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Abstract Belief merging aims at combining several pieces of information
coming from different sources. In this paper we review the works on belief
merging of propositional bases. We discuss the relationship between merging,
revision, update and confluence, and some links between belief merging and
social choice theory. Finally we mention the main generalizations of these
works in other logical frameworks.

Keywords Belief merging · Arbitration · Belief change

1 Introduction

Belief change theory has produced a lot of different operators that models
the different ways the beliefs of one (or some) agent(s) evolve over time.
Among these operators, one can quote revision [1, 44, 45, 61], update [52, 60],
extrapolation [38], etc.

Belief revision has to be used if one wants to combine two pieces of informa-
tion while giving the precedence to one of them. Belief merging [6, 7, 69, 74, 76–
78, 89, 91] aims at combining several pieces of information when there are no
strict precedence between them. The agent faces several conflicting pieces of
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information coming from several sources of equal reliability,1 and he has to
build a coherent description of the world from them. In that respect belief
merging has some links with non-prioritized belief revision (see [51]), where
the new input is not automatically accepted. But works on non-prioritized
belief revision still focus on binary operators, and can not easily been gen-
eralized to the aggregation of n sources of information (see for instance the
trivialization result in the case of commutative revision [74]).

The aim of this work is to give an account from the main tools developed
in last years in the area of belief merging. We will focus on the case where the
pieces of information have logical representations. Merging is also at work on
numerical datas, but it is not the aim of this paper.2 See [17] for an interesting
global overview on (logical and numerical) merging.

Like in belief revision, rationality postulates have been proposed to char-
acterize belief merging operators. These postulates are closely related to the
revision ones. Nevertheless there is an important difference, namely the social
aspect of merging: one needs some postulates to say how to solve the conflicts
between the sources of information. So it is possible to distinguish different
families of merging operators, depending of their behavior with respect to the
sources, like a majority behavior for instance.

Similarly to belief revision, it is possible to state representation theorems
that provide a constructive way to define merging operators satisfying all the
desired logical properties.

They are numerous ways to define merging operators: model-based opera-
tors, that select the interpretations that are the closest from the set of sources;
formula-based operators, that use a selection function on sets of formulae;
DA2 operators, that generalize model-based operators and allow to take into
account inconsistent sources; disjunctive operators, that select the result of the
merging inside the disjunction of the bases; conflict-based operators, that use
a vector of conflict in order to represent the conflict instead of the numerical
distance of model-based operators; default-based operators, that use renaming
of the propositional variables of the language.

There are interesting relationships between belief revision, belief merging
and other change operators. Actually, belief merging is an extension of belief
revision. Furthemore the tight relationships between belief revision operators
and update operators suggest that there is a class of operators that extend
updates operators while having tights relationships with belief merging. These
operators are the confluence operators. They can be seen as a sort of pointwise
belief merging operators.

It is interesting to notice that merging operators show tight relationships
with social choice theory, and in particular with voting methods. Studying these

1More generally the sources can have different reliability, but we will focus on the case where all
the sources have the same reliability. There are already a lot to say in this case.
2See for instance [5, 16, 93] for some examples of numerical data fusion, or look at the Information
Fusion Journal issues.
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relationships can give rise to interesting problems and solutions. For instance
from merging to social choice, it has been proposed to use merging operators
in order to define judgment aggregation methods [84]. In the other way, it
is interesting to study what are the consequences of concepts well known in
social choice theory when applied to merging scenarios. We will give two such
examples: strategy-proofness and truth-tracking.

Merging is a problem that occur in a lot of situations, some of them do
not use propositional logic as representation language, but more structured
languages. We will mention the extension of propositional merging operators
to some of these frameworks, namely weighted logics, first order logic, logic
programs, constraint networks and argumentation frameworks.

2 Notation

We consider a propositional language L defined from a finite set of proposi-
tional variables P and the standard connectives, including ! and ⊥.

An interpretation ω is a total function from P to {0, 1}. The set of all
interpretations is noted W . An interpretation ω is a model of a formula φ ∈ L
if and only if it makes it true in the usual truth functional way. mod(ϕ) denotes
the set of models of the formula ϕ, i.e., mod(ϕ) = {ω ∈W | ω |= ϕ}. When M
is a set of models we denote by ϕM a formula such that mod (ϕM) = M.

A base K is a finite set of propositional formulae {ϕ1, . . . , ϕn}. We denote
by

∧
K the conjunction of formulae of K, i.e.,

∧
K = ϕ1 ∧ . . . ∧ ϕn. Often, in

order to simplify the notations, we will identify3 the base K with the formula
ϕ = ∧

K which is the conjunction of the formulae of K. We denote by K the
set of bases.

A prof ile E is a non-empty multi-set (bag) of bases E = {K1, . . . , Kn}
(hence different agents are allowed to exhibit identical bases), and represents
a group of n agents. We denote by E the set of profiles.

We denote by
∧

E the conjunction of bases of E = {K1, . . . , Kn}, i.e.,∧
E = ∧

K1 ∧ . . . ∧∧
Kn. We denote by

∨
E the disjunction of bases of E,

i.e.,
∨

E = ∧
K1 ∨ . . . ∨∧

Kn.
A profile E is said to be consistent if and only if

∧
E is consistent. The multi-

set union is noted &. By abuse of notation we will write K & E instead of {K} &
E. We denote by En the profile in which E appears n times, more precisely
En = E & . . . & E︸ ︷︷ ︸

n

. Two profiles are equivalent, denoted E1 ≡ E2, if there is a

bijective function f from E1 onto E2 such that for any K ∈ E1, f (K) ≡ K.
A base (formula) K is complete if it has only one model. A profile E is

complete if all the bases of E are complete.

3This identification will be done when the approach is not sensitive to syntactical representation.
When the approach is sensitive to syntactical representation, it will be important to distinguish
between K and the conjunction of its formulae (see e.g. [66]).
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If ≤ denotes a pre-order on W (i.e. a reflexive and transitive relation), then
< denotes the associated strict order defined by ω < ω′ if and only if ω ≤ ω′

and ω′ *≤ ω. A pre-order is total if ∀ω,ω′ ∈W , ω ≤ ω′ or ω′ ≤ ω. A pre-order
that is not total is called partial. Let ≤ be a pre-order on A, and B ⊆ A, then
min(B,≤) = {b ∈ B | !a ∈ B a < b}.

If A is a set, we denote |A| the cardinal of A. The symbol ⊆ will denote set
containment and⊂ strict set containment, i.e., A ⊂ B if and only if A ⊆ B and
A *= B.

Merging operators we will consider are functions from the set of profiles
and the set of propositional formulae (that will represent integrity constraints)
to the set of bases, i.e. . : E × L 0→ K. We will use the notation .µ(E) instead
of .(E, µ).

3 The Logical Framework for Merging

We first study the logical properties of propositional merging operators and
state a representation theorem for these operators in terms of pre-orders on
interpretations.

3.1 Logical Properties

Just as for belief revision, it is possible to state some logical properties one
could expect from any reasonable merging operator.

Definition 1 An operator. : E × L 0→ K is said to be an Integrity Constraints
merging operator (IC merging operator for short) iff the following properties
hold:

(IC0) .µ(E) 2 µ

(IC1) If µ is consistent, then .µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then .µ(E) ≡ ∧

E ∧ µ

(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then .µ1(E1) ≡ .µ2(E2)

(IC4) If K1 2 µ and K2 2 µ, then .µ({K1, K2}) ∧ K1 is consistent if and
only if .µ({K1, K2}) ∧ K2 is consistent

(IC5) .µ(E1) ∧.µ(E2) 2 .µ(E1 & E2)

(IC6) If .µ(E1) ∧.µ(E2) is consistent, then .µ(E1&E2)2.µ(E1)∧.µ(E2)

(IC7) .µ1(E) ∧ µ2 2 .µ1∧µ2(E)

(IC8) If .µ1(E) ∧ µ2 is consistent, then .µ1∧µ2(E) 2 .µ1(E)

Some of these properties had been proposed by Revesz [91] in order to
define model f itting operators. They have been extended in [67, 69].

Intuitively .µ(E) is the closest belief base to the profile E satisfying the
integrity constraint µ. This idea is what the postulates try to capture. The



Logic Based Merging 243

meaning of the postulates is the following: (IC0) assures that the result of
the merging satisfies the integrity constraints. (IC1) states that if the integrity
constraints are consistent, then the result of the merging will be consistent.
(IC2) states that if possible, the result of the merging is simply the conjunction
of the belief bases with the integrity constraints. (IC3) is the principle of
irrelevance of syntax, i.e. if two profiles are equivalent and two integrity
constraints bases are logically equivalent then the belief bases result of the
two merging will be logically equivalent. (IC4) is the fairness postulate, the
point is that when we merge two belief bases, merging operators must not
give preference to one of them. (IC5) expresses the following idea: if two
groups E1 and E2 agree on some alternatives then these alternatives will
be chosen if we join the two groups. (IC5) and (IC6) together state that if
one could find two subgroups which agree on at least one alternative, then
the result of the global merging will be exactly those alternatives the two
groups agree on. (IC7) and (IC8) are a direct generalization of the (R5–
R6) postulates for revision [61]. They state some conditions about integrity
constraints conjunctions. Actually, they ensure that the notion of closeness
is well-behaved. For instance, if an alternative A is chosen among a set of
alternatives, then if the set of alternatives is narrowed but the alternative A
remains in this set, the alternative A will be still chosen. This quite natural
property appears in different theories of choice (social choice, decision, etc).

These properties are the basic ones one could expect from merging opera-
tors. But it is still possible to ask additional constraints on the behavior of the
operators. For instance two important subclasses of IC merging operators are
majority operators and arbitration operators.

A majority merging operator is an IC merging operator that satisfies the
following majority postulate:

(Maj) ∃n .µ (E1 & En
2) 2 .µ(E2)

This postulate expresses the fact that if a subgroup is repeated sufficiently
many times then it is the opinion of this subgroup that will prevail. Notice that
this property is quite general. It doesn’t say the exact number of times a sub-
profile has to appear to prevail.

The majority merging operators aims to satisfy the group as a whole. Unlike
these operators, arbitration operators, aim to satisfy each individual of the
group as far as possible.

An arbitration operator is an IC merging operator that satisfies the follow-
ing postulate:

(Arb) If .µ1(K1) ≡ .µ2(K2),.µ1↔¬µ2({K1, K2}) ≡ (µ1 ↔ ¬µ2), µ1 " µ2,
and µ2 " µ1, then .µ1∨µ2({K1, K2}) ≡ .µ1(K1)

This postulate says that if a set of alternatives preferred among one set of
integrity constraints µ1 for a base K1 corresponds to the set of alternatives
preferred among another set of integrity constraints µ2 for a base K2, and
if the alternatives that belong to a set of integrity constraints but not to the
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other are equally preferred for the whole group (K1 & K2), then the subset
of preferred alternatives among the disjunction of integrity constraints will
coincide with the preferred alternatives of each base among their respective
integrity constraints. This property is much more intuitive when it is expressed
in a model-theoretical way (cf. condition 8 of a fair syncretic assignment in
Definition 2). It states that the median possible choices are preferred.

3.2 Representation Theorem

Now that we have a logical definition of IC merging operators, we will state
a representation theorem that gives a more constructive way to define IC
merging operators. More precisely we will show that to each IC merging
operator corresponds a family of pre-orders on interpretations.

First we have to introduce the notion of syncretic assignment.

Definition 2 A syncretic assignment is a function mapping each profile E to
a total pre-order ≤E over interpretations such that for any profiles E, E1, E2
and for any belief bases K, K′ the following conditions hold:

1. If ω |= E and ω′ |= E, then ω 5E ω′

2. If ω |= E and ω′ *|= E, then ω <E ω′

3. If E1 ≡ E2, then ≤E1=≤E2

4. ∀ω |= K ∃ω′ |= K′ ω′ ≤K&K′ ω

5. If ω ≤E1 ω′ and ω ≤E2 ω′, then ω ≤E1&E2 ω′

6. If ω <E1 ω′ and ω ≤E2 ω′, then ω <E1&E2 ω′

A majority syncretic assignment is a syncretic assignment which satisfies the
following condition:

7. If ω <E2 ω′, then ∃n ω <E1&En
2
ω′

A fair syncretic assignment is a syncretic assignment which satisfies the follow-
ing condition:

8. If ω <K1 ω′, ω <K2 ω′′, and ω′ 5K1&K2 ω′′, then ω <K1&K2 ω′

The two first conditions ensure that the models of the profile (if any) are the
most plausible interpretations for the pre-order associated to the profile. The
third condition states that two equivalent profiles have the same associated
pre-orders. These three conditions are very close to the ones existing in belief
revision for faithful assignments [61]. The fourth condition states that, when
merging two belief bases, for each model of the first one, there is a model of
the second one that is at least as good than the first one. It ensures that the two
bases receive the same treatment in the merging process. The fifth condition
says that if an interpretation ω is at least as plausible as an interpretation ω′ for
a profile E1 and if ω is at least as plausible as ω′ for a profile E2, then if one
joins the two profiles, then ω will still be at least as plausible as ω′. The sixth
condition strengthen the previous condition by saying that an interpretation ω
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is at least as plausible as an interpretation ω′ for a profile E1 and if ω is strictly
more plausible than ω′ for a profile E2, then if one joins the two profiles, then
ω will be strictly more plausible than ω′. These two previous conditions are
very close to Pareto conditions in Social Choice Theory [4, 62]. Condition 7
says that if an interpretation ω is strictly more plausible than an interpretation
ω′ for a profile E2, then there is a quorum n of repetitions of the profile from
which ω will be more plausible than ω′ for the larger profile E1 & En

2 . This
condition seems to be the weakest form of “majority” condition one could
state. Condition 8 states that the median choices are preferred by the group.
More precisely, if an interpretation ω is more plausible than an interpretation
ω′ for a belief base K1, if ω is more plausible than ω′′ for another base K2, and
if ω′ and ω′′ are equally plausible for the profile K1 & K2, then ω has to be more
plausible than ω′ and ω′′ for K1 & K2.

Now we can state the following representation theorem for IC merging
operators:

Theorem 3 ([69]) An operator . is an IC merging operator (or majority
merging operator or arbitration operator respectively) if and only if there
exists a syncretic assignment (or majority syncretic assignment or fair syncretic
assignment respectively) that maps each prof ile E to a total pre-order ≤E such
that mod(.µ(E)) = min(mod(µ),≤E).

This theorem has been generalized to the framework of infinite proposi-
tional logic in [23].

4 Main Families of Merging Operators

We will now give in this Section a short overview of the main families of belief
merging operators.

4.1 Model-Based Operators

Model-based operators are defined by selecting in the model of the constraints
the interpretations that are the closest from the profile, i.e.

Definition 4 A model based merging operator . is defined by :

mod(.µ(E)) = min(mod(µ),≤E)

Note that this definition is directly inspired by the representation theorem.
Usually this closeness is represented using a distance between interpreta-

tions and an aggregation function, in the following way.
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Definition 5 A (pseudo-)distance4 between interpretations is a function d :
W×W 0→ IR+ such that for any ω, ω′ ∈W :

– d(ω, ω′) = d(ω′, ω), and
– d(ω, ω′) = 0 iff ω = ω′.

Definition 6 An aggregation function f is a function mapping for any positive
integer n, each n-tuple of positive reals into a positive real such that for for any
x1, . . . , xn, x, y ∈ IR+:

– if x ≤ y, then f (x1, . . . , x, . . . , xn) ≤ f (x1, . . . , y, . . . , xn) (monotony)
– f (x1, . . . , xn) = 0 iff x1 = . . . = xn = 0 (minimality)
– f (x) = x (identity)

Definition 7 Let d and f be a distance between interpretations and an ag-
gregation function respectively. The model based merging operator .d, f is
defined by mod(.d, f

µ (E)) = min(mod(µ),≤E), where the total pre-order ≤E
on W is defined in the following way:

– ω ≤E ω′ iff d(ω, E) ≤ d(ω′, E),
– d(ω, E) = f (d(ω, K1), . . . , d(ω, Kn)), where E = {K1, . . . , Kn},
– d(ω, K) = minω′|=Kd(ω, ω′)

The operators studied in [78, 91] are particular cases when the distance used
is the Hamming distance (the Hamming distance dH is the number of propo-
sitional letters on which the two interpretations differ) and the aggregation
function is the sum or the maximum. The results in [69] show that any distance
produce merging operators with good logical properties. Another particular
distance is the drastic distance dD, defined as dD(ω1, ω2) = 0 if ω1 = ω2, or 1
otherwise.

In [69] the use of the aggregation function Gmax (leximax) was proposed,
leading to arbitration operators. Using as aggregation functions the sum of nth
powers allows to modulate the consensual degree of the operator [70]. Finally
the use of the aggregation function Gmin (leximin) has been recently proposed
[41], and give rise to disjunctive operators (see Section 4.4).

If the aggregation function f has good properties, like most common ag-
gregation functions (the sum, the leximax, the sum of nth powers, the leximin),
the model based merging operator associated (for any distance) are IC merging
operators. More precisely we have the following results [66]:

Theorem 8 Let d and f be a distance between interpretations and an aggre-
gation function respectively. The operator .d, f satisf ies the postulates (IC0),
(IC1), (IC2), (IC7) and (IC8).

4The triangle inequality is not required.



Logic Based Merging 247

Theorem 9 Let d and f be a distance between interpretations and an aggrega-
tion function respectively. The operator .d, f satisf ies the postulates (IC0–IC8)
if f the aggregation function f satisf ies the following properties:

– For any permutation σ , f (x1, . . . , xn) = f (σ (x1, . . . , xn)) (symmetry)
– If f (x1, . . . , xn) ≤ f (y1, . . . , yn), then f (x1, . . . , xn, z) ≤ f (y1, . . . , yn, z)

(composition)
– If f (x1, . . . , xn, z) ≤ f (y1, . . . , yn, z), then f (x1, . . . , xn) ≤ f (y1, . . . , yn)

(decomposition)

Let us now give as example two families of IC merging operators: %

operators and Gmax operators.
Let d be any distance between interpretations, the % operator .d,% (where

% denotes the usual sum) is a majority merging operator:

Theorem 10 ([69]) Every operator .d,% is a majority merging operator.

In order to define the other family. Let us introduce the function Gmax.
It is a generalization of the operators defined with the aggregation function
max, which are not IC merging operators [69] (operators defined with the max
function are IC quasi-merging operators [69]).

Let E = {K1, . . . , Kn} be a profile. For each interpretation ω we build the list
(dω

1 , . . . , dω
n ) of distances between this interpretation and the n belief bases in

E, i.e. dω
j = d(ω, K j). Let LE

ω be the list obtained from (dω
1 , . . . , dω

n ) by sorting it
in descending order. Then these vectors are compared with the lexicographical
order. This method can be identified with an aggregation function5 Gmax such
that

Gmax(dω
1 , . . . , dω

n ) ≤ Gmax(dω′
1 , . . . , dω′

n ) iff LE
ω ≤lex LE

ω′

This aggregation function has also the properties of Theorem 9 (see [69]).
So the model-based operator build from this function (whatever the distance
d), called .d,Gmax satisfies the postulates (IC0)–(IC8). Indeed, these operators
satisfy also the arbitration postulate:

Theorem 11 ([69]) Every operator .d,Gmax is an arbitration operator.

It is interesting to notice that the families of arbitration operators and
majority operators are not disjoint. Actually if dD is the drastic distance we
have .dD,% = .dD,Gmax.

The following example, in which dH will be the Hamming distance, illus-
trates the behavior of these classes of operators.

5See for instance [66] for a formal mathematical definition of Gmax, we prefer to give the intuition
here.
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Example 12 At a meeting of a block of flat co-owners, the chairman proposes
for the coming year the construction of a swimming-pool, of a tennis-court and
of a private-car-park. But if two of these three items are build, the rent will
increase significantly. We will denote by S, T, P respectively the construction
of the swimming-pool, the tennis-court and the private-car-park. We will
denote I the rent increase.

The chairman outlines that building two items or more will have an impor-
tant impact on the rent: µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P)) → I.

There are four co-owners E = {K1 & K2 & K3 & K4}. Two of the co-owners
want to build the three items and do not care about the rent increase: K1 =
K2 = S ∧ T ∧ P. The third one thinks that building any item will caused at
some time an increase of the rent and wants to pay the lowest rent so he is
opposed to any construction: K3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I. The last one thinks
that the block really needs a tennis-court and a private-car-park but does not
want a high rent increase : K4 = T ∧ P ∧ ¬I.

The propositional letters S, T, P, I will be considered in that order for the
interpretations:

mod(µ) = ω \ {(0, 1, 1, 0), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 0)}
mod(K1) = mod (K2) = {(1, 1, 1, 1), (1, 1, 1, 0)}
mod(K3) = {(0, 0, 0, 0)} mod(K4) = {(1, 1, 1, 0), (0, 1, 1, 0)}
We sum up the calculations in Table 1, for each interpretation we give

the distances between this interpretation and the four belief bases and the
distance between this interpretation and the profile according to the.dH,% and
the .dH,Gmax operators. The lines shadowed correspond to the interpretations
rejected by the integrity constraints. Thus the result has to be found among the
interpretations that are not shadowed.

If one takes the decision according to the majority wishes, using the .dH,%

operator we have 5 as minimum distance, so mod(.dH,%
µ (E)) = {(1, 1, 1, 1)},

Table 1 .dH ,% and .dH ,Gmax

operators
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and the decision that satisfies the majority in the group is to build the three
items and to increase the rent. But, with an arbitration operator, such as Gmax,
we have mod(.dH,Gmax

µ (E)) = {(0, 0, 1, 0), (0, 1, 0, 0)}, so the decision that best
fit the group and that is allowed by the integrity constraints is to build either
the tennis-court or the private-car-park, without increasing the rent.

See [2] for a study of properties of the consequence relations that can be
defined from model-based merging operators.

4.2 Formula-Based Operators

Formula-based merging operators are sensitive to the syntax of the formulae
of the belief bases to be merged. When the belief bases are sets of formulae,
usual formula-based merging operators select in the union of the bases some
maximal consistent subsets of formulae [7, 9]. This method has as drawback
that the sources of information are lost in the process, so these operators can
not take into account the distribution of the information for computing the
merging. This is a problem if one wants to take majority notions into account
for instance.

In [63] it has been proposed to use selection functions, close to the
transitively relational partial meet contractions functions [1] used for belief
revision/contraction, and to use them in order to take the distribution of in-
formation into account. This allow to define formula-based merging operators
with a better behaviour and thus better logical properties. Let us define these
operators formally:

Definition 13 Let Maxcons(K, µ) be the set of the maximal (for set inclusion)
consistent subsets (maxcons) of K ∪ {µ} that contain µ. So Maxcons(K, µ) is
the set of M such that :

– M ⊆ K ∪ {µ},
– µ ∈ M,
– M " ⊥,
– if M ⊂ M′ ⊆ K ∪ {µ}, then M′ 2 ⊥.

Let Maxcons(E, µ) = Maxcons(
⋃

Ki∈E Ki, µ). When maximality is defined
with respect to cardinality, we will use the subscript “card”, i.e. we will note
Maxconscard(E, µ).

Then one can define the following formula-based merging operators:

Definition 14 Let E be a profile and µ be a formula:

.C1
µ (E) = ∨

Maxcons(E, µ)

.C3
µ (E) = ∨{M | M ∈ Maxcons(E,!) and M ∪ {µ} consistent}
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Table 2 Properties for operators with selection functions based on .C1

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj

.C1 √ √ √ − √ √ − √ − √ −

.d √ √ √ − √ √ − √ − − √

.S,% √ √ √ − √ − − √ √ − √

.∩,% √ √ √ − − √ √ √ √ − √

.C4
µ (E) = ∨

Maxconscard(E, µ)

.C5
µ (E) = ∨{M∪{µ} | M∈Maxcons(E,!) and M ∪ {µ} consistent}

if this set is non-empty and µ otherwise

Operators .C1
µ (E), .C3

µ (E) and .C4
µ (E) correspond respectively to opera-

tors Comb1(E, µ), Comb3(E, µ) and Comb4(E, µ) defined in [7]. .C5 is a
slight modification of .C3 in order to have better logical properties [63].

These operators make the union of the bases, and then they try to obtain a
consistent result from this inconsistent union. This is very close to inference
relations based on maximal consistent subsets [10, 11, 88]. But this is not
satisfactory from a merging point of view since we do not take into account
the localization of the pieces of information among the different bases of the
profile. That is exactly this point that makes a distinction between merging and
inference under inconsistency. We call these operators combination operators
(this name was used in the original papers of [6, 7]), to make a distinction with
merging operators.

Then it has been proposed in [63] to select only the maxcons that best satisfy
a merging criterion. These selection functions are inspired from the ones used
in belief revision to define partial meet contraction functions [1]. In both cases,
the aim of the selection fonctions is to select only the “best” maxcons. The idea
in the merging case is that these fonctions bring some social evaluation (i.e.
they take into account the distribution of the information among the bases).

Three particular criteria has been studied in [63]. The first one (.d) selects
the maxcons that are consistent with the highest number of bases. The second
one (.S,%) selects the maxcons that have the smallest differences (for cardi-
nality) with the bases. The third one (.∩,%) selects the maxcons that have the
biggest intersection (for cardinality) with the bases.

Table 2 shows, using the combination operator6 .C1, that the use of selec-
tion functions allows to obtain better properties.

One can check that none formula-based merging operator satisfy all the
properties of IC merging (see Section 4.4 for a possible alternative).

The study of other operators and selection functions seems interesting. In
particular it seems sensible to expect a representation theorem for IC merging
using selection functions, that would be a generalisation of the ones for partial
meet contraction functions in the belief revision framework [1].

6See [63] for the logical properties of the other combination operators.
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4.3 DA2 Operators

DA2 operators [66] are parametrized by a distance and two aggregation
functions. These operators are a generalization of usual model-based opera-
tors, but they also capture some formula-based operators. The drawback of
usual model-based merging operators is that they can not take into account
inconsistent belief bases. But in some cases the information from these bases
can be useful.

Definition 15 Let d be a distance between interpretations and f and g be
two aggregation functions. The DA2 merging operator .d, f,g is defined as
mod(.d, f,g

µ (E)) = min(mod(µ),≤E), where the pre-order ≤E on W is defined
as:

– ω ≤E ω′ if and only if d(ω, E) ≤ d(ω′, E), where
– d(ω, E) = f (d(ω, K1) . . . , d(ω, Kn)), where E = {K1, . . . , Kn}.
– d(ω, Ki) = g(d(ω, ϕ1) . . . , d(ω, ϕmi)), where Ki = {ϕ1, . . . , ϕni}.

The first aggregation function g allows to extract a coherent piece of
information from any base Ki even if the base is inconsistent. Then the second
function f is used for the (usual) inter-source aggregation.

From a complexity point of view these operators are at the same level
of the polynomial hierarchy than model-based merging operators (so this
generalisation has no cost from a complexity point of view).

For more details on computational complexity of merging operators, and
exact complexity of the main merging operators see [66].

4.4 Disjonctive Operators and Unaninity

Quota merging operators [41] define the models of the merging as the in-
terpretations that satisfy sufficiently many bases. These operators are a good
compromise between several important criteria for merging operators: logical
properties, computational complexity, strategy-proofness (see Section 6.1) and
inferential power.

Gmin operators are model-based operators (Section 4.1) with a leximin
aggregation function [41] that are related to quota merging operators since
they have a better inferential power and they satisfy more logical properties.7

All these operators are disjunctive operators, that means that the result of
the merging is selected among the disjunction (union) of the bases.

This property is not mandatory for merging operators, since it prevents
from finding compromise solutions, that have not been proposed by any base.
But in some cases it can be justified to require this disjunction property,
especially for belief merging (cf. Section on belief merging versus goal merging

7On the other hand this has to be paid by a higher computational complexity.
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(Section 6.2)). For instance suppose that several doctors propose different
medical treatments for a given patient. It seems clear that it is preferable to
choose among the possible treatments rather than to melt the treatments. Note
that the commutative revision operators of Liberatore and Schaerf [74] are also
disjunctive operators.

Another justification of this disjunction property is that it can be explained
as the translation of a unanimity property. Unanimity is a classical property
when one aggregates pieces of information, and it is considered as a major
requirement for voting methods for instance. This property intuitively means
that if all the agents judge a candidate as the best one, then he has to be
the best one for the group. If we consider unanimity for belief merging, this
property can be expressed in two different ways [41]. The most direct one is
the unanimity on Models, that can be expressed this way:

(UnaM) If ω |= µ and ∀K ∈ E, ω |= K, then ω |= .µ(E)

This condition is a consequence of property (IC2), so it is satisfied by any
IC merging operator. But, if one consider a base as the set of its logical
consequences, then we can express an unanimity on Formulae:

(UnaF) If ∃K ∈ E s.t. µ ∧ K is consistent, then if ∀K ∈ E, K |= α, then
.µ(E) |= α

The additional condition of (UnaF) just ensures that it is possible to select
a result in the disjunction of the bases that is compatible with the integrity
constraints.

And (UnaF) is equivalent to the following disjunction property [41]:

(Disj) If
∨

E is consistent with µ, then .µ(E) |= ∨
E

This (Disj) property is also the main reason for motivating the use of
formula-based merging operators (see Section 4.2). Since, compared to model-
based operators, these operators satisfy less logical properties, and often have
a higher computational complexity.

This work suggests that Gmin operators are a good substitute to formula-
based operators: they also satisfy the disjunction property, but they have better
logical properties (they are IC merging operators), and a lower computational
complexity.

4.5 Conflict-Based Operators

Model-based merging operators (Section 4.1) are based on a notion of prox-
imity between models. This proximity notion is captured by a (numerical)
distance, such as the Hamming distance for instance. An other possibility
is to consider as “distance” the set of all propositional variables that differ
between the two interpretation (this distinction exists in the framework of
belief revision, if one looks at the link between the Dalal operator [29] and the
Borgida operator [20] for instance). This allows to be more precise than with
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Table 3 Differences between
ω1 and ω2?

diff(ω, K1) diff(ω, K2) diff(ω, K3) diff(ω, K4)

ω1 {{a}} {{a}} {{a}} {{a}}
ω2 {{a}} {{b}} {{c}} {{d}}

the Hamming distance. So it is possible to define conflict-based operators, that
generalize model-based operators.

Let us see an example in order to illustrate how the definition of a vector of
conflict allows a better discrimination of interpretations than when the conflict
is summed up by a numerical distance.

Example 16 Consider a language that contains the variables a, b , c, d, a
profile E = {K1, . . . , K4} and an integrity constraint µ such that mod(µ) =
{ω1, ω2}. Define diff(ω, ω′) = {a ∈ P | ω(a) *= ω′(a)}, and diff(ω, K) =
minω′|=K(diff(ω, ω′),⊆).

Table 3 shows the minimal conflict between each model of the constraints
and each base of the profile. For instance the conflict between ω1 and K1 is
about the variable a, this means that the model of K1 that is the closest from
ω1 only disagree about the truth value of variable a.

Clearly the Hamming distance does not allow to discriminate these two
interpretations, since they both are at a distance 1 of each base. We obtain
two vectors 〈1, 1, 1, 1〉 that are indistinguishable for any aggregation function.
If we use vectors of conflict we obtain in a case 〈a, a, a, a〉, and in the other
〈a, b , c, d〉, so there is a clear difference between the two situations. In ω1 all
the agents agree that the problem is about the variable a, whereas this is not the
case in ω2. So these two interpretations can be treated differently by conflict-
based merging operators.

Let us define formally the vectors of conflict and the corresponding merging
operators [40]:

Definition 17 The conflict between two interpretations is defined as
diff(ω, ω′) = {p ∈ P | ω(p) *= ω′(p)}. The conflict between an interpretation
and a base is diff(ω, K) = min({diff(ω, ω′) | ω′ |= K},⊆). And the vector
of conflict between an interpretation and a profile E = 〈K1, . . . , Kn〉 is
diff(ω, E) = {〈cω

1 , cω
2 , . . . , cω

n 〉 | cω
i ∈ diff(ω, Ki)}.

Then one can define a comparison relations <R between vector of conflicts,
and use it to define a conflict-based merging operator:

Definition 18 Let E = 〈K1, . . . , Kn〉 be a profile, µ some integrity constraints
and let <R be a relation on conflict vectors of dimension n. We define8

mod('diff,R
µ (E)) = min([µ],≤E

R).

8In [40] the relation ≤E
R over W is defined by ω ≤E

R ω′ iff ∃c ∈ diff(ω, E) s.t. ∀c′ ∈ diff(ω′, E), we
have c <R c′. But one can consider other lifting policies.
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This is easy to show that usual model-based merging operators can be
obtained as special cases. It is also possible to define logical refinements of
these operators [40].

4.6 Default-Based Operators

In [34] default-based merging operators have been proposed. The idea is to
use a specific language for each base, in order to ensure that the union of these
bases is consistent. Then to try to add as many default rules as possible in order
to identify the corresponding variables of each language (this idea is close to
the one used to define a paraconsistent inference relation proposed by Besnard
and Schaub [15]).

These operators are some links with conflict-based operators, since they
look at the conflict variable by variable. But they treat it differently. So they
give rise to distinct operators.

The formal definition is the following one [34]:

Definition 19 A i-renaming of a language L is the language Li, build from
a set of propositional variables P i = {pi | p ∈ P}, where for each α ∈ L, αi

is the result of renaming in α every propositional variable p ∈ P by the
corresponding variable pi ∈ P i. Let K be a base, the i-renaming of (formulae
of) K is denoted Ki.

Definition 20 Consider a profile E = {K1, . . . , Kn}.
Let EQ be a subset of {pk ⇔ pl | p ∈ L and k, l ∈ {1 . . . n}} maximal (for

set inclusion) such that (
∧

Ki∈E Ki
i) ∧ EQ is consistent. Then {α | ∀ j ∈

{1 . . . n} (
∧

Ki∈E Ki
i) ∧ EQ |= α j} is a symmetric consistent extension of E. The

skeptical merging .s(E) of E is the intersection of every symmetric consistent
extension of E.

Let EQ be a subset of {pj⇔ p | p ∈ L and j ∈ {1 . . . n}} maximal (for set
inclusion) such that (

∧
Ki∈E Ki

i) ∧ EQ is consistent. Then (
∧

Ki∈E Ki
i) ∧ EQ is

a projected consistent extension of E. The skeptical merging ∇s(E) of E is the
intersection of every projected consistent extension of E.

Let us see how it works on a small example:

Example 21 Consider the profile E = {K1, K2, K3}, with K1 = (p ∧ q ∧ ¬r) ∨
(¬p ∧ q ∧ r), K2 = (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) and K3 = ¬q ∧ ¬r.

There are four maximal consistent sets of equivalences for 's(E):

EQ1 = {p1 ⇔ p2, p1 ⇔ p3, p2 ⇔ p3, r1 ⇔ r2, r1 ⇔ r3, r2 ⇔ r3, q2 ⇔ q3}
EQ2 = {p1 ⇔ p3, r1 ⇔ r2, r1 ⇔ r3, r2 ⇔ r3, q1 ⇔ q2}
EQ3 = {p2 ⇔ p3, r1 ⇔ r2, r1 ⇔ r3, r2 ⇔ r3, q1 ⇔ q2}
EQ4 = {p1 ⇔ p2, p1 ⇔ p3, p2 ⇔ p3, r2 ⇔ r3, q1 ⇔ q2}

So, 's(E) ≡ ¬r ∨ (¬p ∧ q).



Logic Based Merging 255

For ∇s, the maximal consistent sets of equivalences are the following ones
(p⇔ p1 ⇔ p2 ⇔ p3 will be used as an abbreviation for p⇔ p1, p⇔ p2, p⇔
p3) :

EQ1 = {p⇔ p1 ⇔ p2 ⇔ p3, r⇔ r1 ⇔ r2 ⇔ r3, q⇔ q2 ⇔ q3}
EQ′

1 = {p⇔ p1 ⇔ p2 ⇔ p3, r⇔ r1 ⇔ r2 ⇔ r3, q⇔ q1},
EQ2 = {p⇔ p1 ⇔ p3, r⇔ r1 ⇔ r2 ⇔ r3, q⇔ q1 ⇔ q2}
EQ3 = {p⇔ p2 ⇔ p3, r⇔ r1 ⇔ r2 ⇔ r3, q⇔ q1 ⇔ q2}
EQ4 = {p⇔ p1 ⇔ p2 ⇔ p3, r⇔ r2 ⇔ r3, q⇔ q1 ⇔ q2}
EQ′

4 = {p⇔ p1 ⇔ p2 ⇔ p3, r⇔ r1, q⇔ q1 ⇔ q2}
So, ∇s(E) ≡ (p ∧ ¬r) ∨ (¬p ∧ q).

These operators have been implemented in the COBA system [33].
A possible criticism about this approach is that, just like formula-based

merging operators, these operators do not take into account the distribution
of the information among the sources. In particular they are not majority
operators, and a piece of information that is believed by all the bases except
one will not be in the result. But, as for formula-based operators (see Section
4.2), it seems possible to improve the behaviour of these operators, by adding
a selection function for choosing the maximal subsets of equivalence EQ.

5 Merging, Revision and other Change Operators

We focus in this section on the study of relationships between belief merging
operators, belief revision operators and update operators. There are close
links between them. This is particularly clear when looking at the technical
definitions.

There are close relationship between revision [1, 44, 61] and KM (for
Katsuno and Mendelzon) update operators [60]. The first ones looking at the
beliefs of the agents globally, the second ones looking at them locally.

Theorem 22 If ◦ is a revision operator (i.e. it satisf ies (R1)–(R6)), then the
operator @ def ined by:

K @ µ =
∨

ω|=K

ϕ{ω} ◦ µ

is an update operator that satisf ies (U1)–(U9).
Moreover, for each update operator @, there exists a revision operator ◦ such

that the previous equation holds.

See [38, 52, 72] for more discussions on update and its links with revision.
There is also a close connection between revision and merging operators. In
fact revision operators can be seen as particular cases of merging operators
(see [69] for more details).
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Fig. 1 Revision - Update -
Merging - Confluence

Theorem 23 If . is an IC merging operator (it satisf ies (IC0–IC8)), then the
operator ◦, def ined as K ◦ µ = .µ(K), is an AGM revision operator (it satisf ies
(R1–R6)).

From these two facts a very natural question arises: What is the family
of operators that are a generalization of update operators in the same way
merging operators generalize revision operators? Or, equivalently, what are
the operators that can be considered as pointwise merging, just as KM update
operators can be considered as pointwise belief revision. This can be outlined
by Fig. 1.

Confluence operators have been proposed in [71]. In order to illustrate the
need of these new operators and also the difference of behaviour between
merging and confluence let us consider a small example.

Example 24 Mary and Peter are planning to buy a car. Mary does not like
a German car nor an expensive car. She likes small cars. Peter hesitates
between a German, expensive but small car or a car which is not German,
nor expensive and is a big car. Taking three propositional variables German_-
car, Expensive_car and Small_car in this order, Mary’s desires are
represented by mod (A) = {001} and Peter’s desires by mod(B) = {111, 000}.
Most of the merging operators9 give as solution (in semantical terms) the set
{001, 000}. That is the same solution obtained when we suppose that Peter’s
desires are only a car which is not German nor expensive but a small car
(mod(B′) = {000}). The confluence operators will take into account the dis-
junctive nature of Peter’s desires in a better manner and they will incorporate
the interpretations that are a trade-off between 001 and 111. For instance,
the worlds 011 and 101 will be also in the solution if one uses the confluence
operator ♦dH,Gmax.

This kind of operators is particularly adapted when the base describes a
situation that is not perfectly known, or that can evolve in the future. For
instance Peter’s desires can either be imperfectly known (he wants one of
the two situations but we do not know which one), or can evolve in the
future (he will choose later between the two situations). In those situations
the solutions proposed by confluence operators will be more adequate than the

9Such as .dH ,% and .dH ,Gmax [69].
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one proposed by merging operators. The solutions proposed by the confluence
operators can also be seen as all possible agreements in a negotiation process.

Definition 25 An operator ♦ is a confluence operator if it satisfies the follow-
ing properties:

(UC0) @µ(E) 2 µ

(UC1) If µ is consistent and E is p-consistent,10 then @µ(E) is consistent
(UC2) If E is complete and E is consistent and

∧
E 2 µ, then @µ(E) ≡ ∧

E
(UC3) If E1 ≡ E2 and µ1 ≡ µ2, then @µ1(E1) ≡ @µ2(E2)

(UC4) If K1 and K2 are complete formulae , and K1 2 µ, K2 2 µ, then
@µ({K1, K2}) ∧ K1 is consistent if and only @µ({K1, K2}) ∧ K2 is
consistent

(UC5) @µ(E1) ∧ @µ(E2) 2 @µ(E1 & E2)

(UC6) If E1 and E2 are complete profiles, and @µ(E1) ∧ @µ(E2) is
consistent, then @µ(E1 & E2) 2 @µ(E1) ∧ @µ(E2)

(UC7) @µ1(E) ∧ µ2 2 @µ1∧µ2(E)

(UC8) If E is a complete profile and if @µ1(E) ∧ µ2 is consistent then
@µ1∧µ2(E) 2 @µ1(E) ∧ µ2

(UC9) @µ(E & {K ∨ K′}) ≡ @µ(E & {K}) ∨ @µ(E & {K′})

Some of the (UC) postulates are exactly the same than (IC) ones, just like
some (U) postulates for update are exactly the same than (R) ones for revision.

In fact, (UC0), (UC3), (UC5) and (UC7) are exactly the same than the
corresponding (IC) postulates. So the specificity of confluence operators lay
in postulates (UC1), (UC2), (UC6), (UC8) and (UC9). (UC1) is close to (U3)
for update (conversely to (IC1) for merging, consistent integrity constraint is
not enough to ensure consistency of the result). (UC4), (UC6) and (UC8) are
close from the corresponding (IC) postulates, but hold for complete profile
only. The present formulation of (UC2) is quite similar to formulation of (U2)
for update. Remark that in the case of complete profile the hypothesis of
(UC2) is equivalent to ask coherence with the constraints, i.e. the hypothesis
of (IC2). Postulates (UC8) and (UC9) are the main difference with merging
postulates, and correspond also to the main difference between revision and
KM update operators. (UC9) is the most important postulate, that defines
confluence operators as pointwise aggregation, just like (U8) defines update
operators as pointwise revision. This will be expressed more formally in the
next Section (Lemma 1).

5.1 Representation Theorem for Confluence Operators

In order to state the representation theorem for confluence operators, we first
have to be able to “localize” the problem. For update this is done just by

10A profile E = {K1, . . . Kn} is p-consistent if all its bases are consistent, i.e ∀Ki ∈ E, Ki is
consistent.
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looking to each model of the base, instead of looking at the base (set of models)
as a whole. So for “localize” the aggregation process, we have to find what is
the local view of a profile. That is what we call a state.

Definition 26 A multi-set of interpretations will be called a state. We use the
letter e, eventually with subscripts, for denoting states. If E = {K1, . . . , Kn}
is a profile and e = {ω1, . . . , ωn} is a state such that ωi |= Ki for each i, we
say that e is a state of the profile E and, for short, this will be denoted
by e |= E. If e = {ω1, . . . , ωn} is a state, we define the profile Ee by putting
Ee = {K{ω1}, . . . , K{ωn}}.

State is an interesting notion. If we consider each base as the current point of
view (goals) of the corresponding agent (that can be eventually strengthened
in the future) then states are all possible negotiation starting points.

States are the points of interest for confluence operators (like interpreta-
tions are for update), as stated in the following Lemma:

Lemma 1 If @ satisf ies (UC3) and (UC9) then @ satisf ies the following
@µ(E) ≡

∨

e|=E

@µ(Ee)

Like revision’s faithful assignments that have to be “localized” to interpreta-
tions for update, merging’s syncretic assignments have to be localized to states
for confluence.

Definition 27 A distributed assignment is a function mapping each state e to a
total pre-order ≤e over states such that:

1. ω <{ω,...,ω} ω′ if ω′ *= ω

2. ω 5{ω,ω′} ω′

3. If ω ≤e1 ω′ and ω ≤e2 ω′, then ω ≤e1&e2 ω′

4. If ω <e1 ω′ and ω ≤e2 ω′, then ω <e1&e2 ω′

Now we can state the representation theorem for confluence operators [71].

Theorem 28 An operator @ is a conf luence operator if and only if there exists
a distributed assignment that maps each state e to a total pre-order ≤e such that

mod (@µ(E)) =
⋃

e|=E

min( mod (µ),≤e).

5.2 Confluence Versus Update and Merging

So now we are able to state the proposition that shows that update is a special
case of confluence, just as revision is a special case of merging.
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Theorem 29 If @ is a conf luence operator (i.e. it satisf ies (UC0–UC9)), then
the operator @, def ined as K@µ = @µ(K), is an update operator (i.e. it satisf ies
(U1–U9)).

Concerning merging operators, one can see easily that the restriction of a
syncretic assignment to a complete profile is a distributed assignment. From
that we obtain the following result (the one corresponding to Theorem 22 for
revision and update):

Theorem 30 If . is an IC merging operator (i.e. it satisf ies (IC0–IC8)) then
the operator @ def ined as @µ(E) =

∨

e|=E

.µ(Ee) is a conf luence operator (i.e. it

satisf ies (UC0–UC9)).
Moreover, for each conf luence operator @, there exists a merging operator .

such that the previous equation holds.

It is interesting to note that this theorem shows that every merging operator
can be used to define a confluence operator, and explain why we can consider
confluence as a pointwise merging.

As a corollary of the representation theorem we obtain the following

Corollary 31 If @ is a conf luence operator then the following property holds:

(half IC2) If
∧

E 2 µ and E consistent, then
∧

E ∧ µ 2 @µ(E)

But it is not (generally) the case that @µ(E) 2 ∧
E ∧ µ.

Note that this “(half IC2)” property is similar to the “(half R2)” satisfied by
update operators.

This corollary is interesting since it underlines an important difference
between merging and confluence operators. If all the bases agree (i.e. if their
conjunction is consistent), then a merging operator gives as result exactly the
conjunction, whereas a confluence operator will give this conjunction plus
(eventually) additional results. This is useful if the bases do not represent
interpretations that are considered equivalent by the agent, but uncertain
information about the agent’s current or future state of mind. For examples
of confluence operators see [71].

6 Belief Merging and Social Choice Theory

Merging operators show tight relationships with social choice theory [3], and
in particular with voting methods. It is interesting to study what are the
consequences of well known social choice concepts when applied to merging
scenarios. We will give two such examples in this Section: strategy-proofness
and truth-tracking. Strategy-proofness is about the resistance of strategic
manipulation from the sources/agents. The truth-tracking issue study if the
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merging/voting methods are capable to identify the true state of the world if
the sources/agents are sufficiently reliable.

6.1 Strategy-Proofness

Merging operators allow to define the beliefs/goals of a group of agents. But
if an agent is capable to make some reasoning about the result of the merging
and on the impact that he can have on it, he can be tempted to try to modify the
result of the merging in order to best fit his interests. This strategy-proofness
issue for merging operators have been studied in [39].

Unsurprisingly, it is quite difficult to obtain strategy-proofness. Belief
merging is quite close to preference aggregation, and a seminal result in
social choice, the Gibbard-Sattherwaite theorem [48, 92], shows that it is not
possible to define a preference aggregation method that is strategy-proof. So
it is normal to obtain very few strategy-proof results in the belief merging
framework.

This definition of strategy-proofness for merging is quite standard. The
difference with usual preference aggregation where the comparison of situa-
tions is direct, is that for propositional merging we need to use a satisfaction
index to evaluate the satisfaction11 of an agent with respect to a merging result
[39]:

Definition 32 Let i be a satisfaction index, i.e., a function from L× L to IR+:

– A profile E is manipulable by a base K for the index i given the operator
. and the integrity constraint µ if and only if there is a base K′ such that
i(K, 'µ(E & {K′})) > i(K, 'µ(E & {K})).

– A merging operator ' is strategy-proof for i if and only if there is no
integrity constraint µ and no profile E = {K1, . . . , Kn} such that E is
manipulable for i.

We focused on three satisfaction index, that are the most natural ones if we
do not have any additional information:

Definition 33

– Weak drastic index : idw(K, K.) =
{

1 if K ∧ K. " ⊥
0 otherwise

– Strong drastic index : ids(K, K.) =
{

1 if K. 2 K,

0 otherwise
– Probabilistic index:12 ip(K, K.) = |mod(K)∩mod(K.)|

|mod(K.)|

11The bigger the index, the more satisfied the agent.
12When |mod(K.)| = 0, then ip(K, K') = 0.
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So with the weak drastic index an agent is satisfied if the result of the
merging is consistent with his base. With the strong drastic index the result
of the merging must imply the base. The probabilistic index allows a more pro-
gressive measure of satisfaction, that depends on the proportion of common
models between the result of the merging and the base of the agent. See [39]
for detailed strategy-proofness results.

Chopra, Ghose and Meyer have studied strategy-proofness for merging of
weighted formulae [24].

6.2 Belief Merging Versus Goal Merging

Since the beginning of this paper we use the generic term “belief merging”.
But the works on logical characterizations of merging operators hold both for
proper belief merging and for goal merging. In fact all the proposed postulates
seem quite sensible in both cases. Even if it can seem strange than two
concepts as different as beliefs and goals can be treated the same way for
aggregation, the adequacy of IC merging operators (for belief or goal merging)
has not been yet challenged by the proposition of new postulates that would
allow to distinguish the two types of merging.13

The main nuance that we can find is that it is easier to justify the use of
disjunctive merging operators for merging beliefs than for merging goals.

It is still possible to define an interpretation of belief merging, that allows
to make a distinction. An interesting question for merging, coming from
social choice theory, is to know if belief merging operators are good for truth
tracking. In fact, this question leads to the definition of two interpretations for
merging operators: the synthetic point of view versus the epistemic point of
view [42].

Synthetic view: Under the synthetic point of view, the aim of merging is to
define a base that best represents the information of the
profile. This is the usual view for merging operators.

Epistemic view: Under the epistemic point of view, the aim of merging is to
try to identify the true state of the world, so to remove as
far as possible the uncertainty of the group.

Then it is interesting to note that the epistemic view, i.e. the truth tracking
issue, is a way to distinguish belief merging from goal merging. Indeed, whereas
the truth tracking issue is perfectly sensible for belief merging, it seems
difficutly justifiable for goals, since it is clear that the notion of “true goal”,
that would be equivalent of the “true world” for beliefs, has little sense.

In social choice theory, the result that justifies decisions taken by a majority
in a group is the Condorcet’s jury theorem [80]. This theorem states that in
order to answer to a binary (yes/no) question, if the member of the group are

13However see [31] for an interesting study of the interactions of merging beliefs, desires and goals.
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reliable (they have more than 50% chances to be right), and independent, then
listening to the majority is the good choice (in particular when the number of
agents tends to infinity the probability of error tends to 0).

This result is what justifies the use of committees for taking decisions (in
law court, etc.). But it is easy to see that the hypotheses of this theorem are
very restrictive. In particular the question is only a binary one, and the agents
can not be uncertain (they can not hesitate between yes or no).

In [42] a generalization of the Condorcet’s jury theorem under uncertainty
is shown. In this case the question is on any number of alternatives, and the
agents can face uncertainty (they provide a set of alternatives, not a single
one). It is shown that approval voting [22], that allows to vote for any number
of candidates and that elects the candidate that receives the most votes, is the
voting method to use in this case. The theorem and its consequences for belief
merging operators are also studied in [42].

Truth-tracking has been also studied in the framework of judgment aggre-
gation, that is also a form of logical aggregation, and that is related to belief
merging. See [79] for an introduction to judgment aggregation. And see [21, 85]
for papers on truth-tracking for judgment aggregation.

7 Merging in Other Frameworks

Merging has also been studied in other representation frameworks. Operators
discussed above are defined in the propositional logic framework, when all the
bases have the same importance/priority/fiability. But it can be necessary to
merge information with more structure than the one of propositional logic. In
this case new problems and new possibilities arise. Let us review the closest
works in this Section.

7.1 Prioritized Merging, Merging and Iterated Revision

In [32] Delgrande, Dubois and Lang propose an interesting discussion on
prioritized merging operators. The idea is to merge a set of weighted formulae.
The weights are used to stratify the formulae (a formula with a greater weight
is more important, even if they are a large number of formula with smaller
weights that contradict it).

Delgrande, Dubois and Lang motivate the generality of their approach
by showing that classical merging operators (on unweighted formulae) and
iterated belief revision operators (à la Darwiche and Pearl [30]) can be
considered as two extreme cases of this weighted merging framework.

Their discussion on iterated belief revision operators is particularly inter-
esting, and can be related to the warning of Friedman and Halpern on the
problem of defining change operators without specifying their ontology [43].
The main argument is that if one makes the hypothesis that the new pieces of
information that come successively in an iterated revision process are about
a static world (the usual hypothesis), then there is no reason to give the
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preference to the last ones. If these information have different reliability, then
this can be represented explicitly with the weights of the formulae, in order
to take this difference of reliability in the iterated “revision” process if they
do not come in the order corresponding to their relative reliability. And the
correct way to do that is to make a prioritized merging.

This discussion is interesting since in several papers on iterated revisions, it
seems that the authors do not make any distinction between the hypothesis to
have more and more recent pieces of information, and the hypothesis to have
more and more reliable pieces of information.

The framework of Delgrande, Dubois and Lang identifies the epistemic
states as the sequences of formulae that the agent receives. This identification
as already been proposed in [68, 73].

Delgrande, Dubois and Lang show that the postulates for iterated belief
revision can be obtain as special case of their postulates for weighted merging.
They show that they can also lead to some postulates of IC merging.

This work is interesting since it opens a way for logical characterization
of prioritized merging. It could be interesting to try to find a representation
theorem in this case, and to look at the generalization of IC merging operators
in this prioritized merging framework.

7.2 Merging of Weighted Formulae

When all the pieces of information belonging to the bases do not have the same
importance, one needs to use weighted approaches.

The most qualitative approach is to consider for each source/agent a set of
bases (totally) ordered in different strata, from the least important to the most
important one.

This is usually represented using possibilistic logic [36] or ordinal condi-
tional functions [94]. In this case we associate an ordinal (usually finite, i.e.
a natural number)14 to each formula.

In the framework of possibilistic logic Benferhat, Dubois, Kaci and Prade
studied several merging operators [8, 59]. They have also studied an extension
of the logical properties of IC merging in this framework [12]. (See [87] for
a generalization of IC merging operators in a weighted framework and see
[57, 86, 87] for other developments of merging of weighted formulae).

In the framework of ordinal conditional functions, Meyer defined combina-
tion operators [82]. Some of them are translation of model-based operators in
this framework, but some others are quite far from IC merging operators.

All these works that use weights face the same problem of interpersonal
comparison of utility, i.e. this requires to suppose that the same weight used by
different agents has the same meaning. This is also called the commensurability
assumption.

14See [65] for a discussion.
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This commensurability assumption can be sensible if the sources are similar,
for instance if we consider several identical sensors. But in a lot of cases, when
the sources are reasoning agents for instance, this hypothesis seems unrealistic.
In particular, when working with weighted bases, one is quite close to the
framework of voting methods in social choice theory. And in this domain the
commensurability assumption is highly criticized [4]. For voting methods only
the ordinal preferences of the agents are taken into account.

So if one wants to define merging operators in this weighted bases frame-
work without the commensurability assumption, especially for majority oper-
ators, then the correct framework seems to use voting methods [3, 4].

Benferhat, Lagrue and Rossit studied some non-majority operators without
commensurability assumption [13, 14]. Of course, this leads to operators much
more cautious than in the commensurability case.

7.3 Merging of First Order Bases

Lang and Bloch propose to define model-based merging operators using the
maximum as aggregation function (.d,max) by using a dilation15 process [18].
One can note that in the original Dalal paper [29], he defines his revision
operator with such a dilation function rather than with a distance.

Gorogiannis and Hunter [50] extend this approach in order to define others
model-based merging operators using dilations. So, in addition to .d,max, they
define .d,% , .d,Gmax and .d,Gmin operators.

The interest of this definition of these operators is that it can be easily
extended to first order logic. The usual definition of model-based merging
operators is based on the computation of distances between interpretations. So
when using logics where the number of interpretations is infinite, this approach
is not the more appropriate. The interest of defining these operators with
dilations is that they can also be used in this case. This only needs to use the
good dilation function. See [50] for a discussion and some examples of dilation
functions in the first order logic case.

7.4 Merging of Logic Programs

There are some works on merging operators for logic programs, and more
exactly for Answer Set Programming.

The approach of Hué et al. [53] relies on the deletion of a given set of
formulae in the union of the bases, selected by a selection function (close to
the idea used in [63]). These operators satisfy only some logical properties of
IC merging.

Delgrande et al. [35] have proposed other merging operators for ASP. Their
operators are based on the definition of a distance between stable models.

15Roughly speaking dilation allows to reach the points/worlds in the neighborhood of a
point/world. See [18] to see how to define this formally.
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Fig. 2 Allen interval algebra

It is possible to compare these two approaches by making a parallel with
propositional merging. Hué, Papini and Würbel operators correspond to
formula-based operators, whereas operators proposed by Delgrande, Schaub,
Tompits and Woltran correspond to model-based operators. So this is not
surprinsing if the second approach allows to obtain more merging logical
properties.

All these operators have been implemented. There are quite few imple-
mentations of belief merging operators. Apart from these two ones, one can
mention the COBA system [33], the BReLS system [75] of Liberatore and
Schaerf, and the BDD implementation of Gorogiannis and Hunter [49]. But a
comparison of the computational performance of these different implementa-
tions is missing.

7.5 Merging of Constraint Networks

Condotta, Kaci, Marquis and Schwind studied the merging of qualitative
constraint networks [25, 26]. These methods can be useful for merging con-
straint networks that represent spatial regions, for instance for Geographical
Information Systems it can be necessary to merge spatial databases that come
from different sources.

Conflicts that arise in this framework are more subtle that the binary ones
in the propositional framework. In this case conflicts can be more or less
important. For instance, if we use the Allen algebra, that allows to represent
spatial information on segments on a line, namely relations as A before B, A
after B, A meet B among other. A conflict between sentences A before B and
A meet B seems much less important than the one between A before B and A
ibefore B (Fig. 2).

This “intensity” that we feel between conflicts allows to define more various
merging policies than in the propositional framework.

One can also look at [27, 90] to see two examples of merging of spatial
regions using logical representations.

7.6 Merging of Argumentation Frameworks

There are a lot of works on argumentation as a way to reason about contra-
dictory pieces of information. The basic idea is to use a set of arguments and
an attack relation between relations. This is the starting point of Dung argu-
mentation framework [37]. But these works on argumentation consider only



266 S. Konieczny, R. Pino Pérez

a single agent. In [28] the problem of merging of argumentation frameworks,
where the arguments are distributed among several agents, have been studied.

This requires to define a new representation frameworks for argumentation:
Partial Argumentation Frameworks, where there are three possible relations
between two arguments A and B. Either the agent believes that A attacks B,
or he believes that A does not attacks B, or he does not know if A attacks B
or not. This last case is necessary to represent the fact that an agent ignores a
given argument.

8 Final Remarks

We have presented an overview of logic based merging. Propositional merging
operators have been extensively studied in recent years. Two currents and
future paths of development of these works seem to be the modelization
of negotiation processes and the development of merging operators in more
expressive representation frameworks.

We quoted some of these works on merging in more complex representation
framework in Section 7. There are also related works towards applications of
these merging techniques for instance for text processing [54, 55, 58] and XML
documents [56, 83], or requirement engineering [47]. We can expect more
developments on this path in the future.

As for the modelization of negotiation using belief merging and belief
revision tools, confluence operators, studied in Section 5, are a good example.
But there are also other works in this direction, like the ones on iterated
merging and conciliation [46], social contraction and belief negotiation/game
models [19, 64], concession [81], or logical bargaining [95–97]. We think that
there are still a lot of things to discover on modelization of negotiation.
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