WOTICE

GIBLE. It Distribution Category:
1S REPORT ARE ILLEGIBLE ’
;lon::l:: fegr':i::ced from the hest available M(%Ié&élzlgltlcs and Computers
eo;v to permit the broadest possible avaib
abifity.
ANL-82-84 Rev. 1 ANL~--82-84-Rev.1

DE84 012115

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, lllinois 60439

LOGIC MACHINE ARCHITECTURE INFERENCE MECHANISMS -
LAYER 2 USER REFERENCE MANUAL
RELEASE 2.0

Ewing L. Lusk and Ross A. Overbeek

Mathematics and Computer Science Division

April 1984

* This work was supported by the Applied Mathematical Sclences subprogram of the
Office of Energy Research, U.S. Department of Energy. under contract W-31-109-Eng-38.

DISCLAIMER

This was prepared as an acoount of work sponsored by an agency of the United States

Gwor'::nwt. Neither the United States Goverament nor any agency theteof, nor any of their ”Qq
employces, makes any warranty, express or implied, or assumes any legal liability or responsi- L P Y
bllity for the accuracy, completencss, or usefulness of any information, apparatus, product, or - :
provess disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence berein to any specific commercial product, process, or service by trade name, trademark, DI'STHIBUHGH OF s
manulacturer, or otherwise doss not necessarily constitute or imply its endorsement, recom-

meondation, or favoriag by the United States Government «r any ageacy thereol. The views

snd opinioas of suthors expressed berein do not necessarily state or reflect those of the

United States Government or any ageacy thereof.

VAl d LR Ien

LEGIBILITY NO

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

CONTENTS

AbSEraCt L 1
1 INbrodUetion ... 1
2. Special LMA TYPES ..ot e err e 2
R 18 o) o T4 S U PP PP P UT R UPPRPPIT 3
4, Veclors of INLEGers. ettt S
5. The Portable Format for Clauses, Literals, and Terms..................cc.cooeeennn. 12
5.1. Portable Format of a Termcccooevviiivivvviic e 12

5 2. The Portable Format of a Literal..............cco.coeiiiiiiiininn, 13

2.3. The Portable Format of @ Clause............c....ccoeiriiiie covinivinnii . 13

5.4. Converling Between Portable and Internal Formats........................... 13

6. LiSlS . 17
B.1. Inpul of a List of Clauses.................ovevviiiiiinicn i 28
6.2. OQutput of a List of Clausesoovvvvviimmiiiiinii i 29

7. Input and Output Through a Translator..............c.ccco i 30
B, IS e 33
O, IR el ation. o e 34
10. Basic Clause Processing Primitives....................o 35
11. Basic Literal and Term Processing Primitives.....................ooo 39
L. PO B . e 53
13. Inference RUleS............oiiiiiiii e 56
13.1. Meanings of the Inference Rules...............ccocovviniii, 58
Hyper-resolutionccooooiii i 56
UR-RESOIULION. ...ttt et e e 58

Binary Resolution ... 59

Unit Resolution..................oooi 60
Factoring ... 60
Paramodulabion............ccccivveiiiiiieiiie i 60

13.2. Routines that Implement the Inference Rules 62
13.3. Inference Rule History Vectors...........ccoooociiinini, 79

14, SUbSUMPLION........oi i e e e 83
14.1. Definition of Subsumption..........cccoiiiiniiii 83
14.2. The Routines that Implement Subsumption.................c.co 84

15, A SIimple Theorem Prover.........o..cioiiiivere v 87
16. Demodulation/Simplificationccoceevriiiiiiii 91
16.1. The Meaning of Demodulationcccvvmvievinei, 91
16.2. The Implementation of Demodulation and Simplification............... 92

17. Immediate Evaluation RULESocovervireriiniieniracnrsienniresa e, 102
18. User Variables and Attributesc.cooovviiniiinimnni 103
19. Qualification and Locking...........ccooooiiieiiiieiiii i 108

i1

20. Weighting 111

20.1. Weighting Parameter Sets.......c...ccccooiiiiiiiii e, 112
20.2. Weighting Without Patterns.................... 112
Constants and Variables ..o 112
CompleX TeITIE ..o e e e 112

| =) -\ I SO OO UUORTTUPTI 113

5] F UL S P SRR 114

20.3. Weighting With Patternsooii i, 114
20.4. Routines to Implement Weighting Calculations.....................cee...c.. 115

21. The LISP INterfaceconvini i e e e 119
2. CONCIUSIONcveeiii it e e e e e 123
R O EIICES. ... oo it e e 123

iv

Logic Machine Architecture
Inference Mechanisms -

Layer 2 User Reference Manual

Release 2.0

Bwing L. Lusk
HRoss A Cuerheek

ABSTRACT

Logic Machine Architecture (LMA) is a package of software
tools for the construction of inference-based systems. This docu-
iment is the reference manual for layer 2 of LMA. It contains the
information necessary to write LMA-based systems at the level of
layer 3. Such systems include theorem provers, reasoning com-
ponents for expert systems, and customized deduction com-
ponents Jor a variety of application systemns.

1. Introduction

Logic Machine Architecture (LMA) is a layered architecture for the creation
of logic "inference engines”. The principles underlying its design are presented
in [8] and {6]. The individual theoretical notions incorporated in LMA are the
results of a long-running research effort in automated deduction and are dis-
cussed elsewhere in the literature[7,9, 12,13, 14, 15, 16, 21,22, 25,26]. This docu-
ment describes layer 2 —the set of tools that can be used to create uniprocess-
ing theorem provers, reasoning components for expert systems, or customized
deduction components suitable for a wide variety of applications. The first
major system built using these tools, a theorem prover incorporating all of these
ideas, is fully described in [10].

There are a variety of reasons for attempting to form a stardardized set of
comrnands:

a) Most researchers are unable to commit the man-years required to
develop a powerful program. The effort required to create systems can
be reduced dramatically by using standardized tools.

v, With a standardized set of tools, improvernents made by one research
team can be easily transferred to other cooperating teams.

¢) Students can be trained in the use of such tools in much the same way
that they are trained in the use of higher-level languages.

d) Hardware or firmware implementations of selected commands become
more feasible (because of the larger user community).

In this document we shall go through the basic layer 2 commands, illustrat-
ing their use. In addition, a few extra routines that have been coded at Argonne

-2-

will be described (they are useful utility modules). User comments on either the
tools or this document should be directed to Ross Overbeek or Ewing Lusk at
Argonne National Laboratory.

This document has changed only minimally since the version for Release
1.0. Routines to perform weighting of clauses, literals, and lerms have been
added, the formats acceptable to the distributed translators have been slightly
extended, the set of system-defined symbols (especially those used for
simplification) has been expanded, and an extra parameter has been added to
the routines that integrate cbjects. A number of bugs have been fixed, and per-
formance has been substantially improved.

2. Special LMA Types

Throughout this document, we define the parameters required to invoke our
service modules. For each routine we have attempted to document precisely
the type and value of each parameter. In many cases one routine will construct
a data item to be passed to other routines. Such data items can be of a variety
of types. Strictly speaking, users need not know the "meaning"” of such types,
since they are not expected to (and should not) access any of the values stored
in such data jtems. However, some users have found it convenient to be able to
reference at least a minimal description of such LMA layer 2 types. Hence, we
are including the following table:

LMA Layer 2 Types

common2ptr a pointer to the layer2 common area

csptr a pointer o a estring, which is used to hold
a string of arbitrary length

ivecptr a pointer to an ivec, which is used to hold an
integer of arbitrary length

objectptr a pointer to an object, which is used to represent
lists, clauses, literals, terms, and attributes

stkntptr a pointer to a stkntry, which maintains position in
a set of clauses generated by an inference rule

upbptr a pointer to a upb, which is used to maintain an
updatable position in a list

3. Strings

The need to process strings of unbounded length occurs frequently.
Accordingly, we have provided a set of modules that irnplement the abstract
data type "string". The following routines define the operations that can be per-
[urined on strings:

alstring - allocate a string
alstring(sptr,reted,com?2}

This routine allocates a string.

sptr - a csptr set to reference the allocated string
reted - an integer return code set as follows:

0 - success

memfail - memory allocation failure
comg - a pointer to the layer 2 common area

dealstring - deallocate a string
dealstring(sptr,com?)
This routine can be invoked to deallocate a string.

sptr - aecsptr
com?2 - a pointer to the layer 2 common area

getstring - get the next character from a String
getstring(s,c)

This routine gets the next character from a string and updates
the current position. Just as with putstring, ¢ is passed back

as an integer {ord(character-from-string)). If there are no more
characters in the string, a 0 is returned.

] - acsptr to astring
[- areturned integer with ord(next-character); a 0
is returned at end-of-string

putstring - insert a character into a string
putstring(s,c,reted,comg)

This routine inserts the character into s at the current position.
The variable c is an integer representing the character. This
clumsiness is due to an attempt to make all variables passed to
layer 2 routines to be integers or pointers. In any event c
should be the ord(character-to-be-inserted).

] - acsptrtoastring
¢ - an integer containing the ord(character-to-be-inserted)
reted - an integer return code set as follows:
0 - success
memfail - memory allocation failure
com? - a pointer to the layer 2 common area

resetstring - reset current position in a string to the start

resetstring(s)
This routine resets the current position in s to the start of s.

J - acsptr to a string

wreostring - set end-of-string
wreostring(s)

This routine sets the end-of-string. This should be issued
after all putstring calls have been made to build the string.

] - acsptr to astring

The documentation above is directly from the code. It illustrates the slyle
that we have chosen to comment all »f our routines. To see how these routines
can be used, let us consider a simple routine to read in a string from a terminal.
This routine should read in characters, putting them into one of these
indefinitely long strings. To make the routine useful, let us implement the UNIX
outlook - the string will be ended with a <er> {carriage return), unless the car-
riage relurn is immediately preceded by the character "\'. When a line is con-
tinued, we'll put in a blank between the two lines. This should cause something
like

first line<cr>
second line. <cr>

to go into the string as "first line second line.”". The code for this routine,
I2readstr, is as follows:

!..-__-......--- .

12readstr

{.
12readstr - read a string from the terminal
12readstr(sin,reted,com?2)

This routine reads in a string from the standard input.
The string is terminated by a <cr> that is not preceded
by a "\

sin - a csptr set to reference the string
retcd - an integer return code set as follows:
0 - success
1 - eof {sin has not been allocated)

-8 -

memfail - memory allocation failure
comsa - a pointer to the layer 2 common area

procedure I2readstr(var sin: esptr;
var reted: integer,
var com®: common2ptr);
var done,bs: boolean;
¢: char;
outch: integer;

begin
alstring(sin,retcd,comz2);
if retcd = 0 then
begin
dene := false,
while not done do

begin
bs := [false;
while (reted = 0) and (not ¢oln) and (not eof) do
begin
if bs then
begin
outch := ord('\');
putstring(sin,outch,retcd,comz2);
bs := false;
end;
read{c);
it ¢ = '\' then
bs := true
else
begin
outch := ord(c):
putstring(sin,outch,reted,com?);
end;
end;
if eof then
begin
dealstring(sin,com?2);
done := true;
reted = 1;
end
else
begin
readin;
it ¢ <> '\' then
done := true
else
begin

outch := ord(’ ');
putstring(sin,outch,reted,com2);
end;

end;

if retcd = memfail then
dealstring(sin,comg);
end;
it reted = 0 then
wreostring(sin);
end;
end; {l2readstr}

This code illustrates a point that may very well be puzzling at first. Every
parameter to a layer 2 routine must be a pointer or an integer. Further, the
parameter must be a variable, so expressions or sell-defining terms cannot be
used in calls. This prevents

putstring(sin,ord(’ '),retcd,com?)

for example. These restrictions are to facilitate interface between different pro-
gramming languages. Exactly how they make these interfaces easier to develop
and maintain is beyond the scope of this discussion.

The ceorresponding routine to write a string out te a terminal would be as
follows:

i e ———————

l2writestr

3

f.

I2writestr - write a string to the standard output device
12writestr(sout)

This routine displays the string on the standard output device.

sout - a csptr to a string

!

procedure 12writestr(var sout: csptr);
var chint: integer;

begin

resetstring(sout);

getstring(sout,chint);

while (chint <> 0) do
begin
write(chr(chint));
getstring(sout,chint);
end,

end; {l2writestr]

This routine could, of course, be fixed up to break things nicely into lines, so
that long lines would not break arbitrarily, based on the terminal screen size.

-B-

At this point we are going to include a short program that just reads in a
string from a terminal and echoes it back. The code shows a {ew points about
setting up a program to invoke LMA routines:

program echostr(input,output);

const

#include ‘I2constants.i’;
type

finclude '12types.h’;

#include ‘12externals.h’;

var rc: integer;
cs: csptr;
com2: common2ptr;

begin

initcom?2(comR);

write('enter a siring: °);
12readstr(cs,rc,comg2);

writeln('reted from |2readstr = ' rc:1);
12writestr{cs);

writeln;

dealstring(cs,com2);

writeln(’success');

end.

The "includes” that start the program handle declaration of standard constants,
types, and external declarations. At some point you might peruse the constants
and types files to notice the labels that we've selected, but it probably isn't
required at this stage. Notice the

initcom2(comz2);

This is a required command to start things off. Since PASCAl doesn't allow
static storage, we need a common arca in which to maintain dava. The format
and contents need not concern you However, you must initialize the "layer 2
common area” before invoking any layer 2 commands.

Perhaps a comment on overhead is in order. Many users may fear the cost
implied by the use of these routines. For most uses the overhead of these rou-
tines will be greatly overshadowed by the cost of performing inference opera-
tions. In any event lower-level primitives {in layer 0) can be employed to per-
form block transfers to and from a string in the rare cases where efficiency is a
serious issue,

The main use of strings will be to pass formwlas in portable forrnat
(described below) to and from the LMA routines. This use is covered in detail in
a later section. Finally, before leaving the topic of strings, we include the calling
conventions for two useful routines (which you could easily code from the primi-
tives above):

compstrings - compare two strings
compstrings(sl,s2 reted)

This routine compares the contents of the two strings s1 and s2.
The comparison proceeds a character at a time, left-to-right.

The first two characters that disagree determine the comparison,
which is a Pascal character compare. If two such characters are
not found, but one string is shorter, then the shorter string is
"less than" the other.

51 - acsptr to astring

se - acsptr to a second string

reted - an integer return code set as follows:
0 - strings are equal
1 - s1<s2
2 - s1>s2

copystring - create a copy of a string
copystring(s1,s2,reted,com?)

This routine creates a copy of the string referenced by si
and sets s2 to reference the copy.

81 - acspir toastring
82 ~ a csptr set to reference the new copy
reted - an intepger return code set as follows:

0 - success

memfail - memory allocation failure
com? - a pointer Lo the layer 2 common area

4. Vectors of Integers

Vectors of integers are used, among other things, to record the events used
to infer a pArticular formula from one or more other formulas. Sometimes the
computation of a new formula requires many single steps {or "events"). Thus,
the encoded information on how the result was computed can become arbi-
trarily long. It is extremely important that the user of layer 2 actually have
access to all of the details of such a computation. Much uf the inforr.ation may
be discarded, since a user normally does not need to know about all of the

-10 -

events (e.g., simplifying 1+1 to). However, the experience reported on expert
systems would indicate that a user should be able to extract the details, if
desired. This motivates the definition of another abstract data type —"a vector
of integers of arbitrary length”. The rcutines that you have available to define
and manipulate such vectors are as follows:

alivec - allocate an integer vector
alivec(ivptr,reted,comz2)

This routine allocates an ivector.

ivptr - an ivecptr set to reference the allocated ivector
reted - an integer return code set as follows:

0 - success

memfail - memory allocation failure
com2 - apointer to the layer 2 common area

dealivec - decllocate an integer vector
dealivec(ivptr,com?®)
This routine deallocates an ivector.

ivptr - an ivecptr
com2 - a pointer to the layer 2 common area

getivec - get an entry in an integer vector
getivec(v,i,val)

This routine ¢at3 val to the value of the ith element in v,
If the ith element was not set to a value by putivec, then
val will be set to -1.

v - anivecptr to an integer vector
i - an integer subseript (from 1)
val - an integer set to the value of the ith element of v

-11 -

iveclen - get the length of an integer vector
iveclen(v.len)

This routine sets len to the length of v. The length is actually
the max subscript used on a putivec.

v - an ivecptr to an integer vector
len - aninteger set to the lengthof v

putivec - insert an entry into an integer vector
putivec(v,i,val,retcd,comg2)

This routine puts “val” into the ith entry in v.

v - anivecptr to an allocated integer vector
i - an integer subscript (from 1)
val - aninteger
reted - an integer return code set as [ollows:
0 - success
1 - iis invalid
memfail - mernory allocation failure
com?2 - apointer to the layer 2 common area

writeeov - reset the size of a vector Lo a lower value
writeeov{ivec,maxsub)

This operation is used to reduce the size of a vector. If maxsub is
>= the current size, the operation has no effect.

ivec - an ivecptr
maxsub - the desired new length (an integer)

The use of these routines will be presented in detail after we've looked at infer-
ence rules and the "history" vectors that they produce. For now it is enough to

-12-

realize that they are available and that, as a user of layer 2, you will probably
want to develop packages using these routines to decode the inference events
into readable English.

5. Portable Format for Clauses, Literels, and Terms

The current version of layer 2 implements the abstract data types of List,
Qause, literal and Term. In the future we hope to include more types defined
by other users of LMA,

Clauses, literals, and terms have both an internal and a portable represen-
tation. They are all embedded in the layer 1 concept of "object”[B], which
results in the obvious similarity of their formats.

5.1. Portable Format of a Term
The portable format of a term is defined &as follows:

1. A label is normally .ny string of characters that does not include one
of the following characters:

" ()&

However, a string enclosed in either single or double quotes is also a
legal label. Finally, if the string is enclosed in quotes (of either type), a
doubled occurrence of the delimiter can be included in the label. For
example,

'l car''t make it’

is a valid label.
2. Arname s alcbel that does not begin with one of the characters

"stuvwxyz% "

The term constant will occasionally be used in this document. Con-
stants, function symbols, and predicate symbols are represented by
names.

3. A variable is a label that does begin with one of the characters in the
above list (i.e., a label that is not a name).

4, A string of the form
(<name> <arg-1> <arg-2> ...)

is an application. Here each of the arguments can be a name, a vari-
able, or an application. Thus,

(F x (G a))

is an application.

5 A lerm can be a name, a variable, or an application. Throughout this
manual we call a term represented by an application a complex term.
Similarly, a literal that is not a propositional constant will be referred
to as a complexz liferal.

These descriptions of term and literal correspond (more or leas) to the normal
versions[2,..'. RHowever, we have actually generalized the notion of application,

-13-

ailowing the first element itself to be a constant, a variable, or an application.
This will allow occasional forays into higher-order logic, if desired.

5.2. Portable Format of a Literal
The portable format of a literal is defined as follows:
1. Aliteral has the same format as a term.
2. Aliteral of the form

\NOT <atom>)

is called a negative literal.
3. A non-negative literal is called a positive literal.

5.3. Portable Format of a Clause
The portable format of a non-unit clause is

(OR <literal-1> (OR <literal-2> ... (OR <literal-m> <literal-n>)));

The portable format of a unit clause is simply the literat followed by a *;'.
Note that our definitions are somewhat loose. That is,

(EQUAL (OR ‘RUE x) TRUE);

is a perfecly "acceptable” clause. Our attitude is that the portable format of a
clause should be produced as the ocutput of a translator from any format that
the user desires. It is the responsibility of the user to supply such a translator
(although we supply a simple vne in the LMA package, and intend to include
better translators in the tuture, they are not part of the layer 2 set of routines).
It is the responsibility of the translator to detect. errors.

5.4. Converting Between Portable and Internal Formats

We shall now describe the routines to convert between the internal and
portable formats. It should be noted that throughout these descriptions, when a
portable object is converted into an internal representation, the resuit is a non-
integrated object. The difference between an integr-ted and a non-integrated
object will be covered in detail later. For row it will suffice to note that objects
that will be kept around more or less permanently are normally integrated into
a "structure-sharing” representation. Such integration allows improved algo-
rithms for computing inferred clauses and subsumption checks[14].

The input routines all rename variables to x1, x2, x3.... We sometimes refer
to the "number” of a variable. By this we mean i for xi. Thus, the variable
number of x4 is 4.

Once a clause, literal, or term in portable format exists in a string, you can
obtain the internal representation by using one of the following routines:

- 14 -

clinput - convert a clause from external to object format

clinput(clext,clobj,retcd,com?)

This routine takes a cstring containing a clause in external format
(terminated by a ';') and constructs a non-integrated object to

represent the clause.

clext
clobj
reted

comz?

a csptr to a cstring containing the clause
an objectptr set to reference the generated clause
an integer return code set as follows:

0 - successful conversion

2 - error detected in format of clause
3 - ;was the first character

mem?ail - memory failure

a pointer to the layer 2 common area

litinput - convert a literal from external to object format

litinput(litext, litobj,retcd,com?)

This routine takes a cstring containing a literal in external format
(terminated by a ;') and constructs a non-integrated object to
represent the literal.

litext
litobj
reted

com?2

a csptr to a cstring containing the literal
an objectptr set to reference the generated literal
an integer return code set as follows:

0 - successful conversinn

2 - error detected in format of literal
3 - ;was the first characler

memfail - memory failure

a pointer to the layer 2 cornmon area

15

trminput - convert a term from external Lo object format

trminput{trmext, trmobj,reted,com?)

This routine takes a cstring containing a term in external format
(terminated by a ';"} and constructs a non-integrated object Lo

represent the term.

trmext
trmobj
reted

come

a csptr to a cstring containing the term
an objectptr set Lo reference the generated term
an integer return code set as follows:

0 - successful conversion

2 - error detected in format of termi
3 - :was the first character

mernfail - memory failure

a pointer to the layer 2 common area

Nole thal in all cases the objecl being converted must include a terminaling
semicolon. Further, the internal format is always referenced by means of un
objectptr. This is because all three abstract data types are embedded in the
layer 1 concept of object. The routine clinput will normatly be the most widely
The others are included for 'he rare inslances in
which Lhe user wishes to input specific literals or Lerms (e.g., lo force favored

used of Lhe three roulines.

use cf the input objects).

To create the portable representations given the internal representation,

the following routines can Ye used:

-16 -

cloutput - convert a clause from object to external format

cloutput(clobj,clext reted,comg)

This routine converts the clause referenced by “clobj" to an external

format in "clext".

clobj
clext

reted

com?

an objectptr to a clause

a csptr set to reference a cstring containing the clause
followed by a semicolon

an integer return code set as follows:

0 - success
1 - clobj does not reference a clause
memfail - memory allocation failure

a pointer Lo the layer 2 common area

litoutput - convert a literal from object to external format

litcutput(litobj,litext,retcd,com?2)

This routine converts the literal referenced by "litobj"” to an external

format in "litext".

litobj
litext

retcd

cor.2

»

an objectptr to a literal

a csptr set to reference a cstring containing the literal
followed by a semicolon

an integer return code c=t as follows:

0 - success
1 - litobj does not reference a literal
mem/fail - memory allocation [ailure

a pointer to the layer 2 commion areca

-17_

trmoutput - convert a term from object to external format
trmoutput{trmobj,trmext, retcd,com?)

This routine converts the term referenced by "trmeobj” to an external
format in "trmext".

trmobj - an objectptr to a term
trmext - & csptr set to reference a cstring containing the term
followed by a semicclon
reted - an integer return code set as follows:
0 - success
memfail - memory allocation failure
com? - apointer to the layer 2 common area
8. Lists

In this section we shall discuss cur implementation of lists. Theorem
provers built on the layer 2 LMA routines will normally keep lists of clauses.
Algorithms that infer new clauses, check subsumption, etc. will require the abil-
ity to maintain a position in a list. We implemented the ability to maintain a
position in a list that is subject to insertions and deletions. That is, if you are
progressing through a list one clause at a time, and the next clause is deleted,
then the “access-next” operation should be intelligent enough to return the first
clause past the deleted one. If you allow an arbitrary sequence of insertions 1nd
deletions between access operations, however, the concept of position must be
defined rather precisely. When an element of a list is accessed, you may think of
the position as fixed on the occurrence of that element in the list (if the element
occurs in several lists, you may think of an occurrence as the position of the ele-
ment in a given list). As long as that occurrence is not deleted bef~re the next
access, the concepts of "next element” and "previous element” are straightfor-
ward. The difficulties arise when the occurrence is deleted. To analyze this
case, consider the following list:

..p3,p2,pl.e*sl,s2,53,....

Jiere the pl.p2.p3... are the "predecessors"” of e* and s1,s2,83... are the "suc-
cessors” of e*. Suppose that a position is established on e*, and that e* is
deleted. Any arbitrary sequence of insertions and deletions is then performed
on the list. An "arcess-next"” operation will now retrieve the first element to the
right of the rightmost element that was a predecessor of e* at the point where
e* was deleted. Similarly, an "access-previous” will retrieve the first element to
the left of the leftmost element that was a predecessor of e* at the point where
e* was deleted.

The implementation of this concept of position relies on maintaining updat-
able pointers[B). These pointers are used to record the fact that a position has

-1B-

been established on a given element in a list. Whenever any deletions or inser-
tions occur, these updatable pointers are checked and "updated” (if required).
A large number of such updatable pointers can significantly degrade perfor-
mance. Hence, it is desirable to avoid maintaining a large number of positions
at any one time. Normally, there will be no problem. However, if you establish a
position and then decide that more accesses are not required, you should make
sure that the position is "canceled” (which releases the updatable pointers used
to maintain the position). When an access operation reaches the end of a list (so
that no element is returned), the position is automatically canceled.

Before discussing how to input or cutput a list of clauses, we must intro-
duce the operations that characterize lists.

Istereate - create an empty list
Istereate(newlist,retcd,com?)

This routine sets newlist to reference an empty list.

newlist - an objectptr set to reference the created empty list
retcd - an integer return code set as follows:

0. - success

memfail - memory failure
com? - apointer to the layer2 common area

Istinsfirst - insert an object at the head of a list
Istinsfirst(object,listobj,reted,com?)

This routine inserts "object” as the first element in "listobj",

object - an objectptr

listobj - an objectptr referencing a list

reted - an integer return code set as follows:
0 - success
1 - listobj does not reference a list
mermfail - memeory failure

comg@ - a pointer to the layer i conmon area

-19-

Istinslast - insert an object at the end of a list
lstin: lasi{object listebj,reted,com?)

This routine inserts "object” as the last element in "listobj".

cbject - an objectptr

listobj - an objectptr referencing a list

reted an integer return code set as follows:
0 - success
1 - listobj does not reference a list
memtfail - memory failure

come - a pointer to the layer 2 common area

Istinsbefore - insert an object ahead of a designated position in a list
Istinsbefore{object listobj,ucbjpos,reted,com?)
This routine assumes that "uobjpoes” is an updatable position in listobj

(established by one of the traversing routines). "object" is inserted
ahead of the position.

object - an objectptr to the object to insert
listobj - an objectptr to the list into which the insertion occurs
uobjpos - aupbptr set by a traversing operation
reted - aninteger return code set as follows:
0 - Success
1 - listobj is not alist
memfail - memery failure

com2 - a pointer Lo the layer 2 common area

-20-

Istinsafter - insert an object after a designated position in a list

Istinsafter(object, Jistobj,uobjpos,reted,com?)

This routine assumes that "ucbjpos” is an updatable position in listobj
(established by one of the traversing routines). "object"” is inserted
immediately after the position.

object
listobj
uobjpos
retcd

com?

an objectptr to the object to insert

an objectptr to the list into which the insertion occurs
an upbptr set by a traversing operatinon

an integer return code set as follows:

0 - success
1 - listobj is not a list
memfail - memory failure

a pointer to the layer 2 common area

Istacefirst - access the first element in a list

Istaccfirst{listobj,object, uobjpos,reted, come)

This routine can be used to set "object"” to reference the first
element in "listobj". If the operation is successful, “"uobjpos”
becomes a valid updatable pointer.

listobj
object
uobjpos

reted

comg

an objectptr to the list

an objectptr set to reference the first element in listobj
an upbptr set to an updatable position if reted gets

set to 0

an integer return code set as follows:

0 - success

1 - listobj is .«:npty

2 - listehj does 1ot reference a list
memfai! - memory failure

a pointer to the layer 2 common area

-21 -

Istacclast - access the last element in a list

Istzcelazt{listobj,object, unkjpos,reted,com?)

This routine can be used to set "object” to reference the last
element in “listobj”. If the operation is successful, "uobjpos”
becomes a valid updatable pointer.

listob) -
object -
uchjpos -

reted -

comz2 -

an objectptr to the list

an objectptr set to reference the last element in listobj
an upbptr set to an updatable position if reted gets

set to 0

an integer return code set as follows:

0 - success

1 - listobj is empty

2 - listobj does not reference a list
memfail - memory failure

a pointer to the layer 2 common area

Istaccnext - access the next element in a list

Istacenext(listobj,object,uobjpos,reted, cem?)

This routine sets '"object"” to reference the next element in
“listobj" past the position represented by "uobjpos”. 1f

there are no more elements in the list, the position (uobjpos)
will automatically be canceled (check the reted to see if

the end was reached).

listobj -
object -
uobjpos -
retcd -

com?2 -

an objectptr to the list

an object set to reference the next element
an upbptr representing the position in the list
an integer return code set as follows:

0 - success

1 - no more elements in the list (position
is automatically canceled)

4 - listobj is not a list

a pointer to the layer 2 common area

-22-

Istaccprev - access the previous element in a list
Istaccprev(listobj,cbject,uobjpos,reted,cora?)

This routine sets "object" to reference the previous element in
"listobj" ahead of the position represented by "uobjpos”. 1If
there are no previous elements in the list, the position (uobjpos)
will autornatically be canceled {check the reted to see if

the head was reached).

listobj - an objectptr to the list
object - an object set to reference the previous element
uebjpos - an upbptr representing the position in the list
reted - an integer return code set as follows:
0 - success
1 - no previous elements in the list
(position is automatically canceled)
2 - listobj is not a list
com2 - a pointer to the layer 2 common area

Istcanepos - cance! position in a list
Istcancpos(uobjpos,com?2)
This routine can be used to cancel a position in a list.

uobjpos - an upbptr established by previous traversing operations
com? - apointer to the layer 2 common area

Istnumel - find the number of elements in the list
Istnumel(listobj,i)
This routine sets i to the number of elements in listobj.

listobj - an objectptr to a list
i - an integer set Lo the # of zlements in the list

-23 -

Istdisconnect - disconnect an object from a list
Istdisconnect(uobjpos,com2)

This routine disconnects the object at the position given
by uobjpos (the position is "on" the last object returned by
a traversal routine that used uobjpos) from the list

in which the position occcurs.

uobjpos - an upbptr set by a previous traversal
come - apointer to the layer 2 common area

Istaltpos - has the object referenced by a position been disconnected?
Istaltpos(uobjpos,retcd)

This routine sets reted to 1 if the object that used to be
referenced by uobjpos was disconnected from the list. That is,
uobjpos was set by a previous traversal operation. If the object
that was returned by that call got disconnected, reted will get
set to 1.

ucbjpos - an upbptr set by a previous traversal operation
reted - an integer return code set as follows:;
0 - the referenced object was not
disconnected
1 - the position has been altered (the

object was disconnected)

-24 -

Istloc - locate an object in a list, if it is there
Istloe(listobj,object,uobjpos,reted, com?2)

This routine looks to see if "object” occurs in "listebj".
If so, uobjpos is set to the position of the object. Note
that this is considered a traversing operation, in that
uobjpos must eventually be canceled.

listobj - an objectptr to a list
object - an objectptr
uobjpos - an upbptr set to the position of object in listobj
reted - aninteger return code set as follows:
o - Ssuccess
1 - failure {object doesn't occur in listobj)
2 - listobj is not a list
memfail - memory failure
com2 - a pointer to the layer 2 common area

Istdelete - delete an empty list
Istdelete(listobj.com?)

This routine deletes listobj, if it is an empty list. If
not, no action will take place.

listobj - an objectptr to a list
com? - apointer to tlie layer 2 common . rea

-B5-

lstcopy - copy a list
lztcopy(fromlist, tolist, reted,com®)

This routine copies the list pointed to by fromlist and
sets tolist to reference the copy. The actual elements of
the list are not copied. The new list references the same
subelements as the fromlist.

fromlist - an objectptr to a list
tolist - an objectptr set to reference the copy
reted - an integer return code set as follows:
0 - success
1 - fromlist is not alist
memfail - memory failure
com?2 - a pointer to the layer 2 common area

Istobjfloe - find the first list containing a given object
Istobjfloc(nbj, listobj,listpos reted,com?2)

This routine sets listobj to reference the first list
that contains a given object.

obj - an objectptr
listobj - an objectptr set to reference the first list
that contains obj
listpos - an upbptr used to maintain position in the
set of lists that contain obj
reted - an integer return code set as follows:
o - Success
1 - no list contains obj
memfail - memory allocation failure

com? - a pointer to the layer 2 common area

-28 -

Istobjnloce - locate the next list that contains a given cbject
Istobjnloc(obj listob],listpos,reted, com?2)

This routine locates the next list in the set that contains

obj.
obj - an objectptr
listobj " - an objectptr set to reference the next list
listpos - an upbptr used to maintain position in the
set of containing lists
reted - an integer return code set as follows:
0 - success
1 - no more lists contain obj
comg? - a pointer to the layer 2 common area

Istobjcanc - cancel position in the set of containing lists
Istobjcanc(listpos,comz2)

This routine cancels position in the set of containing lists.
It should not be used if a previous Istobjfloc or Istobjnloc

(for the same listpos) returned a nonzero reted.

listpos - an upbptr used to maintain position in the set
com2 - apointer to the layer 2 common area

These operations are for the most part exactly what you would expect.
Remember, failure to cancel positions can lead to serious degradation.

6.1. Input of a List of Clauses

Now we can present the code to enter both single clauses and entire lists of
clauses. It is assumed that Jists are terminated by a semicolon. Thus,

{EQUAL X X);
EQUAL (F x (1 x)) 0);

would be a list of two clauses. The routine clfread reads from the standard
input, but the changes required to read from any file differ only trivially (but
frequently depend on the PASCAL compiler that you use).

- 27 -
!..-._-_____-_-__

cltread

cliread - read a clause from the terminal
cltread(clobj,reted,com?)

This routine reads characters from the terminal up through the
next ';'. Then it tries to convert the resulting string into

a clause in object format. If all goes well, clobj is set

to reference the constructed clause.

clobj - an objectptr set to reference the generated clause
reted - an integer return code sebt as follows:

0 - success

2 - error delected in the format

3 - ' was the first character

memfail - memory failure
coma - a pointer to the layer 2 common area

J

procedure cltread{var clobj: objectptr;
var reted: integer,
var com?2: commong2ptr);

var sl: osptr,

begin
12readstr{s1,retcd,com2);
if reted = O then
begin
clinput(s1,clobj,reted,com?);
if (reted = ?) then
writeln{'cltread - clinput failed');
dealstring{s1,com?2),
end
else
writeln(‘cltread - 12readstr failed');
end; [cltread]

 (SRREE——
cllsttread

- 28 -

cllsttread - read in a list of clauses from the terminal
clisttread(listobj,reted,com?2)

this routine reads in a list of clauses from the terminal and
sets "listobj" to reference the constructed list. The format
for a list is a sequence of clause entries, followed by a
semicolon. Each clause entry is a clause in external format,
followed by a semicolon. If any errors are detected, “listobj"
is set to contain the clauses successfully read (nil on a

total bust).

listobj - the objectptr set to reference the constructed list
reted - an integer return code sct as follows:

0 - success

1 - format error dctected

mermfail - memory failure
com? - a pointer to the layer 2 common area

}

procedure clisttread{var listobj: objectptr;
var retcd: integer;
var com?: commong2ptr);

var clobj: objectptr;
dummyret:integer;

begin
listobj := nil;
reted = 0;

stereate(listobj,reted,comz);
il reted = 0 then
begin
cltread{clobj,retcd,com?2),
while reted = 0 do
begin
Istinslast{clobj,listobj,retcd,.comg);
if reted = 0 then
cltread(clobj,retcd,com?);

end;
it reted = 3 theu
retecd = 0;

end
else

writeln('cllsttread - Istcreate failed'),
end; {clisttread|

-29-

8.2. Output of a List of Clauses
The code to write out a list of clauses is straightforward:

cltwrite

-._---------..-....--;

f.
cliwrite - write a clause to the lerminal
cltwrite(clobj,reted,com?)

This routine can be invoked to write the clause referenced by
“clobj” to Lhe terminal.

clobj - an cbjeclptr referencing a clause
retcd - an integer return code set as follows:
0 - success
memlfail - memory [ailure
comg - a pointer to the layer 2 common area

!

procedure cltwrite(var clobj: objectptr,
var retcd: integer;
var com?2: common2ptr);

var clext: csptr;

begin
cloutput(clobj,clext,retcd, com?);
if retcd = 0 then

begin

12writestr(clext);

writeln;

end;
end; {cltwrite]

i________ [

lsttwrite

§.

Isttwrite - write a list of clauses to the terminal

- 30 -

Isttwrite(listobj,retcd,comg?)

This routine writes out the clauses from the list "listobj".
After the whole list a semicolon is written.

listobj - an objectptr referencing a list
reted - an integer return code set as follows:

0 - success

memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

3

procedure Isttwrite(var listobj: objectptr;
var retcd: integer,
var com?2: common2ptr);

var clobj: objectptr;
pos: upbptr;
pretcd: integer;

begin

Istaccfirst(listobj,clobj,pos,preted,com?);

retcd := 0O;

while (reted = 0) and (preted = 0) do
begin

cltwrite{clobj,retcd,com?2);
Istaccnext(listobj,clobj,pos,preted,com2);

end;
if retcd = 0 then
writeln(';").

end; {lsttwrite}

The code for Isttwrite does not check to make sure every zlement in the list is
actually a clause. The routine cllstturite, which is included in the layer 2 pack-
age, writes out only the clauses in the list {(as well as verifying that listobj is
actually a list).

7. Input and Output Through a Translator

Before continuing, we should emphasize that our input and output routines
are included only as iliustrations. Proper input and output will go through a
translation package. We include in our package a simple translation package:
ifthentran is a routine that converts from an "if-then” forinat (we give a few
examples after the routines) to portable format, and doutcl r:onverts a clause in
internal format into a readable format. For example, the following routines can
be used to replace cltread and cltwrite:

-31 -
z___.__.--_-----____

heltread

hcltread - read a clause from the inpul terminal
hcltread{clobj.retcd,comg)

This routine reads characters from the terminal up through the
next ';'. Then it tries to convert the resulting string into

a clause in object format If all goes well, clobj is set

to reference the constructed clause. This routine is like cltread
except that the external format of the clause is assumed to be
the "if-then" format.

clobj - an objectptr set to reference the generated clause
reted - an integer return code set as follows:

0 - success

2 - error detected in the format

3 - ;' was the first character

metnfail - memory failure
com? - a pointer to the layer 2 common area

!

procedure hcltread{var clobj: objectptr,
var retcd: integer;
var com2: common2ptr);

var sl,s? csptr;

beg:nfhcitread]
12readstr(s1,reted,com?2);
if reted = O then
begin
ifthentran(s1,s2,reted,com?2);
if reted <> 0 then
wrileln{'nonzero reted from ifthentran’)
else
begin
clinput(s2,clobj,retcd,com?2);
if (reted = 2) then
writeln('heltread - clinput failed’);
dealstring(s2,com?2);
end
dealstring(s1,com®);
end
else
writeln('heltread - 12readstr failed');
end; fhcltread)

S ——
heltwrite

————m e ———————— ;

t.

heltwrite - write a clause to the terminal
heltwrite(clobj,reted,com?2)

This routine can be invoked to write the clause referenced by
"clobj" to the terminal. It is like cltwrite except that the
clause is written in disjunctive format (as if it were the
conclusion part of an "if-then" format).

clobj - an objectptr referencing a clause
reted - an integer return code set as follows:
0 - success
memfail - memory [ailure
come - a pointer to the layer 2 common area

J

procedure hcltwrite(var clobj: objectptr;
var retcd: integer;
var com?: common2ptr);

var clext: csptr;
s8l: csptr;

begin {hcltwrite}
alstring(clext,reted,com?);
if reted = 0 then

" doutcl(clobj,clext,reted,comg);

it retcd = 0 then
begin
12writestr{clext);
dealstring{clext,com®);
end;

end; fheltwrite}

In this case the rather straighiforward translator included in our package gets
invoked. This will allow the use of clauses like the following:

Hx~y&y=zthenx =z,
x<=yly<=x

If -Mad(John) then Happy(Mary) | Absent(Mary);

-33-

if member(x,[John,Joe,Dick]) & (y = [x]z]) then Reject(y);

The printable versions of these clauses produced by dosutel would be as follows:

If (x1 = xR) & (xR = x3) then (x1 = x3);
(x1 <= x2) | (xR <= x1);
Mad(John) | Happy(Mary) | Absent(Mary);

If member(x,[John,foe,Dick]) & (y = [x|z]} then Reject(y);

It is only a erude example of what is really needed. We include it to indicate the
point at which translators would be coupled inte a system based on the layer 2
operations.

8. ID=

Each layer 1 object may be assigned anid. An id is an integer that uniquely
identifies an object. All lists, clauses, literals, and terms are objects, so they
can all be assigned ids. The following routines can be used to assign and refer-
ence ids:

I2assignid - assign an id to an object
IRassignid{objptr.,reted,comg)

This routine assigns an id to the object referenced by objptr.
If the object already has an id, a new id «iil not be

assigned.
cbjptr - an cbjectptr
retcd - an integer return code set as follows:
0 - success
1 - failure (object already Li2s an id)

com2 - a pointer to the layer 2 common area

-34-

12rafid - access the id of an object
I2refid(objptr,id)

This routine returns the id of an object (0 if the object has not
been assigned an id).

objptr - an objectptr
id - aninteger set to contain the id of the object

12idref - access the object with a given id
12idref({id,objptr,reted,com2)

This routine sets objptr to reference the object with the given id.

id - aninteger id
objptr - an objectptr set to reference the desired object
reted - aninteger return code set as follows:
e - Success
1 - no such object exists
coms? - a pointer to the layer 2 common area

Note that, while ids do uniquely identify clauses, they are inconvenient in the
sense that they are not guaranteed to be consecutive (and usually clause ids are
not, bvecause of ids assigned to new literals and terms). This situation can be
remedied by implementing a simple mapping from the set of clause ids to con-
secutive integers (and think of the integers as "clause numbers").

8. Integration

Objects that are not strictly temporary and may participate in inference
steps are normally integrated. When a term is integrated, it is kept in a "struc-
ture shared” data structure. No object occurs more than once in the integrated
st 1cture. Rather, there is a single copy that points to each occurrence. This
allows one to locate 7. desired object (e.g., a literal that unifles with a given
literal) and then follow pointers to each occurrence of the object (e.g.. to all
clauses that contain the literal). This structure sharing significantly improves
performance on many inference rules, subsumption, and demodulation. When
an objzct is integrated, it will be assigned an id {if it does not already have one).

Note that our use of the term "structure sharing"” is quite distincet from
other forms, such as that used by Boyer and Moore[1] and by David Warren[20].
The version that we use is described in [14]. It is not important for the user of

-35-

layer 2 to be familiar with the details of the structure sharing or exactly what is
meant by integrating an cbject. Those details are important only lo those
implementing more layar 2 routines (such as new abstract data types or infer-
ence rules) based on the layer 1 primitives.

10. Hasic Clause Processing Primitives
The following operations can be used to manipulate clauses. They are cer-

tainly not the complete set, since inference rules, subsumption, etc. are not
included. We shall cover those comrmands later.

clacclit - access aliteral in a clause by means of a subscript
clacclit(clobj litobj,i,reted,com?)

This routine sets "litobj" to reference Lhe ith literal

in "clobj".
clobj - an objectptr to a clause
litobj - an objectptr set to reference the desired literal
i - aninteger identifying which literal is desired
reted - an integer return code set as follows:
0 - success
1 - invalid subscript
2 - clobj is Aot a clause
com? - a pointer to the layer 2 common area

clcopy - copy a clause
clcopy(fromel,tocl,reted,com2)

This routine can be invoked to copy a clause.

fromcl - an objectptr to a clause
tocl - an objectptr set to reference the copy
reted - an integer return code set as follows:
- success
1 - fromel is not a clause
memfail - memory allocation failure

com?2 - a pointer to the layer 2 commeon area

-136 -

clereate - create a null clause
clereate(clobj,reted,com?2)

This procedure is used to create an empty clause. If no
literals are inserted into the clause, it will evaluate to
the propositional constant FALSE.

clobj - an objectptr set to reference the generated clause
reted - an integer return code set as follows:

0 - success

memfail - mermory allocation failure
com2 - apointer to the layer 2 common area

cldelint - delete an integrated clause
cldelint{clobj,retcd,com?)

This routine removes the clause from any lists that contain it.
If nothing else contains it (such as a longer clause), it is
deleted itsell. If the clause is a substructure in an existing
object (such as another clause), it will not be physically
deleted; however, it will no longer be considered a clause
(and cannot be referenced by clause manipulation routines).

clobj - an objectptr to a clause
reted - aninteger return code set as follows:
0 - success
1 - something besides a list contained
the clause (this is ok, as well)
2 - clobj is not a clause

comz2 - a pointer to the layer 2 commeon area

37

cldelnon - delete a nonintegrated clause
cldelnon(clobj,reted,com®)
This routine can be called to delete the nonintegrated clause

referenced by "clobj". In this case a retcd value of 1 indicates
a probable error.

clobj - an objectptr to a nonintegrated clause
reted - ‘an integer return code set as follows:
(V1 - success
1 - something besides a list contained the
clause
2 - clobj does not reference a clause
come - a pointer to the layer 2 common area

cldisconnect - delete a literal from a nonintegrated cl‘au__se
cldisconnect{clobj,subscr,reted, com?)

This procedure removes the indicated literal from the clause.
The literal itself is not de‘a{located.

clobj - an ~Ljectptr to a clause
suhscr - an integer subscript of the literal to disconnect
reted - an integer return code set as follows:
0 - success
1 - invalid subscript
2 - clobj does not reference a clause
mernfail - memory failure

com2 - a pointer to the layer 2 common area

-38-

ciinslit - insert a literal into a clause
clinslit{clobj,litptr,subser,reted,corn?)

This procedure inserts the literal given by litptr into the
clause designated by clobj.

clobj - an objectptr to a clause
litptr - an objectptr to the literal to insert
subscr - an integer subscript giving the subscript

value that the inserted literal will have after
it is inserted. This variable must be set correctly
before invoking clinslit.

reted - an integer return code set as follows:
0 - success
1 - invalid subscript
memfail - memory failure
com? - apointer to the layer 2 common area

clintegrate - integrate a clause
clintegrate(clobj,unifopt,retcd,comg);
This routine can be used to integrate a clause. The routine

will delete the nonintegrated clause, replacing it in every
list with a reference to the integrated clause.

clobj - an objectptr to a nonintegrated clause
unifopt - option indicating whether unification properties
should be set on terms other than literals
0 - set unification properties on
all terms
1 - set unification properties on
literals only
retcd - an integer return code set as follows:
0 - success
1 - clobj is not a clause
2 - clobj was already integrated
(this means a bug in the calling
program - do nct ignore it!'")
3 - clobj contains a subobject that
should be a literal, but is not
memfai! - memory allocation failure

comz2 - apointer to the layer 2 common area

-39 -

clnumlit - find the number of literals in a clause
clnunlit{clobj,i,com2)

This routine sets i to the number of literals in clobj (i is set
to -1, if clobj is not a clause).

clobj - an objectptr to a clause
i - an integer set to the number of literals in the clause
com? - a pointer to the layer 2 cornmon area

11. Basic Literal and Term Processing Primitives

The primitives for basic manipulation of literals and terms are used far less
frequently than those for clauses. They are included to allow a level of control
that will seldomn be required.

litacearg - access argument by means of subscript
litaccarg(litobj,.,argohj,reted,com?2)

This routine sets argobj to reference the ith argument of the
literal litobj,

litobj - an objectptr to a literal
i - an integer subscript
argobj - an objectptr set to reference the ith argument
retcd - an integer return code set as {ollows:
0 - Success
1 - litobj is not a literal
2 - iisinvalid

com2 - a pointer to the layer 2 common area

-40-

litaccatom - access the atom of a literal

litaccatem(litobj,atomebj,retcd,com?2)

This routine sets atomobj to reference the atom of the
literal referenced by litobj,

litabj -
atomobj -
reted -

com? -

an objectptr to a literal
an objectptr set to reference the atom
an integer return code set as follows:
0 - success
1 - litobj does not reference a literal
a pointer to the layer 2 common area

litcopy - copy a litera)

litcopy(oldlitobj,newlitobj,retcd,com?)

This routine creates a copy of a literal. Attributes and
properties are not copied. The oldlitobj may be integrated or
nonintegrated. The copy is nonintegrated.

oldlitobj -
newlitobj -
reted -

comz2 -

an objectptr to a literal
an objectptr set to reference the generated copy
an integer return code set as follows:

0 - success
1 - oldlitobj is not a literal
memfail - memory allocation failure

a pointer to the layer 2 common area

41

litcrcon - create a literal (constant)

litercen{ceonobj,symbol,retcd,com?)

This routine creates a "constant” node to represent the given symbol.

conob)j
symbol
reted

com2

an objectptr set to reference the generated object
the symbol representing the constant
an integer return code set as foliows:

0 - Ssuccess

1 - symbol would represent a variable
(starts with s-z, _, or %)

rnemfail - memory allocaticn failure

a pointer to the layer 2 common area

litcrvar - create a literal (variable)

litervar(varobj.i,reted,com?)

This routine creates a "variable” xi and sets varobj to reference

the created object.
varobj

i
reted

com?

an objectptr set to reference the generated obje.:t
the variable number {an integer > 0)
an integer return code set as follows:

0 - success
1 - 1iis invalid
memfail - memory allocation failure

a pointer to the layer 2 common area

-42 -

litcrcomplex - create an "empty" complex literal
litercomplex(comobj,predsymbol,retcd,com?)
This routine creates an empty ""complex literal”. comobj is set to

reference the created object. If the predicate symbol begins
with s-z, _, or %, it will become a variable).

comobj - an objectptr set to reference the generated object
predsymbol- - the predicate symbol for the created literal
reted - aninteger return code set as follows:
0 - success
memfail - memory allocation fajlure
com?2 - a pointer to the layer 2 common area

litdelint - delete an integrated literal
litdelint(litobj,reted,com?)
This routine remaoves the literal from any lists that

contain it. If nothing else contains it (such as a
clause), it is itself deleted.

litobj - an objectptr to a literal
reicd - an integer return code set as follows:
0 - success
1 - failure, literal is contained in at
least one object
2 - litobj does not reference a literal

com?2 - a pointer to the layer 2 commmon area

- 43 -

litdelnon - delete a nonintegrated literal

litdelnon(litobj, reted,com?2)

This routine can be called to delete the nonintegrated literal

referenced by "litobj".

litebj - an objectptr to a nonintegrated literal
reted - an integer return code set as follows:
0 - success
1 - something besides a list contained the
literal
2 - litobj does not reference a literal
com? - a pointer to the laycr 2 common area
litdisconnect - remove argument (by subscript) from a literal

litdisconnect(litobj,i,reted,com?)

This routine discont;ccts the ith argument of the literal. The
literal MUST be nonintegrated. The argument is not deleted.
Thus, if the user wishes it discarded, the routine trmdelnon
should be used afler discounecting it.

litobj -
i -
reted -

come -

an okiectptr to a literal
the subscript of the argument to disconnect
an integer return code set as follows:

H - success
1 - litobj is not a literal
2 - iisinvalid

a pointer to the layer 2 common area

litinsarg - insert an argument {by subscript)
litinsarg(litobj,i,argobj,retcd,com?)
This routine inserts the given argument as the ith argument of

the given literal. litobj must reference a nonintegrated
complex literal.

litobj - an objectptr to a literal
i - the subscript for the argument to be inserted
argobj - an objectptr to the argument to Le inserted
reted - an integer return ccde set as follows:
0 - success
1 - litobj does not reference a complex
literal '
2 - iis an invalid subscript
memfail - memory allocation failure
comz2 - apointer to the layer 2 common area

litintegrate - integrate a literai
litintegrate(litobj,unifopt retcd,com?2)

This routine integrates the literal pointed to by litobj (and
alters litobj to reference the integrated literal).

litobj - an objectptr to a literal
unifopt - optiou indicating whether unification properties
should be set on terms other than lit~rals
0 - set unification
properties on all terms
1 - set unification
properties on literals only
reted - aninteger return code set as follows:
0 - success, an integrated version did
not previously exist
1 - success, litobj references a previously
existing integrated literal
2 - the litera! was previously integrated
3 - litobj does not reference a literal
memfail - memory allocation failure

com? - apointer to the layer 2 common area

-45-

lithnumarg - access the nurmber of arguments in a literal

utnumarg(litobj,i,retcd,comg)

This routine sets i to the number of arguments in the literal

referenced by litob].

litobj
]'_ -

reted -

comg -

an objectptr te a literal
an integer set to the number of arguments in the
literal
an integer return code set as follows:

0 - success

1 - litobj does not reference a literal
a pointer to the layer 2 comrnon area

litpred - access the predicate for a literal

litpred(liLobj, predobj,reted, comR)

This routine accesses the predicate for a given literal.

litobj -
pred ybj -

reted -

com? -

an objectptr to a literal
an objectptr set to reference the predicate of the
literal
an integer return code set as follows:

0 - success

1 - litobj does not referenc a literal
a pointer to the layer 2 common area

- 46 -

litsign - determine the sign of a literal
litsign(litobj,zign,com?2)

This routine sets "sign" to reflect the sign of the literal
referenced by litobj.

litobj - an objectptr to a literal
sign - an integer return code set as follows:

0 - positive

1 - negative

2 - litobj does not reference a literal
com?2 - apointer to the layer 2 common area

trmaccarg - access argument by means of a subscript
trmaccarg{comobj,i,argobj,retcd)

This routine sets argobj to reference the ith argument of the
cornplex term comobj.

comobj - an objectptr to a complex term
i - aninteger subscript
argobj - an objectptr set to reference the ith argument
reted - aninteger return code set as follows:
0 - success
1 - comobj is not a complex term
2 - 1is invalid

-47 -

trmacccon - access constant symbol
trmaccecnf{caiobj,symbel,reted, com?)

This routine sets symbol to reference a esiring containing the
symbol represented by the object pointed to by conobj.

conobj - an objectptr to a constant

symbol - acusptr set to reference the symbol

reted - an integer return code set as follows:
0 - success
1 - conobj does not reference a constant
memfail - memory allocation failure

com? -

trmacevar - access variable number for a variable
trmaccvar(varobj,i,reted)

This routine sets i to the variable number of the variable
represented by varobj,

varobj - an objectptr to a variable

i - aninteger set to the variable number

reted - an integer return code set as follows:
0 -~ Ssuccess

1 - varobj does not represent a va-iable

- 4B -

trmcopy - erzy 2 term
trmcopy(oldtrm obj,newtrmebj,retcd,com?2)
This routine creates a copy of a term. Attributes and

properties are not copied. The cldtrmobj may be integrated or
nenintegrated. The copy is nonintegrated.

oldtrmobj - an objectptr to a term
newtrmobj - an objectptr sel to reference the generated copy
reted - an integer return code set as follows:

0 - success

memfail - memory allocation failure
com? - a pointer to the layer 2 commeon area

trrncrcon - create a constant
trmercon(coriobj,symbol,retcd,com?)

This routine creates a "constant' node to represent the given symbol.

conobj - an objectptr set to reference the generated object
symbol - the symbol representing the constant
retced an integer return code set as follows:
0 - success
i - an invalid symbol was specified
(it began with s-z, _, or %)
memfail - memory allocation failure

com? - a pointer to the layer 2 common area

-49-

trmervar - create a variable

trmervar(varebj,i,retcd,comg2)

This routine creates a "variable" xi and sets varobj to reference

the created object.

varobj
i -
reted -

com? -

an objectptr set to reference the generated object
the variable number (an integer > 0)
an integer return code set as follows:

0 - success
1 - iisinvalid (i < 1)
memfail - memory allocation failure

a pointer to the layer 2 common area

trmcrcomplex - create an “empty” complex term

trmcercomplex({comobj,funcsymbol,reted,com?)

This routine creates an empty "complex term”. comobj is set to
reference the created object. The function symbol should not begin
with s-z, _, or % {or it will become a variable). This routine does
allow the use of a variable as the function symbol.

comobj -
funcsymbol- -
reted -

compR -

an objectptr set to reference the generated cbject
the function symbo! for the created term
an integer return code set as follows:
0 - success
memfail - memory allocation failure
a pointer to the layer 2 comumon area

-50 -

trmdelint - delete an integrated term
trmdelint(trmobj,reted,comg)
This routine removes the term from any lists that

contain it. If nothing else contains it (such as a
literal), it is itself deleted.

trmobj - an objectptr to a term
reted - an integer return code set as follows:
¥ - success
1 - failure, term is contained in at
least one object
come - a pointer to the layer 2 common area

trmdelnon - delete a nonintegrated term
trmdelnon(trmobj,reted,comg)

This routine can be called to delete the nonintegrated term
referenced by "trmobj".

trmobj - an objectptr to a nonintegrated term
reted - an integer return code set as follows:
0 - success
1 - something besides a list contained the
term

com?2 - a pointer to the layer 2 common area

-51-

trmdisconnect - remove argument {by subscript) from a complex term
trmdisconnect{comobj,i,retcd,com?)

This routine disconnects the ith argument of the complex term. The
complex termn MUST be nonintegrated. The argurnent is not deleted.
Thus, if the user wishes it discarded, the routine trmdelnon

should be used after disconnecting it.

comobj - ah objectptr to a complex term
i - the subscript of the argument to disconnect
reted - an integer return code szt as follows:
0 - success
1 - comobj is not a complex term
2 - iis invalid
comz - apointer to the layer 2 common area

trmfunc - access the function for a complex term
trmfunc(comobj,funcobj,reted,comz2)

This routine accesses the function for a given complex term.

comobj - an objectptr to a complex term
funcobj - an objectptr set to reference the object representing
the function
reted - an integer return code set as follows:
0 - success
1 - comobj does not reference a complex
term

com2 - a pointer to the layer 2 cornmon area

-52 -

trminsarg - insert an argument (by subscript) into a complex term
trminsarg(comobj,i,argobj,retcd,com?2)
This routine can be used to insert an argument (the ith) into

a complex term (referenced by comobj). Neither comobj nor argobj
may be integrated.

comobj - an objectptr to a complex term
i - an integer subscript for the argument
argobj - an objeciptr te the inserted argument
reted - aninteger return code set as follows:
0 - Ssuccess
1 - comn.obj does not reference a
complex term
2 - iisinvalid
memtlail - memory allocation failure
coms? - a pointer to the layer 2 common area

trmintegrate - integrate a term
trmintegrate(trmobj,unifopt,retcd,com?)

This routine integrates the term pointed to by trmobj (and
alters trmobj to reference the integrated term).

trmobj - an objectptr to a term
unifopt - option indicating whether unification properties
should be set
0 - set unification properties
1 - do not set unification properties
reted - an integer return code set as follows:
0 - success, an integrated version did
not previously exist
1 - success, trmobj references a previously
existing integrated term
2 - the term was previously integrated
memfail - memory allocation failure
com?2 - a pointer to the layer 2 commeon area

-53 -

trmnurnarg - get the nurnber of arguments in a complex term
trmnumarg(comebj,i,reted)

This routine can be ased to find the number of arguments in a
complex term.

comobj - an objectpir to a complex term
i - an integer set to the number of arguments in the term
reted - an integer return code set as follows:
0 - Success
1 - comobj does not reference a complex
term
12. Properties

We now comme to one of the more interesling features of LMA layers 1 and 2.
Objects can be assigned properties. A preperty is an integer. Thus, each object
may have a set of associated properties. Similarly, a property may be thought
of as referencing a set of objects that have the property. There are two classes
of properties, these that the user explicitly associates with objects and those
that are aulcmatically assigned (during integration) to objects. Automatically
assigned properties are used to farilitate searches for objects that will unify
with a specified object. The user properties are in the range 1 to (propfirst-1),
where propfirst is a defined constant (BOO0O0O0O on most machines, BOOC on
machines that support only 16-bit integers). Note that the routines to assign
properties do not verify that the given property is in a specific range.

An object to which properties are assigned must have an id. It is not neces-
sary to integrate the object, though. II it is integrated, it will automatically havc
an id. Otherwtse, you can assign an id with [Zassignid.

The routines to set and delete properties for an object are as follows:

-54-

12setprop - set a property for an object
12setprop(objptr,prop.reted,com?)

This routine associates the property {an integer)
with the designated object.

chjptr - an objectptr
prop - aninteger property
reted - an integer return code set as follows:
0 - Ssuccess
1 - fail: object has no id
2 - fail: object already has the property
memfail - memory allocation failure
come - a pointer to the layer 2 common area

12delprop - delete a property
I2delprop(objptr,prop,reted,com?)

This routine deletes a search property.

objptr - an objectptr to an object with the property
prop - aproperty (integer)
reted - aninteger return code set as follows:
0 - success
1 - [failure {object does not have that
property)
comg? - a pointer to the layer 2 cornmon area

To access the set of objects that have one or more properties, you must
create a properiy requesf vector. This integer vector is simply an encoded
Boolean condition in preflx notation. The operators are the following defined
constants:

notcond - the complement operator
orcond - the union operator
andcond - the intersection operator

Thus, the vector (andcond,2,orcond,notcond,1,3) represents a request for all
objects that

55_

1. have the property 2 and
2. either have the property 3 or do not have the property 1.

The commands for locating the set of objects that satisfy a given property
request vector are as follows:

I2loctp - locate the first of a set of objects by property
IRlocfp(cond, oby,pos,reted,comz)
An encoded Boolezn condition of piroperties is in an integer

vecior {(a property request vector). Objects are returned by
Rlocip /121eenp in order of increasing id.

cond - an ivecptr to the property request vector
obj - an objectptr set to reference the returned object
pos - an integer that represents a position in the set
of objects that satisfy the request
reted - the return code is set to:
0 - ok, an object is returne-
1 - no object could be found
memfail - rmernory failure
com? - common area for layer 2

12locnp - locate the next object that satisfies a condition
12locnp{pos,obj,reted,comg)

pos - an integer that maintains position in the set
of objects that satisfy the request
obj - an objectptr set to reference the returned
object (if retcd gets set to 0)
reted - the retu:n code is set to:
0 - an object is returned
1 - no more objects could be found
comz2 - common area for layer 2

- 58 -

|2cancploc - cancel a property location position
12cancploc(pos,com1)
Cancel position in a search by means of a property request.

pes - an integer giving the position
com? - the common area for layer 2

These commands refcrence the elements of the cev through first /next opera-
tions. A posilion is maintained in the set. The user must either process the
entire set or cancel the position.

13. Infer.-nce Rules

This section describes the clause-brsed inference mechanisms that are
currently implemented in layer 2. The reader shouid note that we do intend to
frequently supplement this set with both clause-based and non-clause based
inference mechanisms.

13.1. Meanings of the Inference Rules

In this section we describe the routines that can be called to deduce new
facts from existing ones. We assume that the reader knows what the expressions
clause, literal, and term mean{2,5]. Inference rules are processes for producing
new clauses from exisling clauses. LMA supports a wide variety of inferernce
rules. A key to effective use of the system is knowing which inference rules to
apply in a given situalion.

Hyper-resolution
The most straightforward type of logical deduction is the following.

if P then Q
P

therefore @
In clause form this becomes

-PorQ
P

therefore Q

The new clause, Q, is formed from ti.~ clauses (-P or @) and P by clashing the
literal -P against the literal P. A mor: general form of this pattern occurs when
there are more hypotheses in the "if-then” statement. A sentence like

-5 -

if Pand Q and R, then S
beccmes, when rendered into clausal form,
-Por-Qor-RorS

Ye can deduce S if all of P, Q, and R are known to be true. Therefore from the
four clauses

-Por-Qor-RorS
P

Q
R

we can deduce 3. This is the pattern of deducticn used in production systems
and many of the systems described as "rule-based" systems.

Of course the lilerals in the above clauses may contain variables which may
require instantiation in order for clashes to occur. For example, the sentence

"All men are mortal”
becomes

"Either x is not & man or x is mortal.”
if we also know that

"Socrateg is a man"
then we can deduce

"Socrates is mortal."”

This is an example of the patteru

-P(x) or Q{x)
P(a)

therefore Q(a).

Hyper-resolution is an inference rule that encoinpasses the above cases and
more[14,17, 19,21]. It generalizes thern in two ways. First, une "if-then" clause
may have more than one conclusion literal. The clause

ifPand QthenRor S
becomes
-Por-QorRorS.

Secondly, the clauses containing literals that clash against the hypothesis
literals in the "if-then" clause can have more than one literal, as long as all their
literals ar= positive. A typical pattern might be as follows:

-Por-Qor-RorS
PorT

QorWw

R

TorWorS.
Note that hyper-resolution requires that all of the negative literals in the "if-

- 58 -

then" clause be clashed against corresnonding literals in other clauses. For
example, from

-Por-Q or -R

and
Pors

hyper-resolution would not deduce
Sor-QorR

(although binary resolution, described belew, would do so). When variables are
present, their instantiations must be consistenl. For example, from

-P{x.y) or -Q(x) or R(x,y)
P(z,b)
Q)
hyper-resolution deduces
R(a,b).

Hyper-resolution is perhaps the most commonly used .nference rule in
situaticns where equality substitutions do not play a major role. It corresponds
to a natural mode of human reasoning. Its restriction that all negative literals
must be clashed correspoends to the rule: "Don't draw any conclusions until all of
the hypotheses are satisfied.”

For a wide class of reasoning problems, hyper-resolution is sufficient. It is
the rule that most resernbles the inference mechanism used in production sys-
terns.

UR-Resolution

It is not hard to see that the use of hyper-resolulion by itself will lead to the
derivation of clauses with only positive literals in them. While tnis is suflicient
for a large class of problems, a number of reasoning tasks require the derivation
of clauses containing negative literals.

Rather than abandon all restrictions on what kinds of clauses are allowed to
be derived, we now focus on the desirability »~f clauses containing only one
literal. Such clauses are called unift clouses or units. A unit clause can be
regarded as a s'atement of fact, whereas multi-literal clauses represent condi-
tional statements (if they contain both positive and negative literals) or state-
ments of alternatives. Unit clauses are therefore more desirable in many situa-
tions. UR-resolution (Unit-Resulting resolution) [12] removes the restriction
that derived clauses must have only positive literals, but imposes the restriction
that derived clauses must be units. For example, from

-Por-QorR
P
-R

UR-resolution would derive -Q whereas hyper-resoluticn would be unable to
derive anything. UR-resolution emphasizes units in another way as well: all but
one of the clauses that participate in the deduction must be unit clauses,
although they can be either positive or negative. One might say that UR-
resolution emphasizes unit clauses in exactly the same way that hyper-
resolution emphasizes positive clauses. With variables present, another example
might be

-59 -

P(x,y) or -Q(a) or R(x,z)
Q(x)
-R(b,c)

P(b.y).

Binary Resolution

Both hyper-resolution and UR-resolution derive much of their power from
the fact that many clauses can participate in the clash, which corresponds to
taking several reasoning steps at once. Very nccasionally it is necessary to
employ resolution in very small steps. The form of resclution used in this case is
called binary resolution; it corresponds to the smallest possible deductive step.

The only "restriction” on binary resclution is thai exactly two clauses may
participate in the clash{18]. Since both hyper-resolution and UR-resoluticn can
be thought of as sequences of binary resolutions, this is really not a restriction.
An example might be

-Por Qor-R
-QorS

-PorSour-R

Motice that this result could not have been obtained by hyper-resolutien (since
it is not positive) nor by UR-resolution (since it is not a unit). However, any
hyper-resolvent or UR-resolvent can be obtained (eventually) by binary resolu-
ticn. For example, the hyper-resolution

-Por-QorR
Pors

Q

Ror'S
car be carried out by a sequence of binary resclutions:

-Por-Qor il
PorS

QorRorS
Q

Ror 3.
A disadvantage of binary resolution is that clauses are likely to be created
which are longer than existing clauses, for example,

-Por-QorRor S
-SorTor-UorV.

-Por-QorRorTor-UorV

-60 -

It is easy to see how unrestricted use of binary resolution can lead to a very
larae collection of very weak clauses. (A clause having many 'iterals can be
thought of as making a weaker statement than one with few literals.)

Unit Resolution

One restriction that is scmetimes placed on binary resclution is the
requirement that one of the two clauses involved in the clash be a unit]3, 24).
The motivation for this rrestriction is that if one clause is a unit, then the result-
ing resolvent will consist of the cther participating clause with one of its literals
removed (and perhaps some of its variables instantiated). Thus, derived clauses
will be shorter than the clauses that produced them, for example,

-Por-QorRorS
-R

-Por-Qor S
or, with variables present,

-P(x,y) or Q(f(x),b) or -R(x,c)
R(a,z)

-P(a,y) or Q{f(a) b)

These are not the only resolution-based inference ruies supported by LMA,
but they do represent the ones most often used.

Factoring

There is one inference rule that derives new clauses [rom a single clause
rather than from pairs of clauses. It is called factoring and involves the
unification of literals within the same clause[2, 5], for example,

P(a,x) or P(y,b)

P(a,b).
The new clause is said to be a facfor of Lthe original one.

Factoring is important because without it the resolitien rules described
above are incomplete, which means that given a set of contradictory clauses, a
contradiction may not be derived. The classical example is as follows:

P(x) or P(x)
-P(x) or -P(x)

This set of clauses is contradictory, since P(x) is a factor of the first clause and
-P(x) is a factor of the second clause. But without factering, a rule like binary
resolution will only derive the tautology P{x) or -P(x).

Paramodulation

The next inference rule we consider is not based on resolution at all.
Instead, it is based on the substitution properties of the equality relation. For
example, if we know that John's wife is sick, and that John's wife is Sue, then we
know that Sue is sick. This is an instance of the pattern

-61 -

P(a)
FEqual{a,b)

P(b).

In this example, the result P(b) is called a paramodulant rather than a resol-
vent[4, 15, 16]. The ctause P(b) is said to be obtained by paramodulating into the
clause P{a) from lhe equality clause Equal(a,b). The terms in the "from" clause
and in the "into" clause are identical in the above example, but in general are
required only to be unifiable. Here is an example in which a substitution must
be made in the "into" clause:

P(£(x),x)

Equal(f(a).b)

P(b.a)
and here is one in which the substitution must be made in the "from" clause:

P(g(a).b)
Equal{g{x),x)

P(a,b).
Sometimes, substitutions are made in both terms:

P(f(a,x).x)
Equal(f(y.b).y)

P(a,b).

In the previous examples, both the "into" and "from” clauses are units, but
this is not a requirement for paramodulation, for example,

P(f(x,g(y)}) or Q(x.y)
Equal(f(a.g(b)).c)

P(c) or Q(a,b).

Note that, as usual, when a substitutions is make for a variable, it must be made
for all occurrences of the variable in the clause. The "from” clause can also
have extra literals:

P(f(a,x))
Equal(f(y.b).c) or Q(y)

P(c) or Q{a).

The expressions into and fram can also refer to Lhe terms being matched as well
as the clauses in which they occur. In the above example, one would say that
paramodulation occurred from the term {(y.b) into the term f(a x).

The terms paramodulated into or from mayv even be variables, although this
is sometimes considered undesirable. An example of paramodulation into a

-62 -

variable would be

P(f(x).x)
Equal(g(b).h(a))

P(t(h(a}).h(a)),
and an example of paramodulating from a variable would be

P(a)
Fqual(x,f{x,x))

P(f(a.2)).

Various kinds of restrictions are sometimes imposed on paramoduation.
These include blocking paramoedulation into variables or from variables, and res-
tricting the "from" term to be either the lefthand or righthand side of the equal-
ity literal. In the previous examples, the lefthand side was always used as the
“from” term, but this is not necessary. In the following example, we are paramo-
dulating not from the variable, but rather from the righthand side of the equal-
ity:

P(f(a,x)) or Q(x)
Equal(y.i(y.y))

P(a) or Q(a)

Another type of restriction limits the kinds of substitutions that are allowed.
For example, one might require that the "intc"” term be an instance of the
“from" term, or that the "from"” term be an instance of the "into” term. In non-
complerifying paramodulation, variables in the "into"” term can be replaced only
by other variables or constants, unless they occur nowhere else in the into
clause.

13.2. Routines that Implement the Inference Rules
For each inference rule there are normally three routines:

1. FPEach inference rule includes a routine which initiates an operation that
can generate one or more new clauses, This first routine returns only
the first clause in the set of clauses thal could be generated, along with
a "position” in the set. This position has the type stkntptr,

2. A second routine is passed the position and returns the next clause in
the set. This routine can be called repeatedly until all of the clauses in
the set are returned.

3. If all of the clauses in the set are not desired, the user can cancel the
position at any point. It must be stressed that failure to cancel such
positions in sets can lead to severe degradation.

Perhaps the simplest inference rule that is currently implemented in layer
R is factoring:

-B63 -

flactor - generate the first factor of the given clause
ffacler{givcl retel histery, pos,reted,ccm?)

This routine is used to generate the first of a set of factors
from the given clause.

givel - an objectptr to a clause
retcl - an objectptr set to reference the generated clause
history ~ an ivecptr set to return details on how the factor
was produced (nil if no factor is returned)
pos - a stkntptr used to maintain position in the
set of factors
retcd - an integer return code set as follows:
0 - success (retel references the new
factor)
1 - no factor could be produced
memfail - memory allocaticn failure
com? - a pointer to the layer 2 common area

nfactor - generate the next factor of a clause
nfactor{pes,rete! history retcd,comg)

This routine generates the next factor in the set that can
be derived from the given clause,

pos - astkntptr Lhat maintains position in the set
retcl - an objeclptr set to reference the new factor
history - an ivecptr set to reference an ivector giving
derivation information
reted - an integer return cede set as follows:
0 - success {retcl references the new
factor)
1 - no more factors can be generated
memfail - memcary allocation failure
com2 - a pointer to the layer 2 commeon area

64

cfactor - cancel position in a set of factors
cfactor(pos,com?)
This routine cancels position in the set of factors of a given clause.

pos - a stkntptr used to maintain position in the set
com? - a pointer to the layer 2 commeon area

The ffactor and nfactor commands return nonintegrated clauses. The given
clause is not altered in any way. For the moment we shall ignore the history
wvector. We wiil cover it in detail in the next section.

The other inference rules involve accessing parent clauses other than the
given clause. Each such parent (other than the given clause) must be
integrated. Frequently, the set of acceptable parents must be restricted (e.g.,
to implement a set-of-support strategy). To do this, the user forms a list called
the clashobj. The clashobj may contain other lists or clauses. Parents cther
than the given clause must occur in either clashobj or a list that occurs in
clashobj. If the given clause is allowed to be used more than cnce in forming an
inference (e.g., in forming a hyper-resolvent), it should also be included in the
clashobj. If a nil clashobj is used, any clause in the integrated structure is
acceptabl..

¥With these points in mind, the user should now be able to understand the
following inference commands:

ﬁb

fbinary - generate the first of a set of binary resolvents
fbinary{givel,clashobj,retel history,pos,reted,com?2)

This routine is used to generate the first of a set of resolvents

from the given clause (givel} and clauses that occur in clashobj. Thus,
it is intended that clashobj be a list of the lists from which other
clauses are selected to complete the clash.

givel - objectptr to the given clause

clashobj all clauses (other than the given clause) that make up
a clash must be in this object, unless clashobj is nil
{(in which case any clause can participate in a clash).

retel - an objectptr set to reference the first generated
resolvent {or nil, if there are none)
history - an ivecptr that is set to return the details

of how the clash was formed (see docummentation of history
vector formats)
pos - a stkntptr that must be passed to nbinary to get the
rest of the resolvents
reted - an integer return code set as follows:
0 - aresolvent was successfully calculated
1 - no resolvents were calculated
memfail - memory failure
com2 - a pointer to the layer 2 cornmon area

nbinary - generate the next resolvent
nbinary(pos,retcl,history,reted,com?)
This routine generates the next in a set of resclvents.

pos - astkntptr that maintains position in the set
retcl - an objectptr set to reference the next resolvent
(or nil, if no clause is returned)
history - an ivecptr that returns the details of how the
resolvent was generated
reted - an integer return code set as follows:
0 - aresolvent was successfully calculated
1 - no resolvents were calculated '
memnfail - memory failure
com2 - a pointer to the layer 2 commeon area

-86 -

chinary - cancel position in a set of resolvents
cbinary{pos,com?2)

This routine must be called to stop generating
resolvents before getting a non-zero return code

|from fbinary or nbinary.

pos - astkntptr used to maintain position in the set
comng2 - a pointer to the layer 2 common area

fp1 - gererate the first of a set of p! resolvents
fp1(givel,clashobj,retcl history,pos.retcd,comz2)

This routine is used to generate the first of a set of p1 resolvents

from the given clause (givel) and clauses that occur in clashobj. Thus,
clashobj is intended to be a list of the lists from which other

clauses are selected to complete the clash.

givel - aobjectptr to the given clause
clashobj - all clauses (other than the given clause) that make up
a clash must be in this object, unless clashobj is nil
(in which case any clause can participate in a clash).
retel - an objectptr set to reference the first generated
resolvent (or nil, if there arz none)
history - an ivecptr that is set to return the details
of how the clash was formed (see documentation of history
vector formats)
pos - a stkntptr that must be passed to np! to get the
rest of the resolvents
reted - aninteger return code set as follows:
- aresolvent was siiccessfully calculated
1 - no resolvents were calculated
memfail - memory failure
coms2 - a pointer to the layer 2 commeon area

-B7 -

1.51 - generate the next pl resolvent
npl(pos,retel history,reted,com?)

This routine generates the next in a set of pi resolvents.

pos - astkntptr that maintains position in the set
retel - an objectptr set to reference the next resolvent
(or nil, if no clause is returr:ed)
history - an ivecptr that returns the details of how the
resolvent was generated
reted - an integer return code set as follows:
0 - aresolvent was successfully calculated
1 - no resolvents were calculated
memfail - memory failure
com?2 - a pointer to the layer 2 cornmon area

cpl - cancel position in a set of pl resolvents
epl(pos,comg)
This routine must be called to stop geznerating

resolvents before getting a non-zero return code
from fp? or npl.

pos - astkntptr used to maintain position in the set
com? - a puinter to the layer 2 comnmon area

- 68 -

funit - generate the first of a set of unit resolvents
funit{givel,clashobj,retcl, hictory,pos,reted,com?)

This routine is used to generate the first of a set of unit resolvents
from the given clause (givcl) and clauses that occur in clashobj. Thus,
clashobj is intended to be a list of the lists from which other

clauses are s=lected to colaplete the clash.

givel -
clashobj -

retel -

history -

pos -

reted -

compg -

objectptr to the given clause

all clauses (other than the given clause) that make up
a clash must be in this object, unless clashobj 1s nil
(in which case any clause can participate in a clash).
an objectptr set to reference the first generated
resolvent (or nil, if there are none)

an jvecptr that is set to return the details

of how the clash was formed (see documentation of history
vector formats)

a stkntptr that must be passed to nunit to get the
rest of the resolvents

an integer return code set as follows:

0 - aresolvent was successfully calculated
1 - no resolvents were calculated
meimnfail - memory failure

a pointer to the layer 2 common area

nunit - generale the next unit resolvent

nunit(pos,retcl,history,retcd,com?)

This routine generates the next in a set of unit resolvents

pos -
retel -

history -

reted -

com?2 -

a stkntptr that maintains position in the set

an objectptr set to reference the next resolvent
(or nil, if no clause is returned)

an ivecptr that returns the details of how the
resolvent was generated

an integer return code set as follows:

0 - aresolvent was successfully calculated
1 - no resolvents were calculated
mernfail - memory failure

a pointer to the layer 2 common area

)

-89 -

cunit - cancel position in a set of resclvents
cunit(pos,comg)

This routine must be called to stop generating
resolvents before gettiig a non-zero return code

from funit or nunit.

pos - astkntptr uced to maintain poesition in the set
coma - a pointer Lo the layer 2 common area

funitconflict - test for unit conflict (first)
funitconflict(givcl,clashobj,retel,history, pos,reted,comg)

This routine is used to generate Lhe first of a set of null clauses

from the given clause (givel) and clauses that oecur in clashobj. Thus,
clashobj is intended to be a list of the lists from which other

clauses are selecied to complete the clash. The given clause must

be a uuit, and s milarly for the clashed against clause.

givel - objeciptr to the given clause
clashobj - all clauses (other than the given clause) that make up
the clash must be in this object, unless clashobj is nil
(in which case any clause can participate in the clash).
retel - an objeclptr set to reference the first generated
null clause {or nil, if there are none)
history - an ivecpir that is set to return the details
of how the clash was formed (see documentation of history
vector formats)
pos - a stkntptr that must be passed to nunitconflict to get
the rest of the null clauses
reted - an integer return code set as followz;
0 - anull clause was successfully calculated
1 - no null clauses were calculated
mem/fail - memory failure
come - a pointer to the layer 2 common area

-70 -

'

lnunitconﬁict - generate the next mull clase (using unit conflict)

nunitconflict{pos,retcl history reted,com2)
This routine generates the next in a set of null clauses that are
generated using, unit conflict.
pos - astkntptr that maintains position in the set
retel - an objectptr set to reference the next null clause
(or ni], if no clause is returned)
history - an ivecptr that returns the details of how the
null clause was generated
reted - an integer return code set as follows:
0 - anull clause was successfully calculated
1 - no null clauses were calculated
memfail - memory failure
comz? - a pointer to the layer 2 common area

cunitconflict - cancel position in a set of null clauses
cunitconflict(pos,comg)

This routine must be called to stop generating

null clauses before getting a non-zero return code
from funitconflict or nunitconflict.

pos - astkntptr used to maintain position in the set
com? - a pointer to the layer 2 common area

-1 -

hyperf - generate hyper-resclvents (first)
hyperf(givel,clashobj,retcl history,pos,reted,com?)

This routine is used to generat: the first of a set of hyper-resolvents
from the given clause (givel) ar.d clauses that occur ip clashobj. Thus,
clashobj is intended to be a list of the lists from which other

clauses are selected to complete the riash.

givel -
clashobj -

retel -

history -

pos -

reted -

coma -

objectptr Lo the given clause

all clauses (other than the given clau~=) that make up
the clash must be in this object, unless clashebj is nil
(in which case any clause can participate in th= clash).
an objectptr set to reference the first generated
hype-rresolvent (or nil, if there are none)

an ivecptr that is set to return the details

of how the clash was formed (see documentation of history
vector formats)

a stkntptr that must be passed to hypern to get the
rest of the hyperresolvents

an integer return code set as follows:

0 - ahyperresolvent was successfully
calculated

i - no hyperreso'vents were calculated

memfail - memory failure

a pointer to the layer 2 cornmon area

hypern - generate the next hyper-resolvent

hypern{pos,retcl history,reted,comg)

This routine generates the next in a set of hyper-resolvents,

pos -
retel -

history -

reted -

com2 -

a stkntptr that maintains position in the set

an objectptr set to reference the next hyper-resolvent
(or nil, if nc clause is returned)

an ivecptr that returns the details of how the
hyper-resolvent was gcnerated

an integer return code set as follows:

0 - altyper-resolvent was successfully
calculated

1 - no hyper-resolvents were calculated

mem/fail - memory failure

a pointer to the layer 2 commeon area

-2 -

hypercanc - cancel position in a set of hyper-resolvents
hypercanc(pos,com?2)
This routine must be called to stop generating

hyper-resolvents before getting a non-zero return code
from hyperf or hypern.

pos -
com? -

a stkntptr used to maintain position in the set
a pointer to the layer 2 common area

urf - generate UR-resolvents (first)

urf{givel,clashobj,retcl, history,pos,reted,com2)

This routine is used to generate the first of a set of UR-resolvents
from the given clause {givel) and clauses that occur in clashobj. Thus,
clashobj is intended to br: a list of the lists Irem which cther

clauses are selected to complete the clash.

givel -
clashobj -

retcl -

history -

pos -

retcd -

com? -

objectptr to the given clause

all clauses (other than the given clause) that make up
the clash must be in this object, unless eclashobj is nil
(in which case any clause can participate in the clash).
an objectptr set to reference the first generated
UR-resolvent {or nil, if there are none)

an ivecptr that is set to return the details

of how the clash was formed (see documentation of history
vector formats)

a stkntptr that must be passed to urn to get the

rest of the UR-resolvents

an integer return code set as follows:

0 - a UR-resolvent was successfully
calculated

1 - no UR-resolvents were calculated

mernfail - memovry failure

a pointer to the layer 2 common area

-73 -

urn - generate the next UR-resolvent
urn(pos,retel history,reted,com?)

This routine generates the next in a set of UR-resolvents.

pos - astkntptr that maintains position in the set
retcl - an cbjectptr set to reference the next UR-resolvent
(or nil, if no clause is returned)
history - an ivecptr that returns the details of how the
UR-resolvent was generated
reted - an integer return code set as follows:
0 - a UR-resolvent was successfully
calculated
1 - no UR-resolvents were calculaled
mernfail - memory failure
comz2 - a pointer to the layer 2 common area

urcanc - cancel position in a set of UR-resolvents
urcanc(pos,comg)

This routine must be called to stop generating
UR-resolvents before getting a non-zero return code

from urf or urn.

pos - astkntptr used to maintain position in the set
comg - apointer to the layer 2 common area

-74__-

funitdel - generate the first of a set of unitdel resolvents

funitdel(givcl,clashobj,retcl history,pos,retcd,com?)

This routine is used to generate the first of a set of unitdel
resolvents from the given clause {givel) and clauses that occur
in clzashiobj. Thus, clashobj is intended to be a list of

the lists from which other clauses are selected to complete

the clash.

givel
clashobj

retcl

history

pos

reted

compy

objectptr to the given clause

all clauses {other than the given clause) that make up
a clash must be in this object, unless clashobj is nit
(in which case any clause can participate in a clash).
an objectptr set to reference the first generated
resolvent (or nil, if there are none)

an ivecptr that is set to return the details

of how the clash was formed (see documentation »f history
vector formats)

a stkntptr that must be passed to nunitdel to get the
rest of the resolvents

an integer return code set as follows:

0 - aresolvent was successfully calculated
1 - no resolvzuts were calculaled
memfail - memory failure

& pointer to the layer 2 common area

nunitdel - generate the next unitdel resolvent

nunitdel{pos,retel history,reted,com?2)

This routine generates the next in a set of unitdei resolvents.

pos
retcl

history

reted

comza

a stkntptr that maintains position in the set

an objectptr set to reference the next rescivent
(or nil, if no clause is returned)

an ivecptr that returns the details of how the
resolvent was generated

an integer return code set as follows:

0 - aresolvent war successfully calculated
1 ~ no resolvents were calculated
memdfail - memory failure

a pointer to the layer 2 common area

-75-

cunitdel - cance!l position in a set of resolvents
sunitdel/pes,com?2)

This routine must be called to stop generating
resolvents before getiing a non-zcro return code

from funitdel or nunitdel.

pos - a stkntptr used to maintain position in the set
cormg - a pointer to the layer 2 common area

-78 -

givel
retel
clashobj

instopt

intoopt

fromopt

hist

pos
retcd

com?

paraff - get the first paramodulant from the given clause
paraff{givel, retel,clashobj,instopt,intoopt,fromopt,hist, pos,reted, com?2)

This procedure can be invoked to generate the first of a set
of paramodulants using the given clause as the from clause.

- an objectptr to the given clause
- an objectptr set to reference the generatead clause
~ an objectptr such that all into clauses must be

contained in this object, unless it is
nil (in which case any into clause is ok).
an integer gmn,g the instantiation options:
o bot.h into and from can be instantiated

1 - "into" term must be instance of equality
arg

2 - equality arg must be instance of into
term

3 - noncomplexifying paramodulation (into

varizbles can be instantiated only to
consl.ants or variables, unless they
occur nowhere else in the "into" clause)
options governing "int>" terms:
- any term is ok
1 - variables are nct ok
2 - neither variables nor constants are ok
options governing "from" terms
- either arg of equality, no restr
- only left arg, no restr
- either arg, no var
only left arg, no var
- either arg, no var or constant
- only left arg, no var or constant
an ivecptr set to the derivation data
a stkntptr used to maintain position in the set
an integer return code:

OdDNo—O
]

0 - returned clause successfully
1 - no paramodulant could be generated
memfail - memory failure

a pointer to the layer 2 common area

77

paranf - get next paramodulant from the given clause
paranf{pos,retclhist,retcd,com?)

This procedure generates the next paramodulant coming from the given
clause.

pes - astkntptr used to maintain position in the set
retel - an objectptr set to reference the generated clause
hist - an ivecptr set to the derivation info
reted - an integer return code:

0 - success

1 - no meore paramodulants could be

formed

mempfail - memory failure

coms2 - & pointer to the layer 2 comarmoen area

parafcanc - cancel poesition in a set of "from' paramodulants
paralcanc{pos,com?)
This procedure is used to cancel position in a set of paramodulants.

pos - the stkntptr used to maintain position in the set
com2 - a pointer to the layer 2 common area

- 78 -

parafi - get the first paramodulant into the given clause

parafi(givel retel,clashobj,instopt,intoopt,fromopt hist,pos,retd co:a2)

This procedure can be invoked to generate the first of a set

of paramodulants.

givel
retel
clashobj

instopt

intoopt

fromopt

hist

pos
reted

come

an objectptr te the given clause
an objectptr set to reference the generated clause
all from clauses must be contained in this object,
unless it is nil (in which case any from clause
is ok)
an integer glvmg the instantiation options:
0 both "into" and "from" can be instantiate

1 - "into" term must be instance of equality
arg

2 - equality arg must be instance of "into"
term

3 - noncomplexifying paramodulation ("into’

variables can be instantiated only to
constants or variables, unless they
oceur nowhere else in the "into" clause)

options governing "into" terms:

- any term is ok

- variables are not ok

- nelther variables nor constants are ok

options governing "from" terms

- either arg of equality, no restr

- only left arg, no restr

either arg, no var

- only left arg, no var

- either arg, no var or constant

5 - only left arg, no var or constant

the ivecptr set to the derivation data

a stkntptr used to maintain position in the set

an integer return code:

SN - O

Do
1

0 - returned clause successfully
1 - no paramodulant could be generated
memfail - memory failure

a pointer to the layer 2 common area

-79 -

parani - get next paramodulant inte the given clause
parani{pos,retcl,hist,retcd,com?2)

This procedure generates the next paramoculant going inte the given
clause.

pos - a stkntptr used to maintain positicn in the set
retel - an objectptr set to reference the genrrated clause
hist, - an ivecptr set to the derivation info
reted - an integer return code:

0 - success

1 - no more paramodulants could be

formed

mernfail - memoery failure

com2 - a pointer to the layer 2 cornmon area

po-—

paraicanc - cancel position in a set of "into" paramedulants
paraicanc(pos,com?2)
This procedure is used to cancel position in a set nl paramodulants.

pos - the stkntptr used to mainiuin position in the set
com?2 - a pointer to the layer 2 comurion area

13.3. Infercnce Rule History Vectors

Each inference rule returns an integer vector (referenced via an ivecptr)
that describes the sequence of actions used to infer the returned clause. In this
section we give the format of these history vectors. We include the formats pro-
duced by simplification and demodulation, operations thal are described in later

sections. The format of history vectors is as follows:

operations
a sequence of operations

An operation is one of the following:

a) factoring

- BO -

1 - factor operation code
l1sub - subseript of 1 literal
I2sub - subscript of the second literal

b) resolve

2 - resclution operation code

l1sub - subscript of literal in "main” clause
Here “main" means the giver cl or the
result to this point of operating on the
given clause,

pRid - id of clashed clause

12sub - subscript of literal in p2id

¢) pararuodulation into

3 - paramodulation-into operation cede
<into-position vector>

pRid -id of from-clause
<from-position vector>

d) paramodulation from
4 - paramodulation-frem operation code
<from-position vector>
pRid - id of the into clause
<into-position vector>

e) special symbo! reduction

5 ~ special symbol reduction operation code
<position-vector of the simplified term>

f) tautology reduction
6 - tautology reduction {a clause contains L and -L) operation
code.
l1sub
12sub
g) duplicate literal removal
7 - duplicate literal removal operaticn code
11sub
12sub
h) tautology reduction (a literal is TRUE)

B - tautology reduction (TRUE literal) operation code
l1sub

9 - FALSE removal (FALSE literal) operation code
I1sub

-81_.

Here a position vector has the [ollowing format:
n - number of elements in the position vector

vl
va

vn

The user of an inference rule may wish to discard this information, display it, or
save it in a "log file”. 1f he decides to save it, we recommend using the portable
formal of an object. Tlis would lead Lo the following [orntals [or externaily
logged inference history:

an axiom (A <id> <objecl>);
Here <id> is the numeric id, and <object>
is the object (which will be a clause for
most of our purposes).
aninference - (I <id> <objecl> <parenil> <alter-sequencel),
Here the <id> is of the generated clause.
If this is the same as <parentl>, all
future references to the <id> in the log
file pertain to the generated clause.
<alter-sequence> is of the following form:
(C <mod1> (C <mod2> ... {C <modn> NIL)))...
Here <modi> is one of the following forms:
into-paramodulant: (INTO <into-pos> <from-id> <from-pos>)

<into-pos> and <from-pos> are position
vectors of the form:

(C <num> (C <num> ... {C <num> NIL}))...
from-paramodulant: {FROM <from-pos> <into-id> <into-pos>)
resolvent. (R <liLl-sub> <parent2> <lit2-sub>)
factor: (F <lit1-sub> <lit2-sub>)
special-symbol reduction: (SPEC <sym-position>)

tautology-1: (TAUT1 <lit1-sub> <lit2-sub>})
(clause contains L and -L)

duplicai.e literal removal:

-B2 -

(DUP <liti-sub> <lit2-sub>)

tautology-2: (TAUTR <lit-sub>)
{a literal is TRUE)

FALSE removal: (FALREM <lit-sub>)

To help prepare such a file, we include the following two routines:

logclause - prepare a log entry for a clause (axiom)
logelause(clobj,s,reted,com?)
This reutine creates a log entry for the given clause and

puints s at the resulting string (it does not wrilc the
string to a file).

clobj - an objectptr to a clause

8 - acsptr set to reference the created string

reted - an integer relurn coie set as [ollows:
0 - Success
1 - clobj does not reference a clause
mem/fail - memery allocation failure

comzg - a pointer to the layer 2 common area

-83-

loginference - create a string with a log entry for an inference
loginference(histvec,newcl,parentid,s,retcd,com?2)

This rouline can be used to create a string with the correct log
entry to represent an inference.

histvec - anivecptr to a history vector created by the inference
newcl - the newly derived clause
parentid - id of the given clause
8 - acsptr set to reference the generated string
reted - an integer return code set as follows:
0 - success
1 - histvec does not contain a valid history
vector
memfail - memory allocation failure
comz2 - a pointer to the layer 2 common area

14. Subsumption

14.1. Definition of Subsumption

Subsumption is the mechanism by which unnecessary clauses are dis-
carded (2,5, 18]. The simplest situation occurs when a clause is derived that is
already present in the clause space. In this case we want to discard the newly
derived clause.

More generally, the newly derived clause may be recognizably less general
than scme existing clause without being identical te it. There are two basic ways
this can happen.

The first is that the literals of the new clause may form a subset of the
literals of the existing clause. For example, if we already know
PorQ
and derive
QorSorP
then we may discard the new clause, since it is logically weaker than the original
one.
The second is that the new clause may be an instance of the original clause,
for example,

0ld clause: P{a.x)
New clause: P(a,b)

Since any resolution in which the new clause might participate will occur with
the old clause anyway, we discard the new clause.

-B4 -

These two ways in which a new clause may be less general than an existing
clause may, of course, be combined, for example,

0ld clause: P(a,x) or Q(y) or P(y.b)
New clause: Q(a) or P{a,b)

So in general, clausc A subsumes clause B if there is a substitution for the vari-
ables in clause A such that after the substitution, the literals of clause B form a
subset of the literals of clause A,

This process of discarding new clauses that are subsumed by existing
clauses is called forward subsumption. The subsumptlion process also can occur
in the opposite direction. That is, a newly derived clause may subsume one or
more existing clauses, in which case we probably want to keep the new clause
and discard the subsumed clauses. This process is called backward subsump-
tion. :

14.2. The Routines that Implement Subsumption
Two versions of subsumption checks are supplied:

1. Forward subsurnption allows you to determine which clause or clauses
subsume a given clause.

2. Backward subsumption allows you to determine which clauses are sub-
sumed by a given clause.

As with the inference rules, clashobj is used to restrict the set of clauses to
check. The routines to perform the subsumption checks are as follows:

-B5 -

Isubfirst - get first clause that subsumes given clause
fsubfirst(givel,clashobj,lenopt,retel,pos,reted,com?)

This routine raturns the first clause in a set of clauses

(all contained in clashobj) that subsume the given clause.

The lenopt parameter can be used to suppress checks of a

lenger clause subsuming a shorter clause. This can save

time, and it is necded when doing subsumption checks on factors.

givel - an objectptr to the given clause
clashobj - an objectptr; if nil, all clauses are checked;
else, only clauses contained in clashobj are checked
lenopt. - an integer specifying whether or not a longer
clause may subsume a shaorter clause:
0 - alonger clause may subsume a
shorter clause
1 - alonger clause may not zubsume a
shorter clause
retel - an objectptr sel to reference Lhe first subsuming
clause
pos - astkntptr used to maintain position in the set
of subsuming clauses
reted - an integer return code set as follows:
0 - found a subsumer successfully
1 - no subsumer could be found
memfail - memory failure
comza - apointer to the layer 2 common area

fsubnext - get next clause that subsumes the given clause
fsubnext(pos,retcl,reted,com?2)

This routine locates the next clause in the set of clauses
that subsume the given clause.

pos - astkntptr used to maintain position in the set
retel - an objectptr set to reference the returned clause
reted - an integer return code set as follows:

)] - success

1 - no clause could be found

memfail - memory failure

com2 - pointer to Lhe layer 2 common area

- BB -

cancfsub - cancel position in set of clauses that subsume given clause
cancfsub(pos,comz2)

This routine cancels the position in the set of clauses that subsume the
given clause.

pos - astkntptr maintaining position in the set
com?2 - & pointer to the layer 2 common area

bsubfirst - get first clause subsumed by given clause
bsubfirst(givcl,clashobj,lenopt,retel,pos,retcd,comg)

This routine returns the first clause in a set of clauses

(all contained in clashobj) that are subsumed by the given clause.
The lenopt parameter can be used to suppress checks of a

longer clause subsuming a shorter clause. This can save

time, and it is needed when doing subsumption checks on factors.

givel - an objectptr to the given clause
clashobj an objectptr; if nil, all clauses are checked;
else, only clauses contain - in clashobj are checked
lenopt - an integer specifying whether or not a longer
clause may subsume a shorter clause:
0 - alenger clause may subsume a
shorter clause
1 - alonger clause may not subsume a
shorter clause
retcl - an objectptr set to reference the first subsumed
clause
pos - a stkntptr used to maintain position in the set
of subsumed clauses
retcd - an integer return code set as follows:
0 - found a subsumed clause successfully
1 - no clause could be found
memfail - memory failure
comge - a pointer to the layer 2 common area

-B7 -

bsubnext - get next clause subsumed by the given clause
bsubnext(pos,retel,reted,com?2)

This routine locates the nexl clause in the set of clauses
subsumed by the given clause.

pos - astkntplr used to maintain position in the set
retcl - an objectptr set to reference the returned clause
reted - aninteger return code set as foliows:
0 - success
1 - no clause could be found
rmemfail - memory failure
comz2 - pointer to the layer 2 common area

cancbsub - cancel pusition in set of clauses subsumed by given clause
cancbsub(pos,com?)

This routine cancels the position in the set of clauses subsumed by the
given clause.

pos - a stkntptr maintaining position in the set
com2 - apointer to the layer 2 common area

15. A Simple Theorem Prover

Now we have all the tools required to put together a simple thecorem prover.,
This program uses just hyper-resolution as the inference rule, but does perform
complete subsumption checks. It is a "toy” program, but it is still fairly power-
ful. In fact, it is better than many of the programs that have been reported in
the literature. A more extensive theorem prover built with the LMA tools is

described in [10].
program tp(input,output);
const

#include 'l2constants.i’;
type

finclude 'I2types.h’;

#include ‘12externals.h’;

var

axlist: objectptr:
soslist. objectptr,
hbglist: objectptr;
clashlists: objectptr;
allclauses: objectptr;
givencl: objectptr;
resolvent: objectptr,;
subsumer: objectptr;
subsurned: objectptr;
inclause: objectptr;
histvec: ivecptr;
retcd: integer;
listreted: integer;
numlits: integer;
lenopt: integer;
unifopt: integer;

hyperpos: stkntptr;

subsumerpos: stkntptr;
subsumedpos: stkntptr;

sespos: upbptr;
lisipos: upbptr,
done: boclean;
com2: commongptr;

beginitpl;

foption

fthe list of axioms)

jthe set of support list}

fthe have-been-given list}

flist of lists to clash agains']

flist of list to subsume from}

fthe given clause, chosen from soslist]
fnewly generated clause]

jsubsuming clause in forward subsumptionj
{clause subsumed in back subsumption]
{input clause while being integrated]
{derivation history vector for new clause]
{general-purpose return code}

treturn code for lList processing}
{fnumber of literals of new clause]
{subsurnption option}

for integration routine -

set unification properties on all

terms (not just literals))

fposition in set of resolvents]

fposition in set of subsumers]

fposition in set of subsumed clauses]
fposition in set of suppori}
{general-purpose list positicnj

{flaz to indicate end of main loop)
fthe layer 2 common areaj

facquire the common area for layer 2 services]
initcom?2(comz);

{read in the list of axioms}

writeln(‘enter axioms'),

clisttread(axlist,retcd,comg);

if (reted = Q) then

else

begin

writeln('axioms are as follows:');
clisttwrite{axlist,reted,com?);

end

writeln('in} ut of axioms list failed');

fnow integrate the axioms - that is add them to the formulae database}
Istaccfirst{axlist,inclause listpos,listreted,com?);
while (listreted = 0) do

begin
unifopt := 0,

clintegrate({inclause,unifopt,retcd,com2);
Istaccenext(axlist,inclause,listpos listreted,comg);

end;

{now read in the set-of-support list}

writeln('enter set of support’);

- 89 -

cllsttread(soslist,reted,com?);
if {reted = 0) then
begin
writeln('sec of support clauses are as follows:');
clisttwrite{soslist,reted,com®);
end
else
writeln{'input of reL »f support list failed');

fintegrate the set-of-support clauses)
Istaccfirst(soslist,inclause,listpos,listreted,com?);
while (listreted = 0) do
begin
unifept := 0;
clintegrate(inclavse unifopt,reted,comg);
Istaccnext(soslist,inclause, listpos listreted,comg);
end,;

tmake clashlists a list containing axlist and hbglist.

male allclauses a list containing axlist, soslist, and hbalict]
Istcreate(hbglist,reted,com?),

Istcreate(clashlists,reted,com?);
Istcreate(allclauses,retcd,comg);

Istinslast{axlist,clashlists,reted, comg);
Istinslast(hbglist,clashlists,reted, com?2);

Istinslast(soslist,allclauses,reted,com?),

(

(
Istinslast{axlist,allclauses,retcd,com?);

(
Istinslast(hbglist,allclauses,reted,comg);

Thix is the main loop. Select a clause from the set-of-support,
generate all hyper-resolvents between it, axioms, and clauses on the
hbglist. Put the generated hyper-resclvents that are not subsumed cnto
the soslist. When that is all done, move the given clause from the
soslist to the hbglist and start over - until no more clauses exist in the
soslist or lhe null clause is generated.

done := false;

while not done do
begin
fselect a "given clause]
Istaccfirst(soslist,givencl,sospos,reted,comg);
if (reted <> 0) then

begin
done := true;
writeln('no more clauses in set of support');
end
else
begin

write('given clause is: ');
cltwrite(givencl,reted,com?);
fgenerate the first hyper-resolvent}

- 9n -

hyperf(givencl, clashlists,resolvent histvec,
hyperpos,reted,com?);
{This loop processes generaied hyper-resolvents]
while {reted = 0) and (not done) do
begin
write('resolvent. '),
cltwrite{resolvent,retcd,com?);
fthrow away the derivation information}
dealivec(histvec,com?2);
fnow check for the null clause}
clnumlit(resolvent, numlits,com?2);
if (numlits = 0) then

begin
writeln('null clause found');
dene := true;
end
else
{forward subsumption checkj
begin
lenopt := 0; f{allow clauses to subsume cherter enes]

fsubfirst(resolvent,allclauses,lenopt, subsumer,
subsumerpos,retcd,com?);

if {(retcd = 0) then
begin
writeln('resolvent subsumed');
fcancel position in the set of clauses that subsume
the generated hyper-resolvent}
cancfsub(subsumerpos,comg);
{delete the nonintegrated hyper-resolvent]
cldelnon(resolvent,reted,comz®),

end
else
{back subsumption check]
begin
lenopt := 0; {allow subsumption by a longer clause]

0
bsubfirst(resolvent,all¢clauses,lenopt,subsumed,
subsumedpos,reted,com?),
{This loop deletes clauses subsumed by the new
hyper-resolvent)
while (reted = 0) do
begin
write('resolvent subsumes existing clause: ');
cltwrile{subsumed, retcd,com?);
cldelint(subsumed,reted,com?2);
bsubnext(subsumedpos,subsumed,reted,
com?2);
end;
fadd the hyper-resolvent to the integrated formula
database and to the set of supporti
unifopt = 0;
clintegrate(resolvent,unifopt,reted, comg);
Istinslast{resolvent,soslist,retcd,com?);
end;
end;

- 91 -

hypern(hyperpos,resolvent, histvec,reted,com?);
end{while{;
end;
tIf the given clause was not deleted (due to subsumption), rmove it
to the hbglist]
if not done then
begin
Islaltpos{sospos,reted);
if reted = 0 then
begin
Istdisconnect(sospos,com?),
Istinslast(givencl, hbglist,retcd,com®);
end,; ¢
end;
Isteancpes(sospos,com?);
end;{while}
end.{tp}

16. Demodulation/Simplification

16.1. Meaning of Demodulation

Demodulalion is the process of rewriting a clause in place using an equality
substitution[25]. The rewriting is controlled by unit equality clauses called
demodulalors, for exampie,

P(t(a),b)
FEqual(f(a),c)

P(c,b)

The clause P(e.b), called a demodulant, replaces the existing clause P(f(a),b),
which is deleted. (The clause P(c,b) could also be derived by paramodulation,
but the parent clause would not be deleted.)

Variables may be present in the demodulators, and in the clauses they
demodulate, but instantiation of variables can occur only in the term in the
equality, for example,

P(f(g(a)).g(a))
Equal(f{g(x)}.h(x))

P(h(a).g(a)).
The demodulated clause need not be a ground clause (that is, it may contain
variables):

Q(1(x),x)
Equal(f(x).g(x))

Q(g(x).x).

In general, one can specify that a demodulator apply left-to-right, right-to-left,
or either way. In LMA, a user variable in the demodulator controls the direction
of demodulation.

-92 -

In the presence of multiple demodulators, many may apply, and each may
apply more than once, for example,

P(t(g(a)}.f(a))

Equal(g(x).h{x)) (left-to-right)
Equal(a,h{a)) (right-to-left)

Equal(f(a),b) (left-to-right)

P(b.b).

Since a demodulator may apply rucre than once, looping may occur[13]. This
possibility occurs naturally in demo~dulaters that express commutativity, such
as

Equal(f(x.y).f(y.x))

In the presence of this demodulator, a clause like P(f(a,b)) would demecdulate to
P(f(b,a)), then to P(f(a,b)), then P(f(b.a)), etc. This is prevented in the following
way.

When a clause is designated as an "either-way" demodulator, then whether
it is applied or not depends on the lexical vrdering of the inslantiations of its
variables. Lexical ordering of symbols can be allowed to default or can be
specified by use of the LEX predicate. Depending of the lexical ordering of a and
b, the demodulator

Equal(f(x.y) f(y.x))

will demodulate P(f(a b)) to P({(b,a)) or leave it unchanged. In this way canoni-
cal forms for expressions can be maintained. This is discussed in more detail at
the end of the next section.

When existing demodulators are applied to a newly derived clause, the pro-
cess is called forward demodulation, It is also possible for new demodulalors to
be added to the clause space, in which case one may want to apply them to some
or all of the existing clauses in the clause space. This process is called back
demodulation. An example would be the following situation. Suppose the set of
existing clauses contains

P(f(h(a)))
Equal({f(b),c)

and the new demodulator
Fqual{h(a),b)

is derived. Then by back demodulation the clause
P(i(b))

is derived, which immediately demodulates to
P(c).

The clause P(f(h{a))) is replaced by P(c).

16.2. Implementation of Demodulation and Simplification

Demodulation has been 'ound to have a variety of uses[13,23,25]). Our
implementation differs from the original conception somewhat:

To understand the behavior of the demodulation-simplification routine, one must

-93-

We produce a single dermodulant from any given clause. However, the
routines fdernodf and fdemodn could be rewritten to produce any
number of possible demodulants (we recommend the use of a single

demodulant).

In forming the demodulant of a clause, we not only apply equalily
transformations but we also perform "function evaluaticons”. For exam-
ple, ($5UM 1 1) would be rewritten as 2, even though no demodulator

existed to cause the reduction.

understand the meanings attached to the following system-defined symbols:

$SUM(n1,n2)

SNEG(n1)

$PROD(n1,n2)

$DIV(n1,n2)

$MOD(n1,n2)

8POWER(n1,n2)

$COMP(n1,n2)

SAND(x1,x2)

$OR(x1,%2)
$NOT(x)

if n1 and n2 are self-defining numeric valaes,
this simplifies to the value n1+n2

if n1 is a self-defining numeric value, this
simplifies to -nl

if n1 and n2 are self-defining numeric values,
this simplifies to n1*n2.

if n1 and n? are self-defining numeric values,
and if n2 <> 0, then this evaluates to n1/n?2

if n1 and n2 are self-defining integers, then
this evaluates to n1 modulo n2

if n! and n2 are self~defining integers, then
this evaluates to nl raised to the power n2

if n1 and n2 are ground values, then this evaluates to
0 if ni =n2
-1 if nl <n2
1 if nl1 >n2

evaluates to the logical and of x1 and x2. The arguments
may be either 0's and 1's or TRUE's and FALSE's.

evaluates to the logical or of x1 and x2

evaluates to the logical negation of x

_94-

SOUT(t) if this occurs in a unit clause, and t is ground
(contains no variables), t is written to the
terminal and this evaluates to NIL. The term t
may be a list of terms, enclosed by “[" and "]".

3IN if this occurs in a unit clause, this evaluates
to an object entered from the terminal, terminated

bya", .

SOUTIN(t) if this occurs in a unit clause, and if t is ground,
then t is written to the terminal and the whole
term is replaced with an object entered from
the terminal, terminated by a ",".

S$CHR(n) this symbol is only evaluated when a $CUT or a
$OUTIN causes something to be written to the
terminal. In that case this expression evaluates
to "chr{n)", the ASCII character represented by
the value n.

SGT(t1,t2) This expression evaluates only if it is ground.
In that case it evaluates to TRUE if t1 > t2.
Else, it evaluates to FALSE.

$GE(t1,t2) This expression evaluates only if it is ground.
In that case it evaluates to TRUE if t1 >=t2.
II Else, it evaluates to FALSE.

SLT(t1,t2) This expression evaluates only if it is ground.
In that case it evaluates to TRUE if t1 < t2.
| Else, it evaluates to FALSE.

SLE(t1,t2) This expression evaluates only if it is ground.
In that case it evaluates to TRUE if t1 <= 2.
Flse, it evaiuates to FALSE.

SEQ(t1,t2) This expression evaluates only if it is ground.
In that case it eveluates to TRUE if t1 = t2.
Else, it evaluates to FALSE.

SNE(t1,t2) This expression evaluates only if it is ground.
in that case it evaluates to TRUE if t1 <> t2.
Flse, it evaluates to FALSE.

NOT(TRUE) evaluates to FALSE
NOT(FALSE) evaluates to TRUE

- 05 -

Besides the above, the following special symbols have been defined:

NIL used to mark the end of lists

8C used as "concatenate”, a binary operator to form
lists (that is, $C(a,3C(b,NIL)} is equivalent to
[a.b])

3JUNK any clause containing this symbol will evaluate
to TRUE, if simplifiad

TRUE any clause containing this literal will be simplified to

TRUE

FALSE will be removed from any clause by
simplification

AND currently not used in simplification

OR used {along with NOT) in the representation
of clauses

We intend to extend this list significantly, since the existence of such primitives
can have an enormous impact on the ease of performing many operations.

There are three types of routines now inciuded in layer 2 of LMA for
demodulation/simplification:

1.

Just after a clause has been generated (but before it has been
integrated), the routine simplify can be used to apply demodulators
and function evaluation to the clause. The clause itself is altered, and
the history infoermation is added to the end of the history vector pro-
duced by the inference rule.

The demodulants of a clause can be obtained by using fdemodf and
Jdemodn. The given clause is not altered, and a new history vector is
produced. In this sense forward demodulation behaves like an infer-
ence rule. fdemodn always fails under the current implementation
(since only a single demodulant is producead).

When a new equality becomes a demodulator, clauses that are already
integrated can be back demodulated. The ddemodf and bdemodn com-
mands return demodulants o' existing clauses. They do not delete the
parent.

The routines that perform these three operations are as follows:

-906 -

cisetdemnod - designate a given clause as a demodulator
clsetdemod(cl,dcode,com?)

This routine establishes the given clause as a demodulator. The
dcode indicates whether left-to-right, right-to-left, or either
type of demodulation is desired. The clause must be a positive
unit (not pseudoe-unit with more than 1 literal) of the form

EQuoaox(t1,t2)

The EQ can be upper or lower case. The xxxxx can be any string
(including null). t1 and t2 are arbitrary terms.

el - an objectptr to a clause
dcode - an integer code (dleft, dright, and deither are
defined constants)
dleft - right
dright - left
deither - right with lex pret check)
comz2 - apointer to the layer 2 common area

clenddemed - stop use of a clause as a demodlator
clenddemod(clobj)

This routine makes the clause relerenced by clobj stop being
used as a demodulator.

clobj - an objectptr *:- a clause being used as a demodulator

-97 -

simplify - simplify a clause
simplify{clobj,clashobij, hist,count,reted,com?)

This routine simplifies clobj. It may use any technique that seems
to work. For now we use

demodulation

special symbol evaluation (sirnplify arithmetic exp & .o to terminal)
duplicate literal removal

tautology reduction (to TRUE)

The old value of clobj is destroyed, so if youneed it. copy it. It
is assumed that hist is open and that the first integer ct.atains
the number of "modification elements” in the vector (0 i1s quite
acceptable),

obj - an objectptr
clashobj list restricting the set of other clauses that can be
used in the simplification
hist - an ivecptr Lo an open ivector.
count - maximum number of modifications that should be made
to the object (this blocks loaps)
reted - an integer return code set as follows:
- no s mplification could be made
- clobj wa: successfully simplified
- simplified to TRUE
clobj does not reference a clause
- count cut off simpl.
- simplified to null cl.
memfail memory allocation failure
com2 - a pointer to the layer 2 common area

PN —O
1

- 98 -

fdemod{ - forward demodulation, first
fdemodf{givcl,retel,clashobj, hist, pos,count,reted,com?)

This routine returns the first demodulant of the given clause.
The current implementation results in a unique demodulant and
includes the complete "simplification” logie (i.e., special

symbol simplification is used).

givel - an objectptr to the given clause
retcl - an objectptr set to reference the demodulant
clashobj - all clauses except the given clause must be
contained in this object (nil means any clause is ok)

hist - the ivecptr returned with the derivation data
pos - astkntptr used to maintain position in the set
count - an upper limit on the allowed number of demodulations
reted - an integer return code

0 - ne simplification could be made

1 - givcl was successfully simplified

2 - simplified to TRUE

3 - givel does not reference a clause

4 - count cut off simpl.

5 - simplified to null cl.

memfail - memory allocation failure
com2 - apointer to the layer 2 common area

-99 -

fdemodn - forward demodulation, next demodulant
f:l-;-madn(pos,retcl,hist,retcd,comE)

This routine returns the next demodulant of the given clause.
The current implementation results in a unique demodulant
of a clause, so that this routine now always sends back
areturn code o 0.

pos - the stkntptr used to maintain position in the

set of demodulants
retcl - an objectptr set to reference the demodulant
hist - an ivecptr set to contain the derivation data
reted - an integer return code
- no more simpifications could be made
- pivel was successfully simplified
simplified to TRUE
- count cut off simpl.
- simplified to nuil cl.

memfail - memory allocation failure

comz2 - apointer to the layer 2 common area

[R vl =]
[

fdemodcanc - cancel position in a set of "forward” demodulants
fdemodcanc{pos.com?)
This procedure is used to cancel position in a set of demodulants.

pos - the stkntptr used to maintain position in the set
com? - apointer to the layer 2 ccmmon area

- 100 -

bdemedf - back demodulation, first

bdemodf(givel retel,retid, clashobj, hist, pos,count,reted,com?)

This routine returns the first back demodulant of the given clause.

givel
retel
retid
clashob)j

hist
pos
count

reted

com2

an objectptr to the given clause
an objectptr set to reference the demodulant
an integer set to the id of the "into" parent
all clauses except the given clause must be
contained in this object (nil means any clause is ok)
the ivecptr returned with the derivation data
a stlentptr used to maintain position in the set
an integer giving the upper limit on the number of
simplifications that can be performed on a back
demodulated clause
an integer return code
0 - no demodulants could be made
1 - an existing clause was
successfully simplified
2 - demodulated and simplified to TRUE
3 - givcl does not reference a clause
4 - count cut off simpl.
5 - demodulated and simplified to null cl.
memfail - memory allocation failure
a pointer to the layer 2 common area

- 101 -

bdemodn - back demodulation, next demodulant
bdemeodn{pos,retcl,retid hist, reted,com?)

This routine returns the next back demodulant from the given clause.

pos - the stkntptr used to maintain position in the
set of demodulants
retcl - an objectptr set to reference the demodutant
retid - an integer set to the id of the first "into” parent
hist - an ivecptr set to contain the derivation data
reted - an integer return code
0 - no more back demodulants could be
made
1 - a back demodulant was successfully
formed
2 - the back demodulant simplified to TRUE
4 - count cut off eimplification
5 - the back demodulant simplified to null
clause
mernfail - memory allocation failure
comz2 - a pointer to the layer 2 common area

bdemodcanc - cancel position in a set of "back” demodulants
bdemodcanc(pos,com?)
This procedure is used to cancel position in a set of demodulants.

pos - the stkntptr used to maintain position in the set
com2 - apointer to the layer 2 commeon area

Note that when you make a positive unit equality clause a demodulator, you can
cause rewrites to go from left to right, from right to left, or in either direction.
For example,

(EQUAL (F x e) x);
would normally be left to right,
(EQUALx (F e x));

- 102 -

would normally be right to left, and
(EQUAL (F x y) (F y x));

would normally be allowed to rewrite in either directicn. An "either" demedula-
tor causes both sides of the instantiated equality to be compared. A rewrite
occurs only if the resulting term is "less than" the original. For example, sup-
pose that

(P(Falbl)e(Fecl));

were to be simplified using the three above demodulators. Demodulation will
progress (in eflect) from the rightmost term, continuing to the left until no
more terms can be simplified. Thus, (F e cl) first simplifies to ¢c1. Then we pro-
gress on until (F a1 b1) is reached. This will be rewritten as

(F bl al)

if (F b1 a1) < (F al b1), where "<" represents a "lexical comparison”. This com-
parison preceeds by finding the first symbols in which the terms differ. Then the
indices into the symbol table are examined. The rule is that s1 < s2 (where si
and s2 are symbols) if s1 occurs later in the symbol table than s2. This causes
newly generated sy mbols to compare less than previously existing symbols. The
user can force a pven lexical ordering (u! ali but system-defined symbols) by
using an initial inpu. clause of the form

(LEX 51 s2 s3 s4 ...sn),
Here s1-sn are the symbols given in decreasing order.

17. Immediate Fvaluation Rules

Demodulation is normally performed either upon newly generated clauses
or (when new equalities become demodulators) upon previously existing clauses
(using back demodulation). However, when an inference rule such as hyper-
resolution or UR-resolution is being used, there are times when one would like to
demodulate the nucleus between steps in forming the final resolvent. For exam-
ple, consider the nucleus (written in the if-then format):

It Person{.x) &
Person{ y) &
SLT(x,y) &
Compat(_x, y)

then
PossiblePair{_x,.y):

Here one would like the first two literals to be removed. Then either the third
literal should simplify to FALSE (and be removed), or backtracking should begin.
In fact ground literals with predicates of SLT, SLE, $GT, 8GE, SNE, and $EQ are
evaluated in the middle of calculating hyper-resolvents and UR-resolvents.

-103 -

18. User Variables and Attributes

Some users will find it necessary to attach information to specific objects.
This can be done using either of two mechanisms — user variables or attributes.
User variables are just an array of integers kept in each object. They can be
accessed or allered rapidly. Allributes are themselves non-integraled objects.
The operations that are provided for processing user variables and attributes
are as follows:

l12accuvar - access the value of a user variable
12accuvar({objptr,i,value)
This routine accesses the value of the ith user variable.

Note that "maxl2uvar"” defines the maximmum subscript (1 is
the minimum).

objptr - an objectptr,
i - an integer subscript in the range 1-max12uvar
value - an integer set to the value of the ith user variable

12setuvar - set a user variable in an object
I2setuvar(objptr,i,value)

This routine sets the ith user value in the cbject.
Note that the constant "maxl2uvar” contains the
maximum legal value of i {1 is the first value).

objptr - an objectptr
i - subscript of the user variable to be set
value - an integer value to put in the user variable

- 104 -

12setattr - set an attribute on an object
12setattr{objptr,attred,attrobj reted,com?)
This routine adds an attribute to the object referenced by "object".

The attribute is the object referenced by “attrobj" and will
have the attribute code given by attred.

objptr - an objectptr
attred - aninteger piving the attribute code
attrobj - an objectptr to the attribute (must be nonintegrated)
reted - an integer return code set as follows:
0 - new attribute set
1 - attribute replaces old attribute
memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

12delattr - delete an attribute from an object
12-elattr(objptr.attred,retcd, com?)

This routine is used to delete the attribute with a code
equal to the specified value.

objptr - an otjectptr
attred - aninteger ideutifying the attribute to delete
reted - aninteger return code set as follows:

0 - success

1 - no such attribute on the object
com?2 - a pointer to the layer 2 common area

- 105 -

I2getattr - get the attribute for a given code
12getattr{objptr,attred,attrckj reted)

This routine sets attrobj to reference the attribute of
objptr that has the specified attribute code.

cbjptr - an objectptr
attred - aninteger identifying the desired attribute
attrobj - an objectptr set to reference the desired attribute
reted - aninteger return code set as follows:
. 0 - success
1 - no such attribute

12getfattr - get the first attribute on a given object
lBge'.fattr(objptr.at.trcd.attrobj.attrpos.r:etcc})

This routine sets attrobj to reference the first attribute on
the object relerenced by objptr.

objptr - an objectptr
attred - an integer set to the code of the first attribute
attrobj = an objectptr set to reference the first attribute
attrpos - an attrptr used to maintain position in the set
of attributes
reted - an integer return code set as follows:
0 - success

1 - no attributes on the object

-108 -

12getnattr - get the next attribute on an object
12getnattr(attred,attrobj,attrpos,retcd)
This routine returns the attribute code and value for the next

attribute on an object. The attrpos pari:meter maintains position in
the set of attributes,

attred - an integer set to the code for the next attribute
attrobj - an objectptr set to the value for the attribute
attrpos - an attrptr used to maintain position in the set
of attributes
reted - an integer return code set as follows:
- success
1 - no more attributes on the object

18. Qualification and Locking
There are three ways a literal in a clause can be made nonclashable.
1. The literal may be determined to be a qualifier[21].
2. The occurrence of the literal may be locked[9].
3. All occurrences of the literal may be locked{8].

Qualification amounts to specifying that a function or predicate requires
“conditions of definition". The whole topic is discussed in Winker's paper. We
have found qualification useful on a surprisingly wide variety of problems. To
make it work, you use setqual to specily which literals qualify a given
predicate/function symbol. Then guale{ is invoked to mark the qualifying
literals as nonclashable. The inference rules ignore unclashable literals (they
are copied into the inferred clause), unless setiglock is used to cause clashabil-
ity tests to be ignored.

You can make an occurrence of a literal nonclashable by invoking setellock.
It can later be made clashable by using delcllock.

Finally, you can make all occurrences of a variable nonclashable by assign-

ing i\ a positive lock value using setlitlock. The lock can be removed with del-
litlock or tested with geflitlock.

The detailed definitions of all of the routines that relate to the topics of
qualification and locking are as follows:

- 107 -

setqual - add a qualification template
setqual{clobi,reted,com?)

This routine uses clobj to establish a qualification template.
clobj should be a clause of the form

TEMPLATE(t1) or L2 or L3 ...

This indicates that any instance of t1 must be qualified with
the corresponding instances of L2, L3,....

clobj is "lost” to the calling routine. Therefore, if you wish
to keep it, copy it before calling setqual.

clobj - anh objectptr to a clause

reted - an integer return code set as follows:
0 - success
1 - clobj is not in the correct format
memfail - memory allocation failure

com? - apointer to the layer 2 common area

gualcl - mark qualifiers on a clause
qualel(clobj,reted,com?)
This routine marks the qualifiers on a clause.

The clause should probably be integrated, since integrating
a clause loses its attributes {which are used to record

ralifiers).
clobj - an objectptr to the clause
reted - an integer return code set as follows:
0 - success
1 - clobj is not a clause
mem/lail - memory allocation failure

com? - a pointer to the layer 2 common area

- 108 -

setqwopt - set qualification warning message option
setqwopt(val,com?)

This routine sets the flag that determines whether or not warning
messages for incompletely qualified clauses should be written out.

val - aninteger code:
0 - no warhing messages
1 - warnings are written
com2 - apointer to the layer 2 common area

setellock - lock an occurrence of a literal in a given clause
setellock(clobj,i,reted, comR)

This routine makes the ith literal of clobj unclashable.

clobj - an objectptr to a clause
i - aninteger giving ine literal to lock
reted - an integer return code set as follows:
0 - success
1 - clobj is not a clause
2 - liisinvalid
memfail - memory allocation failure

coma - a pointer to the layer 2 cornmon area

- 109 -

delcllock - unlock an occurrence of a literal in a given clause

delcllosk(clobj,i,reted, com?)

This routine makes the ith literal of clobj clashable.

clobj -
i -
retcd -

come -

an objectptr to a clause
an integer giving the literal to unlock
an integer return code set as follows:

0 - success

1 - clobj is not a clause

2 - lisinvalid

memfail - memory allocaticn failure

a pointer to the layer 2 common area

getcllock - get the lock character for an occurrence of a literal

getellock(clobj,i,val,reted,com?)

This routine sets val to 0 if the ith literal of obj is unlocked.

Else, val is set to 1.
clobj -

l -
val -

reted -

com? -

an objectplr to a clause
an integer designating the literal
an integer set to reflect the lock value

0 - unlocked
1 - locked

an integer return code set as follows:
0 - suecess
1 - clobj is not a clause
2 - iis invalid

a pointer to the layer 2 common area

-110-

setlitlock - set a lock value on a literal
setlitlock(litobj,n,retcd,comz)

This routine sets the lock value n on Lhe literal litobj.
Lock values must be greater than 0. Literals with a lock
are not clashable, unless "setigiock"” has been called to
suppress clashability checks.

litobj - an objectptr to a literal
n - an integer giving the desired lock value (>0)
reted - an integer return code set as follows:
0 - success
1 - litobj does not reference a literal
2 - nisinvalid
memfail - memory 2llocation failur e
come - apointer to the layer 2 common area

getlitlock - access the literal lock on a given literal
getlitlock(litobj,n,com?)

This routine sets n to the literal lock on the literal referencrd
by litobj. If litobj does not reference a literal, or if no lock
has been set, the value will be 0.

litobj - an objectptr to & literal
n - aninteger set to the lock value
comz? - & pointer to the layer 2 cominon area

~111 -

litclashable - is literal clashable?
litclashable(clobj,i,reted,com?)

This routine checks Lo see whether or not an occurrence of a
literal is clashable.

clobj - an objectptr to a clause
i - an integer designating the literal
retcd - an integer return code sel as [ollows:
0 - literal is clashable
1 - literal is not clashable
com? - apointer to the layer 2 common area

setipglock - set the flag that determines whether or not locks are igrored
setiglock(val,com?2)

This routine can be used to indicate whether literal and clause (literal
occurrence) locks are observed or ignored by inference rules.

val - an integer: 0->observe locks; 1->ignore locks
comg? - a pointer to the layer 2 common area

Before leaving the topic of qualification and locking, one extra point is
worth noting. Several inference rules use the concept of "unit clausc” to res-
trict the set of gunerated clauses. For example, un‘t resolution requires that
nne of the two parents be a unit clause. We havr introduced the nolion of
pseudo-unit clause, A pseudo-unit clause has exactly ore clashable literal (i.e.,
it can have more than one literal, but only one can be clashable). Inference
rules such as unit resolution and UR-resolution have been implemented in a way
that allows pseudo-unit clauses to be treated as unit clauses. This generaliza-
tion does not apply to demodulation, however; a demoduv’ itor must contain only
one literal.

20. Weighting

Weighting[13] is a mechanism for assigning a number to a clause, literal, or
term. This number can then be used for such things as determining whether to
keep a newly derived clause, picking the nexL giver clause, or deciding whether
a newly derived equality should become a demodulator. The use of weighting in
an LMA-based theorem prover is deiscussed in detail in[11]

-112 -

20.1. Weighting Parameter Sets

A collection of options called a weighting pararneter set can be used to
determine the weight of a clause, literal, or term. Each weighting parameter set
consists of sixteen real numbers and a list of patterns. The numbers are struc-
tured into three [amilies of five plus one other number. These nwunbers descrive
how weights of clauses are built up from the weights of their component literals,
weights of literals from the weights of their component predicates and argu-
ments, and the weights of terms from the weights of their function symbols and
subterms. The patterns describe how this weighting algorithm is to be bypassed
to give special weights to certain classes of clauses, literals, or terms. We will
discuss the algorithmic mechanism first and patterns later.

20.2. Weighting Without Patterns

Let us assume that the pattern list {or the weighting parameter set we are
interested in is empty (this is the default). Then the weight of a clause is calcu-
lated from the sixteen numbers in the weighting parameter set in the following
way.

Constants and Variables

The weight of a constant is 1. The weight of a variable is the number
entered and displayed as "variable weight.” The default variable weight is 1.

Complex Terms

For each of clauses, literals, and terms, there is a set of [ive numbers that
controls the way in which their weights are calculated from the weights of their
components. The names of these numbers are #ARG, MAXARGWT, SUMARGWT,
SYMCT, and BASE. They have slightly different meanings for clauses, literals,
and terms. We begin with terms. Simple terms (constants and variables) were
covered above. The weight of a complex term (one containing sublerms) is cal-
culated as follows:

weight of term = BASE +
SYMCT * (number of symbols in term) +
#ARG * (number of immediate subterms of term) +
MAXARGWT * (weight of heavicst immediate subterm) +
SUMARGWT * (sum of weights of all immediate subterms)
iNote that BASE does not apply to simple terms.

For the purposes of weighting, the major function symbol of a term is cor-
sidered one of its subterms. The number of symbols is the total number of
names of constants, variables, and function symbols appcaring in the term.
Thus the term

z{a,f{x1,maxlock))

is considered to have three subterms and to contain five symbols.

Suppose, for example, that the variable weight is set to 1 and that the
weighting coeflicients for terms are as follows, which is the default setting:

#ARG=3 MAXARGWT=0 SUMARGWT=1 SYMCT=0 BASE=0
Then the weights for some sample terms are as follows:

a

X
t(a)

D) =2

-113-

t(a,b) 3
f(ag(ab)) o

On the other hand, if the term weighting coeflicients are
#ARG=1 MAXARGWI=0 SUMARGWT=0 SYMCT=0 BASLE=100

then the weights of these same terms are as follows:

a 1
X 1
f(a) 102

t(a.b) 103
f(a,gfa,b)) 103

Literals

There are separate values of #ARG, MAXARGWT, SUMARGWT, SYMCT, and
BASE for literals. With these values, the weight of a literal is calculated as fol-
lows:

weight of literal = BASE +
SYMCT * (number of symbols in liveral) +
#ARG * (number of arguments of literal) +
MAXARGWT * (weight of heaviest argument) +
SUMARGWT * (sum of weights of all arguments)

For the purposes of weighting, the predicate symbol of a complex literal is
counted as one of its arguments. Negative literals can have their weights
adjusted, but this is done with patterns, discussed below. The negation symbnol
is not included in the symbol count.

Suppose that the weighting coefficients for terms are set to the defaults
described above and that the weighlting coefficients for literals are as follows,
which is the default setting:

#ARG=0 MAXARGWT=1! SUMARGWT=0 SYMCT=0 BASE=0

Then the weights from some sample literals are

P 1
-P L
P(a,b) 1
P(t(a)) 2

P(t(a,b).a) 3
If, instead, the literal weighting coefficients are
#ARG=1 MAXARGWT=5 SUMARGWT-0 SYMCT=0 BASE=0
then the weights of these same literals are

P 1
-P 1
P(a.b) 8
P(t(a})) 12

P(f(a,b).a) 18

Note that the first two literals are weighed as constants, not as literals with one
argument.

-114 -

Clauses

There is a third set of #ARG, etc., for clauses. Using these values, the
weight of a clause is calculated as follows:

weight of clause = BASE +
SYMCT * (number of symbols in clause) +
#ARG * (number of literals of clause) +
MAXARGWT * (weight of heaviest literal) +
SUMARGWT * {sum of weights of all literals)

For weighting purposes, the number of symbols in the clause includes the
implicit OR symbols between the literals, and any negation symbols in front of
negative literals. Thus the clause

PlQ
is considered to contain three symbols, and
if Pthen @

is considered to have four symbols, since it translates into -P | Q.

Now suppoze that the weighting coeflicients for terms and literals have
their default szttings described above, and that variable weight has its default
value of 1. Suppose further that the clause weighting coeflicients are

#ARG=1 MAXARGWT=0 SUMARGWT=1 SYMCT=0 BASE=-1,

which is the default. Then the weights of some sample clauses are a3 follows:

P; 1
Pl @ 3
P|IQ|R 5
-P; 1
if P then Q; 3
P(f(a)) | Q(x); 4

20.3. Weighting with Patterns

Weighting patterns are a mechanism for overriding the previous weighting
algorithm to assign particular weights to specific terms, literals, and clauses, as
well as to terms, literals, or clauses that are characterized by their matching a
particular pattern. Some simple patterns and their meanings are the following:

a:+10 the term a has weight 10
NOT:+8 negative literals should have 8
added to their weight
£(2).43 the weight of any term of the
form f(<term>) should be 3 plus twice the
weight of <term>.

There is a list of patterns in each weighting parameter set, 1If a given torm,
literal, or clause matches more that cne pattern in the list, then the first one it
matches has priority. For example, if the term f(z,b) is weighed according to
the pattern list

f(a,2):+5 f(a,b).+15;
then it is given a weight of seven (assuming b has its default weight of 1).
The exact format of a weighting pattern is

-115-

<basic-pattern>:<increment>

where <increment> is a signed floating-point number, and <basic-pattern> can
be any one of the following:

1. Aconstant This matches only an occurrence of the constant.

~

2. x<int> wi.zre <int> is a positive integer {e.g., x4). This matches only a
variable with the given number.

3. *x<int> where <int> is a positive integer. This matches any variable,
except that multiple occurrences of *x<int> in the same pattern must
match the same variable. For example, the pattern F[(*x1,*x1):+2
would match the term f(x2,x2), but not the term f(x1,x2).

4, *t<int> where <int> is a positive integer. This matches any term,
except that multiple occeurrences of *t<int> in the same pattern must
match the same term.

5. <multiplier>, which is a real number. This matches any term. The
effect of a match is to multiply the weight of the subterm by the multi-
plier. The result is added into the weight of the current term.

8. <name>{<arg-1> <arg-2>,..<arg-n>) where <arg-i> is a <basic-
pattern>. This matches a complex tertm in whicli <name> is the
predicate /function symbol, and <arg-i> matches the ith subterm (for
all i from 1 to n).

The weight of the term matched by the pattern is computed by adding the
<inerement> to the weights generated from having <multiplier>s in the pattern.
Thus, if f(a,g(1.5,-.5)):+2.5 matches a term, the final weight is 2.5 (the incre-
ment) plus 1.5 times the weight of the first argument of g plus -.5 Limes the
weight of the second argument of g.

20.4. Routines to Implement Weighting Calculations

A weighting parameter set is defined by the following type declaration (from
the layer 2 type declaration file):

witparm = record
clarray: coefarray; {weight coefficients for clauses]
litarray:coefarray; {weight coefficients for literals]
trmarray:coefarray; {weight coefficients for tenmns]
patlist:wtcalcptr, fheader to weight pattern list}

pattree:dtreehptr; froot of pattern search tree]
nextpatnum: integer; {id of next pattern inserted in tree]
varweight:real; fweight of variables!

end;

LMA provides routine for altering the weighting coefficients, adding patterns,
weighing clauses, weighing litcrals, and weighing terms. The routines for alter-
ing the weighting information in a parameter set (i.e., the first six fields of the
parameler set) are as [ollows:

-116-

recwtkeys - recognize a string of weighting keyword assignments
recwikeys(str,wtcoef,reted,com?)
This procedure proceeds from the current position in str. It
assigns values to the weighting coefficients in wtcoeff, which is
an array of maxwtcoef real values. Curreritly, the recognized
keywords and the positions of the corresponding values in wtcoef
are as follows:
keyword array position
<number><thing> 1
Here <thing> can be
either <argument> or
<literal>
<maximum?><thing><weight>
<sum><thing><weight>

<number> <symbol>

<symbol><count>

< T S U TR 1

<base>
For example,

numarguments = 1.4 base=8;
would cause the first array position to be set to 1.4, and the
fifth to 8. The string is terminated by a semicolon. Any

unrecognized keywords will result in error messages.

str - acsptr of where to start the parse

wicoefl - acoefarray that gets altered when keywords

are successfully recogni.ed
reted - aninteger return code set as follows:
0 - no errors detected
1 - errors detected
memfail - memory allocation failure
com2 - a pointer to the layer 2 common area

-117 -

recwipats - recognize a list of weight patterns
recwtpats(str, wtparms,reted,comg)

This routine parses a string of weight patterns, adding the
successfully parsed patterns to wtlist.

str - acsptr to the string being parsed (ends with
a semicolon or end-of-string)
wiparms - awtparmptr to parameters for weighting set
retcd - aninteger return code set as follows:
0 - success

1 - at least one invalid wt template was detected
memfail - memory allocation failure
coma - a pointer to the layer 2 common area

The routines that can be used to convert weighting parameters to a printable
format are as follows:

wtcoefsout - convert an array of weighting coef to keyword form
wtcoefsout{wtcoe! str,reted,com?)

This routinz creates a string containing the character forin of
the weignting coeflicients in wtcoelf.

wtcoef - acoefarray containing a set of weigliting
coeflicients (clause, literal, or term)
str - acsptr that is set by the routine to reference

the created string. str should not reference
an allocated string when the routine is called.
retcd - aninteger return code set as foliows:
0 - success
memfail - memory allocaticn failure
com2 - a pointer to the layer 2 common area

-118-

wtcalcstout - convaert a weight calculation list to portable format
wtealestout(wtlist,str,reted,com®)

This routine converts the weight calculation information in wtlist
into portable format, returning it in str.

wilist - awtcalcptr to a weight calculation list
str - @& csptir that gets set to reference the generated
string
reted - aninteger return code that gets set as follows:
0 - success

memfail - memory allocation failure
a pointer to the layer 2 common area

comg

The routines that can be used to weigh a clause, literal, or term are as follows:

wtel - calculate the weight of a clause
wtel(clause,wtparms, weight, reted,com?)

This routine calculates the weight of clause and returns it in weight.

clause - an objectptr to the clause to weigh
wtparms - awtparmptr to the weighting parameters
weight - areal number set to the weight of the clause
reted - areturn code set as follows:

0 - success

memfail - memory allocation failure
comg - a pointer to the layer 2 common area

-119-

wtlt - calculate the weight of a literal
wtlt(literal ltcoef,trmcoel, wtroot, varwt, weight,retcd,com?)

This routine calculates the weight of literal and returns it in weight.

literal - an objectptr to the liternl to weigh
ltcoef - acoelarray giving Lhe coeflicients for
weighting a literal
trmeoef - acoefarray giving the coefficients for
weighting a term
wtroot - adtreehptr to root of weighting pattern tree
varwt - arcal giving the weight assigned to variables
that do not match a pattern
weight - areal nurnber set to the weight of the literal
reted - areturn code set as follows:
0 - success
memtfail - memeory allocation failure
com? - a pointer to the layer 2 common area

wttrin - calculate the weight of a term
wttrm(term, trmecoef, wtroot, varwt, weight, reted, comg)

This routine calculates the weight of term and returns it in weight.

term - ah objectptr to the term to weigh
trmcoef - accefarray giving the coefficients for
weighting a term
wtroot - adtreehptr to roct of weighting pattern tree
varwt ~ areal giving the weight assigned to variables
that do not match a pattern
weight - areal number set to the weight of the term
reted - areturn code set ag follows:
0 - success
mem/lail - memory allocation failure
com2 - a pointer to the layer 2 common area

21. The LISP Interface

The LISP interface is not actually part of layer 2, since it is not portable.
Clearly, interfaces between languages depend upon vagaries of specific com-
pilers. Our current LISP interface works under Berkeley UNIX and interfaces
the layer 2 routines to Franz Lisp. We do not include the details of the interface
here, since it will be included only for users under Berkeley UNIX. We hope to
offer interfaces in other LISP environments, or to offer aid and encouragement
to others who wish to develop such interfaces. As an example of what can be

- 120 -

done, here is the simple theorem prover described before in its LISP incarna-
tion:

(defun lisptp ()

(prog (axlist soslist hbglist clashlists allclauses
givencl resolvent subsumer subsumed clause
com?
histvec
reted listretcd numlits lenopt unifopt
hyperpos subsumerpos subsumedpos
sospos listpos

)

(initvar axlist)
(initvar soslist)
(initvar hbglist)
(initvar clashlists)
(initvar allclauses)
(initvar givencl)
(initvar resolvent)
(initvar subsumer)
(initvar subsumed)
(initvar clause)
(initvar com?)
(initvar histvec)
(initvar retcd)
(initvar listreted)
(initvar numlits)
(initvar lenopt)
(initvar unifopt)
(initvar hyperpos)
(initvar subsumerpos)
(initvar subsumedpos)
(initvar scspos)
(initvar listpos)

(call initcom?2 com?2)

(call cllsttread axlist retcd com?)

(cond
((zerop (valueof reted))
(print "axioms are as [ollows:")
(terpr)
)(call cllsttwrite axlist reted comk)
(t
(print "input of axioms list failed")
(terpr)

)

(call Istaccfirst. axlist clause listpos list cted comg)

- 121 -

(do ()
((not (zerop (valueof listreted))) nil)
(setintvar unifopt 0)
{(call clintegrate clause unifopt retcd com?2)
{call Istaccnext axlist clause listpos listreted com?)

)
(call chsttread soslist reted comZ)
(cond
((zerop (valueof reted))
{print "set of support clauses are as follows:")
(terpr)
(call cllsttwrite soslist retcd com?)
)
(t
(print "input of set of support list failed")
(terpr)
)

(call Istaccfirst soslist clause listpos listreted comg2)
(do ()
((not (zerop (valueof listreted))) nil)
(setintvar unifopt 0)
(call clintegrate c!'use unifopt reted comg)
(call Istaccnext soslist clause listpos listretcd com?)

)

(call Istcreate hbglist retcd comg)
{call lstcreate clashlists retcd com?)
(call 1stcreate allclauses retcd com?)

(call Istinslast axlist clashlists reted com?)
{call lstinslast soslist clashlists reted com?®)

(call Istinslast axlist allclauses reted comg)
(call lstinslast soslist allclauses retcd com?)
{call lstinslast hbglist allclauses relecd com?)

(setq done nil)
(do ()
{done nit)
{call Istaccfirst soslist givencl sospos retcd com?2)
(cond
({not (zerop (valueof retcd)))
(setq done t)
(print "no more clauses in set of support")
(terpr)

(t .

(print "given clause is: ")

(terpr)

(call citwrite givencl reted comg)

(call hyperf givencl clashlists resolvent histvec

- 122 -

hyperpos reted com?)

(do ()
((or (not (zerop (valueof retcd))) dcne) nil)
(print ‘'resolvent: "
(terpr)
(call cltwrite resolvent retcd com?2)
(call dealivec histvec com?)
{call clnumlit resolvent numlits com?2}
(cond
((zerop (valueof numilils))
{(print "null clause found")
(terpr)
{setq done t)
)
(t
(setintvar lenopt 0)
(call fsubfirst resolvent allclauses lenopt
subsumer subsumerpos reted com?)
(cond
({zerop (valueo! reted))
(print “resolvent subsumed"”)
(terpr)
{call cancfsub subsumerpos .om?2)
(call cldelnon resolvent reted comg2)

)

(t

(print "checking back subsumption')

(terpr)

(setintvar lenopt 0)

{call bsubfirst resoclvent allclauses lenopt

subsumed subsumedpos reted com?)

{do ()

{{not (zerop (valueof retcd))) nil)

(print 'resolvent subsumes existing clause:")

(terpr)

(call cltwrite subsumed retcd com?®)

(call cldelint subsumed reted comg)

(call bsubnext subsumedpos subsumed retcd
com2)

)

(setintvar unifopt 0)
(call clintegrate unifopt resolvent reted com?2)
(call Istinslast resolvent soslist reted com?)

)
)
)

(call hypern hyperpos resolvent histvec reted com?)

(cond
({(not done)
(call lstaltpos sospos reted)

- 1238 -

{cond
((zerop (valueof reted))
(call lstdisconnect sospos com?)
(call lstinslast givencl hbglist reted com?2)

)

(t nil)
)
(t nil)

)
)

(call Istcancpos sospos com2)

22. Conclusicn

We are putting this set of too's into the public domain. In their current

form they can be (and will be} dramatically improved. We view this project as
very long-term, and we plan on reworking, upgrading. and expanding the set of
toels for many years. We are inviting you to participate in this project. The
advantages of coordinating development belween many users appear Lo us Lo be
extremely significant. We sincerely wish to integrate and distribute any
improvements that anyone can make to these tools.

References

1.

R. S. Boyer and J. S. Moore, ''The sharing of structure in theorem proving
programs,’’ in Machine fntelligence 7, ed. B. Meltzer and D. Michie,American
Elsevier, New York (1972).

Chin-Liang Chang and Richard Char-Tung Lee, Symbnlic Logic and Mechani-
cal Theorem Proving, Academic Press, New York (1973).

C. L. Chang, "The unit proof and the input proof in theorem proving,' Jour-
nal of the ACH 17(4) pp. 698-707 (1970).

Lawrence Henschen, R. Overbeek, and Lawrence Wos, "Hyperparamodula-
tion: a refinement ol paramodulation,” in Proceedings of the Fifth Confer-
ence on Automafed Deduction, Springer-Verlag Lecture Notes in Compuler
Srience, Vol. 87, ed. obert Kowalski and Wolfgang Bibel,Springer-Verlag,
New York ().

Robert Kowalski, Logic for Problem Solving, Elsevier North Holland, New
York (1979).

F. Lusk, William McCune, and R. Overbeek, '"L~gic Machine Architecture:
inference mechanisms,” pp. B5-108 in Proceedings of the Sixth Conference
on Autom.!ed Deduction, Springer-Verlag Lecture Noies in Computer Sci-
ence, Vol. 138, ed. D. W. Loveland,Springer-Verlag, New York ().

E. Lusk and R. Overbeek, ''Data structw-es and control architecture for the
implementation of theorem-proving programs.” in Proceedings of the Fifth
Conference nn Automated Duduction, Springer-lerlag Leciure Notes in
Computer Science, Vol. 87, e. Robert Kowalski and Wolfgang Bibel, ().

B.

10.

1i.

12.

13.

14,

15.

1B.

17.

18.

19.

20.

21.

22.

c3.

24,

25.

- 124 -

E. Lusk, William McCune, and R. Overbeek, ‘'Logic machine architecture:
kernel functions," pp. 70-84 in Proceedings of the Sizih Conference on
Automated Decuction, Springer-Verlag Lecture Notes in Computer Science,
Vol. 138, ed. D. W. Loveland,Springer-Verlag, New York (1982).

E. Lusk and R. Overbeek, "Experiments with resolutioibased Lheorem-
proving algorithms,” Computers and Mathematics with Applications B(3) pp.
141-152 (1982).

Ewing L. Lusk and Ross A. Overbeek, ''An LMA-based theorem prover," ANL-
B2-75, Argonne National Laboratory {December, 1982).

Ewing L. Lusk and Ross A. Overbeek, The automated reasoning system /TP,
Argonne National Laboratory (March, 1984). preprint

J. McCharen, R. Overbeek, and L. Wos, ""Problems and experiments for and
with automated theorem-proving programs,” IEEE Transactions on Com-
puters C-25(8) pp. 773-782 (1976).

J. McCharen, R. Overbeek, and L. Wos, ""Complexily and related enhance-

ments for automated theorem-proving programs,” Computers and
Mathematics with Applications 2 pp. 1-18 (1978).

R. Overbeek, "'An implementation of hyper-resolution,” Computers and
Mathematics with Applications 1 pp. 201-214 (1975).

G. Robinson and L. Wos, ""Paramodulation and theorem proving in first-order
theories with equality,” pp. 135-150 in Machine Mntelligence 4, ed. B. Mcltzer
and D. Michie, Edinburgh University Press {1969).

G. Robinson and L. Wes, ""Completeness of paramedulation,’” Spring 1568
meeting of the Association of Symbolic [ogic 34, p. 180 (1969).

J. Robinson, '‘Automatic deduction with hyper-resolution,” nternational
Journal of Computer Matl.er.utics 1 pp. 227-234 (1965).

J. Robinson, ''A machine-criented logic based on the resolution principle.”
Journal of the ACM 12 pp. 23-41 (1985).

J. Slagle, "‘Automatic theorem proving with renamable and semantic resolu-
tion," Journal of the ACM 14 pp. 887-697 (1987).

D. H. D. Warren, "Implementing Prolog - compiling predicate logic pro-
grams,”’ DAl Research Reports 39 and 40, University of Edinburgh (May
1977).

S. Winker, ''An evaluation of an iniplementation of qualified hyperresolu-
tion,'' JEEE Transactions on Computers C-25(8) pp. 835-843 (August 197G).

S. Winker, L. Wos, and E. Lusk, "'Semigroups, antiautomorphisms, and invo-
lutinns: a computer solution to an open preblem, 1,"" Mathematics of Compu-
tet<an 37(156) pp. 533-545 (October 1981).

5. Winker and L. Wos, "Procedure implementation through demodulation
and related tricks,” pp. 109-131 in Proceedings of the Sixth Conference on
Automated Deduction, Springer-Verlag recture Notes in Computler Scicnce,
Vol. 138, ed. D. W. Loveland,Springer-Verlag, New York {1982).

L. Wos, D. Carson, and G. Robinson, ''The unit preference stratesy in
theorem proving,” pp. 615-821 in Proceedings o;y the Fall Joint Computer
Conference, Thompson Book Company, New York (1964).

L. Wos, G. Robinson, D. Carson and L. Shalla, "'The concept of demodulation
in theorem proving,' Jour-al of the ACM 14 pp. 898-704 (1967).

- 125 -

26. L. Wos, S. Winker, and E. Lusk, ""An automated reasoning system,"” Proceed-
ings of the AFIPS National Computer Conference, pp. 697-702 (1981).

