
NOTICE

PORTIONS OF THIS REPORT AFE It.LEGIBLE. It

ducked rom thebestavailable
has been reprodc

.

copy to permit the broadest possible avail

ability.

A rO264 Rev. 1

Distribution Category:
Mathematics and Computers

(UC-32)

ANL -- 82-84-Rev.1

DE84 012115

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

IGIC MACHINE ARCHITECTURE INFERENCE MECHANISMS

-

LAYER 2 USER REFERENCE MANUAL

RELEASE 2.*

Ewing L. Lusk and Ross A. Overbeek

Mathematics and Computer Science Division

April 1984

* This work was supported by the Applied Mathematical Sciences subprogram of the
Office of Energy Research, U.S. Department of EnerEv, under contract W-31-109-Eng-38.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United Stats

Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

DiSTRIBUtINCCF h

ns ~

is l+ r

A major purpose of the Techni-
cal Information Center is to provide

the broadest dissemination possi-

ble of information contained in
DOE's Research and Development
Reports to business, industry, the

academic community, and federal,
state and local governments.

Although a small portion of this

report is not reproducible, it is

being made available to expedite

the availability of information on the
research discussed herein.

'

CONTENTS

A b straw c t 1

1. Introduction .. 1

2. Special LMATypes ... 2
3. S trin g s 3

4. Vectors of Integers..9

5. The Portable Format for Clauses, Literals, and Terms....................12

5.1. Portable Format of a Term ... 12

5 2. The Portable Format of a Literal..13

5.3. The Portable Format of a Clause...13

5.4. Converting Between Portable and Internal Formats.................13

6. Lists...17

6.1. Input of a List of Clauses..26

6.2. Output of a List of Clauses ... 29

7. Input and Output Through a Translator...30

8. IDs..33
9. In te g ra tio n 3 4

10. Basic Clause Processing Primitives...35

11. Basic Literal and Term Processing Primitives...39

12. Properties..53

13. Inference Rules..56

13.1. Meanings of the Inference Rules...56

Hyper-resolution ... 56

UR-Resolution..58

Binary Resolution .. 59

Unit Resolution..60

Factoring..60

Param odulation..60
13.2. Routines that Implement the Inference Rules 62

13.3. Inference Rule History Vectors .. 79

14. Subsum ption..83

14.1. Definition of Subsumption .. 83
14.2. The Routines that Implement Subsum ption.......................................84

15. A Simple Theorem Prover..87
16. Demodulation/Simplification .. 91

16.1. The Meaning of Demodulation .. 91

16.2. The Implementation of Demodulation and Simplification.............92
17. Immediate Evaluation Rules .. 102
18. User Variables and Attributes ... 103
19. Qualification and Locking...106

iii

20. Weighting .. .111

20.1. Weighting Parameter Sets..112

20.2. Weighting Without Patterns ... 112

Constants and Variables .. 112

Complex Terms..112

L ite rals .. 1 1 3

Clauses .. 114

20.3. Weighting With Patterns ... 114

20.4. Routines to Implement Weighting Calculations..................115

21. The LISP Interface ... 119

22. Conclusion ... 123

References..123

iv)

Logic Machine Architecture

Inference Mechanisms

-

Layer 2 User Reference Manual

Release 2.0

Euing L. Lusk

Ross A. Ouerbeek

ABSTRACT

Logic Machine Architecture (LMA) is a package of software
tools for the construction of inference-based systems. This docu-
ment is the reference manual for layer 2 of LMA. It contains the
information necessary to write LMA-based systems at the level of
layer 3. Such systems include theorem provers, reasoning com-
ponents for expert systems, and customized deduction com-
ponents 2or a variety of application systems.

1. Introduction

Logic Machine Architecture (LMA) is a layered architecture for the creation
of logic "inference engines". The principles underlying its design are presented
in [8] and [6]. The individual theoretical notions incorporated in LMA are the
results of a long-running research effort in automated deduction and are dis-
cussed elsewhere in the literature[7, 9, 12, 13,14, 15, 16, 21,.22, 25, 26]. This docu-
ment describes layer 2 -the set of tools that can be used to create uniprocess-
ing theorem provers, reasoning components for expert systems, or customized
deduction components suitable for a wide variety of applications. The first
major system built using these tools, a theorem prover incorporating all of these
ideas, is fully described in [10].

There are a variety of reasons for attempting to form a standardized set of
commands:

a) Most researchers are unable to commit the man-years required to
develop a powerful program. The effort required to create systems can
be reduced dramatically by using standardized tools.

., With a standardized set of tools, improvements made by one research
team can be easily transferred to other cooperating teams.

c) Students can be trained in the use of such tools in much the same way
that they are trained in the use of higher-level languages.

d) Hardware or firmware implementations of selected commands become
more feasible (because of the larger user community).

In this document we shall go through the basic layer 2 commands, illustrat-
ing their use. In addition, a few extra routines that have been coded at Argonne

-2-

will be described (they are useful utility modules). User comments on either the
tools or this document should be directed to Ross Overbeek or Ewing Lusk at
Argonne National Laboratory.

This document has changed only minimally since the version for Release
1.0. Routines to perform weighting of clauses, literals, and terms have been
added, the formats acceptable to the distributed translators have been slightly
extended, the set of system-defined symbols (especially those used for
simplification) has been expanded, and an extra parameter has been added to
the routines that integrate objects. A number of bugs have been fixed, and per-
formance has been substantially improved.

2. Social LMA Types

Throughout this document, we define the parameters required to invoke our
service modules. For each routine we have attempted to document precisely
the type and value of each parameter. In many cases one routine will construct
a data item to be passed to other routines. Such data items can be of a variety
of types. Strictly speaking, users need not know the "meaning" of such types,
since they are not expected to (and should not) access any of the values stored
in such data items. However, some users have found it convenient to be able to
reference at least a minimal description of such LMA layer 2 types. Hence, we
are including the following table:

LMA Layer 2 Types

common2ptr a pointer to the layer2 common area

csptr a pointer to a string, which is used to hold
a string of arbitrary length

ivecptr a pointer to an ivec, which is used to hold an
integer of arbitrary length

objectptr a pointer to an object, which is used to represent
lists, clauses, literals, terms, and attributes

stkntptr a pointer to a stkntry, which maintains position in
a set of clauses generated by an inference rule

upbptr a pointer to a upb, which is used to maintain an
updatable position in a list

-3-

3. Strings

The need to process strings of unbounded length occurs frequently.
Accordingly, we have provided a set of modules that implement the abstract
data type "string". The following routines define the operations that can be per-
fot ulied on strings:

alstring - allocate a string

alstring (sptr,retcd, com2)

This routine allocates a string.

sptr - a csptr set to reference the allocated string
retcd - an integer return code set as follows:

0 - success

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

dealstring - deallocate a string

dealstring(sptr, com2)

This routine can be invoked to deallocate a string.

sptr - a csptr
com2 - a pointer to the layer 2 common area

-4-

getstring - get the next character from a string

getstring(sc)

This routine gets the next character from a string and updates
the current position. Just as with putstring, c is passed back
as an integer (ord(character-from-string)). If there are no more
characters in the string, a 0 is returned.

s - a csptr to a string
c - a returned integer with ord(next-character); a 0

is returned at end-of-string

putstring - insert a character into a string

putstring(s,c,retcd, com2)

This routine inserts the character into s at the current position.
The variable c is an integer representing the character. This
clumsiness is due to an attempt to make all variables passed to
layer 2 routines to be integers or pointers. In any event c
should be the ord(character-to-be-inserted).

s - acsptr to a string
c - an integer containing the ord(character-to-be-inserted)
retcd - an integer return code set as follows:

0 - success

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

resetstring - reset current position in a string to the start

resetstring(s)

This routine resets the current position in s to the start of s.

- a csptr to a string

The documentation above is directly from the code. It illustrates the style
that we have chosen to comment all ff our routines. To see how these routines
can be used, let us consider a simple routine to read in a string from a terminal.
This routine should read in characters, putting them into one of these
indefinitely long strings. To make the routine useful, let us implement the UNIX
outlook - the string will be ended with a <cr> (carriage return), unless the car-
riage return is immediately preceded by the character '\'. When a line is con-
tinued, we'll put in a blank between the two lines. This should cause something
like

first line<cr>
second line.<cr>

to go into the string as "first line second line.". The code for this routine,
l2readstr, is as follows:

12 r e ads t r

l2readstr - read a string from the terminal

12readstr(sin,retcd, com2)

This routine reads in a string from the standard input.
The string is terminated by a <cr> that is not preceded

by a '\'.

sin - a csptr set to reference the string
retcd - an integer return code set as follows:

o - success
1 - eof (sin has not been allocated)

wreostring - set end-of-string

wreostring (s)

This routine sets the end-of-string. This should be issued

after all putstring calls have been made to build the string.

s - a csptr to a string

-6-

memfail - memory allocation failure
- a pointer to the layer 2 common area

procedure 12readstr(var

var donebs: boolean;
c: char;
outch: integer;

sin: csptr;
var retcd: integer;
var com2: common2ptr);

begin
alstring(sin,retcd, com2);
if retcd = 0 then

begin
done : false;
while not done do

begin
bs := false;

while (retcd = 0) and (not (oln) and (not eof) do
begin
if bs then

begin
outch :ord('\');
putstring(sin, outchretcd,com2);
bs := false;
end;

read(c);
if c = '\' then

bs : true
else

begin
outch : ord(c);
putstring(sinoutchretcd,com2);
end;

end;
if eof then

begin
dealstring(sin. com2);
done : true;
retcd : 1;
end

else
begin
readln;
if c >'\' then

done : true
else

begin
outch ord(' ');
putstring(sin,outch,retcd,com2);
end;

end;

com2

- 7

-

if retcd = memfail then

dealstring(sin,com2);

end;

if retcd = 0 then

wreostring(sin);
end;

end; l2readstrj

This code illustrates a point that may very well be puzzling at first. Every

parameter to a layer 2 routine must be a pointer or an integer. Further, the

parameter must be a variable, so expressions or sell-defining terms cannot be

used in calls. This prevents

putstring(sin,ord(' '),retcd,com2)

for example. These restrictions are to facilitate interface between different pro-

gramming languages. Exactly how they make these interfaces easier to develop

and maintain is beyond the scope of this discussion.

The corresponding routine to write a string out to a terminal would be as

follows:

1 2 w r i t e s t r

l2writestr - write a string to the standard output device

12writestr(sout)

This routine displays the string on the standard output device.

south - a csptr to a string

procedure 12writestr(var sout: csptr);

var chint: integer;

begin
resetstring(sout);
getstring (sout,chint);
while (chint <> 0) do

begin
write(chr(chint));
getstring(sout,chint);
end;

end; 1l2writestrj

This routine could, of course, be fixed up to break things nicely into lines, so

that long lines would not break arbitrarily, based on the terminal screen size.

-8-

At this point we are going to include a short program that just reads in a
string from a terminal and echoes it back. The code shows a few points about
setting up a program to invoke LMA routines:

program echostr(input,output);

const

#include '12constants.i';
type

#include '12types.h';

#include 'l2externals.h';

var rc: integer;
cs: csptr;
com2: common2ptr;

begin
initcom2(com2);
write('enter a string: ');
12readstr(cs,rc,com2);
writeln('retcd from l2readstr = ',rc:1);
12writestr(cs);
writeln;
dealstring(cs. com2);
writeln('success');
end.

The "includes" that start the program handle declaration of standard constants,
types, and external declarations. At some point you might peruse the constants
and types files to notice the labels that we've selected, but it probably isn't
required at this stage. Notice the

initcom2(com2);

This is a required command to start things off. Since PASCAL doesn't allow
static storage, we need a common area in which to maintain data. The format
and contents need not concern you. However, you must initialize the "layer 2
common area" before invoking any layer 2 commands.

Perhaps a comment on overhead is in order. Many users may fear the cost
implied by the use of these routines. For most uses the overhead of these rou-
tines will be greatly overshadowed by the cost of performing inference opera-
tions. In any event lower-level primitives (in layer 0) can be employed to per-
form block transfers to and from a string in the rare cases where efficiency is a
serious issue.

The main use of strings will be to pass formulas in portable format
(described below) to and from the LMA routines. This use is covered in detail in
a later section. Finally, before leaving the topic of strings, we include the calling
conventions for two useful routines (which you could easily code from the primi-
tives above):

-9-

4. VecPors of Integers

Vectors of integers are used, among other things, to record the events used
to infer a particular formula from one or more other formulas. Sometimes the
computation of a new formula requires many single steps (or "events"). Thus,
the encoded information on how the result was computed can become arbi-
trarily long. It is extremely important that the user of layer 2 actually have
access to all of the details of such a computation. Much of the information may
be discarded, since a user normally does not need to know about all of the

compstrings - compare two strings

compstrings(s 1,.s2, retcd)

This routine compares the contents of the two strings si and s2.
The comparison proceeds a character at a time, left-to-right.
't'he first two characters that disagree determine the comparison,
which is a Pascal character compare. If two such characters are
not found, but one string is shorter, then the shorter string is
"less than" the other.

si - a csptr to a string
s2 - a csptr to a second string
retcd - an integer return code set as follows:

0 - strings are equal
1 - sl<s2

2 - sl>s2

copystring - create a copy of a string

copystring(s1,s2,retcdcom2)

This routine creates a copy of the string referenced by si

and sets s2 to reference the copy.

s1 - a csptr to a string
s2 - a csptr set to reference the new copy
retcd - an integer return code set as follows:

0 - success

memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

-10-

events (e.g., simplifying 1+1 to 2). However, the experience reported on expert
systems would indicate that a user should be able to extract the details, if
desired. This motivates the definition of another abstract data type - "a vector
of integers of arbitrary length". The routines that you have available to define
and manipulate such vectors are as follows:

alivec - allocate an integer vector

alivec(ivptrretcdcom2)

This routine allocates an ivector.

ivptr - an ivecptr set to reference the allocated ivector
retcd - an integer return code set as follows:

0 - success

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

dealivec - deellocate an integer vector

dealivec(ivptr,com2)

This routine deallocates an ivector.

ivptr - an ivecptr
com2 - a pointer to the layer 2 common area

getivec - get an entry in an integer vector

getivec(vi,val)

This routine nt3 val to the value of the ith element in v.
If the ith element was not set to a value by putivec, then
val will be set to -1.

V - an ivecptr to an integer vector
- an integer subscript (from 1)

val - an integer set to the value of the ith element of v

- 11

-

iveclen - get the length of an integer vector

iveclen(v,len)

This routine sets len to the length of v. The length is actually
the max subscript used on a putivec.

v - an ivecptr to aninteger vector
len - an integer set to the length of v

putivec - insert an entry into an integer vector

putivec(v,i,valretcd,com2)

This routine puts "val" into the ith entry in v.

v - an ivecptr to an allocated integer vector

i - an integer subscript (from 1)
val - an integer
retcd - an integer return code set as follows:

0 - success

1 - i is invalid
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

writeeov - reset the size of a vector to a lower value

writeeov(ivec,maxsub)

This operation is used to reduce the size of a vector. If maxsub is

>= the current size, the operation has no effect.

ivec - an ivecptr
maxsub - the desired new length (an integer)

The use of these routines will be presented in detail after we've looked at infer-
ence rules and the "history" vectors that they produce. For now it is enough to

12-

realize that they are available and that, as a user of layer 2, you will probably
want to develop packages using these routines to decode the inference events
into readable English.

5. Portable Format for Clauses. literels, and Terms

The current version of layer 2 implements the abstract data types of List,
lause, Literal and Term.. In the future we hope to include more types defined

by other users of LMA.

Clauses, literals, and terms have both an internal and a portable represen-
tation. They are all embedded in the layer 1 concept of "object"[8], which
results in the obvious similarity of their formats.

5.1. Portable Format of a Term

The portable format of a term is defined as follows:

1. A label is normally any string of characters that does not include one

of the following characters:

";:(),&I

"

However, a string enclosed in either single or double quotes is also a
legal label. Finally, if the string is enclosed in quotes (of either type), a
doubled occurrence of the delimiter can be included in the label. For
example,

'I car''t make it'

is a valid label.

2. A TaGme is a label that does not begin with one of the characters

"stuvwxyz%2"

The term constant will occasionally be used in this document. Con-
stants, function symbols, and predicate symbols are represented by
names.

3. A variable is a label that does begin with one of the characters in the
above list (i.e., a label that is not a name).

4. A string of the form

(<name> <arg-1> <arg-2> ...

)

is an application. Here each of the arguments can be a name, a vari-
able, or an application. Thus,

(F x (G a))

is an application.

5 A term can be a name, a variable, or an application. Throughout this
manual we call a term represented by an application a complex term.

Similarly, a literal that is not a propositional constant will be referred
to as a complex literal.

These description: of term and literal correspond (more or less) to the normal
versions[2,. '. However, we have actually generalized the notion of application,

-13-

allowing the first element itself to be a constant, a variable, or an application.
This will allow occasional forays into higher-order logic, if desired.

5.2. Portable Format of a Literal

The portable format of a literal is defined as follows:

1. A literal has the same format as a term.

2. A literal of the form

SNOT <atom>)

is called a negative literal.

3. A non-negative literal is called a positive literal.

5.3. Portable Format of a Clause

The portable format of a non-Unit clause is

(OR <literal-1> (OR <literal-2> ... (OR <literal-m> <literal-n>)));

The portable format of a unit clause is simply the literal followed by a ';'.

Note that our definitions are somewhat loose. That is,

(EQUAL (OR TRUIE x) TRUE);

is a perfecdy "acceptable" clause. Our attitude is that the portable format of a
clause should be produced as the output of a translator from any format that
the user desires. It is the responsibility of the user to supply ouch a translator
(although we supply a simple one in the LMA package, and intend to include

better translators in the future, they are not part of the layer 2 set of routines).
It is the responsibility of the translator to detect, errors.

5.4. Converting Between Portable and Internal Formats

We shall now describe the routines to convert between the internal and
portable formats. It should be noted that throughout these descriptions, when a
portable object is converted into an internal representation, the result is a non-
integr-Zted object. The difference between an integr- ted and a non-integrated

object will be covered in detail later. For now it will suffice to note that objects
that will be kept around more or less permanently are normally integrated into

a "structure-sharing" representation. Such integration allows improved algo-

rithms for computing inferred clauses and subsumption checks[14].

The input routines all rename variables to x1, x2, x3.... We sometimes refer

to the "number" of a variable. By this we mean i for xi. Thus, the variable
number of x4 is 4.

Once a clause, literal, or term in portable format exists in a string, you can
obtain the internal representation by using one of the following routines:

-14-

clinput - convert a clause from external to object format

clinput(clext, clobj,retcd, com2)

This routine takes a string containing a clause in external format
(terminated by a ';') and constructs a non-integrated object to

represent the clause.

clext - a csptr to a string containing the clause

clobj - an objectptr set to reference the generated clause

retcd - an integer return code set as follows:

0 - successful conversion

2 - error detected in format of clause

3 - was the first character

mem ail - memory failure

com2 - a pointer to the layer 2 common area

litinput - convert a literal from external to object format

litinput(litext,litobjretcd, com2)

This routine takes a cstring containing a literal in external format
(terminated by a ';') and constructs a non-integrated object to
represent the literal.

litext - a csptr to a string containing the literal
litobj - an objectptr set to reference the generated literal

retcd - an integer return code set as follows:
0 - successful conversion
2 - error detected in format of literal

3 - ;was the first character
memfail - memory failure

com2 - a pointer to the layer 2 common area

- 15

-

trminput - convert a term from external to object format

trminput(trmc xt,trmobj,retcd,com2)

This routine takes a string containing a term in external format
(terminated by a ';') and constructs a non-integrated object Lo
represent the term.

trmext - a csptr to a string containing the term
trmobj - an objectptr set to reference the generated term
retcd - an integer return code set as follows:

0 - successful conversion
2 - error detected in format of term
3 - ; was the first character
memfail - memory failure

com2 - a pointer to the layer 2 common area

Note that in all cases the object being converted must include a terminating;
semicolon. Further, the internal format is always referenced by means of un
objectptr. This is because all three abstract data types are embedded in the
layer 1 concept of object. The routine clinput will normally be the most widely
used of the three routines. The others are included for 'he rare instances in
which the user wishes to input specific literals or terms (e.g., to force favored
use of the input objects).

To create the portable representations given the internal representation,
the following routines can 5e used:

- 16

-

cloutput - convert a clause from object to external format

cloutput(clobj,clext,retcd, com2)

This routine converts the clause referenced by "clobj" to an external
format in "clext".

clobj - an objectptr to a clause

clext - a csptr set to reference a string containing the clause
followed by a semicolon

retcd - an integer return code set as follows:

0 - success

1 - clobj does not reference a clause

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

litoutput - convert a literal from object to external format

litoutput(litobj,litext, retcd, c om2)

'his routine converts the literal referenced by "litobj" to an external

format in "litext".

litobj - an objectptr to a literal

litext - a csptr set to reference a string containing the literal

followed by a semicolon

retcd - an integer return code yet as follows:

0 - success

1 - litobj does not reference a literal

memfail - memory allocation failure

cor ,2 - a pointer to the layer 2 common area

-17-

6. Lists

In this section we shall discuss our implementation of lists. Theorem
provers built on the layer 2 LMA routines will normally keep lists of clauses.
Algorithms that infer new clauses, check subsumption, etc. will require the abil-
ity to maintain a position in a list. We implemented the ability to maintain a
position in a list that is subject to insertions and deletions. That is, if you are
progressing through a list one clause at a time, and the next clause is deleted,
then the "access-next" operation should be intelligent enough to return the first
clause past the deleted one. If you allow an arbitrary sequence of insertions 'nd
deletions between access operations, however, the concept of position must be
defined rather precisely. When an element of a list is accessed, you may think of
the position as fixed on the occurrence of that element in the list (if the element
occurs in several lists, you may think of an occurrence as the position of the ele-
ment in a given list). As long as that occurrence is not deleted before the next
access, the concepts of "next element" and "previous element" are straightfor-
ward. The difficulties arise when the occurrence is deleted. To analyze this
case, consider the following list:

..,p3,p2,p1,e*,s1,s2,s3,....

JIere the pl,p2,p3... are the "predecessors" of e*, and sl,s2,s3... are the "suc-
cessors" of e*. Suppose that a position is established on e*, and that e* is
deleted. Any arbitrary sequence of insertions and deletions is then performed
on the list. An "access-next" operation will now retrieve the first element to the
right of the rightmost element that was a predecessor of e* at the point where
e* was deleted. Similarly, an "access-previous" will retrieve the first element to
the left of the leftmost element that was a predecessor of e* at the point where
e* was deleted.

The implementation of this concept of position relies on maintaining updat-

able pointers[8]. These pointers are used to record the fact that a position has

trmoutput - convert a term from object to external format

trni output(trmobj,trmext,retcd,com2)

This routine converts the term referenced by "trmobj" to an external
format in "trmext".

trmobj - an objectptr to a term
trmext - c csptr set to reference a string containing the term

followed by a semicolon

retcd - an integer return code set as follows:
0 - success

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

-18-

been established on a given element in a list. Whenever any deletions or inser-

tions occur, these updatable pointers are checked and "updated" (if required).
A large number of such updatable pointers can significantly degrade perfor-

mance. Hence, it is desirable to avoid maintaining a large number of positions

at any one time. Normally, there will be no problem. However, if you establish a
position and then decide that more accesses are not required, you should make

sure that the position is "canceled" (which releases the updatable pointers used

to maintain the position). When an access operation reaches the end of a list (so

that no element is returned), the position is automatically canceled.

Before discussing how to input or output a list of clauses, we must intro-

duce the operations that characterize lists.

Istcreate - create an empty list

lstcreate (newlistretcd,com2)

This routine sets newlist to reference an empty list.

newlist - an objectptr set to reference the created empty list
retcd - an integer return code set as follows:

0 - success

memfail - memory failure
com2 - a pointer to the layer2 common area

lstinsfirst - insert an object at the head of a list

lstinstirst(object,listobj,retcd,com2)

This routine inserts "object" as the first element in "listobj".

object - an objectptr
listobj - an objectptr referencing a list
retcd - an integer return code set as follows:

0 - success

1 - listobj does not reference a list
memfail - memory failure

com2 - a pointer to the layer 2 common area

-19-

Istinslast - insert an object at the end of a list

lstin:.last(object listobjretcd,com2)

This routine inserts "object" as the last element in "listobj".

object - an objectptr

listobj - an objectptr referencing a list

retcd an integer return code set as follows:

0 - success

1 - listobj does not reference a list

memfail - memory failure

com2 - a pointer to the layer 2 common area

lstinsbefore - insert an object ahead of a designated position in a list

lstinsbefore(objectlistobjuobjposretcd,com2)

This routine assumes that "uobjpos" is an updatable position in listobj

(established by one of the traversing routines). "object" is inserted

ahead of the position.

object - an objectptr to the object to insert

listobj - an objectptr to the list into which the insertion occurs

uobjpos - a upbptr set by a traversing operation

retcd - an integer return code set as follows:

0 - success

1 - listobj is not a list

memfail - memory failure

com2 - a pointer to the layer 2 common area

- 20-

Istinsafter - insert an object after a designated position in a list

lstinsafter(objectlistobjuobjposretcd, corn2)

This routine assumes that "uobjpos" is an updatable position in listobj

(established by one of the traversing routines). "object" is inserted

immediately after the position.

object an objectptr to the object to insert

listobj - an objectptr to the list into which the insertion occurs

uobjpos - an upbptr set by a traversing operation

retcd - an integer return code set as follows:

0 - success

1 - listobj is not a list

memfail - memory failure

com2 - a pointer to the layer 2 common area

lstaccfirst - access the first element in a list

lstaccflrst(listobj,object, uobjpos,retcd, com2)

This routine can be used to set "object" to reference the first
element in "listobj". If the operation is successful, "uobjpos"
becomes a valid updatable pointer.

listobj - an objectptr to the list
object an objectptr set to reference the first element in listobj
uobjpos - an upbptr set to an updatable position if retcd gets

set to 0
retcd - an integer return code set as follows:

0 - success

1 - listobj is :npty

2 - list(.bj does not reference a list
memfail - memory failure

com2 - a pointer to the layer 2 common area

- 21

-

lstaccnext - access the next element in a list

lstaccnext(listobj,object, uobjposretcd, ccm2)

This routine sets "object" to reference the next element in

"listobj" past the position represented by "uobjpos". 1f

there are no more elements in the list, the position (uobjpos)

will automatically be canceled (check the retcd to see if

the end was reached).

listobj
object
uobjpos
retcd

com2

- an objectptr to the list

- an object set to reference the next element

- an upbptr representing the position in the list

- an integer return code set as follows:

0 - success

1 - no more elements in the list (position
is automatically canceled)

2 - listobj is not a list

- a pointer to the layer 2 common area

Istacclast - access the last element in a list

lstacclast(listobj,object,uobjpos,retcd,com2)

This routine can be used to set "object" to reference the last

element in "listobj". If the operation is successful, "uobjpos"

becomes a valid updatable pointer.

listobj - an objectptr to the list

object - an objectptr set to reference the last element in listobj

uobjpos - an upbptr set to an updatable position if retcd gets

set to 0

retcd - an integer return code set as follows:

0 - success

1 - listobj is empty

2 - listobj does not reference a list

memfail - memory failure

com2 - a pointer to the layer 2 common area

- 22-

lstcancpos - cance' position in a list

lstcancpos (uobjpos, com2)

This routine can be used to cancel a position in a list.

uobjpos - an upbptr established by previous traversing operations

com2 - a pointer to the layer 2 common area

lstnumel - find the number of elements in the list

lstnumel(listobj,i)

This routine sets i to the number of elements in listobj.

listobj - an objectptr to a list
i - an integer set to the # of elements in the list

lstaccprev - access the previous element in a list

lstaccprev(listobjobject, uobjpos,retcd,com2)

This routine sets "object" to reference the previous element in

"listobj" ahead of the position represented by "uobjpos". If

there are no previous elements in the list, the position (uobjpos)

will automatically be canceled (check the retcd to see if

the head was reached).

listobj - an objectptr to the list

object - an object set to reference the previous element

uobjpos - an upbptr representing the position in the list
retcd - an integer return code set as follows:

0 - success

1 - no previous elements in the list
(position is automatically canceled)

2 - listobj is not a list

com2 - a pointer to the layer 2 common area

- 23-

ls.disconnect - disconnect an object from a list

lstdisconnect(uobjpos, com2)

This routine disconnects the object at the position given

by uobjpos (the position is "on" the last object returned by

a traversal routine that used uobjpos) from the list

in which the position occurs.

uobjpos - an upbptr set by a previous traversal

com2 - a pointer to the layer 2 common area

lstaltpos - has the object referenced by a position been disconnected?

lstaltpos(uobjpos,retcd)

This routine sets retcd to 1 if the object that used to be
referenced by uobjpos was disconnected from the list. That is,
uobjpos was set by a previous traversal operation. If the object
that was returned by that call got disconnected, retcd will get
set to 1.

uobjpos - an upbptr set by a previous traversal operation
retcd - an integer return code set as follows:

0 - the referenced object was not
disconnected

1 - the position has been altered (the
object was disconnected)

-24-

istloc - locate an object in a list, if it is there

lstloc(listobj,object,uobjpos,retcd, com2)

This routine looks to see if "object" occurs in "listobj".
If so, uobjpos is set to the position of the object. Note
that this is considered a traversing operation, in that
uobjpos must eventually be canceled.

listobj - an objectptr to a list
object - an objectptr
uobjpos - an upbptr set to the position of object in listobj
retcd - an integer return code set as follows:

0 - success

1 - failure (object doesn't occur in listobj)
2 - listobj is not a list
memfail - memory failure

com2 - a pointer to the layer 2 common area

lstdelete - delete an empty list

lstdelete (listobj, com2)

This routine deletes listobj, if it is an empty list. If
not, no action will take place.

listobj - an objeOptr to a list
com2 - a pointer to the layer 2 common Lrea

- 25-

Istcopy - copy a list

lstc opy(fromlist, tolist, re to d,c om2)

This routine copies the list pointed to by fromlist and
sets tolist to reference the copy. The actual elements of
the list are not copied. The new list references the same
subelements as the fromlist.

fromlist - an objectptr to a list
tolist - an objectptr set to reference the copy
retcd - an integer return code set as follows:

0 - success

1 - fromlist is not a list
memfail - memory failure

com2 - a pointer to the layer 2 common area

lstobjfioc - find the first list containing a given object

lstobjfloc(rbj,listobj,listpos,retcd,com2)

This routine sets listobj to reference the first list

that contains a given object.

obj - an objectptr

listobj - an objectptr set to reference the first list

that contains obj

listpos - an upbptr used to maintain position in the

set of lists that contain obj

retcd - an integer return code set as follows:

0 - success

1 - no list contains obj

mernfail - memory allocation failure

com2 - a pointer to the layer 2 common area

- 26

-

These operations are for the most part exactly what you would
Remember, failure to cancel positions can lead to serious degradation.

expect.

6.1. Input of a list of Clauses

Now we can present the code to enter both single clauses and entire lists of

clauses. It is assumed that]Pt' are terminated by a semicolon. Thus,

(EQUAL x x);
EQUAL (F x (I x)) 0);

would be a list of two clauses. The routine ctread reads from the standard
input, but the changes required to read from any file differ only trivially (but
frequently depend on the PASCAL compiler that you use).

lstobjnloc - locate the next list that contains a given object

lstobjnloc(obj,listobj,listpos,retcd,com2)

This routine locates the next list in the set that contains

obj.

obj - an objectptr
listobj - an objectptr set to reference the next list
listpos - an upbptr used to maintain position in the

set of containing lists
retcd - an integer return code set as follows:

0 - success
1 - no more lists contain obj

com2 - a pointer to the layer 2 common area

lstobjcanc -cancel position in the set of containing lists

lstobjcanc(listpos, com2)

This routine cancels position in the set of containing lists.
It should not be used if a previous lstobjfloc or lstobjnloc

(for the same listpos) returned a nonzero retcd.

listpos - an upbptr used to maintain position in the set

com2 - a pointer to the layer 2 common area

- 27

-

c i t r e a d

citread - read a clause from the terminal

cltread(clobj,retcd,com2)

This routine reads characters from the terminal up through the
next ';'. Then it tries to convert the resulting string into
a clause in object format. If all goes well, clobj is set
to reference the constructed clause.

clobj - an objectptr set to reference the generated clause
retcd - an integer return code set as follows:

0 - success
2 - error detected in the format
3 - ';' 'was the first character
memfail - memory failure

com2 - a pointer to the layer 2 common area

procedure cltread(var clobj: objectptr;
var retcd: integer;
var com2: common2ptr);

v:r si: csptr;

begin
12readstr(s1,retcd,com2);
if retcd = 0 then

begin
clinput(s1,clobjretcd,com2);
if (retcd = ?) then

writeln('cltread - clinput failed');
dealstring(sl,comn2);
end

else

writeln('cltread - l2readstr failed');
end; fcltread;

c l i s t t r e a d

- 28

-

cllsttread - read in a list of clauses from the terminal

cllsttread(listobj,retcd,com2)

This routine reads in a list of clauses from the terminal and
sets "listobj" to reference the constructed list. The format
for a list is a sequence of clause entries, followed by a
semicolon. Each clause entry is a clause ,in external format,
followed by a semicolon. If any errors are detected, "listobj"
is set to contain the clauses successfully read (nil on a
total bust).

listobj - the objectptr set to reference the constructed list
retcd - an integer return code set as follows:

0 - success
1 - format error detected
memfail - memory failure

com2 - a pointer to the layer 2 common area

procedure cllsttread(var listobj: objectptr;
var retcd: integer;
var com2: common2ptr);

var clobj: objectptr;
dummyret: integer;

begin

listobj := nil;
retcd := 0;
lktcreate(listobj,reted,com2);
if retcd = 0 then

begin
cltread(clobj,retcd,com2);
while retcd = 0 do

begin
lstinslast(clobj,listobj, retcd, com2);
if retcd = 0 then

cltread(clobj,retcd,com2);
end;

if retcd = 3 theni
reecd := 0;

end

else
writeln('cllsttread - lstcreate failed');

end; jcllsttread;

- 29

-

6.2. Output of a List of Clauses

The code to write out a list of clauses is straightforward:

c i t w r i t e

cltwrite - write a clause to the terminal

cltwrite(clobj, retcd, com2)

This routine can be invoked to write the clause referenced by

"clobj" to the terminal.

clobj - an objectptr referencing a clause
retcd - an integer return code set as follows:

0 - success
memfail - memory failure

com2 - a pointer to the layer 2 common area

procedure cltwrite(var clobj: objectptr;
var retcd: integer;

var com2: common2ptr);

var clext: csptr;

begin
cloutput(clobjclext,retcd, com2);
if retcd = 0 then

begin
12writestr(clext);
writeln;
end;

end; Ecltwrite;

I s t t w r i t c

isttwrite - write a list of clauses to the terminal

- 30

-

lsttwrite(listobj, retcd, com2)

This routine writes out the clauses from the list "listobj".
After the whole list a semicolon is written.

listobj - an objectptr referencing a list
retcd - an integer return code set as follows:

0 - success
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

procedure lrttwrite(var listobj: objectptr;
var retcd: integer;

var com2: common2ptr);

var clobj: objectptr;
pos: upbptr;
pretc..d: integer;

begin
lstaccfirst(listobj, clobj,pos,pretcd, com2);
retcd := 0;
while (retcd = 0) and (pretcd = 0) do

begin
cltwrite(clobj,retcd,com2);
lstaccnext(listobj,clobj,pos,pretcd, com2);
end;

if retcd = 0 then
writeln(';');

end; 1lsttwritej

The code for Isttwrite does not check to make sure every element in the list is
actually a clause. The routine cllsttwrite, which is included in the layer 2 pack-
age, writes out only the clauses in the list (as well as verifying that listobj is
actually a list).

7. Input and Output Through a Translator

Before continuing, we should emphasize that our input and output routines
are included only as illustrations. Proper input and output will go through a
translation package. We include in our package a simple translation package:
ifthentran is a routine that converts from an "if-then" format (we give a few
examples after the routines) to portable format, and doutcl converts a clause in
internal format into a readable format. For example, the following routines can
be used to replace cLtread and cltwrite:

- 31

-

hc It re ad

hcltread - read a clause from the input terminal

hcltread(clobjretcd,com2)

This routine reads characters from the terminal up through the

next ';'. Then it tries to convert the resulting string into

a clause in object format If all goes well, clobj is set
to reference the constructed clause. This routine is like citread

except that the external format of the clause is assumed to be

the "if-then" format.

clobj - an objectptr set to reference the generated clause

retcd - an integer return code set as follows:

0 - success

2 - error detected in the format

3 - ';' was the first character

menfail - memory failure

com2 - a pointer to the layer 2 common area

procedure hcltread(var clobj: objectptr;

var retcd: integer;
var com2: common2ptr);

var s1,s?: csptr;

beginihcltreadi

12readstr(s1,retcd,com2);

if retcd = 0 then

begin
ifthentran(s1,s2,retcd,com2);

if retcd <> 0 then

writeln('nonzero retcd from ifthentran')

else

begin

ci input(s2,clobj,retcd,com2);
if (retcd = 2) then

writeln('hcltread - clinput failed');
dealstring(s2,com2);
end

dealstring(s 1,com2);

end
else

writeln('hcltread - l2readstr failed');
end; hcltr adj

hc it writ e

hcltwrite - write a clause to the terminal

hcltwrite(clobj,retcd,com2)

This routine can be invoked to write the clause referenced by
"clobj" to the terminal. It is like cltwrite except that the
clause is written in disjunctive format (as if it were the
conclusion part .of an "if-then" format).

clobj - an objectptr referencing a clause
retcd - an integer return code set as follows:

0 - success
memfail - memory failure

com2 - a pointer to the layer 2 common area

procedure hcltwrite(var clobj: objectptr;
var retcd: integer;
var com2: common2ptr);

var clext: csptr;
si: csptr;

begin hcltwritej
alst ring(c xtretcd,com2);
if retcd = 0 then

doutcl(clobj,clextretcd,com2);

if retcd = 0 then
begin
l2writestr(clext);
dealstring(clext, com2);
end;

end; ihcltwritej

In this case the rather straightforward translator included in our package gets
invoked. This will allow the use of clauses like the following:

if x--y&y= zthenx= z;

x <= y I y <= x;

If -Mad(John) then Happy(Mary) | Absent(Mary);

- 33

-

if member(x,[John,Joe,Dick]) & (y = [xizi) then Reject(y);

The printable versions of these clauses produced by doutcl would be as follows:

If (xl = x2) & (x2 = x3) then (xl = x3);

(xl <= x2) | (x2 <= xl);

Mad(John) Happy(Mary) I Absent(Mary);

If member(x,[John,Joe,Dick]) & (y = [xlz]) then Reject(y);

It is only a crude example of what is really needed. We include it to indicate the
point at which translators would be coupled into a system based on the layer 2
operations.

8. IDs

Each layer 1 object may be assigned an id. An id is an integer that uniquely
identifies an object. All lists, clauses, literals, and terms are objects, so they
can all be assigned ids. The following routines can be used to assign and refer-
ence ids:

l2assignid - assign an id to an object

12assignid(objptr, retcdcom2)

This routine assigns an id to the object referenced by objptr.
If the object already has an id, a new id Yi'l not be
assigned.

objptr - an objectptr
retcd - an integer return code set as follows:

0 - success
1 - failure (object already his an id)

com2 - a pointer to the layer 2 common area

-34-

12rafid - access the id of an object

12refid(objptr,id)

This routine returns the id of an object (0 if the object has not
been assigned an id).

objptr - an objectptr
id - an integer set to contain the id of the object

12idref - access the object with a given id

12idref (id, objptr,retcd,com2)

This routine sets objptr to reference the object with the given id.

id - an integer id
objptr - an objectptr set to reference the desired object
retcd - an integer return code set as follows:

0 - success

1 - no such object exists
com2 - a pointer to the layer 2 common area

Note that, while ids do uniquely identify clauses, they are inconvenient in the
sense that they are not guaranteed to be consecutive (and usually clause is are
not, because of ids assigned to new literals and terms). This situation can be
remedied by implementing a simple mapping from the set of clause ids to con-
secutive integers (and think of the integers as "clause numbers").

9. Integration

Objects that are not strictly temporary and may participate in inference
steps are normally integrated. When a term is integrated, it is kept in a "struc-
ture shared" data structure. No object occurs more than once in the integrated
s" picture. Rather, there is a single copy that points to each occurrence. This
allows one to locate r desired object (e.g., a literal that unifies with a given
literal) and then follow pointers to each occurrence of the object (e.g., to all
clauses that contain the literal). This structure sharing significantly improves
performance on many inference rules, subsumption, and demodula&ion. When
an object is integrated, it will be assigned an id (if it does not already have one).

Note that our use of the term "structure sharing" is quite distinct from
other forms, such as that used by Boyer and Moore[1] and by David 'Warren[20].
The version that we use is described in [14]. It is not important for the user of

- 35-

layer 2 to be familiar with the details of the structure sharing or exactly what is
meant by integrating an object. Those details are important only to those
implementing more layer 2 routines (such as new abstract data types or infer-
ence rules) based on the layer 1 primitives.

10. Basic Clause Processing Primitives

The following operations can be used to manipulate clauses. They are cer-
tainly not the complete set, since inference rules, subsumption, etc. are not
included. We shall cover those commands later.

clacclit - access a literal in a clause by means of a subscript

clacclit(clobj,litobj,i, retcd, com2)

This routine sets "litobj" to reference the ith literal

in "clobj".

clobj - an objectptr to a clause

litobj - an objectptr set to reference the desired literal

i - an integer identifying which literal is desired

retcd - an integer return code set as follows:

0 - success

1 - invalid subscript

2 - clobj is hot a clause

com2 - a pointer to the layer 2 common area

clcopy - copy a clause

clcopy(fromcl, tocl, retcd, com2)

This routine can be invoked to copy a clause.

fromcl - an objectptr to a clause
tocl - an objectptr set to reference the copy
retcd - an integer return code set as follows:

0 - success

1 - fromcl is not a clause
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

-36

-

clcreate - create a null clause

clcreate(clobj, retcd, com2)

This procedure is used to create an empty clause. If no
literals are inserted into the clause, it will evaluate to
the propositional constant FALSE.

clobj - an objectptr set to reference the generated clause
retcd - an integer return code set as follows:

0 - success

memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

cldelint - delete an integrated clause

cldelint(clobj,retcd, com2)

This routine removes the clause from any lists that contain it.

If nothing else contains it (such as a longer clause), it is

deleted itself. If the clause is a substructure in an existing
object (such as another clause), it will not be physically
deleted; however, it will no longer be considered a clause

(and cannot be referenced by clause manipulation routines).

clobj - an objectptr to a clause

retcd - an integer return code set as follows:
0 - success

1 - something besides a list contained

the clause (this is ok, as well)

2 - clobj is not a clause
com2 - a pointer to the layer 2 common area

- 37-

cidelnon - delete a nonintegrated clause

cldelnon(clobj,retcd,com2)

This routine can be called to delete the nonintegrated clause

referenced by "clobj". In this case a retcd value of 1 indicates
a probableerror.

clobj an objectptr to a nonintegrated clause

retcd - an integer return code set as follows:

t - success

1 - something besides a list contained the

clause

2 - clobj does not reference a clause
com2 - a pointer to the layer 2 common area

cldisconnect - delete a literal from a nonintegrated clause

cldisconnect(clobj,sub.scrretcd, com2)

This procedure removes the indicated literal from the clause.
The literal itself is not deallocated.

clobj - an ..jectptr to a clause

subscr - an integer subscript of the literal to disconnect
retcd - an integer return code set as follows:

0 - success

1 - invalid subscript
2 - clobj does not reference a clause

memfail - memory failure

com2 - a pointer to the layer 2 common area

-38-

clinslit - insert a literal into a clause

clinslit(clobj,litptr, subscr,retcd, com2)

This procedure inserts the literal given by litptr into the
clause designated by clobj.

clobj - an objectptr to a clause
litptr - an objectptr to the literal to insert

subscr - an integer subscript giving the subscript

value that the inserted literal will have after

it is inserted. This variable must be set correctly
before invoking clinslit.

retcd - an integer return code set as follows:
0 - success

1 - invalid subscript
memfail - memory failure

com2 - a pointer to the layer 2 common area

clintegrate - integrate a clause

clintegrate(clobj, unif optretcd, com2);

This routine can be used to integrate a clause. The routine
will delete the nonintegrated clause, replacing it in every
list with a reference to the integrated clause.

clobj - an objectptr to a nonintegrated clause
unifopt - option indicating whether unification properties

should be set on terms other than literals
0 - set unification properties on

all terms
1 - set unification properties on

literals only
retcd - an integer return code set as follows:

0 success
1 - clobj is not a clause
2 - clobj was already integrated

(this means a bug in the calling
program - do not ignore it!!!)
3 - clobj contains a subobject that

should be a literal, but is not
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

-39-

clnumlit - find the number of literals in a clause

clnuniit(clobjicom2)

This routine sets i to the number of literals in clobj (i is set
to -1, if clobj is not a clause).

clobj - an objectptr to a clause
i - an integer set to the number of literals in the clause
com2 - a pointer to the layer 2 common area

11. Basic Literal and Term Processing Primitives

The primitives for basic manipulation of literals and terms are used far less
frequently than those for clauses. They are included to allow a level of control
that will seldom be required.

litaccarg - access argument by means of subscript

litaccarg(litobj ,Largonj,retcd,com2)

This routine sets argobj to reference the ith argument of the
literal litobj.

litobj - an objectptr to a literal
i - an integer subscript
argobj - an objectptr set to reference the ith argument
retcd - an integer return code set as follows:

0 - success

1 - litobj is not a literal
2 - i is invalid

com2 - a pointer to the layer 2 common area

- 40-

litaccatom - access the atom of a literal

litaccatom(litobj, atomobj, retcd, com2)

This routine sets atomobj to reference the atom of the
literal referenced by litobj.

litobj - an objectptr to a literal
atomobj - an objectptr set to reference the atom
retcd - an integer return code set as follows:

0 - success

1 - litobj does not reference a literal
com2 - a pointer to the layer 2 common area

litcopy - copy a literal

litcopy(oldlitobjnewlitobj, retcd, com2)

This routine creates a copy of a literal. Attributes and

properties are not copied. The oldlitobj may be integrated or

nonintegrated. The copy is nonintegrated.

oldlitobj - an objectptr to a literal

newlitobj - an objectptr set to reference the generated copy
retcd - an integer return code set as follows:

0 - success

1 - oldlitobj is not a literal
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

-41

-

litcrcon - create a literal (constant)

litcrccn(ccnobj,symbol,retcd,com2)
This routine creates a "constant" node to represent the given symbol.

conobj - an objectptr set to reference the generated object
symbol - the symbol representing the constant
retcd - an integer return code set as follows:

0 - success

1 - symbol would represent a variable

(starts with s-z, -, or %)

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

litcrvar - create a literal (variable)

litcrvar(varobji, re tcd, c om2)

This routine creates a "variable" xi and sets varobj to reference

the created object.

varobj - an objectptr set to reference the generated objc,:t
i - the variable number (an integer > 0)

retcd - an integer return code set as follows:

0 - success

1 - i is invalid

memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

-42-

litcrcomplex - create an "empty" complex literal

litcrcomplex(comobjpredsymbol,retcd, com2)

This routine creates an empty "complex literal". comobj is set to

reference the created object. If the predicate symbol begins
with s-z, -, or %, it will become a variable).

comobj

predsymbol-

retcd

com2

- an objectptr set to reference the generated object

- the predicate symbol for the created literal

- an integer return code set as follows:

0 - success

memfail - memory allocation failure

- a pointer to the layer 2 common area

litdelint - delete an integrated literal

litdelint(litobj,retcd,com2)

This routine removes the literal from any lists that
contain it. If nothing else contains it (such as a

clause), it is itself deleted.

litobj - an objectptr to a literal

reicd - an integer return code set as follows:

0 - success

1 - failure, literal is contained in at

least one object

2 - litobj does not reference a literal

com2 - a pointer to the layer 2 common area

-43-

litdelnon - delete a nonintegrated literal

litdelnon(litobj.retcd,com2)

This routine can be called to delete the nonintegrated literal

referenced by "litobj".

litobj - an objectptr to a nonintegrated literal

retcd - an integer return code set as follows:

0 - success

1 - something besides a list contained the

literal

2 - litobj does not reference a literal

com2 - a pointer to the layer 2 common area

litdisconnect - remove argument (by subscript) from a literal

litdis conne ct(litobj, i,retcd, com2)

This routine disconiiacts the ith argument of the literal. The
literal MUST be nonintegrated. The argument is not deleted.
Thus, if the user wishes it discarded, the routine trmdelnon
should be used after disconnecting it.

litobj - an oljectptr to a literal
i - the subscript of the argument to disconnect
retcd - an integer return code set as follows:

0 - success

1 - litobj is not a literal
2 - i is invalid

com2 - a pointer to the layer 2 common area

-44-

litinsarg - insert an argument (by subscript)

litinsarg(litobj,i,argobj,retcd,com2)

This routine inserts the given argument as the ith argument of

the given literal. litobj must reference a nonintegrated

complex literal.

litobj - an objectptr to a literal

i - the subscript for the argument to be inserted

argobj - an objectptr to the argument to be inserted
retcd - an integer return code set as follows:

0 - success

1 - litobj does not reference a complex

Literal
2 - i is an invalid subscript

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

litintegrate - integrate a literal

litintegrate(litobj,unifopt, retcd, com2)

This routine integrates the literal pointed to by litobj (and
alters litobj to reference the integrated literal).

litobj - an objectptr to a literal
unifopt - option indicating whether unification properties

should be set on terms other than literals
0 set unification

properties on all terms
1 - set unification

properties on literals only
retcd - an integer return code set as follows:

0 - success, an integrated version did

not previously exist
1 - success, litobj references a previously

existing integrated literal
2 - the literal was previously integrated

3 - litobj does not reference a literal
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

- 45-

litnumarg - access the number of arguments in a literal

atnumarg(litobj,i,retcd,com2)

This routine sets i to the number of arguments in the literal
referenced by litobj.

litobj - an objectptr to a literal
i - an integer set to the number of argui

literal
retcd - an integer return core set as follows:

com2

ments in the

0 - success
1 - litobj does not reference a literal

- a pointer to the layer 2 common area

litpred - access the predicate for a literal

litpred(litbj,predobj,retr'd, ;om2)

This routine accesses the predicate for a given literal.

litobj - an objectptr to a literal

predbj - an objectptr set to reference the predicate of the
literal

retcd - an integer return code set as follows:

0 - success

1 - litobj does not referenc a literal

com2 - a pointer to the layer 2 common area

- 46-

litsign - determine the sign of a literal

litsign(litobj, sign.com2)

This routine sets "sign" to reflect the sign of the literal
referenced by litobj.

litobj - an objectptr to a literal
sign - an integer return code set as follows:

0 - positive

1 - negative

2 - litobj does not reference a literal
com2 - a pointer to the layer 2 common area

trmaccarg - access argument by means of a subscript

trmaccarg(comobj,i,argobj,retcd)

This routine sets argobj to reference the ith argument of the

complex term comobj.

comobj - an objectptr to a complex term

i - an integer subscript

argobj - an objectptr set to reference the ith argument

retcd - an integer return code set as follows:

0 - success

1 - comobj is not a complex term

2 - i is invalid

L

-47-

trmacccon - access constant symbol

trrnaccccn(c- 1 bj ymbol,retcd,com2)

This routine sets symbol to reference a csLring containing the
symbol represented by the object pointed to by conobj.

conobj - an objcctptr to a constant
symbol - a esptr set to reference the symbol
retcd - an integer return code set as follows:

0 - success

1 - conobj does not reference a constant
memfail - memory allocation failure

com2

-

trmaccvar - access variable number for a variable

trmaccvar(varobji, ret rd)

This routine sets i to the variable number of the variable
represented by varobj.

varobj - an objectptr to a variable
i - an integer set to the variable number
retcd - an integer return code set as follows:

0 - success

1 - varobj does not represent a va:iable

-48-

trmcopy - cop; a term

trmcopy(oldtrrr objnewtrmobi,retcd,com2)

This routine creates a copy of a term. Attributes and
properties are not copied. The oldtrmobj may be integrated or

nonintegrated. The copy is nonintegrated.

oldtrmobj
newtrmobj
retcd

com2

- an objectptr to a term
- an objectptr set to reference the generated copy
- an integer return code set as follows:

0 - success
memfail - memory allocation failure

- a pointer to the layer 2 common area

trrncrcon - create a constant

trmcrcon(conobj, symbolretcd, com2)

This routine creates a "constant" node to represent the given symbol.

conobj - an objectptr set to reference the generated object
symbol - the symbol representing the constant
retcd an integer return code set as follows:

0 - success
1 - an invalid symbol was specified

(it began with s-z, or %)
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

-49-

trmcrcomplex - create an "empty" complex term

trmcrc omplex(c omobj, funcsymbol, retcd, com2)

This routine creates an empty "complex term". comobj is set to
reference the created object. The function symbol should not begin
with s-z, or % (or it will become a variable). This routine does
allow the use of a variable as the function symbol.

comobj
funcsymbol-
retcd

com2

- an objectptr set to reference the generated object
- the function symbol for the created term
- an integer return code set as follows:

0 - success
memfail - memory allocation failure

- a pointer to the layer 2 common area

trmcrvar - create a variable

trmcrvar(varobj,iretcd,com2)

This routine creates a "variable" xi and sets varobj to reference
the created object.

varobj - an objectptr set to reference the generated object
i - the variable number (an integer > 0)
retcd - an integer return code set as follows:

0 - success

1 - i is invalid (i < 1)
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

- 50

-

trmdelint - delete an integrated term

trmdelint(trmobj,re tc dc om2)

This routine removes the term from any lists that
contain it. If nothing else contains it (such as a

literal), it is itself deleted.

trmobj - an objectptr to a term

retcd - an integer return code set as follows:

0 - success

1 - failure, term is contained in at

least one object

com2 - a pointer to the layer 2 common area

trmdelnon - delete a nonintegrated term

trmdelnon(trmobj,retcd, com2)

This routine can be called to delete the nonintegrated term

referenced by "trmobj".

trmobj - an rbjectptr to a nonintegrated term

retcd - an integer return code set as follows:

0 - success
1 - something besides a list contained the

term

com2 - a pointer to the layer 2 common area

- 51

-

trmdisconnect - remove argument (by subscript) from a complex term

trmdisconnect(comobj, i, retcd, com2)

This routine disconnects the ith argument of the complex term. The
complex term MUST be nonintegrated. The argument is not deleted.
Thus, if the user wishes it discarded, the routine trmdelnon
should be used after disconnecting it.

comobj - an objectptr to a complex term
i - the subscript of the argument to disconnect
retcd - an integer return code set as follows:

0 - success

1 - comobj is not a complex term
2 - i is invalid

com2 - a pointer to the layer 2 common area

trrnfunc - access the function for a complex term

trmfunc(comobj,f uncobj,retcd,com2)

This routine accesses the function for a given complex term.

comobj - an objectptr to a complex term

funcobj - an objectptr set to reference the object representing

the function

retcd - an integer return code set as follows:

0 - success

1 - comobj does not reference a complex

term

com2 - a pointer to the layer 2 common area

- 52-

trminsarg - insert an argument (by subscript) into a complex term

trmins arg (comobj,i, argobj,retc dc om2)

This routine can be used to insert an argument (the ith) into
a complex term (referenced by comobj). Neither comobj nor argobj
may be integrated.

comobj
i
argobj
retcd

com2

- an objectptr to a complex term

- an integer subscript for the argument
- an objectptr to the inserted argument

- an integer return code set as follows:

0 - success

1 - coniobj does not reference a

complex term

2 - i is invalid

memfail - memory allocation failure

- a pointer to the layer 2 common area

trmintegrate - integrate a term

trmintegrate(trmobjunifopt,retcdcom2)

This routine integrates the term pointed to by trmobj (and

alters trmobj to reference the integrated term).

trmobj

unif opt

-

retcd

- an objectptr to a term
option indicating whether unification properties

should be set
0 - set unification properties
1 - do not set unification properties

- an integer return code set as follows:
0 - success, an integrated version did

not previously exist
1 - success, trmobj references a previously

existing integrated term
2 - the term was previously integrated
memf ail - memory allocation failure

- a pointer to the layer 2 common areacom2
I

- 53

-

trmnumarg - get the number of arguments in a complex term

trrnnumarg(comobji,re tcd)

This routine can be used to find the number of arguments in a

complex term.

comobj - an objectptr to a complex term
i - an integer set to the number of arguments in the term
retcd - an integer return code set as follows:

0 - success
1 - comobj does not reference a complex

term

12. Properties

We now come to one of the more interesting features of LMiA layers 1 and 2.
Objects can be assigned properties. A property is an integer. Thus, each object
may have a set of associated properties. Similarly, a property may be thought
of as referencing a set of objects that have the property. There are two classes
of properties, those that the user explicitly associates with objects and those
that are automatically assigned (during integration) to objects. Automatically
assigned properties are used to facilitate searches for objects that will unify
with a specified object. The user properties are in the range 1 to (propfirst-1),
where propfirst is a defined constant (8000000 on most machines, 8000 on
machines that support only 16-bit integers). Note that the routines to assign
properties do not verify that the given property is in a specific range.

An object to which properties are assigned must have an id. It is not neces-
sary to integrate the object, though. If it is integrated, it will automatically have
an id. Otherwise, you can assign an id with L2ssignid.

The routines to set and delete properties for an object are as follows:

- 54-

12setprop - set a property for an object

12setprop(objptr,prop,retcd,com2)

This routine associates the properly (an integer)
with the designated object.

- an objectptr

- an integer property

- an integer return code set as follows:

0 - success

1 - fail: object has no id

2 - fail: object already has the property

memfail - memory allocation failure

- a pointer to the layer 2 common area

objptr
prop
retcd

com2

To access the set of objects that have one or more properties, you must

create a property request vector. This integer vector is simply an encoded

Boolean condition in prefix notation. The operators are the following defined

constants:

notcond - the complement operator

orcond - the union operator

andcond - the intersection operator

Thus, the vector (andcond,2,orcond,notcond,13) represents a request for all

objects that

12delprop - delete a property

l2delprop(objptrprop, retcd, com2)

This routine deletes a search property.

objptr - an objectptr to an object with the property
prop - a property (integer)
retcd - an integer return code set as follows:

0 - success

1 - failure (object does not have that
property)

com2 - a pointer to the layer 2 common area

-55

-

1. have the property 2 and

2. either have the property 3 or do not have the property 1.

The commands for locating the set of objects that satisfy a given property
request vector are as follows:

12locfp - locate the first of a set of objects by property

12locfp(cond, obj,pos,retc d,com2)

An encoded Boolean condition of properties is in an integer
vector (a property request vector). Objects are returned by
12locfp /12locrnp in order of increasing id.

cond - an ivecptr to the property request vector
obj - an objectptr set to reference the returned object
pos - an integer that represents a position in the set

of objects that satisfy the request
retcd - the return code is set to:

0 - ok, an object is returned
1 - no object could be found
memfail - memory failure

com2 - common area for layer 2

12locnp - locate the next object that satisfies a condition

12locnp(pos,obj,retcd,com2)

pos - an integer that maintains position in the set
of objects that satisfy the request

obj - an objectptr set to reference the returned
object (if retcd gets set to 0)

retcd - the return code is set to:
0 - an object is returned
1 - no more objects could be found

com2 - common area for layer 2

56

-

These commands reference the elements of the set through first/next opera-
tions. A position is maintained in the set. The user must either process the
entire set or cancel the position.

13. Infer::nce Rulea

This section describes the clause-based inference mechanisms that are
currently implemented in layer 2. The reader should note that we do intend to
frequently supplement this set with both clause-based and non-clause based
inference mechanisms.

13.1. Meanings of the Inference Rules

In this section we describe the routines that can be called to deduce new
facts from existing ones. We assume that the reader knows what the expressions
clause, literal, and term mean[2, 5]. Inference rules are processes for producing
new clauses from existing clauses. LMA supports a wide variety of inferersce
rules. A key to effective use of the system is knowing which inference rules to
apply in a given situation.

Hyper-resolution

The most straightforward type of logical deduction is the following.

if P then Q
P

therefore Q

In clause form this becomes

-P or Q
P

therefore Q

The new clause, Q, is formed from tL. clauses (-P or Q) and P by cashing the
literal -P against the literal P. A mor: general form of this pattern occurs when
there are more hypotheses in the "if-then" statement. A sentence like

12cancploc - cancel a property location position

12cancploc (pos, com1)

Cancel position in a search by means of a property request.

pos - an integer giving the position
com2 - the common area for layer 2

57-

if P and Q and R, then S

beccrncs, when rendered into clausal form,

-P or -Q or -R or S

We can deduce S if all of P, Q, and R are known to be true. Therefore from the
four clauses

-P or -Q or -R or S
P
Q
R

we can deduce S. This is the pattern of deduction used in production systems
and many of the systems described as "rule-based" systems.

Of course the literals in the above clauses may contain variables which may

require instantiation in order for clashes to occur. For example, the sentence

"All men are mortal"

becomes

"Either x is not a man or x is mortal."

if we also know that

"Socrates is a man"

then we can deduce

"Socrates is mortal."

This is an example of the pattern

-P(x) or Q(x)

P(a)

therefore Q(a).

Hyper-resolution is an inference rule that encompasses the above cases and
more[14, 17, 19, 21]. It generalizes them in two ways. First, the "if-then" clause

may have more than one conclusion literal. The clause

if P and Q then R or S

becomes

-P or -Q or R or S.

Secondly, the clauses containing literals that clash against the hypothesis
literals in the "if-then" clause can have more than one literal, as long as all their

literals are positive. A typical pattern might be as follows:

-P or -Q or -R or S
P or T
Q or W
R

TorWor S.

Note that hyper-'esolution requires that all of the negative literals in the "if-

-58-

then" clause be clashed against corresponding literals in other clauses. For

example, from

-P or -Q or -R

and

P or S

hyper-resolution would not deduce

S or -Q or R

(although binary resolution, described below, would do so). When variables are

present, their instantiations must be consistent. For example, from

-P(x,y) or -Q(x) or R(xy)
P(z,b)
Q(a)

hyper-resolution deduces

R(a,b).

Hyper-resolution is perhaps the most commonly used inference rule in
situations where equality substitutions do not play a major role. It corresponds
to a natural mode of human reasoning. Its restriction that all negative literals
must be clashed corresponds to the rule: "Don't draw any conclusions until all of
the hypotheses are satisfied."

For a wide class of reasoning problems, hyper-resolution is sufficient. It is
the rule that most resembles the inference mechanism used in production sys-
tems.

UR-Resolution

It is not hard to see that the use of hyper-resolution by itself will lead to the
derivation of clauses with only positive literals in them. While tnis is sufficient
for a large class of problems, a number of reasoning tasks require the derivation
of clauses containing negative literals.

Rather than abandon all restrictions on what kinds of clauses are allowed to
be derived, we now focus on the desirability of clauseF containing only one
literal. Such clauses are called unit clauses or units. A unit clause can be
regarded as a si atement of fact, whereas multi-literal clauses represent condi-
tional statements (if they contain both positive and negative literals) or state-
ments of alternatives. Unit clauses are therefore more desirable in many situa-
tions. UR-resolution (Unit-Resulting resolution) [i2] removes the restriction
that derived clauses must have only positive literals, but imposes the restriction
that derived clauses must be units. For example, from

-P or -Q or R
P

-R

UR-resolution would derive -Q, whereas hyper-resolution would be unable to
derive anything. UR-resolution emphasizes units in another way as well: all but
one of the clauses that participate in the deduction must be unit clauses,
although they can be either positive or negative. One might say that UR-
resolution emphasizes unit clauses in exactly the same way that hyper-
resolution emphasizes positive clauses. With variables present, another example
might be

- 59

-

P(x,y) or -Q(a) or R(xz)
Q(x)
-R(b,c)

P(b,y).

Binary Resolution

Both hyper-resolution and UR-resolution derive much of their power from
the fact that many clauses can participate in the clash, which corresponds to
taking several reasoning steps at once. Very occasionally it is necessary to
employ resolution in very small steps. The form of resolution used in this case is
called binary resolution; it corresponds to the smallest possible deductive step.

The only "restriction" on binary resolution is that exactly two clauses may
participate in the clash[18]. Since both hyper-resolution and UR-resolution can
be thought of as sequences of binary resolutions, this is really not a restriction.
An example might be

-P or Q or -R
-Q or S

-P or S or -R

Notice that this result could not have been obtained by hyper-resolution (since

it is not positive) nor by UR-resolution (since it is not a unit). However, any
hyper-resolvent or UR-resolvent can be obtained (eventually) by binary resolu-
tion. For example, the hyper-resolution

-P or -Q or R
P or S
Q

R or S

car he carried out by a sequence of binary resolutions:

-P or -Q or i

P or S

-Q or R or S

Q

R or S.

A disadvantage of binary resolution is that clauses are likely to be created
which are longer than existing clauses, for example,

-P or -Q or R or S
-S or T or -U or V.

-P or -Q or R or T or -U or V

-60-

It is easy to see how unrestricted use of binary resolution can lead to a very

large collection of very weak clauses. (A clause having many literals can be

thought of as making a weaker statement than one with few literals.)

Unit Resolution

One restriction that is sometimes placed on binary resolution is the
requirement that one of the two clauses involved in the clash be a unit[3, 24].

The motivation for this restriction is that if one clause is a unit, then the result-
ing resolvent will consist of the other participating clause with one of its literals
removed (and perhaps some of its variables instantiated). Thus, derived clauses
will be shorter than the clauses that produced them, for example,

-P or -Q or R or S
-R

-P or -Q or S

or, with variables present,

-P(xy) or Q(f(x),b) or -R(x,c)

R(a,z)

-P(a,y) or Q(f(a),b)

These are not the only resolution-based inference rules supported by LMA,
but they do represent the ones most often used.

Factoring

There is one inference rule that derives new clauses from a single clause
rather than from pairs of clauses. It is called factoring and involves the
unification of literals within the same clause[2, 5], for example,

P(a,x) or P(y,b)

P(a,b).

The new clause is said to be a factor of the original one.

Factoring is important because without it the resolution rules described

above are incomplete, which means that given a set of contradictory clauses, a

contradiction may not be derived. The classical example is as follows:

P(x) or P(x)

-P(x) or -P(x)

This set of clauses is contradictory, since P(x) is a factor of the first clause and
-P(x) is a factor of the second clause. But without factoring, a rule like binary
resolution will only derive the tautology P(x) or -P(x).

Paramodulation

The next inference rule we consider is not based on resolution at all.
Instead, it is based on the substitution properties of the equality relation. For
example, if we know that John's wife is sick, and that John's wife is Sue, then we
know that Sue is sick. This is an instance of the pattern

- 61

-

P(a)
Equal(a,b)

P(b).

In this example, the result P(b) is called a paramodulant rather than a resol-
vent[4, 15, 16]. The clause P(b) is said to be obtained by paramodulating into the
clause P(a) from the equality clause Equal(a,b). The terms in the "from" clause
and in the "into" clause are identical in the above example, but in general are
required only to be unifiable. Here is an example in which a substitution must
be made in the "into" clause:

P(f(x),x)
Equal(f(a),b)

P(b,a)

and here is one in which the substitution must be made in the "from" clause:

P(g(a),b)

Equal(g(x),x)

P(a,b).

Sometimes, substitutions are made in both terms:

P(f(a,x),x)

Equal(f(y,b),y)

P(a,b).

In thEo previous examples, both the "into" and "from" clauses are units, but
this is not a requirement for paramodulation, for example,

P(f(x,g(y))) or Q(x,y)
Equal(f(a,g(b)),c)

P(c) or Q(ab).

Note that, as usual, when a substitutions is make for a variable, it must be made
for all occurrences of the variable in the clause. The "from" clause can also
have extra literals:

P(f(a,x))
Equal(f(y,b),c) or Q(y)

P(c) or Q(a).

The expressions into and frm can also refer to the terms being matched as well
as the clauses in which they occur. In the above example, one woulr Fy that
paramodulation occurred from the term f(y,b) into the term f(a,x).

The terms paramodulated into or from may even be variables, although this
is sometimes considered undesirable. An example of paramodulation into a

-62-

variable would be

P(f(x),x)

Equal(g(b),h(a))

P(f(h(a)),h(a)),

and an example of paramodulating from a variable would be

P(a)

Equal(x,f(x,x))

P(f(a,a)).

Various kinds of restrictions are sometimes imposed on paramodulation.
These include blocking paramodulation into variables or from variables, and res-
tricting the "from" term to be either the lefthand or righthand side of the equal-
ity literal. In the previous examples, the lefthand side was always used as the
"from" term, but this is not necessary. In the following example, we are paramo-
dulating not from the variable, but rather from the righthand side of the equal-
ity:

P(f(a,x)) or Q(x)
Equal (y,f(y,y))

P(a) or Q(a)

Another type of restriction limits the kinds of substitutions that are allowed.
For example, one might require that the "into" term be an instance of the
"from" term, or that the "from" term be an instance of the "into" term. In non-

complexifying paramodulation, variables in the "into" term can be replaced only
by other variables or constants, unless they occur nowhere else in the into
clause.

13.2. Routines that Implement the Inference Rules

For each inference rule there are normally three routines:

1. Each inference rule includes a routine which initiates an operation that
can generate one or more new clauses. This first routine returns only
the first clause in the set of clauses that could be generated, along with
a "position" in the set. This position has the type stkntptr.

2. A second routine is passed the position and returns the next clause in
the set. This routine can be called repeatedly until all of the clauses in
the set are returned.

3. If all of the clauses in the set are not desired, the user can cancel the
position at any point. It must be stressed that failure to cancel such
positions in sets can lead to severe degradation.

Perhaps the simplest inference rule that is currently implemented in layer
2 is factoring:

- 63

-

nf actor - generate the next factor of a clause

nfactor(pos, retcl history, retcd, com2)

This routine generates the next factor in the set that can
be derived from the given clause.

pos - a stkntptr that maintains position in the set
retcl - an objectptr set to reference the new factor
history - an ivecptr set to reference an ivector giving

derivation information
retcd - an integer return code set as follows:

0 - success (retcl references the new
factor)

1 - no more factors can be generated
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

ffactor - generate the first factor of the given clause

flac tor(givcl,retcl,history,pos,retcd,c cm?)

This routine is used to generate the first of a set of factors
from the given clause.

givcl - an objectpt.r to a clause

retcl - an objectptr set to reference the generated clause

history - an ivecptr set to return details on how the factor
was produced (nil if no factor is returned)

pos - a stkntptr used to maintain position in the

set of factors

retcd - an integer return code set as follows:

0 - success (retcl references the new

factor)

1 - no factor could be produced

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

- 64-

The factor and nfactor commands return nonintegrated clauses. The given

clause is not altered in any way. For the moment we shall ignore the history

vector. We will cover it in detail in the next section.

The other inference rules involve accessing parent clauses other than the

given clause. Each such parent (other than the given clause) must be
integrated. Frequently, the set of acceptable parents must be restricted (e.g.,

to implement a set-of-support strategy). To do this, the user forms a list called

the clashobj. The clashobj may contain other lists or clauses. Parents other

than the given clause must occur in either clashobj or a list that occurs in

clashobj. If the given clause is allowed to be used more than once in forming an
inference (e.g., in forming a hyper-resolvent), it should also be included in the

clashobj. If a nil clashobj is used, any clause in the integrated structure is

acceptable.

With these points in mind, the user should now be able to understand the

following inference commands:

cfactor - cancel position in a set of factors

cfactor(pos,com2)

This routine cancels position in the set of factors of a given clause.

pos - a stkntptr used to maintain position in the set
com2 - a pointer to the layer 2 common area

- 6b

-

fbinary - generate the first of a set of binary resolvents

fbinary(givcl,clashobj,retel,history,posretcd,com2)

This routine is used to generate the first of a set of resolvents
from the given clause (givcl) and clauses that occur in clashobj. Thus,
it is intended that clashobj be a list of the lists from which other
clauses are selected to complete the clash.

givcl - objectptr to the given clause
clashobj - all clauses (other than the given clause) that make up

a clash must be in this object, unless clashobj is nil

(in which case any clause can participate in a clash).
retcl - an objectptr set to reference the first generated

resolvent (or nil, if there are none)
history - an ivecptr that is set to return the details

of how the clash was formed (see documentation of history

vector formats)
pos - a stkntptr that must be passed to nbinary to get the

rest of the resolvents

retcd - an integer return code set as follows:

0 - a resolvent was successfully calculated

1 - no resolvents were calculated
memfail - memory failure

corn2 - a pointer to the layer 2 common area

nbinary - generate the next resolvent

nbinary(pos,retcl,history,reted, com2)

This routine generates the next in a set of resolvents.

pos - a stkntptr that maintains position in the set
retcl - an objectptr set to reference the next resolvent

(or nil, if no clause is returned)
history - an ivecptr that returns the details of how the

resolvent was generated
retcd - an integer return code set as follows:

0 - a resolvent was successfully calculated
1 - no resolvents were calculated
memfail - memory failure

com2 - a pointer to the layer 2 common area

-66-

cbinary - cancel position in a set of resolvents

cbinary(pos, com2)

This routine must be called to stop generating

resolvents before getting a non-zero return code

from binary or nbinary.

pos - a stkntptr used to maintain position in the set

com2 - a pointer to the layer 2 common area

fpl - gererate the first of a set of p1 resolvents

fp1 (givcl,clashobj ,retcl, history,posretcd, com2)

This routine is used to generate the first of a set of p1 r esolvents
from the given clause (givcl) and clauses that occur in clashobj. Thus,

clashobj is intended to be a list of the lists from which other
clauses are selected to complete the clash.

givcl - objectptr to the given clause
clashobj - all clauses (other than the given clause) that make up

a clash must be in this object, unless clashobj is nil

(in which case any clause can participate in a clash).

retcl - an objectptr set to reference the first generated

resolvent (or nil, if there are none)
history - an ivecptr that is set to return the details

of how the clash was formed (see documentation of history

vector formats)
pos - a stkntptr that must be passed to npl to get the

rest of the resolvents

retcd - an integer return code set as follows:
0 - a resolvent was successfully calculated

1 - no resolvents were calculated

memfail - memory failure
com2 - a pointer to the layer 2 common area

-67-

i,1 - generate the next p1 resolvent

np1 (posretel, history,retcd,com2)

This routine generates the next in a set of p1 resolvents.

pos - a stkntptr that maintains position in the set
retcl - an objectptr set to reference the next resolvent

(or nil, if no clause is returr:ed)
history - an ivecptr that returns the details of how the

resolvent was generated
retcd - an integer return code set as follows:

0 - a resolvent was successfully calculated
1 - no resolvents were calculated
memfail - memory failure

com2 - a pointer to the layer 2 common area

cpl - cancel position in a set of p1 resolvents

cp1(pos,com2)

This routine must be called to stop generating
resolvents before getting a non-zero return code

from fp' or npl.

pos - a stkntptr used to maintain position in the set
com2 - a pointer to the layer 2 common area

- 68

-

nunit - generate the next unit resolvent

nunit(pos,retcl,history, retcd,com2)

This routine generates the next in a set of unit resolvents

pos - a stkntptr that maintains position in the set

retcl - an objectptr set to reference the next resolvent

(or nil, if no clause is returned)

history - an ivecptr that returns the details of how the

resolvent was generated

retcd - an integer return code set as follows:

0 - a resolvent was successfully calculated

1 - no resolvents were calculated

memfail - memory failure

comn2 - a pointer to the layer 2 common area

funit - generate the first of a set of unit resolvents

funit(givcl,clashobj,retcl,hi:tory,pos,reted,com2)

This routine is used to generate the first of a set of unit resolvents
from the given clause (givcl) and clauses that occur in clashobj. Thus,
clashobj is intended to be a list of the lists from which other
clauses are selected to complete the clash.

givcl - objectptr to the given clause
clashobj - all clauses (other than the given clause) that make up

a clash must be in this object, unless clashobj is nil
(in which case any clause can participate in a clash).

retcl - an objectptr set to reference the first generated
resolvent (or nil, if there are none)

history - an ivecptr that is set to return the details
of how the clash was formed (see documentation of history
vector formats)

pos - a stkntptr that must be passed to nunit to get the

rest of the resolvents
retcd - an integer return code set as follows:

0 - a resolvent was successfully calculated
1 - no resolvents were calculated
memfail - memory failure

com2 - a pointer to the layer 2 common area

- 69

-

cunit - cancel position in a set of resolvents

cunit(pos,corn2)

This routine must be called to stop generating

resolvents before getting a non-zero return code

from funit or nunit.

pos - a stkntptr used to maintain position in the set

com2 - a pointer to the layer 2 common area

funitconflict - test for unit conflict (first)

funitconflict(givcl,clashobj, retcl,history, posretcd,com2)

This routine is used to generate the first of a set of null clauses
from the given clause (givcl) and clauses that occur in clashobj. Thus,
clashobj is intended to be a list of the lists from which other
clauses are selected to complete the clash. The given clause must
be a unit, and s'rnilarly for the clashed against clause.

givcl - objectptr to the given clause

clashobj - all clauses (other than the given clause) that make up
the clash must be in this object, unless clashobj is nil

(in which case any clause can participate in the clash).
retcl - an objectptr set to reference the first generated

null clause (or nil, if there are none)

history - an ivecptr that is set to return the details
of how the clash was formed (see documentation of history

vector formats)

pos - a stkntptr that must be passed to nunitconflict to get
the rest of the null clauses

retcd - an integer return code set as follow.
0 - a null clause was successfully calculated

1 - no null clauses were calculated

memfail - memory failure

com2 - a pointer to the layer 2 common area

- 70-

nunitconflict - generate the next null cl:se (using unit conflict)

nunitc onflict(pos, retcl, history,retcd, com2)

This routine generates the next in a set of null clauses that are
generated usinf, unit conflict.

pos - a stkntptr that maintains position in the set
retcl - an objectptr set to reference the next null clause

(or nil, if no clause is returned)
history - an ivecptr that returns the details of how the

null clause was generated
retcd - an integer return code set as follows:

0 - a null clause was successfully calculated
1 - no null clauses were calculated
memfail - memory failure

com2 - a pointer to the layer 2 common area

cunitconflict - cancel position in a set of null clauses

cunitconflict(pos,com2)

This routine must be called to stop generating
null clauses before getting a non-zero return code
from funitconflict or nunitconflict.

Pos - a stkntptr used to maintain position in the set
com2 - a pointer to the layer 2 common area

- 71

-

hypern - generate the next hyper-resolvent

hyperri(pos, retcl, history, reted, com2)

This routine generates the next in a set of hyper-resolvents.

pos - a stkntptr that maintains position in the set
retcl - an objectptr set to reference the next hyper-resolvent

(or nil, if nc clause is returned)
history - an ivecptr that returns the details of how the

hyper-resolvent was generated
retcd - an integer return code set as follows:

0 - a 1yper-resolvent was successfully
calculated

1 - no hyper-resolvents were calculated
memfail - memory failure

com2 - a pointer to the layer 2 common area

hyperf - generate hyper-resolvents (first)

hyperf(givcl, clashobjretel, historypos,retcd, com2)

This routine is used to generatU the first of a set of hyper-resolvents
from the given clause (givcl) and clauses that occur in clashobj. Thus,
clashobj is intended to be a list of the lists from which other
clauses are selected to complete the rlash.

givcl - objectptr to the given clause
clashobj - all clauses (other than the given clauir) that make up

the clash must be in this object, unless clashobj is nil
(in which case any clause can participate in th2 clash).

retcl - an objectptr set to reference the first generated
hype-rresolvent (or nil, if there are none)

history an ivecptr that is set to return the details
of how the clash was formed (see documentation of history
vector formats)

pos - a stkntptr that must be passed to hypern to get the
rest of the hyperresolvents

retcd - an integer return code set as follows:
0 - a hyper resolvent was successfully

calculated
i - no hyperresolvents were calculated
inemfail - memory failure

com2 - a pointer to the layer 2 common area

- 72

-

hypercanc - cancel position in a set of hyper-resolvents

hypercanc(pos,comr2)

This routine must be called to stop generating
hyper-resolvents before getting a non-zero return code
from hyperf or hypern.

pos - a stkntptr used to maintain position in the set
com2 - a pointer to the layer 2 common area

urf - generate UR-resolvents (first)

urf(givcl, clashobj, retol, historypos, retcd, com2)

This routine is used to generate the first of a set of UR-resolvents
from the given clause (gJvcl) and clauses that occur in clashobj. Thus,
clashobj is intended to brb a list of the lists from which rther
clauses are selected tW complete the clash.

givel - objectptr to the given clause
clashobj - all clauses (other than the given clause) that make up

the clash must be in this object, unless clashobj is nil
(in which case any clause can participate in the clash).

retcl - an objectptr set to reference the first generated
UR-resolvent (or nil, if there are none)

history - an ivecptr that is set to return the details
of how the clash was formed (see documentation of history
vector formats)

pos - a stkntptr that must be passed to urn to get the
rest of the UR-resolvents

retcd - an integer return code set as follows:
0 - a UR-resolvent was successfully

calculated
1 - no UR-resolvents were calculated
memfail - memory failure

com2 - a pointer to the layer 2 common area

- 73

-

urn - generate the next UR-resolvent

1 u'rn(pos,retcl,history,retcd,cm2)

This routine generates the next in a set of UR-resolvents.

POS - a stkntptr that maintains position in the set
retol - an objectptr set to reference the next UR-resolvent

(or nil, if no clause is returned)
history - an ivecptr that returns the details of how the

UR-resolvent was generated
retcd - an integer return code set as follows.

0 - a UR-resolvent was successfully
calculated

1 - no UR-resolvents were calculated
memfail - memory failure

com2 - a pointer to the layer 2 common area

urcanc - cancel position in a set of UR-resolvents

urcanc(pos,com2)

This routine must be called to stop generating
UR-resolvents before getting a non-zero return code
from urf or urn.

pos - a stkntptr used to maintain position in the set
com2 - a pointer to the layer 2 common area

- 74-

funitdel - generate the first of a set of unitdel resolvents

funitdel(givclclashobj,retcl,history,posretcd,com2)

This routine is used to generate the first of a set of unitdel
resolverits from the given clause (givcl) and clauses that occur
in rlashobj. Thus, clashobj is intended to be a list of
the lists from which other clauses are selected to complete
the clash,

givcl - objectptr to the given clause
clashobj - all clauses (other than the given clause) that make up

a clash must be in this object, unless clashobj is nil
(in which case any clause can participate in a clash).

retcl - an objectptr set to reference the first generated
resolvent (or nil, if there are none)

history - an ivecptr that is set to return the details
of how the clash was formed (see document nation of histor)
vector formats)

Pos - a stkntptr that must be passed to nunitdel to get the
rest of the resolvents

retcd - an integer return code set as follows:
0 - a resolvent was successfully calculated
1 - no reso1vLits were calculated
memfail - memory failure

com2 - a pointer to the layer 2 common area

nunitdel - generate the next unitdel resolvent

nunitdel(pos,retcl, history, retc d, com2)

This routine generates the next in a set of unitdei resolvents.

pos - a stkntptr that maintains position in the set
retcl - an objectptr set to reference the next res.lvent

(or nil, if no clause is returned)
history - an ivecptr that returns the details of how the

resolvent was generated
retcd - an integer return code set as follows:

0 - a resolvent %as successfully calculated
1 - no resolvents were calculated
memfail - memory failure

com2 - a pointer to the layer 2 common area

- 75

-

cunitdel - cancel position in a set of resolvents

cunitde1(pos,comr2)

This routine must be called to stop generating
resolvents before getting a non-zcro returit code
from funitdel or nunitdel.

pos - a stkntptr used to maintain position in the set
com2 - a pointer to the layer 2 common area

-76-

paraff - get the first paramodulant from the given clause

paraff(givcl,retcl,clashobj,instopt,intoopt,fromopt,histpos,retcd,.c cm2)

This procedure can be invoked to generate the first of a set

of paramodulants using the given clause as the from clause.

givcl - an objectptr to the given clause
retcl - an objectptr set to reference the generated clause
clashobj - an objectptr such that all into clauses must be

contained in this object, unless it is
nil (in which case any into clause is ok).

instopt - an integer giving the instantiation options:
0 - both into and from can be instantiated
1 - "into" term must be instance of equality

arg
2 - equality arg must be instance of into

term
3 - noncomplexifying paramodulation (into

variables can be instantiated only to
constants or variables, unless they
occur nowhere else in the "into" clause)

intoopt - options governing "Int:" terms:
0 - any term isok
1 - variables are nct ok
2 - neither variables nor constants are ok

fromopt - options governing "from" terms
0 - either arg of equality, no restr
1 - only left arg, no restr
2 - either arg, no var
3 - only left arg, no var
4 - either arg, no var or constant
5 - only left arg, no var or constant

hist - an ivecptr set to the derivation data
pos - a stkntptr used to maintain position in the set
retcd - an integer return code:

0 - returned clause successfully
1 - no paramodulant could be generated
memfail - memory failure

com2 - a pointer to the layer 2 common area

- 77-

paranf - get next paramodulant from the given clause

paranrf(pos,retcl,hist,retcd,com2)

This procedure generates the next paramodulant coming from the given
clause.

pos - a stkntptr used to maintain position in the set
retcl - an objectptr set to reference the generated clause
hist - an ivecptr set to the derivation info
retcd - an integer return code:

0 - success
1 - no more paramodulants could be

formed
memfail - memory failure

com2 - a pointer to the layer 2 common area

parafcanc - cancel position in a set of "from" paramodulants

paraf canc(pos,com2)

This procedure is used to cancel position in a set of paramodulants.

pos - the stkntptr used to maintain position in the set
com2 - a pointer to the layer 2 common area

-78-

parafi - get the first paramodulant into the given clause

parafi(givcl,retcl,clashobj,instopt,intooptfromopt,histpos,re tc d, c.1)

This procedure can be invoked to generate the first of a set
of paramodulants.

givcl - an objectptr to the given clause
retcl - an objectptr set to reference the generated clause
clashobj - all from clauses must be contained in this object,

unless it is nil (in which case any from clause
is ok)

instopt - an integer giving the instantiation options:
0 - both "into" and "from" can be instantiatE d
1 - "into" term must be instance of equality

arg
2 - equality arg must be instance of "into"

term
3 - noncomplexifying paramodulation ("into'

variables can be instantiated only to
constants or variables, unless they
occur nowhere else in the "into" clause)

intoopt - options governing "into" terms:
0 - any term is ok
1 - variables are not ok
2 - neither variables nor constants are ok

fromopt - options governing "from" terms
0 - either arg of equality, no restr
1 - only left arg, no restr
2 - either arg, no var
3 - only left arg, no var
4 - either arg, no var or constant
5 only left arg, no var or constant

hist - the ivecptr set to the derivation data
pos - a stkntptr used to maintain position in the set
retcd - an integer return code:

0 - returned clause successfully
1 - no paramodulant could be generated
memfail - memory failure

com2 - a pointer to the layer 2 common area

- 79

-

13.3. Inference Rule History Vectors

Each inference rule returns an integer vector (referenced via an ivecptr)

that describes the sequence of actions used to infer the returned clause. In this

section we give the format of these history vectors. We include the formats pro-

duced by simplification and demodulation, operations that are described in later

sections. The format of history vectors is as follows:

operations
a sequence of operations

An operation is one of the following:

a) factoring

parani - get next paramodulant into the given clause

parani(pos,retcl,hist,retod,com2)

This procedure generates the next paramoiulant going into the given
clause.

pos - a stkntptr used to maintain position in the set
retcl - an objectptr set to reference the generated clause
hist - an ivecptr set to the derivation info
retcd - an integer return code:

0 - success
1 - no more pararnodulants could be

formed
memfail - memory failure

com2 - a pointer to the layer 2 common area

paraicanc - cancel position in a set of "into" paramodulants

paraicanc(pos,com2)

This procedure is used to cancel position in a set rA paramodulants.

pos - the stkntptr used to mainLun position in the set
com2 - a pointer to the layer 2 common area

- 80

-

1 - factor operation code
11sub - subscript of 1 literal
12sub - subscript of the second literal

b) resolve

2 - resolution operation code
11sub - subscript of literal in "main" clause

Here "main" means the given cl or the
result to this point oa operating on the

given clause.
p2id - id of clashed clause
12sub - subscript of literal in p2id

c) pararniodulation into

3 - paramodulation-into operation code
<into-position vector>
p2id - id of from-clause
<from-position vector>

d) paramodulation from

4 - paramodulation-from operation code
<from-position vector>
p2id - id of the into clause
<into-position vector>

e) special symbol reduction

5 - special symbol reduction operation code

<position-vector of the simplified term>

f) tautology reduction

6 - tautology reduction (a clause contains L and -L) operation
code.

1isub
12sub

g) duplicate literal removal

7 - duplicate literal removal operation code
1isub
12sub

h) tautology reduction (a literal is TRUE)

8 - tautology reduction (TRUE literal) operation code
11sub

9 - FALSE removal (FALSE literal) operation code
11sub

- 81

-

Here a position vector has the following format:

n - number of elements in the position vector
v1
v2

vn

The user of an inference rule may wish to discard this information, display it, or
save it in a "log file". If he decides to save it, we recommend using the portable
format of an object. This would lead to the following formats for ex~trnally
logged inference history:

an axiorn (A <id> <object>);
Here <id> is the numeric id, and (object>
is the object (which will be a clause for

most of our purposes).

an inference - (I <id> <object> parents1> <ater-sequenue>);
Here the <id> is of the generated clause.
If this is the same as parents1>, all
future references to the <id> in the log
ile pertain to the generated clause.
<alter-sequence> is of the following form:

(C <modi> (C <mod2> ... (C <mrodn> NIL)))...

Here <modi> is one of the following forms:

into-paramodulant: (INTO <into-pos> <from-id> <from-pos>)

<into-pos> and <from-pos> are position
vectors of the form:

(C <num> (C <num> ... (C <num> NIL)))...

from-paramodulant: (FROM <from-pos> <into-id> <into-pos>)

resolvent. (R <lit1-sub> <parent2> <lit2-sub>)

factor: (F <lit1-sub> <lit2-sub>)

special-symbol reduction: (SPEC <sym-position>)

tautology-1: (TAUT1 (lit1-sub> <lit2-sub>)
(clause contains L and -L)

duplicate literal removal:

- 82-

(DUP <liti-sub> <lit2-sub>)

tautology-2: (TAUT2 <lit-sub>)

(a literal is TRUE)

FALSE removal: (FALREM <lit-sub>)

To help prepare such a file, we include the following two routines:

logclause - prepare a log entry for a clause (axiom)

logclause(clobj,s,retcd,com2)

This routine creates a log entry for the given clause and
points s at the resulting string (it does not write the
string to a file).

clobj an objectptr to a clause
s - a csptr set to reference the created string
retcd - an integer return code set as follows:

0 - success

1 - clobj does not reference a clause
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

- 83

-

loginference - create a string with a log entry for an inference

loginference(histvec, newcl,parentid, s, retc d, con2)

This routine can be used to create a string with the correct log
entry to represent an inference.

histvec - an ivecptr to a history vector created by the inference
newcl - the newly derived clause
parentid - id of the given clause
s - a csptr set to reference the generated string
retcd - an integer return code set as follows:

0 - success
1 - histvec does not contain a valid history

vector

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

14. Subsumption

14.1. Definition of Subsumption

Subsumption is the mechanism by which unnecessary clauses are dis-

carded [2, 5, 18]. The simplest situation occurs when a clause is derived that is

already present in the clause space. In thi case we want to discard the newly
derived clause.

More generally, the newly derived clause may be recognizably less general
than surne existing clause without being identical to it. There are two basic ways
this can happen.

The first is that the literals of the new clause may form a subset of the
literals of the existing clause. For example, if we already know

P or Q

and derive

Q or S or P

then we may discard the new clause, since it is logically weaker than the original
one.

The second i.s that the new clause may be an instance of the original clause,

for example,

Old clause: P(a,x)

New clause: P(a,b)

Since any resolution in which the new clause might participate will occur with
the old clause anyway, we discard the new clause.

- 84-

These two ways in which a new clause may be less general than an existing
clause may, of course, be combined, for example,

Old clause: P(a,x) or Q(y) or P(y,b)
New clause: Q(a) or P(a,b)

So in general, clause. A subsumes clause B if there is a substitution for the vari-
ables in clause A such that after the substitution, the literals of clause B form a
subset of the literals of clause A.

This process of discarding new clauses that are subsumed by existing
clauses is called forward subsumption. The subsumption process also can occur
in the opposite direction. That is, a newly derived clause may subsume one or
more existing clauses, in which case we probably want to keep the new clause
and discard the subsumed clauses. This process is called backward subsump-
tion.

14.2. The Routines that Implement Subsumption

Two versions of subsumption checks are supplied:

1. Forward subsumption allows you to determine which clause or clauses
subsume a given clause.

2. Backward subsumption allows you to determine which clauses are sub-
sumed by a given clause.

As with the inference rules, clashobj is used to restrict the set of clauses to
check. The routines to perform the subsumption checks are as follows:

- 85

-

.subfirst - get first clause that subsumes given clause

fsubfirst(givcl,clashobj,lenopt,retel,pos,retcd,corn2)

This routine returns the first clause in a set of clauses
(all contained in clashobj) that subsume the given clause.
The lenopt parameter can be used to suppress checks of a
longer clause subsuming a shorter clause. This can save
time, and it is needed when doing subsfumption checks on factors.

givcl - an objectptr to the given clause
clashobj - an objectptr; if nil, all clauses are checked;

else, only clauses contained in clashobj are checked
lenopt - an integer specifying whether or not a longer

clause may subsume a shorter clause:
0 - a longer clause may subsume a

shorter clause
1 - a longer clause may not :::ubsume a

shorter clause
retcl - an objectptr set to reference the first subsuming

clause
pos - a stkntptr used to maintain position in the set

of subsuming clauses
retcd - an integer return code set as follows:

0 - found a subsumer successfully
1 - no subsumer could be found
memfail - memory failure

com2 - a pointer to the layer 2 common area

fsubnext - get next clause that subsumes the given clause

fsubnext(pos,retel,reted,com2)

This routine locates the next clause in the set of clauses
that subsume the given clause.

pos - a stkntptr used to maintain position in the set
retcl - an objectptr set to reference the returned clause
retcd - an integer return code set as follows:

0 - success
1 -no clause could be found
memfail - memory failure

com2 - pointer to the layer 2 common area

- 86

-

cancfsub - cancel position in set of clauses that subsume given clause

cancfsub(pos,com2)

This routine cancels the position in the set of clauses that subsume the
given clause.

pos - a stkntptr maintaining position in the set
com2 - a pointer to the layer 2 common area

bsubfirst - get first clause subsumed by given clause

bsubftrst (givcl, clashobj,lenopt,retcl,pos,ret, .cd, om2)

This routine returns the first clause in a set of clauses
(all contained in clashobj) that are subsumed by the given clause.
The lenopt parameter can be used to suppress checks of a
longer clause subsuming a shorter clause. This can save
time, and it is needed when doing subsumption checks on factors.

give - an objectptr to the given clause
clashobj - an objectptr; if nil, all clauses are checked;

else, only clauses contain- - in clashobj are checked
lenopt - an integer specifying whether or not a longer

clause may subsume a shorter clause:
0 - a longer clause may subsume a

shorter clause
1 - a longer clause may net subsume a

shorter clause
retcl - an objectptr set to reference the first subsumed

clause
pos - a stkntptr usud to maintain position in the set

of subsumed clauses
retcd - an integer return code set as follows:

0 - found a subsumed clause successfully
1 - no clause could be found
memfail - memory failure

com2 - a pointer to the layer 2 common area

-87

-

cancbsub - cancel position in set of clauses subsumed by given clause

cancbsub(pos,com2)

This routine cancels the position in the set of clauses subsumed by the

given clause.

pos - a stkntptr maintaining position in the set
com2 - a pointer to the layer 2 common area

15. A Simple Tieorem Prover

Now we have all the tools required to put together a simple theorem prover.
This program uses just hyper-resolution as the inference rule, but does perform
complete subsumption checks. It is a "toy" program, but it is still fairly power-
ful. In fact, it is better than many of the programs that have been reported in
the literature. A more extensive theorem prover built with the LMA tools is
described in [10].

program tp(inputoutput);

const
#include 'l2constants.i';
type
#include 'l2types.h';

#include '12externals.h';

bsubnext - get next clause subsumed by the given clause

bsubnext(pos,retcl,retcd,com2)

This routine locates the next clause in the set of clauses
subsumed by the given clause.

pos - a stkntptr used to maintain position in the set
retcl - an objectptr set to reference the returned clause
retcd - an integer return code set as follows:

0 - success
1 - no clause could be found
memfail - memory failure

com2 - pointer to the layer 2 common area

- 88

-

axlist: objectptr; the list of axiomsJ
soslist: objectptr; the set of support list
hbglist: objectptr; Jthe have-been-given list
clashlists: objectptr; list of lists to clash agains'.
allclauses: objectptr; Jlist of list to subsume from
givencl: objectptr; Jthe given clause, chosen from soslistj
resolvent: objectptr; newly generated clauseJ
subsumer: objectptr; subsuming clause in forward subsumptionj
subsumed: objectptr; Jclause subsumed in back subsumptionj
inclause: objectptr; Jinput clause while being integrated
histvec: ivecptr; derivation history vector for now clauseJ
retcd: integer; Jgeneral-purpose return code
listretcd: integer; return code for list processing
numlits: integer; number of literals of new clause
lenopt: integer; subsumption options
unifopt: integer; Joption for integration routine

-

set unification properties on all
terms (not just literals)i

hyperpos: stkntptr; position in set of resolvents
subsumerpos: stkntptr; Jposition in set of subsumers
subsumedpos: stkntptr; Jposition in set of subsumed clauses
sospos: upbptr; Jposition in set of supporLi
lis pos: upbptr; Jgeneral-purpose list positicni
done: boolean; Jflag to indicate end of main loopi
com2: common2ptr; ithe layer 2 common areaJ

beginitpi;

acquire the common area for
initcom2(com2);

layer 2 services

read in the list of axiomsj
writeln('enter axioms');
cllsttread(axlistretcd,vcom2);
if (reted = 0) then

begin
writeln(' axioms are as follows:');
cllsttwrite(axlistretcd,com2);
end

else
writeln('ini ut of axioms list failed');

Inow integrate the axioms - that is add them to the formulae database
lstaccfirst(axlist,inclauselistpos,listretcdcom2);
while (listretcd = 0) do

begin
unifopt 0;
clintegrate (inclause, unif optretcd, com2);
lstacenext (axlis t, inclauseIistposlistretcd, c om2);
end;

Inow read in the set-of-support list
writeln('enter set of support');

var

- 89

-

cllsttre ad (soslist, retc d, com2);
if (retcd = 0) then

begin
writeln('seL of support clauses are as follows:');
clisttwrite(soslist,reted,ccm2);
end

else
writeln('input of Cet of support list failed');

jintegrate the set-of-support clauses
Istaccfirs t(soslist, inclause, listpos, listretc d, com2);
while (listretcd = 0) do

begin
unifopt := 0;

clintegrate (inclause, unifopt, retod, com2);
lstaccnext(soslist,inclauselistpos,listretcd,com2);
end;

make clashlists a list containing axlist and hbglist.
make allclauses a list containing axlist, soslist, and hbglistj

lstcreate(hbglist,retcd,com2);
lstcreate (clashlistsretcd,com2);
lstcreate(allclauses,retcd,com2);

istinslast(axlist,clashlists,rctcd,com2);
istinslast(hbglistclashlists,retcd,com2);

lstinslast(axlist,allclauses,retcd,com2);
lstinslast(soslist,aliclauses,retcd,com2);
Is tinslas t(hbglist, allclauses,re tcd,c om2);

This is the main loop. Select a clause from the set-of-support,
generate all hyper-resolvents between it, axioms, and clauses on the
hbglist. Put the generated hyper-resolvents that are not subsumed onto
the soslist. When that is all done, move the given clause from the
soslist to the hbglist and start over - until no more clauses exist in the
soslist or the null clause is generated.

done := false;
while not done do

begin
select a "given clause

Istace first(soslist,givencl, sospos, re ted, com2);
if (retcd > 0) then

begin
done : true;
writeln('no more clauses in set of support');
end

else
begin
write('given clause is:);

cltwrite(givencl,retcd,com2);
generate the first hyper-resolvent!

- 90

-

hyperf(givencl,clashlists, resolvent, histvec,
hype rpos, retcd,com2);

This loop processes generaLed hyper-resolventsi
while (retcd = 0) and (not done) do

begin
write('resolvent: ');
cltwrite (resolvent, retcd, com2);
throw away the derivation information
dealivec(histvec,com2);
now check for the null clause

clnumlit(resolvent, numlits, c om2);
if (numlits = 0) then

begin
writeln('null clause found');
done true;
end

else
forward subsumption checks

begin
lenopt := 0; allow clauses to subsume shorter ones
fsubfirst(resolvent,allclauses,lenopt,subsumer,

subsumerpos,retcd,com2);
if (retcd = 0) then

begin
writeln('resolvent subsumed');
cancel position in the set of clauses that subsume
the generated hyper-resolventj

cancfsub(subsumerpos,com2);
delete the nonintegrated hyper-resolventj

cldelnon(resolventretcd,com2);
end

else
back subsumption checks

begin
lenopt := 0; allow subsumption by a longer clause
bsubfirst(resolvent,allclauseslenopt, subsumed,

subsume dpos, retcd, com2);
This loop deletes clauses subsumed by the new
hyper-resolventj

while (retcd = 0) do
begin
write('resolvent subsumes existing clause: ');
cItwrite(subsumed,retcd, com2);
cldelint(subsumed,retcd,com2);
bsubnext(subsumedpos, subsumed,retcd,

com2);
end;

jadd the hyper-resolvent to the integrated formula
database and to the set of support

unifopt := 0;

clintegr ate (resolvent,unif optretcd, com2);
lstinslast(resolvent, soslist, re tc d,eom2);
end;

end;

- 91

-

hypern(hyperposresolvent,histvecretcd, com2);
endjwhilej;

end;
If the given clause was not deleted (due to subsumption), move it
to the hbglistj

if not done then
begin
Istaitpos(sosposreted);
if retcd = 0 then

begin
Istdisconnect(sospos,com2);
lstinslast(give nt,hbg list, re to d, com2);
end;

end;
lstcancpos(sospos,com2);
end; while

end.jtpj

16. Demodulation/Simplification

16.1. Meaning of Demodulation

Demodulation is the process of rewriting a clause in place using an equality
substitution[25]. The rewriting is controlled by unit equality clauses called
demodulato7rs, for example,

P(f(a),b)

Equal(f(a), c)

P(c,b)

The clause P(c,b), called a demodulant, replaces the existing clause P(f(a),b),
which is deleted. (The clause P(c,b) could also be derived by paramodulation,
but the parent clause would not be deleted.)

Variables may be present in the demodulators, and in the clauses they
demodulate, but instantiation of variables can occur only in the term in the
equality, for example,

P(f(g(a)),g(a))
Equal(f(g (x)),h(x))

P(h(a),g (a)).

The demodulated clause need not be a ground clause (that is, it may contain
variables):

Q(f(x),x)
Equal(f(x),g(x))

Q(g(x).x).

In general, one can specify that a demodulator apply left-to-right, right-to-left,
or either way. In LMA, a user variable in the demodulator controls the direction
of demodulation.

92

-

In the presence of multiple demodulators, many may apply, and each may
apply more than once, for example,

P(f(g(a)),,f(a))
Equal(g (x),h(x)) (left-to-right)
Equal(a,hla)) (right-to-left)
Equal(f(a),b) (left-to-right)

P(b, b).

Since a demodulator may apply ricre than once, looping may occur[13j. This
possibility occurs naturally in dermcodulators that express commutativity, such
as

Equal(f(x,y),f(y,x))

In the presence of this demodulator, a clause like P(f(a,b)) would demodulate to
P(f(b,a)), then to P(f(a,b)), then P(f(b,a)), etc. This is prevented in the following
way.

When a clause is designated as an "either-way" demodulator, then whether
it is applied or not depends on the lexical ordering of the insLartiatiLons of its
variables. Lexical ordering of symbols can be allowed to default or can be
specified by use of the LEX predicate. Depending of the lexical ordering of a and
b, the demodulator

Equal(f(x,y),f(y,x))

will demodulate P(f(a,b)) to P(f(b,a)) or leave it unchanged. In this way canoni-
cal forms for expressions can be maintained. This is discussed in more detail at
the end of the next section.

When existing demodulators are applied to a newly derived clause, the pro-
cess is called forward demodulation. It is also possible for new demodulators to
be added to the clause space, in which case one may want to apply them to some
or all of the existing clauses in the clause space. This process is called back

demoddlation. An example would be the following situation. Suppose the set of
existing clauses contains

P(f(h(a)))
Equal(f(b), c)

and the new demodulator

Equal(h(a), b)

is derived. Then by back demodulation the clause

P(f(b))

is derived, which immediately demodulates to

P(c).

The clause P(f(h(a))) is replaced by P(c).

16.2. Implementation of Demodulation and Srmplification

Demodulation has been 'ound to have a variety of uses[13, 23,25]. Our
implementation differs from the original conception somewhat:

- 93-

1. We produce a single demodulant from any given clause. However, the
routines fdemodf and fdemodn could be rewritten to produce any
number of possible demodulants (we recommend the use of a single
demodulant).

2. In forming the demodulant of a clause, we not only apply equality
transformations but we also perform "function evaluations". For exam-
ple, (SSUM 1 1) would be rewritten as 2, even though no demodulator
existed to cause the reduction.

To understand the behavior of the demodulation-simplification routine, one must
understand the meanings attached to the following system-defined symbols:

SSUM(nl,n2)

SNEG(ni)

SPROD(n1, n2)

SDIV(nl,n2)

SMOD(nl ,n2)

SPOWER(n l,n2)

SCOMP(n 1, n2)

SAND(x1,x2)

SQR(xl,x2)

if n1 and n2 are self-defining numeric values,
this simplifies to the value nl+n2

if n1 is a self-defining numeric value, this
gimplifles to -ni

if n1 and r2 are self-defining numeric values,
this simplifies to n1*n2.

if n1 and n2 are self-defining numeric values,
and if n2 (>0, then this evaluates to n1/n?

if n1 and n2 are self-defining integers, then
this evaluates to n1 modulo n2

if n1 and n2 are self-defining integers, then
this evaluates to n1 raised to the power n2

if n1 and n2 are ground values, then this evaluates to

0 if n1 = n2
-1 if n1 < n2

1 if n1 > n2

evaluates to the logical and of x1 cind x2. The arguments
may be either O's and 1's or TRUE's and FALSE's.

evaluates to the logical or of x1 aid x2

evaluates to the logical negation of xSNOT(x)

-94-

SOUT(t)

SIN

SOUTIN(t)

SCHR(n)

SGT(t 1,t2)

SGE(t1,t2)

SLT(t l,t2)

SLE(ti,t2)

SEQ(t1,t2)

SNE(t1,t2)

NOT(TRUE)

NOT(FALSE)

if this occurs in a unit clause, and t is ground
(contains no variables), t is written to the
terminal and this evaluates to NIL. The term t
may be a list of terms, enclosed by "[" and "]".

if this occurs in a unit clause, this evaluates
to an object entered from the terminal, terminated
by a "o;"of

.

if this occurs in a unit clause, and if t is ground,
then t is written to the terminal and the whole
term is replaced with an object entered from
the terminal, terminated by a";".

this symbol is only evaluated when a SOUT or a
SOUTIN causes something to be written to the
terminal. In that case this expression evaluates
to "chr(n)", the ASCII character represented by
the value n.

This expression evaluates only if it is ground.
In that case it evaluates to TRUE if t1 > t2.
Else, it evaluates to FALSE.

This expression evaluates only if it is ground.
In that case it evaluates to TRUE if t1 >= t2.
Else, it evaluates to FALSE.

This expression evaluates only if it is ground.
In that case it evaluates to TRUE if t1 < t2.
Else, it evaluates to FALSE.

This expression evaluates only if it is ground.
In that case it evaluates to TRUE if t1 <= t2.
Else, it evaXlates to FALSE.

This expression evaluates only if it is ground.
In that case it evaluates to TRUE if ti = t2.
Else, it evaluates to FALSE.

This expression evaluates only if it is ground.
)i that case it evaluates to TRUE if t1 <>t2.
Else, it evaluates to FALSE.

evaluates to FALSE

evaluates to TRUE

- 95

-

Besides the above, the following special symbols have been defined:

NIL used to mark the end of lists

SC used as "concatenate", a binary operator to form
lists (that is, SC(a,SC(b,NIL)) is equivalent to

[ab])

SJUNK any clause containing this symbol will evaluate
to TRUE, if simplified

TRUE any clause containing this literal will be simplified to
TRUE

FALSE will be removed from any clause by

simplification

AND currently not used in simplification

OR used (along with NOT) in the representation
of clauses

We intend to extend this list significantly, since the existence of such primitives
can have an enormous impact on the ease of performing many operations.

There are three types of routines now included in layer 2 of LMA for
demodulation/simplification:

1. Just after a clause has been generated (but before it has been
integrated), the routine simplify can be used to apply demodulators
and function evaluation to the clause. The clause itself is altered, and
the history information is added to the end of the history vector pro-
duced by the inference rule.

2. The demodulants of a clause can be obtained by using fdemodf and
fdemodn. The given clause is not altered, and a new history vector is

produced. In this sense forward demodulation behaves like an infer-
ence rule. fdemodn always fails under the current implementation
(since only a single demodulant is produced).

3. When a new equality becomes a demodulator, clauses that are already
integrated can be back demodulated. The bdemodf and bdemodn com-
mands return demodulants o' existing clauses. They do not delete the
parent.

The routines that perform these three operations are as follows:

-96-

clsetdemod - designate a given clause as a demodulator

clsetdemod(cl,dcode,com2)

This routine establishes the given clause as a demodulator. The
dcode indicates whether left-to-right, right-to-left, or either
type of demodulation is desired. The clause must be a positive
unit (not pseudo-unit wiLh more than 1 literal) of the form

EQxxxxx(tl,t2)

The EQ can be upper or lower case. The xxxxx can be any string

(including null). t1 and t2 are arbitrary terms.

cl - an objectptr to a clause
deode - an integer code (dleft, dright, and deither are

defined constants)
dleft - right
dright - left
deither - right with lex pref check)

com2 - a pointer to the layer 2 common area

clenddemod - stop use of a clause as a demod olator

clenddemod(clobj)

This routine makes the clause referenced by clobj stop being
used as a demodulator.

clobj - an objectptr %W a clause being used as a demodulator

- 97?

-

simplify - simplify a clause

simplify(clobj clashobj, hist, count, retcd, com2)

This routine simplifies clobj. It may use any technique that seems
to work. For now we use

demodulation
special symbol evaluation (simplify arithmetic exp & .o to terminal)
duplicate literal removal
tautology re duction (to TRUE)

The old value of clobj is destroyed, so if you-need it, copy it. It
is assumed that hist is open and that the first integer c oitains
the number of "modification elements" in the vector (0 is quite
acceptable).

obj - an objectptr
clashobj - list restricting the set of other clauses that can be

used in the simplification
hist -an ivecptr to an open ivector.
count - maximum number of modifications that should be made

to the object (this blocks loops)
retcd - an integer return code set as follows:

0 - no s mplification could be made
1 - clobj wat successfully simplified
2 - simplified to TRUE
3 - clobj does not reference a clause
4 - count cut oftsimpl.
5 - simplified to null cI.
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

- 98-

fdemodf - forward demodulation, first

fdemodf(givcl,retcl,clashobj,hist,pos, count,retcd. com2)

This routine returns the first demodulant of the given clause.
The current implementation results in a unique demodulant and
includes the complete "simplification" logic (i.e., special
symbol simplification is used).

givcl - an objectptr to the given clause
retcl - an objectptr set to reference the demodulant
clashobj - all clauses except the given clause must be

contained in this object (nil means any clause is ok)
hist - the ivecptr returned with the derivation data
pos - a stkntptr used to maintain position in the set
count - an upper limit on the allowed number of demodulations
retcd - an integer return code

0 - no simplification could be made
1 - givcl was successfully simplified
2 - simplified to TRUE
3 - givcl does not reference a clause
4 - count cut off simpl.
5 - simplified to null cl.
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

-99-

fdemodn - forward demodulation, next demodulant

f:ikmodn(pos,retcl,hist,retcd,com2)

This routine returns the next demodulant of the given clause.

The current implementation results in a unique demodulant

of a clause, so that this routine now always sends back

a return code of 0.

pos - the stkntptr used to maintain position in the

set of demodulants

retcl - an objectptr set to reference the demodulant

hist - an ivecptr set to contain the derivation data
retcd - an integer return code

0 no more simpifications could be made

1 - givcl was successfully simplified

2 - simplified to TRUE
4 - counttcut off simpl.

5 - simplified to null cl.

memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

fdemodcanc - cancel position in a set of "forward" demodulants

fdemodcanc(pos, com2)

This procedure is used to cancel position in a set of demodulants.

pos - the stkntptr used to maintain position in the set
corn2 - a pointer to the layer 2 common area

-100-

bdemodf - back demodulation, first

bdemodf(givcl,retcl,retid,clashobj,histpos,count,reted,c m2)

This routine returns the first back demodulant of the given clause.

givcl - an objectptr to the given clause
retcl - an objectptr set to reference the demodulant
retid - an integer set to the id of the "into" parent
clashobj - all clauses except the given clause must be

contained in this object (nil means any clause is ok)
hist - the ivecptr returned with the derivation data
pos - a stkntptr used to maintain position in the set
count - an integer giving the upper limit on the number of

simplifications that can be performed on a back
demodulated clause

retcd - an integer return code
0 - no demodulants could be made
1 - an existing clause was

successfully simplified
2 - demodulated and simplified to TRUE
3 - givcl does not reference a clause
4 - count cut off8simpl.
5 - demodulated and simplified to null cl.
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

- 101

-

Note that when you make a positive unit equality clause a demodulator, you can
cause rewrites to go from left to right, from right to left, or in either direction.
For example,

(EQUAL (F x e) x);

would normally be left to right,

(EQUAL x (F e x));

bdemodn - back demodulation, next demodulant

bdernodn(posretcl,retid,histretcdcom2)

This routine returns the next back demodulant from the given clause.

pos - the stkntptr used to maintain position in the

set of demodulants

retcl - an objectptr set to reference the demodulant

retid - an integer set to the id of the first "into" parent
hist - an ivecptr set to contain the derivation data

retcd - an integer return code

0 - no more back demodulants could be

made

1 - a back demodulant was successfully

formed
2 - the back demodulant simplified to TRUE
4 - count cut off simplification
5 - the back demodulant simplified to null

clause

memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

bdemodcanc - cancel position in a set of "back" demodulants

bdemodcanc(pos,com2)

This procedure is used to cancel position in a set of demodulants.

pos - the stkntptr used to maintain position in the set

com2 - a pointer to the layer 2 common area

-102-

would normally be right to left, and

(EQUAL (F x y) (F y x));

would normally be allowed to rewrite in either direction. An "either" demcdula-
tor causes both sides of the instantiated equality to be compared. A rewrite
occurs only if the resulting term is "less than" the original. For example, sup-
pose that

(P (F al bi) e (Fe ci));

were to be simplified using the three above demodulators. Demodulation will
progress (in effect) from the rightmost term, continuing to the left until no
more terms can be simplified. Thus, (F e c1) first simplifies to c1. Then we pro-
gress on until (F al bi) is reached. This will be rewritten as

(F bi al)

if (F bi al) < (F ai bi), where "<"'represents a "lexical comparison". This com-
parison proceeds by finding the first symbols in which the terms differ. Then the
indices into the symbol table are examined. The rule is that si <s2 (where si
and s2 are symbols) if si occurs later in the symbol table than s2. This causes
newly generated s) mbols to compare less than previously existing symbols. The
user can force a g".en lexical ordering (u" all but system-defined symbols) by
using an initial inpu. clause of the form

(LEX s1 s2 s3 s4,...sn);

Here si-sn are the symbols given in decreasing order.

17. Immediate Evaluation Rules

Demodulation is normally performed either upon newly generated clauses
or (when new equalities become demodulators) upon previously existing clauses
(using back demodulation). However, when an inference rule such as hyper-
resolution or UR-resolution is being used, there are times when one would like to
demodulate the nucleus between steps in forming the final resolvent. For exam-
ple, consider the nucleus (written in the if-then format):

If Person(.x)

&

Person(.y)

&

SLT(..x.y)

&

Compat(..xy)
then

PossiblePair(...xy);

Here one would like the first two literals to be removed. Then either the third
literal should simplify to F'ALSE (and be removed), or backtracking should begin.
In fact ground literals with predicates of SLT, SLE, SGT, SGE, SNE, and SEQ are
evaluated in the middle of calculating hyper-resolvents and UR-resolvents.

-103-

18. User Variables and Attributes

Some users will find it necessary to attach information to specific objects.
This can be done using either of two mechanisms - user variables or attributes.
User variables are just an array of integers kept in each object. They can be
accessed or altered rapidly. Altributes are themselves non-ini.egraLed objects.
The operations that are provided for processing user variables and attributes
are as follows:

12accuvar - access the value of a user variable

12accuvar(objptr, i,value)

This routine accesses the value of the ith user variable.
Note that "maxl2uvar" defines the maximum subscript (1 is

the minimum).

objptr - an objectptr;

i - an integer subscript in the range 1-maxl2uvar
value - an integer set to the value of the ith user variable

12setuvar - set a user variable in an object

12setuvar(objptr, i,value)

This routine sets the ith user value in the object.

Note that the constant "maxl2uvar" contains the

maximum legal value of i (1 is the first value).

objptr - an objectptr
i - subscript of the user variable to be set
value - an integer value to put in the user variable

- 104-

Il2delattr - delete an attribute from an object

12%elattr(objptr,attrcd,retcd, com2)

This routine is used to delete the attribute with a code

equal to the specified value.

objptr - an objectptr
attrcd - an integer id etifying the attribute to delete
retcd - an integer return code set as follows:

0 - success
1 - no such attribute on the object

com2 - a pointer to the layer 2 common area

l2setattr - set an attribute on an object

12setattr(objptr,attrcd,attrobjretc dcom2)

This routine adds an attribute to the object referenced by "object".
The attribute is the object referenced by "attrobj" and will
have the attribute code given by attrcd.

objptr - an objectptr
attrcd - an integer giving the attribute code
attrobj - an objectptr to the attribute (must be nonintegrated)
retcd - an integer return code set as follows:

0 - new attribute set
1 - attribute replaces old attribute
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

-105-

l2getattr - get the attribute for a given code

l2ge tattr (objptrattrcd,attrcbj,retcd)

This routine sets attrobj to reference the attribute of
objptr that has the specified attribute code.

objptr - an objectptr
attrcd - an integer identifying the desired attribute

attrobj - an objectptr set to reference the desired attribute
retcd - an integer return code set as follows:

0 - success

1 - no such attribute

l2getfattr - get the first attribute on a given object

12gelfattr(objptr,attrcd,attrobj,attrpos,r tcd)

This routine sets attrobj to reference the first attribute on

the object referenced by objptr.

objptr - an objectptr
attrcd an integer set to the code of the first attribute
at.trobj - an objectptr set to reference the first attribute

attrpos - an attrptr used to maintain position in the set

of attributes
retcd - an integer return code set as follows:

0 - success

1 - no attributes on the object

- 10-

l2getnattr - get the next attribute on an object

12getnattr(attrcd, attrobj, attrpos,retcd)

This routine returns the attribute code and value for Lhe next
attribute on an object. The attrpos part meter maintains position in
the set of attributes.

attrcd - an integer set to the code for the next attribute
attrobj - an objectptr set to the value for the attribute
attrpos - an attrptr used to maintain position in the set

of attributes

retcd - an integer return code set as follows:
0 - success

1 - no more attributes on the object

19. Qualification and Locking

There are three ways a literal in a clause can be made nonclashable.

1. The literal may be determined to be a qualifier[21].

2. The occurrence of the literal may be locked[9].

3. All occurrences of the literal may be locked[9].

Qualification amounts to specifying that a function or predicate requires
"conditions of definition". The whole topic is discussed in Winker's paper. . We

have found qualification useful on a surprisingly wide variety of problems. To

make it work, you use setqual to specify which literals qualify a given
predicate /function symbol. Then quaLc is invoked to mark the qualifying
literals as nonclashable. The inference rules ignore unclashable literals (they
are copied into the inferred clause), unless setiglock is used to cause clashabil-
ity tests to be ignored.

You can make an occurrence of a literal nonclashable by Invoking setcllock.
It can later be made clashable by using delcLlock.

Finally, you can make all occurrences of a variable nonclashable by assign-
ing i a positive lock value using setLitlock. The lock can be removed with del-
litLock or tested with gettitlock.

The detailed definitions of all of the routines that relate to the topics of
qualification and locking are as follows:

-107-

setqual - add a qualification template

setqual(clobj, retcd, com2)

This routine uses clobj to establish a qualification template.

clobj should be a clause of the form

TEMPLATE(t1) or L2 or L3 ...

This indicates that any instance of t1 must be qualified with
the corresponding instances of L2, L3,....
clobj is "lost" to the calling routine. Therefore, if you wish
to keep it, copy it before calling setqual.

clobj - an objectptr to a clause
retcd - an integer return code set as follows:

0 - success

1 - clobj is not in the correct format
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

qualcl - mark qualifiers on a clause

qualcl(clobj,retcd, com2)

This routine marks the qualifiers on a clause.

The clause should probably be integrated, since integrating

a clause loses its attributes (which are used to record
r'ialifiers).

clobj - an objectptr to the clause
retcd - an integer return code set as follows:

0 - success

1 - clobj is not a clause

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

-108-

setqwopt - set qualification warning message option

setqwopt(val, com2)

This routine sets the flag that determines whether or not warning
messages for incompletely qualified clauses should be written out.

val - an integer code:
0 - no warning messages
1 - warnings are written

com2 - a pointer to the layer 2 common area

setcllock - lock an occurrence of a literal in a given clause

setcllock(clobj, i,retcd, com2)

This routine makes the ith literal of clobj unclashable.

clobj - an objectptr to a clause
i - an integer giving ,.he literal to lock
retcd - an integer return code set as follows:

0 - success

1 - clobj is not a clause

2 - 1ius invalid
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

- 109

-

delcllock - unlock an occurrence of a literal in a given clause

delellock(clobj,i,retcd, com2)

This routine makes the ith literal of clobj clashable.

clobj - an objectptr to a clause

- an integer giving the literal to unlock
retcd - an integer return code set as follows:

0 - success

1 - clobj is not a clause

2 - i is invalid

memfail - niemory allocation failure

com2 - a pointer to the layer 2 common area

getcllock - get the lock character for an occurrence of a literal

getclVock(clobj, i,val, retcd, com2)

This routine sets val to 0 if the ith literal of obj is unlocked.
Else, val is set to 1.

clobj - an objectptr to a clause

i - an integer designating the literal

val - an integer set to reflect the lock value
0 - unlocked

1 - locked

retcd - an integer return code set as follows:
0 - success

1 - clobj is not a clause

2 - i is invalid

com2 - a pointer to the layer 2 common area

- 110-

setlitlock - set a lock value on a literal

se tlitlock(litobj,i,retcd, cor2)

This routine sets the lock value n on the literal litobj.
Lock values must be greater than 0. Literals with a lock
are not clashable, unless "setiglock" has been called to
suppress clashability checks.

litobj - an objectptr to a literal

n - an integer giving the desired lock value (>0)
retcd - an integer return code set as follows:

0 - success

1 - litobj does not reference a literal

2 - n is invalid

memfail - memory allocation f ailui e

com2 - a pointer to the layer 2 common area

getlitlock - access the literal lock on a given literal

getlitlock(litobj, n, com2)

This routine sets n to the literal lock on the literal referenced
by litobj. If litobj does not reference a literal, or if no lock
has been set, the value will be 0.

litobj - an objectptr to a literal
n - an integer set to the lock value
com2 - a pointer to the layer 2 common area

-111-

Before leaving thu topic of qualification and locking, one extra point is
worth noting. Several inference rules use the concept of "unit clause" to res-
trict the set of generated clauses. For example, unLt resolution requires that
nne of the two parents be a unit clause. We have introduced the notion of
pseudo-dunit clause. A pseudo-unit clause has exactly one clashable literal (i.e.,
it can have more than one literal, but only one can be clashable). Inference
rules such as unit resolution and JR-resolution have been implemented in a way
that allows pseudo-unit clauses to be treated as unit clauses. This generaliza-
tion does not apply to demodulation, however; a demod&' itor must contain only
one literal.

20. Weighting

Weighting[13] is a mechanism for assigning a number to a clause, literal, or
term. This number can then be used for such things as determining whether to
keep a newly derived clause, picking the next giver clause, or deciding whether
a newly derived equality should become a demodulator. The use of weighting in
an LMA-based theorem prover is discussed in detail in[11]

litclashable - is literal clashable?

litclashable(clobj,i,retcd,com2)

This routine checks to see whether or not an occurrence of a
literal is clashable.

clobj - an objectptr to a clause

i - an integer designating the literal
retcd - an integer return code set as follows:

0 - literal is clashable

1 - literal is not clashable

com2 - a pointer to the layer 2 common area

setiglock - set the flag that determines whether or not locks are ignored

setiglock(val,com2)

This routine can be used to indicate whether literal and clause (literal

occurrence) locks are observed or ignored by inference rules.

val - an integer: 0->observe locks; 1->ignore locks

com2 - a pointer to the layer 2 common area

- 112-

20.1. Weighting Parameter Sets

A collection of options called a weighting parameter set can be used to
determine the weight of a clause, literal, or term. Each weighting parameter set
consists of sixteen real numbers and a list of patterns. The numbers are struc-
tured into three families of five plus one other number. These i uuLeis describe
how weights of clauses are built up from the weights of their component literals,
weights of literals from the weights of their component predicates and argu-
ments, and the weights of terms from the weights of their function symbols and
subterms. The patterns describe how this weighting algorithm is to be bypassed
to give special weights to certain classes of clauses, literals, or terms. We will
discuss the algorithmic mechanism first and patterns later.

20.2. Weighting Without Patterns

Let us assume that the pattern list for the weighting parameter set we are
interested in is empty (this is the default). Then the weight of a clause is calcu-
lated from the sixteen numbers in the weighting parameter set in the following
way.

Constants and Variables

The weight of a constant is 1. The weight of a variable is the number
entered and displayed as "variable weight." The default variable weight is 1.

Complex Terms

For each of clauses, literals, and terms, there is a set of flve numbers that
controls the way in which their weights are calculated from the weights of their
components. The names of these numbers are #ARG, MAXA RG T, SUMARGWT,
SYMCT, and BASE. They have slightly different meanings for clauses, literals,
and terms. We begin with terms. Simple terms (constants and variables) were
covered above. The weight of a complex term (one containing subterms) is cal-
culated as follows:

weight of term = BASE

+

S1CT * (number of symbols in term)

+

#ARG* (number of immediate subterms of term)

+

MAXARGWT * (weight of heaviest immediate subterm)

+

SUMARGWT * (sum of weights of all immediate subterms)

Note that BASE does not apply to simple terms.

For the purposes of weighting, the major function symbol of a term is con-
sidered one of its subterms. The number of symbols is the total number of
names of constants, variables, and function symbols appearing in the term.
Thus the term

g(a,f(xlmaxock))

is considered to have three subterms and to contain five symbols.

Suppose, for example, that the variable weight is set to 1 and that the

weighting coefficients for terms are as follows, which is the default settin;:

#ARG=) MAXARGWT=O SUMARGWT=1 SYMCT-:0 3ASE=O

Then the weights for some sample terms are as follows:

a
x 1

f(a) 2

- 113

-

f(a,b) 3
f(a,g(a,b)) 5

On the other hand, if the term weighting coefficients are

#ARG=1 MAXARGWT=0 SUMARGWT=0 SYMCT=0 BASL=100

then the weights of these same terms are as follows:

a 1
x 1

f(a) 102
f(a,b) 103
f(a,g(a,b)) 103

literals

There are separate values of #ARG, MAXARGWT, SUMARGWT, SYMCT, and
BASE for literals. With these values, the weight of a literal is calculated as fol-
lows:

weight of literal = BASE

+

SYMCT* (number of symbols in literal)

+

#ARG * (number of arguments of literal)

+

MAXARGWT * (weight of heaviest argument)

+

SUMARGWT * (sum of weights of all arguments)

For the purposes of weighting, the predicate symbol of a complex literal is
counted as one of its arguments. Negative literals can have their weights
adjusted, but this is done with patterns, discussed below. The negation symbol
is not included in the symbol count.

Suppose that the weighting coefficients for terms are set to the defaults
described above and that the weighting coefficients for literals are as follows,
which is the default setting:

#ARG=0 MAXARGWT=1 SUMARGWT=Q SYMCT=0 BASE=0

Then the weights from some sample literals are

P 1
-P

.

P(a,b) 1
P(f(a)) 2
P(f(a,b),a) 3

If, instead, the literal weighting coefficients are

#ARG=1 MAXARGWT=5 SUMARGWTh.0 SYMCT=0 BASE=0

then the weights of these same literals are

P 1
-P 1
P(a,b) 8
P(f(a)) 12
P(f(a,b),a) 18

Note that the first two liberals are weighed as constants, not as literals with one
argument.

- 114

-

Clauses

There is a third set of #ARG, etc., for clauses. Using these values, the

weight of a clause is calculated as follows:

weight of clause = BASE

+

SYMCT * (number of symbols in clause)

+

#ARG * (number of literals of clause)

+

MAXARGWT * (weight of heaviest literal)

+

SUMARGWT * (sum of weights of all liberals)

For weighting purposes, the number of symbols in the clause includes the
implicit OR symbols between the literals, and any negation symbols in front of
negative literals. Thus the clause

PIQ

is considered to contain three symbols, and

if P then Q

is considered to have four symbols, since it translates into -P I Q.

Now suppose that the weighting coefficients for terms and literals have
their default settings described above, and that variable weight has its default
value of 1. Suppose further that the clause weighting coefficients are

#ARG=1 MAXARGWT=O SUMARGWT=1 SYMCT=O BASE=-1,

which is the default. Then the weights of some sample clauses are as follows:

P; 1
PQ; 3
PIQIR; 5
-P; 1
if P then Q; 3
P(f(a)) I Q(x); 4

20.3. Weighting with Patterns

Weighting patterns are a mechanism for overriding the previous weighting
algorithm to assign particular weights to specific terms, literals, and clauses, as
well as to terms, literals, or clauses that are characterized by their matching a
particular pattern. Some simple patterns and their meanings are the following:

a:+10 the term a has weight 10
NOT:+6 negative literals should have 6

added to their weight
f(2):+3 the weight of any term of the

form f(<term>) should be 3 plus twice the
weight of <term>.

There is a list of patterns in each weighting parameter set. If a given trm,
literal, or clause matches more that one pattern in the list., then the first one it
matches has priority. For example, if the term f(e ,b) is weighed according to
the pattern list

f(a,2):+5 f(a,b):+15;

then it is given a weight of seven (assuming b has its default weight of 1).

The exact format of a weighting pattern is

- 115

-

<basic-pattern>: <increment>

where <increment> is a signed floating-point number, and <basic-pattern> can
be any one of the following:

1. A constant. This matches only an occurrence of the constant.

2. x<int> Zvire <int> is a positive integer (e.g., x4). This matches only a
variable with the given number.

3. *x<int> where <int> is a positive integer. This matches any variable,
except that multiple occurrences of *x<int> in the same pattern must
match the same variable. For example, the pattern f(*xl,*x1):+2
would match the term f(x2,x2), but not the term f(x1,x2).

4. *t<int> where <int> is a positive integer. This matches any term,
except that multiple occurrences of *t<int> in the same pattern must
match the same term.

5. <multiplier>, which is a real number. This matches any term. The
effect of a match is to multiply the weight of the subterm by the multi-
plier. The result is added into the weight of the current term.

6. <name>(<arg-1> <arg-2>,... <arg-n>) where <arg-i> is a <basic-
pattern>. This matches a complex term in which <name> is the
predicate/tunction symbol, and <arg-i> matches the ith subterm (for
all i from 1 to n).

The weight of the term matched by the pattern is computed by adding the
<increment> to the weights generated from having <multiplier>s in the pattern.
Thus, if f(a,g(1.5,-.5)):+2.5 matches a term, the final weight is 2.5 (the incre-
ment) plus 1.5 times the weight of the first argument of g plus -.5 times the
weight of the second argument of g.

20.4. Routines to Implement Weighting Calculations

A weighting parameter set is defined by the following type declaration (from

the layer 2 type declaration file):

wtparm = record

clarray: coefarray;

Iitarray:coefarray;

triarray: coe farray;
pat list :wtcalcptr;
put tree: dtreehptr;
nextpatnm: integer;
varwe ight: real;

end;

weight coefficients for clauses;

weight coefficients for literalsj
weight coefficients for ternsiiheader to weight pattern list;

Root of pattern search tree;

did of next pattern inserted in tree

(weight of variables

LMA provides routine for altering the weighting coefficients, adding patterns,

weighing clauses, weighing literals, and weighing terms. The routines for alter-

ing the weighting information in a parameter set (i.e., the first six fields of the

parameter set) are as follows:

116-

recwtkeys - recognize a string of weighting keyword assignments

recwtkeys(str,wtcoef,ret'ed, com2)

This procedure proceeds from the current position in str. It
assigns values to the weighting coefficients in wtcoeff, which is
an array of maxwtcoef real values. Currently, the recognized
keywords and the positions of the corresponding values in wtcoef
are as follows:

keyword array position

<number><thing> 1

Here <thing> can be
either <argument> or
<literal>

<maximum><thing><weight> 2

<sum><thing><weight> 3

<number> <symbol> 4

<symbol><c ount> 4

<base> 5

For example,

numarguments = 1.4 base=8;

would cause the first array position to be set to 1.4, and the
fifth to 8. The string is terminated by a semicolon. Any
unrecognized keywords will result in error messages.

str - a csptr of where to start the parse
wtcoeff - a coef array that gets altered when keywords

are successfully recogr.Ised
retcd - an integer return code set as follows:

0- no errors detected
1 - errors detected

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

- 117

-

recwtpats - recognize a list of weight patterns

recwtpats(str,wtparms,reted,com2)

This routine parses a string of weight patterns, adding the
successfully parsed patterns to wtlist.

str - a csptr to the string being parsed (ends with
a semicolon or end-of-string)

wtparms - a wtparmptr to parameters for weighting set
retcd - an integer return code set as follows:

0 - success

1 - at least one invalid wt template was detected
memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

The routines that can be used to convert weighting parameters to a printable
format are as follows:

wtcoefsout - convert an array of weighting coef to keyword form

wtcoefsout(wtcoef, str, retcd, com2)

This routine creates a string containing the character form of

the weighting coefficients in wtcoef.

wtcoef - a coef array containing a set of weighting
coefficients (clause, literal, or term)

str - a csptr that is set by the routine to reference

the created string. str should not reference

an allocated string when the routine is called.

retcd - an integer return code set as follows:

o - success

memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

- 118

-

wtcalcstout - convert a weight calculation list to portable format

wtc al stout (wtlist, s tr, re tc dc om2)

This routine converts the weight calculation information in wtlist
into portable format, returning it in str.

wtlist - a wtcalcptr to a weight calculation list
str - a csptr that gets set to reference the generated

string

retcd - an integer return code that gets set as follows:

0 - success

memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

The routines that can be used to weigh a clause, literal, or term are as follows:

wtcl - calculate the weight of a clause

wtcl(clause,wtparms,weight, retcd,com2)

This routine calculates the weight of clause and returns it in weight.

clause - an objectptr to the clause to weigh

wtparms - a wtparmptr to the weighting parameters

weight - a real number set to the weight of the clause

retcd - a return code set as follows:

0 - success

memfail - memory allocation failure

com2 - a pointer to the layer 2 common area

-119-

wtlt - calculate the weight of a literal

wtlt(literal,ltcoef,trmc oef,wtroot,varwtweight,retc d,com2)

This routine calculates the weight of literal and returns it in weight.

literal
ltc oef

trmcoef

wtroot
varwt

weight
retcd

com2

- an objectptr to the literal to weigh
- a coef array giving the coefficients for

weighting a literal

- a coef array giving the coefficients for
weighting a term

- a dtreehptr to root of weighting pattern tree

- a real giving the weight assigned to variables
that do not match a pattern

- a real number set to the weight of the literal
- a return code set as follows:

o - success

memfail - memory allocation failure
- a pointer to the layer 2 common area

wttrm - calculate the weight of a term

wttrm(term, trmcoef,wtroot,varwtweight, reted, c om2)

This routine calculates the weight of term and returns it in weight.

term - an objectptr to the term to weigh
trmcoef - a coef array giving the coefficients for

weighting a term
wtroot - a dtreehptr to root of weighting pattern tree
varwt - a real giving the weight assigned to variables

that do not match a pattern
weight - a real number set to the weight of the term
retcd - a return code set as follows:

0 - success

memfail - memory allocation failure
com2 - a pointer to the layer ' common area

21. The LISP Interface

The LISP interface is not actually part of layer 2, since it is not portable.
Clearly, interfaces between languages depend upon vagaries of specific com-

pilers. Our current LISP interface works under Berkeley UNIX and interfaces

the layer 2 routines to Franz Lisp. We do not include the details of the interface

here, since it will be included only for users under Berkeley UNIX. We hope to

offer interfaces in other LISP environments, or to offer aid and encouragement

to others who wish to develop such interfaces. As an example of what can be

120

-

done, here is the simple theorem prover described before in its LISP incarna-
tion:

(defun lisptp ()
(prog (axlist soslist hbglist clashlists allclauses

giveiicl resolvent subsumer subsumed clause
com2
histvec
retcd listretcd numits lenopt unifopt
hyperpos subsumerpos subsumedpos
sospos listpos

)

(initvar axlist)
(initvar soslist)
(initvar hbglist)
(initvar clashlists)

(initvar allclauses)
(initvar givencl)
(initvar resolvent)
(initvar subsumer)
(initvar subsumed)
(initvar clause)
(initvar com2)
(initvar histvec)
(initvar retcd)
(initvar listretcd)
(initvar numlits)
(initvar lenopt)
(initvar unifopt)
(initvar hyperpos)
(initvar subsumerpos)
(initvar subsumedpos)
(initvar sospos)
(initvar listpos)

(call initcom2 com2)

(call cllsttread axlist retcd com2)
(cond

((zerop (valueof retcd))
(print "axioms are as follows:")

(terpr)
(call cllsttwrite axlist retcd com)

)

(t
(print "input of axioms list failed")

(terpr)

))

(call Istaccfirst. axlist clause listpos list --etcd com2)

- 121

-

(do ()
((not (zerop (valueof listretcd))) nil)

(setintvar unifopt 0)

(call clintegrate clause unifopt retcd com2)
(call lstaccnext axlist clause listpos listretcd com2)

)

(call cli.ttread soslist retcd com2)
(cond

((zerop (valueof retcd))
(print "set of support clauses are
(terpr)
(call cllsttwrite soslist retcd com2)

)

(t

)

as follows:")

(print "input of set of support list failed")
(terpr)

(call lstaccfirst soslist clause listpos listretcd com2)

(do ()
((not (zerop (valueof listretcd))) nil)

(setintvar unifopt 0)

(call clintegrate c' uze unifopt retcd com2)

(call lstaccnext soslist clause listpos listretcd com2)

)

(call
(call
(call

lstcreate
lstcreate
lstcreate

hbglist retcd com2)
clashlists retcd com2)
allclauses retcd com2)

(call lstinslast axlist clashlists retcd com2)
(call lstinslast soslist clashlists retcd com2)

(call
(call
(call

lstinslast
lstinslast
lstinslast

axlist allclauses retcd com2)
soslist allclauses retcd com2)
hbglist allclauses retcd com2)

(setq done nil)
(do ()

(done nil)
(call lstaccfirst soslist givencl sospos retcd com2)
(cond

((not (zerop (valueof retcd)))
(setq done t)
(print "no more clauses in set of support",
(terpr)

)

(t
(print "given clause is: ")
(terpr)
(call citwrite givenci retcd com2)

(call hyperf givencl clashlists resolvent histvec

))

- 122

-

hyperpos retcd com2)

(do ()
((or (not (zerop (valueof retcd))) done) nil)
(print "resolvent: ")
(terpr)
(call cltwrite resolvent retcd com2)
(call dealivec histvec com2)
(call clnumlit resolvent numlits com2)
(cond

((zerop (valueof numlils))
(print "null clause found")
(terpr)
(setq done t)

)

(t
(setintvar lenopt 0)
(call fsubfirst resolvent allclauses lenopt

subsumer subsumerpos retcd com2)
(cond

((zerop (valueof retcd))
(print "resolvent subsumed")
(terpr)
(call cancfsub subsumerpos som2)
(call cldelnon resolvent retcd com2)

)

(t
(print "checking back subsumption")
(terpr)
(setintvar lenopt 0)
(call bsubfirst resolvent allclauses lenopt

subsumed subsumedpos retcd com2)
(do ()

((not (zerop (valueof retcd))) nil)
(print "resolvent subsumes existing clause:")
(terpr)
(call cltwrite subsumed retcd com2)
(call cldelint subsumed retcd com2)
(call bsubnext subsumedpos subsumed retcd

com2)

)

(setintvar unifopt 0)
(call clintegrate unifopt resolvent retcd com2)
(call lstinslast resolvent soslist retcd com2)

))))

(call hypern hyperpos resolvent histvec retcd com2)

)

(cond
((not done)

(call Istaltpos sospos reted)

123

-

(cond
((zerop (valueof retcd))
(call lstdisconnect sospos com2)
(call Istinslast givencl hbglist retcd com2)

)

(t nil)

))

(t nil)

))

(call lstcancpos sospos com2)

))))

22. Conclusion

We are putting this set of tools into the public domain. In their current
form they can be (and will be) dramatically improved. We view this project as
very long-term, and we plan on reworking, upgrading, and expanding the set of
too's for many years. We are inviting you to participate in this project. The
advantages of coordinating development between many users appear to us to be
extremely significant. We sincerely wish to integrate and distribute any
improvements that anyone can make to these tools.

References

1. R. S. Boyer and J. S. Moore, "The sharing of structure in theorem proving
programs," in Machine Intelligence 7, ed. B. Meltzer and D. Michie,American
Elsevier, Ncw York (1972).

2. Chin-Liang Chang and Richard Char-Tung Lee, Symbolic Logic and Mechani-

cal Theorem Proving, Academic Press, 'ew York (1973).

3. C. L. Chang, "The unit proof and the input proof in theorem proving," Jour-

nal of the ACM 17(4) pp. 698-707 (1970).

4. Lawrence Henschen, R. Overbeek, and Lawrence Wos, "Hyperparamodula-
tion: a refinement of paramodulation,'' in Proceedings of the Fifth Confer-

ence on Automated Deduction, Springer-Verlag Lecture Notes in Computer

Science, Vol. 87, ed. Tobert Kowalski and Wolfgang Bihel,Springer-Verlag,
New York ().

5. Robert Kowaski, Logic for Problem Solving, Elsevier North Holland, New
York (1979).

6. E. Lusk, William McCune, and R. Overbeek, "Lgic Machine Architecture:

inference mechanisms," pp. 85-108 in Proceedings of the Sith Conference
on Autom.ed Deduction, Spr.nger-Verlag Lecture Notes in Computer Sci-

ence, Vol. 138, ed. D. W. Loveland,Springer-Verlag, New York ().

7. E. Lusk and R. Overbeek, "Data structures and control architecture for the
implementation of theorem-proving programs," in Proceedings of the Pifth
Conference on Automated Deduction, Springer-Verlag Lecture Notes in
Computer Science, Vol. 87, e' Robert Kowalski and Wolfgang Bibel, ().

-124

-

8. E. Lusk, William McCune, and R. Overbeek, "Logic machine architecture:
kernel functions," pp. 70-84 in Proceedings of the Sixth Conference on

Automated Deduction, Springer-Verlag Lecture Notes in Computer Science,

Vol. 138, ed. D. W. LovelandSpringer-Verlag, New York (1982).

9. E. Lusk and R. Overbeek, "Experiments with resolutioi-based theorem-
proving algorithms," Computers and Mathematics with Applications 8(3) pp.
141-152 (1982).

10. Ewing L. Lusk and Ross A. Overbeek, "An LMA-based theorem prover," ANL-
82-75, Argonne National Laboratory (December, 1982).

11. Ewing L. Lusk and Ross A. Overbeek, The automated reasoning system ITP,

Argonne National Laboratory (March, 1984). preprint

12. J. McCharen, R. Overbeek, and L. Wos, "Problems and experiments for and
with automated theorem-proving programs," IEEE Transactions on Com-

puters C-25(8) pp. 773-782 (1976).

13. J. McCharen, R. Overbeek, and L. Wos, "Complexity and related enhance-
ments for automated theorem-proving programs," Computers and

Mathematics with Applications 2 pp. 1-16 (1976).

14. R. Overbeek, "An implementation of hyper-resolution," Computers and

Mathematics with Applications 1 pp. 201-214 (1975).

15. G. Robinson and L. Wos, "Paramodulation and theorem proving in first-order
theories with equality," pp. 135-150 in Machine Intelligence 4, ed. B. Meltzer
and D. MichieEdinburgh University Press (1969).

16. G. Robinson and L. Wos, "Completeness of par amodulation," Spring 1968

meeting of the Association of Symbolic Logic 34, p. 160 (1969).

17. J. Robinson, "Automatic deduction with hyper-resolution," International

Journal of Computer Mathe..atics 1 pp. 227-234 (1965).

18. J. Robinson, "A machine-oriented logic based on the resolution principle."
Journal of the ACM 12 pp. 23-41 (1965).

19. J. Slagle, "Automatic theorem proving with renamable and semantic resolu-
tion," Journal of the ACM 14 pp. 687-697 (1967).

20. 1). H. D. Warren, "Implementing Prolog - compiling predicate logic pro-
grams," DAI Research Reports 39 and 40, University of Edinburgh (May
1977).

21. S. Winker, "An evaluation of an implementation of qualified hyperresolu-
tion," IEEE Transactions on Computers C-25(8) pp. 835-843 (August 1970).

22. S. Winker, L. Wos, and E. Lusk, "Semigroups, antiautomorphisms, and invo-
lu+ons: a computer solution to an open problem, I," Mathematics of Compu-
tct'n 37(156) pp. 533-545 (October 1981).

23. S. Winker and L. Wos, "Procedure implementation through demodulation
and related tricks," pp. 109-131 in Proceedings of the Sixth Conference on

Automated Deduction, Springer-Verlag Lecture Notes in Computer Science,

Vol. 1 '78, ed. D. W. Loveland, Springer-Verlag, New York (1982).

24. L. Wo, D. Carson, and G. Robinson, "The unit peference strantgy in
theorem proving," pp. 615-621 in Proceedings oj the Fall Joint Computer
Conference, Thompson Book Company, New York (1964).

25. L. Wos, G. Robinson, D. Carson and L. Shalla, "The concept of demodulation
in theorem proving," Jour.al of the ACM 14 pp. 698-704 (1967).

- 125

-

26. L. Wos, S. Winker, and E. Lusk, "An automated reasoning system," Proceed-

ings of the AFIPS National Computer Conference, pp. 697-702 (1981).

