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Abstract

Highly complex molecular networks, which play fundamental roles in almost all cellular

processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a

consequence, there is a critical need to develop practical methodologies for constructing and

analysing molecular networks at a systems level. Mathematical models built with continuous

differential equations are an ideal methodology because they can provide a detailed picture of a

network’s dynamics. To be predictive, however, differential equation models require that

numerous parameters be known a priori and this information is almost never available. An

alternative dynamical approach is the use of discrete logic-based models that can provide a good

approximation of the qualitative behaviour of a biochemical system without the burden of a large

parameter space. Despite their advantages, there remains significant resistance to the use of logic-

based models in biology. Here, we address some common concerns and provide a brief tutorial on

the use of logic-based models, which we motivate with biological examples.

Introduction

The emergence of molecular biology has produced a vast literature on the cellular function

of individual genes and their protein products. It has also generated massive amounts of

molecular interaction data derived from high-throughput methods as well as more classical

low-throughput methods, such as immunoprecipitation, immunoblotting, and yeast two-

hybrid systems. From this accumulation of interaction data, researchers can now attempt to

reconstruct and analyse the highly complex molecular networks involved in cellular

function.

Intracellular molecular networks are known to be highly dysregulated in a number of

diseases, most notably in cancer, and targeted molecular inhibitors have emerged as a

leading anti-cancer strategy. Despite promising pre-clinical studies, many targeted inhibitors
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are beset by harmful off-target effects and/or lower than expected efficacy in the clinic. The

large number of off-target effects associated with molecular inhibitors was recently termed

the “whack a mole problem”1 because inhibiting one molecular target often results in the

activation of another non-targeted molecule. It is increasingly clear that the inability of

many targeted therapies to keep a disease in check is related to the complex interactions and

emergent, non-linear behaviours found in intracellular networks. As a consequence, there is

a critical need to develop practical methodologies for constructing and analysing molecular

networks at a systems level.

The objective of systems biology is to integrate experimental data with theoretical methods

to build predictive models of complex biological processes across a variety of spatial and

temporal scales. Two very different paradigms of system biology are frequently used to

construct and analyse network models of molecular interactions inferred from experimental

data: structural network analysis methods and mathematical models based on differential

equations. A third increasingly important network analysis paradigm in systems biology is

the application of logic-based methods to generate predictive output.2,3 Although qualitative

in nature, logic-based methods have the capacity to provide insights into the dynamics of

highly complex gene regulatory and signal transduction networks without the burden of

large parameter spaces.

Understanding the networks associated with neoplastic diseases offers especially difficult

challenges. Fundamental problems in understanding the transition from the normal to near

normal to dysplastic to neoplastic to metastatic states of cancer progression can theoretically

be modelled by longitudinal comparisons of networks in which, as progression occurs,

certain molecular interactions are rendered stronger (for instance through gene

amplification) or lost (through mutation, deletion, down-regulation, or methylation). Logic

models provide a framework in which these types of network comparisons are possible.

Multi-state logic models can simulate signal amplification and random order asynchronous

logic models can simulate the heterogeneous response in a population of cells to diverse

stimuli. Logic-models are also well suited for performing in silico molecular perturbations,

which could be used to predict a population level response to a targeted therapy or a

combination of therapies. In this review, we provide a tutorial on the use of logic-based

methods as well as a discussion of their limitations, using biologically motivated examples.

Modelling intracellular networks

Typically, knowledge of molecular interactions is summarized in diagrams of varying

complexity, commonly known as interaction networks.4 In an interaction network diagram,

each node represents a molecule and a line drawn between two nodes represents a molecular

interaction, also referred to as an edge in graph theory. If the nature of an interaction

between two nodes is known (e.g., which molecule is the regulator that activates or inhibits

the other molecule), the edge is said to have directionality. If a correlation between the

activities or expression levels of two nodes is known but the causal relationship underlying

their interaction is not, the edge is said to lack directionality.

Structural network methods

Structural network analysis provides a picture of the correlations between molecules in very

large networks. In structural network models, which are usually derived from high-

throughput genomic or proteomic experimental methods, the directionality of interactions in

the network is generally not known and it is the static correlations in expression patterns that

are important. The primary objective of these methods is to infer functional patterns in large

networks using statistical methods.5 These methods are also used to construct species

specific interactomes.4 A limitation of these methods, however, is that they generally
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provide only a static view of molecular interactions in a network at single point in time.

Additionally, the current experimental methods used to generate data for structural network

models are extremely noisy,6 which further limits the predictive power of this method.

Differential equation methods

On the other hand, systems of ordinary differential equations (ODEs) are frequently used to

model biochemical reactions involved in gene and protein regulation. In these models,

information about the mechanistic nature of the interaction is essential and edges between

species must be directional. ODE models are built from underlying biophysical principles,

such as biochemical rate laws and the conservation of mass and energy. Consequently, ODE

models have the capacity to be highly predictive.7–9 This predictive power translates into the

ability to generate a dynamic view of the concentration of each interacting species in the

network over time as well as the ability to identify biologically realistic steady states.8 The

predictive power of ODE systems is dependent, however, on large numbers of kinetic

parameters that are rarely known with any degree of certainty. These powerful methods are,

therefore, limited both by the enormous parameter spaces involved in even a relatively

simple network and by their need for detailed mechanistic knowledge a priori.

Logic-based methods

Logic-based network models were pioneered in the biomedical sciences by Kauffman 10,11

and represent a compromise between structural analysis and ODE methods in terms of

precision and complexity.7 While logic models do not require mechanistic knowledge of

interactions, they do require knowledge of edge directionality. In their simplest form, logic-

based models permit each biochemical species (represented as nodes in a network) to be in

one of two discrete states: ON or OFF. The state of a logic network evolves in a dynamic

fashion as nodes in the network are switched ON and OFF according to the state of other

nodes in the network, until the network settles into an unchanging state, often referred to as

an attractor.3 Logic-based models with only two binary states are generally known as

Boolean models. While there is no explicit notion of time in a logic model, each round of

updating can be considered an arbitrary time unit.

Logic-based models approximate biochemical regulation

The assumption that a molecule can have only two possible states is a simplification of

biological complexity. It is a reasonable regulatory approximation, however, given the

switch-like sigmoidal relationship often observed between an affector molecule and its

target molecule (Fig. 1A, B).3,12–14 It is important to emphasize that when a molecule’s

node is OFF in a discrete logic model, it does not imply that the molecule has zero

concentration in the system. Instead, it implies that the molecule is not present at a high

enough level to induce a change in the molecules it directly regulates.14 Wh en a molecule’s

node is ON in a logic model, it means the molecule has reached a threshold of functional

activation that is high enough to affect the state of the molecules it directly regulates. More

specifically, a target molecule will remain OFF in a logic model until its activator reaches a

specific threshold of activity (Fig. 1B). Likewise, a target molecule will remain ON in a

logic model until its inhibitor reaches a specific threshold of activity (Fig. 1A).14 As a

consequence, logic models can only provide qualitative approximations of molecular

regulation. While this represents a limitation of the methodology, in reality, the majority of

experimental data available on molecular regulations are also qualitative in nature.15

More complex logic-based methods have been developed, such as multi-state and fuzzy

logic methods, which permit nodes to be in more than two discrete states. In addition, logic

models that allow node states to vary continuously between states (e.g., from 0 to 1) have
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also been developed.7,12,16,17 Although theoretically able to more precisely simulate

biochemical regulation,16 these more complicated approaches require parameter value

estimates that are rarely known and, in some cases, are difficult to correlate with biophysical

chemistry theory. Thus, discrete two-state logic models (Boolean models) are an intuitive

and predictive method for describing biochemical interactions without requiring prior

knowledge of complex mechanistic details of reaction kinetics (needed for ODE systems) or

degrees of membership (needed for multi-state fuzzy logic systems).

Moreover, Boolean models can produce the same qualitative output as more quantitatively

precise ODE models, when well-constructed. For example, Albert and Othmer18 used a

Boolean model of the genetic regulation of segmentation patterns in Drosophila to produce

results that were in close agreement with an earlier ODE model of the same system.19 Fauré

et al.15 analysed a simple Boolean model of cell cycle regulation and found qualitative

steady state agreement with a complex ODE model.20 More recently, Akman et al.21

demonstrated that a series of Boolean models produce the same qualitative output as a series

of ODE models of circadian clock regulation. In addition, Boolean models are well suited

for the testing of hypothesized regulatory mechanisms18,22 and for helping to direct future

experiments. 23–26 They are also useful for performing a preliminary network analysis25

prior to developing more detailed experimental or theoretical models. For all these reasons,

the development and analysis of two-state Boolean models will be the primary focus of this

review.

A basis for the Boolean approximation is also found in chemical reaction kinetics

In addition to the switch-like regulatory dependence described above, another switch-like

behaviour in biochemical systems is related to the substrate concentration (S) needed to

reach half the maximum velocity (Vmax) of a reaction, commonly represented by K0.5.

Enzymologists routinely use saturation curves depicting how reaction velocity (v) varies

with S (Fig. 1C) to estimate the K0.5of a reaction. In reality, v is not dependent on S but is,

instead, dependent on the specific substrate concentration, defined as the ratio of S to

K0.5( S/K0.5). The well-known constant Km is the substrate concentration needed to reach

K0.5under Michaelis –Menten (MM) kinetics.27 While K0.5is sometimes called the

“apparent Km”, K0.5is not restricted to kinetic mechanisms that follow the MM

approximation.

The standard MM expression for the velocity (vMM) of a non-reversible enzyme catalysed

reaction is presented in eqn (1). This expression is similar to the generalized expression for

the velocity (v) of any enzyme catalysed reaction presented in eqn (2), where S is converted

to a product. Here, n refers to the Hill coefficient describing the degree of cooperativity in

the reaction (i.e., positive, negative, or no cooperativity). Dividing both sides of eqn (2) by

Vmax and factoring K0.5out of the right -hand side, gives eqn (3), which is now in the form

commonly used to normalize reaction velocities (v′). Eqn (3) also resembles a standard Hill

equation.

(1)

(2)
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(3)

In eqn (3), when S/K0.5 = 1, then v′ = 1/2. Consequently, there are two distinct regions

where the normalized reaction velocity responds in a characteristic way to S/K0.5(Fig. 1D).

When S/K0.5 ≪1, then S < (0.01 × K0.5), meaning the enzyme is not saturated and the

reaction rate is linear with respect to the substrate concentration. In contrast, when S/K0.5 ≫
1, then S > (100 × K0.5), meaning the enzyme is saturated, the reaction rate is independent of

the substrate concentration, and the reaction has reached (or is very near to) its maximum

velocity. Thus, the specific substrate concentration serves as the on-off switch of a reaction.

In logical terms, when the node representing S is OFF(or 0), then the specific substrate

concentration will be less than 1 and the reaction cannot not proceed. Likewise, when the

node representing S is ON (or 1), then the specific substrate concentration will be greater

than 1 and the reaction will proceed at a rate near Vmax( Fig. 1D).

The use of logic to describe chemical change is not limited to the rate of biochemical

reactions. Molecular substrates have been described as computational devices that process

physical and chemical inputs into outputs according to Boolean logic.28 Molecular logic

operations are achieved by leveraging observable chemical changes to create a

computational device. These devices, for example, can be used to solve arithmetic or logic

operations by exploiting changes in the conformations of chemical components. In the

laboratory, molecular logic functions have been developed that rely on charge transfer,

which affects the fluorescent state of a molecule.29,30 Logical functions have also been

created to exploit charge transfers in cascades of coupled enzymes.31,32 In fact, molecular

logic operations serve as the basis for many nanosensors currently used in the basic sciences,

industry, and medicine.28

Predictive logic-based models in the literature

Although the theoretical underpinnings of logic models provide qualitative approximations

of molecular and biochemical regulation, in reality these models can only generate

predictive output when the logic model is well constructed. Several examples of well-

constructed logic models providing good agreement with experimental data exist in the

literature.16–18,26,33–36

For example, Li et al.34 constructed a Boolean model of the genetic network controlling the

cell cycle in Saccharomyces cerevisiae. The authors found that 86% of the 2048 possible

states in the network settled into a steady state (also known as a stable attractor) that

corresponded to the G1 stationary phase of the cell cycle. Their analysis suggested that the

regulatory network controlling the yeast cell cycle is resistant to stochastic perturbations.

The authors interpreted these findings to mean that robustness in the underlying network is

advantageous for the organism because, under normal conditions, there is a high probability

the regulatory network dynamics will settle into the G1 state regardless of the current state

of the network. Once in the G1 state, the network will remain in that state until a significant

external signal perturbs the network and initiates another round of cellular division.

Subsequent work by Davidich and Bornholdt 37 used a similar Boolean approach to study

the cell cycle regulation in Schizosaccharomyces pombe. These authors found that the

majority of S. pombe network states settle into a steady state corresponding to the G1

stationary phase, which is in agreement with the results of the S. cerevisiae model. However,

they also found significant differences in the regulatory network of S. pombe compared to S.

cerevisiae, which yielded very different network dynamics.
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Using a somewhat different logic-based approach, Bolouri and colleagues25,38 constructed

an a priori gene regulatory network of endomesoderm specification control in sea urchin

embryos. The network was logic-based and generated a series of testable predictions. Using

computational methodologies and large-scale perturbation analyses, the authors iteratively

tested and revised their model by comparing model output to biological readouts. Their use

of a regulatory network to logically map inputs and outputs for cis-regulatory elements

identified system level properties that would not otherwise have been observable. From this

information, the authors were able to draw important conclusions about the developmental

features of endomesoderm specification.

In addition to gene regulatory networks, logic models can also be used to model signal

transduction networks. Li et al.26 developed a Boolean model of the signal transduction

network controlling abscisic acid regulation of stomatal closure in plants. The authors

employed a network construction approach that inferred indirect molecular relationships

from data to build the sparsest logic network possible that was compatible with available

experimental data. A random order asynchronous Boolean approach was then used to

simulate the heterogeneity in a population of cells. The model results were in good

agreement with previous experimental findings and generated novel predictions about the

conditions likely to have the strongest effect on stomatal closure. In a subsequent

manuscript, which also serves as an excellent tutorial, Albert et al.12 contrasted the

asynchronous approach used in the Li et al.26 model with a continuous piecewise Boolean

model of the same system that allowed node states to vary between 0 and 1. They reported

that the asynchronous discrete Boolean model produced the same qualitative results as the

continuous piecewise Boolean model.

For additional examples of predictive logic-based models in the literature, we direct the

reader to comprehensive reviews by Morris et al.7 and Albert et al.12 Both reviews provide

detailed case studies of logic model implementations and demonstrate the variety of ways

logic-based models can be applied to answer biological questions.

Time in a logic model

Each time a network is updated in a standard two-state Boolean model, signals are

transferred according to logic functions in a synchronous and deterministic manner. In these

models, all nodes are updated instantaneously in the same time step so that the state of the

network is always fully determined by the state of all nodes in the previous time step. Thus,

the underlying assumption is that all molecular interactions in the network take the same

arbitrary amount of time to complete. In reality, the time it takes for molecular interactions

to complete varies widely.

An alternate updating method involves asynchronous updating where one node is selected at

random and instantly updated according to the current state of the network. In these models,

the next state of the network is non-deterministic. The random and instantaneous updating of

a node is repeated many times with each random update representing a time step in the

model. This non-deterministic updating scheme is thought to more closely resemble

biological variation by eliminating temporal uniformity in the model.2,12,14,39,40 Typically,

implementation of this type of scheme involves running a large number of model

simulations to calculate a probability that any given node will end up ON or OFF for any set

of initial conditions. 12,26 Synchronous and asynchronous updating methods are discussed in

more detail in later sections of this review.
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Building predictive logic-based models

Creating a logic model is relatively straight-forward. Building a logic model that can

generate predictive output that can be leveraged by experimentalists, however, requires

considerably more effort. Specifically, building predictive logic-based models entails two

primary steps: building a detailed interaction network and translating the interaction network

into a logic network. The development of a logic network includes the careful derivation of

the logic functions that will drive the network’s dynamics.

Build an interaction network by surveying the literature

The first step in developing a logic model is to construct an interaction network of the

system to be modelled (see, for example, Fig. 2A). To do so will typically require a

thorough literature or database search. This is a critical step and should be performed by, or

in close collaboration with, someone who is well acquainted with the biology of the system.

Once the interactions involved in the network have been identified, it is often desirable to

perform a node reduction to reduce network complexity, especially for very large networks.

The formulation of any theoretical model requires sound judgments about which

approximations are appropriate for simplifying model complexity without losing essential

elements of the underlying mechanism(s).41 This is certainly true of logic models where

decisions must be made about whether some complex interactions can be lumped into a

smaller subset of nodes and interactions (Fig. S1, ESI†). In general, the objective is to use

the simplest network possible that still agrees with known experimental data. This may be

done manually or with the assistance of computational algorithms.26,42,43 If automated tools

are used, it is useful to validate that the reduced network generated includes a suitable

amount of complexity for the system and problem considered.

A common manual approach is to eliminate redundant linear regulations. For example, in

Fig. 2A, nodes B and Care both activators of E because an even number of inhibitions

produces an activating regulation. In contrast, E is an inhibitor of B because there is one

inhibitory regulation between E and B. A reduced version of this network is presented in

Fig. 3. As shown in Fig. S2 (ESI†), both forms of the network produce the same qualitative

output.

Translate the interaction network into a logic network

Ultimately, the interaction network must be translated into a set of logic functions (also

referred to as transfer functions or logic gates) that will be used to transfer information (or

signals) between nodes each time the model is updated. Logic functions often contain one or

more Boolean operators. The AND and OR operators are used to define how distinct signals

acting on the same node (which may be stimulatory and/or inhibitory) will be processed.

The NOT operator is used to negate the state of the node it precedes. The derivation of logic

functions is discussed in detail in the next section.

A justification from the literature (or evidence from experimental data) should be provided

to support each logic function. When individual logic functions qualitatively agree with

experimental data, it is more likely that the model, as a whole, will be predictive. Ideally, a

table or appendix summarizing each logic function’s rationale will be included with all

published models (see Table 1for an example). 15,17,18,26

From an interaction network diagram alone, it is not possible to infer how multiple signals

acting on the same node should be processed. Therefore, the use of descriptive logic

†Electronic supplementary information (ESI) available. See DOI: 10.1039/c2ib20193c
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network diagrams is recommended to graphically depict a logic model. The information

contained in the full set of logic functions should be equivalent to the information contained

in a logic network diagram (compare Fig. 2B to C and Fig. 3B to C). The use of descriptive

diagrams to represent a biological network is not a novel concept.2,44 Albert and

colleagues18 proposed the use of “pseudo-nodes” and “complementary pseudo-nodes” to

clarify the functional nature of edge interactions in a logic network diagram. In a large-scale

Boolean model of EGFR and ERB2 signalling, Samaga et al.36 used a graphical

representation where AND interactions were depicted as small blue circles and all other

interactions were assumed to be OR interactions. More recently, Morris et al.7 presented

logic network diagrams that used “logic gate” notation similar to that used in an engineering

diagram.

Throughout this review, we have adopted a modified version of the notation used by Morris

et al.7 Our notation graphically illustrates how multiple edges regulating the same node will

be integrated by explicitly identifying where AND and OR operators are used in the

network. In addition, all activating interactions in our logic network diagrams are indicated

with a black arrow and all inhibiting interactions are indicated with a red line and a blunt

edge. Regardless of the graphical method used, the use of diagrammatic logic networks is

strongly encouraged to remove ambiguity from interaction networks.

Deriving logic functions: the importance of characterizing each interaction

When translating a set of interactions into a logic model, the implicit assumptions

underlying all logic functions must be carefully considered. We recommend the construction

of truth tables for each logic function to confirm the logical output of each function is in

agreement with experimental data (or that of a hypothesized regulatory mechanism). A truth

table provides the logical output of all possible combinations of input values a logic function

may receive. In Boolean models with only two discrete states, there are 2rpossible

combinations of regulatory inputs in a truth table, where r is the number of regulators (or

edges) leading into the regulated node. We have provided truth tables for two biologically

motivated network examples in S1 (ESI†) for reference.

For nodes with one regulator, derivation of the logic function is straightforward: the next

state of the regulated node is fully determined by the current state of its only regulator (Fig.

4A). An example of the two ways a single molecule can regulate another molecule in a

Boolean model is presented in Fig. 4A, along with corresponding truth tables. In the case

where Cis activated by A, the logic rule is represented as Ct+1= At, which means the value

of C in the next arbitrary time step (t+ 1) will be the current value of A. In the case where

Cis inhibited by B, the rule is represented as Ct+1 = NOT Bt, which means the value of C in

the next arbitrary time step (t+ 1) will be the inverse of the current value of B. Importantly,

because C will always be ON whenever B is OFF in this inhibition example, the implicit

meaning of this function is that of constitutive activation of C in the absence of B. If this

turned out to be an inappropriate assumption for the of regulation of C, then additional

activators of C would need to be added to the model in order to generate a more complex

and accurate regulatory logic function for C.

For nodes that have multiple regulators, the development of a logic function can be more

challenging. In a logic model, there are three possible mechanisms by which two nodes can

regulate another node: regulation by two activators (Fig. 4B), regulation by an activator and

an inhibitor (Fig. 4C), or regulation by two inhibitors (Fig. 4D). The simple 3 node

interaction networks presented in the first column of Fig. 4B–D clearly indicate that 2 nodes

regulate another node but do not provide precise information about how the signals will be

integrated to produce a response in the regulated node. In contrast, the second and third
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columns of Fig. 4B–D provide logic network diagrams and truth tables illustrating the

logical output produced when an AND or OR operator is used, respectively. In general, the

use of an AND operator with 2 regulators results in the regulated node turning ON in one of

the four possible input conditions. In contrast, the use of an OR operator with two regulators

results in the regulated node turning ON in three of the four possible input conditions.

Although the examples provided are simple, there are important underlying assumptions that

should be emphasized.

AND NOT: inhibitor wins

When an activator and an inhibitor are joined by an AND operator (Fig. 4C: AND column),

the function is referred to as an AND NOT function. In the logic function Ct+1 = At AND
NOT B t, the inhibitor is dominant because the state of C is OFF in 3 of the 4 possible input

conditions. The presence of the inhibitor also trumps the presence of the activator when both

are ON(refer to the last row in the truth table).

OR NOT: activator wins

Similarly, when an activator and an inhibitor are joined with an OR operator ( Fig. 4C: OR
column), the function is referred to as an OR NOT function. In this case, the activator is

dominant because the state of Cis ON in three of the four input conditions. The presence of

the activator trumps the presence of the inhibitor when both are ON(refer to the last row in

the truth table). Importantly, when both the activator and inhibit or are OFF, C will turn ON
(refer to the first row in the truth table). The implicit meaning of Ct+1 = At OR NOT Bt,

therefore, is that C becomes activated when both regulators are absent or below their

functional threshold, even if C was OFF in the previous time step. At first glance this may

seem counter intuitive and biologically implausible. However, what the OR NOT function

actually simulates is the condition where the regulated node is ubiquitously expressed at a

functionally active level such that it can only be deactivated by the presence of a direct

inhibitor and, importantly, this direct inhibitor can be overridden by an activator (refer to the

truth table). Later, we will consider a biological example where OR NOT is the correct

function to model a biological interaction.

To be OR NOT to be?

As illustrated in Fig. 4 and described above, when more than one node regulates the same

target node, the AND and OR logical operators produce very different outcomes. It is

important to understand the underlying assumptions of all logic function included in a logic

model to ensure they provide a reasonable biological approximation.40 Of course, the exact

nature of an interaction may not be known ( e.g., what is necessary and what is sufficient for

a molecular activation). In these cases, logic models can also be used to test hypothetical

interactions and compare if results match experimental data.

Logical models have one or more fixed states known as “attractors”

The network state of a logic model can be uniquely represented in a variety ways, including

by binary or decimal notation (Fig. 2D). In synchronously updated Boolean logic models

(where all nodes are updated at the same instant each time step), each state deterministically

gives rise to another state according to the model’s logic functions. Eventually, all states will

settle into one or more stable states known as attractors. If an attractor consists of a series of

states that oscillate in a cycle, the attractor is called a cycle attractor or a limit cycle. If an

attractor consists of a single fixed state (which will be the case when a state always gives

rise to itself), the attractor is called a fixed point attractor.3,45 Examples of each type of

attractor a re presented in Fig. 2E and 3D. In asynchronously updated Boolean logic models

(where a single node is selected randomly and updated instantly), the next state of the
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network is non-deterministic. Nevertheless, the network will eventually settle into an

attractor regardless of the initial state of the network.2,14,40

In small to moderate sized network models that have been well constructed, attractors often

empirically agree with biological phenotypes.3,34 In the model previously discussed of yeast

cell cycle regulation developed by Li et al.,34 for example, there were 11 nodes which

generated 2048 possible network states and 7 attractors. The vast majority of all possible

states (1764 out of 2048) settled into a fixed point attractor that represented the stationary

phase of the cell cycle. The authors found that the trajectory of states (also referred to as a

basin of attraction45) leading to this point attractor followed expected molecular changes

observed during cell cycle progression.

In any binary Boolean logic model consisting of n nodes, there are 2npossible network

states. In the hypothetical 12 node network presented in Fig. 2 there are 4096 possible states

and in the synchronous form of this model there are 10 attractors ( Fig. 2E). In a 21 node

model we recently developed, there were 2 097 152 possible states that settled into 1 of 52

possible attractors (data not shown). Clearly, as the network size increases, it becomes

difficult to draw biological inferences from the full attractor space. In addition, for large-

scale networks, the enumeration of all attractors quickly becomes computationally

intractable owing to the exponential relationship between the number of nodes in the

network and the number of possible network states.46 One approach for analysing large

attractor spaces is to measure the robustness of each attractor. 47–49 Unfortunately, these

methods are generally more useful to a theoretician than a biologist. Another approach for

analysing large state spaces with many attractors is to use asynchronous updating

methods.12,26 These methods can generate a probability that a given network node will be

ON or OFF under a particular set of conditions. Because asynchronous methods represent a

repeated sampling of many different timescales, 14,40,50 they are also useful for modelling

the heterogeneity of a population of cells.26,51 Asynchronous methods can also facilitate in

silico molecular perturbations (such as knock-downs or constitutive activations) to generate

output that is readily comparable to biological data.26

Finally, not all stable attractors in a deterministic synchronous logic model remain stable

under nondeterministic asynchronous update conditions. The random perturbations

associated with an asynchronously updated model result in the disappearance of some

synchronous attractors when the assumption of timescale uniformity is removed.3,14,45 Thus,

the asynchronous method is more likely to identify attractors that are robust to the typical

stochastic variations observed in molecular interactions52,53 under physiological conditions.

A biologically motivated example

In Fig. 5, we present a 10 node network of the regulation of cellular proliferation and

apoptosis. This model is adapted from the Boolean model used by Ribba et al. to control cell

division and cell death in a multiscale model of colorectal cancer.54 For simplicity, our

version of the model eliminates linear regulations. In the original Ribba model, for example,

P53 activated BAX and BAX, in turn, activated apoptosis. BAX was eliminated in our

model so that P53 is a direct activator of apoptosis. In this example, the linear node

reduction results in the same qualitative network behaviour and output. The interaction

network for this model is presented in Fig. 5A and the logic network is depicted in Fig. 5B.

There are 4 input nodes representing the signals a cell may respond to in the model: Growth
Factor, Over-population, Hypoxia, and DNA Damage. The output nodes are

proliferation and apoptosis. The 4 internally regulated nodes are MYC, P27, Cyc-CDK,

and P53. The logic functions used in this model are listed in Table 1along with a biological
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justification for each function and a statement of any relevant assumptions. Truth tables for

each logic function are provided in S1 (ESI†).

In this model there are 1024 (210) possible network states and 16 (24) possible input

conditions (Fig. 5C). For the logic network referred to as Model I (Fig. 5B), under

synchronous updating each of the 1024 possible states eventually settle into one of 16 fixed

point attractors corresponding to one of three biological states (Fig. 5C, left). In Model I,

when all input signals are OFF, apoptosis and proliferation are also OFF in the attractor,

indicating cellular homeostasis (first row in table). When all four input signals are ON, the

combination of these signals leads to apoptosis ON and cell death (last row in the table).

The only input condition leading to proliferation ON in Model I is Growth Factor ON and

all other inputs OFF.

In another version of this model referred to as Model II, the logical operator controlling the

regulation of P27 by MYC inhibition and Hypoxia activation is changed to AND NOT from

OR NOT( Fig. 5C, right). This seemingly small change produces very different output. In

Model II, under synchronous updating when all input signals are OFF, all states settle into

an attractor that leads to proliferation ON and population growth (first row in table), which

is not the behaviour expected from a normal cell. Moreover, there are now 4 input

conditions that give rise to proliferation ON, including the state where all input signals are

OFF. In this network example, the use of OR NOT for the regulation of P27, rather than

AND NOT, is essential for obtaining the expected readout.

Under asynchronous updating, Model I and II settle into the same attractors each model

produced under synchronous updating (Fig. 5D). Empirically, this will be the case when

only point attractors are possible under synchronous updating because no regulatory

feedback loops are included in the network. For more complex networks with multiple

feedback loops, the attractor space produced by synchronous and asynchronous updating

methods will not always be identical.

Oscillations in Boolean models

Logic models have been used to model oscillations in a number of biological

systems.18,21,24 Oscillations play important roles in many biological processes including the

cell cycle, circadian rhythms, developmental processes, and the cellular response to stress.55

It is easy to generate sustained oscillations (which are, by definition, a cycle attractor) with a

synchronous logic model. All that is required is the presence of a negative feedback between

one or more nodes. Even a single node can generate oscillations (Fig. 6A).56 In contrast, to

generate sustained oscillations in chemical systems with an ODE model requires at least 3

distinct species represented by2 or more ODEs. 57,58 Physically realistic sustained

oscillations are possible with only 2 chemical species when delay differential equations are

used because these equations introduce an explicit time delay into the system.59,60 It must be

emphasized that simply generating oscillations in a mathematical model of any type does not

imply the underlying mechanism driving the oscillations in the model is equivalent to that

driving the experimentally observed oscillations.

Given the ease with which oscillations can be generated with a logic model, it is essential to

ensure that the implicit assumptions underlying the logic functions in a model are

appropriate for the oscillatory system modelled. The protein P53 has been dubbed the

“guardian of the genome” for its role in maintaining genome integrity and tumour

suppression in normal cells.61 P53 plays critical regulatory roles in both cell cycle

progression and apoptosis. In response to stress, such as DNA damage from ionizing

radiation, P53 protein is known to mediate the transcription of MDM2, which targets P53
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for degradation via ubiquitin ation.55,62–64 In response to DNA damage, this antagonistic

relationship induces important cellular oscillations in P53 and MDM2 expression, which

have been described as a digital behaviour.55

If we first consider the simple 2 node network in Fig. 6B consisting of only P53 and

MDM2nodes, we can see that, because only one edge leads into each node, the interaction

network is equivalent to its representation as a logic network (using the logic network

notation described previously). In this simple network, all 4 possible states make up the limit

cycle attractor. Thus, if no other inputs are added to this network, it will perpetually oscillate

between these 4 states. A slightly more realistic model includes adding a DNA Damage
node as the input signal (Fig. 6C). Because two nodes now regulate P53 (an activator and an

inhibitor), we must decide whether AND NOT or OR NOT is appropriate for the regulation

of P53. In the AND NOT case (Fig. 6D), 4 of the 8 possible network states settle into a fixed

point attractor where everything is OFF. The remaining 4 states settle into a limit cycle

where P53 and MDM2oscillate and DNA Damage is fixed to ON. In contrast, in the OR
NOT case ( Fig. 6E), 4 of the 8 possible states settle into a point attractor where everything

is ON and the remaining 4 states settle into a limit cycle where P53 and MDM2oscillate and

DNA Damage is fixed to OFF. Because there is nothing in the network to regulate DNA

Damage, it will never oscillate in either version of model.

P53 and MDM2 proteins are known to exist at low endogenous levels in the absence of

DNA damage.55 We, therefore, consider them to be at levels below their functional

threshold in the absence of DNA damage. However, when DNA damage is present, P53

becomes functionally activated,55 which triggers functional MDM2 expression levels and

oscillations. Thus, we conclude that the AND NOT function is appropriate for this regulation

(Fig. 6D). All model results presented in Fig. 6D, Erelied on a synchronous updating

scheme. In Fig. 6F, the synchronous and asynchronous updating schemes are compared for

the AND NOT form of the model using the following initial conditions: P53 OFF, MDM2
OFF, and DNA Damage ON. In the synchronous approach, it can clearly be seen that DNA
Damage stays constant, while P53 and MDM2 oscillate out of phase between 0 and 1 (or

OFF and ON). In the asynchronous model, which represents and average of 200 simulations

using a random update order, over time both P53 and MDM2are roughly 50% likely to be

ON. This is the expected probability when all 200 simulations settle into a limit cycle

attractor where P53and MDM2 oscillate, which is also suggestive of the average signal

across a population of cells exposed to DNA damage.

Expanding the biologically motivated example to include MDM2 and AKT

regulation

In the previous model of cellular proliferation and apoptosis (Fig. 5) only fixed point

attractors were possible because no regulatory feedback loops were present in the network

model. If the feedback loop in Fig. 6D is added to the network in Fig. 5, then the 8 fixed

point attractors with DNA Damage ON become cycle attractors with P53 and MDM2
oscillations (data not shown). In addition to adding an MDM2node, we expanded Model I

(Fig. 5) to include 6 additional nodes (Fig. 7A). An AKT node was included because AKT

related signalling plays an important role in activating cellular growth and inhibiting

apoptosis. In addition, PTEN, a powerful tumour suppressor and upstream inhibitor of AKT

activation was included.65 RAS, FOXO, BAD, and BAX were also added. Truth tables for

each logic function are provided in S1 (ESI†).

In Fig. 7B, C, we performed asynchronous simulations using two distinct conditions: (1)

DNA Damage ON and all other inputs OFF and (2) Growth Factor ON, PTEN ON, and
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all other inputs OFF. We also perturbed each of these conditions by preventing P27 from

turning ON in the simulations, which effectively served as an in silico knock down (KD) of

this node. In the DNA Damage ON condition, the result is as expected: all states settle into

attractors where there is 0% probability for population growth (proliferation) and

approximately 50% probability for cell death (apoptosis). This intermediate cell death

probability, which results from the fact that P53, MDM2, and apoptosis nodes are

oscillating in the attractor, is representative of an average between the oscillating states. A

very different outcome is found, however, when the DNA Damage ON condition is tested

with the P27 KD. In this case, proliferation also has approximately 50% probability to be

ON (Fig. 7B).

When both Growth Factor(which should trigger proliferative signals) and PTEN(which

should suppress proliferative signals) are ON, then cellular homeostasis (or quiescence)

occurs because all states end up in an attractor where both population growth (proliferation)

and cell death (apoptosis) have a 0% probability to be ON. When the same conditions are

tested with the P27KD, however, population growth is 100% likely to be ON in the attractor

(Fig. 7C). While these results are not surprising given the importance of P27 in regulating

cell cycle progression and proliferation, they do demonstrate how models of this type may

be used to make predictions related to network dynamics that can then be verified

experimentally.

The use of Boolean models in dynamical systems

We have seen how Boolean models can be used to simulate network dynamics and have also

discussed that Boolean models are capable of qualitative agreement with more

mechanistically precise ODE models. It must be stressed, however, that a Boolean model

will not always be appropriate for modelling network dynamics. In complex biochemical

pathways, the time evolution of the concentration of interacting species is governed by

nonlinear feedback loops in which the output of a pathway is not proportional to its input.66

Examples of network behaviour that a two-state Boolean model cannot approximate include

retroactive signalling,67,68 load-induced modulation,69 and bifurcations associated with

nonlinear equations. 70 In the case of retroactivity and load-induced modulation, which

involve upstream signal propagation in covalently modified signalling cascades, a two-state

Boolean model is too qualitative to predict this behaviour because these signalling processes

arise from enzyme sequestration mechanisms that are out of reach of two-state Boolean

models. In the case of bifurcations, which occur when the qualitative behaviour of the

solution of a nonlinear system changes as a parameter changes, two-state Boolean models

are unable to predict bifurcations because they lack parameters. It is possible that multistate

or continuous piecewise logic models (which are parameter driven) are capable of predicting

bifurcations. To our knowledge, however, this has not yet been explored systematically.

In a recent paper by Batchelor et al.,71 the mechanisms regulating P53 response to different

perturbations were investigated. The authors employed ODE models as part of an analysis

into the amplitude, duration, and frequency of individual p53 pulses in response to varying

amounts of ultra violet radiation. While a synchronous Boolean model would not be able to

elucidate mechanisms driving the degrees of response in a system like this, multistate fuzzy

logic16 and continuo us piecewise logic models12 have been used for similar purposes in

other systems. In addition, asynchronous Boolean models may be used for these types of

responses. In the model of guard cell aperture closure previously discussed,26 the authors

chose to use an asynchronous Boolean model to generate a probability of stomate closure

because stomate aperture responses are known to be graded and cannot be represented as

simply open or closed. While the predictive power of an ODE model is preferred for a dose

dependent response, an ODE model may not be practical for modelling such responses in
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large networks for computational and parameter space reasons. In such cases when a binary

response is not sufficient, the use of more complex logic-based methods, such as

asynchronous, multistate, fuzzy, or piecewise models, may be a reasonable alternative.

Conclusions

Logic-based models are predictive tools that can be leveraged in the absence of reliable

parameter information or mechanistic details needed for more quantitatively precise

methods, such as ODE models. Importantly, the predictive power of logic methods is

dependent on the nature of the logic network model constructed. In this review, we have

pointed out important factors to consider when building predictive logic-based models. We

have emphasized the importance of using descriptive logic network diagrams and provided

biologically motivated example networks. Most significantly, we have emphasized the need

to properly characterize the nature of all interactions in the network and to understand the

implicit meaning of logic functions used to integrate multiple input signals.

As we have seen, the use of AND and OR logical operators produce very different results for

the same input conditions (Fig. 4B–D, Fig. 5C, D and Fig. 6D, E). We strongly encourage

the creation of truth tables to verify that the output of each logic function is reasonable and

in qualitative agreement with experimental data, if available. When the nature of the

interaction modelled by a logic function is not known (e.g., whether an activator will trump

an inhibitor, if both are active, or vice versa), then the logic model can be used to test

hypothesized mechanisms for the uncertain interaction. The use of “incomplete truth tables”,

a computational approach for analysing the effect of logical uncertainty in a logic network,

has also been proposed for these cases.72

Despite their advantages, resistance to the use of logic-based models in biology exists. Some

resistance is related to the idea that a molecule’s state can be reduced to discrete ON and

OFF values. In actuality, experimental molecular states are often qualitatively described in

binary terms. Genes may be characterized as up-regulated or down-regulated in microarray

experiments and proteins are often referred to as activated or inactivated to indicate their

functional state. Given the stochastic variation in gene and protein expression across cells,

biological molecular networks are remarkably robust.73 The presence of growth factors in

the local environment, for example, will almost invariably result in the induction of

proliferative pathways within a population of cells, despite the heterogeneity in the

molecular expression across individual cells in the population. This deterministic output

from a given cellular input has been compared to cellular digital computation.74

Fundamentally, the basis of digital readouts are 0’s and 1’s–at least at the computational

level. Another point of concern with logic-based Boolean models is that time is unrelated to

physiological time and can provide only a qualitative chronology of molecular activations.3

While this is true, Boolean models can provide qualitative predictive values, which allow

biomedical scientists to gain unique insights into molecular network dynamics that may

otherwise be out of reach.

For those interested in using logic models to study large networks, the use of asynchronous

updating is generally recommended.2,45 A variety of algorithms exist for introducing

asynchronous updates in a logic model.45 For most purposes, the repeated random order

asynchronous45 update method (which is similar to a statistical Monte Carlo simulation) will

be sufficient. This is the algorithm used for the asynchronous simulations in this review.

Some attractors found with the simpler synchronous updating scheme may be artifacts of

uniform timescales. In contrast, an asynchronous scheme introduces stochastic variation in

timescales. Moreover, asynchronous methods can produce qualitative readouts that are more
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representative of biological readouts (Fig. 5D and Fig. 7B, C) and can easily facilitate in

silico perturbations, such as knock downs and constitutive activations.

We view logic models as complementary to other network analysis methods in systems

biology and consider them to be an important tool for making biological inferences about

the dynamics of intracellular networks. A number of software tools for logic-based network

analysis are available.12,43,72,75 The appropriate software tool to use will depend on the

nature of the network model and objectives of the analysis.7 For asynchronous simulations

and in silico molecular perturbation studies, we recommend Boolean Net, 12 which is a

relatively easy to use open source tool developed in Python. Needless to say, the

implementation of logic-based models requires computational and mathematical proficiency.

As a consequence, collaboration between integrative biologists and computational scientists

will play a pivotal role in the successful development, analysis, and interpretation of logic-

based models.

Importantly, logic-based models are also a powerful approach for constructing models of

biological networks that can ultimately be integrated into multiscale models–models that

consider the integration between different scales and phenomena in a biological system or

process–to provide an integrative view of biological systems.76 In the literature, multiscale

models of cancer growth have been developed that account for the cellular, genetic, and

environmental factors regulating tumour growth.54,77 These models have implemented

genetic and signalling networks as Boolean models to regulate cell cycle progression where

the response to signals from the intracellular gene network determines whether a cell will

proliferate or die and, therefore, directly influences the cellular and the extracellular tissue

level of the model.

In conclusion, it is never feasible to create a model that is an exact replica of a complex

system and, as a consequence, compromises must be made between the predictive power of

a model and the complexity of a model. The discrete nature of a Boolean model sacrifices

quantitative dynamics for qualitative dynamics. In exchange, a parameter-free modelling

framework can be used to investigate complex intracellular networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Insight, innovation, integration

The adaptations that living systems continually make are carried out through the

transmission of information across large gene regulatory and protein signal transduction

networks. These intracellular networks exhibit an enormous range of adaptive

behaviours, termed emergent properties. The study of networks from first principles is

challenging because quantitative data needed to estimate model parameters are seldom

available. Here we show how parameter-free logic-based models are intuitive, predictive,

and robust tools for qualitatively describing the integration of complex biochemical

interactions without prior knowledge of mechanistic details. Logic models can provide

robust predictions of emergent behaviours in networks and can be used to help

biomedical scientists unravel fundamental properties of molecular networks.
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Fig. 1.
Logic models approximate molecular interactions. The motivation behind logic models

comes from the sigmoidal relationship observed between regulatory molecules and their

target molecules. This relationship approximates a Boolean switch and can be thought of as

having two states: saturated (ON) and non-saturated (OFF). (A) An inhibitor regulates a

target molecule in a logic model: the target remains ON until the inhibitor’s activity

surpasses a threshold of activation. (B) An activator regulates a target molecule in a logic

model: the target remains OFF until the activator’s activity surpasses a threshold of

activation. In these models, ON means the molecule has reached a threshold of functional

activation that is high enough to affect the state of other molecule(s) it directly regulates,

while OFF means the molecule is not present at a high enough level to affect the molecules

it directly regulates. Critically, OFF does not necessarily mean the molecule has a zero

concentration. (C) A standard hyperbolic saturation curve measuring reaction velocity, v, as

substrate concentration, S, increases. K0.5 is the substrate concentration needed to reach half

the maximum velocity, Vmax. (D) A plot of v/Vmax vs. S/K0.5 (the specific substrate

concentration) takes the form of a sigmoidal saturation curve approximating a Boolean- ≪1

like switch. When S/K0.5 1, the reaction is effectively OFF. When S/K0.5is ≫1, the reaction

is effectively ON.
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Fig. 2.
Hypothetical network example with 12 nodes. (A) An interaction network diagram

summarizing a hypothetical network with 12 nodes where input is the only input node,

output is the only output node, and A–J are internally regulated nodes. (B) A logic network

diagram explicitly identifying how multiple signals (edges in the diagram) will be integrated

to produce a response in nodes Band output, the only nodes with more than one regulator.

(C) A table explicitly listing the logic functions used in the hypothetical logic model. The

information in this table is equivalent to the information available in (B), and both (B) and

(C) contain more information than (A). (D) Each unique network state in a logic network

can be identified in a number of ways: a graphical table where white = OFF and black =

ON, a binary representation where 0 = OFF and 1 = ON, or a decimal value that is

equivalent to the binary representation. Each of these states will give rise to another state

based on the logic functions (B–C) that control signal transfer in the network. (E)

Eventually, all states will settle into an attractor, a state from which it is not possible to

escape without an external perturbation to the system. In the graphs, attractor states are

colored red and non-attractor states are colored grey. An example of a limit cycle and a fix

point attractor are highlighted. In this model, there are a total of 212(4096) possible states

that settle in to 1 of 10 attractors. Blue circles indicate AND interactions.
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Fig. 3.
Hypothetical network example reduced to only 4 nodes. (A) An interaction network diagram

summarizing an alternate form of the network in Fig. 2A. Here all linear regulations have

been collapsed into single regulations to reduce model complexity. (B) A logic network

diagram explicitly identifying how multiple signals (edges in the diagram) will be integrated

to produce a response in nodes Band output, the only nodes with more than one regulator.

(C) A table explicitly listing the logic functions used in the reduced hypothetical model. The

information in this table is equivalent to the information available in (B), and both (B) and

(C) contain more information than (A). (D) Eventually, all states will settle into an attractor.

In the graphs, attractor states are colored red and non-attractor states are colored grey. In this

model, there are 24(16) possible states that settle in to 1 of 2 attractors, which, because of

their small size, can be easily visualized. The binary numbers on the nodes represent the

state of each node in the network in the following order input, B, E, and output. Blue

circles indicate AND interactions.
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Fig. 4.
Logic Functions. Each node in a logic model has a corresponding logic function that

controls its regulation each time the model is updated. (A) Derivation of logic functions for

nodes regulated by only one node: the next state of the regulated node (at time t+ 1) is fully

determined by the current state of the regulating node (at time t). Ct+1indicates the value of

Cat the next time step. (B –D) When multiple nodes regulate the same node, derivation of

logic functions is more complex. Three node networks are presented where Cis regulated by

two nodes: A and/or B. In the left hand column, typical representations of interaction

diagrams are presented with regulation by (B) two activators, (C) an activator and an

inhibitor, or (D) two inhibitors. The corresponding logic functions when an AND or an OR
relationship is used, respectively, are presented in the next two columns. In each example, a

more precise logic network is depicted that clearly indicates how the two nodes will be

integrated to produce a response in C. A truth table is provided that illustrates the output

(Ct+1) generated for all possible input conditions. 0 indicates (OFF) and 1 indicates (ON).

For clarity, activating nodes are colored green and inhibiting nodes are colored red. Blue

circles indicate AND interactions and yellow circles indicate OR interactions.
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Fig. 5.
A Model of Normal Cell Proliferation and Apoptosis: OR NOT vs. AND NOT. (A) An

interaction network diagram depicting regulation of cellular proliferation and apoptosis

based on a model published by Ribba et al.54 Overpopulation, Growth Factor, Hypoxia,

and DNA Damage are the input nodes and proliferation and apoptosis are the output

nodes. The four internally regulated nodes are colored white. (B) Logic network describing

the logic functions used in Model I (see also Table 1). (C) The 10 nodes in this network

produce a total of 210 (1024) possible states, each of which settles into 1 of 16 possible

attractors (identified as steady state output in the table), under a synchronous updating

scheme. The 16 possible input conditions are displayed in the center table. On the left,

Model I output is presented (with P27 regulated by OR NOT) and, on the right, Model II

output is presented (with P27 regulated by AND NOT). (D) Comparison between

asynchronous attractors produced by Model I and Model II when all input nodes are OFF.
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This input condition corresponds to the first row in the synchronous scheme’s table. An

asynchronous random order update was repeated 200 times for 15 time steps. Each curve

shows the average value of a node after 200 simulations for each time point. Blue circles

indicate AND interactions and yellow circles indicate OR interactions.
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Fig. 6.
Regulatory feedback and oscillations in logic models. (A) A single node will produce an

oscillating attractor if a negative auto-feedback is present. (B) Two nodes will produce an

oscillating attractor if a negative feedback is present. In this example P53 activates MDM2,

which inhibits P53. (C) A more realistic representation of the P53/MDM2 circuit includes

activation of P53 by DNA Damage. This representation of the network does not identify

whether an AND NOT or an OR NOT should be used. (D) When P53 is regulated by an

AND NOT function, two synchronous attractors are possible. (E) When P53 is regulated by

an OR NOT function, two synchronous attractors are possible. (F) Based on biological data,

the AND NOT appears to be the correct regulation because the presence of DNA Damage
induces functional levels of P53 that give rise to oscillations in the attractor. In the absence

of DNA Damage, all nodes in the attractor are below their functional activation threshold

(OFF). In the plots a synchronous update scheme and an asynchronous update scheme (with

200 simulations) are compared for the logic model presented in (D) when DNA Damage is

ON and the other 2 nodes are OFF at the start of the simulation. Blue circles indicate AND
interactions and yellow circles indicate OR interactions.
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Fig. 7.
An Expanded Model of Normal Cell Proliferation and Apoptosis. (A) A logic model

diagram of a more detailed version of Model I in Fig. 5. Specifically, growth factor

activation of MAPK and PI3K signaling pathways is incorporated via RAS and AKT,

respectively. In addition, PTEN’s downstream inhibition of AKT is included as is AKT’s

influence on cell cycle progression and apoptosis. (B) Control and in silico perturbations of

this model were performed using asynchronous simulations. Comparison between

asynchronous attractors with and without P27knock down (KD) for the initial condition:

DNA Damage ON and all other nodes randomize d. (C) Comparison between asynchronous

attractors with and without P27 KD for the initial condition: Growth Factor (GF) ON,

PTEN ON, and all other nodes randomized. All simulations with P27 KD began with P27
OFF and kept it fixed to this state for the duration of the simulation. All asynchronous
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simulations were performed 200 times to get the probability each node would be ON under

the test conditions. Blue circles indicate AND interactions and yellow circles indicate OR
interactions.
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Table 1

Justifications for logic functions used in Fig. 5, Model I. A number of literature citations are provided in the

table55,78–85

Regulatory logic rule Justification

MYCt+1 = Growth Factor AND
NOT Overpopulation AND NOT
Hypoxia

Both overpopulation and hypoxia inhibit MYC expression. Hypoxia initiates the TGF-β pathway and
promotes phosphorylation of SMAD’s MH2 domain, which inhibits MYC expression (Yagi, Furuhashi et
al., 2002; Feng, Liang et al., 2002). Overpopulation activates the Wnt signaling pathway, releasing the
APC destruction complex and promoting degradation of β-catenin, a transcriptional activator of MYC
(Su, Fu et al. 2008). In contrast, growth factors activate MYC transcription via RAS signaling (Lewis,
Shapiro, 1998). Our logic rule assumes that MYC activation (via growth factor induced signaling) is only
possible when neither inhibitor (Overpopulation and Hypoxia) is active.

P27t+1 = Hypoxia OR NOTMYC t Hypoxia activates P27, a potent cell cycle inhibitor, by initiating the TGF-β pathway and promoting
phosphorylation of SMAD’s MH2 domain, which plays a role in maintaining P27 expression (Yagi,
Furuhashi et al.2002; Feng, Liang et al. 2002). MYC, when active, inhibits transcription of P27 by
binding to its promoter (Yang, Sheng, 2001). We assume there are endogenous levels of active P27
present in the absence of hypoxia. The OR NOT logic rule ensures that when present, Hypoxia’s
activation of P27 dominates MYC’s inhibition.

Cyc-Cdkt+1 = NOT P27tAND
NOT P53t

Cyclin dependent kinases (Cyc-Cdk) are inhibited by both P27 and P21. P21 is activated by P53 in
response to DNA damage signals. For simplicity we have excluded P21 from this regulation (Baldin, V.,
J. Lukas, et al., 1993; Coqueret, 2003).

P53t+1 = DNA Damage P53 is transcriptionally activated in the presence of DNA Damage (Lahav et al. 2004).

Proliferationt+1 = Cyc-Cdkt Cyclin dependent kinases (Cyc-Cdk) are required for cell progression in the G1 phase. They act to inhibit
the Rb protein by phosphorylation, which is an inhibitor of cell cycle progression and proliferation.
(Baldin, V., J. Lukas, et al., 1993; Coqueret, 2003).

Apoptosist+1 = P53t P53 transcriptionally activates BAX, which is an upstream activator of apoptosis (Basu and Halder, 1998).
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