolsey [50] used such a notion of duality as the basis for a

generalized Benders algorithm in which the classical dual prices are replaced
by a price function. Several other duals have been suggested for integer

programming [4, 6, 15, 16, 40, 41]. A recent paper of Williams [47] examines
a wide variety of duality concepts. Still more recently, Lagrangean and
surrogate duals are interpreted in [27, 29] as forms of a relaxation dual.

The inference dual proposed here is fundamentally different from these
earlier duals, because it regards the dual as an inference problem. Its so-

lution is in general a proof, rather than a set of prices or a price function.
The resulting generalization of Benders decomposition is therefore unlike

Wolsey’s.
The idea of inference duality might be traced ultimately to Jeroslow and

Wang [33]. They showed that when linear programming demonstrates the
unsatisfiability of a set of Horn clauses in propositional logic, the dual so-

lution contains information about a unit resolution proof of unsatisfiability.
(Unit resolution is defined in Section 7 below.) This introduces the key idea
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that the dual solution can be seen as encoding (or partially encoding) a

proof. It does not, however, show how to generalize the idea beyond a linear
programming context, and a subsequent generalization focused on another

type of linear programming problem, namely gain-free Leontief flows [32].
Hooker and Yan [30] introduced the logic-based Benders scheme de-

scribed here, or a special case of it, in the context of logic circuit verification,
and they presented computational results. Their method is that of Section 5

below specialized to logic circuits. After the first draft of the present paper
was written (1995), Hooker [25] proposed inference duality as a basis for
postoptimality analysis, and Dawande and Hooker [14] specialized the ap-

proach to sensitivity analysis for mixed integer programming. These ideas
are presented in [27] as part of a general theoretical framework.

2 The Basic Idea

As already noted, Benders decomposition learns from its mistakes. A similar
idea has been developed in a general way in the constraint programming

literature under the rubric of nogoods ([45], Section 5.4; [34]). When in
the process of solving a problem one deduces that a certain partial solution

cannot be completed to obtain a feasible solution, one can examine the
reasons for this. Often the same reasons lead to a constraint that excludes

a number of partial solutions. Such a constraint is a nogood.
Benders decomposition uses a more specific strategy. It begins by par-

titioning the variables of a problem into two vectors x and y. It fixes y

to a trial value so as to define a subproblem that contains only x. If the

solution of the subproblem reveals that the trial value of y is unacceptable,
the solution of the subproblem’s dual is used to identify a number of other
values of y that are likewise unacceptable. The next trial value must be one

that has not been excluded. Eventually only acceptable values remain, and
if all goes well, the algorithm terminates after enumerating only a few of the

possible values of y. (The method is presented in more detail below.)
Because Benders decomposition searches for an optimal as well as a

feasible solution, it actually enumerates trial values of (z, y), where z is the
objective function value. Its “nogoods” have the form z ≥ β(y), where

β(y) is a bound on the optimal value that depends on y. The constraints
z ≥ β(y) are known as Benders cuts and can rule out a large number of

values of (z, y).
The specialized context of Benders decomposition enhances the general
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strategy in two ways.

• The pre-arranged partition of variables can exploit problem structure.
When y is fixed, the resulting subproblem may simplify substantially

or decouple into a number of small subproblems.

• The linearity of the subproblem allows one to obtain a Benders cut in
an easy and systematic way, namely by solving the linear programming

dual.

The intent here is to generalize a Benders-like strategy while retaining these

two advantages to a large degree. The key to doing so is to generalize the
notion of a dual. The dual must be definable for any type of subproblem,

not just linear ones, and must provide an appropriate bound on the optimal
value.

Such a dual can be formulated simply by observing that a valid bound

β on the optimal value is obtained by inferring it from the constraints.
A generalized dual can therefore defined as an inference dual, which is the

problem of inferring a strongest possible bound from the constraint set. The
classical linear programming dual is the inference dual problem for linear

optimization. A solution of the inference dual takes the form of a proof that
β is in fact a bound on the optimal value.

In the context of Benders decomposition, the proof that solves the sub-
problem dual provides a valid bound β on the assumption that y is fixed

to some particular value. But the same reasoning may deliver valid bounds
when y takes other values. A constraint that imposes these bounds as a
function of y becomes the logic-based Benders cut. It plays the same role as

the classical Benders cut, although it may not take the form of an inequality
constraint.

3 Inference Duality

Consider a general optimization problem,

min f(x)

subject to x ∈ S

x ∈ D

(1)

where f is a real-valued function. The domain D is distinguished from the

feasible set S. The domain might be the set of real vectors, 0-1 vectors, etc.
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The feasible set S is generally defined by a collection of constraints, and it

need not be a subset of D.
To state the inference dual it is necessary to define a semantic form of

implication with respect to a domain. Let P and Q be two propositions
whose truth or falsehood is a function of x. Then P implies Q with respect

to D (notated P
D
−→ Q) if Q is true for any x ∈ D for which P is true.

The inference dual of (1) is

max β

s.t. x ∈ S
D
−→ f(x) ≥ β

(2)

The dual seeks the largest β for which f(x) ≥ β is implied by the constraint

set. In other words, the dual problem is to find a tighest possible bound on
the objective function value.

It is convenient to let the optimal value of a minimization problem be
respectively ∞ or −∞ when the problem is infeasible or unbounded, and

vice-versa for a maximization problem. A strong duality property obviously
holds for the inference dual: an optimization problem (1) always has the

same optimal value as its inference dual (2).
Although the inference dual is very simple and satisfies a trivial form

of strong duality, it suggests a different way of thinking about duality. It
leads to a new generalized Benders algorithm as well as the new approach
to sensitivity analysis mentioned earlier [14, 25]. It also suggests a different

interpretation of the nontrivial strong duality theorems that appear in the
optimization literature. Each such theorem identifies a method of proof

for a particular logic and asserts that the method is sound and complete.
(A proof method is sound when it obtains only valid inferences, and it is

complete when it obtains all valid inferences.) Classical linear programming
duality is an example of this.

4 Linear Programming Duality

The inference dual of a linear programming problem,

min cx

s.t. Ax ≥ a

x ≥ 0

(3)
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can be stated,
max β

s.t.

(

Ax ≥ a

x ≥ 0

)

Rn

−→ cx ≥ β
(4)

Linear inequalities over Rn can be regarded as forming a type of logic in

which the inequalities are propositions, and nonnegative linear combinations
provide a sound and complete proof method. More precisely, a feasible

system Ax ≥ a, x ≥ 0 semantically implies cx ≥ β with respect to Rn if and
only if there is a real vector u ≥ 0 for which uA ≤ c and ua ≥ β; i.e., if and

only if the surrogate inequality uAx ≥ ua dominates cx ≥ β for some u ≥ 0.
Another way to state this is that Ax ≥ a, x ≥ 0 implies cx ≥ β if and

only if the classical dual problem has a solution u for which ua ≥ β:

max ua

s.t. uA ≤ c

u ≥ 0

(5)

The classical dual therefore has the same optimal value as the inference
dual (4) when Ax ≥ a, x ≥ 0 is feasible. This leads immediately (because

of strong inference duality) to the classical strong duality theorem for linear
programming: (5) has the same optimal value as (3), unless both are infea-

sible. Classical strong duality is therefore a way of stating the completeness
of nonnegative linear combination as a proof method for the logic of linear
inequalities. A feasible solution u of the classical dual can be interpreted as

encoding a proof within this logic.

5 Benders Decomposition in the Abstract

Benders decomposition views elements of the feasible set as pairs (x, y) of
objects that belong respectively to domains Dx, Dy. So the optimization
problem (1) becomes,

min f(x, y)

s.t. (x, y) ∈ S

x ∈ Dx, y ∈ Dy

(6)

A general Benders algorithm begins by fixing y at some trial value ȳ ∈
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Dy. This results in the subproblem,

min f(x, ȳ)

s.t. (x, ȳ) ∈ S

x ∈ Dx

(7)

The inference dual of the subproblem is

max β

s.t. (x, ȳ) ∈ S
Dx−→ f(x, ȳ) ≥ β

(8)

The dual problem is to find the best possible lower bound β∗ on the optimal

cost that can be inferred from the constraints, assuming y is fixed to ȳ.
The heart of Benders decomposition is somehow to derive a function

βȳ(y) that gives a valid lower bound on the optimal value of (6) for any
fixed value of y.

Just how this is done varies from one context to another, but essentially
the idea is this. Let β∗ be the value obtained for (8), which means that β∗

is a lower bound on the optimal value of (6), given that y = ȳ. The solution
of (8) is a proof of this fact. One then notes what valid lower bound this
same line of argument yields for other values of y. This bound is expressed

as a function βȳ(y) of y, yielding a Benders cut z ≥ βȳ(y) The subscript ȳ

reflects which value of y gave rise to the bounding function.

The algorithm proceeds as follows. At each iteration the Benders cuts
so far generated comprise the constraints of a master problem,

min z

s.t. z ≥ βyk (y), k = 1, . . . , K

y ∈ Dy

(9)

Here y1, . . . , yK are the trial values of y hitherto obtained. The next trial
value (z̄, ȳ) of (z, y) is obtained by solving the master problem. If the optimal

value β∗ of the resulting subproblem dual (8) is equal to z̄, the algorithm
terminates with optimal value z̄. Otherwise a new Benders cut z ≥ βȳ(y) is

added to the master problem. The subproblem dual need not be solved to
optimality if a suboptimal β is found that is better than z̄. At this point

the procedure repeats.
A precise statement of the algorithm appears in Fig. 1. Note that if the

subproblem is infeasible, the dual is unbounded, so that β∗ = βȳ(ȳ) = ∞.
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Choose an initial ȳ ∈ Dy in problem (6).

Set z̄ = −∞ and k = 0.
While the subproblem dual (8) has a feasible solution β > z̄:

Formulate a lower bound function βȳ(y) with βȳ(ȳ) = β.

Let k = k + 1, let yk = ȳ, and add the Benders cut

z ≥ βyk (y) to the master problem (9).

If the master problem (9) is infeasible then
Stop; (6) is infeasible.

Else
Let ȳ be an optimal solution of (9) with

optimal value z̄.

The optimal value of (6) is z̄.

Figure 1: The generic Benders algorithm.

Theorem 1 Suppose that in each iteration of the generic Benders algo-
rithm, the bounding function βȳ satisfies the following.

(B1) The Benders cut z ≥ βȳ(y) is valid; i.e., any feasible solution (x, y)
of (6) satisfies f(x, y) ≥ βȳ(y).

Then if the algorithm terminates with a finite optimal solution (z, y) = (z̄, ȳ)

in the master problem, (6) has an optimal solution (x, y) = (x̄, ȳ) with value
f(x̄, ȳ) = z̄. If it terminates with an infeasible master problem, then (6) is

infeasible. If it terminates with an infeasible subproblem dual, then (6) is
unbounded.

Proof. Suppose first that the algorithm terminates with a finite solution

(z, y) = (z̄, ȳ) that is optimal in the master problem. Let β∗ be the optimal
value of the last subproblem dual (8) solved. Then the subproblem primal

(7) has optimal value β∗ and some optimal solution x̄. Clearly β∗ is an upper
bound on the optimal value of (6). But because the algorithm terminated

with a finite solution, β∗ = z̄. Finally, due to (B1), z̄ is a lower bound on
optimal value of (6). It follows that z̄ is the optimal value of (6). Because

(x̄, ȳ) is feasible in (6), it is also optimal.
Because all Benders cuts are valid, infeasibility of the master problem

implies that (6) is infeasible.

Finally, if the subproblem dual is infeasible, then the subproblem is
unbounded. This implies that (6) is unbounded. ✷
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The algorithm need not terminate in general, even if the subproblem is

always solved to optimality. Consider for example the problem,

min y

s.t. y ≥ x

x ≥ 1
y ≥ 0

x, y ∈ R,

which has the optimal solution (x, y) = (1, 1). It is consistent with the
algorithm to set

βȳ(y) =

{

∞ if y < 1
2 (1 + ȳ),

0 otherwise.

Then initially (z̄, ȳ) = (0, 0), and the solutions yk of the master problem

follow the sequence 1 − ( 1
2)k for k = 1, 2, . . ., so that the algorithm never

terminates.

If the domain of y is finite, however, the algorithm must terminate,
because only finitely many subproblems can be defined. Because z̄ must

increase in every iteration but the last, the optimal value is reached after
finitely many steps.

Theorem 2 Suppose that in each iteration of the generic Benders algo-

rithm, the bounding function βȳ satisfies (B1) and the following.

(B2) βȳ(ȳ) = β, where β is the solution value obtained in the subproblem
dual (8).

Then if Dy is finite and the subproblem dual is solved to optimality, the
generic Benders algorithm terminates.

Proof. Due to (B2), the subproblem value β must increase in every
iteration but the last. Because Dy is finite and the subproblem dual is
solved to optimality, the latter can generate only finitely many values. So

the algorithm must terminate. ✷
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6 Classical Benders Decomposition

The classical Benders technique applies to problems in which the subproblem
is linear.

min cx + f(y)

s.t. Ax + g(y) ≥ a

x ≥ 0

x ∈ Rn, y ∈ Dy

(10)

where g(y) is a vector of functions gi(y). The subproblem (7) becomes,

min cx + f(ȳ)

s.t. Ax ≥ a − g(ȳ)

x ≥ 0

(11)

Due to classical strong duality, the subproblem dual (8) can be written,

max u(a− g(ȳ)) + f(ȳ)

s.t. uA ≤ c

u ≥ 0

(12)

provided either (11) or (12) is feasible.
If the dual (12) has a finite solution u, then u provides an inference

procedure (a linear combination) for obtaining a valid bound on the objective
function value z of (10):

z ≥ u(a − g(ȳ)) + f(ȳ)

that is valid when y = ȳ. The key to obtaining a bound for any y is to
observe that this same u remains feasible in the dual for any y. So the same

procedure (i.e., the same u) provides a bound

z ≥ βȳ(y) = u(a− g(y)) + f(ȳ)

for any y. This is the classical Benders cut. It is straightforward to show

that when the dual is infeasible or unbounded, one can obtain a cut

v(a− g(y)) ≤ 0,

where v is a ray that solves

max v(a− g(ȳ))

s.t. vA ≤ 0

v ≥ 0
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7 Propositional Satisfiability

The propositional satisfiability problem is to find an assignment of truth
values to logical variables (atomic propositions) xj for which a given set of

logical clauses are all true. A clause is a disjunction of literals, each of which
is an atomic proposition or its negation. For instance, x1 ∨ ¬x2 ∨ ¬x3 is a

clause asserting that x1 is true or x2 is false or x3 is false. One clause C

implies another D if and only of C absorbs D; i.e., C contains all the literals

in D.
A logical clause may be denoted Ci(x), where x = (x1, . . . , xn) is a

vector of logical variables, and the variables appearing in Ci(x) belong to

{x1, . . . , xn}. The satisfiability problem can be formulated as an optimiza-
tion problem by giving it an objective function of zero.

min 0

s.t. Ci(x), i ∈ I
(13)

The optimal value of (13) is zero if the clauses Ci(x) are jointly satisfiable,

and otherwise it is infinite (by convention).
The inference dual is,

max β

s.t. {Ci(x) | i ∈ I}
{T,F}n

−→ 0 ≥ β
(14)

where T and F denote true and false, respectively. When the clauses are
satisfiable, the maximum value of β is zero. Otherwise the antecedent of
the implication is necessarily false and implies 0 ≥ β for arbitrarily large β

(because a necessarily false proposition implies everything). In this case the
dual problem is unbounded.

Benders decomposition is applied when the propositional variables are
partitioned (x, y). The satisfiability problem (13) becomes

min 0

s.t. Ci(x) ∨ Di(y), i ∈ I
(15)

Ci(x) represents the part of clause i containing variables in x, and Di(y) the
part containing variables in y. Either part may be empty. In practice the

variables would be partitioned so that the subproblem has special structure;
this is discussed further below.
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For a fixed assignment ȳ of truth values to y, the subproblem is,

min 0

s.t. Ci(x), i ∈ I(ȳ)
(16)

where I(ȳ) is the set of i for which Di(ȳ) is false. When Di(ȳ) is true,

the clause Ci(x) ∨ Di(ȳ) is already satisfied and need not appear in the
subproblem. The subproblem dual is,

max β

s.t. {Ci(x) | i ∈ I(ȳ)}
{T,F}n

−→ 0 ≥ β
(17)

As an example, consider the satisfiability problem,

min 0

s.t. x1 ∨ x2 ∨ y1 ∨y2 (a)

x1 ∨¬x2 ∨ y1 (b)

¬x1 ∨ x3 ∨y2 (c)

x2 ∨¬x3 ∨ y1 ∨y2 (d)

¬x2 ∨¬x3 ∨y2 (e)

¬x1 ∨ x2 ∨ x3 ∨ y1 (f)

x1 ∨ x2 ∨ x3 ∨¬y1 ∨y3 (g)

Initially the master problem (9) contains no constraints, and the solution

ȳ may be chosen arbitrarily. If ȳ = (F, F, F ), clauses (a)-(f) appear in the
subproblem, with the yj terms removed. The subproblem is therefore

min 0
s.t. x1 ∨ x2 (a)

x1 ∨¬x2 (b)

¬x1 ∨ x3 (c)

x2 ∨¬x3 (d)

¬x2 ∨¬x3 (e)

¬x1 ∨ x2 ∨ x3 (f)

(18)

A branching method known as the Davis-Putnam-Loveland algorithm
appears to be among the most effective complete algorithms for solving a
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x1 ∨ x2 (a)
x1 ∨ ¬x2 (b)
¬x1 ∨ x3 (c)
x2 ∨ ¬x3 (d)
¬x2 ∨ ¬x3 (e)
¬x1 ∨ x2 ∨ x3 (f)

✟✟✟✟✟✟

x1 = T
❍❍❍❍❍❍

x1 = F

x3 (c)
x2 ∨ ¬x3 (d)
¬x2 ∨ ¬x3 (e)
x2 ∨ x3 (f)

✑
✑

✑
✑

x2 = T ◗
◗

◗
◗

x2 = F

x2 (a)
¬x2 (b)
x2 ∨ ¬x3 (d)
¬x2 ∨ ¬x3 (e)

✔
✔

✔

x2 = T ❚
❚
❚

x2 = F

x3 (c)
¬x3 (e)

✔
✔

✔

x3 = T ❚
❚
❚

x3 = F

x3 (c)
¬x3 (d)
x3 (f)

✔
✔

✔

x3 = T ❚
❚
❚

x3 = F

(b)∗ (a)∗

(e)∗ (c)∗ (d)∗ (c)∗, (f)∗

Figure 2: A solution of the satisfiability subproblem by branching. The
clauses remaining at each nonleaf node are indicated. The clauses falsified

at each leaf node are indicated with an asterisk.

satisfiability problem such as this (e.g., [12]). Figure 2 shows a straightfor-

ward branching tree that finds (18) to be unsatisfiable. The Davis-Putnam-
Loveland algorithm adds a “unit resolution” step that will be discussed later.

The procedure in Figure 2 is simple. At the root node, the search
branches on x1 by setting x1 to true and false. This generates two sub-

problems, corresponding to left and right child nodes respectively. Clauses
(a) and (b) can be dropped in the left subproblem because x1 = T satisfies

them. Also ¬x1 is deleted from clause (f) because it cannot be true. The
right subproblem is similarly simplified.

The search continues in recursive fashion until a feasible solution is found

or the subproblem at every leaf node is shown to be unsatisfiable. A feasible
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solution is found when the variables fixed so far at some node of the search

tree satisfy every clause in the subproblem at that node. (A clause is satisfied
when at least one literal in it is fixed to true.) A subproblem is shown to be

unsatisfiable at a node when the variables fixed so far violate at least one
clause of the subproblem (i.e., make every literal of the clause false).

If a feasible solution is found, the Benders algorithm immediately termi-
nates with a feasible solution (x, y) = (x̄, ȳ), where x̄j is the truth value to

which xj is fixed at the node where a feasible solution is found. If xj is not
fixed, x̄j may be chosen arbitrarily.

If no feasible solution is found, a Benders cut z ≥ βȳ(y) must be gen-

erated. This requires solution of the dual subproblem (17). Because the
subproblem has an infinite optimal value, the dual solution must consist of

a proof that 0 ≥ β for arbitrarily large β, using the clauses {Ci(x) | i ∈ Ī(ȳ)}
as premises. In other words, it must show that {Ci(x) | i ∈ I(ȳ)} is unsat-

isfiable.
This can be done by applying a complete inference method for logical

clauses, such as the resolution method discovered by W. V. Quine over 40
years ago [37, 38] (known as consensus when applied to formulas in disjunc-

tive normal form). The name ‘resolution’ derives from Robinson [39], who
developed the method for first-order predicate logic. However, this tends to
be a very inefficient approach [18, 19].

It is more practical to observe that the implicit enumeration tree of
Figure 2 already provides the desired proof of unsatisfiability, because at

least one clause is falsified at every leaf node. In fact, if one associates a
single falsified clause with each leaf node, the tree proves the unsatisfability

of the subset of clauses associated with leaf nodes. (It is shown in [27] that
this proof by enumeration is formally equivalent to a resolution proof, but

this fact is not needed here.)
In the figure, it happens that only one clause is falsified at each leaf

node, except for a node at which both (c) and (f) are falsified; suppose that
(c) is associated with this node. Then the tree proves that clauses (a), (b),
(c), (d) and (e) are jointly unsatisfiable. Let us denote the index set of these

clauses by Ī(ȳ), which is a subset of I(ȳ). Thus the dual solution uses only
a subset of {Ci(x) | i ∈ I(ȳ)} as premises. This can result in a stronger

Benders cut.
To find a Benders cut, it is necessary to identify all values of y for which

this particular proof remains valid. This is easily done by observing which
values of y falsify Di(y) for i ∈ Ī(ȳ). So long as y falsifies Di(y), the clause

Ci(x) remains in the subproblem and is therefore falsified at its associated
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nodes of the search tree in Figure 2. One can therefore write a Benders cut

z ≥ βȳ(y) that states z ≥ ∞ when all clauses Di(y) for i ∈ Ī(ȳ) are false
and states z ≥ 0 otherwise. In the example, the cut states z ≥ ∞ when y

falsifies the following clauses.

y1 ∨ y2

y1

y2

y1 ∨ y2

y2

It will be useful in the next section to use the following notation. If P

is a proposition, define a function v(P ) to take the value 1 when P is true
and 0 otherwise. Then the desired Benders cut can be written

z ≥ ∞ · v





∧

i∈Ī(ȳ)

¬Di(y)



 (19)

where ∧ denotes a conjunction. Thus when all Di(y) for i ∈ Ī(ȳ) are false,
z ≥ ∞. Otherwise z ≥ ∞ · 0 = 0. In the example, the cut is

z ≥ ∞ · v (¬(y1 ∨ y2) ∧ ¬y1 ∧ ¬y2)

This is equivalent to z ≥ ∞·v (¬y1 ∧ ¬y2), but it is not necessary to identify

such reductions. In iteration K the master problem (9) is

min z

s.t. z ≥ ∞ · v





∧

i∈Ī(yk)

¬Di(y)



 , k = 1, . . . , K

yj ∈ {T, F}, all j

(20)

In practice the master problem would be solved as a satisfiability problem
in which each Benders cut (19) is written as a clause

∨

i∈Ī(ȳ)

Di(y) (21)

Clearly (21) is satisfied if and only if (19) does not force z ≥ ∞. Thus (20)
becomes

∨

i∈Ī(yk)

Di(y), k = 1, . . . , K (22)
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Set k = 0.

While the master problem (22) has a feasible solution ȳ:

Solve the subproblem (16) by branching.

If (16) is infeasible then
Associate with every leaf node t of the branching tree

a falsified clause Ci(t)(x).

Let Ī(ȳ) = {Ci(t) | all leaf nodes t}.

Add the Benders cut (21) to the master problem (22).

Set k = k + 1 and yk = ȳ.

Else stop; (15) is satisfiable with solution (x, y) = (x̄, ȳ),
where x = x̄ solves the subproblem (16).

(15) is unsatisfiable.

Figure 3: A Benders algorithm for the propositional satisfiability problem.

In the example, (20) becomes the satisfiability problem

(y1 ∨ y2) ∨ y1 ∨ y2 (23)

which is of course equivalent to y1 ∨ y2.
One solution of the master problem (23) is (ȳ1, ȳ2, ȳ3) = (F, T, F ), for

which the resulting subproblem is

x1 ∨ ¬x2

¬x1 ∨ x2 ∨ x3

The problem can be solved by setting x1 = x2 = T . Thus the algorithm
terminates with solution (x1, x2, x3, y1, y2, y3) = (T, T, x3, F, T, F ), where x3

can be true or false.
The Benders algorithm for satisfiability appears in Figure 3. Because

Dy is finite, Theorems 1 and 2 imply that the algorithm terminates with the
correct answer if the Benders cuts have properties (B1) and (B2). It is easy
to verify that they do.

The same approach can be used if the Davis-Putnam-Loveland algorithm
is applied to the subproblems. This algorithm is simply the branching algo-

rithm described earlier, except that unit resolution is applied at each node
of the search tree. That is, if one of the clauses is a unit clause (contains

exactly one literal), that literal is fixed to true. This in turn fixes the vari-
able that occurs in the literal and allows the problem to be simplified. The

process continues until no unit clauses remain.
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Fixing a variable xj to true or false in any step of unit resolution is

equivalent to branching on xj. Branching creates one subproblem in which
a unit clause is violated, and a second subproblem that simplifies. The

Davis-Putnam-Loveland algorithm is therefore formally equivalent to a pure
branching algorithm, and Benders cuts can be generated accordingly.

There are various ways to accelerate the Benders algorithm. For exam-
ple, it is advantageous to choose the same violated clause Ci(t)(x) for several

leaf nodes t. This makes the set {Ci(t)(x) | all t} smaller and results in a
stronger Benders cut.

Also, as noted earlier, the variables should be partitioned so that (a)

the master problem is small and (b) the subproblem decouples into small
problems or has some other special structure. For instance, a subproblem

in which the clauses are renamable Horn can be checked for satisfiability
in linear time [1, 10]. Finding a small subset of variables y for which the

subproblem is always renamable Horn is a maximum clique problem [11],
which can be solved by various heuristics and exact algorithms.

In practice the master problem as well as the subproblem might be solved
by Davis-Putnam-Loveland. Whenever a feasible solution is found, the sub-

problem is solved, and the Benders cut (if any) is added to the master
problem. At this point the master search tree can be updated to reflect
the additional clause; an efficient algorithm for doing this is presented in

[22]. Note that in the context of a branching algorithm, Benders cuts have
a role complementary to that of traditional cutting planes. Whereas the

latter contain variables that have not yet been fixed, Benders cuts contain
variables that have already been fixed. They are also valid throughout the

search tree, as are nogoods in general.
Interestingly, when the subproblem is renamable Horn, it is equivalent

to a linear programming problem [33], so that the original problem could be
solved by traditional Benders decomposition. But the linear-time methods

for solving the subproblem are much faster than methods for solving the
linear programming equivalent.

Furthermore, it is shown in [30] that if the variables yj represent inputs

to a logic circuit, and the variables xj represent the outputs of gates in
the circuit, then the problem of checking whether the circuit represents a

tautology can be solved by Benders decomposition, where the subproblem
is renamable Horn. Here again the subproblem is equivalent to a linear

programming problem, and the specialized Benders algorithm developed in
[30] yields Benders cuts that are in fact equivalent to those obtained by

classical Benders—but again much more rapidly than in the classical case.
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8 0-1 Programming

Benders decomposition has long been applied to 0-1 programming. The
difference here is that the subproblem is a 0-1 programming problem, rather

than a linear programming problem as in the classical case.
Because branching algorithms for integer programming problems usually

solve a continuous relaxation of the problem at each node, this feature must
be incorporated into the dual solution. In effect, the classical linear pro-

gramming dual will be combined with a branch-and-bound search to obtain
a dual solution.

A 0-1 programming problem may be stated,

min cx + c0

s.t. Ax ≥ a

x ∈ {0, 1}n.

(24)

The constant c0 will be useful shortly. The inference dual is

max β

s.t. Ax ≥ a
{0,1}n

−→ cx + c0 ≥ β
(25)

If β∗ is the optimal value of (24), a solution of the dual (25) consists of a
proof that cx + c0 ≥ β∗, using Ax ≥ a as premises.

If the variables are partitioned (x, y), a 0-1 problem can be written,

min cx + dy

s.t. Ax + By ≥ a

x ∈ {0, 1}n, y ∈ {0, 1}p

(26)

For a fixed ȳ the subproblem is,

min cx + dȳ

s.t. Ax ≥ a − Bȳ

x ∈ {0, 1}n

(27)

The subproblem dual is,

max β

s.t. Ax ≥ a − Bȳ
{0,1}n

−→ cx + dȳ ≥ β
(28)
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The subproblem (27) can be solved by branch and bound to obtain its

optimal value β∗. Solution of the dual (28), however, is necessary to obtain
a Benders cut. Its solution requires that one exhibit a proof of cx+dȳ ≥ β∗

using Ax ≥ a−Bȳ as premises. One approach is to use a complete inference
method for 0-1 linear inequalities, such as the generalized resolution method

of [21]. Such a method in fact serves as the basis for a logic-based solution
method for 0-1 programming [5].

A more direct approach, however, is to interpret the branch-and-bound
tree for the primal problem (27) as a proof of optimality. As in the satisfia-
bility problem, one can associate a violated inequality It with each leaf node

t of the tree. It implies a logical clause Ct that is falsified at that node. The
optimality proof remains valid for any y such that It continues to imply Ct.

This in turn provides the basis for a Benders cut.
This may be made precise as follows. At leaf node t, let J1 be the set

of all j for which branching has set xj to 1, and similarly for J0. Then the
following clause Ct is violated by the fixed variables.

∨

j∈J0

xj ∨
∨

j∈J1

¬xj (29)

The continuous relaxation of the problem at leaf node t may be written,

min cx + dȳ

s.t. Ax ≥ a − Bȳ (u)

Hx ≥ h (v)

x ∈ {0, 1}n

(30)

The system Hx ≥ h contains upper bounds of the form −xj ≥ −1 as well
as constraints −xj ≥ 0 that fix xj to 0 for j ∈ J0, and constraints xj ≥ 1

that fix xj to 1 for j ∈ J1. Dual variables u, v may be associated with the
constraints as shown.

We will need the following lemma, whose proof is straightforward. Let
α+ = max{α, 0}.

Lemma 3 A 0-1 inequality ax ≥ α implies Ct if and only if
∑

j∈J1

aj +
∑

j 6∈J0∪J1

a+
j < α

When the relaxation (30) is solved at node t, there are three possible

outcomes.
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(a) The relaxation is infeasible. In this case the dual solution (u, v) is such

that
uA + vH ≤ 0

u(b − Bȳ) + vh > 0

Thus the following system is infeasible.

uA ≥ u(b − Bȳ)

Hx ≥ h

x ≥ 0

This means that the fixed variables violate the surrogate inequality

uAx ≥ ua − uBȳ (31)

In fact, the fixed variables violate any inequality that implies Ct. They

therefore violate uAx ≥ ua − uBy for any y such that this inequality
implies Ct. By Lemma 3, uAx ≥ ua − uBy implies Ct if and only if

∑

j∈J1

uAj +
∑

j 6∈J0∪J1

(uAj)
+ < ub − uBy

where Aj is column j of A. This can be written

uBy < ub −
∑

j∈J1

uAj −
∑

j 6∈J0∪J1

(uAj)
+ (32)

Let this be inequality It.

(b) The relaxation is feasible and the solution is integral. Then if the
optimal value is β∗

t , the dual solution satisfies

uA + vH ≤ c

u(b − Bȳ) + vh ≥ β∗
t

Thus the following system is infeasible.

(uA − c)x > ub − uBȳ − β∗
t

Hx ≥ h

x ≥ 0

This means that the fixed variables violate the surrogate inequality

(uA − c)x > ub − uBȳ − β∗
t (33)
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They also violate (uA − c)x > β∗
t − ub + uBy for any y such that this

inequality implies Ct. Using Lemma 3, Ct is implied if and only if

uBy ≤ ub − β∗
t −

∑

j∈J1

(uAj − cj) −
∑

j 6∈J0∪J1

(uAj − cj)
+ (34)

Let this be inequality It.

(c) The relaxation is feasible and has a nonintegral solution. Its optimal

value β̄t is greater than or equal to the value of the incumbent solution.
The analysis is the same as in (b) with β̄t replacing β∗

t . Thus the fixed

variables again violate the surrogate (37) and the inequality It is

uBy ≤ ub − β̄t −
∑

j∈J1

(uAj − cj) −
∑

j 6∈J0∪J1

(uAj − cj)
+ (35)

The optimal value β∗ of the subproblem is the minimum over all values
β∗

t obtained at leaf nodes t. The dual solution exhibits, at every leaf node, a

surrogate inequality (31) or (33) that is (a) violated, (b) violated when the
value of the relaxation is assumed to be less than β∗

t , or (c) violated when

the value of the relaxation is assumed to be less than β̄t. Given any y for
which each leaf node’s surrogate remains violated, the branch-and-bound

tree proves optimality of β∗. But such a y is precisely one that satisfies the
inequalities It for each t. A Benders cut may therefore be stated,

z ≥ dy +
∑

j

c−j +



β∗ −
∑

j

c−j



 v

(

∧

t∈T

It

)

(36)

where T is the set of leaf nodes. The term
∑

j c−j simply computes the

smallest possible value of cx and therefore provides a default bound when y

does not satisfy all of the It’s.
A somewhat sharper analysis is possible when the subproblem (27) de-

couples into smaller problems. Suppose then that (27) can be written

min
p
∑

i=1

cixi + dȳ

s.t. Aixi ≥ ai − Biȳ, i = 1, . . . p

xi ∈ {0, 1}ni, i = 1, . . . , p

(37)
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where the vectors xi have no variables in common. The subproblem is solved

by solving
min cixi

s.t. Aixi ≥ ai − Biȳ

xi ∈ {0, 1}ni

(38)

for i = 1, . . . , p to obtain optimal solutions x̄i and optimal values (β∗)i.

An optimal solution of (37) can now be written x̄ = (x̄1, . . . , x̄p), and the
optimal value is β∗ =

∑p
i=1(β

∗)i + dȳ.

Let I i
t be the inequality It obtained at leaf node t of the branch-and-

bound tree that solves (38). Then the Benders cut (36) becomes

z ≥ dy +
∑

j

c−j +
p
∑

i=1



(β∗)i −
∑

j∈Ji

c−j



 v





∧

t∈Ti

I i
t



 (39)

where Ti is the set of leaf nodes of the search tree that obtained (β∗)i. Also
J i is the set of indices of variables in xi.

Consider the following example.

min 4x1 + 2x2 + 5x3 + x4 + y1 + 20y2

s.t. 2x1 + x2 + 2y1 + y2 ≥ 5 (a)

3x3 + 2x4 + y2 ≥ 4 (b)

x ∈ {0, 1}4, y ∈ {0, 1}2

(40)

Initially the master problem has no constraints, and one may choose the
optimal solution (y1, y2) = (0, 0). Setting ȳ = (0, 0) yields a subproblem of

the form (37) that decouples into two smaller problems:

min 4x1 + 2x2

s.t. 2x1 + x2 ≥ 5

x1, x2 ∈ {0, 1}

min 5x3 + x4

s.t. 3x3 + 2x4 ≥ 4

x3, x4 ∈ {0, 1}

(41)

The first subproblem has the following relaxation at the root node of a
branch-and-bound tree.

min 4x1 + 2x2

s.t. 2x1 + x2 ≥ 5 (u)

−x1 ≥ −1 (v1)

−x2 ≥ −1 (v2)

x1, x2 ∈ {0, 1}

23



The relaxation is infeasible, with dual solution u = 1, v = (2, 1). The root

node is therefore the only leaf node, at which the violated surrogate (31) is
2x1 + x2 ≥ 5. The Inequality I1

1 , given by (32), is 2y1 + y2 < 2.

The second problem in (41) has a fractional solution (x3, x4) = (2
3 , 1)

at the root node, and the search therefore branches on x3. In the branch

defined by x3 = 0, the problem is infeasible and generates the inequality I2
1

given by y2 < 2. Because this inequality is necessarily satisfied, it can be

replaced by the tautologous inequality 0 < 1. The branch defined by x3 = 1
has the fractional solution (x3, x4) = (1, 1

2 ), which requires a further branch
on x4. This creates an infeasible node and a node at which the relaxation

has an integral solution (x3, x4) = (1, 1).
The complete algorithm is summarized in Table 1. After the first Benders

cut is added to the master problem, the solution of the latter is ȳ = (1, 1).
This generates a second Benders cut, and the master problem that contains

the first two Benders cuts has solution ȳ = (1, 0). This generates a third
Benders cut, which when added to the master problem yields ȳ = (1, 1)

with optimal value 11. The subproblem resulting from ȳ = (1, 1) has already
been solved, with optimal value 11. The algorithm therefore terminates with

solution (x, y) = (0, 1, 0, 1, 1, 1).

9 Computational Testing

The task of testing Benders decomposition computationally is somewhat

problematic, since it is not a general-purpose method. It is intended for
problems with special structure, and its performance depends on the degree

to which decomposition can exploit the structure.
One approach to testing is to exhibit an important application area in

which problems are structured so that Benders is more effective than other

known techniques. One such application area is reported in the next section.
Another approach is to focus on a particular type of structure that a

Benders method can exploit. The simplest case occurs when a subprob-
lem separates into smaller problems. We investigated to what extent the

subproblem of a 0-1 programming problem must decouple before a Benders
approach becomes advantageous.

We randomly generated instances in which the subproblem decouples
into m problems of size s × s, and the master problem has s variables. The

subproblem has no other special structure. Thus each Ai in (37) is s × s,
each Bi is s × s, and the original problem is ms × (m + 1)s. A larger m

24



Choose an initial ȳ ∈ {0, 1}n.

Set z̄ = −∞ and k = 0.
While the subproblem (27) has optimal value β∗ > z̄:

For each leaf t of the search tree used to solve (27):

If the relaxation (30) is infeasible then

Let It be (32).

Else if (30) has an integral optimal solution then
Let It be (34).

Else if (30) has a nonintegral optimal solution then
Let It be (35).

Add the Benders cut (36) to the master problem (9).

Let k = k + 1 and yk = ȳ.

If the master problem (9) is infeasible then
Stop; (26) is infeasible.

Else let ȳ be an optimal solution of (9) with

optimal value z̄.

(x, y, z) = (x̄, ȳ, z̄) is an optimal solution of (26), where

x = x̄ is an optimal solution of the last subproblem solved.

Figure 4: A Benders algorithm for 0-1 programming.

implies a more highly decoupled subproblem, whereas m = 1 implies no
decoupling at all.

The Benders approach requires that when the subproblem is solved, the
dual solution be available at each leaf node of the search tree. Because

commercial software available to us did not provide this information, we
solved the subproblems with a straightforward branch-and-bound algorithm

written in Java, in which CPLEX solved the linear programming relaxations.
We applied exactly the same branch-and-bound algorithm to the original

problem (without decomposition) and compared the computation time to
that of the Benders algorithm. This provided a controlled experiment in
which the effect of decomposition could be isolated, a general approach

advocated in [24, 26].
Because the master problem does not have the traditional inequality

constraints, we solved it with a modified branch-and-bound algorithm. We
branched on yj ’s with fractional values as well as on the possible values of

the right-hand side of each Benders cut (39).
More precisely, for k = 1, . . .K we wrote the kth Benders cut in the
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Choose an initial ȳ ∈ {0, 1}n.

Set z̄ = −∞ and k = 0.
While the subproblem (27) has optimal value β∗ > z̄:

For each component (37) of the subproblem (27):

For each leaf t of the search tree used to solve (37):

If the relaxation (30) is infeasible then
Let I i

t be (32).

Else if (30) has an integral optimal solution then

Let I i
t be (34).

Else if (30) has a nonintegral optimal solution then

Let I i
t be (35).

Add the Benders cut (39) to the master problem (9).

Let k = k + 1 and yk = ȳ.

If the master problem (9) is infeasible then

Stop; (26) is infeasible.

Else let ȳ be an optimal solution of (9) with

optimal value z̄.

(x, y, z) = (x̄, ȳ, z̄) is an optimal solution of (26), where

x = x̄ is an optimal solution of the last subproblem solved.

Figure 5: A Benders algorithm for 0-1 programming in which the subproblem
decouples into problems (37) for i = 1, . . . , p.

master problem (9) in the form

z ≥ dy +
∑

j

c−j +
p
∑

i=1

zik (42)

For each Benders cut k, we enforced the following p disjunctions.


zik = (β∗)i −
∑

j∈Ji

c−j



 ∨
∨

t∈Ti

(

(zik = 0) ∧ ¬I i
t

)

, i = 1, . . . , p (43)

To keep the problem small, we did not actually use the variables zik in (42).
Rather, we replaced each zik with (β∗)i −

∑

j∈Ji c−j if the first disjunct of

(43) was enforced and with zero otherwise. Thus the linear relaxation of the
master problem minimizes z subject to the following inequality constraints.

(a) The Benders cuts (42), with each zik replaced by (β∗)i −
∑

j∈Ji c−j or

zero.
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(b) For each Benders cut and each i = 1, . . . , p, the inequality constraint

¬I i
t if the disjunct (zik = 0) ∧ ¬I i

t of (43) is enforced.

(c) Constraints yj ≤ 0 or yj ≥ 1 for each yj that has been fixed to 0 or 1
(respectively) by prior branching.

(d) The bounds 0 ≤ yj ≤ 1 for each yj.

The inequality ¬I i
t is written f ≥ g if I i

t has the form f < g, and it is written
f ≥ g + ǫ if I i

t has the form f ≤ g.
At each node of the branch-and-bound tree, we branched according to

the following rules.

(i) If the the solution of the linear relaxation just described is noninteger,
branch on a yj with value closest to 1/2.

(ii) Otherwise, branch on one of the remaining disjunctions (43) in which
the current values of the yj ’s satisfy none of the last |Ti| disjuncts, and
remove this disjunction from the problem. Enforce one of the |Ti| + 1

disjuncts of (43) in each branch.

(iii) If no such disjunctions remain, the current solution is feasible and no
branching is necessary.

Figures 6–9 show the results of the experiments. For subproblem sizes

s = 2, 3, 4 we generated problem instances for several values of m. We
solved each instance with both Benders (solid curve in the figure) and stan-

dard branch and bound (dashed curve). Each point plotted represents the
average computation time over 10 instances. Note that the vertical axis has

a logarithmic scale.
The crossover point m∗ of the two curves is the value of m at which the

Benders approach becomes superior to standard branch and bound. (For
s = 4 we were unable to solve problems with m > 25.) The crossover point

is rather large, with m∗ equal to 20 or more. However, once the Benders
approach becomes superior, its superiority rapidly becomes ovewhelming.

With s = 3, for example, the Benders approach is on a par with the tradi-
tional approach for m = 21 but is already an order of magnitude faster for
m = 25.

10 An Application to Machine Scheduling

A particularly interesting role for logic-based Benders decomposition is as

a framework for combining optimization and constraint programming, as
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Figure 6: Computation time in seconds versus number m of subproblem
components for logic-based Benders decomposition and traditional branch

and bound. Components have s = 2 variables and 2 constraints.

proposed in [29]. Jain and Grossmann [31] illustrate how this might be

done in their solution of a machine scheduling problem. Thorsteinsson and
Hooker [42] use a similar framework to solve vehicle routing problems with

time windows.
In the Jain and Grossmann application, the master problem assigns jobs

to machines, and the subproblem tries to schedule jobs on their assigned

machine. The master problem is given a mixed integer programming model,
while the subproblem is attacked with the highly-developed scheduling tech-

nology of constraint programming (in particular, the ILOG Scheduler as
invoked by OPL Studio [46]).

The problem may be stated as follows. Each job j is assigned to one of
several machines i that operate at different speeds. Each assignment results

in a processing time Dij and incurs a processing cost Cij. There is a release
date Rj and a due date Sj for each job j. The objective is to minimize

processing cost while observing release and due dates.
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Let tj be the time at which job j begins processing, and let yij be 1 if
job j is assigned to machine i and 0 otherwise. For a given machine i let

((tj, Dij) | yij = 1) be the list of pairs (tj, Dij) for which job j is assigned to
machine i. The model is

min
∑

ij

Cijyij

s.t. tj ≥ Rj, all j

tj +
∑

i

Dijyij ≤ Sj, all j

nonoverlap((tj, Dij) | yij = 1), all i

t ≥ 0, yij ∈ {0, 1}

The nonoverlap constraint requires that tj+Djk ≤ tk for all jobs j, k assigned
to a given machine i.

The master problem contains variables tj , yij. To create a subproblem,
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introduce discrete variables t′j that have the same meaning as tj . The sub-

problem contains the release times and deadlines along with the nonoverlap
constraint. So if the assignments are fixed to ȳ, the subproblem becomes

the following scheduling problem:

min 0

s.t. t′j ≥ Rj, all j

t′j + Dij ≤ Sj, all j with ȳij = 1, all i

nonoverlap
(

(t′j, Dij) | ȳij = 1
)

, all i
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The problem separates into a feasibility problem for each machine i:

min 0

s.t. t′j ≥ Rj, all j with ȳij = 1

t′j + Dij ≤ Sj, all j with ȳij = 1

nonoverlap
(

(t′j, Dij) | ȳij = 1
)

(44)

The nonoverlap constraint can implemented by standard “global” constraints
available in constraint programming systems. In the ILOG scheduler, it is

implemented by the cumulative constraint. The variables y′j are discrete be-
cause the cumulative constraint is designed for variables with finite domains.

Let Ik be the set of machines i for which (44) is infeasible in the k-th
iteration of the Benders algorithm, and let Jik = {j | ȳij = 1} be the set of

jobs assigned to machine i. For each i ∈ Ik, infeasibility implies that the jobs
in Jki cannot all be scheduled on machine i. This gives rise to a Benders cut
∑

j∈Jik
(1−yij) ≥ 1 for each i ∈ Ik. Going beyond Jain and Grossmann, one

can strengthen the cut by identifying a proper subset Jik of jobs assigned to

machine i that cannot feasibly be scheduled on that machine. The proof of
infeasibility obtained by the constraint programming algorithm may reveal
such a smaller set.

The Benders cuts go into the master problem,

min
∑

ij

Cijyij

s.t. tj ≥ Rj, all j

tj +
∑

i

Dijyij ≤ Sj, all j

∑

j∈Jik

(1− yjk) ≥ 1, all i ∈ Ik, all k

t ≥ 0, yij ∈ {0, 1}

where k ranges over all the Benders iterations carried out so far. The algo-
rithm terminates in the first iteration k for which Ik is empty.

Using this approach, Jain and Grossmann obtained substantial speedups
relative to constraint programming and mixed integer programming.

11 Conclusion

An elementary theory of logic-based Benders decomposition has been devel-

oped and applied to three problems: the propositional satisfiability problem,
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the 0-1 programming problem, and a machine scheduling problem. The last

illustrates how Benders decomposition can provide a principle for combining
optimization with constraint programming.

A logic-based Benders approach can in principle be applied to any opti-
mization or feasibility problem, because inference duality is defined for any

such problem. Its success depends on the extent to which

• an easily solved subproblem can be obtained by a judicious partitioning

of the variables, and

• the solution of the subproblem dual with y fixed to a particular value
is a proof whose line of reasoning yields a useful lower bound (Benders

cut) for other values of y.

Logic-based Benders decomposition may also have potential in a branch-

and-cut context, as mentioned in connection with the satisfiability problem
above. Cuts presently used typically involve variables that have not yet been

fixed in the enumeration tree and serve primarily to strengthen a linear or
some other relaxation. Logic-based Benders cuts, by contrast, would involve

variables that are already fixed and would apply throughout the tree. They
would prune the tree in a way that is unrelated to any relaxation.
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Table 1: Solution of a 0-1 problem by logic-based Benders decomposition.

ȳ i Leaf node Relaxation Solution x u Inequality
defined by 0 ≤ xj ≤ 1, j ∈ J i of relaxation Ii

t

(0, 0)
z = 0

1 root
min 4x1 + 2x2

s.t. 2x1 + x2 ≥ 5
infeasible 1

I1

1

2y1 + y2 < 2

2 x3 = 0
min 5x3 + x4

s.t. 3x3 + 2x4 ≥ 4
−x3 ≥ 0

infeasible 1
I2

1

0 < 1

2 (x3, x4) = (1, 0)
min 5x3 + x4

s.t. 3x3 + 2x4 ≥ 4
x3 ≥ 1,−x4 ≥ 0

infeasible 1/2
I2

2

y2 < 1

2 (x3, x4) = (1, 1)
min 5x3 + x4

s.t. 3x3 + 2x4 ≥ 4
x3 ≥ 1, x4 ≥ 1

integral
(x3, x4) = (1, 1)

z∗ = 6
0

I2

3

0 ≤ 0

Value of relaxation: ∞

Benders cut: z ≥ y1 + y2 + ∞ · v(2y1 + y2 < 2) + 6v(y2 < 1)

(1, 1)
z = 2

1 x1 = 0
min 4x1 + 2x2

s.t. 2x1 + x2 ≥ 2
−x1 ≥ 0

infeasible 1/2
I1

1

0 < 1

1 x1 = 1
min 4x1 + 2x2

s.t. 2x1 + x2 ≥ 2
x1 ≥ 1

integral
(x1, x2) = (1, 0)

z∗ = 4
2

I1

2

2y1 + y2 ≤ 3

2 x3 = 0
min 5x3 + x4

s.t. 3x3 + 2x4 ≥ 3
−x3 ≥ 0

infeasible 1/3
I2

1

0 < 1

2 x3 = 1
min 5x3 + x4

s.t. 3x3 + 2x4 ≥ 4
x3 ≥ 1

integral
(x3, x4) = (1, 0)

z∗ = 5
1/2

I2

2

y2 ≤ 1

Value of relaxation: 11
Benders cut: z ≥ y1 + y2 + 4v(2y1 + y2 ≤ 3) + 5v(y2 ≤ 1) = y1 + y2 + 9

(1, 0)
z = 10

1 root
min 4x1 + 2x2

s.t. 2x1 + x2 ≥ 3

integral
(x1, x2) = (1, 1)

z∗ = 6
2

I1

1

2y1 + y2 ≤ 2

2 x3 = 0
min 5x3 + x4

s.t. 3x3 + 2x4 ≥ 4
−x3 ≥ 0

infeasible 1
I2

1

0 < 1

2 (x3, x4) = (1, 0)
min 5x3 + x4

s.t. 3x3 + 2x4 ≥ 4
x3 ≥ 1,−x4 ≥ 0

infeasible 1/2
I2

2

y2 < 1

2 (x3, x4) = (1, 1)
min 5x3 + x4

s.t. 3x3 + 2x4 ≥ 4
x3 ≥ 1, x4 ≥ 1

integral
(x3, x4) = (1, 1)

z∗ = 6
0

I2

3

0 ≤ 0

Value of relaxation: 13
Benders cut: z ≥ y1 + y2 + 6v(2y1 + y2 ≤ 2) + 6v(y2 < 1)

(1, 1)
z = 11

Value of relaxation: 11
(solved before)
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