
Autonomous Agents and Multi-Agent Systems (2021) 35:1

https://doi.org/10.1007/s10458-020-09478-3

Logic-based technologies for multi-agent systems: a
systematic literature review

Roberta Calegari1 · Giovanni Ciatto2 · Viviana Mascardi3 · Andrea Omicini2

Published online: 19 October 2020
© The Author(s) 2020

Abstract

Precisely when the success of artificial intelligence (AI) sub-symbolic techniques makes
them be identified with the whole AI by many non-computer-scientists and non-technical
media, symbolic approaches are getting more and more attention as those that could make AI
amenable to human understanding. Given the recurring cycles in the AI history, we expect that
a revamp of technologies often tagged as “classical AI”—in particular, logic-based ones—
will take place in the next few years. On the other hand, agents and multi-agent systems (MAS)
have been at the core of the design of intelligent systems since their very beginning, and their
long-term connection with logic-based technologies, which characterised their early days,
might open new ways to engineer explainable intelligent systems. This is why understanding
the current status of logic-based technologies for MAS is nowadays of paramount importance.
Accordingly, this paper aims at providing a comprehensive view of those technologies by
making them the subject of a systematic literature review (SLR). The resulting technologies
are discussed and evaluated from two different perspectives: the MAS and the logic-based
ones.

Keywords SLR · Logic-based technologies · MAS

B Roberta Calegari
roberta.calegari@unibo.it

Giovanni Ciatto
giovanni.ciatto@unibo.it

Viviana Mascardi
viviana.mascardi@unige.it

Andrea Omicini
andrea.omicini@unibo.it

1 ALMA–AI Interdepartmental Center of Human Centered AI, Alma Mater Studiorum–Università di
Bologna, Bologna, Italy

2 Dipartimento di Informatica – Scienza e Ingegneria (DISI), Alma Mater Studiorum–Università di
Bologna, Bologna, Italy

3 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di
Genova, Genoa, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-020-09478-3&domain=pdf
http://orcid.org/0000-0003-3794-2942
http://orcid.org/0000-0002-1841-8996
http://orcid.org/0000-0002-2261-9926
http://orcid.org/0000-0002-6655-3869


1 Page 2 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

1 Introduction

While discussions about the balance between risks and benefits of artificial intelligence (AI)
take a significant space in public interest, industry seems to have finally joined (and, maybe,
surpassed) academia in valuing AI as one of the pillars of the next industrial revolution. Pub-
lic institutions have followed, too: for instance, the European Commission already invested
1.5 billion euros in AI for 2018–2020, and many more are planned beyond 2020.1 Further-
more, the “American Artificial Intelligence Initiative: Year One Annual Report”, delivered
on February 2020 [334], witnesses the record amounts of AI research and development
investment, and the same trend is observed in China.2

When industry, politics, and society focus on new technologies, the promise of a future
astonishing progress is no longer enough, since industry leaders, decision makers, and tax
payers call for immediate and visible benefits. That is why, following the recent success of
deep learning, and the reviving popularity of many other AI techniques, in the next decade
academia is going to devote non-negligible research efforts to intelligent systems, and in
particular to intelligent system engineering.

Given the current status of AI technologies—mostly successful in well-delimited appli-
cation scenarios—, a key issue for intelligent system engineering is integration of the
diverse AI techniques: in software engineering terms, not just how to integrate diverse
technologies, but also (perhaps mainly) how to preserve conceptual integrity when highly-
heterogeneous approaches—bringing about manifold abstractions of various nature—are put
to work together.

The most straightforward and generally-acknowledged way to address the above issue
is by using agents and multi-agent systems (MAS). In fact, this is the way in which AI
has been taught worldwide in the last decades, based on the most used AI textbook [305]:
there, the agent abstraction is adopted as the conceptual architecture to frame the many
different AI techniques, and MAS abstractions provide sound foundation for the design of
intelligent systems. Also, the long-term research activity in fields like agent-oriented com-
puting (AOC)—about MAS programming languages and technologies—and agent-oriented
software engineering (AOSE)—about MAS methods, tools, and methodologies—actually
makes agents and MAS the most suitable candidates to work as the sources for well-founded
technologies and methodologies for intelligent system engineering.

Nowadays, a clear dichotomy is emerging from within the AI area. Whereas the over-
whelming success of sub-symbolic techniques like deep learning has basically wiped out
most objections against AI, public concern about the forthcoming role of intelligent systems
in human society has raised new issues, such as the need of explaining the behaviour of
intelligent agents, and make it understandable for humans—particularly when AI plays a
critical role within human organisations. The fact is, the overall approach to XAI (eXplain-
able Artificial Intelligence [28] would seemingly require the extensive adoption of symbolic
techniques (possibly integrated with sub-symbolic and non-symbolic ones) in order to reach
its main goals—such as observability, interpretability, explainability, and accountability. As
a result, exactly when the general focus of AI is on sub-symbolic techniques—as those that
have made AI work in real-world applications—, symbolic approaches are beginning to be
carefully scrutinised—as those that could make AI also amenable to human understanding.

1 https://ec.europa.eu/digital-single-market/en/artificial-intelligence, last accessed in April 2020.
2 https://www.technologyreview.com/2019/12/05/65019/china-us-ai-military-spending/, last accessed in
April 2020.

123

https://ec.europa.eu/digital-single-market/en/artificial-intelligence
https://www.technologyreview.com/2019/12/05/65019/china-us-ai-military-spending/


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 3 of 67 1

Among them, logic-based techniques are not just the oldest ones, but possibly represent
the most straightforward path towards human understanding: if for no other reason, for
the fact that logic—as the study of correct reasoning—targets first of all human cognitive
processes. Also, logic-based approaches are since long time at the core of many successful
agent-based models and technologies. Generally speaking, cognitive agents in intelligent
MAS straightforwardly exploit logic-based models and technologies for rational process,
knowledge representation, expressive communication, and effective coordination. Overall,
MAS and logic-based technologies have already crossed their paths in the last decades, and
can be expected to do so more and more in the years to come.

Altogether, this is why this paper focuses on logic-based approaches in MAS: as they
are to be counted among the most promising techniques for building understandable and
explainable intelligent systems. More precisely, given the unavoidable push towards the
engineering of intelligent systems, here we explicitly target logic-based technologies: we
mean to understand and represent the current status of the available logic-based technologies
in the MAS field that are actually usable in the engineering of intelligent systems.

Of course, we acknowledge that other papers in the past have already (and often brilliantly)
surveyed MAS technologies as well as logic-based approaches within MAS. What motivates
a new study on the subject, however, it is not just the renewed interest and public investment
on AI, or, our focus on technologies. Instead, to the best of our knowledge, no systematic
review has been performed on the subject to date. And, the requirement of verifiability and
reproducibility of scientific literature can be satisfied by SLR (systematic literature review)
only—particularly nowadays, when AI research is more and more subject to the public
scrutiny, precisely for the overwhelming interest it has raised. Then, the goal of this paper
is to provide an exhaustive and organised view of the available logic-based technologies for
MAS, by performing a carefully-designed and implemented SLR on the subject.

Accordingly, the paper is organised as follows. Section 2 introduces the method used for
the SLR, discussing the technical details from the fundamental research questions down to
the technical operations actually leading to the material discussed in the paper. Section 3
presents and organises the technologies devised out according to a MAS-based perspective,
and provides a brief description for each one. Section 4 collects and displays information from
the sources and the selected technologies in form of tables and word clouds. Section 5 provides
for an overall view on logic-based technologies for MAS, offering some interpretation criteria
on their current state of the art and perspectives. Lastly, Sect. 6 concludes the paper with
some final remarks.

2 Method

2.1 Premises

Making a review systematic requires first of all that the main concepts are defined clearly
enough not just to make its scope precise, but mostly to make the review itself reproducible—
to some extent. This does not mean of course that notions like agents and multi-agent systems
are to be re-defined here ex novo, or, with more detail than is typically used in the literature:
but, at least, it means that the acceptations of terms used in the remainder of this paper have
to be well-founded and understandable.

So, when including/excluding MAS technologies in/from our survey, we refer to the well-
known definition of agents by Wooldridge and Jennings [356], or, to a basically-equivalent

123



1 Page 4 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

definition of agents and MAS [280]: agents are computational abstractions encapsulating
control along with a criterion to drive control (a task, a goal), whereas MAS are collections of
agents interacting (communicating, coordinating, competing, cooperating) in a computational
system. Even less problematic is to define what is logic: dating back to Aristotle—whose logic
is the instrument for human knowledge [301]—logic studies the way we draw conclusions and
express ourselves, and deals with how to formalise it [256]. Since several sorts of logic exists
and are adopted in general in the broad context of computational logic, in the following we
stick to those logics clearly identifiable in the literature, in terms of name, formal definition,
and reference paper(s).

Yet, the main issue here does not concern either MAS or logic. Instead, it comes from
our basic choice to focus on logic-based technologies for MAS, and from its motivation as
well. In fact, a key point is for agent-based technologies to actually work in the engineering
of intelligent systems: correspondingly, in the remainder of this survey we choose to include
only logic-based MAS technologies that are both scientifically identifiable and technically
available. This means, first of all, that there must exist (at least) a scientific publication that
clearly defines and describes the technology (and so, covering both its agent- and logic-
based aspects); then, that the technology itself should be clearly mentioned in the reference
publication, as well as technically accessible (e.g., from a web site or a public repository) at
the time of the survey.

More precisely, in this paper we consider as logic-based MAS technology any agent-
oriented software architecture, framework, or language that (i) involves some clearly-defined
logic model, and (ii) comes with some actual technological reification. Indeed, we argue
that technological aspects are far from being marginal, as technology is “the application of
scientific knowledge for practical purposes”,3 and now more than ever the engineering of
intelligent systems is in dire need of dependable technologies. Clearly enough, technologies
may involve logics at several different levels and in disparate ways, in the same way as they
may address diverse abstractions of MAS. Within the scope of our work, in particular, we
are mostly interested in technologies exposing logic and agent-orientation at the application
level—i.e., making logic explicit to their intended users. Consider for instance Jason [42],
a well-known MAS specimen of technology inspired by the Belief-Desire-Intention (BDI)
architecture [295–297]—and hence by the BDI logic—, written in Java. There, BDI logic
pervades Jason design, implementation, and API, and is clearly exposed to Jason users.
Similarly, Golog [228]—a Prolog-based technology for MAS programming—would have
been considered to be a logic-based technology even if it were written in Java, as logic is
required by users to build MAS through Golog.

Accordingly, in the remainder of this survey we choose to include only those logic-
based technologies for MAS that (i) can be associated with a sound scientific contribution
describing some clearly-identifiable software system, framework, or toolkit; (ii) are in the
form of executable software, which can be actually reached, downloaded, and tested on
some modern execution platform—so that they may actually be used and work in real-world
intelligent systems, at least in principle; (iii) can be found via URLs or references from their
primary works, or, straightforwardly via web search on the authors’ information—otherwise,
any link between the model from the primary work and the technology would be debatable,
and possibly arbitrary; (iv) the URL does not belong to some web archive service only—
which would clearly witness the fact that the technology is in some state of abandon.

3 https://www.oxfordreference.com/page/scienceandtech/science-and-technology, last accessed in July
2020.

123

https://www.oxfordreference.com/page/scienceandtech/science-and-technology


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 5 of 67 1

2.2 Research questions

Every SLR [56,263] is built around some fundamental research question. According to Hig-
gins and Green [176], “A systematic review attempts to identify, appraise and synthesise all
the empirical evidence that meets pre-specified eligibility criteria to answer a given research
question. Researchers conducting systematic reviews use explicit methods aimed at min-
imising bias, in order to produce more reliable findings that can be used to inform decision
making.”

Our primary research question essentially expresses our main research goal here. In fact,
we are interested in understanding

(G) What is the role played by logic-based technologies in MAS nowadays?

In order to make it possible to conduct a SLR based on this (quite general and possibly
generic) question, it is necessary to re-articulate the research goal in terms of more detailed
(secondary) research questions:

(Q1) Which logic-based technologies for MAS are actually available?
(Q2) Which aspects of MAS technologies are affected by logic-based technologies, and to

what extent?
(Q3) Which MAS abstractions/issues/features are covered by logic-based technologies?
(Q4) Which sorts of logics are actually exploited to frame logic-based MAS technologies?
(Q5) Which logic-based technologies for MAS are effectively used in real-world domains?

The above questions drive the process of search, by articulating the way in which papers and
technologies are looked for, examined, and possibly selected for the review.

2.3 Sources

The electronic sources used in the search process are of two sorts: (i) general bibliographic

databases and (ii) specific sources—such as conferences, symposia, and workshops—on the
core topics. The former are searched intensively via specific queries, whereas the latter are
explored extensively, year by year, volume by volume, paper by paper. This is because small,
specialised workshops are often missing from the major bibliographic databases used for our
query-based intensive search; instead, one can typically count on the complete indexing of
major conferences and international journals. Accordingly, the extensive scrutiny of all the
papers published in the specialised workshops on topics near to MAS and logic is mostly
intended to complement the intensive search performed throughout the bibliographic engines,
so as to result in the most exhaustive search possible overall.

In particular, in the following we extensively consider all the papers published in

– the International Workshop on Declarative Agent Languages and Technologies (DALT)—
10 events (2003–2012)

– the International Workshop on Engineering Multi-Agent Systems (EMAS)—7 events
(2013–2019), including DALT since 2013

– the International Workshop on Computational Logic in Multi-Agent Systems (CLIMA)—
15 events (2000–2014)

– the Workshop on Logics for Intelligent Agents and Multi-agent Systems (WLIAMAS @
IAT)—3 events (2008–2010)

– the Workshop on Logical Aspects of Multi-Agent Systems (LAMAS)—8 events (2002,
2010–2015, 2017)

123



1 Page 6 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

and check them for the required content and references. The aforementioned sources have to
be searched extensively given that their coverage by the most common sources for scientific
literature is often incomplete at best.

In detail, the sources used for intensive search (via keyword-based queries) are the fol-
lowing:

(i) Google Scholar—http://scholar.google.com
(ii) IEEE Xplore—http://ieeexplore.ieee.org

(iii) ScienceDirect—http://www.sciencedirect.com
(iv) SpringerLink—http://www.springerlink.com
(v) DBLP—http://dblp.uni-trier.de

(vi) ACM Digital Library—http://dl.acm.org.

Each of these sources is queried with the following combinations of keywords:

(KW1) multi agent system logic technology
(KW2) multi agent system logic implementation
(KW3) multi agent system logic industry
(KW4) multi agent system logic verification
(KW5) multi agent system logic agent programming
(KW6) multi agent system logic agent reasoning
(KW7) multi agent system logic society
(KW8) multi agent system logic environment

and the first hundred results returned are considered as potential candidates: the occurrence
of a logic-based approach for MAS is first checked for each paper, then, in case it is found,
the existence of a technology is looked for and possibly verified.

2.4 Papers classification

Papers resulting from the above search activity are classified according to three main classes:

primary papers—i.e., those papers introducing and describing a technology of interest
auxiliary papers—i.e., those papers mentioning a technology of interest—meaning that
the mentioned technology has been employed in some way in the development of the
contribution of the paper
secondary papers—i.e., those papers surveying technologies of interest.

Given their obvious relevance to a systematic survey, secondary papers are not only
used as the direct source for technologies of interest; instead, their extensive and organ-
ised bibliographic references is recursively searched for new possible items of interest.
In particular, we extensively search references from the following secondary works:
[23,44,147,245,246,248,277,307,357].

It is worth pointing out that the aforementioned secondary works are similar in purpose
to this work, yet they are not systematic literature reviews. This work, in turn, has a wider
scope, an updated background, and it is based on a structured and reproducible method.
Furthermore, in this paper, we provide a technological assessment of each technology with an
unprecedented level of detail. In particular, Baldoni et al. [23] provides a historical overview
of the relationship between declarative languages and multi-agent systems, with no ambition
of completeness, and no interest in the analysis of technologies. Conversely, this paper aims at
understanding and representing the current state of the available logic-based technologies for
MAS: so, our SLR focuses on those technologies that are actually usable in the engineering
of intelligent systems.

123

http://scholar.google.com
http://ieeexplore.ieee.org
http://www.sciencedirect.com
http://www.springerlink.com
http://dblp.uni-trier.de
http://dl.acm.org


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 7 of 67 1

3 Technology synopsis: theMAS perspective

Agents are not alone in MAS. They interact with other agents, and with the surrounding
environment as well: a shared view exists in the literature that agent, society, and environment
can be taken as the three basic categories to interpret and model the structure and dynamics
of non-trivial MAS. This view, proposed by Omicini [273] and backed up—either implicitly
or explicitly—by other MAS models—e.g., [286,350]—, infrastructures—e.g., [298,344]—,
and methodologies—e.g., [91,104,166]—drives the organisation of this section. Indeed, the
works that meet the selection criteria discussed in Sect. 2, are presented according to the
following schema:

– Agent

• Programming, reasoning & planning
• Agent reliability & verification

– Society

• Organisational reasoning & coordination
• Argumentation
• Reliability & verification of MAS

– Environment

• Agents in the Semantic Web (distributed cognition)
• Situated interaction & coordination

Technologies belonging to each sub-category are presented in chronological order and accom-
panied by a short description, including primary references, URL referencing the projects
home pages, and other related papers, if any. In particular, each technology is described
from two different yet complementary perspectives: the MAS and the logical ones. On the
one side, the MAS perspective aims at providing an answer to research questions (Q2) and
(Q3). On the other side, the logical perspective aims at answering to research question (Q4).
Furthermore, each technology description also includes a brief technical assessment aimed
at addressing research questions (Q1), and (Q5).

Many technologies are based on, or integrate, more than one logic-based approach. In those
situations, we classify a technology according to the “most distinguishing” approach—i.e.,
the approach for which the technology is mainly known and referenced for in the literature.
For instance, let us consider again Jason as an example. To support agent programmers in
modelling agent beliefs and deductive reasoning mechanisms, Jason includes a full-fledged
Prolog interpreter. Prolog interpreters are considered the main software tool within the scope
of logic programming. However, Jason is rarely described as a technology based on logic
programming (LP) [234], despite being technically able to handle logic programs. Indeed,
the BDI paradigm is far more characterising for Jason than LP: hence, we categorise Jason
as a BDI logic technology.

3.1 Agent

From the MAS perspective, most technologies falling under the “Agent” category, are
logic-based agent programming languages. Whereas almost all these languages allow for
the specification and implementation of societal aspects—via communication actions—and
interaction with the environment—via perception and external actions—, their focus is on

123



1 Page 8 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

the description of individual agents, which motivates the inclusion in this section. These
technologies are listed in the “Programming, reasoning, and planning” sub-category, and
include languages for agents characterised by beliefs (and, depending on the language,
other mentalistic notions such as desires, goals, plans, commitments)—such as ASTRA,
AGENT-0, AgentSpeak(L) and its Jason implementation, DyLOG, AFAPL, GOAL, JACK,
Jadex, eXAT, Rodin, JADL, 3APL and 2APL, TeleoR and Golog-like languages; languages
where deliberation is the most characterising feature—such as SHOP, AgentSpeak(ER); lan-
guages that extend logic programming with communication, concurrent execution and/or time
management—such as CaseLP/DCaseLP, Concurrent MetateM, DALI, Go!, Mozart/Oz. We
also include in this sub-category RASP, because of its attention to modelling agent knowledge
and reasoning, jDALMAS, which extends the reasoning mechanism with deontic abstrac-
tions, and DRAGO, which bases agent knowledge and reasoning on ontologies.

Finally, it is widely acknowledged that many areas of application of MAS clearly require
dependable computational systems—and, in particular, that such systems should be verifi-
able. The last sub-category under the agent perspective is hence devoted to technologies for
the (automatic or semi-automatic, static or dynamic) verification of agent-based systems. In
the “Agent reliability & verification” sub-category we discuss only one technology, MCAPL,
which is more oriented (although not exclusively oriented) towards model checking of indi-
vidual agents. More technologies are presented in the societal extension of this category.

From the logic perspective, the technologies in the “Agent” category largely emphasise
the impact of logic programming on agents specification. In fact, most of them either extend
or rely on LP to describe agents behaviours, beliefs, or semantics. This is unsurprising, as
the connection between agents and LP has been well understood in the literature since the
dawn of the agent-oriented programming research. From the seminal works by Kowalski
[212], Dell’Acqua et al. [116], Kowalski and Sadri [213], Bozzano et al. [49] up to the recent
work by Calegari et al. [61], logic programming is considered by many scientists as quite
a natural choice for specifying, implementing, and verifying rational agents. Among the
dozens of surveyed works exploiting LP and its variants, only some of them respect the strict
acceptation of (available) technology adopted here.

3.1.1 Programming, reasoning, and planning

AGENT-0 (1991)

Primary references: [318,319]
Other references describing / exploiting the technology: [180,336,357]
URL: http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/agents/aop/0.html

MAS perspective AGENT-0 is a framework for programming MAS. Programming an
agent in AGENT-0 amounts at defining its commitment rules which are decisions to per-
form an action, not to pursue a goal. The conditions under which a commitment can be
made are expressed in terms of mental conditions—involving what the agent believes to be
true and which commitments it believes to hold—, and message conditions—namely logical
combinations of message patterns (From, Type, Content). There, Typemay be one
among some predefined performatives, as INFORM, OFFER, REQUEST. Agents communi-
cate through message passing and an agent capability is a relation between that agent mental
state and its environment. Complex mental categories like desires, goals, intentions and plans
are not supported by the language.

123

http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/agents/aop/0.html


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 9 of 67 1

Logical perspective AGENT-0 is based on a particular, ad-hoc, modal logic. Modal logic
[70,134] is a suitable and powerful formalism to describe agents as intentional systems, as
observed by Wooldridge and Jennings [356] in the early 90s. More precisely, AGENT-0 is
an interpreted language based on a propositional temporal logic developed by Thomas et
al. [336]. It is a simple point-based temporal language, with facts associated with points in
time and possibly nested time-stamped beliefs. The logical language has modal operators
representing knowledge, belief, desire, commitment, and ability. According to Wooldridge
et al. [357], it represents the foundation for the AGENT-0 semantics: however, it is worth
noting that AGENT-0 temporal operators lack a formal logic-based semantics. Given that
AGENT-0 has no formal semantics, it is not surprising that also the temporal component of
the language is presented in an intuitive, informal way.

Technological notes: The AGENT-0 technology is still available, even if it dates back to 1991. It consist of
a Lisp [252] module, originally intended for the Allegro Common Lisp system, and which does not include
license information. The Lisp module can still be loaded on modern Common Lisp platforms. However,
following the provided instructions, a runtime error prevents its actual execution.

Concurrent MetateM (1993)

Primary references: [142,146]
Other references describing / exploiting the technology: [29,46,144,145,180]
URL: http://cgi.csc.liv.ac.uk/~michael/TLBook/MetateM-System

MAS perspective MetateM is a concrete framework for programming MAS through modal
and temporal logics. Concurrent MetateM is the multi-agent extension of MetateM: it com-
bines the features supported by MetateM with a model of concurrent computation, providing
an approach to the modelling of complex reactive systems. A Concurrent MetateM system
contains a number of concurrently executing agents which communicate through message
passing.

Logical perspective MetateM interpreter implements an “on the basis of the past, do the
future” behaviour based upon the methodology of temporal logic as an executable imperative
language presented by Moszkowski [259]. The rules which drive the agent behaviour are
temporal logic formulae of the form: “antecedent about the past, consequent about the future”.
The methodology finds its root in the work presented by Gabbay [155], stating that any
temporal logic formula can be rewritten in terms of one or more Antecedent → Consequent

rules. These rules make up the agent specifications and dictate the agent behaviours and,
consequently, the MAS dynamics.

Technological notes: Despite the many implementations discussed for MetateM in the literature, we were
able to find only an old, not maintained, Java-based implementation of Concurrent MetateM that requires
Java Virtual Machine (JVM) 6+. It is distributed under the terms of the GNU General Public License,
together with some code examples, which we used to test it. The available implementation still works, even
on the most recent version of the JVM (https://www.java.com/, last accessed in April 2020).

AgentSpeak(L) (1996) & Jason (2006)

Primary references: [42,294]
Other references describing / exploiting the technology: [42,45,106,201,207,255,258,284,299]
URL: http://jason.sourceforge.net

123

http://cgi.csc.liv.ac.uk/~michael/TLBook/MetateM-System
https://www.java.com/
http://jason.sourceforge.net


1 Page 10 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

MAS perspective Jason is an interpreter for an extended version of AgentSpeak(L), a
logic-based agent-oriented programming language introduced by Rao [294] and based on
the Beliefs-Desires-Intentions (BDI) architecture and logic presented by Rao and Georgeff
[295–297]. Through Jason, developers can model and implement autonomous agents in a
goal-oriented way, by writing the plans an agent may choose to adopt when reacting to
the many events steering the dynamics of a MAS. All that Jason agents can do occurs
due to events, including perception, belief-base update, and message-passing, as well as
goal instantiation or satisfaction. The extended AgentSpeak(L) language exploited by Jason
essentially provides a practical means of manipulating agent knowledge and activities through
a Prolog-like syntax.

Logical perspective The Jason technology is based on the BDI logic. Furthermore, the Jason
interpreter comes with an internal, Prolog-like, logic programming engine implemented in
Java—supporting annotated logic terms, among the other features. The Jason operational
semantics has been defined by Vieira et al. [343]. Based on the BDI logics, Jason expects
agents to be defined in terms of beliefs—i.e., the knowledge an agent has about the world—
, desires—i.e., the states of the world an agent is willing to pursue or maintain—, and
intentions—i.e., the actions in which an agent means to be involved in a given moment. Notice
that the Jason technology is aimed neither at formally inspecting MAS nor at automatically
deriving MAS properties. Conversely, BDI logic is exploited as an effective programming
language for AOP.

Technological notes: Jason is an open source technology that requires JVM 8+. It is available under the
GNU Lesser General Purpose license at http://jason.sourceforge.net. It is alive and actively developed, as
highlighted by the intense activity on its official GitHub repository and by the many resources available
on its homepage. It is also available as a Maven artifact, along with its dependencies, thus giving proof of
its maturity as a JVM technology. We tested Jason exploiting the many examples available on the project
homepage, showing that the technology works even with the most recent versions of JVM.

Golog (1997), ConGolog (2000) & IndiGolog (2009)

Primary references: [113,114,228]
Other references describing / exploiting the technology: [46,117,245,254,283]
URL: http://www.cs.toronto.edu/cogrobo/main/systems

MAS perspective In Golog-like programming languages, the agent dynamic world can
be modelled by exploiting an explicit representation of the initial state of the system, and
the effect of actions on that world. The representation is characterised by axioms provided
by users. Golog-like languages allow the developer to program autonomous agents that
perceive their environment and plan while operate. ConGolog provides support for concurrent
programming, while IndiGolog specialises in providing agents with the ability to sense their
environment and plan accordingly.

Logical perspective Both Golog and its successors extend or are implemented in Prolog
(SWI-Prolog,4 ECLiPSE-Prolog5). The formalism adopted by these languages is rooted in
the Situation Calculus. They consist of Prolog-based meta-interpreters that support a custom
action language defined by overriding or defining Prolog operators.

4 https://www.swi-prolog.org, last accessed in April 2020.
5 https://eclipseclp.org, last accessed in April 2020.

123

http://jason.sourceforge.net
http://www.cs.toronto.edu/cogrobo/main/systems
https://www.swi-prolog.org
https://eclipseclp.org


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 11 of 67 1

Technological notes: We only succeeded in accessing the Golog base code, as ConGolog- and IndiGolog-
related resources are no longer available on the project homepage. Golog sources consist of Prolog files
supposedly targeting both SWI- and ECLiPSE-Prolog. Sources include a custom copyright notice that
allows them to be used for research purposes. However, due to the lack of adequate information on how to
run the code, we were not able to assess whether the technology actually works or not.

SHOP (1999)

Primary references: [266]
Other references describing / exploiting the technology: [150,171,172]
URL: https://www.cs.umd.edu/projects/shop

https://github.com/shop-planner/shop3

MAS perspective SHOP (Simple Hierarchical Ordered Planner) and its variants—SHOP2
by Nau et al. [267] and JSHOP2 by Ilghami [197]—are domain-independent automated-
planning systems based on ordered task decomposition, which is a type of Hierarchical Task
Network (HTN) planning—see Erol et al. [135] for details. SHOP is based on an action
language with a Lisp-like syntax. In particular, SHOP complies with the PDDL specification
[253], which is a standardisation effort for planning languages. Since it is based on PDDL,
SHOP allows developers to express the “physics” of a domain: making it possible to declare
domain predicates and available actions, together with their structure and effects.

As an ordered task decomposition planner, SHOP produces plans where tasks appear in the
same order in which they should be executed (total-ordering requirement in SHOP, partial-
ordering requirement in SHOP2). This limits the degree of uncertainty about the world,
thus reducing the complexity of the reasoning. In addition to the usual HTN methods and
operators, SHOP and its extensions can define axioms, mix symbolic/numeric conditions,
and call external functions.

Although SHOP is not described as an agent-related technology, it has been employed in
some agent-oriented works, referenced above in “Other references”.

Logical perspective Being PDDL-compliant, SHOP is based on predicate logic. As with
most AI planners, a logical atom in SHOP consists of a predicate name followed by a list of
arguments, and a state of the world consists of a collection of ground logical atoms. As with
most HTN planners, a task in SHOP consists of a task name followed by a list of arguments.
Although tasks are similar syntactically to logical atoms, they are different semantically since
they denote activities that need to be performed rather than logical conditions. However,
SHOP implements an inference mechanism based on Horn clauses [190], with support to
negation as failure. A transition from a state to another one is accomplished by an instance of
an operator whose precondition is a logical consequence of the current state. The knowledge
base contains domain-specific knowledge that SHOP may exploit to improve planning in that
domain. It consists of axioms, methods, and operators.6

Technological notes: Most SHOP-related technologies lay unmaintained on the SourceForge repository
accessible from the project homepage. However, a recent reboot of the SHOP project—namely, SHOP3—
is available and actively maintained as a Common Lisp project on GitHub. This is distributed under the
terms of the Mozilla Public License. We successfully installed the technology into our Common Lisp
environment, and loaded the provided Lisp modules on it. However, due to the lack of available examples,
we were not able to test the effectiveness of SHOP3.

6 https://common-lisp.net/, last accessed in April 2020.

123

https://www.cs.umd.edu/projects/shop
https://github.com/shop-planner/shop3
https://common-lisp.net/


1 Page 12 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

CaseLP (1999), DyLOG (2004) & DCaseLP (2007)

Primary references: [18,19,244,247]
Other references describing / exploiting the technology: [289]
URL: http://person.dibris.unige.it/mascardi-viviana/Software/DCaseLP.html

MAS perspective CaseLP (Complex Application Specification Environment Based on
Logic Programming) is a LP-based prototyping environment for MAS, used to develop proto-
types in collaboration with the Italian Railways and the Elsag company (now Leonardo s.p.a.)
in 1999, for planning goods transportation. DCaseLP [247] is its distributed version (from
which the “D” comes from), based on JADE [34], tuProlog [122] and Jess [177]. DyLOG
[18]—later renamed “DYnamics in LOGic”7—is a high-level LP language for modelling
rational agents, based on a modal theory of actions and mental attitudes, where modalities
are used for representing actions, while beliefs model the agent internal state. DCaseLP and
DyLOG were exploited together to support the design of agent interaction protocols in a
methodologically-correct way [19].

Logical perspective CaseLP, DCaseLP, and DyLOG extend, or are implemented in, Prolog.
At the technological level, DCaseLP consists of three Java archives, which allow agents
specified in declarative languages—including tuProlog and Jess—to be integrated and run
in the same JADE environment.

DyLOG is implemented in SICStus Prolog.8

Technological notes: The DCaseLP technology lays unmaintained on the project homepage. It consists of
an archive containing both source and compiled Java code including none of the dependencies declared on
the project homepage—namely, tuProlog, Jess, and ArgoUML. We were not able to find any license-related
information for this technology. We also tried to run DCaseLP, but we failed due to the impossibility of
retrieving the correct version of the dependencies from the Web. Notice that, since no specific version of
the dependencies is indicated in the available documentation, we tested several combinations.

Mozart/Oz (1999)

Primary references: [303]
Other references describing / exploiting the technology: [81,87,175,327]
URL: http://mozart.github.io

MAS perspective The Mozart Programming System is an advanced development platform
for intelligent, distributed applications. It implements Oz 3, the latest language of the Oz fam-
ily [175] of multi-paradigm high-level languages based on the concurrent constraint model.
Oz supports declarative programming, object oriented programming, constraint program-
ming, and concurrency. Based upon Oz, Mozart supports multi-paradigm development.

Even though Mozart is not explicitly described as an agent-related technology, it has been
exploited by some agent-oriented works, listed in the “Other references” field above.

Logical perspective The Oz programming language combines the logic and functional
programming paradigms to support concurrent programming via logical constraint-based
inference. The Mozart language and runtime explicitly target search problems through con-
straint propagation, similarly to what most constraint logic programming (CLP) [200] solvers

7 http://www.di.unito.it/~alice/dynamicslogic/, last accessed in April 2020.
8 https://sicstus.sics.se, last accessed in April 2020.

123

http://person.dibris.unige.it/mascardi-viviana/Software/DCaseLP.html
http://mozart.github.io
http://www.di.unito.it/~alice/dynamicslogic/
https://sicstus.sics.se


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 13 of 67 1

do. In particular, such sorts of problems can be written in a very concise way in Mozart, letting
its syntax and declarative semantics abstract away the details of search.

Technological notes: Mozart is an actively-maintained project whose sources and releases are available on
GitHub, under the terms of an ad-hoc open source license (https://mozart2.org/license-info/license.html,
last accessed in April 2020). It consists of a native application, which supports all major operative systems
(i.e. MacOS, Linux, and Windows). We successfully attempted to install and run the Mozart compiler, as
well as testing how it works with some snippets of Oz code from the Mozart documentation.

GOAL (2000)

Primary references: [183]
Other references describing / exploiting the technology: [46,111,112,179–181,202,208]
URL: http://goalapl.atlassian.net/wiki/spaces/GOAL

MAS perspective GOAL (Goal-Oriented Agent Language) is an agent-oriented program-
ming language inspired by the UNITY concurrent language [69]. Like UNITY, a set of actions
which execute in parallel constitutes a program. However, unlike UNITY, which is based on
variables assignment, GOAL incorporates complex notions such as belief, goal, and agent
capabilities which operate on high-level information instead of simple values. GOAL agents
make decisions based on their beliefs and goals. However, unlike other agent programming
languages, GOAL focuses on providing a higher level of declarativeness to agents develop-
ers. GOAL agent goals describe what an agent wants to achieve, not how to achieve it—the
desire is deliberated via automated reasoning. GOAL supports intra-agent communication,
event processing (e.g., perceptions and messages), decision making, symbolic knowledge
manipulation exploiting common knowledge representation technologies such as Prolog and
OWL/SPARQL [210], in addition to reinforcement learning, and planning. It provides an
IDE fully integrated into Eclipse making common editor features available.

Logical perspective GOAL is based on the BDI logic. However, similarly to other agent
programming languages like Jason, GOAL mostly focuses on effective agent programming
supported by a sound semantics, rather than exploiting BDI logic for MAS formal analysis.
The syntax of the GOAL language is Prolog-inspired, therefore intrinsically logical. However,
similarly to AgentSpeak(L), a number of constructs are allowed by the GOAL language,
supporting goals, beliefs, rules, actions, and procedural knowledge.

Technological notes: GOAL is an actively-maintained project deeply intertwined with the Eclipse IDE.
Indeed, while the GOAL code base is private, its binaries are only available as part of a plug-in for the
Eclipse IDE. Apparently, there is no supported way to execute GOAL agents outside the IDE. The GOAL
plug-in for Eclipse is distributed under the terms of the GNU Public License. The plug-in comes with some
example projects we used for testing GOAL agents, after successfully installing its latest version on a fresh
Eclipse IDE setup. Our tests were successful, thus proving GOAL is a working technology.

JACK Intelligent Agents (2001)

Primary references: [192]
Other references describing / exploiting the technology: [111,180,246,353]
URL: http://www.agent-software.com.au/products/jack

MAS perspective JACK is a cross-platform environment developed by the AOS Group, an
Australian research oriented company, with the goal of bringing intelligent agents into the
industrial playground. It allows the developers to build, run, and integrate commercial-grade
multi-agent systems, where agents are inspired by BDI architecture and logics.

123

https://mozart2.org/license-info/license.html
http://goalapl.atlassian.net/wiki/spaces/GOAL
http://www.agent-software.com.au/products/jack


1 Page 14 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

A JACK MAS is implemented in an extended variant of Java. Extensions provide the
means for manipulating agents plans, events, beliefs, interactions, in addition to ordinary Java
computations. However, the most common way to implement a JACK agent goals and beliefs
is to rely on object-oriented technology. In this sense, multiple programming paradigms and
styles are fruitfully harmonised in JACK to create an industry-ready MAS technology.

Logical perspective JACK is inspired by BDI logics. Similarly to Jason and GOAL, how-
ever, the BDI architecture described by Rao [294] is used as a basis to design and implement
the JACK computational model. Indeed, in order to facilitate the work of developers—in
particular those with an AI background—JACK also supports logical variables and cursors.
These can be used to perform complex queries to an agent belief base. Accordingly, the
semantics of a JACK program has been described as “midway between the semantics of
logic programming (with the addition of type checking in Java style) and embedded SQL”
[192].

Technological notes: JACK is closed source, thus we were not able to inspect it from a technological point
of view.

Agent Factory Agent Programming Language (AFAPL, 2002).

Primary references: [87]
Other references describing / exploiting the technology: [44,46,180,232,257]
URL: http://sourceforge.net/projects/agentfactory/

MAS perspective AFAPL is another BDI agent programming language, aimed at design-
ing and developing intentional agents. Agent Factory is the tool implementing the AFAPL
language. The tool supports the many aspects of MAS developments, including distribution—
which is supported exploting the JADE platform. Among the peculiarities of AFAPL, the
notion of commitment is the most notable. Agent behaviour is dictated by the goals agents
commit to, therefore the developers plan the behaviour of the agents by declaring the condi-
tions for the adoption of the commitments in an explicit way.

Logical perspective AFAPL has been deliberately designed to support “heterogeneous
logic-based agent architectures with the goal of providing a common tool set that can be
adapted to different agent models, ranging from custom Java agents, through to reactive agent
architectures, and finally to high-level agent programming languages” [304]. However, for
what concerns agents execution semantics, AFAPL leverages on the BDI architecture as well.
In particular, its computational model is inspired to the AgentSpeak(L) one. AFAPL devel-
opers can exploit first-order logic expressions to represent both agent beliefs and behaviours.

Technological notes: The AFAPL technology consists of an unmaintained Java project not including license
information. A pre-compiled Java archive is available on the project home page. However, given the lack
of any documentation describing how to run the provided binary, we were not able to further asses the
technology.

DALI (2002)

Primary references: [97]
Other references describing / exploiting the technology: [36,98,99,101]
URL: http://github.com/AAAI-DISIM-UnivAQ/DALI

123

http://sourceforge.net/projects/agentfactory/
http://github.com/AAAI-DISIM-UnivAQ/DALI


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 15 of 67 1

MAS perspective DALI is an agent programming language based on the active logic pro-
gramming language [94] designed to make logical specifications of agents executable. A
DALI agent is composed by reactive rules to face the events that can occur in the environ-
ment, as well as proactive rules, aimed at allowing the agent to perform actions on its own
initiative. The reactive and proactive behaviour of a DALI agent is triggered by external or
internal events, which can refer to either the present or the past.

Logical perspective The DALI language is kept as close as possible to the syntax and
semantics of the plain Horn-clause language. DALI inference engine is based on an extended
form of resolution. The semantics of a DALI program is named “evolutionary semantics” and
is defined in terms of a modified program where reactive and proactive rules are reinterpreted
in terms of standard Horn Clause rules.

Technological notes: The DALI technology consists of a Prolog system for SICStus Prolog (no specific
version is indicated), and lays unmaintained on GitHub. It is distributed under the terms of the Apache
License. To assess DALI from a technological point of view, we downloaded an evaluation version of
SICStus Prolog. Despite the DALI sources can be successfully loaded in the SICStus engine, we were
unable to verify whether the technology actually works due to the lack of adequate information on how to
start the examples contained in the DALI code base.

eXAT (2003)

Primary references: [123]
Other references describing / exploiting the technology: [124]
URL: http://github.com/gleber/exat

MAS perspective The erlang eXperimental Agent Tool (eXAT) is another platform for agent
programming, providing high-level abstractions and libraries to support both behavioural and
intelligent aspects of an agent in a single platform. It is based on the Erlang9 programming
language, and provides programmers with a full-fledged framework supporting the design
of agent reasoning, behaviours, interaction through a single, coherent technological tool.
According to the authors, this is made possible by means of a set of modules strongly tied
together. Roughly speaking, modules include: an Erlang-based expert system engine, an
execution environment for agent behaviours based on object-oriented finite-state automata,
and a module for supporting FIPA-ACL-compliant message passing.

Logical perspective eXAT is based on the Erlang language, which combines logical and
functional paradigms, extending the syntax and the semantics of Prolog. Agent programs
can be expressed via Erlang functions that can have multiple clauses (like Prolog). These
features are used in eXAT to endow agents with automatic reasoning capabilities. For this
purpose, eXAT includes an Erlang-based rule production system—namely, ERESYE—aimed
at building agent-based expert systems. ERESYE enables the creation of multiple concurrent
rule production engines, each with its own facts, composing the mental state of an agent.
The platform can be also used to implement coordination among Erlang processes since each
engine can behave as a Linda tuple space [160].

Technological notes: eXAT is currently available on GitHub as an unmaintained Erlang project. Only
the source code of eXAT is available, since no pre-compiled binary is provided. It is distributed under the
terms of the GNU General Public License. We attempted compilation on a freshly-installed Erlang runtime,
exploiting the build automation configuration provided. However, the compilation was unsuccessful due
to a missing dependency.

9 http://www.erlang.org, last accessed in April 2020.

123

http://github.com/gleber/exat
http://www.erlang.org


1 Page 16 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

Go! (2004)

Primary references: [81]
Other references describing / exploiting the technology: [82,83]
URL: http://github.com/fgmccabe/go

MAS perspective Go! is a multi-paradigm language with a declarative subset of function
and relation definitions, an imperative subset that includes action procedure definitions and
program structuring mechanisms. Go! is strongly typed and multi-threaded. Threads in a
single Go! invocation can communicate either by thread-to-thread message communication
or by synchronised access/update of shared data, as dynamic relations. Threads in different
Go! invocations can only communicate by using messages.

Logical perspective Although Go! has many features in common with Prolog, some Prolog
features that limit readability—like “cut”—are absent from Go!. Instead, it supports higher
level programming constructs, like single solution calls, and if rules. Furthermore, functional
relationships can be defined through functions. Agents’ threads can also use shared dynamic
relations acting as Linda-style tuple spaces. The language is also suitable for representing
ontologies exploiting its integration of logic, functional and imperative programming.

Technological notes: Go! is available on GitHub, although it has not been maintained. It is distributed
under the terms of the GNU General Public License. It consists of an articulated project including sources
written in different programming languages, without any binary. However, due to the lack of information
on how to compile the code or how to start Go!, further evaluations could not be performed.

Event-B & the Rodin Platform (2004)

Primary references: [325]
Other references describing / exploiting the technology: [2,165]
URL: http://www.event-b.org

https://sourceforge.net/projects/rodin-b-sharp

MAS perspective Event-B is a formal method with tool support that enables a step-wise
development of reactive distributed systems. It specifically addresses the situated nature of
MAS. To ensure their correctness and structure their development, Event-B allows developers
to rigorously specify complex agent interactions and verify their correctness and safety via
formal reasoning. The Rodin tool is intended to support construction and verification of
Event-B models.

Logical perspective Event-B is centred around the notion of events (transitions). It is
based on first-order logic and a typed set-theory. The models described with Event-B are
built by means of two basic constructs: contexts and machines. Contexts contain the static
parts of a model whereas machines contain its dynamic parts. Rodin relies on the Event-B
method which proposes to use the basic mathematical language (first-order logic, elementary
set theory) for writing formal specifications. In particular Rodin exploits predicate logic to
formalise and develop transition—intended as events—in MAS.

Technological notes: The Rodin technology consists in a custom variant of the Eclipse IDE. Its source is
publicly available on SourceForge, as well as on some pre-compiled binaries, consisting of a self-contained
setup of the aforementioned Eclipse-based IDE. We were unable to find any license-related information.
We succeeded in installing and launching the pre-compiled IDE. However, due to the lack of availability
of examples and benchmarks, we were unable to further evaluate the technology.

123

http://github.com/fgmccabe/go
http://www.event-b.org
https://sourceforge.net/projects/rodin-b-sharp


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 17 of 67 1

DRAGO (2005)

Primary references: [312]
URL: http://drago.fbk.eu/index.html

MAS perspective The DRAGO (Distributed Reasoning Architecture for a Galaxy of
Ontologies) technology addresses the problem of reasoning with multiple ontologies inter-
connected by semantic mappings. The agent reasoning process results from a combination
of semantic mappings of local reasoning chunks performed in a single OWL ontology [33].

Logical perspective DRAGO exploits description logic (DL) [15] and semantic tuple
centres. The DRAGO technology is theoretically grounded on the formal framework of
the distributed description logics [47], which extends standard DL with semantic map-
pings, which can be seen as a bridge rule between different ontologies. This enables
the representation of multiple semantically connected ontologies in which the reasoning
procedure—according to the distributed contextual reasoning paradigm—is based on dis-
tributed tableau techniques, an extension of standard DL tableau.

Technological notes: The DRAGO technology consists of a number of unmaintained pre-compiled jars
available on the project home page. They target the JVM 5+ platform, and they are distributed with no
license information. We successfully tested DRAGO on newer versions of the JVM, and against the provided
example ontologies. Therefore, it can be considered as a working technology.

Jadex (2005)

Primary references: [288]
Other references describing / exploiting the technology: [111,180,246,248]
URL: http://www.activecomponents.org

https://github.com/actoron/jadex

MAS perspective Jadex is a software framework for the creation of goal oriented agents
following the BDI model. Its main goal is to build up a rational agent layer that sits on top of
the JADE infrastructure. Jadex enables the construction of intelligent agents leveraging on
sound software engineering foundations. Wherever applicable, object-oriented concepts and
technologies are exploited, supporting the description of beliefs, intentions, desires, and plans
both in Java and XML. Moreover, the Jadex reasoning engine tries to overcome traditional
limitations of BDI systems by introducing explicit goals.

Logical perspective Jadex reasoning engine is based on BDI logic, and combines it with
state-of-the-art software engineering techniques involving XML and Java. The initial state
of an agent is determined among other things by the beliefs, goals, and the library of known
plans. Jadex uses a declarative and a procedural approach to define the components of an
agent. Jadex does not enforce a logic-based representation of beliefs, even if it is a viable
option. Moreover, ordinary Java objects of any kind can be contained in agent belief bases,
allowing for instance developers to reuse classes generated by ontology modelling tools or
database mapping layers.

A more declarative way of accessing beliefs and belief sets is provided by queries, which
can be specified in an OQL-like language [66]. The beliefs are used as input for the reasoning
engine by specifying certain belief states, e.g. as preconditions for plans or creation conditions
for goals. The engine monitors the beliefs for relevant changes, and automatically adjusts
goals and plans accordingly.

123

http://drago.fbk.eu/index.html
http://www.activecomponents.org
https://github.com/actoron/jadex


1 Page 18 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

Technological notes: Jadex is an open source technology requiring JVM 8. It is available under the GNU
General Public License both on the project homepage and on GitHub. It is alive and actively developed, as
demonstrated by the intense activity on its official GitHub repository and by the many resources available
through its homepage. It is also available as a Maven artifact, along with all its dependencies; thus proving
its maturity as a JVM technology. While testing the last release of Jadex, we met some problems with the
build automation system provided. Apparently, some dependency is missing. Even though we might be
just a temporary problem, we did not test Jadex further.

JADL & JIAC Framework (2006)

Primary references: [211,240]
Other references describing / exploiting the technology: [46,147,239]
URL: http://www.jiac.de/agent-frameworks/jiac-v

MAS perspective JADL (JIAC Agent Description Language) is the core of an extensive
agent framework called JIAC, and has originally been proposed by Sesseler [313]. JIAC [239]
consists of a methodology supported by (i) a Java-based runtime environment, (ii) some tools
for creating agents, and (iii) some extensions which range from web-service-connectivity to
an OWL-to-JADL translator. A JIAC MAS consists of a number of platforms, each of which
has its own directory facilitator and agent management system. Each platform hosts different
agents which are specified via the JADL declarative language and consist of a set of ontologies,
rules, plan elements, and initial goal states. AgentBeans are Java classes containing methods
which can be called directly from within JADL, allowing agents to interact with the real
world. JADL provides constructs to describe plans as well as ontologies, FIPA-based speech
acts, a (procedural) scripting part for (complex) actions.

Logical perspective JIAC is a comprehensive agent framework including logic concepts
like ontology language, trinary propositional calculus, first-order logic, situation calculus,
reaction rules, and JADL as a logic-based agent programming language. JADL is based on
three-valued predicate logic, thereby providing an open world semantics. It comprises four
main elements: plan elements, rules, ontologies, and services. JADL makes it possible to use
the concept of uncertainty using a situation calculation that features a three valued logic.
The third truth value is added for predicates that cannot be evaluated, with the information
available to a particular agent. Thus, a predicate can be explicitly evaluated as unknown.
JADL makes it possible to define knowledge bases which most of the rest of the language
is based on. Every object that the language refers to needs to be defined in an ontology.
Differently from Jason, GOAL, 2APL, the planning mechanism supported by JADL is a first
principle planning, with no pre-compiled plan library.

Technological notes: JADL and JIAC sources and binaries are available through and ad-hoc Maven
repository reachable from the JIAC home page. The last version of the software has been released in 2018,
thus we consider the project is still maintained. The whole JIAC project requires the JVM 7+ platform and
it is distributed under the terms of the Apache License. It consists of a very mature Java project. Thanks
to the availability of several JADL examples and documentation resources, we succeeded in testing JIAC,
which can thus be considered as a working technology.

2APL (2008) & 3APL (1999)

Primary references: [108,182]
Other references describing / exploiting the technology: [109–111,130,180,298,360]
URL: http://apapl.sourceforge.net

http://www.cs.uu.nl/3apl

123

http://www.jiac.de/agent-frameworks/jiac-v
http://apapl.sourceforge.net
http://www.cs.uu.nl/3apl


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 19 of 67 1

MAS perspective The 3APL language provides programming constructs to implement
individual agents directly in terms of beliefs, goals, plans, actions, and practical reasoning
rules. Beliefs, plans, rules for revising plans and declarative goals are the basic building
blocks of 3APL agents. Declarative goals describe the state an agent wants to reach and can
be used to program pro-active behaviour. Plans form the procedural part of an agent and can
be executed by the agent in order to achieve its goals. Rules enable the generation of plans
on the basis of goals (and beliefs).

2APL (A Practical Agent Programming Language) is a BDI-based agent-oriented pro-
gramming languages that extends 3APL by Hindriks et al. [182]. It integrates declarative
beliefs and goals with events and plans, and provides practical programming constructs to
enable the generation, repair, and execution of plans based on beliefs, goals, and events. The
operational semantics is given via transitions between configurations. The configuration of
an individual agent consists of its beliefs, goals, events, plans, and practical reasoning rules,
while the configuration of a MAS consists of the configurations of the individual agents, the
state of the external shared environments, and the agents’ access relation to environment.
2APL is equipped with an execution platform and an Eclipse plug-in editor. The platform
provides a graphical interface where a user can load, execute, and debug 2APL multi-agent
programs using different execution modes and several debugging/observation tools. The plat-
form can be used in the stand-alone mode or in distributed mode using JADE. The adoption of
JADE allows a multi-agent program to be run on different machines connected in a network.

Logical perspective 3APL is a multi-agent programming language that presents a mixture
of logic programming and rule based systems. The main components of a 3APL agent can
be expressed in a declarative way Belief and goal query expressions are either the atomic
formulae or a well-formed formulae constructed from atoms and logical connectors.

Conversely, the BDI-oriented multi-agent programming language 2APL enables the
implementation of an agent’s beliefs in terms of logical facts and rules. 2APL, as other
logic-based agent programming languages, is based on a combination of imperative pro-
gramming with logic-based knowledge bases. Goals in 2APL are logical formulae that the
agents exploit in the execution of a plan, via logical entailment.

Technological notes: Both 3APL and 2APL technologies are still available on their respective homepages,
although not maintained any more. In both cases the source code is not available, and we could not find any
license-related information, although we were able to access some pre-compiled binaries. They consist of
some executable jars targetting JVM 6+. Thanks to the availability of both examples and documentation,
we were able to test the 2APL technology that still works on JVM 6, 7, and 8. The same is not true for
3APL, for which we encountered runtime errors on all version of the JVM ranging from 6 to 13.

jDALMAS (2009)

Primary references: [185]
Other references describing / exploiting the technology: [184]
URL: http://sourceforge.net/projects/jdalmas

MAS perspective jDALMAS is a general-level Prolog implementation of the abstract
DALMAS—Deontic Action-Logic Multi-Agent System—architecture by Hjelmblom and
Odelstad [185]. The jDALMAS technology enables the specification of agents’ possible
actions in specific states. There, an action is permissible if it is not prohibited by the DAL-
MAS normative system. In the deliberation phase, when an agent needs to choose the next
action, DALMAS allows it to select an act out of a set of feasible acts. This may lead to a
new state, depending on the state of the system when the act is performed. Thus, the choice

123

http://sourceforge.net/projects/jdalmas


1 Page 20 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

of act is determined by the combination of the DALMAS preference structure and its deontic
structure.

Logical perspective The technology represents the implementation of the DALMAS
abstract architecture. The DALMAS architecture is regulated by a normative system con-
sisting of norms, which are expressed in an algebraic notation based on the Kanger–Lindahl
theory of normative positions [233]. The Kanger–Lindahl theory is based on Kanger’s deon-
tic action-logic [205], as a mix of action logic in terms of action operator do and deontic
logic in terms of shall or may.

Technological notes: The jDALMAS technology lays unmaintained on the project home page. Only an
articulated Java code base is provided, with no clear information describing the license of the software or
how to compile and use it. For this reason, we made no further assessments.

RASP (2010)

Primary references: [100]
Other references describing / exploiting the technology: [95,96,130]
URL: http://www.dmi.unipg.it/formis/raspberry

MAS perspective RASP (Resourced Answer Set Programming) extends Answer Set Pro-
gramming (ASP, by Lifschitz [231]) by supporting declarative reasoning on production
and consumption of resources. Although RASP is not, strictly speaking, an agent-oriented
paradigm, Costantini and Formisano [96] exploit it to extend (logic) agents reasoning capa-
bilities in a resource-oriented scenario.

Logical perspective RASP combines answer set semantics with quantitative reasoning and
with various forms of preferences and conditional preferences on resource usage. Raspberry
[100] is a prototypical implementation of a translator from ground RASP to ASP: it leaves
unchanged the ASP portion of the input program and translates RASP-rules (those involving
atoms specifying amounts of resources) into suitable ASP fragments.

Technological notes: The Raspberry technology is still available, even though not maintained, on the
project home page. Only binaries are available, requiring the Linux platform, and no license information
is provided. We tested Raspberry based on the examples provided: the technology still works perfectly. It
is worth to be mentioned that the ASP (https://potassco.org/clingo, last accessed in April 2020) sources
generated Raspberry require an ASP solver to be executed. To this purpose, we exploited Clingo.

TeleoR (2015)

Primary references: [84]
Other references describing / exploiting the technology: [80,257,269]
URL: http://staff.itee.uq.edu.au/pjr/HomePages/QulogHome.html

MAS perspective TeleoR extends the Teleo-Reactive (TR) rule based robotic agent
programming language by Nilsson [269]. In both TR and TeleoR programs consist of Guard–
Action rules grouped into parametrised procedures. The Guard is a deductive query to a set
of percept facts generated from sensors. Actions may be primitive robotic actions, single call
to a program procedure, which can be a recursive call, or an update to the belief store. TeleoR
also supports reactive task and sub-task behaviours of robotic agents, besides wait/repeat
re-start of failed actions, and support for agents multi-tasking.

123

http://www.dmi.unipg.it/formis/raspberry
https://potassco.org/clingo
http://staff.itee.uq.edu.au/pjr/HomePages/QulogHome.html


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 21 of 67 1

Logical perspective The TeleoR declarative programming language exploits logical rules
for information representation. In particular, each TR node represents both percepts and
beliefs through logical facts and rules. Furthermore, TeleoR is based on the Qu-Prolog sys-
tem10 logic/functional programming language, which extends Prolog with a flexible type
system supporting higher-order functional terms and functions. These are exploited in TeleoR
for belief storage, inference, and deliberation.

Technological notes: The TeleoR technology is available as part of the QuLog system on the project home-
page. Only the source code is distributed and actively maintained, even if license information is missing.
The provided code requires the Qu-Prolog system, for which pre-compiled binaries are not available. Our
attempts to compile Qu-Prolog were unsuccessful, so we did not evaluate TeleoR further.

ASTRA (2015)

Primary references: [88]
Other references describing / exploiting the technology: [139,299]
URL: http://astralanguage.com

http://github.com/remcollier/astra

MAS perspective Similarly to Jason, ASTRA allows developers to define agent plans in a
declarative way; yet, unlike Jason, it offers a tighter integration with the Java language and
runtime. Java objects and types can in fact directly be used within ASTRA scripts.

Logical perspective ASTRA exploits BDI logic. ASTRA is an implementation of the
AgentSpeak(TR) language (not to be confused with AgentSpeak(ER) presented in the sequel),
that is, a logic-based agent programming language combining AgentSpeak(L) with teleo-
reactive functions designed and implemented by the ASTRA’s developers.

Technological notes: The ASTRA technology essentially consists of a plug-in for the Eclipse IDE. Even if
the Java source code of ASTRA can be found unmaintained on GitHub, we were able to install the ASTRA
plug-in on a fresh new Eclipse setup. Links for installation are available on the ASTRA homepage. We
successfully tested ASTRA against the code snippets available on the project official documentation.

AgentSpeak(ER) & Jason-ER (2019)

Primary references: [299]
Other references describing / exploiting the technology: [45,88]
URL: http://github.com/agentspeakers/jason-er

MAS perspective AgentSpeak(ER) is an extension of AgentSpeak(L) featuring plan
encapsulation, i.e. the possibility to define plans that fully encapsulate the strategy to
achieve the corresponding goals, integrating both the proactive and the reactive behaviour.
AgentSpeak(ER) agents expose “g-plans” that can be repeatedly re-executed until a given
goal-condition about the beliefs of some agent is met. AgentSpeak(ER) comes with two pro-
totype implementations, one based on ASTRA by Collier et al. [88] and the other one based
on Jason. Jason-ER11 provides the syntactical and semantic extensions needed by Jason to
support AgentSpeak(ER).

Logical perspective The logical perspective is similar to the Jason one with some enhance-
ments. The Jason-ER extension turns out to bring some benefits to agent programming based

10 http://staff.itee.uq.edu.au/pjr/HomePages/QuPrologHome.html, last accessed in April 2020.
11 https://github.com/agentspeakers/jason-er, last accessed in April 2020.

123

http://astralanguage.com
http://github.com/remcollier/astra
http://github.com/agentspeakers/jason-er
http://staff.itee.uq.edu.au/pjr/HomePages/QuPrologHome.html
https://github.com/agentspeakers/jason-er


1 Page 22 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

on the BDI logic, namely: (i) improving the readability of the agent code, reducing fragmen-
tation and increasing modularity; (ii) promoting a cleaner goal-oriented programming style
by enforcing encapsulation of reactive plans within goal plans while still permitting purely
reactive behaviour; (iii) improving intention management, enforcing a one-to-one relation
between intentions and goals—so every intention is related to a single (top-level) goal.

Technological notes: We were able to find only the Jason-ER implementation, as a fork of the afore-
mentioned Jason code base. As such, it consists of a Java-based project licensed through the GNU Lesser
General Public License and targetting JVM 8+. Despite the many examples inherited from Jason code base,
only one has been added in Jason-ER to exemplify the novel “g-plans” feature—and that we successfully
tested.

3.1.2 Agent reliability & verification

MCAPL (2012), Gwendolen & AIL

Primary references: [120]
Other references describing / exploiting the technology: [118–121]
URL: http://mcapl.sourceforge.net/

MAS perspective Designed by Dennis et al. [120], the Model Checking Agent Pro-
gramming Language (MCAPL) consists of tools for prototyping BDI agent programming
languages and for model checking programs written in such languages via an interface to the
Java Path Finder model checker (JPF, [170]). MCAPL consists of (i) the Agent Infrastructure
Layer (AIL), which provides a common abstract base for the creation of concrete interpreters
for BDI agent programming languages like Gwendolen by Dennis and Farwer [119], and (ii)
Agent JPF (AJPF), an extended version of JPF, with a property specification language appro-
priate for model-checking any AIL-based MAS. An extension to AJPF to generate models
also suitable for non-agent model-checkers was developed by Dennis et al. [121].

Although nothing prevents MCAPL from being used in a real MAS context, its most
widespread usage is for model checking properties of individual BDI-style agents; for this
reason, it is presented in this section rather than in Sect. 3.2.3.

Logical perspective The MCAPL interface allows a user to specify simple properties in a
temporal and modal logic and then check that these properties hold using the JPF. Formulas
in the MCAPL property specification language have an LTL (Linear Temporal Logic)-based
[287] semantics defined by the MCAPL interface.

Technological notes: The MCAPL technology lays unmaintained on a SourceForge repository, which is
accessible from the project homepage. Both the Java source code and the corresponding pre-compiled jars
are provided, along with the GNU General Public License, and a number of MAS examples based on
AIL. The AIL examples can be run directly or model-checked via MCAPL. We only succeeded in the first
activity, since MCAPL fails to load the JPF dependency provided, because it is apparently too old to work
with modern versions of JVM.

3.2 Society

Society plays a central role in MAS technologies, since it represents the ensemble where the
collective behaviours of the MAS are coordinated towards the achievement of the overall
system goals. Along this line, coordination models glue agents together by governing agent
interaction in a MAS, and pave the way towards social intelligence. The selected technologies

123

http://mcapl.sourceforge.net/


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 23 of 67 1

in the “Organisational reasoning & coordination” sub-category are ALIAS, 2CL, TuCSoN,
ReSpecT, and AORTA.

Within an agent society, agents can enter into argumentation processes to reach agreements
and dynamically adapt to changes. Dispute and conflict need to be managed in order to achieve
a common agreement and to establish the winner argument in case of conflicts. Many tech-
nologies exist for solving reasoning tasks on the abstract argumentation frameworks by Dung
[129]; problems of this kind are intractable and this calls for efficient algorithms and solvers:
the International Competition on Computational Models of Argumentation (ICCMA), whose
fourth edition will be run in 2021,12 provides a forum for empirical comparison of solvers.
Most solvers are based on logic-based programming or logical frameworks including ASP
and SAT-solvers, as discussed by Gaggl et al. [156]. The literature on argumentation solvers
overlaps to some extent that on agent- and logic-based technologies for argumentation: under
the “Argumentation” sub-category, the SLR only includes those argumentation frameworks
that are explicitly tagged as agent-based and that can be considered the founders of a given
logical model: DeLP, Aspartix, ASPIC+, Dung-o-Matic, TOAST, and SPINdle.

Finally, MAS should be verifiable, also under the social perspective, i.e. in terms of
verification of interaction and communication protocols. The “MAS reliability & verification”
sub-category thus includes MCK, SALMA, SCIFF, MCMAS, and Trace Expressions.

3.2.1 Organisational reasoning & coordination

ALIAS (1999)

Primary references: [76]
Other references describing / exploiting the technology: [75,77]
URL: http://lia.disi.unibo.it/research/ALIAS

MAS perspective The ALIAS architecture introduces abduction in a logic multi-agent
environment. It implements a distributed protocol to coordinate the reasoning of all the
abductive agents in the system. The global knowledge is represented by a set of abducted
hypotheses stored on a Linda-like tuple space—that is, a mechanism to coordinate agent
reasoning.

Logical perspective ALIAS is built on top of abductive logic programming [204]. In
ALIAS, agents are equipped with hypothetical reasoning capabilities, obtained by means
of abduction. The union of their knowledge bases ends up to generate a global knowledge
base, which can change in a dynamic fashion, as a consequence of agent movements, and
which is maintained coherent as it would be if it was owned by a single entity.

Technological notes: The ALIAS technology lays unmaintained on the project homepage. The last version
(v. 3), is distributed with no license-related information. It leverages on a JVM-base Prolog interpreter—
namely, Jinni [332]—that is not available any more. Thus, we were not able to assess the technology any
further.

TuCSoN (1999) & ReSpecT (2001)

Primary references: [275,276]
Other references describing / exploiting the technology: [64,264,264,265,265,278,279]
URL: http://tucson.unibo.it

http://respect.apice.unibo.it

12 http://argumentationcompetition.org, last accessed in April 2020.

123

http://lia.disi.unibo.it/research/ALIAS
http://tucson.unibo.it
http://respect.apice.unibo.it
http://argumentationcompetition.org


1 Page 24 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

MAS perspective TuCSoN is a standard middleware technology based on Java, and on
tuProlog [122] engine—that is, a first-order logic technology. Thanks to TuCSoN, both
Java and Prolog agents—possibly distributed over the network—can interact via logic tuple
centres. The tuple centre model by Omicini and Denti [275] is the core of the TuCSoN coor-
dination infrastructure. Tuple centres are essentially Linda tuple spaces containing logic

tuples, observable through logic templates. However, tuple centres are not mere containers
of tuples. They can be programmed by agents through the ReSpecT language ReSpecT is in
fact a logic-based coordination language aimed at providing for social intelligence in MAS.

TuCSoN supports multiple ReSpecT tuple centres, which can be spatially distributed and
connected via linkability [278]. Accordingly, tuple centres can be locally deployed within a
physically-distributed environment as discussed by Casadei and Omicini [64], with a possibly
huge number of spatial containers and physical devices. Furthermore, tuple centres embody
the laws for local coordination, ruling the social behaviour of the agents interacting through
them.

It is worth to be mentioned that the current version of TuCSoN is the result of many years
of active development by many different people pursuing different goals—as demonstrated
by the multiple variants of TuCSoN and ReSpecT described in this section. Thus, as discussed
in Ciatto et al. [79], the TuSoW project [78] can be considered a notable rebooting attempt
for TuCSoN, focusing on supporting modern mainstream technologies and platforms.

Logical perspective TuCSoN coordination media are tuple centres based on Prolog. The
logical feature of TuCSoN tuple centres makes it possible to spread intelligence through the
system where needed, for example by exploiting cognitive agents. Coordination media in
TuCSoN and ReSpecT (and, in particular, situated ReSpecT) are logic-based tuple centres
powered by tuProlog. They can be adopted both for the communication language (logic
tuples), and for the behaviour specification language (ReSpecT). Basically, reactions and
resources in ReSpecT are defined as Prolog-like rules.

Technological notes: TuCSoN and ReSpecT are part of the same technology. Both their source code and pre-
compiled jars are available on the TuCSoNGitHub page (https://github.com/TuCSoN-Coord/TuCSoN, last
accessed in April 2020), reachable from the projects home pages. They consist of a Java project requiring
JVM 8+, and they are distributed under the terms of the GNU Lesser Public License. We successfully
tested TuCSoN and ReSpecT against the provided examples.

2CL (2010)

Primary references: [26]
Other references describing / exploiting the technology: [22,24]
URL: http://www.di.unito.it/~alice/2CL

MAS perspective 2CL is at the same time a methodology for the design of protocols and
a toolkit enabling their engineering. Interactions among agents are represented in 2CL by
exploiting commitment-based interaction protocols [148], which normally consist of sets of
actions with a shared meaning. From the point of view of an agent, the meaning of an action is
completed by the context in which it is used. In other words, the context shapes the behaviour
of the agent in that the agent decides which actions to take depending on it.

Usually, commitment-based protocols take into account constitutive rules and not regula-
tive ones. 2CL is indeed based on the notion of behaviour-oriented commitment protocols,
which account both for the constitutive and the regulative specifications and that explicitly

123

https://github.com/TuCSoN-Coord/TuCSoN
http://www.di.unito.it/~alice/2CL


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 25 of 67 1

foresee a representation of the latter based on constraints among commitments. In particular,
the language 2CL makes it possible to write these regulative specifications.

Logical perspective From the theoretical perspective, the 2CL tool is an extension of the
enhanced commitment machine by Winikoff et al. [354], which allows all the possible exe-
cutions of a business protocol to be explored, showing all the violations. Its implementation
is done in tuProlog, and the software interprets a 2CL business protocol specification by
means of a parser written in Java.

Technological notes: The 2CL technology lays unmaintained on the project home page. It consists of an
archive containing pre-compiled jars requiring the JVM 7+ platform, no license information is provided.
We successfully tested the 2CL technology against the available examples, and on newer versions of the
JVM as well.
It is worth to be mentioned, however, that 2CL is the only commitment-based model—among the many
related works we encountered in the early phases of this survey, like, e.g., the work from Chopra and Singh
[74]—which also includes some runnable technology available to date.

AORTA (2014)

Primary references: [201]
Other references describing / exploiting the technology: [222]
URL: http://www2.compute.dtu.dk/~ascje/AORTA

https://github.com/andreasschmidtjensen/aorta

MAS perspective AORTA (Adding Organisational Reasoning to Agents) provides organ-
isational reasoning capabilities to agents implemented in existing agent programming
languages—like, for instance, Jason. AORTA assumes a pre-existing organisation, is indepen-
dent from the agent, and focuses on reasoning rules that specify how the agent reasons about
the specification. The organisation is separated from the agent, meaning that the architecture
of the agent is independent from the organisational model.

Logical perspective AORTA makes use of tuProlog, so the contents of the agent’s knowl-
edge bases can be translated into Java objects supported by tuProlog. Logic programming
and object oriented paradigms are exploited in a synergic integration. AORTA has been
implemented on the top of Jason.

Technological notes: The AORTA technology consists of an unmaintained Java project available on GitHub.
The repository also includes some pre-compiled jars and some examples, but it carries no license informa-
tion. The provided jars require the JVM 7+ platform, and they have been successfully tested against the
provided examples.

3.2.2 Argumentation

DeLP (2004)

Primary references: [158]
Other references describing / exploiting the technology: [333]
URL: http://tweetyproject.org/w/delp/index.html

http://lidia.cs.uns.edu.ar/DeLP

123

http://www2.compute.dtu.dk/~ascje/AORTA
https://github.com/andreasschmidtjensen/aorta
http://tweetyproject.org/w/delp/index.html
http://lidia.cs.uns.edu.ar/DeLP


1 Page 26 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

MAS perspective Defeasible Logic Programming (DeLP) combines results of logic pro-
gramming and defeasible argumentation. In particular DeLP is based on the “pure” defeasible
model introduced by Nute [272]. The ability to draw tentative conclusions and retract them
based on further evidence—which characterises non-monotonic and defeasible logic—is also
a relevant feature for agents which deal with uncertainty. DeLP provides the possibility of
representing information in the form of weak rules in a declarative manner, and a defeasible
argumentation inference mechanism for warranting the entailed conclusions. To solve con-
flicts, DeLP lets agents perform a dialectical process in which all arguments in favour and
against a conclusion are considered, and arguments regarded as ultimately undefeated are
considered warranted.

Logical perspective All the technologies for argumentation are based on deontic and defea-
sible logic. DeLP is based on logic programming: it can be considered as a logic-based
approach to structured argumentation.

Technological notes: The DeLP technology is currently part of the Tweety Project (http://tweetyproject.
org, last accessed in April 2020) – that is, “a collection of various Java libraries that implement approaches
to different areas of artificial intelligence”—, and it consists of a publicly available web service intended
for in-browser usage. Technically, DeLP is a technology requiring JVM 12+ whose source and compiled
code is distributed through Maven Central, under the terms of the GNU Lesser General Public License.
However, the DeLP service is currently offline and we were not able to run another instance locally due to
some implementation issues. For this reason, we did not evaluate DeLP further.

Aspartix (2008)

Primary references: [131]
Other references describing / exploiting the technology: [39,347]
URL: http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage

MAS perspective Aspartix is an agent argumentation framework that formalise statements
together with a relation denoting rebuttals between them. Its semantics gives an abstract
handle to solve the inherent conflicts between statements by selecting admissible subsets
of them. Argumentation frameworks can support the decision making of an agent within a
modular architecture for agents.

Logical perspective Aspartix is an ASP-based approach to find the justified arguments of
an argumentation framework with respect to different acceptable extensions for a broad range
of formalisations of Dung’s argumentation framework. It relies on a fixed disjunctive datalog
[1] program which takes an instance of an argumentation framework as input, and uses an
answer-set solver for computing the type of extension specified by the user.

Technological notes:

The Aspartix technology is available as a Web Service, through the project home page, even if no source
code is provided. The software is distributed under the terms of the MIT License. Even if we cannot estimate
the maintenance level of the project, we are able to state the Web Service has been lastly updated in 2018.
As a Web Service, Aspartix can be virtually used on any platform. Finally, the Aspartix Web Service comes
with some predefined argumentation framework examples, which we successfully tested.

123

http://tweetyproject.org
http://tweetyproject.org
http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 27 of 67 1

ASPIC+ & Dung-o-Matic (2008) & TOAST (2012)

Primary references: [348]
Other references describing / exploiting the technology: [39,40]
URL: http://tweetyproject.org/downloads/index.html

http://toast.arg.tech
http://www.arg-tech.org/index.php/projects/dung-o-matic

MAS perspective The ASPIC+ argumentation framework by Prakken [293] provides struc-
ture to agent arguments, while still allowing an abstract framework to be derived and,
ultimately, evaluated using established acceptability semantics. The corresponding technol-
ogy allow agents to resolve their conflicting arguments through a semantics of their choice,
other than specifying priorities or assumption over the rules they leverage upon for reasoning.

Logical perspective ASPIC+ can be considered as the most common structured argumen-
tation approach to Dung’s abstract argumentation. Dung-O-Matic is an engine implemented
in Java that reflects the ASPIC+ framework. TOAST is a web service easing the exploitation
of ASPIC+, based on Dung-O-Matic. It allows a structured argumentation system to be pro-
cessed into arguments and attacks from which a Dung-style framework can be derived and
evaluated.

Technological notes: While the ASPIC+ technology is available as part of the Tweety Project—and, as
such, it targets the JVM 12+ platform, and its source and compiled code is available on Maven Central,
under the terms of the GNU Lesser General Public License—, the TOAST technology is currently up and
running a Web Service—thus targetting virtually all platforms, even if no source code or license information
are provided. Conversely, we were not able retrieve any source or compiled code relative to Dung-O-Matic.
We successfully tested TOAST against the examples provided in the user guide. Similarly, we successfully
tested ASPIC+ through the Java examples provided as part of the Tweety Project.

SPINdle (2009)

Primary references: [220]
Other references describing / exploiting the technology: [12,335]
URL: https://sourceforge.net/projects/spindlereasoner

http://spindle.data61.csiro.au/spindle/documentation.html

MAS perspective SPINdle is an open-source Java-based defeasible logic reasoner capable
to perform efficient and scalable reasoning on defeasible logic theories. These technologies
tackle the way the Semantic Web affects knowledge and information interchange among
intelligent agents in multi-agent systems, as well as reasoning interoperability. SPINdle can be
used as a standalone theory prover and can be embedded into any applications as a defeasible
logic rule engine. It allows agents to issues queries, on a given knowledge base or a theory
generated on the fly by other applications, and automatically produces the conclusions of its
consequences. The theory can also be represented using XML, for agent communication.

Logical perspective SPINdle is based on the “pure” defeasible model introduced by Nute
[272]. Defeasible knowledge can be expressed and conflicts can be solved according to
standard defeasible logic [271]. The theory can also be represented using RuleML,13 an
XML-based standard language that enables users to use different types of rules (such as

13 http://ruleml.org/index.html, last accessed in April 2020.

123

http://tweetyproject.org/downloads/index.html
http://toast.arg.tech
http://www.arg-tech.org/index.php/projects/dung-o-matic
https://sourceforge.net/projects/spindlereasoner
http://spindle.data61.csiro.au/spindle/documentation.html
http://ruleml.org/index.html


1 Page 28 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

derivation rules, facts, queries, integrity constraints) to represent different kinds of elements
according to their needs.

Technological notes: The SPINdle technology consists of a Java project currently hosted on SourceForge.
Both the source code and the pre-compiled binaries are available, targetting the JVM 7+ platform, even if
the project is unmaintained since 2017. SPINdle is distributed under the terms of the GNU General Public
License. We successfully tested SPINdle against the .dlf files provided as part of the pre-compiled
binaries.

3.2.3 MAS reliability & verification

MCK (2004)

Primary references: [157]
Other references describing / exploiting the technology: [268]
URL: http://cgi.cse.unsw.edu.au/~mck/pmck

http://cgi.cse.unsw.edu.au/~mck/mckform/

MAS perspective MCK is a model checker for the logic of knowledge: it supports several
different ways of defining knowledge given a description of a MAS and the observations made
by the agents. It automates the MAS formal analysis focusing on how the states of information
of agents change over time. MCK can automatically verify whether a specifications expressed
in a formal logic of knowledge, probability and time holds in such a system.

Logical perspective MCK allows verification of temporal-epistemic logics using various
Ordered Binary Decision Diagram (OBDD, [54]) and SAT based techniques [203]. The
MCK input is a system design (represented as a program) and a question (encoded in a
formal language that can express properties concerning time, probability and knowledge).
MCK supports several different semantics for the agent epistemic state, depending on whether
an agent determines what it knows from just its current observation, its current observation
plus the current time, or its history of observations (interpreted either synchronously or
asynchronously). The temporal dimension is supported by both linear and branching time
temporal expressiveness.

Technological notes: The MCK technology is only available as a web service accessible from the project
home page. No source or binary code is provided, nor any license information. We were not able to estimate
the date of the last update to the Web Service. However, we successfully tested the MCK technology against
the examples provided on the Web Service web page.

MCMAS (2006)

Primary references: [236]
Other references describing / exploiting the technology: [68,133,235,237,285]
URL: http://vas.doc.ic.ac.uk/software/mcmas

MAS perspective MCMAS is a model checker for MAS specified through various
agent-based logics. The symbolic representation of state spaces and the algorithms for the
computation of epistemic operators encoding private and group knowledge and Alternating-
time Temporal Logic (ATL, [8]) exploit Ordered Binary Decision Diagrams (OBDDs). Model

123

http://cgi.cse.unsw.edu.au/~mck/pmck
http://cgi.cse.unsw.edu.au/~mck/mckform/
http://vas.doc.ic.ac.uk/software/mcmas


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 29 of 67 1

checking of basic fairness conditions are supported, as well as the generation of counterex-
amples and witness executions. MCMAS can be used from a shell or via a graphical interface
based on Eclipse.14

Logical perspective MCMAS model checker includes temporal operators, too. MCMAS
supports a rich set of specifications, including Computation Tree Logic (CTL, [85]) operators,
epistemic operators, ATL, and notions pertaining to correct behaviour.

Technological notes: The MCMAS technology is available through the project home page, after providing
personal information. Both the source code and pre-compiled binaries are available, even if they are
distributed with no license information. The code base consists of C++ sources targeting the Linux platform.
We were able to successfully test MCMAS against some system descriptions examples contained into the
MCMAS manual.

SCIFF (2005)

Primary references: [3]
Other references describing / exploiting the technology: [4,9,55,72,73,147,338,341]
URL: http://lia.deis.unibo.it/research/sciff

MAS perspective SCIFF is a model-checker mainly used to verify the compliance of
agents to interaction protocols. SCIFF offers variables (e.g., to model time) and constraints
on variables occurring in hypotheses and expectations; social goals, defined as predicates,
can express the social aim or outcome of some agent interaction, or can be used to start
an abductive derivation in the more classical tradition of abductive logic programming. The
ability to generate positive and negative expectations, beside making hypotheses, and the
concepts of fulfilment and violation of expectations are the core ingredients of dynamic
checking of protocol compliance.

Logical perspective SCIFF is based on abductive logic programming. It is an abductive
proof procedure mainly used to verify the compliance of agents to interaction protocols. In
order to allow such application, SCIFF extends IFF by Fung and Kowalski [154].

Technological notes: The SCIFF technology currently lays unmaintained on the project home page. It
consists of a number of unlicensed Prolog sources targeting either SICStus- or SWI-Prolog. We succeeded
in loading the SCIFF Prolog modules on a freshly installed SWI-Prolog system, but we did not perform
any further assessment due to the lack of available examples.

SALMA (2014)

Primary references: [217]
Other references describing / exploiting the technology: [218]
URL: http://www.salmatoolkit.org

https://github.com/salmatoolkit/salma

MAS perspective SALMA (Simulation and Analysis of Logic-based Multi-Agent models)
is a simulation and statistical model checking tool for MAS. The simulated system can be
specified exploiting logical axioms based upon the Golog situation calculus. The framework
for MAS modelling and verification makes it possible to reason about the interaction of
agents with each other and with their (physical) environment.

14 A tool variant, MCMAS-SLK, can be downloaded at http://swmath.org/software/24778, last accessed in
April 2020.

123

http://lia.deis.unibo.it/research/sciff
http://www.salmatoolkit.org
https://github.com/salmatoolkit/salma
http://swmath.org/software/24778


1 Page 30 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

Logical perspective SALMA extends the classical situation calculus and linear temporal
logic so as to address the specific requirements of multi-agent simulation models, in order to
simulate and (statistically) model-check them. The system model exploits a first-order logic
structure, the simulation is coupled with a statistical model-checker that uses a first-order
variant of time-bounded linear temporal logic for describing properties.

Technological notes: The SALMA technology can be currently found unmaintained on GitHub. It con-
sists of an unlicensed project requiring the Python 3 platform. No ready-to-use package is provided, and
SALMA requires a number of dependencies to be executed. We were not able to retrieve all the necessary
dependencies. Therefore, we did not evaluate SALMA further.

Trace Expressions (2016)

Primary references: [10]
Other references describing / exploiting the technology: [9,11,52,140]
URL: http://rmlatdibris.github.io

https://github.com/RMLatDIBRIS/compiler

MAS perspective Trace Expressions, named Global Types in the original paper by Ancona
et al. [9], are a compact and expressive formalism for modelling “expected behaviours of
the system” based on a set of operators to denote finite and infinite traces of events. They
have been used to model and verify, among the others, MAS, distributed systems, and data
types. RML [149] is a rewriting-based and system agnostic Domain Specific Language for
Runtime Verification which decouples monitoring from instrumentation by allowing users
to write specifications and to synthesise monitors from them, independently of the system
under scrutiny. RML compiles down to Trace Expressions.

Logical perspective The Trace Expressions runtime verification engine is developed in
SWI-Prolog, and takes advantage of its native support for cyclic terms and coinductive logic
programming by Simon et al. [320].

Technological notes: The RML technology is an actively maintained Java based project currently hosted
on GitHub. The source code requires the JVM 8+ platform and it is distributed under the terms of the
Apache License. Despite no pre-compiled binary is available, the project includes a build automation tool
which eases compilation and usage. We successfully tested RML against the example files contained into
the project repository.

3.3 Environment

When direct interaction and explicit communication do not fit the needs and constraints
for agent interaction, mediated interaction and environment-based coordination may come
into play. The difference between works on coordination and interaction classified under
the “Society” perspective and works listed in this section, is that in the latter coordina-
tion/interaction artefacts are meant as runtime abstractions encapsulating and providing
coordination/interaction services. Those services can be exploited as the basic building blocks
for designing and developing suitable working environments for heterogeneous MAS, sup-
porting MAS coordination for collaboration or competition.

When agents are immersed in a knowledge-intensive environment (KIE), the cognition
process goes beyond that of the individual agent, and distributed cognition processes may take
place, promoting the idea of intelligent environment [187]. Thus, the environment concept is

123

http://rmlatdibris.github.io
https://github.com/RMLatDIBRIS/compiler


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 31 of 67 1

extended, and it is not just limited to situated action—which motivates the classification of
Semantic Web works in the environment abstraction.

Moving from Hendler [174], the “Agents in the Semantic Web” sub-category lists
Onto2JaCaMo, AgentOWL, and EMERALD, which exploit semantic web technologies to
interoperate. Another technology in the “Environment” category is situated ReSpecT, a tech-
nologies for “Situated Interaction & Coordination”. It emphasises the situated component of
interaction, thus related to the environment. Inbetween the two categories lays LPaaS (Logic
Programming as a Service), a framework that supports the distribution of logic knowledge in
the environment, and where artefacts can actively participate in the agent cognitive process.
In LPaaS, in fact, artefacts play a supporting role in terms of knowledge repositories (in the
form of environment structure and properties) and embed the reasoning process enabled and
constrained by the knowledge they embody.

3.3.1 Agents in the semantic web

AgentOWL (2006)

Primary references: [186]
URL: http://agentowl.sourceforge.net

MAS perspective AgentOWL supports RDF/OWL ontology models in JADE MAS. It uses
Jena15 for ontology model manipulation and allows to model the agent knowledge using OWL
and to exchange messages with OWL and SPARQL as content language. Ontologies are mod-
elled with Protégé16 following the CommonKADS knowledge and engineering methodology
[310]; the MAS design is based on AUML [30] and MAScommonKADS [196].

Logical perspective Being the logic underlying the standard languages for the semantic
web—OWL DL, OWL Lite, OWL Full, OWL 2—, description logic underlies, up to some
extent, all those technologies used for “agents in the semantic web”. In AgentOWL, OWL is
mainly used to represent the knowledge of an individual agent.

Technological notes: The Agent-OWL technology consists of an unmaintained project containing both
Java sources and binaries, requiring the JVM 6+ platform. Its code base includes a GNU Lesser General
Public License. We failed to start the pre-compiled version of Agent-OWL on most JVM versions, namely,
version 6, 7, 9, and 10. We succeeded in starting it on other versions of JVM up to version 13, even if a
number of exceptions made us classify Agent-OWL as a non-working technology.

EMERALD (2010)

Primary references: [215]
Other references describing / exploiting the technology: [216]
URL: http://lpis.csd.auth.gr/systems/emerald

MAS perspective EMERALD is a MAS framework built on top of JADE; it aims at sup-
porting interoperable reasoning among agents in the Semantic Web, by using third-party
trusted reasoning services. In EMERALD, every agent can exchange its position justification
arguments with any other agent, with no need for all agents to conform to the same kind of
rule paradigm or logic. EMERALD provides a knowledge-based agent module based on Jess
by Jess by Hill [177].

15 https://jena.apache.org/documentation/ontologyd, last accessed in April 2020.
16 https://protege.stanford.edu, last accessed in April 2020.

123

http://agentowl.sourceforge.net
http://lpis.csd.auth.gr/systems/emerald
https://jena.apache.org/documentation/ontologyd
https://protege.stanford.edu


1 Page 32 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

Logical perspective EMERALD uses OWL as the language to model common knowledge
that agents need to share in order to interoperate.

Technological notes: The EMERALD technology consists of an unmaintained Java project, requiring
JVM 6+ and including no license information. Only pre-compiled binaries are currently available, which
we successfully started and executed against the examples provided along with them.

Onto2JaCaMo, 2017

Primary references: [151]
Other references describing / exploiting the technology: [152]
URL: http://www.inf.pucrs.br/linatural/wordpress/recursos-e-ferramentas/onto2jacamo

MAS perspective Onto2JaCaMo supports MAS development in compliance with a well-
defined AOSE methodology defined by the authors themselves in Freitas et al. [152]. The
tool offers a combined support of forward and reverse engineering, such that changes in one
artefact can always be merged into the other without compromising consistency or losing
changes; this approach is referred to as “round-trip engineering”.

Logical perspective Onto2JaCaMo uses OWL as the language to model common knowl-
edge that agents need to share in order to interoperate.

Technological notes: The Onto2JaCaMo technology consists of a pre-compiled Java archive containing
a plug-in for the Eclipse-IDE (no version specified), to be manually installed. We assessed the plug-in
against a freshly installed version of the Eclipse IDE. However, the provided plug-in seems incompatible
with the last version of Eclipse. For this reason, we did not assess the technology any further.

3.3.2 Situated interaction & coordination

Situated ReSpecT (2008)

Primary references: [64,65]
Other references describing / exploiting the technology: [264,265,275]
URL: http://respect.apice.unibo.it

MAS perspective The ReSpecT event model—which already accounts for situatedness
issues by defining an event in terms of its source cause, event target and time at which the
event occurred—has been extended in Situated ReSpecT introducing generic environmental
resources as a new kind of sources / targets of events so as to account for situatedness and to
coordinate a system for sensing and controlling environmental properties.

Logical perspective Situated ReSpecT extends the ReSpecT coordination language for
programming tuple centres to govern interactions between agents and environment.

Technological notes: The Situated ReSpecT technology is currently integrated with the aforementioned
TuCSoN technology.

123

http://www.inf.pucrs.br/linatural/wordpress/recursos-e-ferramentas/onto2jacamo
http://respect.apice.unibo.it


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 33 of 67 1

3.3.3 Semantic web & situated interaction and coordination

LPaaS (2018) & LVLP (2016)

Primary references: [59,60]
Other references describing / exploiting the technology: [61,274]
URL: http://lpaas.apice.unibo.it

MAS perspective LPaaS [60] and LVLP [59] are two models that—once specialised
in the MAS context [274]—answer the need of intelligent environment and situated dis-
tributed cognition. LPaaS allows logic-based services to be embedded in the environment
and made available to agents as a service. LVLP exploits the notion of labelled vari-

able to allow for domain-specific logic-based computations. Altogether, LPaaS & LVLP
models and architectures—and the corresponding technology—support the distribution of
(micro)intelligence in pervasive MAS [274].

Logical perspective LPaaS in the MAS context exploits logic programming (and Prolog
in particular) for the distribution of intelligence chunks placed where and when needed to
locally tackle the specific reasoning needs in complex distributed systems.

Technological notes: The LPaaS technology consists of a web service implemented in Java and requiring
the JVM 8+ platform. Currently, the service is not deployed on a ready-to-use web page. In fact, only the
source code is provided, by means of a GitLab repository. However, the technology can be launched through
the provided build automation system. We successfully ran the LPaaS service following the instructions
provided.

4 Analysis

4.1 Cloud of words

Figure 1 shows the word cloud generated from all the 271 papers in the survey. In order to
give some meaning to this obviously limited, yet synthetic view of the literature, the ten most
evident words in the cloud could be divided into three subcategories:

– agent, action, plan, goal,
– model, logic, rules, state, belief,
– language, program/programming.

In short, the picture could be interpreted as suggesting that logic-based technologies in MAS
are mostly exploited to make agents act, plan, and achieve goals based on the expressive power
of logics in modelling knowledge into rules, states, and beliefs, by providing a well-founded
basis for programming MAS via logic languages.

The cloud also highlights the relatively-high frequency of other words, related to the
model one, such as: semantics, constraints, properties, ontology, variables, conditions, func-

tions—all of them basically reinforcing the (quite obvious) idea that logic can be essential in
formalising MAS and their properties. Further scrutiny reveals that terms time, environment,
and event also appear quite often. This hints at the close relationship between agents and
environment, and with the events that occur over the time—typically modelled in terms of
logics such as temporal logic.

123

http://lpaas.apice.unibo.it


1 Page 34 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

Fig. 1 The cloud of words obtained by the main keywords extracted from the papers subject of the SLR

Other interesting words emerging from the cloud are information, reasoning, and intelli-

gence, possibly reflecting one of the main purposes of the logic-based MAS technologies—
namely, the design and development of intelligent MAS in knowledge-intensive systems.
Finally, words like social, interaction, protocol, and communication highlight the social
component of MAS as well as its connection with logic-based technologies.

4.2 Selected technologies: MAS & logic perspectives

In this subsection we further analyse the technologies selected by our SLR—reported in
Table 1 in a joint MAS/logic view—, in order to provide additional information about the
five research questions—from (Q1) to (Q5).

The most common usage of logic in MAS relates to agents programming and their rea-
soning/planning capability. Indeed, Table 1 also suggests that logic-based languages have
the potential to play a prominent role as intelligence providers: the typical LP features—
e.g., programs as logic theories, computation as deduction, programming with relations and
inference—make logic languages a straightforward choice for building intelligent compo-
nents.

A more detailed observation of Table 1 shows the MAS sub-areas where logic-based
technologies are extensively exploited are: (i) verification of both agent behaviour and social

123



Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 35 of 67 1

T
a
b
le
1

L
og

ic
-b

as
ed

M
A

S
te

ch
no

lo
gi

es
:j

oi
nt

M
A

S/
lo

gi
c

vi
ew

A
ge

nt
So

ci
et

y
E

nv
ir

on
m

en
t

Pr
og

ra
m

m
in

g,
re

as
on

in
g

&
pl

an
ni

ng
A

ge
nt

re
lia

bi
lit

y
&

V
er

ifi
ca

tio
n

O
rg

an
is

at
io

na
l

re
as

on
in

g
&

co
or

di
na

tio
n

A
rg

um
en

ta
tio

n
M

A
S

re
lia

bi
lit

y
&

ve
ri

fic
at

io
n

A
ge

nt
s

in
th

e
se

m
an

tic
w

eb
Si

tu
at

ed
in

te
ra

ct
io

n
&

co
or

di
na

tio
n

R
es

tr
ic

te
d

PD
D

L

Pr
ed

ic
at

e
R

od
in

L
og

ic
SH

O
P

L
og

ic
pr

og
ra

m
m

in
g

D
A

L
I

2C
L

T
ra

ce
E

xp
r

L
Pa

aS
&

LV
L

P

D
C

as
eL

P
A

O
R

TA
Si

tu
at

ed
re

sp
ec

t

eX
A

T
T

uC
So

N

“S
ta

nd
ar

d”
G

o!
R

es
pe

ct

JA
D

L

Te
le

o-
R

Si
tu

at
io

n
C

on
G

ol
og

C
al

cu
lu

s
G

ol
og

SA
L

M
A

In
di

G
ol

og

A
L

P
A

L
IA

S
SC

IF
F

A
SP

R
A

SP
A

sp
ar

tix

M
od

al
lo

gi
c

2A
PL

/3
A

PL
M

C
A

PL

A
ST

R
A

G
O

A
L

B
D

I
Ja

ck

L
og

ic
Ja

de
x

Ja
so

n

Ja
so

n(
E

R
)

123



1 Page 36 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

T
a
b
le
1

co
nt

in
ue

d

A
ge

nt
So

ci
et

y
E

nv
ir

on
m

en
t

Pr
og

ra
m

m
in

g,
re

as
on

in
g

&
pl

an
ni

ng
A

ge
nt

re
lia

bi
lit

y
&

V
er

ifi
ca

tio
n

O
rg

an
is

at
io

na
l

re
as

on
in

g
&

co
or

di
na

tio
n

A
rg

um
en

ta
tio

n
M

A
S

re
lia

bi
lit

y
&

ve
ri

fic
at

io
n

A
ge

nt
s

in
th

e
se

m
an

tic
w

eb
Si

tu
at

ed
in

te
ra

ct
io

n
&

co
or

di
na

tio
n

M
od

al
A

G
E

N
T-

0
M

C
M

A
S

Te
m

po
ra

l
M

E
TA

T
E

M

L
og

ic

M
od

al
M

C
K

E
pi

st
em

ic

L
og

ic

D
eo

nt
ic

&
de

fe
as

ib
le

lo
gi

c
jD

A
L

M
A

S
A

sp
ic

+

D
eL

P

Sp
in

dl
e

D
R

A
G

O
A

ge
nt

O
W

L

D
es

cr
ip

tio
n

E
M

E
R

A
L

D

L
og

ic
O

nt
o2

Ja
ca

m
o

123



Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 37 of 67 1

interaction (or MAS in the whole), and (ii) argumentation—the table only reports on the
main “leading technologies” for each argumentation model.

For the former, logic-based techniques are widely recognised to be among the leading
technologies for the verification of reactive systems, thanks to properties such as a solid logic
ground to build upon, the possibility of providing interactions and communication with both
a declarative and an operational semantics, and the chance to define logic-based integrity
constraints. For the latter, as far as argumentation is concerned, although all the approaches
implement defeasible logics (often with deontic extensions), a leading technology providing
a shared set of abstractions is still missing, and each solution is instead typically tailored
to a specific application domain. Generally speaking, the potential of logical approaches
in norm-based systems and conflict resolution is widely acknowledged—also in terms of
explainability of complex MAS.

As far as the environment modelling and engineering is concerned, most technologies
target knowledge representation and, in particular, description logics. This is likely due to
the environment being the most proper abstraction to encapsulate stateful (and semantic)
information, and to work as a support for agent distributed cognition process in knowledge-
intensive systems.

(Subsets of) predicate logic, logic programming, and action languages (e.g., situation
calculus) have been mostly exploited for behavioural aspects of agents—most likely due to
their natural procedural interpretation. On the other side, modal and epistemic logics have
been mostly adopted in model-checking and verification technologies, presumably because
they make it possible to express meaningful, desired specifications about what agents or
societies do or know, while taking time into account.

Also, and quite naturally, one of the most successful logic-based architecture for agents—
the BDI one—has never been exploited outside the boundaries of individual agents. This is
likely due to the lack of intuitive interpretation of the desire and intention abstraction for
both environments and societies.

As far as the simulation tools for MAS are concerned, the SLR also points out that they
often do not rely upon a formal logic-based framework: the logic is instead exploited to define
the operational semantics of the simulation, or, to express temporal/epistemic specifications
in the case of model-checking joined to the simulation process—as in the case of SALMA.
This is why we only included in the SLR the few simulation frameworks with a strong
logical characterisation; other simulation frameworks exist, such as LEADSTO mentioned
in Table 4, but an actually-downloadable implementation could not be found for them—and
this was the reason for their exclusion.

The final remark is related to the lack of MAS technologies based on fuzzy or probabilistic
logic. This is somehow surprising, given the huge interest of the MAS community towards
Bayesian or Markovian approaches. Many theoretical works can be found in this area, yet
none comes with a technology that is actually implemented and alive.

4.3 Technological analysis

In this subsection we deepen the analysis of the technologies selected by our SLR in order to
provide additional insights about research questions (Q1), (Q3), and (Q4). Table 2 provides
an overview of our analysis.

There, we analyse the selected technologies according to a number of technical dimen-
sions, corresponding to the columns of Table 2. In particular: column Fresh. assesses the
freshness of each technology, by indicating—when possible—the year of the visible update;

123



1 Page 38 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

T
a
b
le
2

O
ve

rv
ie

w
on

th
e

se
le

ct
ed

te
ch

no
lo

gi
es

an
d

th
ei

r
an

al
ys

is

N
am

e
Fr

es
h.

C
od

e
D

oc
.

L
ic

en
se

Ta
rg

et
R

un
s

B
en

ch
m

ar
k

W
or

ks

2A
PL

20
12

–
3

N
on

e
JV

M
6,

7,
8

Y
es

*.
m

as
Y

es

2C
L

20
13

–
1

N
on

e
JV

M
7

Y
es

*.
2c

l
Y

es

3A
PL

20
07

–
4

N
on

e
JV

M
6

N
o

–
–

A
ge

nt
-0

19
93

1
1

N
on

e
(A

lle
gr

o)
C

om
m

on
L

is
p

Y
es

N
on

e
N

o

A
FA

PL
2

20
16

3
–

L
G

PL
v2

JV
M

?
N

on
e

?

A
ge

nt
O

W
L

a
20

13
3

1
L

G
PL

v2
JV

M
8,

11
+

Y
es

C
om

pi
le

d
de

m
o

N
o

A
IL

20
18

3
1

L
G

PL
v3

JV
M

8+
Y

es
*.

ai
l

Y
es

A
L

IA
Sb

20
00

1
1

N
on

e
JV

M
|

Pr
ol

og
N

o
–

–

A
O

R
TA

20
15

4
–

N
on

e
JV

M
+

7
Y

es
*.

ai
l

Y
es

A
SP

A
R

T
IX

c
20

18
–

1
M

IT
W

eb
se

rv
ic

e
Y

es
*.

dl
Y

es

A
SP

IC
20

19
4

3
L

G
PL

v3
JV

M
12

+
Y

es
C

om
pi

le
d

de
m

o
Y

es

A
st

ra
e

20
18

3
5

G
PL

v3
JV

M
Y

es
Pr

ov
id

ed
ex

am
pl

es
Y

es

C
on

G
ol

og
–

–
–

?
?

?
?

?

D
A

L
I

20
18

3
1

A
pa

ch
e

v2
SI

C
St

us
Y

es
?

?

D
C

as
eL

P/
D

yL
og

20
05

2
3

N
on

e
JV

M
N

o
–

–

D
eL

Pd
20

18
4

3
L

G
PL

v3
W

eb
se

rv
ic

e
N

o
–

N
o

D
R

A
G

O
20

06
2

2
N

on
e

JV
M

5+
Y

es
A

ny
O

W
L

on
to

lo
gy

Y
es

E
M

E
R

A
L

D
a

20
10

–
3

N
on

e
JV

M
6+

Y
es

C
om

pi
le

d
de

m
o

Y
es

eX
A

T
20

12
4

3
G

PL
v3

E
rl

an
g

N
o

–
N

o

G
o!

20
15

2
–

G
PL

v2
?

?
?

?

G
O

A
L

e
20

19
5

4
G

PL
v3

JV
M

8
Y

es
Te

m
pl

at
e

pr
oj

ec
ts

Y
es

G
ol

og
19

98
1

–
A

h
ho

c
SW

I
|

E
C

L
iP

Se
Y

es
–

?

In
di

G
ol

og
–

–
–

?
?

?
?

?

JA
C

K
–

–
5

Pr
op

ri
et

ar
y

JV
M

?
?

?

Ja
de

x
20

20
5

5
G

PL
v3

JV
M

8+
Y

es
C

om
pi

le
d

de
m

o
N

o

JA
D

L
/J

IA
C

20
18

4
5

A
pa

ch
e

v2
JV

M
7+

Y
es

Pr
ov

id
ed

ex
am

pl
es

Y
es

123



Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 39 of 67 1

T
a
b
le
2

co
nt

in
ue

d

N
am

e
Fr

es
h.

C
od

e
D

oc
.

L
ic

en
se

Ta
rg

et
R

un
s

B
en

ch
m

ar
k

W
or

ks

Ja
so

n
20

20
5

5
L

G
PL

v3
JV

M
8+

Y
es

Pr
ov

id
ed

ex
am

pl
es

Y
es

Ja
so

n-
E

R
20

19
5

–
L

G
PL

v3
JV

M
8+

Y
es

Pr
ov

id
ed

ex
am

pl
es

Y
es

jD
A

L
M

A
S

20
16

3
–

N
on

e
JV

M
N

o
–

–

L
Pa

aS
20

18
5

3
A

pa
ch

e
v2

JV
M

8+
Y

es
N

on
e

?

M
C

A
PL

20
18

3
1

L
G

PL
v3

JV
M

8+
N

o
*.

ai
l

N
o

M
C

K
–

–
3

N
on

e
W

eb
se

rv
ic

e
Y

es
Pr

ov
id

ed
ex

am
pl

es
Y

es

M
C

M
A

S
20

17
4

3
N

on
e

N
at

iv
e/

L
in

ux
Y

es
Fr

om
m

an
ua

l
Y

es

M
oz

ar
t

20
19

5
5

A
d-

ho
c

N
at

iv
e

Y
es

Pr
ov

id
ed

ex
am

pl
es

Y
es

M
et

at
eM

20
10

2
3

G
PL

v3
JV

M
6+

Y
es

*.
sy

s
Y

es

O
nt

o2
Ja

ca
m

oe
20

17
–

1
N

on
e

JV
M

N
o

–
–

R
as

pb
er

ry
–

–
1

N
on

e
N

at
iv

e/
L

in
ux

Y
es

*.
ra

sp
Y

es

R
M

L
20

19
5

3
A

pa
ch

e
2

JV
M

8+
Y

es
*.

rm
l

Y
es

R
od

in
20

20
4

?
N

on
e

JV
M

8
Y

es
N

on
e

?

SA
L

M
A

f
20

16
3

1
N

on
e

Py
th

on
N

o
–

–

SC
IF

F
20

08
1

2
N

on
e

SW
I
|

SI
C

St
us

Y
es

N
on

e
?

SH
O

P
20

20
4

2
M

PL
C

om
m

on
L

is
p

Y
es

?
?

Sp
in

dl
e

20
17

2
4

G
PL

v3
JV

M
7+

Y
es

*.
dfl

Y
es

Te
le

o-
R

/Q
L

og
20

19
3

3
N

on
e

Q
uP

ro
lo

g
N

o
–

–

T
uC

So
N

/R
es

pe
ct

(a
nd

va
ri

an
ts

)
20

20
3

3
L

G
PL

v3
JV

M
8+

Y
es

C
om

pi
le

d
de

m
o

Y
es

T
uS

oW
20

20
5

–
A

pa
ch

e
2

JV
M

8+
Y

es
N

on
e

?

D
as

he
s

re
pr

es
en

tm
is

si
ng

va
lu

es
,w

he
re

as
qu

es
tio

n
m

ar
ks

re
pr

es
en

tu
nk

no
w

n
va

lu
es

a
D

ep
en

ds
on

so
m

e
an

ci
en

tJ
ad

e
ve

rs
io

n,
w

hi
ch

is
no

tp
ro

vi
de

d
b
R

eq
ui

re
s

th
e

Ji
nn

iP
ro

lo
g

in
te

rp
re

te
r

fo
r

Ja
va

c R
eq

ui
re

s
th

e
C

lin
go

so
lv

er
d
D

ep
en

ds
on

an
ci

en
tt
u

Pr
ol

og
ve

rs
io

n,
w

hi
ch

is
no

tp
ro

vi
de

d
e Is

a
pl

ug
-i

n
fo

r
(o

r
cu

st
om

is
at

io
n

of
)

th
e

E
cl

ip
se

ID
E

f R
eq

ui
re

s
E

C
L

iP
Se

Pr
ol

og
an

d
th

e
Py

C
L

P
Py

th
on

m
od

ul
e

123



1 Page 40 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

column Code provides a qualitative assessment of each technology code base, when avail-
able; column Doc. provides a qualitative assessment of each technology documentation, when
available; column License indicates under which license each technology is provided, if any;
column Target reports on the target runtime platform(s) each technology can be executed
upon; column Runs shows our success in executing each technology—or loading it into its
target runtime—, possibly after any necessary compilation step; column Benchmark points
out whether each technology is distributed with some benchmarks or examples; column Work

points out whether each technology works, i.e., if the aforementioned benchmarks / examples
can be executed successfully.

More precisely, the freshness of a technology is defined by the year of its most recent
release, or, source code modification. The code-base assessment consists of a (possibly miss-
ing) integer number ranging from 1 to 5:

– “1” means the code base is available as a bare archive, even if it appears to have no
clear file organisation, and it is comes with no facility supporting the compilation (or, in
general, usage) of the code;

– “2” means the code base is available as a bare archive, and it adheres to a well organised
structure or it includes instructions on how to compile/use it

– “3” means the code base is available through some version control system17 (VSC,
henceforth), but poor support is provided for compilation or usage;

– “4” means the code base is available through some VCS and it comes with some build
automation tool18 as well, supporting compilation or usage;

– “5” means the code base is available through some VCS, it comes with some build
automation tool, and it is also distributed through some official repository;

whereas a missing value denotes that no assessment can be drawn given the available
information—e.g., because we were not able to access any code base.

Similarly, the documentation assessment consists of a (possibly missing) integer number
ranging from 1 to 5 as well. In this case, however:

– “1” means that the only available form of documentation is some textual note briefly
describing the technology or how manage the codebase;

– “2” means that some structured form of documentation exists describing the technology
or how manage the codebase;

– “3” means that a detailed manual or some API reference are available, but not both;
– “4” means that both a detailed manual and some API reference are available;
– “5” means that a detailed manual, some API reference, and some usage examples or

tutorials are available;

whereas a missing value denotes the total lack of any form of documentation.
Whenever available, the license of each technology is referenced in Table 2 as well, possi-

bly leveraging on well-known license acronyms. For instance, as far as open source licenses
are concerned, “GPL” refers to the GNU General Public License,19 “LGPL” refers to the
GNU Lesser General Public License,20 “MIT” refers to the MIT License,21 “MPL” refers to

17 e.g., SVN, Git, Mercurial, etc.
18 e.g., Make, Apache Ant, Apache Maven, Gradle, Pip, Npm, etc.
19 https://www.gnu.org/licenses/gpl-3.0.html, last accessed in April 2020.
20 https://www.gnu.org/licenses/lgpl-3.0.html, last accessed in April 2020.
21 https://opensource.org/licenses/mit-license.php, last accessed in April 2020.

123

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://opensource.org/licenses/mit-license.php


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 41 of 67 1

the Mozilla Public License,22 whereas “Apache” refers to the Apache License.23 The absence
of licenses for a particular technology is pointed out as well, as it may have an impact on its
users.24

The target runtime platform is another relevant aspect we analyse for each technology. It
provides an intuition of which sorts of machines and devices could in principle be capable of
running a given technology. As it clearly emerges from Table 2, the JVM platform is targeted
by most technologies. This is why, in the particular case of JVM-based technologies, we
try to assess the specific version(s) of the JVM they can run upon. Thus, the “JVM N+”
notation indicates that a given technology is tested on all JVM versions ranging from N

(included) to version 13 (included)—which is the most recent one at the time of writing—,
and only executes without errors starting from version N . Of course, the JVM is not the only
platform our selected technologies leverage upon. Some technologies require a compilation
step targeting some native platform. So, for instance, in case only the OS operative system is
supported, we write “Native / OS” to identify the target platform. Other technologies target
the Common Lisp, Python, or Erlang runtimes, which come with several implementations
supporting mainstream operative systems, similarly to what JVM does. There exist also
technologies targeting specific, well-known, implementations of Prolog, such as SWI-Prolog,
SICStus Prolog, or ECLiPSe-Prolog. In this case we simply write a short indicator of the
target Prolog implementation (“SWI”, “SICStus”, or “ECLiPSe”), or some piped-separated
combination of two or more indicators, in case more than one implementation are supported.
Furthermore, a few technologies are available as web services. In those cases, we argue that
the actual platform of the service implementation is not essential—this is why we simply
denote the target platform as “Web Service”. Finally, there are some technologies which are
explicitly aimed at extending (or customising) the Eclipse IDE,25 and are not meant to be used
otherwise. In those cases, we indicate “JVM” as the target platform, and tag the technology
through an ad-hoc footnote.

In order to test whether a technology runs or not, we simply launch it on its target
platform—possibly, after performing all necessary compilation/configuration steps. If neither
compilation/configuration nor launching produces error or crash, then we say the technology
runs, otherwise it does not. Thus, a question mark in Table 2 in the Runs column may indicate
either the total lack of any information on how to launch the technology, or, the impossibility
of producing/accessing an executable to launch.

Finally, when we are able to run a given technology, we then test it to get further detail, so
as to understand if it actually works or not. To do so, we first look for available benchmarks

or examples into the running technologies code bases, documentation, or home pages. In
case some benchmarks/example are available, we check if they can be run without producing
error outputs or crashes. If they can, then the technology works, otherwise it does not.
Thus, a missing value in Table 2 in the Benchmark or Works columns indicates that no
assessment is needed because the technology does not run. Conversely, a question mark in
the same columns denotes the impossibility to perform any further assessment due to lacking
benchmarks, examples, or instructions on how to launch them.

By aggregating the data in Table 2, we can draw several interesting conclusions. Most
relevant ones are summarised in Table 3. The most evident information is that only 12 out
of 47 technologies have been actively maintained since 2019—i.e., 25.53% of the total. The

22 https://www.mozilla.org/en-US/MPL/2.0, last accessed in April 2020.
23 https://www.apache.org/licenses/LICENSE-2.0, last accessed in April 2020.
24 https://choosealicense.com/no-permission, last accessed in April 2020.
25 https://www.eclipse.org/ide, last accessed in April 2020.

123

https://www.mozilla.org/en-US/MPL/2.0
https://www.apache.org/licenses/LICENSE-2.0
https://choosealicense.com/no-permission
https://www.eclipse.org/ide


1 Page 42 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

Table 3 Statistics on selected technologies

Absolute Relative (%) Meaning

N. selected tech 47 100

Maintained since 2019 12 25.53 Fresh. ≥ 2019

Maintained since 2018 20 42.55 Fresh. ≥ 2018

Open source 26 55.32 License /∈ {none, ?}

Unlicensed 19 40.43 License = none

JVM-based 30 63.83 Target starts with JVM

Certainly runs 31 65.96 Runs = yes

Certainly works 21 44.68a Works = yes

Codebase quality 16 34.04 Code ≥ 4

Documentation quality 9 19.15 Doc. ≥ 4

aCorresponding to 67.74% of the technologies which certainly run

percentage is lower than 50%, even if we enlarge the spectrum to technologies maintained
since 2017. However, most technologies (65.96%) can still be run successfully—regardless
of when they were last updated—, even though we are able to make them work in 67.74%
of cases only.

Another interesting trait is that—except for JACK—all technologies that are explicitly
licensed come with an open source license. These correspond to 55.32% of the total. The
amount of unlicensed technologies is quite high as well, as it corresponds to the 40.43% of
the total.

It is interesting to note how the JVM is by far the preferred platform for logic-based MAS
technologies. Indeed, 63.83% of the selected technologies target some version of the JVM.
Other recurring platforms are Lisp-, Prolog-, or native-based.

Finally, it is worth to be mentioned how—except for a few notable exceptions, such as
Jason—poor care is given to technologies code bases and documentary resources. Indeed,
considering the 1–5 ranges defined above, only 34.04% of the technologies come with a code
base whose quality is greater than 3, whereas only 19.15% are scored similarly as far as
documentation is concerned.

4.4 Rejected technologies

For the sake of completeness, Table 4 summarises the main technologies that were excluded
from our SLR, along with the corresponding motivation. In particular, the table shows the
instantiation of the criteria for MAS technologies inclusion defined in Sect. 2.1.

Let us recall the inclusion criteria we adopted in this SLR. Contributions are considered
as logic-based MAS technologies if all the following conditions simultaneously hold:

(a) they can be clearly related to some well-known and shared definition of agent and
MAS—e.g., [280,356];

(b) they stick to some logic which is clearly identifiable in the literature, in terms of name,
formal definition, and reference paper(s);

(c) they are both scientifically identifiable (reference paper) and technically available (i.e.,
some software actually exists).

123



Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 43 of 67 1

Table 4 Main technologies excluded from the survey, along with the motivation spanning between (i) “general
purpose”, (ii) “no logic”, (iii) “technology not found”

Motivation for
exclusion

Technology

General
purpose

4QL [243], CCALC [163], CDF-Rules [164], Clingo [292], DR-Prolog [37],
Inter4QL [199], InterProlog [62], Jess [177], JPF [170], KQML [143], Maude
[86], MOCHA [7], OWL & SWRL [191], Pellet [321], PRISM [219], Progol
[261], Protege [162], SICStus [63], Smodels [331], sparql [210], SPIN &
Promela [188], SWI Prolog [352], TRACK–R [159], tuProlog [122], Xsb [309],
YAP Prolog [93]

No logic AGENTFLY [322], Aglets [221], CArtAgO [298], ConArg [38], cougaar [173],
JaCaMo [41], JADE-JBossESB [346], JACKAL [92], Klaim [115], Magentix2
[328], MASON [238], Moise & S-Moise+ [193], Presage2 [71], RETSINA
[329], SARL APL [302]

Technology
not found

ABLE [349] , AgentStra [229], Ameli [137], ANA (Automated Negotiation Agent)
[214], AOSDE [316], April [251], Argonaut [103], ARTIMIS [51], Baop [106],
Camus [230], CASL (cognitive agents specification language) [315], CASP
(Checking AgentSpeak Program) [43], Caso [107], Cast [359], CLAIM [132],
CLELIA [14], CooL-AgentSpeak [249], Cupid [74], Dare [241], DASMAS,
[282] DeLP-MAPOP/DeLP-POP [141], DESIRE [50], DIPLoMAT system
[242], dMARS [126], Dribble [300] DR-NEGOTIATE/DR-DEVICE [323],
EVOLP [324], Gama [222], Golem [53], IMPACT [13], InfoSleuth [32], Instql
[189], ISLANDER/AMELI [136], JAPL [16], JADEL [35], JASDL [207], Jinni
[332], iJADE stock advisor [302], KARO [195], KGP[308], Language-a [161],
LEADSTO [48], LAIMA [345], MABLE [358], MAGE [317], MAGENTA
[178], Maglog [260], MALLET [138], MANCaLog [314], Mobile Agent
Reactive Spaces (MARS) [58], MiLog [153], Minerva [224], Mole [31], n-Jason
[223], NegoPlan [250], nomprol [90], OMNI [125], OntoWEDSS [67], OPAL
[270], OperA / Operetta [5], Ora4mas [194], Orwell, [118] OSCAR [290], PACT
[102], Pclaim [169], PERSUADER [330], PLACA [337], PROSOCS [326],
Rasa [181], RP-DeLP [6], Seagent [168], Semantic TuCSoN [265], Siebog [342],
SOCS [339], Sonar [209], SyMPA-(CLAIM) [311], Tal [89], VerICS [268]

The aforementioned criteria find their reification into three main motivations for rejection,
described below:

general purpose—the contribution may be exploited or referenced in other MAS-related
(resp. logic-related) works or technologies, but it is not explicitly intended to target them;
no logic—the contribution does not stick to any clearly identifiable logic from the liter-
ature;
technology not found—no actual software resource, no evidence found that some close-
source software actually exists.

Each one of the motivations alone is a sufficient condition for exclusion—so that a con-
tribution is excluded as soon as one of the above conditions is met. So, for instance, all
general-purpose Prolog engines (e.g., SICStus, SWI-Prolog, tuProlog, or ECLIPSE-Prolog)
are excluded, as they do not intentionally refer to any specific MAS abstraction—criterion
(a).

Also, JaCaMo [41] is excluded according to criterion (b). JaCaMo26 builds on top of Jason,
and integrates Jason Moise [193] for programming agent organisations, and CArtAgO [298]
for programming shared environments. However, among these technologies, only Jason is

26 http://jacamo.sourceforge.net, last accessed in April 2020.

123

http://jacamo.sourceforge.net


1 Page 44 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

logic-based: CArtAgO and Moise are Java-based technologies whose only connection with
logical approaches is via their Jason wrappers. This is why, we choose to include Jason
in our technological overview, while excluding JaCaMo, CArtAgO and Moise, despite the
corresponding technologies are alive and functioning.

Finally, some well-known logic-based technologies are excluded according to criterion
(c), as no actually-downloadable version of the tool could be found—for public link missing,
dead link, or no download available. Among the others, technologies such as JASDL, n-
Jason (missing link to the corresponding technology) and VerICS and SOCS (dead link) are
notable examples of technologies excluded for that specific reason. At last, it is worth to be
mentioned that a number of works concerning social commitments have been excluded as
well, for similar reasons. The Cupid [74] model, in particular, is a notable example. Given
their importance, however, a few comments about their absence are due, as it may seem
astonishing. In fact, despite these are well-founded and impactful theoretical works, we were
not able to find any runnable technology available to date, neither in the corresponding papers
nor on the Web. This is the only reason why these models are mentioned in this section.

5 Discussion

The main question behind this work is (G) “What is the role of logic-based technologies in
MAS nowadays?”—as mentioned in Sect. 3. To properly answer this question, we identify
five more specific research questions—namely, (Q1), (Q2), (Q3), (Q4), and (Q5)—, and we
deeply and systematically inspect the literature in order to support a detailed answer for
each of them. In this section we further discuss the contribution from Sect. 3, along with the
tables and data from Sect. 4, so as to summarise a brief and explicit response to each research
question.

Generally speaking, the fundamental role of logic-based technologies in MAS nowadays
is to address the need for intelligence that characterises agent-based abstractions—i.e., the
cognitive abilities required by distributed intelligent system components. However, logic-
based technologies can seldom be considered to be mature enough to tackle the requirements
of industrial and real-word domains. In the following paragraphs, we deepen the discussion
by focusing on the specific research questions.

(Q1)Which logic-based technologies for MAS are actually available? The available logic-
based technologies for MAS are listed in Table 2. Among the 47 technologies we assess, 21
(i.e., 44.68%) are still alive and working. However, only 12 of them (i.e., 25.53%) show recent
updates (since 2019). Also, in terms of the overall assessment of the technology—based on
the criteria detailed in Sect. 4.3—, one may notice that only a relatively-small number of
them meet basic technological standards.

(Q2) Which aspects of MAS technologies are affected by logic-based technologies, and

to what extent? (Q3) Which MAS abstractions / issues / features are covered by logic-

based technologies? As summarised by Table 1, logic-based technologies cover almost all
the existing MAS abstractions, with a heterogeneous distribution.

In particular, 50% of technologies focus on agent programming, exploiting logic to
describe the agent behaviour (at an adequate level of abstraction), as well as their goals
and knowledge—often expressed through beliefs, desires, and intentions.

With respect to the society abstraction, there are about 10 technologies identified by this
study. Among them, TuCSoN is arguably the most mature one. In TuCSoN, logic is exploited to

123



Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 45 of 67 1

address coordination issues, as well as reasoning tasks. Other technologies that address agent
societies issues are mostly related to defeasible reasoning and, in particular, argumentation.
However, our assessment reveals that most of them are not mature enough for distributed MAS
environments, although exceptions exist—e.g., ASPIC+. This line of research remains highly
promising. It is worth noting that the adoption of a logic-based approach for argumentation
purposes has many advantages, which all lead towards explainable systems.

The environment abstraction is the least affected by logic-based technologies: only few
technologies deal with MAS environment and adopt logic at the same time. In the few
identified technologies, logic is often exploited with the purpose of making the environment
intelligent, or, to represent distributed knowledge, possibly exploiting ontologies. However,
none of them can be considered actually ready to match the needs of real-world application
domains. This is why this research line appears promising and deserves further attention.

Finally, many logic-based formal methods are used for MAS engineering, as well as for
model checking and verification [355]. The corresponding technologies found in the SLR
are reported under the “MAS/Agent Reliability & Verification” column of Table 1. However,
more often than not, the corresponding technologies appear poorly maintained, thus revealing
another potentially productive area for applied research.

(Q4)Which sorts of logics are actually exploited to frame logic-based MAS technologies?

Most of the selected logic-based MAS technologies are related to logic programming—likely
because of its wide diffusion, simplicity, and adaptability—or to the BDI logic—both for the
cognitive abstractions that straightforwardly match the needs of rational gents, and for the
vast amount of contributions and results on the topic by the MAS community. Furthermore,
defeasible and deontic logics are exploited for dealing with uncertain or defeasible knowl-
edge, as well as to address normative concerns. Finally, description logics are widely used
in order to represent knowledge of the agents and of the whole system. It is worth noting
that some logics, such as fuzzy logic, show great potential for dealing with uncertainty in
MAS: nevertheless, none of the research works surveyed actually translate their theoretical
contributions into some usable technology.

(Q5) Which logic-based technologies for MAS are effectively used in real-world

domains? Among the 47 technologies surveyed, evidences of non-trivial real-world applica-
tions can only be found for IndiGolog, JACK, JIAC, and Agent Factory (AFPL). In particular:
(i) IndiGolog has been used for programming robot controller, workflow management sys-
tems, and web service composition systems [46]; (ii) JACK has been used for building
autonomous unmanned air vehicles and manufacturing systems, for simulating the human
behaviour, or, for implementing decision support systems [353]; (iii) JIAC has been used
in a number of projects that span from simulation and service execution to energy control
and home automation [46]; (iv) AFPL has been used for the development of applications in
various domains, including e-commerce, ubiquitous computing, mobile computing, robotics,
wireless sensor networks, and mixed reality [46]. However, it is worth recalling that only
JACK and JIAC are still actively maintained, as highlighted in Sect. 4.3.

Nevertheless, we believe that the amount of mature technologies that are potentially ready
to be used in real-world domains is larger than those currently exploited—indeed, the analysis
above is intentionally limited to the real-world applications explicitly described in the articles
included in the SLR. By considering as mature technologies all the technologies in Table 2
that (i) have been maintained since at least 2 years, (ii) have a scored of at least 3 in their source
code and documentation evaluation, and (iii) are still working, the set of mature technologies

123



1 Page 46 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

can be extended to include also ASPIC+, ASTRA, GOAL, Jadex, Jason, MCMAS, Mozart,
RML, and TuCSoN.

Final and general remarks This work is motivated by a broader research question—namely:

Given the new challenges that are opening up in the field of intelligent systems and AI
for logic-based technologies, do there exist technologies that can be considered ready
enough? If not, what is missing?

To answer this question, we should first recall that modern intelligent systems:

(i) are deeply intertwined with domains like the Internet of (Intelligent) Things (Io(I)T) and
Cyber-Physical Systems (CPS);

(ii) are therefore inherently distributed, thus demanding for robustness, efficiency, interop-
erability, portability, standardisation, situatedness, and real-time support;

(iii) need to reconcile and synthesise symbolic and sub-symbolic AI, exploiting the former to
explain the latter so as to overcome fears and ethical issues posed by AI by providing for
explainability, observability, interpretability, responsibility, and trustability—the scope
of XAI.

In the remainder of this section we focus on the issues above, and extract further considerations
from the data collected in Sect. 4.

Applicability to distributed domains such as IoT and CPS Often, the existing agent
solutions applicable to the IoT and CPS are available only for a specific and limited set of
devices. For instance, Agent Factory Micro Edition (AFME) [262] enables the execution of a
deliberative agent on top of mobile phones with CLDC/MIDP profiles and Sun-SPOT sensor
by means of TCP/IP and Zigbee protocols.

However, some technologies are, more than others, explicitly designed to support IoT
domains and CPS. For example, the LPaaS architecture is designed to promote distributed
intelligence for the IoT world—offering logic programming in terms of service, and explic-
itly addressing the requirements and issues of cloud and edge architectures. It exploits the
Everything as a Service [27] metaphor to maximise availability and interoperability while
promoting context-awareness. From the MAS point of view, LPaaS takes care of distributing
knowledge as well as reasoning capabilities placed in the agent environment. Analogously,
the situated coordination approach promoted by the TuCSoN/ReSpecT model and technol-
ogy can be explicitly exploited to handle situatedness in MAS as a coordination issue. Also,
TuCSoN provides the main abstractions for IoT environments: environmental resources can
be sources of perceptions (like sensors), targets of actions (like actuators), or even both.

Finally, there are technologies that are not explicitly meant to address the IoT and CPS
domains, but still let us suppose they would be easily portable to those domains—because of
their standard compliance, interoperability, and portability features. Among the many, Jason
supports interoperability with non-Jason agents via JADE through FIPA-ACL communica-
tion. Similarly, there are extensions to JACK that make it work in open systems. Finally,
the Teleo-Reactive approach has been often exploited to facilitate the development of the
IoT systems as a set of communicating Teleo-Reactive nodes. The software behaviour of the
nodes is specified in terms of goals, perceptions, and actions over the environment, achiev-
ing higher abstraction than using general-purpose programming languages and therefore,
enhancing the involvement of non-technical users in the specification process.

123



Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 47 of 67 1

Symbolic and sub-symbolic integration With respect to the second requirement of AI—
i.e., the need to reconcile and integrate symbolic and sub-symbolic techniques—none of
the selected technologies has been experimented yet. However, we argue that portable and
interoperable technologies might be more suitable for the integration. Anyway, the field is
still unexplored and represents a frontier research domain.

Can existing technologies be labelled as ready? If not, what is missing? To recap, the
role of logic-based technologies in MAS nowadays exhibits a huge potential for covering the
vast majority of intelligent system abstractions. However, just a few among the technologies
surveyed can be actually labelled as ready-to-go, in particular when considering the new
challenges for symbolic technologies in AI.

In fact, even though 10% of the selected technologies can be considered as mature—
in terms of cross-platform support, code quality, and ease of distribution in heterogeneous
environments—, they often have not been tested in pervasive and real-world scenarios, yet.
This implies, at least, that further research is required to ensure any technological barriers can
be overcome. Furthermore, integration with sub-symbolic techniques remains a nice-to-have

feature, but it is not actually a thing in any MAS technology, for the time being.
Nevertheless, the selected technologies are an excellent starting point for (i) highlighting

the advantages of logic-based technologies, and (ii) broadening the scope of research towards
the directions envisioned.

6 Conclusion

SLR originated in the medical research field [176], first of all as a tool to make some sense
over the heterogeneity of methodologies, tools, scope, and size, which were severely affecting
the overall coherence of the research results (not just methods) in most areas, there. SLR have
spread to other research fields, too: in the ICT areas, some of the first SLR can be found in
the software engineering field [206], for instance.

Whereas one might argue against the actual need of adopting the SLR approach
everywhere—for instance, in the MAS field—yet it should be observed that the ever-growing
articulation of most areas in computer science and AI in the last decade has led to a huge
popularity and diffusion of surveys—on any possible topics, also given the global popularity
of AI and CS nowadays. Most of the surveys around, however, while useful and interesting,
typically suffer from the authors’ bias [206], in particular when large research topics are
addressed: as such, they typically fail in the essential aspects of reproducibility that should
characterise any scientific work [291]. This is where SLR comes at a hand: by providing a
technical tool to produce surveys that can be verified and reproduced, since it requires to
make the methods used to build the survey explicit and repeatable.

Given the recent popularity of AI, and the potential role that logic-based technologies
for MAS could play in the engineering of complex intelligent systems, we think that a SLR
targeting MAS technologies based on any sort of logic could be of wide interest. Along this
line, this paper presents a SLR on logic-based technologies for MAS.

By logic-based technologies for MAS we mean any agent-oriented software architecture,
framework, or language (i) involving some clearly-defined logic model, and (ii) coming with
some actual technological reification.

The paper follows the standard SLR method: we carried out a manual retrieval, filtering,
analysis, and categorisation of huge number of papers, resulting in 271 documents, retrieved
by repeating 8 queries on 6 electronic search engines (Google Scholar, IEEE Xplore, Sci-

123



1 Page 48 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

enceDirect, SpringerLink, DBLP, ACM Digital Library) and 5 specific conference/workshop
proceedings. Whereas search engines are chosen to make our survey as comprehensive as
possible, queries are precisely designed to capture meaningful works w.r.t. the main goal (G)
of our SLR, other than the 5 specific research questions it has been split into—namely, (Q1)
up to (Q5). Our research questions aims at inspecting (i) which logic-based technologies for
MAS are available today, (ii) what is the role of logic in these MAS technologies, and (iii)
what is the technologies current state and maturity,

The methodological approach and the inclusion, exclusion, and analysis criteria adopted
here are carefully designed and described in detail, keeping a tight focus on the reproducibility

of the whole process. In particular, we only include works defining or exploiting logic-based
MAS technologies according to the above definition and for which the existence of some
software reification can be proven.

The technologies resulting from this systematic exploration are analysed and assessed from
two different perspectives—namely, the MAS one and the logical one—, thus discussing
which specific MAS- and logic-related aspect is tackled or exploited by each technol-
ogy. As suggested by Omicini [273], we categorise the selected technologies on the three
main abstractions in MAS—namely, agents, societies, and the environment—thus revealing
an uneven distribution of logic-based technologies on MAS abstractions, and highlighting
research opportunities on less popular abstractions—as the environment one.

We also perform a technical assessment of each technology, which enables a detailed
discussion on the current state of logic-based MAS technologies. The outcome of the dis-
cussion highlights that, as far as logic-based technologies for MAS are concerned—except
for some rare important success stories—there is still room for technological advancements.
Quite often, in fact, despite the enormous technological effort clearly carried out by the MAS
community in the last decades, the technologies cannot be considered mature and ready for
use in the new challenging contexts required by AI. Our SLR identifies the most promising
research areas, as well as the areas that mainly need technological progress.

Because of the scientific, well-founded, and reproducible approach of this SLR, we believe
that it represents a reliable tool to assess the current state of the topic, and we hope it can be
used to understand the future directions in this area.

Funding Open access funding provided by Alma Mater Studiorum - Università di Bologna within the CRUI-
CARE Agreement. This work has been partially supported by the H2020 Project “AI4EU” (G.A. 825619).
One of the authors, Roberta Calegari, has been supported by project “CompuLaw”, funded by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (G.A.
833647).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abiteboul, S., & Hull, R. (1988). Data functions, datalog and negation (extended abstract). In H. Boral
& P. Larson (Eds.), International conference on management of data (pp. 143–153). Chicago, IL: ACM.
https://doi.org/10.1145/50202.50218.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/50202.50218


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 49 of 67 1

2. Abrial, J. R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta, F., & Voisin, L. (2010). Rodin: An open
toolset for modelling and reasoning in Event-B. International Journal on Software Tools for Technology

Transfer, 12(6), 447–466. https://doi.org/10.1007/s10009-010-0145-y.
3. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., & Torroni, P. (2005). The SCIFF abductive proof-

procedure. In S. Bandini & S. Manzoni (Eds.), AI*IA 2005: Advances in artificial intelligence: 9th

Congress of the Italian Association for Artificial Intelligence, Milan, Italy, September 21–32, 2005.

Proceedings, Lecture notes in artificial intelligence (Vol. 3673, pp. 135–147). Berlin: Springer. https://
doi.org/10.1007/11558590_14.

4. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., & Torroni, P. (2008). Verifiable agent inter-
action in abductive logic programming: The SCIFF framework. ACM Transactions on Computational

Logic (TOCL), 9(4), 29:1–29:43. https://doi.org/10.1145/1380572.1380578.
5. Aldewereld, H., & Dignum, V. (2011). OperettA: Organization-oriented development environment. In

Languages, methodologies, and development tools for multi-agent systems, Lecture notes in computer

science (Vol. 6822, pp. 1–18). Berlin: Springer. https://doi.org/10.1007/978-3-642-22723-3_1.
6. Alsinet, T., Béjar, R., Godo, L., & Guitart, F. (2014). RP-DeLP: A weighted defeasible argumentation

framework based on a recursive semantics. Journal of Logic and Computation, 26(4), 1315–1360. https://
doi.org/10.1093/logcom/exu008.

7. Alur, R., Henzinger, T. A., Mang, F. Y., Qadeer, S., Rajamani, S. K., & Tasiran, S. (1998). MOCHA:
Modularity in model checking. In Computer aided verification, Lecture notes in computer science (Vol.
1427, pp. 521–525). Berlin: Springer. https://doi.org/10.1007/BFb0028774.

8. Alur, R., Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic. Journal of the

ACM, 49(5), 672–713. https://doi.org/10.1145/585265.585270.
9. Ancona, D., Drossopoulou, S., & Mascardi, V. (2012). Automatic generation of self-monitoring MASs

from multiparty global session types in Jason. In Baldoni et al. [20] (pp. 76–95). https://doi.org/10.1007/
978-3-642-37890-4_5.

10. Ancona, D., Ferrando, A., & Mascardi, V. (2016). Comparing trace expressions and linear temporal logic
for runtime verification. In E. Ábrahám, M. M. Bonsangue, & E. B. Johnsen (Eds.), Theory and practice

of formal methods—Essays dedicated to Frank de Boer on the occasion of his 60th birthday, Lecture

notes in computer science (Vol. 9660, pp. 47–64). Berlin: Springer. https://doi.org/10.1007/978-3-319-
30734-3_6.

11. Ancona, D., Ferrando, A., & Mascardi, V. (2017). Parametric runtime verification of multiagent systems.
In K. Larson, M. Winikoff, S. Das, & E. H. Durfee (Eds.), 16th Conference on autonomous agents and

multiagent systems, AAMAS 2017, São Paulo, Brazil, May 8–12, 2017 (pp. 1457–1459). São Paulo:
ACM. http://dl.acm.org/citation.cfm?id=3091328.

12. Antoniou, G., Dimaresis, N., & Governatori, G. (2009). A modal and deontic defeasible reasoning
system for modelling policies and multi-agent systems. Expert Systems with Applications, 36(2, Part 2),
4125–4134. https://doi.org/10.1016/j.eswa.2008.03.009.

13. Arisha, K., Ozcan, F., Ross, R., Kraus, S., & Subrahmanian, V. (1998). IMPACT: The interactive maryland
platform for agents collaborating together. In International conference on multi agent systems (Cat. No.

98EX160) (pp. 385–386). IEEE. https://doi.org/10.1109/ICMAS.1998.699225.
14. Arranz Matía, A. L., & Sanz-Bobi, M. A. (2005). CLELIA: A multi-agent system for publishing printed

and electronic media. Expert Systems with Applications, 28(4), 725–734. https://doi.org/10.1016/j.eswa.
2004.12.029.

15. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., & Nardi, D. (Eds.). (2003). The descrip-

tion logic handbook: Theory, implementation, and applications. Cambridge: Cambridge University
Press.

16. Bahaj, M., & Soklabi, A. (2013). JAPL: The JADE agent programming language. Journal of Emerging

Technologies in Web Intelligence, 5(3), 272–278. https://doi.org/10.4304/jetwi.5.3.272-277.
17. Baldoni, M., & Endriss, U. (Eds.). (2006). Declarative agent languages and technologies IV, Lecture

notes in computer science (Vol. 4327). Berlin: Springer. https://doi.org/10.1007/11961536.
18. Baldoni, M., Baroglio, C., Martelli, A., & Patti, V. (2003). Reasoning about self and others: Communi-

cating agents in a modal action logic. In C. Blundo & C. Laneve (Eds.), Theoretical computer science.

ICTCS 2003, Lecture notes in computer science (Vol. 2841, pp. 228–241). Berlin: Springer. https://doi.
org/10.1007/978-3-540-45208-9_19.

19. Baldoni, M., Baroglio, C., Gungui, I., Martelli, A., Martelli, M., Mascardi, V., et al. (2005). Reasoning
about agents’ interaction protocols inside dcaselp. In Declarative agent languages and technologies II

(pp. 112–131). Berlin: Springer. https://doi.org/10.1007/11493402_7.
20. Baldoni, M., Endriss, U., Omicini, A., & Torroni, P. (Eds.). (2005). Declarative agent languages and

technologies III, Lecture notes in computer science (Vol. 3904). Berlin: Springer. https://doi.org/10.
1007/11691792.

123

https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/11558590_14
https://doi.org/10.1007/11558590_14
https://doi.org/10.1145/1380572.1380578
https://doi.org/10.1007/978-3-642-22723-3_1
https://doi.org/10.1093/logcom/exu008
https://doi.org/10.1093/logcom/exu008
https://doi.org/10.1007/BFb0028774
https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-319-30734-3_6
https://doi.org/10.1007/978-3-319-30734-3_6
http://dl.acm.org/citation.cfm?id=3091328
https://doi.org/10.1016/j.eswa.2008.03.009
https://doi.org/10.1109/ICMAS.1998.699225
https://doi.org/10.1016/j.eswa.2004.12.029
https://doi.org/10.1016/j.eswa.2004.12.029
https://doi.org/10.4304/jetwi.5.3.272-277
https://doi.org/10.1007/11961536
https://doi.org/10.1007/978-3-540-45208-9_19
https://doi.org/10.1007/978-3-540-45208-9_19
https://doi.org/10.1007/11493402_7
https://doi.org/10.1007/11691792
https://doi.org/10.1007/11691792


1 Page 50 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

21. Baldoni, M., Son, T. C., van Riemsdijk, B. M., & Winikoff, M. (Eds.). (2008). Declarative agent

languages and technologies VI, Lecture notes in computer science (Vol. 5397). Berlin: Springer. https://
doi.org/10.1007/978-3-540-93920-7.

22. Baldoni, M., Baroglio, C., & Marengo, E. (2010). Constraints among commitments: Regulative specifi-
cation of interaction protocols. In W. Faber, & N. Leone (Eds.), Proceedings of the 25th Italian conference

on computational logic, Rende, Italy, July 7–9, 2010, CEUR workshop proceedings (Vol. 598). https://
CEUR-WS.org. http://ceur-ws.org/Vol-598/paper04.pdf.

23. Baldoni, M., Baroglio, C., Mascardi, V., Omicini, A., & Torroni, P. (2010). Agents, multi-agent systems
and declarative programming: Who, what, when, where, why, how? In A. Dovier & E. Pontelli (Eds.), A 25

year perspective on logic programming. Achievements of the Italian Association for Logic Programming,

GULP, LNAI: State-of-the-art survey (chapter 10) (pp. 200–225). Berlin: Springer. https://doi.org/10.
1007/978-3-642-14309-0_10.

24. Baldoni, M., Baroglio, C., Capuzzimati, F., Marengo, E., & Patti, V. (2012). A generalized commitment
machine for 2CL protocols and its implementation. In Baldoni et al. [25] (pp. 96–115). https://doi.org/
10.1007/978-3-642-37890-4_6.

25. Baldoni, M., Dennis, L., Mascardi, V., & Vasconcelos, W. (Eds.). (2012). Declarative agent languages

and technologies X, Lecture notes in computer science (Vol. 7784). Berlin: Springer. https://doi.org/10.
1007/978-3-642-37890-4.

26. Baldoni, M., Baroglio, C., Marengo, E., Patti, V., & Capuzzimati, F. (2014). Engineering commitment-
based business protocols with the 2CL methodology. Autonomous Agents and Multi Agent Systems,
28(4), 519–557. https://doi.org/10.1007/s10458-013-9233-1.

27. Banerjee, P., Friedrich, R., Bash, C., Goldsack, P., Huberman, B., Manley, J., et al. (2011). Everything
as a service: Powering the new information economy. IEEE Computer, 44(3), 36–43. https://doi.org/10.
1109/MC.2011.67.

28. Barredo Arrieta, A., Díaz Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., et al. (2020).
Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012.

29. Barringer, H., Fisher, M., Gabbay, D., Gough, G., & Owens, R. (1990). MetateM: A framework for
programming in temporal logic. In J. W. de Bakker, W. P. de Roever, & G. Rozenberg (Eds.), Stepwise

refinement of distributed systems models, formalisms, correctness, Lecture notes in computer science

(Vol. 430, pp. 94–129). Berlin: Springer. https://doi.org/10.1007/3-540-52559-9_62.
30. Bauer, B., Müller, J. P., & Odell, J. (2001). Agent UML: A formalism for specifying multiagent software

systems. International Journal of Software Engineering and Knowledge Engineering, 11(3), 207–230.
https://doi.org/10.1142/S0218194001000517.

31. Baumann, J., Hohl, F., Rothermel, K., & Straßer, M. (1998). Mole—Concepts of a mobile agent system.
World Wide Web, 1(3), 123–137. https://doi.org/10.1023/A:1019211714301.

32. Bayardo, R. J, Jr., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal, A., et al. (1997). InfoSleuth:
Agent-based semantic integration of information in open and dynamic environments. ACM SIGMOD

Record, 26(2), 195–206. https://doi.org/10.1145/253262.253294.
33. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F.,

et al. (2004). OWL web ontology language reference. https://www.w3.org/TR/owl-guide/.
34. Bellifemine, F., Bergenti, F., Caire, G., & Poggi, A. (2009). Jade—A java agent development framework.

In Håkansson et al. [167] 3rd KES International Symposium, KES-AMSTA 2009, Uppsala, Sweden, June

3–5, 2009. Proceedings (pp. 125–147). https://doi.org/10.1007/0-387-26350-0_5.
35. Bergenti, F. (2014). An introduction to the JADEL programming language. In 26th International con-

ference on tools with artificial intelligence. IEEE. https://doi.org/10.1109/ICTAI.2014.147.
36. Bevar, V., Costantini, S., Tocchio, A., & De Gasperis, G. (2012). A multi-agent system for industrial

fault detection and repair. In Advances on practical applications of agents and multi-agent systems (pp.
47–55). Berlin: Springer. https://doi.org/10.1007/978-3-642-28786-2_5.

37. Bikakis, A., & Antoniou, G. (2005). DR-Prolog: A system for defeasible reasoning with rules and ontolo-
gies on the semantic web. In 20th National conference on artificial intelligence, Pittsburgh, Pennsylvania

(Vol. 5, pp. 1594–1595). https://doi.org/10.1109/TKDE.2007.29.
38. Bistarelli, S., & Santini, F. (2011). ConArg: A constraint-based computational framework for argumen-

tation systems. In 23rd International conference on tools with artificial intelligence (pp. 605–612). Boca
Raton, FL: IEEE. https://doi.org/10.1109/ICTAI.2011.96.

39. Bistarelli, S., Rossi, F., & Santini, F. (2014). Enumerating extensions on random abstract-AFs with
ArgTools, Aspartix, ConArg2, and Dung-O-Matic. In Computational logic in multi-agent systems, Lec-

ture notes in computer science (Vol. 8624, pp. 70–86). Cham: Springer International Publishing. https://
doi.org/10.1007/978-3-319-09764-0_5.

123

https://doi.org/10.1007/978-3-540-93920-7
https://doi.org/10.1007/978-3-540-93920-7
https://CEUR-WS.org
https://CEUR-WS.org
http://ceur-ws.org/Vol-598/paper04.pdf
https://doi.org/10.1007/978-3-642-14309-0_10
https://doi.org/10.1007/978-3-642-14309-0_10
https://doi.org/10.1007/978-3-642-37890-4_6
https://doi.org/10.1007/978-3-642-37890-4_6
https://doi.org/10.1007/978-3-642-37890-4
https://doi.org/10.1007/978-3-642-37890-4
https://doi.org/10.1007/s10458-013-9233-1
https://doi.org/10.1109/MC.2011.67
https://doi.org/10.1109/MC.2011.67
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1007/3-540-52559-9_62
https://doi.org/10.1142/S0218194001000517
https://doi.org/10.1023/A:1019211714301
https://doi.org/10.1145/253262.253294
https://www.w3.org/TR/owl-guide/
https://doi.org/10.1007/0-387-26350-0_5
https://doi.org/10.1109/ICTAI.2014.147
https://doi.org/10.1007/978-3-642-28786-2_5
https://doi.org/10.1109/TKDE.2007.29
https://doi.org/10.1109/ICTAI.2011.96
https://doi.org/10.1007/978-3-319-09764-0_5
https://doi.org/10.1007/978-3-319-09764-0_5


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 51 of 67 1

40. Black, E., Coles, A., & Bernardini, S. (2014). Automated planning of simple persuasion dialogues. In
Bulling et al. [57] (pp. 87–104). https://doi.org/10.1007/978-3-319-09764-0_6.

41. Boissier, O., Bordini, R. H., Hübner, J., Ricci, A., & Santi, A. (2013). Multi-agent oriented programming
with JaCaMo. Science of Computer Programming, 78(6), 747–761. https://doi.org/10.1016/j.scico.2011.
10.004. Special section on Agent-oriented design methods and programming techniques for distributed
computing in dynamic and complex environments

42. Bordini, R. H., & Hübner, J. F. (2006). BDI agent programming in AgentSpeak using Jason. In F. Toni &
P. Torroni (Eds.), Computational logic in multi-agent systems, Lecture notes in computer science (Vol.
3900, pp. 143–164). Berlin: Springer. https://doi.org/10.1007/11750734_9.

43. Bordini, R. H., Fisher, M., Pardavila, C., Visser, W., & Wooldridge, M. (2003). Model checking multi-
agent programs with CASP. In Computer aided verification, Lecture notes in computer science (Vol.
2725, pp. 110–113). Berlin: Springer. https://doi.org/10.1007/978-3-540-45069-6_10.

44. Bordini, R. H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A. E., Gómez-Sanz, J. J., Leite, J.,
et al. (2006). A survey of programming languages and platforms for multi-agent systems. Informatica

(Slovenia), 30, 33–44.
45. Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in AgentSpeak

using Jason. In Wiley series in agent technology. Hoboken, NJ: Wiley. https://doi.org/10.5555/1197104.
46. Bordini, R. H., Dastani, M., Dix, J., & Fallah-Seghrouchni, A. E. (Eds.). (2009). Multi-agent program-

ming. Languages, tools and applications. Boston: Springer. https://doi.org/10.1007/978-0-387-89299-
3.

47. Borgida, A., & Serafini, L. (2003). Distributed description logics: Assimilating information from peer
sources. In S. Spaccapietra, S. March, & K. Aberer (Eds.), Journal on Data Semantics I, Lecture notes

in computer science (Vol. 2800, pp. 153–184). Berlin: Springer. https://doi.org/10.1007/978-3-540-
39733-5_7.

48. Bosse, T., Jonker, C. M., van der Meij, L., & Treur, J. (2005). LEADSTO: A language and environment
for analysis of dynamics by SimulaTiOn. In Innovations in applied artificial intelligence, Lecture notes

in computer science (Vol. 3533, pp. 363–366). Berlin: Springer. https://doi.org/10.1007/11504894_51.
49. Bozzano, M., Delzanno, G., Martelli, M., Mascardi, V., & Zini, F. (1999). Logic programming and

multi-agent systems: A synergic combination for applications and semantics. In K. R. Apt, V. W. Marek,
M. Truszczynski, & D. S. Warren (Eds.), The logic programming paradigm, Artificial intelligence (pp.
5–32). Berlin: Springer. https://doi.org/10.1007/978-3-642-60085-2_1.

50. Brazier, F. M., Dunin-Keplicz, B. M., Jennings, N. R., & Treur, J. (1997). Desire: Modelling multi-
agent systems in a compositional formal framework. International Journal of Cooperative Information

Systems, 6(1), 67–94. https://doi.org/10.1142/S0218843097000069.
51. Bretier, P., & Sadek, D. (1997). A rational agent as the kernel of a cooperative spoken dialogue system:

Implementing a logical theory of interaction. In Intelligent agents III agent theories, architectures, and

languages, Lecture notes in computer science (Vol. 1193, pp. 189–203). Berlin: Springer. https://doi.
org/10.1007/BFb0013586.

52. Briola, D., Mascardi, V., & Ancona, D. (2014). Distributed runtime verification of JADE multiagent
systems. In D. Camacho, L. Braubach, S. Venticinque, & C. Badica (Eds.), Intelligent distributed com-

puting VIII—Proceedings of the 8th international symposium on intelligent distributed computing, IDC

2014, Madrid, Spain, September 3–5, 2014, Studies in computational intelligence (Vol. 570, pp. 81–91).
Berlin: Springer. https://doi.org/10.1007/978-3-319-10422-5_10.

53. Bromuri, S., Urovi, V., Contreras, P., & Stathis, K. (2008). A virtual e-retailing environment in GOLEM.
In 4th International conference on intelligent environments. IEE. https://doi.org/10.1049/cp:20081174.

54. Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation. IEEE Transactions

on Computers, 35(8), 677–691. https://doi.org/10.1109/TC.1986.1676819.
55. Bryl, V., Mello, P., Montali, M., Torroni, P., & Zannone, N. (2008). B-Tropos. Agent-oriented require-

ments engineering meets computational logic for declarative business process modeling and verification.
In Sadri and Satoh [306] (pp. 157–176). https://doi.org/10.1007/978-3-540-88833-8_9.

56. Budgen, D., & Brereton, P. (2006). Performing systematic literature reviews in software engineering. In
28th International conference on software engineering (ICSE 2006) (pp. 1051–1052). New York, NY:
ACM. https://doi.org/10.1145/1134285.1134500.

57. Bulling, N., van der Torre, L., Villata, S., Jamroga, W., & Vasconcelos, W. (Eds.). (2014). Computational

logic in multi-agent systems, Lecture notes in computer science (Vol. 8624). Berlin: Springer. https://
doi.org/10.1007/978-3-319-09764-0.

58. Cabri, G., Leonardi, L., & Zambonelli, F. (2000). MARS: A programmable coordination architecture
for mobile agents. IEEE Internet Computing, 4(4), 26–35. https://doi.org/10.1109/4236.865084.

123

https://doi.org/10.1007/978-3-319-09764-0_6
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1007/11750734_9
https://doi.org/10.1007/978-3-540-45069-6_10
https://doi.org/10.5555/1197104
https://doi.org/10.1007/978-0-387-89299-3
https://doi.org/10.1007/978-0-387-89299-3
https://doi.org/10.1007/978-3-540-39733-5_7
https://doi.org/10.1007/978-3-540-39733-5_7
https://doi.org/10.1007/11504894_51
https://doi.org/10.1007/978-3-642-60085-2_1
https://doi.org/10.1142/S0218843097000069
https://doi.org/10.1007/BFb0013586
https://doi.org/10.1007/BFb0013586
https://doi.org/10.1007/978-3-319-10422-5_10
https://doi.org/10.1049/cp:20081174
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-540-88833-8_9
https://doi.org/10.1145/1134285.1134500
https://doi.org/10.1007/978-3-319-09764-0
https://doi.org/10.1007/978-3-319-09764-0
https://doi.org/10.1109/4236.865084


1 Page 52 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

59. Calegari, R., Denti, E., Dovier, A., & Omicini, A. (2018). Extending logic programming with labelled
variables: Model and semantics. Fundamenta Informaticae, 161(1–2), 53–74. https://doi.org/10.3233/
FI-2018-1695. Special Issue CILC 2016.

60. Calegari, R., Denti, E., Mariani, S., & Omicini, A. (2018). Logic programming as a service. Theory

and Practice of Logic Programming, 18(5–6), 846–873. https://doi.org/10.1017/S1471068418000364.
Special issue “Past and present (and future) of parallel and distributed computation in (constraint) logic
programming”.

61. Calegari, R., Denti, E., Mariani, S., & Omicini, A. (2019). Logic programming as a service in multi-
agent systems for the Internet of Things. International Journal of Grid and Utility Computing, 10(4),
344–360. https://doi.org/10.1504/IJGUC.2019.10022135.

62. Calejo, M. (2004). InterProlog: Towards a declarative embedding of logic programming in Java. In 9th

European conference on logics in artificial intelligence (pp. 714–717). Lisbon: Springer. https://doi.org/
10.1007/978-3-540-30227-8_64.

63. Carlsson, M., et al. (2020). SICStus Prolog user’s manual (release 4.6.0). Kista: Swedish Institute of
Computer Science. https://sicstus.sics.se/sicstus/docs/latest4/pdf/sicstus.pdf.

64. Casadei, M., & Omicini, A. (2008). Situating A&A ReSpecT for pervasive environment applications. In
L. J. B. Nixon, M. Bortenschlager, E. Simperl, & R. Tolksdorf (Eds.), 17th IEEE International workshops

on enabling technologies: Infrastructures for collaborative enterprises. Workshop on coordination mod-

els and applications (CoMA 2008), IEEE WETICE 2008 (pp. 76–81). Rome: IEEE Computer Society.
https://doi.org/10.1109/WETICE.2008.31.

65. Casadei, M., & Omicini, A. (2009). Situated tuple centres in ReSpecT. In S. Y. Shin, S. Ossowski, R.
Menezes, & M. Viroli (Eds.), 24th Annual ACM symposium on applied computing (SAC 2009), ACM,

Honolulu, Hawai’i, USA (Vol. III, pp. 1361–1368). https://doi.org/10.1145/1529282.1529586.
66. Cattell, R. G. G., & Barry, D. K. (Eds.). (2000). The object data standard: ODMG 3.0. San Francisco,

CA: Morgan Kaufmann Publishers.
67. Ceccaroni, L. (2001). OntoWEDSS—An ontology-based environmental decision-support system for the

management of wastewater treatment plants. PhD thesis, Universitat Politècnica de Catalunya. Depar-
tament de Llenguatges i Sistemes Informàtics. https://upcommons.upc.edu/handle/2117/93950.

68. Čermák, P., Lomuscio, A., Mogavero, F., & Murano, A. (2014). MCMAS-SLK: A model checker for the
verification of strategy logic specifications. In A. Biere & R. Bloem (Eds.), Computer aided verification,

Lecture notes in computer science (Vol. 8559, pp. 525–532). Cham: Springer. https://doi.org/10.1007/
978-3-319-08867-9_34.

69. Chandy, K. M. (1988). Parallel program design: A foundation. Boston, MA: Addison-Wesley Longman
Publishing Co. Inc.

70. Chellas, B. F. (1980). Modal logic: An introduction. Cambridge: Cambridge University Press. https://
doi.org/10.1017/CBO9780511621192.

71. Chen, M., Athanasiadis, D., Al Faiya, B., McArthur, S., Kockar, I., Lu, H., et al. (2017). Design of a
multi-agent system for distributed voltage regulation. In 19th International conference on intelligent

system application to power systems (pp. 1–6). San Antonio, TX: IEEE. https://doi.org/10.1109/ISAP.
2017.8071400.

72. Chesani, F., Gavanelli, M., Alberti, M., Lamma, E., Mello, P., & Torroni, P. (2006). Specification and
verification of agent interaction using abductive reasoning. In Lecture notes in computer science. Berlin:
Springer (pp. 243–264). https://doi.org/10.1007/11750734_14.

73. Chesani, F., Mello, P., Montali, M., & Torroni, P. (2009). Verifying a-priori the composition of declarative
specified services. In M. Baldoni, C. Baroglio, J. Bentahar, G. Boella, M. Cossentino, M. Dastani, et al.
(Eds.), Multi-agent logics, languages, and organisations—Second international federated workshops,

MALLOW’009, workshops proceedings, Turin, Italy (Vol. 494, pp. 14–21). http://ceur-ws.org/Vol-494/.
74. Chopra, A. K., & Singh, M. P. (2015). Cupid: Commitments in relational algebra. In B. Bonet & S.

Koenig (Eds.), 29th AAAI conference on artificial intelligence (pp. 2052–2059). AAAI Press. http://
www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9938.

75. Ciampolini, A., Lamma, E., Stefanelli, C., & Mello, P. (1997). A coordination protocol for abductive logic
agents. In 1997 IEEE International conference on intelligent processing systems (Cat. No.97TH8335)

(Vol. 1, pp. 143–148). IEEE. https://doi.org/10.1109/ICIPS.1997.672754.
76. Ciampolini, A., Lamma, E., Mello, P., & Torroni, P. (1999). The dynamic composition of abductive

agents in ALIAS. In A. Brogi & P. Hill (Eds.), 2nd International workshop on component-based soft-

ware development in computational logic (COCL’99), Paris, France. http://www.di.unipi.it/~brogi/
ResearchActivity/COCL99/proceedings/ciampolini.ps.

77. Ciampolini, A., Lamma, E., Mello, P., Toni, F., & Torroni, P. (2003). Cooperation and competition in
alias: A logic framework for agents that negotiate. Annals of Mathematics and Artificial Intelligence,
37(1), 65–91. https://doi.org/10.1023/A:1020259411066.

123

https://doi.org/10.3233/FI-2018-1695
https://doi.org/10.3233/FI-2018-1695
https://doi.org/10.1017/S1471068418000364
https://doi.org/10.1504/IJGUC.2019.10022135
https://doi.org/10.1007/978-3-540-30227-8_64
https://doi.org/10.1007/978-3-540-30227-8_64
https://sicstus.sics.se/sicstus/docs/latest4/pdf/sicstus.pdf
https://doi.org/10.1109/WETICE.2008.31
https://doi.org/10.1145/1529282.1529586
https://upcommons.upc.edu/handle/2117/93950
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1017/CBO9780511621192
https://doi.org/10.1017/CBO9780511621192
https://doi.org/10.1109/ISAP.2017.8071400
https://doi.org/10.1109/ISAP.2017.8071400
https://doi.org/10.1007/11750734_14
http://ceur-ws.org/Vol-494/
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9938
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9938
https://doi.org/10.1109/ICIPS.1997.672754
http://www.di.unipi.it/~brogi/ResearchActivity/COCL99/proceedings/ciampolini.ps
http://www.di.unipi.it/~brogi/ResearchActivity/COCL99/proceedings/ciampolini.ps
https://doi.org/10.1023/A:1020259411066


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 53 of 67 1

78. Ciatto, G., Rizzato, L., Omicini, A., & Mariani, S. (2019). TuSoW: Tuple spaces for edge computing. In
The 28th International conference on computer communications and networks (ICCCN 2019). Valencia:
Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICCCN.2019.8846916.

79. Ciatto, G., Di Marzo, S. G., Louvel, M., Mariani, S., Omicini, A., & Zambonelli, F. (2020). Twenty years
of coordination technologies: COORDINATION contribution to the state of art. Journal of Logical and

Algebraic Methods in Programming, 113, 1–25. https://doi.org/10.1016/j.jlamp.2020.100531.
80. Clark, K., Hengst, B., Pagnucco, M., Rajaratnam, D., Robinson, P., Sammut, C., et al. (2016). A

framework for integrating symbolic and sub-symbolic representations. In S. Kambhampati (Ed.), 25th

International joint conference on artificial intelligence (IJCAI-16) (pp. 2486–2492). IJCAI/AAAI Press.
http://www.ijcai.org/Abstract/16/354.

81. Clark, K. L., & McCabe, F. G. (2004). Go!—A multi-paradigm programming language for implementing
multi-threaded agents. Annals of Mathematics and Artificial Intelligence, 41(2), 171–206. https://doi.
org/10.1023/B:AMAI.0000031195.87297.d9.

82. Clark, K. L., & McCabe, F. G. (2004). Go! for multi-threaded deliberative agents. In Leite et al. [225]
(pp. 54–75). https://doi.org/10.1007/978-3-540-25932-9_4.

83. Clark, K. L., & McCabe, F. G. (2006). Ontology oriented programming in Go!. Applied Intelligence,
24(3), 189–204. https://doi.org/10.1007/s10489-006-8511-x.

84. Clark, K. L., & Robinson, P. J. (2015). Robotic agent programming in TeleoR. In IEEE International

conference on robotics and automation (ICRA). Seattle, WA: IEEE (pp. 5040–5047).
85. Clarke, E. M., & Emerson, E. A. (1981). Design and synthesis of synchronization skeletons using

branching-time temporal logic. In D. Kozen (Ed.), Logics of programs, workshop, Yorktown Heights,

New York, USA, May 1981, Lecture notes in computer science (Vol. 131, pp. 52–71). Berlin: Springer.
https://doi.org/10.1007/BFb0025774.

86. Clavel, M., Eker, S., Lincoln, P., & Meseguer, J. (1996). Principles of Maude. Electronic Notes in

Theoretical Computer Science, 4, 65–89. https://doi.org/10.1016/S1571-0661(04)00034-9.
87. Collier, R. W. (2002). Agent factory: A framework for the engineering of agent-oriented applications.

PhD thesis, University College Dublin.
88. Collier, R. W., Russell, S. E., & Lillis, D. (2015). Reflecting on agent programming with AgentSpeak(L).

In PRIMA 2015: Principles and practice of multi-agent systems, Lecture notes in computer science (pp.
351–366). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-25524-8_22.

89. Corapi, D., Russo, A., & Lupu, E. (2010). Inductive logic programming as abductive search. In M.
Hermenegildo & T. Schaub (Eds.), Technical communications of the 26th international conference on

logic programming (Vol. 7, pp. 54–63). Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
https://doi.org/10.4230/LIPIcs.ICLP.2010.54.

90. Corapi, D., Sykes, D., Inoue, K., & Russo, A. (2011). Probabilistic rule learning in nonmonotonic
domains. In J. A. Leite, P. Torroni, T. Ågotnes, G. Boella, & L. van der Torre (Eds.), Computational logic

in multi-agent systems, Lecture notes in computer science (Vol. 6814, pp. 243–258). Berlin: Springer.
https://doi.org/10.1007/978-3-642-22359-4_17.

91. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., & Koukam, A. (2010). ASPECS: An agent-oriented
software process for engineering complex systems. Autonomous Agents and Multi-Agent Systems, 20(2),
260–304. https://doi.org/10.1007/s10458-009-9099-4.

92. Cost, R. S., Finin, T., Labrou, Y., Lua, X., Peng, Y., Soboroff, I., et al. (1998). Jackal: A Java-based

tool for agent development. Working papers of the AAAI-98 workshop on software tools for developing
agents.

93. Costa, V. S., Rocha, R., & Damas, L. (2012). The YAP prolog system. Theory and Practice of Logic

Programming, 12(1–2), 5–34. https://doi.org/10.1017/S1471068411000512.
94. Costantini, S. (2014). Towards active logic programming. In A. Brogi & P. Hill (Eds.), PLI workshop

on COmponent-based software developement in computational logic (COCL’99). Paris. http://pages.di.
unipi.it/brogi/cocl99.html.

95. Costantini, S. (2015). ACE: A flexible environment for complex event processing in logical agents. In
M. Baldoni, L. Baresi, & M. Dastani. (Eds.), Engineering multi-agent systems (EMAS 2015), Lecture

notes in computer science (Vol. 9318, pp. 70–91). Cham: Springer. https://doi.org/10.1007/978-3-319-
26184-3_5.

96. Costantini, S., & Formisano, A. (2016). Augmenting agent computational environments with quantitative
reasoning modules and customizable bridge rules. In N. Osman & C. Sierra (Eds.), Autonomous agents

and multiagent systems (AAMAS 2016), Lecture notes in computer science (Vol. 10003, pp. 104–121).
Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-46840-2_7.

97. Costantini, S., & Tocchio, A. (2002). A logic programming language for multi-agent systems. In S.
Flesca, S. Greco, G. Ianni, & N. Leone (Eds.), Logics in artificial intelligence, Lecture notes in computer

science (Vol. 2424, pp. 1–13). Berlin: Springer. https://doi.org/10.1007/3-540-45757-7_1.

123

https://doi.org/10.1109/ICCCN.2019.8846916
https://doi.org/10.1016/j.jlamp.2020.100531
http://www.ijcai.org/Abstract/16/354
https://doi.org/10.1023/B:AMAI.0000031195.87297.d9
https://doi.org/10.1023/B:AMAI.0000031195.87297.d9
https://doi.org/10.1007/978-3-540-25932-9_4
https://doi.org/10.1007/s10489-006-8511-x
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1016/S1571-0661(04)00034-9
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.4230/LIPIcs.ICLP.2010.54
https://doi.org/10.1007/978-3-642-22359-4_17
https://doi.org/10.1007/s10458-009-9099-4
https://doi.org/10.1017/S1471068411000512
http://pages.di.unipi.it/brogi/cocl99.html
http://pages.di.unipi.it/brogi/cocl99.html
https://doi.org/10.1007/978-3-319-26184-3_5
https://doi.org/10.1007/978-3-319-26184-3_5
https://doi.org/10.1007/978-3-319-46840-2_7
https://doi.org/10.1007/3-540-45757-7_1


1 Page 54 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

98. Costantini, S., & Tocchio, A. (2004). The DALI logic programming agent-oriented language. In J. J.
Alferes & J. A. Leite (Eds.), Logics in artificial intelligence, 9th European conference, JELIA 2004,

Lecture notes in computer science (Vol. 3229, pp. 685–688). Berlin: Springer. https://doi.org/10.1007/
978-3-540-30227-8_57.

99. Costantini, S., Tocchio, A., & Tsintza, P. (2007). A heuristic approach to P2P negotiation. In Sadri and
Satoh [306] (pp. 177–192). https://doi.org/10.1007/978-3-540-88833-8_10.

100. Costantini, S., Formisano, A., & Petturiti, D. (2010). Extending and implementing RASP. Fundamenta

Informaticae, 105(1–2), 1–33. https://doi.org/10.3233/FI-2010-356.
101. Costantini, S., De Gasperis, G., & Nazzicone, G. (2017). DALI for cognitive robotics: Principles and

prototype implementation. In International symposium on practical aspects of declarative languages

(pp. 152–162). Cham: Springer. https://doi.org/10.1007/978-3-319-51676-9_10.
102. Cutkosky, M. R., Engelmore, R. S., Fikes, R. E., Genesereth, M. R., Gruber, T. R., Mark, W. S., et al.

(1993). PACT: An experiment in integrating concurrent engineering systems. Computer, 26(1), 28–37.
https://doi.org/10.1109/2.179153.

103. da Silva, D. M., & Vieira, R. (2007). Argonaut: Integrating Jason and Jena for context aware com-
puting based on OWL ontologies. In Workshop on agents, web services, and ontologies—Integrated

methodologies (AWESOME’007), Durham, UK (p. 19).
104. da Silva, V. T., Garcia, A. F., Brandão, A., Chavez, C., de Lucena, C. J. P., & Alencar, P. S. C. (2002).

Taming agents and objects in software engineering. In A. F. Garcia, C. J. P. de Lucena, F. Zambonelli, A.
Omicini, & J. Castro (Eds.), Software engineering for large-scale multi-agent systems. SELMAS 2002,

Lecture notes in computer science (Vol. 2603, pp. 1–26). Berlin: Springer. https://doi.org/10.1007/3-
540-35828-5_1.

105. Dalpiaz, F., Dix, J., & van Riemsdijk, M. B. (Eds.). (2014). Engineering multi-agent systems, Lecture

notes in computer science (Vol. 8758). Paris: Springer. https://doi.org/10.1007/978-3-319-14484-9.
106. Dasgupta, A., & Ghose, A. K. (2010). BDI agents with objectives and preferences. In Omicini et al.

[281] (pp. 22–39). https://doi.org/10.1007/978-3-642-20715-0_2.
107. Dasgupta, A., & Ghose, A. K. (2010). Implementing reactive BDI agents with user-given constraints

and objectives. International Journal of Agent-Oriented Software Engineering, 4(2), 141. https://doi.
org/10.1504/IJAOSE.2010.032799.

108. Dastani, M. (2008). 2APL: A practical agent programming language. Autonomous Agents and Multi-

Agent Systems, 16(3), 214–248. https://doi.org/10.1007/s10458-008-9036-y.
109. Dastani, M., & Steunebrink, B. R. (2009). Operational semantics for BDI modules in multi-agent pro-

gramming. In Dix et al. [127] (pp. 83–101). https://doi.org/10.1007/978-3-642-16867-3_5.
110. Dastani, M., & van Zee, M. (2013). Belief caching in 2APL. In J. Leite, A. Omicini, P. Torroni, & P.

Yolum (Eds.), Declarative agent languages and technologies, LNAI (Vol. 8245, pp. 117–136). Berlin:
Springer. https://doi.org/10.1007/978-3-642-45343-4_7.

111. Dastani, M. M., Hindriks, K. V., Novák, P., & Tinnemeier, N. A. M. (2008). Combining multiple knowl-
edge representation technologies into agent programming languages. In Baldoni et al. [21] (pp. 60–74).
https://doi.org/10.1007/978-3-540-93920-7_5.

112. de Boer, F. S., Hindriks, K. V., van der Hoek, W., & Meyer, J. J. C. (2007). A verification framework for
agent programming with declarative goals. Journal of Applied Logic, 5(2), 277–302. https://doi.org/10.
1016/j.jal.2005.12.014.

113. De Giacomo, G., Lespérance, Y., & Levesque, H. J. (2000). ConGolog, a concurrent programming
language based on the situation calculus. Artificial Intelligence, 121(1–2), 109–169. https://doi.org/10.
1016/S0004-3702(00)00031-X.

114. De Giacomo, G., Lespérance, Y., Levesque, H. J., & Sardiña, S. (2009). Indigolog: A high-level pro-
gramming language for embedded reasoning agents. In R. H. Bordini, M. Dastani, J. Dix, & A. E.
Fallah-Seghrouchni (Eds.), Multi-agent programming, languages, tools and applications. Boston, MA:
Springer (pp. 31–72). https://doi.org/10.1007/978-0-387-89299-3_2.

115. De Nicola, R., Ferrari, G. L., & Pugliese, R. (1998). KLAIM: A kernel language for agents interaction and
mobility. Transactions on Software Engineering, 24(5), 315–330. https://doi.org/10.1109/32.685256.

116. Dell’Acqua, P., Sadri, F., & Toni, F. (1998). Combining introspection and communication with rationality
and reactivity in agents. In Logics in artificial intelligence, European workshop, JELIA ’98, Dagstuhl,

Germany, October 12–15, 1998, proceedings (pp. 17–32). Berlin: Springer. https://doi.org/10.1007/3-
540-49545-2_2.

117. Demolombe, R., & Otermin Fernandez, A. M. (2006). Intention recognition in the situation calculus
and probability theory frameworks. In Toni and Torroni [340] (pp. 358–372). https://doi.org/10.1007/
11750734_20.

118. Dennis, L., Tinnemeier, N., & Meyer, J. J. (2009). Model checking normative agent organisations. In
Dix et al. [127] (pp. 64–82). https://doi.org/10.1007/978-3-642-16867-3_4.

123

https://doi.org/10.1007/978-3-540-30227-8_57
https://doi.org/10.1007/978-3-540-30227-8_57
https://doi.org/10.1007/978-3-540-88833-8_10
https://doi.org/10.3233/FI-2010-356
https://doi.org/10.1007/978-3-319-51676-9_10
https://doi.org/10.1109/2.179153
https://doi.org/10.1007/3-540-35828-5_1
https://doi.org/10.1007/3-540-35828-5_1
https://doi.org/10.1007/978-3-319-14484-9
https://doi.org/10.1007/978-3-642-20715-0_2
https://doi.org/10.1504/IJAOSE.2010.032799
https://doi.org/10.1504/IJAOSE.2010.032799
https://doi.org/10.1007/s10458-008-9036-y
https://doi.org/10.1007/978-3-642-16867-3_5
https://doi.org/10.1007/978-3-642-45343-4_7
https://doi.org/10.1007/978-3-540-93920-7_5
https://doi.org/10.1016/j.jal.2005.12.014
https://doi.org/10.1016/j.jal.2005.12.014
https://doi.org/10.1016/S0004-3702(00)00031-X
https://doi.org/10.1016/S0004-3702(00)00031-X
https://doi.org/10.1007/978-0-387-89299-3_2
https://doi.org/10.1109/32.685256
https://doi.org/10.1007/3-540-49545-2_2
https://doi.org/10.1007/3-540-49545-2_2
https://doi.org/10.1007/11750734_20
https://doi.org/10.1007/11750734_20
https://doi.org/10.1007/978-3-642-16867-3_4


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 55 of 67 1

119. Dennis, L. A., & Farwer, B. (2008). Gwendolen: A BDI language for verifiable agents. In B. Löwe (Ed.),
AISB 2008 Symposium on logic and the simulation of interaction and reasoning (Vol. 9, pp. 16–23).
Aberdeen: The Society for the Study of Artificial Intelligence and Simulation of Behaviour, University
of Aberdeen.

120. Dennis, L. A., Fisher, M., Webster, M. P., & Bordini, R. H. (2012). Model checking agent programming
languages. Automated Software Engineering, 19(1), 5–63. https://doi.org/10.1007/s10515-011-0088-x.

121. Dennis, L. A., Fisher, M., & Webster, M. (2013). Using agent JPF to build models for other model
checkers. In Leite et al. [227] (pp. 273–289). https://doi.org/10.1007/978-3-642-40624-9_17.

122. Denti, E., Omicini, A., & Ricci, A. (2001). tuProlog: A light-weight Prolog for Internet applications and
infrastructures. In I. V. Ramakrishnan (Ed.), Practical aspects of declarative languages, Lecture notes in

computer science (Vol. 1990, pp. 184–198). Berlin: Springer. https://doi.org/10.1007/3-540-45241-9_
13. 3rd International symposium (PADL 2001), Las Vegas, NV, USA, 11–12 March 2001. Proceedings.

123. Di Stefano, A., & Santoro, C. (2003). eXAT: An experimental tool for programming multi-agent systems
in erlang. In G. Armano, F. D. Paoli, A. Omicini, & E. Vargiu (Eds.), WOA 2003—Dagli oggetti agli

agenti: sistemi intelligenti e computazione pervasiva, Pitagora Editrice Bologna, Villasimius, CA (pp.
121–127).

124. Di Stefano, A., & Santoro, C. (2005). Using the Erlang language for multi-agent systems implementation.
In International conference on intelligent agent technology. IEEE/WIC/ACM 2005, Compiegne, France

(pp. 679–685). https://doi.org/10.1109/IAT.2005.141.
125. Dignum, V., Vázquez-Salceda, J., & Dignum, F. (2005). OMNI: Introducing social structure, norms and

ontologies into agent organizations. In R. H. Bordini, M. M. Dastani, J. Dix, & A. El Fallah Seghrouchni
(Eds.), Programming multi-agent systems, Lecture notes in computer science (Vol. 3346, pp. 181–198).
Berlin: Springer. https://doi.org/10.1007/978-3-540-32260-3_10.

126. d’Inverno, M., Luck, M., Georgeff, M., Kinny, D., & Wooldridge, M. (2004). The dMARS architecture:
A specification of the distributed multi-agent reasoning system. Autonomous Agents and Multi-Agent

Systems, 9(1–2), 5–53. https://doi.org/10.1023/B:AGNT.0000019688.11109.19.
127. Dix, J., Fisher, M., & Novák, P. (Eds.). (2009). Computational logic in multi-agent systems, Lecture

notes in computer science (Vol. 6214). Berlin: Springer. https://doi.org/10.1007/978-3-642-16867-3.
128. Dix, J., Leite, J., Governatori, G., & Jamroga, W. (Eds.). (2010). Computational logic in multi-agent

systems, Lecture notes in computer science (Vol. 6245). Berlin: Springer. https://doi.org/10.1007/978-
3-642-14977-1.

129. Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–357. https://doi.org/
10.1016/0004-3702(94)00041-X.

130. Dyoub, A., Costantini, S., & De Gasperis, G. (2018). Answer set programming and agents. The Knowl-

edge Engineering Review, 33, e19. https://doi.org/10.1017/S0269888918000164.
131. Egly, U., Gaggl, S. A., & Woltran, S. (2008). Aspartix: Implementing argumentation frameworks using

answer-set programming. In M. Garcia de la Banda & E. Pontelli (Eds.), Logic programming (pp.
734–738). Berlin: Springer. https://doi.org/10.1007/978-3-540-89982-2_67.

132. El Fallah-Seghrouchni, A., & Suna, A. (2004). CLAIM: A computational language for autonomous,
intelligent and mobile agents. In M. M. Dastani & A. El Fallah Seghrouchni (Eds.), Programming

multi-agent systems (ProMAS 2003), Lecture notes in computer science (Vol. 3067, pp. 90–110). Berlin:
Springer. https://doi.org/10.1007/978-3-540-25936-7_5.

133. El-Menshawy, M., Bentahar, J., & Dssouli, R. (2010). Symbolic model checking commitment protocols
using reduction. In Omicini et al. [281] (pp. 185–203). https://doi.org/10.1007/978-3-642-20715-0_11.

134. Emerson, E. A. (1990). Temporal and modal logic. In J. van Leeuwen (Ed.), Formal models and seman-

tics, Handbook of theoretical computer science (pp. 995–1072). Amsterdam: Elsevier. https://doi.org/
10.1016/B978-0-444-88074-1.50021-4.

135. Erol, K., Hendler, J. A., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. In B. Hayes-
Roth & R. E. Korf (Eds.), 12th National conference on artificial intelligence (Vol. 2, pp. 1123–1128).
Seattle, WA: AAAI Press/The MIT Press. http://www.aaai.org/Library/AAAI/1994/aaai94-173.php.

136. Esteva, M., De La Cruz, D., & Sierra, C. (2002). ISLANDER: An electronic institutions editor. In
1st International joint conference on autonomous agents and multiagent systems (AAMAS 2002) (pp.
1045–1052). ACM. https://doi.org/10.1145/545056.545069.

137. Esteva, M., Rosell, B., Rodriguez-Aguilar, J. A., & Arcos, J. L. (2004). AMELI: An agent-based mid-
dleware for electronic institutions. In 3rd International joint conference on autonomous agents and

multiagent systems (pp. 236–243). https://doi.org/10.1109/AAMAS.2004.10060.
138. Fan, X., Yen, J., Miller, M. S., & Volz, R. A. (2005). The semantics of MALLET—An agent teamwork

encoding language. In Leite et al. [226] (pp. 69–91). https://doi.org/10.1007/11493402_5.

123

https://doi.org/10.1007/s10515-011-0088-x
https://doi.org/10.1007/978-3-642-40624-9_17
https://doi.org/10.1007/3-540-45241-9_13
https://doi.org/10.1007/3-540-45241-9_13
https://doi.org/10.1109/IAT.2005.141
https://doi.org/10.1007/978-3-540-32260-3_10
https://doi.org/10.1023/B:AGNT.0000019688.11109.19
https://doi.org/10.1007/978-3-642-16867-3
https://doi.org/10.1007/978-3-642-14977-1
https://doi.org/10.1007/978-3-642-14977-1
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1017/S0269888918000164
https://doi.org/10.1007/978-3-540-89982-2_67
https://doi.org/10.1007/978-3-540-25936-7_5
https://doi.org/10.1007/978-3-642-20715-0_11
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
http://www.aaai.org/Library/AAAI/1994/aaai94-173.php
https://doi.org/10.1145/545056.545069
https://doi.org/10.1109/AAMAS.2004.10060
https://doi.org/10.1007/11493402_5


1 Page 56 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

139. Fernández Díaz, Á., Benac Earle, C., & Fredlund, LÅ. (2019). Pitfalls of Jason concurrency. In Weyns
et al. [351] (pp. 19–33). https://doi.org/10.1007/978-3-030-25693-7_2.

140. Ferrando, A., Dennis, L. A., Ancona, D., Fisher, M., & Mascardi, V. (2018). Recognising assumption
violations in autonomous systems verification. In E. André, S. Koenig, M. Dastani, & G. Sukthankar
(Eds.), 17th International conference on autonomous agents and multiagent systems, AAMAS 2018 (pp.
1933–1935). Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems.
http://dl.acm.org/citation.cfm?id=3238028.

141. Ferrando, S. P., & Onaindia, E. (2012). Defeasible argumentation for multi-agent planning in ambi-
ent intelligence applications. In 11th International conference on autonomous agents and multiagent

systems—Volume 1 (pp. 509–516). Richland, SC: International Foundation for Autonomous Agents and
Multiagent Systems. https://dl.acm.org/doi/10.5555/2343576.2343649.

142. Finger, M., Fisher, M., & Owens, R. (1993). MetateM at work: Modelling reactive systems using exe-
cutable temporal logic. In Sixth international conference on industrial and engineering applications of

artificial intelligence and expert systems. Edinburgh: Gordon and Breach Publishers.
143. Finin, T., Fritzson, R., McKay, D., & McEntire, R. (1994). KQML as an agent communication language.

In A. R. Nabil, B. K. Bharat, & Y. Yesha (Eds.), 3rd International conference on information and

knowledge management (pp. 456–463). New York, NY: ACM. https://doi.org/10.1145/191246.191322.
144. Fisher, M. (1992). A normal form for first-order temporal formulae. In D. Kapur (Ed.), Automated

deduction—CADE-11 (pp. 370–384). Berlin: Springer. https://doi.org/10.1007/3-540-55602-8_178.
145. Fisher, M. (2006). Implementing temporal logics: Tools for execution and proof. In Inoue et al. [198]

(pp. 129–142). https://doi.org/10.1007/11750734_8.
146. Fisher, M. (2006). MetateM: The story so far. In R. H. Bordini, M. M. Dastani, J. Dix, & A. El Fal-

lah Seghrouchni (Eds.), Programming multi-agent systems (ProMAS 2005), Lecture notes in computer

science (Vol. 3862, pp. 3–22). Berlin: Springer. https://doi.org/10.1007/11678823_1.
147. Fisher, M., Bordini, R. H., Hirsch, B., & Torroni, P. (2007). Computational logics and agents: A road

map of current technologies and future trends. Computational Intelligence, 23(1), 61–91. https://doi.
org/10.1111/j.1467-8640.2007.00295.x.

148. Fornara, N., & Colombetti, M. (2003). Defining interaction protocols using a commitment-based agent
communication language. In Proceedings of the second international joint conference on autonomous

agents and multiagent systems (pp. 520–527). ACM, ACM Press. https://doi.org/10.1145/860575.
860659.

149. Franceschini, L. (2019). RML: Runtime monitoring language—A system-agnostic DSL for runtime
verification. In 3rd International conference on art, science, and engineering of programming. New
York, NY: ACM (pp. 28:1–28:3). https://doi.org/10.1145/3328433.3328462.

150. Freitas, A., Schmidt, D., Panisson, A., Meneguzzi, F., Vieira, R., & Bordini, R. H. (2014). Semantic
representations of agent plans and planning problem domains. In Dalpiaz et al. [105] (pp. 351–366).
https://doi.org/10.1007/978-3-319-14484-9_18.

151. Freitas, A., Bordini, R. H., & Vieira, R. (2017). Model-driven engineering of multi-agent systems based
on ontologies. Applied Ontology, 12(2), 157–188. https://doi.org/10.3233/AO-170182.

152. Freitas, A., Bordini, R. H., & Vieira, R. (2019). Designing multi-agent systems from ontology models. In
D. Weyns, V. Mascardi, & A. Ricci (Eds.), Engineering multi-agent systems, Lecture notes in computer

science (Vol. 11375, pp. 76–95). Cham: Springer International Publishing. https://doi.org/10.1007/978-
3-030-25693-7_5.

153. Fukuta, N., Ito, T., & Shintani, T. (2000). MiLog: A mobile agent framework for implementing intelli-
gent information agents with logic programming. In Pacific Rim international workshop on intelligent

information agents (pp. 113–123).
154. Fung, T. H., & Kowalski, R. A. (1997). The IFF proof procedure for abductive logic programming. The

Journal of Logic Programming, 33(2), 151–165. https://doi.org/10.1016/S0743-1066(97)00026-5.
155. Gabbay, D. (1987). Modal and temporal logic programming. In A. Galton (Ed.), Temporal logics and

their applications (pp. 197–237). New York: Academic Press Professional, Inc. https://doi.org/10.5555/
42251.42257.

156. Gaggl, S. A., Linsbichler, T., Maratea, M., & Woltran, S. (2018). Summary report of the second interna-
tional competition on computational models of argumentation. AI Magazine, 39(4), 77–79. https://doi.
org/10.1609/aimag.v39i4.2781.

157. Gammie, P., & Van Der Meyden, R. (2004). MCK: Model checking the logic of knowledge. In R. Alur &
D. A. Peled (Eds.), International conference on computer aided verification, Lecture notes in computer

science (Vol. 3114, pp. 479–483). Boston, MA: Springer. https://doi.org/10.1007/978-3-540-27813-9_
41.

158. Garcia, A. J., & Simari, G. R. (2004). Defeasible logic programming: An argumentative approach. Theory

and Practice of Logic Programming, 4(2), 95–138. https://doi.org/10.1017/S1471068403001674.

123

https://doi.org/10.1007/978-3-030-25693-7_2
http://dl.acm.org/citation.cfm?id=3238028
https://dl.acm.org/doi/10.5555/2343576.2343649
https://doi.org/10.1145/191246.191322
https://doi.org/10.1007/3-540-55602-8_178
https://doi.org/10.1007/11750734_8
https://doi.org/10.1007/11678823_1
https://doi.org/10.1111/j.1467-8640.2007.00295.x
https://doi.org/10.1111/j.1467-8640.2007.00295.x
https://doi.org/10.1145/860575.860659
https://doi.org/10.1145/860575.860659
https://doi.org/10.1145/3328433.3328462
https://doi.org/10.1007/978-3-319-14484-9_18
https://doi.org/10.3233/AO-170182
https://doi.org/10.1007/978-3-030-25693-7_5
https://doi.org/10.1007/978-3-030-25693-7_5
https://doi.org/10.1016/S0743-1066(97)00026-5
https://doi.org/10.5555/42251.42257
https://doi.org/10.5555/42251.42257
https://doi.org/10.1609/aimag.v39i4.2781
https://doi.org/10.1609/aimag.v39i4.2781
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1017/S1471068403001674


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 57 of 67 1

159. Garcia-Serrano, A., Vioque, D. T., Carbone, F., & Mendez, V. (2003). FIPA-compliant MAS development
for road traffic management with a knowledge-based approach: The TRACK-R agents. In Challenges

open agent systems workshop, Melbourne, Australia.
160. Gelernter, D. (1985). Generative communication in Linda. ACM Transactions on Programming Lan-

guages and Systems, 7(1), 80–112. https://doi.org/10.1145/2363.2433.
161. Gelfond, M., & Lifschitz, V. (1993). Representing action and change by logic programs. The Journal of

Logic Programming, 17(2–4), 301–321. https://doi.org/10.1016/0743-1066(93)90035-F.
162. Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubézy, M., Eriksson, H., et al. (2003).

The evolution of Protégé: An environment for knowledge-based systems development. International

Journal of Human-Computer Studies, 58(1), 89–123. https://doi.org/10.1016/S1071-5819(02)00127-1.
163. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., & Turner, H. (2004). Nonmonotonic causal theories.

Artificial Intelligence, 153(1), 49–104. https://doi.org/10.1016/j.artint.2002.12.001. Logical formaliza-
tions and commonsense reasoning

164. Gomes, A. S., Alferes, J. J., & Swift, T. (2010). Implementing query answering for hybrid MKNF
knowledge bases. In M. Carro & R. Peña (Eds.), Practical aspects of declarative languages, Lecture

notes in computer science (Vol. 5937, pp. 25–39). Berlin: Springer. https://doi.org/10.1007/978-3-642-
11503-5_4.

165. Graja, Z., Migeon, F., Maurel, C., Gleizes, M. P., & Kacem, A. H. (2014). A stepwise refinement based
development of self-organizing multi-agent systems: Application to the foraging ants. In Dalpiaz et al.
[105] (pp. 40–57). https://doi.org/10.1007/978-3-319-14484-9_3.

166. Hahn, C., Madrigal-Mora, C., & Fischer, K. (2009). A platform-independent metamodel for multiagent
systems. Autonomous Agents and Multi-Agent Systems, 18(2), 239–266. https://doi.org/10.1007/s10458-
008-9042-0.

167. Håkansson, A., Nguyen, N. T., Hartung, R. L., Howlett, R. J., & Jain, L. C. (Eds.). (2009). Agent

and multi-agent systems: Technologies and applications, Lecture notes in computer science, 3rd KES

international symposium, KES-AMSTA 2009, Uppsala, Sweden, June 3–5, 2009. Proceedings (Vol.
5559). Berlin: Springer. https://doi.org/10.1007/978-3-642-01665-3.

168. Halaç, T. G., Çetin, Ö., Ekinci, E. E., Erdur, R. C., & Dikenelli, O. (2009). Executing agent plans by
reducing to workflows. In M. Baldoni, C. Baroglio, J. Bentahar, G. Boella, M. Cossentino, M. Dastani, et
al. (Eds.), 2nd Multi-agent logics, languages, and organisations federated workshops (Vol. 494). http://
ceur-ws.org/Vol-494/ladspaper10.pdf.

169. Hashmi, A., & Fallah-Seghrouchni, A. E. (2009). Temporal planning in dynamic environments for P-
CLAIM agents. In M. Baldoni, C. Baroglio, J. Bentahar, G. Boella, M. Cossentino, M. Dastani, et al.
(Eds.), 2nd Multi-agent logics, languages, and organisations federated workshops (Vol. 494). http://
ceur-ws.org/Vol-494/ladspaper8.pdf.

170. Havelund, K., & Pressburger, T. (2000). Model checking JAVA programs using JAVA pathfinder. Inter-

national Journal on Software Tools for Technology Transfer (STTT), 2(4), 366–381. https://doi.org/10.
1007/s100090050043.

171. Hayashi, H., Cho, K., & Ohsuga, A. (2005). A new HTN planning framework for agents in dynamic
environments. In J. Dix & J. Leite (Eds.), Computational logic in multi-agent systems (CLIMA 2004),

Lecture notes in computer science (Vol. 3259). Berlin: Springer (pp. 108–133). https://doi.org/10.1007/
978-3-540-30200-1_7.

172. Hayashi, H., Tokura, S., Hasegawa, T., & Ozaki, F. (2005). Dynagent: An incremental forward-chaining
HTN planning agent in dynamic domains. In Baldoni et al. [20] (pp. 171–187). https://doi.org/10.1007/
11691792_11.

173. Helsinger, A., Thome, M., & Wright, T. (2004). Cougaar: A scalable, distributed multi-agent architecture.
In International conference on systems, man and cybernetics (Vol. 2, pp. 1910–1917). The Hague: IEEE.
https://doi.org/10.1109/ICSMC.2004.1399959.

174. Hendler, J. (2001). Agents and the semantic web. IEEE Intelligent Systems, 16(2), 30–37. https://doi.
org/10.1109/5254.920597.

175. Henz, M., Smolka, G., & Würtz, J. (1993). Oz—A programming language for multi-agent systems. In
R. Bajcsy (Ed.), 13th International joint conference on artificial intelligence (pp. 404–409). Chambéry:
Morgan Kaufmann Publishers Inc.

176. Higgins, J. P. T., & Green, S. (Eds.). (2008). Cochrane handbook for systematic reviews of interventions,

Cochrane book series. New York: Wiley. https://doi.org/10.1002/9780470712184.
177. Hill, E. F. (2003). Jess in action: Java rule-based systems. Greenwich, CT: Manning Publications Co.
178. Himoff, J., Skobelev, P., & Wooldridge, M. (2005). MAGENTA technology. In 4th International joint

conference on autonomous agents and multiagent systems (pp. 60–66). ACM. https://doi.org/10.1145/
1082473.1082805.

123

https://doi.org/10.1145/2363.2433
https://doi.org/10.1016/0743-1066(93)90035-F
https://doi.org/10.1016/S1071-5819(02)00127-1
https://doi.org/10.1016/j.artint.2002.12.001
https://doi.org/10.1007/978-3-642-11503-5_4
https://doi.org/10.1007/978-3-642-11503-5_4
https://doi.org/10.1007/978-3-319-14484-9_3
https://doi.org/10.1007/s10458-008-9042-0
https://doi.org/10.1007/s10458-008-9042-0
https://doi.org/10.1007/978-3-642-01665-3
http://ceur-ws.org/Vol-494/ladspaper10.pdf
http://ceur-ws.org/Vol-494/ladspaper10.pdf
http://ceur-ws.org/Vol-494/ladspaper8.pdf
http://ceur-ws.org/Vol-494/ladspaper8.pdf
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/978-3-540-30200-1_7
https://doi.org/10.1007/978-3-540-30200-1_7
https://doi.org/10.1007/11691792_11
https://doi.org/10.1007/11691792_11
https://doi.org/10.1109/ICSMC.2004.1399959
https://doi.org/10.1109/5254.920597
https://doi.org/10.1109/5254.920597
https://doi.org/10.1002/9780470712184
https://doi.org/10.1145/1082473.1082805
https://doi.org/10.1145/1082473.1082805


1 Page 58 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

179. Hindriks, K. V. (2009). Programming rational agents in GOAL. In A. El Fallah Seghrouchni, J. Dix, M.
Dastani, & R. H. Bordini (Eds.), Multi-agent programming: Languages, tools and applications. Boston,
MA: Springer (pp. 119–157). https://doi.org/10.1007/978-0-387-89299-3_4.

180. Hindriks, K. V. (2014). The shaping of the agent-oriented mindset. In Dalpiaz et al. [105] (pp. 1–14).
https://doi.org/10.1007/978-3-319-14484-9_1.

181. Hindriks, K. V., & van Riemsdijk, M. B. (2008). Using temporal logic to integrate goals and qualitative
preferences into agent programming. In Baldoni et al. [21] (pp. 215–232). https://doi.org/10.1007/978-
3-540-93920-7_14.

182. Hindriks, K. V., de Boer, F. S., van der Hoek, W., & Meyer, J. C. (1999). Agent programming
in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4), 357–401. https://doi.org/10.1023/A:
1010084620690.

183. Hindriks, K. V., de Boer, F. S., van der Hoek, W., & Meyer, J. J. C. (2000). Agent programming
with declarative goals. In C. Castelfranchi & Y. Lespérance (Eds.) Intelligent agents VII. Agent theories

architectures and languages, 7th international workshop, ATAL 2000, Boston, MA, USA, July 7–9, 2000,

proceedings, Lecture notes in computer science (Vol. 1986, pp. 228–243). Berlin: Springer. https://doi.
org/10.1007/3-540-44631-1_16.

184. Hjelmblom, M. (2008). Deontic action-logic multi-agent systems in Prolog. Tech. Rep. 30, Uppsala
University, this report is originally a thesis work for degree of Master of Science in Computer Science
at Uppsala University. The thesis was written and presented under the author’s former name, Magnus
Blom.

185. Hjelmblom, M., & Odelstad, J. (2009). jDALMAS: A Java/Prolog framework for deontic action-logic
multi-agent systems. In Håkansson et al. [167] 3rd KES International symposium, KES-AMSTA 2009,

Uppsala, Sweden, June 3–5, 2009. Proceedings (pp. 110–119). https://doi.org/10.1007/978-3-642-
01665-3_12.

186. Hluchý, L., Laclavik, M., Balogh, Z., & Babik, M. (2006). Agentowl: Semantic knowledge model and
agent architecture. Computers and Artificial Intelligence, 25(5), 421–439.

187. Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: Toward a new foundation for human–
computer interaction research. ACM Transactions on Computer-Human Interaction (TOCHI), 7(2),
174–196. https://doi.org/10.1145/353485.353487.

188. Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on Software Engineering, 23(5),
279–295. https://doi.org/10.1109/32.588521.

189. Hopton, L., Cliffe, O., Vos, M.D., & Padget, J. (2009). InstQL: A query language for virtual institutions
using answer set programming. In Dix et al. [127] (pp. 102–121). https://doi.org/10.1007/978-3-642-
16867-3_6.

190. Horn, A. (1951). On sentences which are true of direct unions of algebras. Journal of Symbolic Logic,
16(1), 14–21. https://doi.org/10.2307/2268661.

191. Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M., et al. (2004). SWRL: A
semantic web rule language combining OWL and RuleML. https://www.w3.org/Submission/SWRL/.

192. Howden, N., Rönnquist, R., Hodgson, A., & Lucas, A. (2001). JACK intelligent agents—Summary of
an agent infrastructure. In 2nd International workshop on infrastructure for agents, MAS, and scalable

MAS.
193. Hubner, J. F., Sichman, J. S., & Boissier, O. (2002). Moise+: Towards a structural, functional, and

deontic model for MAS organization. In First international joint conference on autonomous agents and

multiagent systems: Part 1 (AAMAS ’02) (pp. 501–502). New York, NY: ACM. https://doi.org/10.1145/
544741.544858.

194. Hübner, J. F., Boissier, O., & Bordini, R. H. (2010). From organisation specification to normative
programming in multi-agent organisations. In Dix et al. [128] (pp. 117–134). https://doi.org/10.1007/
978-3-642-14977-1_11.

195. Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. J., & Van Der Hoek, W. (2000). Verification
within the KARO agent theory. In J. Rash, W. Truszkowski, M. Hinchey, C. Rouff, & D. Gordon (Eds.),
Formal approaches to agent-based systems (Vol. 1871, pp. 33–47). Berlin: Springer. https://doi.org/10.
1007/3-540-45484-5_3.

196. Iglesias, C. A., Garijo, M., González, J. C., & Velasco, J. R. (1998). Analysis and design of multiagent
systems using MAS-CommonKADS. In M. P. Singh, A. Rao, & M. J. Wooldridge (Eds.), Intelligent

agents IV agent theories, architectures, and languages (pp. 313–327). Berlin: Springer. https://doi.org/
10.1007/bfb0026768.

197. Ilghami, O. (2006). Documentation for JSHOP2. Technical Report CS-TR-4694, Department of Com-
puter Science, University of Maryland.

198. Inoue, K., Satohand, F., & Toni, K. (Eds.). (2006). Computational logic in multi-agent systems, Lecture

notes in computer science (Vol. 4371). Berlin: Springer. https://doi.org/10.1007/978-3-540-69619-3.

123

https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1007/978-3-319-14484-9_1
https://doi.org/10.1007/978-3-540-93920-7_14
https://doi.org/10.1007/978-3-540-93920-7_14
https://doi.org/10.1023/A:1010084620690
https://doi.org/10.1023/A:1010084620690
https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1007/978-3-642-01665-3_12
https://doi.org/10.1007/978-3-642-01665-3_12
https://doi.org/10.1145/353485.353487
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-642-16867-3_6
https://doi.org/10.1007/978-3-642-16867-3_6
https://doi.org/10.2307/2268661
https://www.w3.org/Submission/SWRL/
https://doi.org/10.1145/544741.544858
https://doi.org/10.1145/544741.544858
https://doi.org/10.1007/978-3-642-14977-1_11
https://doi.org/10.1007/978-3-642-14977-1_11
https://doi.org/10.1007/3-540-45484-5_3
https://doi.org/10.1007/3-540-45484-5_3
https://doi.org/10.1007/bfb0026768
https://doi.org/10.1007/bfb0026768
https://doi.org/10.1007/978-3-540-69619-3


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 59 of 67 1

199. Inter4QL. (2019). Homepage. http://4ql.org/a-downloads-inter4ql.html.
200. Jaffar, J., & Lassez, J. (1987). Constraint logic programming. In 14th ACM SIGACT-SIGPLAN sympo-

sium on principles of programming languages (pp. 111–119). Munich: ACM. https://doi.org/10.1145/
41625.41635.

201. Jensen, A. S., Dignum, V., & Villadsen, J. (2014). The AORTA architecture: Integrating organizational
reasoning in Jason. In Dalpiaz et al. [105] (pp. 127–145). https://doi.org/10.1007/978-3-319-14484-9_
7.

202. Jongmans, S. S. T. Q., Hindriks, K. V., & van Riemsdijk, M. B. (2010). Model checking agent programs
by using the program interpreter. In Dix et al. [128] (pp. 219–237). https://doi.org/10.1007/978-3-642-
14977-1_17.

203. Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Raimondi, F., & Szreter, M. (2006).
Comparing BDD and SAT based techniques for model checking Chaum’s dining cryptographers protocol.
Fundamenta Informaticae, 72(1–3), 215–234.

204. Kakas, A. C., Kowalski, R. A., & Toni, F. (1992). Abductive logic programming. Journal of Logic and

Computation, 2(6), 719–770. https://doi.org/10.1093/logcom/2.6.719.
205. Kanger, S. (1971). New foundations for ethical theory. In R. Hilpinen (Ed.), Deontic logic: Introductory

and systematic readings, synthese library (Studies in epistemology, logic, methodology, and philosophy

of science) (Vol. 33, pp. 36–58). Dordrecht: Springer. https://doi.org/10.1007/978-94-010-3146-2_2.
206. Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., Linkman, S. (2009). Systematic

literature reviews in software engineering—A systematic literature review. Information and Software

Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009. Special section—Most cited arti-
cles in 2002 and regular research papers

207. Klapiscak, T., & Bordini, R. H. (2008). JASDL: A practical programming approach combining agent
and semantic web technologies. In Baldoni et al. [21] (pp. 91–110). https://doi.org/10.1007/978-3-540-
93920-7_7.

208. Koeman, V. J., Hindriks, K. V., & Jonker, C. M. (2016). Using automatic failure detection for cognitive
agents in Eclipse (AAMAS 2016 DEMONSTRATION). In M. Baldoni, J. P. Muller, I. Nunes, & R.
Zalila-Wenkstern (Eds.), Engineering multi-agent systems, Lecture notes in computer science (Vol.
10093, pp. 59–80). Cham: Springer. https://doi.org/10.1007/978-3-319-50983-9_4.

209. Köhler-Bußmeier, M., & Wester-Ebbinghaus, M. (2009). SONAR: A multi-agent infrastructure for active
application architectures and inter-organisational information systems. In L. Braubach, W. van der Hoek,
P. Petta, & A. Pokahr (Eds.), Multiagent system technologies, Lecture notes in computer science (Vol.
5774, pp. 248–257). Berlin: Springer. https://doi.org/10.1007/978-3-642-04143-3_27.

210. Kollia, I., Glimm, B., & Horrocks, I. (2011). SPARQL query answering over owl ontologies. In G.
Antoniou, M. Grobelnik, E. Simperl, B. Parsia, D. Plexousakis, P. De Leenheer, et al. (Eds.), The

semantic web: Research and applications, Lecture notes in computer science (Vol. 6643, pp. 382–396).
Berlin: Springer. https://doi.org/10.1007/978-3-642-21034-1_26.

211. Konnerth, T., Hirsch, B., & Albayrak, S. (2006). JADL—An agent description language for smart agents.
In Baldoni and Endriss [17] (pp. 141–155). https://doi.org/10.1007/11961536_10.

212. Kowalski, R. A. (1995). Logical foundations for multi-agent systems. In M. Alpuente & M. I. Sessa
(Eds.), Conference on declarative programming, GULP-PRODE’95, Marina di Vietri, Italy (pp. 39–40).

213. Kowalski, R. A., & Sadri, F. (1999). From logic programming towards multi-agent systems. Annals of

Mathematics and Artificial Intelligence, 25(3–4), 391–419. https://doi.org/10.1023/A:1018934223383.
214. Kraus, S., Sycara, K., & Evenchik, A. (1998). Reaching agreements through argumentation: A logi-

cal model and implementation. Artificial Intelligence, 104(1–2), 1–69. https://doi.org/10.1016/S0004-
3702(98)00078-2.

215. Kravari, K., Kontopoulos, E., & Bassiliades, N. (2010). EMERALD: A multi-agent system for
knowledge-based reasoning interoperability in the semantic web. In S. Konstantopoulos, S. Peranto-
nis, V. Karkaletsis, C. D. Spyropoulos, & G. Vouros (Eds.), Artificial intelligence: Theories, models and

applications, Lecture notes in computer science (Vol. 6040, pp. 173–182). Berlin: Springer. https://doi.
org/10.1007/978-3-642-12842-4_21.

216. Kravari, K., Papatheodorou, K., Antoniou, G., & Bassiliades, N. (2011). Extending a multi-agent rea-
soning interoperability framework with services for the semantic web logic and proof layers. In N.
Bassiliades, G. Governatori, & A. Paschke (Eds.), Rule-based reasoning, programming, and applica-

tions (pp. 29–43). Berlin: Springer. https://doi.org/10.1007/978-3-642-22546-8_4.
217. Kroiß, C. (2014). A statistical model checker for situation calculus based multi-agent models. In 2014

International conference on autonomous agents and multi-agent systems (AAMAS’14), IFAAMAS, Rich-

land, SC, USA (pp. 1567–1568). http://dl.acm.org/citation.cfm?id=2615731.2616065.

123

http://4ql.org/a-downloads-inter4ql.html
https://doi.org/10.1145/41625.41635
https://doi.org/10.1145/41625.41635
https://doi.org/10.1007/978-3-319-14484-9_7
https://doi.org/10.1007/978-3-319-14484-9_7
https://doi.org/10.1007/978-3-642-14977-1_17
https://doi.org/10.1007/978-3-642-14977-1_17
https://doi.org/10.1093/logcom/2.6.719
https://doi.org/10.1007/978-94-010-3146-2_2
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1007/978-3-540-93920-7_7
https://doi.org/10.1007/978-3-540-93920-7_7
https://doi.org/10.1007/978-3-319-50983-9_4
https://doi.org/10.1007/978-3-642-04143-3_27
https://doi.org/10.1007/978-3-642-21034-1_26
https://doi.org/10.1007/11961536_10
https://doi.org/10.1023/A:1018934223383
https://doi.org/10.1016/S0004-3702(98)00078-2
https://doi.org/10.1016/S0004-3702(98)00078-2
https://doi.org/10.1007/978-3-642-12842-4_21
https://doi.org/10.1007/978-3-642-12842-4_21
https://doi.org/10.1007/978-3-642-22546-8_4
http://dl.acm.org/citation.cfm?id=2615731.2616065


1 Page 60 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

218. Kroiß, C., & Bureš, T. (2016). Logic-based modeling of information transfer in cyber-physical multi-
agent systems. Future Generation Computer Systems, 56(C), 124–139. https://doi.org/10.1016/j.future.
2015.09.013.

219. Kwiatkowska, M., Norman, G., & Parker, D. (2002). PRISM: Probabilistic symbolic model checker. In
T. Field, P. G. Harrison, J. Bradley, & U. Harder (Eds.), Computer performance evaluation: Modelling

techniques and tools, Lecture notes in computer science (Vol. 2324, pp. 200–204). Berlin: Springer.
https://doi.org/10.1007/3-540-46029-2_13.

220. Lam, H. P., & Governatori, G. (2009). The making of SPINdle. In A. Paschke, G. Governatori, & J.
Hall (Eds.), Rule interchange and applications (RuleML 2009), RuleML (pp. 315–322). Berlin: Springer.
https://doi.org/10.1007/978-3-642-04985-9_29.

221. Lange, D. B., & Mitsuru, O. (1998). Programming and deploying Java Mobile Agents Aglets. Boston,
MA: Addison-Wesley Longman Publishing Co., Inc.

222. Larsen, J. B. (2019). Adding organizational reasoning to agent-based simulations in GAMA. In Weyns
et al. [351] (pp. 242–262). https://doi.org/10.1007/978-3-030-25693-7_13.

223. Lee, J., Padget, J., Logan, B., Dybalova, D., & Alechina, N. (2014). N-Jason: Run-time norm compliance
in AgentSpeak(l). In Dalpiaz et al. [105] (pp. 367–387). https://doi.org/10.1007/978-3-319-14484-9_
19.

224. Leite, J. A., Alferes, J. J., & Pereira, L. M. (2002). MINERVA—A dynamic logic programming agent
architecture. In Intelligent agents VIII, Lecture notes in computer science (Vol. 2333, pp. 141–157).
Berlin: Springer. https://doi.org/10.1007/3-540-45448-9_11.

225. Leite, J. A., Omicini, A., Sterling, L., & Torroni, P. (Eds.). (2004). Declarative agent languages and

technologies I, Lecture notes in computer science (Vol. 2990). Berlin: Springer. https://doi.org/10.1007/
b97923.

226. Leite, J. A., Omicini, A., Torroni, P., & Yolum, P. (Eds.). (2005). Declarative agent languages and

technologies II, Lecture notes in computer science (Vol. 3476). Berlin: Springer. https://doi.org/10.
1007/b136890.

227. Leite, J. A., Son, T. C., Torroni, P., van der Torre, L., & Woltran, S. (Eds.). (2013). Computational logic

in multi-agent systems, Lecture notes in computer science (Vol. 8143). Berlin: Springer. https://doi.org/
10.1007/978-3-642-40624-9.

228. Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., & Scherl, R. B. (1997). Golog: A logic programming
language for dynamic domains. The Journal of Logic Programming, 31(1–3), 59–83.

229. Li, S. (2007). AgentStra: An Internet-based multi-agent intelligent system for strategic decision-making.
Expert Systems with Applications, 33(3), 565–571. https://doi.org/10.1016/j.eswa.2006.05.018.

230. Liffiton, M. H., & Sakallah, K. A. (2007). Algorithms for computing minimal unsatisfiable subsets of
constraints. Journal of Automated Reasoning, 40(1), 1–33. https://doi.org/10.1007/s10817-007-9084-
z.

231. Lifschitz, V. (1999). Action languages, answer sets, and planning. In K. R. Apt, V. W. Marek, M.
Truszczynski, & D. S. Warren (Eds.), The logic programming paradigm—A 25-year perspective, Artifi-

cial intelligence (pp. 357–373). Berlin: Springer. https://doi.org/10.1007/978-3-642-60085-2_16.
232. Lillis, D., & Collier, R. W. (2010). ACRE: Agent communication reasoning engine. In O. Boissier, A. E.

Fallah-Seghrouchni, S. Hassas, & N. Maudet (Eds.), Proceedings of the multi-agent logics, languages,

and organisations federated workshops (MALLOW 2010), CEUR workshop proceedings (Vol. 627).
https://CEUR-WS.org. http://ceur-ws.org/Vol-627/lads_1.pdf.

233. Lindahl, L. (2012). Position and change: A study in law and logic, Synthese library (Vol. 112). Berlin:
Springer. https://doi.org/10.1007/978-94-010-1202-7.

234. Lloyd, J. W. (1987). Foundations of logic programming (2nd ed.). Berlin: Springer. https://doi.org/10.
1007/978-3-642-83189-8.

235. Lomuscio, A., & Raimondi, F. (2006). The complexity of model checking concurrent programs against
CTLK specifications. In Baldoni and Endriss [17] (pp. 29–42). https://doi.org/10.1007/11961536_3.

236. Lomuscio, A., & Raimondi, F. (2006). MCMAS: A model checker for multi-agent systems. In H.
Hermanns & J. Palsberg (Eds.), Tools and algorithms for the construction and analysis of systems.

TACAS 2006, Lecture notes in computer science (Vol. 3920, pp. 450–454). Berlin: Springer. https://doi.
org/10.1007/11691372_31.

237. Lomuscio, A., Qu, H., & Raimondi, F. (2017). MCMAS: An open-source model checker for the verifi-
cation of multi-agent systems. International Journal on Software Tools for Technology Transfer, 19(1),
9–30. https://doi.org/10.1007/s10009-015-0378-x.

238. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G. (2005). Mason: A multiagent simulation
environment. Simulation, 81(7), 517–527. https://doi.org/10.1177/0037549705058073.

123

https://doi.org/10.1016/j.future.2015.09.013
https://doi.org/10.1016/j.future.2015.09.013
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-642-04985-9_29
https://doi.org/10.1007/978-3-030-25693-7_13
https://doi.org/10.1007/978-3-319-14484-9_19
https://doi.org/10.1007/978-3-319-14484-9_19
https://doi.org/10.1007/3-540-45448-9_11
https://doi.org/10.1007/b97923
https://doi.org/10.1007/b97923
https://doi.org/10.1007/b136890
https://doi.org/10.1007/b136890
https://doi.org/10.1007/978-3-642-40624-9
https://doi.org/10.1007/978-3-642-40624-9
https://doi.org/10.1016/j.eswa.2006.05.018
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1007/978-3-642-60085-2_16
https://CEUR-WS.org
http://ceur-ws.org/Vol-627/lads_1.pdf
https://doi.org/10.1007/978-94-010-1202-7
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1007/11961536_3
https://doi.org/10.1007/11691372_31
https://doi.org/10.1007/11691372_31
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1177/0037549705058073


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 61 of 67 1

239. Lützenberger, M., Küster, T., & Konnerth, T. (2013). JIAC V—A MAS framework for industrial appli-
cations. In International conference on autonomous agents and multi-agent systems, IFAAMAS (pp.
1189–1190). http://dl.acm.org/citation.cfm?id=2485136.

240. Lützenberger, M., Konnerth, T., & Küster, T. (2015). Programming of multiagent applications with
JIAC. In P. Leitão & S. Karnouskos (Eds.), Industrial agents: Emerging applications of software agents

in industry (pp. 381–398). Boston: Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-800341-1.
00021-8.

241. Ma, J., Russo, A., Broda, K., & Clark, K. (2008). DARE: A system for distributed abductive reasoning.
Autonomous Agents and Multi-Agent Systems, 16(3), 271–297. https://doi.org/10.1007/s10458-008-
9028-y.

242. Malheiro, B., & Oliveira, E. (2001). Argumentation as distributed belief revision: Conflict resolution
in decentralised co-operative multi-agent systems. In P. Brazdil & A. Jorge (Eds.), Progress in artificial
intelligence, lecture notes in computer science (Vol. 2258, pp. 205–218). Berlin: Springer. https://doi.
org/10.1007/3-540-45329-6_22.

243. Maluszyński, J., & Szalas, A. (2011). Logical foundations and complexity of 4QL, a query language
with unrestricted negation. Journal of Applied Non-Classical Logics, 21(2), 211–232. https://doi.org/
10.3166/jancl.21.211-232.

244. Martelli, M., Mascardi, V., & Zini, F. (1999). Specification and simulation of multi-agent systems in
caselp. In M. C. Meo & M. V. Ferro (Eds.), Conference on declarative programming, AGP’99, L’Aquila

(pp. 13–28).
245. Mascardi, V., Martelli, M., & Sterling, L. (2004). Logic-based specification languages for intelligent

software agents. Theory and Practice of Logic Programming, 4(4), 429–494. https://doi.org/10.1017/
S1471068404002029.

246. Mascardi, V., Demergasso, D., & Ancona, D. (2005). Languages for programming BDI-style agents: An
overview. In 6th Workshop “From objects to agents” (WOA 2005) (Vol. 2005, pp. 9–15).

247. Mascardi, V., Martelli, M., & Gungui, I. (2007). DCaseLP: A prototyping environment for multi-language
agent systems. In M. Dastani, A. E. Fallah-Seghrouchni, J. Leite, & P. Torroni (Eds.), Languages,

methodologies and development tools for multi-agent systems, Lecture notes in computer science, 1st

international workshop, LADS 2007, Durham, UK, September 4–6, 2007 (Vol. 5118, pp. 139–155).
Berlin: Springer. https://doi.org/10.1007/978-3-540-85058-8_9. Revised selected papers.

248. Mascardi, V., Hendler, J., & Papaleo, L. (2012). Semantic web and declarative agent languages and
technologies: Current and future trends. In Baldoni et al. [25]. https://doi.org/10.1007/978-3-642-37890-
4_12.

249. Mascardi, V., Ancona, D., Barbieri, M., Bordini, R. H., & Ricci, A. (2014). CooL-AgentSpeak: Endowing
AgentSpeak-DL agents with plan exchange and ontology services. Web Intelligence and Agent Systems,
12(1), 83–107. https://doi.org/10.3233/WIA-140287.

250. Matwin, S., Szpakowicz, S., Koperczak, Z., Kersten, G. E., & Michalowski, W. (1989). Negoplan: An
expert system shell for negotiation support. IEEE Intelligent Systems, 4(4), 50–62. https://doi.org/10.
1109/64.43285.

251. McCabe, F. G., & Clark, K. L. (1995). April—Agent process interaction language. In M. J. Wooldridge
& N. R. Jennings (Eds.), Intelligent agents, Lecture notes in computer science (Vol. 890, pp. 324–340).
Berlin: Springer. https://doi.org/10.1007/3-540-58855-8_21.

252. McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation by machine,
part I. Communications of the ACM, 3(4), 184–195. https://doi.org/10.1145/367177.367199.

253. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., et al. (1998). PDDL—The

planning domain definition language. https://homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.
pdf.

254. McIlraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic web services. IEEE Intelligent Systems, 16(2),
46–53. https://doi.org/10.1109/5254.920599.

255. Meneguzzi, F., & Luck, M. (2007). Composing high-level plans for declarative agent programming. In
M. Baldoni, T. C. Son, M. B. van Riemsdijk, & M. Winikoff (Eds.), Declarative agent languages and

technologies V, Lecture notes in computer science (Vol. 4897, pp. 69–85). Berlin: Springer. https://doi.
org/10.1007/978-3-540-77564-5_5.

256. Metakides, G., & Nerode, A. (1996). Foreword. In Studies in computer science and artificial intelligence

(Vol. 13, pp. vii–ix). Amsterdam: Elsevier. https://doi.org/10.1016/S0924-3542(96)80008-9.
257. Morales, J. L., Sánchez, P., & Alonso, D. (2014). A systematic literature review of the teleo-reactive

paradigm. Artificial Intelligence Review, 42(4), 945–964. https://doi.org/10.1007/s10462-012-9350-2.
258. Moreira, Á. F., Vieira, R., Bordini, R. H., & Hübner, J. F. (2005). Agent-oriented programming

with underlying ontological reasoning. In Baldoni et al. [20] (pp. 155–170). https://doi.org/10.1007/
11691792_10.

123

http://dl.acm.org/citation.cfm?id=2485136
https://doi.org/10.1016/B978-0-12-800341-1.00021-8
https://doi.org/10.1016/B978-0-12-800341-1.00021-8
https://doi.org/10.1007/s10458-008-9028-y
https://doi.org/10.1007/s10458-008-9028-y
https://doi.org/10.1007/3-540-45329-6_22
https://doi.org/10.1007/3-540-45329-6_22
https://doi.org/10.3166/jancl.21.211-232
https://doi.org/10.3166/jancl.21.211-232
https://doi.org/10.1017/S1471068404002029
https://doi.org/10.1017/S1471068404002029
https://doi.org/10.1007/978-3-540-85058-8_9
https://doi.org/10.1007/978-3-642-37890-4_12
https://doi.org/10.1007/978-3-642-37890-4_12
https://doi.org/10.3233/WIA-140287
https://doi.org/10.1109/64.43285
https://doi.org/10.1109/64.43285
https://doi.org/10.1007/3-540-58855-8_21
https://doi.org/10.1145/367177.367199
https://homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.pdf
https://homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.pdf
https://doi.org/10.1109/5254.920599
https://doi.org/10.1007/978-3-540-77564-5_5
https://doi.org/10.1007/978-3-540-77564-5_5
https://doi.org/10.1016/S0924-3542(96)80008-9
https://doi.org/10.1007/s10462-012-9350-2
https://doi.org/10.1007/11691792_10
https://doi.org/10.1007/11691792_10


1 Page 62 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

259. Moszkowski, B. C. (1986). Executing temporal logic programs. Cambridge: Cambridge University
Press.

260. Motomura, S., Kawamura, T., & Sugahara, K. (2005). Maglog: A mobile agent framework for distributed
models. In 17th IASTED PDCS international conference, Phoenix, AZ, USA (pp. 414–420). http://www.
actapress.com/Abstract.aspx?paperId=22336.

261. Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13(3–4), 245–286.
https://doi.org/10.1007/BF03037227.

262. Muldoon, C., O’Hare, G. M. P., Collier, R., & O’Grady, M. J. (2006). Agent factory micro edition:
A framework for ambient applications. In V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, & J.
Dongarra (Eds.), Computational science—ICCS 2006, Lecture notes in computer science (Vol. 3993,
pp. 727–734). Berlin: Springer. https://doi.org/10.1007/11758532_95.

263. Mulrow, C. D. (1994). Systematic reviews: Rationale for systematic reviews. British Medical Journal,
309(6954), 597–599. https://doi.org/10.1136/bmj.309.6954.597.

264. Nardini, E., Omicini, A., & Viroli, M. (2011). Description spaces with fuzziness. In M. J. Palakal, C.
C. Hung, W. Chu, & W. E. Wong (Eds.), 26th Annual ACM symposium on applied computing (SAC

2011), artificial intelligence and agents, information systems, and software development, ACM, Tunghai

University, TaiChung, Taiwan (Vol. II, pp. 869–876). https://doi.org/10.1145/1982185.1982375.
265. Nardini, E., Omicini, A., & Viroli, M. (2013). Semantic tuple centres. Science of Computer Programming,

78(5), 569–582. https://doi.org/10.1016/j.scico.2012.10.004. Special section: Self-organizing coordina-
tion.

266. Nau, D., Cao, Y., Lotem, A., & Munoz-Avila, H. (1999). SHOP: Simple hierarchical ordered planner.
In 16th International joint conference on artificial intelligence (IJCAI 1999) (Vol. 2, pp. 968–973).
Stockholm: Morgan Kaufmann Publishers Inc. https://www.ijcai.org/Proceedings/1999-2.

267. Nau, D. S., Au, T., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., et al. (2003). SHOP2: An HTN
planning system. Journal of Artificial Intelligence Research, 20, 379–404. https://doi.org/10.1613/jair.
1141.

268. Niewiadomski, A., Penczek, W., & Szreter, M. (2004). VerICS 2004: A model checker for real time
and multi-agent systems. In International workshop on concurrency, specification and programming

(CS&P’04) (Vol. 170, pp. 88–99). Humboldt-Univeristaet, Berlino, Informatik-Berichte.
269. Nilsson, N. J. (2001). Teleo-reactive programs and the triple-tower architecture. Electronic Transactions

on Artificial Intelligence, 5(B), 99–110.
270. Nowostawski, M., Purvis, M. K., Oliveira, M. D., & Cranefield, S. (2006). Institutions in the OPAL

multi-agent system. Journal of Intelligent and Fuzzy Systems, 17(3), 191–207.
271. Nute, D. (1988). Defeasible reasoning: A philosophical analysis in Prolog. In J. H. Fetzer (Ed.), Aspects

of artificial intelligence (pp. 251–288). Dordrecht: Springer.
272. Nute, D. (1994). Defeasible logic. In D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.), Handbook

of logic in artificial intelligence and logic programming (chapter 7) (Vol. 3, pp. 353–395). New York,
NY: Oxford University Press, Inc.

273. Omicini, A. (2001). SODA: Societies and infrastructures in the analysis and design of agent-based
systems. In P. Ciancarini & M. J. Wooldridge (Eds.), Agent-oriented software engineering, Lecture

notes in computer science, 1st international workshop (AOSE 2000), Limerick, Ireland, 10 June 2000

(Vol. 1957, pp. 185–193). Berlin: Springer. https://doi.org/10.1007/3-540-44564-1_12. Revised papers.
274. Omicini, A., & Calegari, R. (2019). Injecting (micro)intelligence in the IoT: Logic-based approaches

for (M)MAS. In D. Lin, T. Ishida, F. Zambonelli, & I. Noda (Eds.), Massively multi-agent systems

II, Lecture notes in computer science (chapter 2), international workshop, MMAS 2018, Stockholm,

Sweden, July 14, 2018 (Vol. 11422, pp. 21–35). Berlin: Springer. https://doi.org/10.1007/978-3-030-
20937-7_2. Revised selected papers.

275. Omicini, A., & Denti, E. (2001). From tuple spaces to tuple centres. Science of Computer Programming,
41(3), 277–294. https://doi.org/10.1016/S0167-6423(01)00011-9.

276. Omicini, A., & Zambonelli, F. (1999). Coordination for Internet application development. Autonomous

Agents and Multi-Agent Systems, 2(3), 251–269. https://doi.org/10.1023/A:1010060322135. Special
issue: Coordination mechanisms for web agents.

277. Omicini, A., & Zambonelli, F. (2004). MAS as complex systems: A view on the role of declarative
approaches. In Leite et al. [225] (pp. 1–17). https://doi.org/10.1007/978-3-540-25932-9_1.

278. Omicini, A., Ricci, A., & Zaghini, N. (2006). Distributed workflow upon linkable coordination artifacts.
In P. Ciancarini & H. Wiklicky (Eds.), Coordination models and languages, Lecture notes in computer

science (Vol. 4038, pp. 228–246). Berlin: Springer. https://doi.org/10.1007/11767954_15.
279. Omicini, A., Ricci, A., & Viroli, M. (2007). Timed environment for Web agents. Web Intelligence and

Agent Systems, 5(2), 161–175.

123

http://www.actapress.com/Abstract.aspx?paperId=22336
http://www.actapress.com/Abstract.aspx?paperId=22336
https://doi.org/10.1007/BF03037227
https://doi.org/10.1007/11758532_95
https://doi.org/10.1136/bmj.309.6954.597
https://doi.org/10.1145/1982185.1982375
https://doi.org/10.1016/j.scico.2012.10.004
https://www.ijcai.org/Proceedings/1999-2
https://doi.org/10.1613/jair.1141
https://doi.org/10.1613/jair.1141
https://doi.org/10.1007/3-540-44564-1_12
https://doi.org/10.1007/978-3-030-20937-7_2
https://doi.org/10.1007/978-3-030-20937-7_2
https://doi.org/10.1016/S0167-6423(01)00011-9
https://doi.org/10.1023/A:1010060322135
https://doi.org/10.1007/978-3-540-25932-9_1
https://doi.org/10.1007/11767954_15


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 63 of 67 1

280. Omicini, A., Ricci, A., & Viroli, M. (2008). Artifacts in the A&A meta-model for multi-agent sys-
tems. Autonomous Agents and Multi-Agent Systems, 17(3), 432–456. https://doi.org/10.1007/s10458-
008-9053-x. Special issue on Foundations, advanced topics and industrial perspectives of multi-agent
systems.

281. Omicini, A., Sardina, S., & Vasconcelos, W. (Eds.). (2010). Declarative agent languages and technolo-

gies VIII, Lecture notes in computer science (Vol. 6619). Berlin: Springer. https://doi.org/10.1007/978-
3-642-20715-0.

282. Orgun, B., Dras, M., Cassidy, S., & Nayak, A. (2005). DASMAS: Dialogue based automation of semantic
interoperability in multi agent systems. In T. Meyer & M. A. Orgun. (Eds.), Australasian ontology

workshop (Vol. 58, pp. 75–82). Sydney: Australian Computer Society, Inc.
283. Pan, Y., Tu, P. H., Pontelli, E., & Son, T. C. (2005). Construction of an agent-based framework for

evolutionary biology: A progress report. In J. Leite, A. Omicini, P. Torroni, & P. Yolum (Eds.), Declarative

agent languages and technologies (pp. 92–111). Berlin: Springer. https://doi.org/10.1007/11493402_6.
284. Pantoja, C. E., Stabile, M. F., Lazarin, N. M., & Sichman, J. S. (2016) ARGO: An extended Jason

architecture that facilitates embedded robotic agents programming. In M. Baldoni, J. P. Müller, I. Nunes,
& R. Zalila-Wenkstern (Eds.), Engineering multi-agent systems (EMAS 2016), Lecture notes in computer

science (Vol. 10093, pp. 136–155). Berlin: Springer. https://doi.org/10.1007/978-3-319-50983-9_8.
285. Pilecki, J., Bednarczyk, M. A., & Jamroga, W. (2014). Synthesis and verification of uniform strategies

for multi-agent systems. In Bulling et al. [57] (pp. 166–182). https://doi.org/10.1007/978-3-319-09764-
0_11.

286. Platon, E., Mamei, M., Sabouret, N., Honiden, S., & Parunak, H. V. D. (2007). Mechanisms for environ-
ments in multi-agent aystems: Survey and opportunities. Autonomous Agents and Multi-Agent Systems,
14(1), 31–47. https://doi.org/10.1007/s10458-006-9000-7. Special issue on Environments for multi-
agent systems.

287. Pnueli, A. (1977). The temporal logic of programs. In 18th Annual symposium on foundations of computer

science (pp. 46–57). Providence, RI: IEEE Computer Society. https://doi.org/10.1109/SFCS.1977.32.
288. Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). Jadex: A BDI reasoning engine. In Håkansson

et al. [167] (pp. 149–174). https://doi.org/10.1007/0-387-26350-0_6. 3rd KES International symposium,
KES-AMSTA 2009, Uppsala, Sweden, June 3–5, 2009. Proceedings.

289. Pokorny, L. R., & Ramakrishnan, C. R. (2005). Modeling and verification of distributed autonomous
agents using logic programming. In Leite et al. [225] (pp. 148–165). https://doi.org/10.1007/11493402_
9.

290. Pollock, J. L. (1996). OSCAR: A general-purpose defeasible reasoner. Journal of Applied Non-classical

Logics, 6(1), 89–113.
291. Popper, K. R. (2002). The logic of scientific discovery (1st English edition: 1959). London: Routledge.
292. Potassco UoP the Potsdam Answer Set Solving Collection. (2019). clingo and gringo. https://potassco.

org/clingo/.
293. Prakken, H. (2010). An abstract framework for argumentation with structured arguments. Argument and

Computation, 1(2), 93–124. https://doi.org/10.1080/19462160903564592.
294. Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language. In W. Van de

Velde & J. W. Perram (Eds.), Agents breaking away, Lecture notes in computer science (Vol. 1038, pp.
42–55). Berlin: Springer. https://doi.org/10.1007/BFb0031845. 7th European workshop on modelling
autonomous agents in a multi-agent world, MAAMAW ’96 Eindhoven, The Netherlands, January 22–25,
1996 proceedings.

295. Rao, A. S., & Georgeff, M. P. (1991). Asymmetry thesis and side-effect problems in linear-time and
branching-time intention logics. In J. Mylopoulos & R. Reiter (Eds.), 12th International joint conference

on artificial intelligence. Sydney, Australia, August 24–30, 1991 (pp. 498–505). Morgan Kaufmann.
http://ijcai.org/Proceedings/91-1/Papers/077.pdf.

296. Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. In J. F. Allen,
R. Fikes, & E. Sandewall (Eds.), 2nd International conference on principles of knowledge representa-

tion and reasoning (KR’91) (pp. 473–484). Morgan Kaufmann Publishers Inc. https://doi.org/10.5555/
3087158.3087205.

297. Rao, A. S., & Georgeff, M. P. (1993). A model-theoretic approach to the verification of situated reasoning
systems. In R. Bajcsy (Ed.), 13th International joint conference on artificial intelligence. Chambéry,

France, August 28–September 3, 1993 (pp. 318–324). Morgan Kaufmann. http://ijcai.org/Proceedings/
93-1/Papers/045.pdf.

298. Ricci, A., Piunti, M., & Viroli, M. (2011). Environment programming in multi-agent systems: An artifact-
based perspective. Autonomous Agents and Multi-Agent Systems, 23(2), 158–192. https://doi.org/10.
1007/s10458-010-9140-7. Special issue: Multi-agent programming.

123

https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/978-3-642-20715-0
https://doi.org/10.1007/978-3-642-20715-0
https://doi.org/10.1007/11493402_6
https://doi.org/10.1007/978-3-319-50983-9_8
https://doi.org/10.1007/978-3-319-09764-0_11
https://doi.org/10.1007/978-3-319-09764-0_11
https://doi.org/10.1007/s10458-006-9000-7
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/11493402_9
https://doi.org/10.1007/11493402_9
https://potassco.org/clingo/
https://potassco.org/clingo/
https://doi.org/10.1080/19462160903564592
https://doi.org/10.1007/BFb0031845
http://ijcai.org/Proceedings/91-1/Papers/077.pdf
https://doi.org/10.5555/3087158.3087205
https://doi.org/10.5555/3087158.3087205
http://ijcai.org/Proceedings/93-1/Papers/045.pdf
http://ijcai.org/Proceedings/93-1/Papers/045.pdf
https://doi.org/10.1007/s10458-010-9140-7
https://doi.org/10.1007/s10458-010-9140-7


1 Page 64 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

299. Ricci, A., Bordini, R. H., Hübner, J. F., & Collier, R. (2019). AgentSpeak(ER): Enhanced encapsulation

in agent plans. In Weyns et al. [351] (pp. 34–51). https://doi.org/10.1007/978-3-030-25693-7_3.
300. Riemsdijk, B., Hoek, W., & Meyer, J. J. C. (2003). Agent programming in Dribble: From beliefs to goals

with plans. In Formal approaches to agent-based systems, Lecture notes in computer science (Vol. 2699,
pp. 294–295). Berlin: Springer. https://doi.org/10.1007/978-3-540-45133-4_32.

301. Rijk, L. M. D. (2002). Aristotle: Semantics and ontology. Volume I: General Introduction. The works on

logic, Philosophia Antiqua (Vol. 91). Leiden: Brill Academic Publishers.
302. Rodriguez, S., Gaud, N., & Galland, S. (2014). SARL: A general-purpose agent-oriented program-

ming language. In 2014 IEEE/WIC/ACM International joint conferences on web intelligence (WI) and

intelligent agent technologies (IAT) (Vol. 3, pp. 103–110). IEEE. https://doi.org/10.1109/WI-IAT.2014.
156.

303. Roy, P. V., & Haridi, S. (1999). Mozart: A programming system for agent applications. In D. De Schr-
eye (Ed.), International workshop on distributed and internet programming with logic and constraint

languages, MIT Press, Las Cruces, New Mexico, USA, Roy Van Peter, Haridi Seif, Skarmeas Nikolaos,

Clark L. Keith, Maamar Zakaria and Brueckner A. Sven, part of International conference on logic

programming (ICLP’99).
304. Russell, S., Jordan, H., O’Hare, G. M. P., & Collier, R. W. (2011). Agent factory: A framework for pro-

totyping logic-based AOP languages. In F. Klügl & S. Ossowski (Eds.), Multiagent system technologies

(pp. 125–136). Berlin: Springer. https://doi.org/10.1007/978-3-642-24603-6_13.
305. Russell, S. J., & Norvig, P. (2002). Artificial intelligence: A modern approach, 2nd edn. Englewood Cliffs,

NJ: Prentice Hall/Pearson Education International. http://vig.prenhall.com/catalog/academic/product/
1,4096,0137903952,00.html.

306. Sadri, F., & Satoh, K. (Eds.). (2007). Computational logic in multi-agent systems, Lecture notes in

computer science (Vol. 5056). Berlin: Springer. https://doi.org/10.1007/978-3-540-88833-8.
307. Sadri, F., & Toni, F. (1999). Computational logic and multi-agent systems: A roadmap. Technical Report,

Imperial College, London, UK: Department of Computing.
308. Sadri, F., Stathis, K., & Toni, F. (2006). Normative KGP agents. Computational & Mathematical Orga-

nization Theory, 12(2–3), 101–126. https://doi.org/10.1007/s10588-006-9539-5.
309. Sagonas, K., Swift, T., & Warren, D. S. (1994). XSB as an efficient deductive database engine. SIGMOD

Record, 23(2), 442–453. https://doi.org/10.1145/191843.191927.
310. Schreiber, G. T., & Akkermans, H. (2000). Knowledge engineering and management: The CommonKADS

methodology. Cambridge, MA: MIT Press. https://doi.org/10.5555/347025.
311. Seghrouchni, A. E. F., & Suna, A. (2005). Claim and Sympa: A programming environment for intelligent

and mobile agents. In R. H. Bordini, M. Dastani, J. Dix, & A. El Fallah Seghrouchni (Eds.), Multi-agent

programming (Vol. 15, pp. 95–122). Boston, MA: Springer. https://doi.org/10.1007/0-387-26350-0_4.
312. Serafini, L., & Tamilin, A. (2005). DRAGO: Distributed reasoning architecture for the semantic web.

In A. Gómez-Pérez & J. Euzenat (Eds.), The semantic web: Research and applications (pp. 361–376).
Berlin: Springer. https://doi.org/10.1007/11431053_25.

313. Sesseler, R. (2002). Eine modulare architektur für dienstbasierte interaktion zwischen agenten. Doctoral
thesis, Technischen Universität Berlin.

314. Shakarian, P., Simari, G. I., & Schroeder, R. (2013). MANCaLog: A logic for multi-attribute network cas-
cades. In M. L. Gini, O. Shehory, T. Ito, & C. M. Jonker (Eds.), International conference on autonomous

agents and multi-agent systems, IFAAMAS (pp. 1175–1176). http://dl.acm.org/citation.cfm?id=2485129.
315. Shapiro, S., Lespérance, Y., & Levesque, H. J. (2002). The cognitive agents specification language and

verification environment for multiagent systems. In 1st International joint conference on autonomous

agents and multiagent systems (AAMAS 2002) (Vol. 1, pp. 19–26). Bologna: ACM. https://doi.org/10.
1145/544741.544746.

316. Shi, Z., Li, Y., Wang, W., Cao, H., & Jiang, T. (1998). AOSDE: An agent-oriented software development
environment. In International conference on multi agent systems (ICMAS 1998). IEEE. https://doi.org/
10.1109/ICMAS.1998.699289.

317. Shi, Z., Zhang, H., Cheng, Y., Jiang, Y., Sheng, Q., & Zhao, Z. (2004). MAGE: An agent-oriented
software engineering environment. In 3rd International conference on cognitive informatics. Victoria:
IEEE. https://doi.org/10.1109/COGINF.2004.1327482.

318. Shoham, Y. (1991). AGENT0: A simple agent language and its interpreter. In T. L. Dean & K. R.
McKeown (Eds.), Proceedings of the 9th national conference on artificial intelligence (Vol. 2, pp. 704–
709). AAAI Press/The MIT Press. http://www.aaai.org/Library/AAAI/1991/aaai91-110.php.

319. Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence, 60(1), 51–92. https://doi.org/
10.1016/0004-3702(93)90034-9.

123

https://doi.org/10.1007/978-3-030-25693-7_3
https://doi.org/10.1007/978-3-540-45133-4_32
https://doi.org/10.1109/WI-IAT.2014.156
https://doi.org/10.1109/WI-IAT.2014.156
https://doi.org/10.1007/978-3-642-24603-6_13
http://vig.prenhall.com/catalog/academic/product/1,4096,0137903952,00.html
http://vig.prenhall.com/catalog/academic/product/1,4096,0137903952,00.html
https://doi.org/10.1007/978-3-540-88833-8
https://doi.org/10.1007/s10588-006-9539-5
https://doi.org/10.1145/191843.191927
https://doi.org/10.5555/347025
https://doi.org/10.1007/0-387-26350-0_4
https://doi.org/10.1007/11431053_25
http://dl.acm.org/citation.cfm?id=2485129
https://doi.org/10.1145/544741.544746
https://doi.org/10.1145/544741.544746
https://doi.org/10.1109/ICMAS.1998.699289
https://doi.org/10.1109/ICMAS.1998.699289
https://doi.org/10.1109/COGINF.2004.1327482
http://www.aaai.org/Library/AAAI/1991/aaai91-110.php
https://doi.org/10.1016/0004-3702(93)90034-9
https://doi.org/10.1016/0004-3702(93)90034-9


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 65 of 67 1

320. Simon, L., Mallya, A., Bansal, A., & Gupta, G. (2006). Coinductive logic programming. In S. Etalle & M.
Truszczynski (Eds.), 22nd International conference on logic programming (ICLP 2006), Lecture notes

in computer science (Vol. 4079, pp. 330–345). Berlin: Springer. https://doi.org/10.1007/11799573_25.
321. Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner.

Journal of Web Semantics, 5(2), 51–53. https://doi.org/10.1016/j.websem.2007.03.004.
322. Šišlák, D., Volf, P., Kopřiva, Š., & Pěchouček, M. (2008). AGENTFLY: A multi-agent airspace test-

bed (demo paper). In 7th International joint conference on autonomous agents and multiagent systems,

ACM, Estoril, Portugal (pp. 1665–1666). http://www.ifaamas.org/Proceedings/aamas08/proceedings/
pdf/demo/AAMAS08_demo5.pdf.

323. Skylogiannis, T., Antoniou, G., Bassiliades, N., Governatori, G., & Bikakis, A. (2007). DR-
NEGOTIATE—A system for automated agent negotiation with defeasible logic-based strategies. Data

& Knowledge Engineering, 63(2), 362–380. https://doi.org/10.1016/j.datak.2007.03.004.
324. Slota, M., & Leite, J. (2008). EVOLP: An implementation. In Sadri and Satoh [306] (pp. 288–298).

https://doi.org/10.1007/978-3-540-88833-8_16.
325. Snook, C., Butler, M., Edmunds, A., & Johnson, I. (2004). Rigorous development of reusable, domain-

specific components, for complex applications. In J. Jurgens & R. France (Eds.), 3rd International

workshop on critical systems development with UML, Lisbon, Portugal (pp. 115–129).
326. Stathis, K., Kakas, A., Lu, W., Demetriou, N., Endriss, U., & Bracciali, A. (2004). PROSOCS: A platform

for programming software agents in computational logic. In 17th European meeting on cybernetics and

systems research, symposium “From agent theory to agent implementation” (AT2AI-4) (Vol. II, pp.
523–528). Vienna: Austrian Society for Cybernetic Studies.

327. Suarez-Romero, J. A., Alonso-Betanzos, A., Guijarro-Berdinas, B., & Duran-Sanles, C. (2005). A tool
for agent communication in Mozart/Oz. In IEEE/WIC/ACM International conference on intelligent agent

technology (pp. 706–710). IEEE. https://doi.org/10.1109/IAT.2005.23.
328. Such, J. M., García-Fornes, A., Espinosa, A., & Bellver, J. (2013). Magentix2: A privacy-enhancing

agent platform. Engineering Applications of Artificial Intelligence, 26(1), 96–109. https://doi.org/10.
1016/j.engappai.2012.06.009.

329. Sycara, K., Lu, J., Klusch, M., & Widoff, S. (1999). Matchmaking among heterogeneous agents on the
Internet. In AAAI spring symposium on intelligent agents in Cyberspace (pp. 22–24).

330. Sycara, K. P. (1990). Persuasive argumentation in negotiation. Theory and Decision, 28(3), 203–242.
https://doi.org/10.1007/BF00162699.

331. Syrjänen, T., & Niemelä, I. (2001). The smodels system. In T. Eiter, W. Faber, & M. l. Truszczyński
(Eds.), International conference on logic programming and nonmonotonic reasoning, Lecture notes in

computer science (Vol. 2173, pp. 434–438). Berlin: Springer. https://doi.org/10.1007/3-540-45402-0_
38.

332. Tarau, P. (1998). Jinni: A lightweight java-based logic engine for Internet programming. In K. Sagonas
(Ed.), International workshop on implementation technology for programming languages based on logic,

Manchester, UK (pp. 1–15).
333. Teresa, A., Ramón, B., Guitart, F., & Godo, L. (2013). Web based system for weighted defeasible

argumentation. In Leite et al. [227] (pp. 155–171). https://doi.org/10.1007/978-3-642-40624-9_10.
334. The White House OSTP. (2020). American artificial intelligence initiative: Year one annual

report. https://www.whitehouse.gov/wp-content/uploads/2020/02/American-AI-Initiative-One-Year-
Annual-Report.pdf.

335. Thimm, M. (2010). Realizing argumentation in multi-agent systems using defeasible logic programming.
In P. McBurney, I. Rahwan, S. Parsons, & N. Maudet (Eds.), Argumentation in multi-agent systems

(ArgMAS 2009), Lecture notes in computer science (Vol. 6057, pp. 175–194). Berlin: Springer. https://
doi.org/10.1007/978-3-642-12805-9_11.

336. Thomas, B., Shoham, Y., Schwartz, A., & Kraus, S. (1991). Preliminary thoughts on an agent descrip-
tion language. International Journal of Intelligent Systems, 6(5), 497–508. https://doi.org/10.1002/int.
4550060504.

337. Thomas, S. R. (1995). The PLACA agent programming language. In Intelligent agents, Lecture notes

in computer science (Vol. 890, pp. 355–370). Berlin: Springer. https://doi.org/10.1007/3-540-58855-8_
23.

338. Toni, F. (2005). Multi-agent systems in computational logic: Challenges and outcomes of the socs project.
In Toni and Torroni [340] (pp. 420–426). https://doi.org/10.1007/11750734_26.

339. Toni, F. (2006). Multi-agent systems in computational logic: Challenges and outcomes of the SOCS
project. In Toni and Torroni [340] (pp. 420–426). https://doi.org/10.1007/11750734_26.

340. Toni, F., & Torroni, P. (Eds.). (2005). Computational logic in multi-agent systems, Lecture notes in

computer science (Vol. 3900). Berlin: Springer. https://doi.org/10.1007/11750734.

123

https://doi.org/10.1007/11799573_25
https://doi.org/10.1016/j.websem.2007.03.004
http://www.ifaamas.org/Proceedings/aamas08/proceedings/pdf/demo/AAMAS08_demo5.pdf
http://www.ifaamas.org/Proceedings/aamas08/proceedings/pdf/demo/AAMAS08_demo5.pdf
https://doi.org/10.1016/j.datak.2007.03.004
https://doi.org/10.1007/978-3-540-88833-8_16
https://doi.org/10.1109/IAT.2005.23
https://doi.org/10.1016/j.engappai.2012.06.009
https://doi.org/10.1016/j.engappai.2012.06.009
https://doi.org/10.1007/BF00162699
https://doi.org/10.1007/3-540-45402-0_38
https://doi.org/10.1007/3-540-45402-0_38
https://doi.org/10.1007/978-3-642-40624-9_10
https://www.whitehouse.gov/wp-content/uploads/2020/02/American-AI-Initiative-One-Year-Annual-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2020/02/American-AI-Initiative-One-Year-Annual-Report.pdf
https://doi.org/10.1007/978-3-642-12805-9_11
https://doi.org/10.1007/978-3-642-12805-9_11
https://doi.org/10.1002/int.4550060504
https://doi.org/10.1002/int.4550060504
https://doi.org/10.1007/3-540-58855-8_23
https://doi.org/10.1007/3-540-58855-8_23
https://doi.org/10.1007/11750734_26
https://doi.org/10.1007/11750734_26
https://doi.org/10.1007/11750734


1 Page 66 of 67 Autonomous Agents and Multi-Agent Systems (2021) 35 :1

341. Torroni, P., Chesani, F., Mello, P., & Montali, M. (2009). Social commitments in time: Satisfied or
compensated. In M. Baldoni, J. Bentahar, M. B. van Riemsdijk, & J. Lloyd (Eds.), Declarative agent

languages and technologies VII, Lecture notes in computer science (Vol. 5948, pp. 228–243). Berlin:
Springer. https://doi.org/10.1007/978-3-642-11355-0_14.

342. Vidaković, M., Ivanović, M., Stantić, D., & Vidaković, J. (2018). How research achievements can
influence delivering of a course—Siebog agent middleware. In G. Jezic, Y. Chen-Burger, R. J. Howlett,
L. C. Jain, L. Vlacic, & R. Šperka (Eds.), Agents and multi-agent systems: Technologies and applications,

smart innovation, systems and technologies (pp. 110–120). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-319-92031-3_11.

343. Vieira, R., Moreira, Á., Wooldridge, M., & Bordini, R. H. (2007). On the formal semantics of speech-act
based communication in an agent-oriented programming language. Journal of Artificial Intelligence

Research, 29(1), 221–267.
344. Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., & Zambonelli, F. (2007). Infrastructures for the

environment of multiagent systems. Autonomous Agents and Multi-Agent Systems, 14(1), 49–60. https://
doi.org/10.1007/s10458-006-9001-6. Special issue: Environment for multi-agent systems.

345. Vos, M. D., Crick, T., Padget, J., Brain, M., Cliffe, O., & Needham, J. (2005). LAIMA: A multi-agent
platform using ordered choice logic programming. In Baldoni et al. [20] (pp. 72–88). https://doi.org/10.
1007/11691792_5.

346. Vrba, P., Fuksa, M., & Klíma, M. (2014). JADE-JBossESB gateway: Integration of multi-agent system
with enterprise service bus. In International conference on systems, man, and cybernetics (pp. 3663–
3668). San Diego, CA: IEEE. https://doi.org/10.1109/SMC.2014.6974499.

347. Wallner, J. P., Weissenbacher, G., & Woltran, S. (2013). Advanced SAT techniques for abstract argu-
mentation. In Computational logic in multi-agent systems, Lecture notes in artificial intelligence (Vol.
8143, pp. 138–154). Berlin: Springer. https://doi.org/10.1007/978-3-642-40624-9_9.

348. Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University
Press. https://doi.org/10.1017/cbo9780511802034.

349. Wavish, P. (1992). Exploiting emergent behavior in multi-agent systems (abstract). ACM SIGOIS Bul-

letin, 13(3), 16. https://doi.org/10.1145/152683.152701.
350. Weyns, D., Omicini, A., & Odell, J. J. (2006). Environment as a first class abstraction in multi-agent

systems. Autonomous Agents and Multi-Agent Systems, 14(1), 5–30. https://doi.org/10.1007/s10458-
006-0012-0. Special issue on Environments for multi-agent systems

351. Weyns, D., Mascardi, V., & Ricci, A. (Eds.). (2019). Engineering multi-agent systems, Lecture notes in

computer science (Vol. 11375). Stockholm: Springer. https://doi.org/10.1007/978-3-030-25693-7.
352. Wielemaker, J., Schrijvers, T., Triska, M., & Lager, T. (2012). SWI-Prolog. Theory and Practice of Logic

Programming, 12(1–2), 67–96. https://doi.org/10.1017/S1471068411000494.
353. Winikoff, M. (2009). JACKTM intelligent agents: An industrial strength platform. In Håkansson et al.

[167] (pp. 175–193). https://doi.org/10.1007/0-387-26350-0_7. 3rd KES International symposium,
KES-AMSTA 2009, Uppsala, Sweden, June 3–5, 2009. Proceedings.

354. Winikoff, M., Liu, W., & Harland, J. (2005). Enhancing commitment machines. In Leite et al. [226] (pp.
198–220). https://doi.org/10.1007/11493402_12.

355. Wooldridge, M., & Ciancarini, P. (2001). Agent-oriented software engineering: The state of the art. In P.
Ciancarini & M. J. Wooldridge (Eds.), Agent-oriented software engineering, Lecture notes in computer

science (Vol. 1957, pp. 1–28). Berlin: Springer. https://doi.org/10.1007/3-540-44564-1_1.
356. Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. Knowledge Engi-

neering Review, 10(2), 115–152. https://doi.org/10.1017/S0269888900008122.
357. Wooldridge, M., Muller, J. P., & Tambe, M. (1996). Agent theories, architectures, and languages: A

bibliography. In M. Wooldridge, J. P. Müller, & M. Tambe (Eds.), Intelligent agents II agent theories,

architectures, and languages, Lecture notes in computer science (Lecture notes in artificial intelligence)

(Vol. 1037, pp. 408–431). Berlin: Springer. https://doi.org/10.1007/3540608052_81.
358. Wooldridge, M., Fisher, M., Huget, M. P., & Parsons, S. (2002). Model checking multi-agent systems

with MABLE. In 1st International joint conference on autonomous agents and multiagent systems

(AAMAS 2002) (pp. 952–959). Bologna: ACM. https://doi.org/10.1145/544862.544965.
359. Yen, J., Yin, J., Ioerger, T. R., Miller, M. S., Xu, D., & Volz, R. A. (2001). CAST: Collaborative agents

for simulating teamwork. In B. Nebel (Ed.), 7th International joint conference on artificial intelligence

(pp. 1135–1144). Seattle, WA: Morgan Kaufmann. http://dl.acm.org/doi/10.5555/1642194.1642247.
360. Zatelli, M. R., Ricci, A., & Hübner, J. F. (2015). Evaluating different concurrency configurations for

executing multi-agent systems. In M. Baldoni, L. Baresi, & M. Dastani (Eds.), Engineering multi-agent

systems, Lecture notes in computer science (Vol. 9318, pp. 212–230). Berlin: Springer. https://doi.org/
10.1007/978-3-319-26184-3_12.

123

https://doi.org/10.1007/978-3-642-11355-0_14
https://doi.org/10.1007/978-3-319-92031-3_11
https://doi.org/10.1007/s10458-006-9001-6
https://doi.org/10.1007/s10458-006-9001-6
https://doi.org/10.1007/11691792_5
https://doi.org/10.1007/11691792_5
https://doi.org/10.1109/SMC.2014.6974499
https://doi.org/10.1007/978-3-642-40624-9_9
https://doi.org/10.1017/cbo9780511802034
https://doi.org/10.1145/152683.152701
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/978-3-030-25693-7
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1007/11493402_12
https://doi.org/10.1007/3-540-44564-1_1
https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1007/3540608052_81
https://doi.org/10.1145/544862.544965
http://dl.acm.org/doi/10.5555/1642194.1642247
https://doi.org/10.1007/978-3-319-26184-3_12
https://doi.org/10.1007/978-3-319-26184-3_12


Autonomous Agents and Multi-Agent Systems (2021) 35 :1 Page 67 of 67 1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Logic-based technologies for multi-agent systems: a systematic literature review
	Abstract
	1 Introduction
	2 Method
	2.1 Premises
	2.2 Research questions
	2.3 Sources
	2.4 Papers classification

	3 Technology synopsis: the MAS perspective
	3.1 Agent
	3.1.1 Programming, reasoning, and planning
	3.1.2 Agent reliability & verification

	3.2 Society
	3.2.1 Organisational reasoning & coordination
	3.2.2 Argumentation
	3.2.3 MAS reliability & verification

	3.3 Environment
	3.3.1 Agents in the semantic web
	3.3.2 Situated interaction & coordination
	3.3.3 Semantic web & situated interaction and coordination


	4 Analysis
	4.1 Cloud of words
	4.2 Selected technologies: MAS & logic perspectives
	4.3 Technological analysis
	4.4 Rejected technologies

	5 Discussion
	6 Conclusion
	References


