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Abstract

This is Part II of a two-part study of the foundations of mathe-
matics through the lenses of (i) apriority and analyticity, and (ii) the
resources supplied by Core Logic.

[In Part I we explained what is meant by apriority, as the notion applies to
knowledge and possibly also to truths in general. We distinguished grounds for
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knowledge from grounds of truth, in light of our recent work on truthmakers. We
then examined the role of apriority in the realism/anti-realism debate. We raised a
hitherto unnoticed problem for any Orthodox Realist who attempts to explain the
a priori .]

In Part II we now examine the sense in which logic is a priori, and explain
how mathematical theories, while a priori, can be dichotomized non-trivially
into analytic and synthetic portions. We go on to argue that Core Logic (the
system of logic that the anti-realist should espouse) contains exactly the
a-priori-because-analytically-valid deductive principles. We introduce the
reader to the system of Core Logic by explaining its relationship to other
logical systems, and setting out its rules of inference. Important metatheo-
rems about Core Logic are reported, and its important features are noted,
in setting out the case for Core Logic. Core Logic can serve as the basis for
a foundational program that could be called natural logicism, an exposition
of which will build on the (meta)logical ideas explained here.

1 Logic as a priori

In Part I we addressed, and disposed of (at least, from the vantage point of
the Moderate Anti-Realist), the complaint that a category-mistake must be
involved in seeking to speak of truths being a priori, rather than of knowledge
being so.

An even more serious category-mistake, it may now be suggested, would
be involved if we were to to divert our attention from propositions that are
known, or that are true, and direct it instead to inferences involving such
propositions as premises and conclusions. Inferences are not truth-bearers;
rather, they are truth-transmitters. So, the suggestion might go, one should
shy away from talking of a priori inferences, and limit oneself instead to
propositions known, or knowable, or perhaps even unknowably true, when
considering the extent of the a priori.

This would be a methodological mistake. It derives from what we could
call the Sententialist, or Representationalist, Fallacy. This is the fallacy of
thinking that one’s system of beliefs, in so far as objectivity is concerned,
consists only of propositions firmly believed or claimed to be known. And
it is the same methodological orientation on the part of certain logicians,
such as Quine, that makes them focus on theoremhood at the expense of
deducibility. The Quinean tries to register facts about inferrability as sen-
tential nodes in the thinker’s web of belief, rather than as transitions, or
formal patterns of inference from nodes to nodes. We would argue that this
is a serious methodological shortfall.1

1A simple example suffices to make the general point here. In a propositional language
based on ¬ and ∧, Intuitionistic Logic and Classical Logic have the same theorems. But
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The correct view of the matter is that a thinker’s web of belief, or knowl-
edge, consists, rather, of richly structured justifications, which, to be sure,
involve propositions, both as starting points and as termini.2 But in between
or among them there are inferential transitions to be made, which can be
made in accordance with various truth-preserving rules. Such rules are typ-
ically multi-premise and single-conclusion rules. Foremost among these are
the basic rules governing the logical operators of our language. And when
it comes to revising one’s system of beliefs, it is not only propositions that
can be re-assessed (as to truth-value); it is also the rules in use that can (in
principle) be reassessed (as to validity, or guaranteed truth-transmission).
Any expressivism or non-factualism about logical rules of inference is bound
to broaden its scope to include those propositions claimed to be known on
the basis of applications of those very rules.3 So, if we take the proposi-
tional nodes of a belief-scheme to enjoy their truth-values objectively, then
so too should we take the validity of the transitional steps involving them
as being an objective matter. It is on this assumption that our discussion
will proceed.

Moreover, having made this assumption we immediately face the problem
of either justifying our chosen inference rules as valid, or explaining why
they are valid. Actually, to be precise without being captious, we do not
have to show that, or explain why, these rules are valid—rather, we have to
show that, or explain why, they are validity-preserving. For rules of inference
build more complex proofs (of arguments) from simpler proofs (of immediate
sub-arguments); so it is really validity-of-argument that they preserve, not
truth.

Now, since either of the aforementioned activities (justifying or explain-
ing) will make use of the inference rules themselves, there is the serious risk
of what has been called ‘rule-circularity’.4 The task will be to show that

they differ on deducibilities: the classically derivable sequent ¬¬ϕ : ϕ is not intuitionisti-
cally derivable.

More to the point, for the present discussion, is the fact that while both Core Logic (for
which, see below) and Intuitionistic Logic contain the theorem (ϕ∧¬ϕ) → ψ, Core Logic
does not contain the intuitionistically derivable sequent ϕ,¬ϕ : ψ.

2Taking this view of the structure of a rational agent’s belief-scheme entails a marked
departure from the (now conventional) account of belief-revision known as AGM -theory.
For a detailed account of a radically different, and computationally implementable, account
of belief-revision, see Tennant [2012a].

3Cf. Boghossian [2012], at second page within the text: ‘. . . if she has no entitlement
to her most basic rules, then she has no entitlement to anything that is based upon them
. . . ’.

4See Tennant [1978], at p. 74, where in discussing a detailed proof of soundness of the
system of natural deduction for classical first-order logic, we gave a clear indication of
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rule-circularity per se, in the context of such an activity, is not vicious.5

We shall locate a set of logical rules that we shall argue are

1. objectively valid,

2. indefeasibly so,6 and

3. a priori.

These are the rules of Core Logic. They form the minimal logical canon
for the Moderate Anti-Realist. As the title suggests, these rules form the
inviolable core of logic. They are a priori because they are analytic. Those

rule-circularity in the soundness proof:

. . . in each case we use the rule concerned in the very metalinguistic rea-
soning carried out to establish its soundness. For example, in the case for
∀-I we used ∀-I in the metalanguage (‘Let β be an arbitrary individual . . .
But β was arbitrary . . . ’). The reader will have no difficulty in locating
metalinguistic uses of the other rules in the reasoning concerning each of
them. So it appears that we establish the soundness of our rules of inference
by using those very rules in the metalanguage, and doing so, moreover, in a
conspicuously ‘one-to-one’ fashion.

5Peacocke [1993] is an early statement of optimism in this regard. He says (at p. 188)
that

. . . there can be such a thing as a justification of the primitive rules of
inference and axioms employed by a given speaker.

Writing of his so-called ‘metasemantic’ account, he goes on to say that it

. . . will offer a justification for primitive axioms and inference rules which

. . . appeals only to what can be inferred from the possession conditions and
determination theories for the constituent concepts.

Possession conditions and determination theories for concepts are explained at greater
length in Peacocke [1992]. Peacocke (still on p. 188) ‘agrees with Carnap’ that ‘holding
certain principles is constitutive of understanding certain of the expressions they contain’.

6Compare Kitcher [1980], at p. 9: ‘a priori warrants are ultra-reliable; they never lead
us astray.’ It should be noted, however, that Peacocke [1993], at p. 192, is less sanguine
about the indefeasibility of the a priori:

Any optimist who tries to sharpen the standard characterization in a way that
requires justifications for a priori propositions to be epistemically invulnerable
is heading for a definition of the a priori under which nothing falls.

Peacocke, however, adduces as support for this view the rather inconclusive considera-
tion that mathematicians are sometimes uncertain whether their ‘attempted proofs are
sound’. But such uncertainty arises only because mathematicians typically provide in-
formal proofs, which are far from being fully regimented as proofs in a formal system of
logic.
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orthodox rules of Classical Logic that are not in Core Logic might well be a
priori, if ever they are valid; but they will be synthetic, not analytic.

1.1 Might there be unknowable validities?

At this point the reader might wonder whether there might be any problem
for inferences in general, analogous to the one that we raised for the Orth-
dox Realist, concerning the possible apriority of her allegedly unknowable
truths.7 Recall that an a priori proposition is one whose truth can in princi-
ple be known without any recourse to sensory experience. The analogue here
is an a priori inference: one whose validity can be known without any re-
course to sensory experience. Recall that in Part I we argued for an ‘abrupt
divide’ confronting the Orthodox Realist, regarding the a priori status of
sentences in a discourse. The analogous problem here, for inference, is this:
might there be valid inferences whose validity is unknowable? If so, then
how are we to think of all deductive inferences as being a priori, if valid?

The answer to this question, from the inferentialist standpoint of the
present author, is that there can be no problem of allegedly knowledge-
transcendent validity of inference(s). This is because validity is always con-
stituted by the existence of a proof in accordance with primitive rules of
inference, the latter wearing their validity on their sleeves. Proofs are finite,
hence knowable. So validity of inferences in general is always epistemically
accessible. Our answer is the straightforward inferential analogue of our so-
lution to the original problem of unknowable-but-somehow-a priori truths:
there aren’t any. This is because there aren’t any unknowable truths. Just
as, for the anti-realist, truth consists in the existence of a suitable proof from
suitable first principles, so too does validity of inference consist (merely) in
the existence of a suitable proof.

Matters might be different for, say, the second-order logician who wishes
to work with a potentially knowlege-transcendent semantic notion of logical
consequence, defined by reference to ‘standard’ Henkin models (ones using
the full power set of the domain as constituting the range of the second-
order quantifiers). Here, the prospect would arise of some second-order
inference ∆ : ϕ being valid but, because lacking any proof, unknowably so.
The ‘abrupt divide’ would then present itself again: how could second-order
validity-of-inference be taken, intuitively, to obtain only a priori if it obtains
at all, if one cannot, in principle, come to know that it obtains? That, we

7The author is indebted to an anonymous referee for raising this problem concerning
inference.
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should stress, is yet another problem for the realist, qua model-theoretic
semanticist; it does not arise at all for the anti-realist inferentialist.

2 Syntheticity and analyticity in mathematics

Our new classification of the rules of logic provides reason for renewed in-
terest in Kant’s two major distinctions, and deploys them to unorthodox
effect.

Our first departure from orthodoxy is our assertion that rules or laws
of Classical Logic that are not part of Core Logic are, if valid at all, not
analytically so, but rather synthetically. The thinker who uses them, and
who professes adherence to them (in the sense that she allows them to govern
her thinking), is manifesting a realist attitude towards the litmus proposition
involved. She is claiming that reality is determinate in the regard in question.
Suppose, for example, that she is willing to argue by Dilemma that ψ holds
because she can prove ψ from ϕ (the ‘first horn’ of the dilemma), and then
prove ψ from ¬ϕ (the ‘second horn’ of the dilemma). Here, the litmus
proposition is ϕ. It is being taken by her to ‘behave classically’. She is
thereby committing herself to the realist metaphysical view that reality is
determinate in the ϕ-regard.8

Our second departure from orthodoxy is that various branches of math-
ematics, too, may be dichotomized into their analytic portions and their
synthetic portions. Peano–Dedekind arithmetic, for example, is arguably
analytic, especially given its neo-Fregean derivability (in Core Logic) from
much deeper, ‘logical’, first principles.9 But we know that any such ax-
iomatic system for arithmetic is incomplete. So, any sentence independent of
PA of whose truth we eventually become convinced might involve groundsK
that make use of resources going beyond the merely analytic.

8This position was stated and argued for in Tennant [1996]. In Tennant [20XX], it is
pointed out, with technical detail too lengthy to enter into here, that with applications
of Dilemma the ‘classical focus’ can be taken either as the sentence ϕ or as the sentence
ψ (because of the ways the applications of Dilemma can be re-arranged within a proof).
The upshot is that when one has proofs

∆, ϕ
Π1

ψ
and

Γ,¬ϕ
Π2

ψ
,

one can use Dilemma to construct a proof of ψ from ∆,Γ in such a way as to ensure that,
whenever ϕ and ψ are of different complexities, the classical focus is on the less complex
of the two.

9See Tennant [1984], Tennant [1987] and Tennant [2008].
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Another example of a non-trivial dichotomy between analytic and syn-
thetic is provided by set theory. One can formulate beautiful introduction
and elimination rules for the set-abstraction operator (within a system of free
logic), which afford non-trivial deductions of such principles as the Axiom of
Extensionality for sets, and the so-called Church conversion schemata. In-
deed, the portion of set theory generated by these rules corresponds to what
Quine once called ‘virtual set theory’.10 It makes no existential claims; it
is (arguably) analytic (though Quine would turn in his grave on hearing
this). The remaining portion of set theory, generated by the important out-
right and conditional set-existence claims (with the possible exception of the
existence of the empty set), is (arguably) synthetic.

Note that this holds true even of an anti-realist, i.e. intuitionistic, de-
velopment of set theory. In mathematics, the synthetic portion has to be
acknowledged as such, even if one uses only Core Logic to prove one’s mathe-
matical theorems. Both the analytic and the synthetic portions of arithmetic
and of set theory remain, of course, a priori. And here it remains a substan-
tive challenge to explain why these synthetic portions are indeed a priori.
Compare Kitcher [1980], at p. 4:

Somebody might protest that current practice is to define the
notion of an a priori proposition outright, by taking the class of
a priori propositions to consist of the truths of logic and mathe-
matics (for example). But when philosophers allege that truths
of logic and mathematics are a priori, they do not intend merely
to recapitulate the definition of a priori propositions. Their aim
is to advance a thesis about the epistemological status of logic
and mathematics.

We are contemplating here various extensions of the dichotomization of
the ‘logical’ a priori into an analytic and a synthetic portion (roughly,
Core v. strictly Classical) in order to deal with logico-mathematical ex-
pressions (such as the number-abstraction operator #x . . . x . . . and the
set-abstraction operator {x| . . . x . . .}). Such extensions might reveal good
grounds for regarding the pertinent portions of mathematics as analytic,
while regarding the residual portions as synthetic. All of mathematics, how-
ever, remains a priori. And it remains a challenge to the philosopher of logic
and mathematics—particularly the realist-minded one—to explain why this
is so.

10See Tennant [2004].
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3 Core Logic in relation to familiar systems of
logic

We have yet to tell the reader what sort of system Core Logic is. By way of
orientation at the outset, this is how Core Logic and its classicized counter-
part, Classical Core, sit in relation to the well-known systems of Classical, In-
tuitionistic and Minimal Logic, which have well-behaved natural-deduction
formulations; and in relation to the relevance logic R of Anderson and Bel-
nap:11 Note that Core Logic, indicated with dashed lines, is the intersection
of Classical Core with Intuitionistic Logic.

¬¬A : A

Classical

A,¬A : B

Intuitionistic

A,¬A : ¬B

Minimal

A∨B,¬A : B

Core

Anderson-Belnap R

Classical
Core

Figure 1: System Containments

Note that Core Logic contains Disjunctive Syllogism (A∨B,¬A : B), but
neither one of the two closely related Lewis paradoxes A,¬A : B and
A,¬A : ¬B.

Core Logic (which we shall call C) can be otained from classical logic C
by following two lines of reform: constructivization and relevantization. If
one constructivizes classical logic, the result is intuitionistic logic I. The
remaining question is then how best to relevantize intuitionistic logic. His-
torically, the system M of minimal logic has been regarded as the natural
contender for the title of ‘relevantized intuitionistic logic’.12 M’s claim to
that title might seem to be underwritten by what appears to be a very nat-

11See Anderson and Nuel D. Belnap, Jr. [1975].
12The system of minimal logic is due to Johansson [1936].
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ural nesting of sets of natural-deduction rules in, for example, the canonical
presentation of the three systems C, I and M in Prawitz [1965]. There,
the system M consisted of just the introduction and elimination rules for
the logical operators, in their original formulation due to Gentzen [1934,
1935]. By adding the Absurdity Rule to M, one obtains the system I. By
then adding one of the usual strictly classical rules for negation (Law of Ex-
cluded Middle; Rule of Dilemma; Classical Reductio ad absurdum; or Double
Negation Elimination—see §4.1), one obtains the system C.

Taking the sequence in reverse: if one starts with C, and gives up what-
ever strictly classical rule(s) of negation one has chosen, one obtains I. If one
then gives up the Absurdity Rule, one obtains M. It seems all very natural
and ‘layered’.

Our contention is that the second step, of relevantization, has not been
properly carried out. The relevantization of intuitionistic logic should not be
taken to be M. This is because matters have been skewed by an unsatisfac-
tory choice of formulation of the Ur -rules of introduction and elimination.
Gentzen, ironically, did not get them quite right. He should have addressed
the problem of how best to formulate the introduction and elimination rules
under the constraint that the intrinsic behavior of the logical operators was
all one wished thereby to capture. The project of rule-formulation needs to
be carried out not only under the constraint that one is not to commit one-
self to any non-constructive inferential moves, but also under the constraint
that one is not to commit oneself to any fallacies of relevance.

This is the path that we follow instead. On traversing it, we find that
the high road to constructivization and relevantization has a terminus other
than M. The correct terminus is the system C of Core Logic.

In order to acquaint the reader with the internal details of Core Logic,
we shall first state the rules that are not to be found in Core Logic, and
only thereafter state the rules of Core Logic itself.

4 Familiar Rules of Classical Logic that are not
part of Core Logic

4.1 Strictly Classical Negation Rules

We follow here the notational conventions of Prawitz [1965]: parenthetically
enclosed numerals are used to label both the application of a discharge-rule,
and the assumption-occurrences above it that are discharged by that appli-
cation. Also, an axiom is written as a ‘zero-premise’ rule: it has an inference
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stroke above it, but there are no premises above the inference stroke itself.
The reader can therefore think of an axiom as not itself in need of any jus-
tification.

Law of Excluded Middle (LEM)

ϕ ∨ ¬ϕ

Dilemma (Dil)

(i)

ϕ
...
ψ

(i)

¬ϕ
...
ψ

(i)

ψ

Double Negation Elimination (DNE)

¬¬ϕ
ϕ

Classical Reductio (CR)

(i)

¬ϕ
...
⊥ (i)

ϕ

4.2 Ex Falso Quodlibet (EFQ), a.k.a. the Absurdity Rule

⊥
ϕ

5 The Rules of Core Logic

We pass now to the primitive rules of inference that constitute Core Logic.
They might look familiar to the reader; but careful attention must be paid
to the detailed conditions for their applicability. These are conditions to
which the formulators and users of the formal systems C, I or M have
paid insufficient attention. They have thereby allowed irrelevancies to creep
into the fields of their formal deducibility relations. In order to state these
conditions, we employ some extra notation.
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5.1 Preliminaries

Boxes next to discharge strokes over ‘assumptions for discharge’ indicate
that vacuous discharge is not allowed. That is to say, there really must be
an assumption of the indicated form in the subordinate proof in question,
available to be discharged upon application of the rule. With (∧-E) and
(∀-E) we require only that at least one of the indicated assumptions should
have been used, and be available for discharge.

The diamond next to the discharge stroke in the second half of (→-I)
indicates that it is not required that the assumption in question should (have
been used and) be available for discharge. But if it is available, then it is
discharged.

5.2 The rules, in graphic form

(¬-I)

2 (i)

ϕ
...
⊥ (i)

¬ϕ

(¬-E) ¬ϕ

...
ϕ

⊥

(∧-I)

...
ϕ

...
ψ

ϕ∧ψ
(∧-E)

(i) 2 (i)

ϕ ,ψ︸︷︷︸
...

ϕ∧ψ θ
(i)

θ

(∨-I)

...
ϕ

ϕ∨ψ

...
ψ

ϕ∨ψ

(∨-E)

ϕ∨ψ

2 (i)

ϕ
...
θ

2 (i)

ψ
...
θ
(i)

θ

ϕ∨ψ

2 (i)

ϕ
...
⊥

2 (i)

ψ
...
θ
(i)

θ

ϕ∨ψ

2 (i)

ϕ
...
θ

2 (i)

ψ
...
⊥

(i)

θ
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(→-I)

2 (i)

ϕ
...
⊥ (i)

ϕ→ψ

3 (i)

ϕ
...
ψ

(i)

ϕ→ψ

(→-E)

ϕ→ψ

...
ϕ

2 (i)

ψ
...
θ

(i)

θ

(∃-I)

...
ϕx
t

∃xϕ
(∃-E)

∃xϕ�a

2 (i)

�a . . . ϕx
a . . .�a︸ ︷︷ ︸
...

ψ�a
(i)

ψ

(∀-I)

�a
...
ϕ

∀xϕa
x

(∀-E)

∀xϕ

(i) . . .2 . . . (i)

ϕx
t1 , . . . , ϕ

x
tn︸ ︷︷ ︸

...
θ

(i)

θ

5.3 Comments on the rules

Note that every elimination rule is in parallelized form.13 The reader will
probably be more familiar with the more frequently encountered serial forms
of (∧-E), (→-E) and (∀-E). These were the ones employed by Gentzen and
Prawitz:

ϕ ∧ ψ
ϕ

ϕ ∧ ψ
ψ

;
ϕ→ ψ ϕ

ψ
;
∀xϕ
ϕx
t
.

The serial and parallelized forms of (∧-E), (→-E) and (∀-E) are respec-
tively interderivable. There are considerable systemic advantages in having
all one’s elimination rules in parallelized form. The most important advan-
tage is that one is thereby afforded a uniform way of ensuring normality of
proof. One simply insists that no major premise for an elimination may have

13These rules were introduced in Tennant [1992].

12



any proof-work above it. That is to say: each major premise must stand
proud. This has the further nice consequence that normal natural deductions
(i.e. Core proofs) are structurally isomorphic to (cut-free, thinning-free)
proofs in the sequent calculus for Core Logic.

Every rule of Core Logic can be derived in Intuitionistic Logic. So, if one
is prepared to assert that the rules of Intuitionistic Logic are analytically
valid, then one is immediately committed to the analytic validity of the
rules of Core Logic. We do not, however, need to argue for the analyticity
of the rules of Core Logic by hitching a ride in this way on the coat-tails
of the intuitionist analyticity-theorist. There is a more direct and robust
route to the analytic validity of the rules of Core Logic: simple reflection on
the rules themselves, and on the obvious reduction procedures (see below)
that establish, for each logical operator, the harmonious balance between its
Introduction and Elimination rules.

5.4 Reduction Procedures

A reduction procedure is used in order to get rid of those unnecessary de-
tours in reasoning that arise when the conclusion of a terminal introduction
in a proof Π, say, is used as a major premise in an application of the corre-
sponding elimination rule in a proof Σ, say. For technical reasons that are
unnecessary to set out in full here,14 we can confine ourselves to considering
just those cases where the elimination in question is the terminal step of
Σ. We shall denote by [Π Σ] the result of ‘reducing’ Π and Σ, so that the
dominant operator of the conclusion of Π is not introduced and then imme-
diately eliminated in the combined train of deductive reasoning that begins
with Π and proceeds through Σ. The following reduction procedures form
the heart of the normalization or cut-elimination process described in Ten-
nant [2012b]. They have the added advantage that they sometimes afford
us reducts establishing stronger results than might have been anticipated.


(i)

A , Ξ
Θ
⊥ (i)

¬A
¬A

∆
Π
A

(1)

⊥

 =

 ∆
Π
A

A , Ξ
Θ
⊥


14They can be found in Tennant [2012b].
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
Ξ1

Θ1

A

Ξ2

Θ2

B

A ∧B
A∧B

Γ,
(1)

A ,
(1)

B
Σ
θ

(1)

θ

 =

 Ξ1

Θ1

A

 Ξ2

Θ2

B

Γ , A , B
Σ
θ




Ξi

Θi

Ai

A1 ∨A2

A1 ∨A2

(j)

A1,Γ1

Σ1

θ

(j)

A2,Γ2

Σ2

θ
(j)

θ

 =

 Ξi

Θi

Ai

Ai,Γi

Σi

θ

 (i = 1, 2)


Ξ1

Θ1

A1

A1 ∨A2

A1 ∨A2

(j)

A1,Γ1

Σ1

θ

(j)

A2,Γ2

Σ2

⊥
(j)

θ

 =

 Ξ1

Θ1

A1

A1,Γ1

Σ1

θ




Ξ2

Θ2

A2

A1 ∨A2

A1 ∨A2

(j)

A1,Γ1

Σ1

θ

(j)

A2,Γ2

Σ2

⊥
(j)

θ

 =

 Ξ2

Θ2

A2

A2,Γ2

Σ2

⊥




Ξ1

Θ1

A1

A1 ∨A2

A1 ∨A2

(j)

A1,Γ1

Σ1

⊥

(j)

A2,Γ2

Σ2

θ
(j)

θ

 =

 Ξ1

Θ1

A1

A1,Γ1

Σ1

⊥


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
Ξ2

Θ2

A2

A1 ∨A2

A1 ∨A2

(j)

A1,Γ1

Σ1

⊥

(j)

A2,Γ2

Σ2

θ
(j)

θ

 =

 Ξ2

Θ2

A2

A2,Γ2

Σ2

θ




(i)

A , Ξ
Θ
⊥ (i)

A→ B

A→ B

∆
Π
A

(j)

B , Γ
Σ
θ

(j)

θ

 =

 ∆
Π
A

A , Ξ
Θ
⊥




(i)

A , Ξ
Θ
B (i)

A→ B

A→ B

∆
Π
A

(j)

B , Γ
Σ
θ

(j)

θ

 =

 ∆
Π
A

 A , Ξ
Θ
B

B , Γ
Σ
θ




Ξ
Θ
Ax

t

∃xA
∃xA

(i)

Ax
a , Γ
Σ
θ

(i)

θ

 =

 Ξ
Θ
Ax

t

Ax
t , Γ
Σa
t

θ




Ξ
Θ
A
∀xAa

x
∀xAa

x

(i)

Aa
t1 , . . . ,

(i)

Aa
tn , Γ︸ ︷︷ ︸

Σ
θ

(i)

θ

 =

 Ξ
Θa

t1
Aa

t1

. . .

 Ξ
Θa

tn
Aa

tn

Aa
t1 , . . . , A

a
tn , Γ︸ ︷︷ ︸

Σ
θ

. . .


These reduction principles are a formal way of saying the following.
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1. The listener is not entitled, by employing the elimination rule for its
dominant operator, to extract from an assertion more than its assertor
would have been obliged to put into it by using that operator’s intro-
duction rule.

2. The listener is entitled, when employing the elimination rule for its
dominant operator, to extract from an assertion all that its assertor
would have been obliged to put into it by using that operator’s intro-
duction rule.

3. The assertor is not obliged, when employing the introduction rule for
its dominant operator, to put more into an assertion (to back it up)
than a listener would be entitled to extract from it by means of that
operator’s elimination rule.

4. The assertor is obliged, when employing the introduction rule for its
dominant operator, to put into an assertion (to back it up) all that a
listener would be entitled to extract from it by means of that operator’s
elimination rule.

Speaker’s obligations and listener’s entitlements are in harmonious balance.

5.5 A-priori-because-analytically-valid inferences

Core Logic, then, contains only a-priori-because-analytically-valid deductive
principles. But is it the case that Core Logic contains exactly the a-priori-
because-analytically-valid deductive principles? An affirmative answer re-
quires that we make a case for the view that any classically valid argument
not provable in Core Logic is not analytically valid. The view in question
can be backed up in two complementary ways.

First, wearing his hat as a relevantist, the Core Logician challenges the
validity, let alone analytic validity, of any and all of the classical logician’s
irrelevant but classically provable arguments. (Paradigm example: the first
Lewis paradox A,¬A : B.) But even if some kind of validity were to be
conceded to such arguments, their very defect of irrelevance (i.e., the lack of
appropriate meaning connections between premises and conclusion) would
render them not analytically valid.

Secondly, wearing his hat as an anti-realist inferentialist, the Core Lo-
gician challenges the validity, let alone analytic validity, of any and all of
the classical logician’s non-constructive but classically provable arguments.
(Paradigm example: ¬¬A : A.) He urges that the classicist’s commitment
to regarding such an argument as valid is to be construed as manifesting a
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metaphysically realist stance, and accordingly revealing the argument as, at
best, synthetically valid. (We explained this plank of the platform in §1, as
our ‘first departure from orthodoxy’.)

It has already been remarked that Core Logic contains Disjunctive Syl-
logism (A∨B,¬A : B), but neither one of the two closely related Lewis
paradoxes A,¬A : B and A,¬A : ¬B. Here are some further important
points to (re-)emphasize about Core Logic:

• Major premises for eliminations (MPEs) stand proud

• So, all Core proofs are in normal form

• Vacuous discharge of assumptions is prohibited where need be

• The rules of →-I and ∨-E are liberalized

• The rule Ex Falso Quodlibet is banned

• So, all Core proofs are relevant

Every argument provable in Core Logic is provable in Intuitionistic Logic,
but not vice versa. So Core Logic is a proper subsystem of Intuitionistic
Logic.15 One can, however, classicize Core Logic while still preserving its
virtues as a canon of relevance (of premises to conclusions). The classicized
system is a proper subsystem of Classical Logic. It does not, however,
contain Intuitionistic Logic as a subsystem, since it is free of the irrelevancies
that afflict the latter.

6 Metatheorems about Core Logic

Definition 1 Unless otherwise indicated, we shall assume of the deducibility
relation ` that it satisfies no more than the rules of the system C of Core
Logic. (To be precise, ∆ ` ϕ means that ϕ is core-deducible from premises
that are drawn from ∆. The set of premises in question may be a proper
subset of ∆.)

Definition 2 We write ∆1,∆2 for ∆1∪∆2, and we write ∆, ϕ for ∆∪{ϕ}.
15As we indicated above, Core Logic is what Johansson should have arrived at when

he sought to relevantize intuitionistic logic. But, because he was dealing with suboptimal
formulations of proof systems, he ended up avoiding ϕ,¬ϕ : ψ while unfortunately allowing
derivation of ϕ,¬ϕ : ¬ψ. So his Minimal Logic is not minimal enough.
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Definition 3 ∀¬¬[θ] is the result of inserting an occurrence of ¬¬ imme-
diately after each occurrence in θ of a universal quantifier prefix. ¬¬∆ is
{¬¬θ | θ ∈ ∆}. ∀¬¬[∆] is {∀¬¬[θ] | θ ∈ ∆}.

Theorem 1 (Cut Elimination for Core Proof)
There is an effective method [ , ] that transforms any two core proofs

∆
Π
ϕ

ϕ,Γ
Σ
θ

(where ϕ 6∈ Γ and Γ may be empty)

into a core proof [Π,Σ] of θ or of ⊥ from (some subset of) ∆ ∪ Γ.

Proof. See Tennant [2012b].

Corollary 1 (cut with potential epistemic gain)
If ∆ ` ϕ and Γ, ϕ ` ψ, then either ∆,Γ ` ⊥ or ∆,Γ ` ψ.

Corollary 2 (cut for absurdity)
If ∆ ` ϕ and Γ, ϕ ` ⊥, then ∆,Γ ` ⊥.

Corollary 3 (cut on consistent premises)
If ∆ 6` ⊥ and ∆ ` γ for each γ ∈ Γ and Γ ` ψ, then ∆ ` ψ.

Theorem 2 (A Gödel–Glivenko–Gentzen Theorem for Core Logic)
If ∆ `C ϕ, then ∀¬¬[¬¬∆] ` ∀¬¬[¬¬ϕ].

Theorem 3
If ∆ `I ϕ, then for some Γ ⊆ ∆, either Γ ` ϕ or Γ ` ⊥.

Theorem 4
If ∆ `C ϕ, then for some Γ ⊆ ∆, either Γ `C+ ϕ or Γ `C+ ⊥.

Theorem 1 and Corollary 1 reassure us that any alleged ‘loss’ of unre-
stricted transitivity of deduction in Core Logic brings with it a fully compen-
satory measure of epistemic gain. (The obvious analogues of these results
can be proved also for Classical Core Logic.)

Theorem 3 tells us that Core Logic suffices for Intuitionistic Mathe-
matics. This is because the axioms ∆ of intuitionistic mathematics are
consistent; whence it is impossible that for some Γ ⊆ ∆, Γ ` ⊥.

Likewise, Theorem 4 tells us that Classical Core Logic suffices for Clas-
sical Mathematics.
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The implications of these results are clear for a choice of logic for the
foundations of mathematics. Mathematical reasoning can now be formalized
using only core proofs (classical ones in the case of classical mathematics).
We need to formalize only those stretches of reasoning involving no cuts.
If ∆ and Γ are collections of axioms of our mathematical theory, and we
deduce a lemma ϕ from ∆, and thereafter deduce a theorem θ from Γ, ϕ, we
shall have two proofs Π and Σ like this:

∆
Π
ϕ

ϕ,Γ
Σ
θ

The lemma ϕ is a ‘cut sentence’. Our formalization, however, need not in-
corporate any application of cut as a rule of formal proof-formation. All we
need, for certainty about θ, is the core proof Π and the core proof Σ. Theo-
rem 1 tells us that we can effectively determine from Π and Σ a core proof
of some subsequent of ∆,Γ : θ. Typically we would not even bother to find
it and write it down, given our confidence in the consistency of our math-
ematical axioms. In that regard we would be just like the constructivists
who rely on indirect proofs rather than canonical proofs, and the assurance
that if they were to apply the effective procedures encoded in the indirect
proofs to hand, they would eventually find a canonical proof for a theorem
they are already minded to assert on the basis only of their indirect proofs.

Theorem 4 assures us also that Classical Core Logic suffices for the
hypothetico-deductive testing of scientific theories, if classical reasoning hap-
pens to be employed. But by Theorem 2, such reasoning can always be con-
structivized, by resorting to a language with ∃ as its only quantifier. Hence
Core Logic itself suffices for the hypothetico-deductive testing of scientific
theories.

There is an automated deducer for (propositional) Core Logic, whose
decision-problem is PSPACE-complete (like that of Intuitionistic Logic).

7 The Case for Core Logic

Core Logic enjoys philosophical, mathematical, methodological, computa-
tional, proof-theoretic and revision-theoretic credentials.

The philosophical case for Core Logic was set out in Tennant [1987] and
Tennant [1997]. Those works argue for Core Logic as the correct logic, on
the basis of Dummettian considerations of manifestability of grasp of mean-
ing. Core Logic lies at the intersection of two orthogonal lines of logical
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reform: constructivization and relevantization. Conceived this way, Core
Logic C might look like a mere residue of sacrificial reforms, beginning with
classical logic C:

constructivize�

relevantize

?

Classical Logic C

Core Logic C

Figure 2: Two lines of logical reform

Such a picture gives the impression that Core Logic is to be characterized
only as what is left over when one eschews certain principles of classical
reasoning (those that are not constructive, and those that embody irrele-
vancies). But this impression, unsupplemented by any other perspective on
how Core Logic might be the canon of choice, would be mistaken.

The philosophical claims about Core Logic that were made in the two
works mentioned above can be supplemented by three further considerations
of a philosophical kind.

First, Core Logic is the result of a natural generalization, to finite sets of
complex sentences as premises, of the inferential methods that we employ in
order to determine the truth-values of complex sentences from the ‘atomic
information’ in a model (coded in the form of literals). Basically, the proto-
logic involved in handling truth-table computations is but a small step of
smooth extrapolation away from Core Logic. This proto-logic could be called
the Logic of Evaluation, and will accordingly be denoted as E. The picture
above may now be amended so as to show that Core Logic is also a natural
terminus of a process of generalizing from the Logic of Evaluation E:
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� -E
constructivize�

relevantize

?

Classical Logic C

Core Logic C

Figure 3: Pressure from without meets pressure from within

Using E to explicate and explain the (perhaps unconscious) inferential
processing accomplished by subjects in the various imagined situations de-
scribed in Casalegno [2004] provides a crucial theoretical ingredient for a mix
that can dispose of all of Casalegno’s objections to the Gentzen–Prawitz the-
sis that ‘a subject knows the meaning of a logical constant if and only if she
accepts a certain set of logical rules of inference’ (p. 396).16 The other in-
gredient that is needed in order to draw the counterexemplifying sting of
Casalegno’s imagined situations is the intuitionistic proof-theorist’s notion
of a basis of atomic rules of inference, among them possibly rules with ⊥ as
their conclusion. (See Prawitz [1974].) Such rules can express contrarieties,
such as those between simultaneous but different color-attributions to one
and the same object. Indeed, once one has ⊥ playing a role as the conclusion
in primitive atomic rules of inference for an interpreted language, the way
is clear to an account of negation as having its meaning constituted by the
rule of ¬-Introduction. (See Tennant [1999].)

The assurance of relevance, within E, between (the evaluation of) a
compound and (the evaluations of) its constituents can be transferred to
the wider and more general deductive setting in which conclusions may be
drawn from premises of any complexity (and not just from literals). That in-
ferential drawing is thereby guaranteed to take place along lines of genuinely
relevant connection between premises and conclusions. This characterization

16Casalegno attributes the thesis to Peacocke and Boghossian, apparently unaware of
how the technical work of these major proof-theorists (Gentzen and Prawitz) had been
both motivated by, and subsequently able to enrich and inform, an inferentialist theory of
meaning.
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of Core Logic was provided in Tennant [2010] and Tennant [forthcoming].
Secondly, the present author would argue that Core Logic is the correct

logic of conceptual constitution. That is, constitutive logical interrelation-
ships among concepts are to be exhibited strictly within the confines of Core
Logic. Conceptual interconnections should not trade on any logical irrele-
vancies such as are supplied by intuitionistic and by classical logic. More-
over, along the lines of Tennant [1996], we stress once again: any strictly
classical logical moves governing negation should be understood not as turn-
ing on meanings—for Core Logic exhausts all logical connections forged by
meanings—but rather as expressing a metaphysically realist attitude as to
the determinacy of truth-values of the ‘litmus-sentences’ to which those rules
are applied.

Thirdly: consonant with Core Logic’s being the correct logic of concep-
tual constitution (the canon for ‘unpacking concepts’) is a closely related
thesis, advanced in Tennant [Unpublished typescript], concerning the logic
needed in order to uncover logico-semantic paradoxes. The claim is that
these paradoxes are never strictly classical. The kind of conceptual trouble
that such a paradox reveals will afflict the intuitionist (and relevantist) just
as seriously as it does the classicist. Therefore, attempted solutions to these
paradoxes, if they are to be genuine solutions, must be available to the Core
logician. Nothing about an attempted solution to a logico-semantic paradox
should imply that the trouble it reveals has its origin in moves of classical
(or even intuitionistic) reasoning that lie beyond the confines of Core Logic.

So much for the philosophical credentials of Core Logic. What about its
mathematical credentials? These are not widely known or appreciated. The
completely formal derivations, in Tennant [1987], of the Peano-Dedekind
axioms for arithmetic from deeper logicist principles of inference governing
the primitive notions ‘the number of Φs’ and ‘n is a natural number’ were
given entirely within Core Logic. (This is in keeping with Core Logic being
the ‘logic of conceptual constitution’.) But this is not a provincial result.
The adequacy of Core Logic for (all of) intuitionistic mathematics (already
remarked on in §6) was established as a metatheorem in Tennant [1994].
The adequacy of the classicized version of Core Logic for (all of) classical
mathematics is established in a similar fashion.

The methodological adequacy of Core Logic—its sufficiency for the hypo-
thetico-deductive method of scientific theory-testing, already remarked on in
§6—was established in Tennant [1997], building on earlier results concerning
Minimal Logic in Tennant [1985].

The advantages for computational logic (or automated theorem-proving)
of using systems such as Core Logic, in which all proofs are in a very exigent
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kind of normal form (without loss of completeness), were set out in Tennant
[1992].

Core Logic enjoys the proof-theoretic distinction that its proofs have ex-
actly the same structure whether they are presented as natural deductions
or as sequent proofs. This is a consequence of the fact that the natural
deductions of Core Logic are defined in such a way that major premises of
eliminations (MPEs) always stand proud, with no proof-work above them.
This of course ensures, as noted above, that all proofs are in normal form.
Isomorphism between natural deductions and cut-free, thinning-free sequent
proofs is then immediate. This isomorphism property would be enjoyed by
any logical system that resembled Core Logic in these key respects (MPEs
standing proud in natural deductions, and sequent proofs always being avail-
able in cut-free and thinning-free forms). But, to the best of the author’s
knowledge, there is no extant rival to Core Logic that matches it in these
respects.

Finally, Core Logic has lately emerged in a new role, in a way that both
explains and justifies the author’s preference for its new label. An argument
is presented in Tennant [2012a] for the following revision-theoretic thesis:

Core Logic is the minimal inviolable core of logic without any
part of which one would not be able to establish the rationality of
belief-revision.

This provides yet another ‘endogenous’ argument for Core Logic, showing
that C is a body of principles exactly responding to pressures from within:

� -E
constructivize�

relevantize

?

Classical Logic C

Core Logic C

{
rational
revision

}
� -

Figure 4: Pressure from without meets more pressure from within
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The fact that such disparate perspectives on the problem of optimal
choice of a logical system all converge on this single system of Core Logic
is an indication that it captures a very stable, central and robust notion of
logical deducibility.

Indeed, the present author would claim: Core Logic is the system of
a priori because analytically valid logical inferences. Other inferences that
are classically valid without exploiting irrelevance, but are not part of Core
Logic, are synthetic a priori, if they are valid at all.

8 Natural Logicism

In what sense might logicism still be, in this post-Gödelian era, a viable and
illuminating doctrine, even if only under suitable, self-imposed, limitations?
The natural logicist answers:

Logicism remains viable for that part of mathematics whose math-
ematical operators admit of introduction and elimination rules
that allow one to establish the appropriate analogue of Theorem 1
for the extended proof system containing them.

The ‘natural-deduction’ methods and systems that Gentzen pioneered in
logic afford the possibility of an important re-orientation of the logicist’s
agenda. According to the standard version of logicism, logic furnishes defi-
nitions of the primitive concepts of mathematics, allowing one to derive the
mathematician’s ‘first principles’ (such as the Peano–Dedekind postulates
for arithmetic) as results within logic itself. Gödel’s celebrated incomplete-
ness theorems, however, put paid to this conception of what the logicist
might in principle be able to achieve within some one formal system of de-
ductive logic. All of mathematics?—surely not.

But what about some interesting and significant core of mathematics?
In response to this question, the jury is still out. In so far as logic still aspires
to provide the formal proofs that, in principle, can serve to ‘regiment’ all
the informal proofs of ordinary mathematics, one might hope to recover, or
develop afresh, a certain set of ‘logicist’ insights. They may not amount,
collectively, to the sweeping doctrine of logicism as originally conceived;
but they might go a long way towards illuminating, in a philosophically
interesting way, the conceptual basis of modern mathematics.

Logicism would thereby cease to be the old, and now largely discredited,
monolithic doctrine about the nature of mathematics as a whole. It would
instead take a ‘proof-theoretic turn’, seeking to reveal, perhaps, those central
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parts of the whole body of mathematics that might justifiably lay claim
to a logicist interpretation or re-formulation—even if the whole branch of
mathematics for which such parts form its conceptual skeleton needs, in
addition, some sinews of a more synthetic nature.

It is interesting to inquire about the basic concepts and pre-set-theoretic,
‘native’ intuitions of the mathematicians who were able to formulate and
prove important results that have only subsequently acquired their predom-
inantly set-theoretical trappings. We have in mind here not the kind of not-
altogether-trustworthy geometric intuitions against which real analysis17 (so
it was thought) had to be guarded via the arithmetization undertaken by
Cauchy and Weierstraß. Rather, we have in mind the analytic18 intuitions19

of the competent mathematician, which, when clear and distinct, betoken
a thorough grasp of the mathematical concept(s) involved. A case in point
would be the intuition that the natural numbers obey the Principle of Math-
ematical Induction. Pace Poincaré, we consider this intuition to be analytic,
not synthetic. Its analyticity can be exhibited by furnishing it with a con-
structive logicist derivation using only rules that are analytic of the notions
‘number of F s’, ‘successor’ and ‘zero’. The Principle of Mathematical In-
duction turns out to be the logical elimination rule for the predicate ‘. . . is a
natural number’ (which is defined in terms of the aforementioned primitive
notions).

In the course of laying a natural-logicist foundation for each mathemat-
ical discipline, it is imperative to achieve clarity about the norms of logical
inference within a free logic with abstraction operators. With the appro-
priate logic formulated, one can turn one’s attention to the concepts and
operations specific to each mathematical discipline in turn.

Defined concepts should be manageable, fruitful, and of wide application.
They should help to atomicize the reasoning. Introduction and elimination
rules for conceptual primitives, and for concepts defined in terms of them,
pin down the concepts in question. This is what justifies use of the label
‘logicism’. Judicious choice of definitions, in which the definienda are fur-
nished with introduction and elimination rules, enable one to minimize the
logical complexity of sentences appearing in the formal proofs provided as

17Here, ‘analysis’ is meant in the mathematical sense—the study of real numbers and
functions of reals.

18Here, ‘analytic’ is meant not in the mathematical sense mentioned in footnote 17, but
in the Kantian sense, as arising from the meanings of the words involved.

19Here, ‘intuitions’ is used in the sense of ordinary mathematical parlance, and not in
the special Kantian sense of ‘telling us something informative about the world’, which
Kantians regard as the contradictory of the Kantian sense of ‘analytic’ !
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regimentations of passages of informal mathematical reasoning. These for-
mal proofs, we stress again, will be core proofs (perhaps classical ones) in
the extended system.

The natural logicist maintains that formal proofs should be homologues
of informal ones; formalization should merely ‘supply missing details’. The
early forms of logicism tended to obscure the virtues of logical rigor (in the
regimentation of mathematical proofs) because they were tied to a quite or-
thogonal project. This was the project of trying to furnish an all-embracing,
over-arching theory of classes or theory of types. The universe of discourse
of the sought unifying theory, it was hoped, would accommodate (through
appropriate surrogates) all the various kinds of mathematical objects that
different mathematical theories are ‘about’.

This Fregean and Russellian bent had the consequence that Logicism,
as a philosophy and foundations for mathematics, appeared to be over-
ambitious. Yet Logicism can and should be prosecuted without any concern
for the unification of mathematics via class theory or set theory or cate-
gory theory or the theory of types (to name the most important ‘unifying
theories’ on offer). A logicism worthy of the name could confine itself to sim-
ply making existing proofs in the main corpora of rigorous20 but informal
mathematics, perfectly rigorous because completely formal and symbolic.

Formalization should reveal points of non-constructivity, impredicativ-
ity, ‘purity’ etc. This is one of the less appreciated benefits of full formal-
ization of mathematical proofs. It enables the maturing mathematician to
become aware of which steps of reasoning might be especially controversial
or methodologically significant.

The natural logicist seeks to treat the objects of the theory as sui generis,
rather than as surrogate objects within a ‘more foundational’ theory such
as set theory. As remarked by Harrington, Morley, Ščedrov and Simpson in
Harrington et al. [1985] at p. vii:

. . . ZFC . . . is not appropriate . . . for a more delicate study of
the nature of mathematical proof. Standard mathematics is not
inherently or peculiarly set-theoretic.

This remark was intended to set the stage, however, for their subsequent
explanation of how arresting it was that Friedman had been able to demon-
strate necessary uses of abstract set theory in order to prove results in ‘rel-

20Here we mean ‘rigorous’ to be understood in the usual way that a well-trained math-
ematician understands it. All main steps are explicitly indicated. Appeals to intuition
are made only when the writer and the reader can be expected to know how to eliminate
them in favor of more rigorous symbolic reasoning.
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atively concrete mathematical situations’ (ibid., p. viii). What that means,
however, is that the concrete result in question (ϕ, say) is provable in ZFC
plus some large-cardinal axiom, and in turn implies (modulo some weak base
theory, such as EFA)21 the consistency of ZFC plus all smaller large-cardinal
axioms. If one’s main concern is to calibrate the consistency strength of a
particular concrete-looking conjecture ϕ in this way, then of course it be-
hooves one to translate both ϕ and the ‘native’ axioms of the theory T (to
which ϕ might or might not belong) into the language of set theory, so that
the calibration can proceed. If, however, one’s main concern is to clarify
the logical structure of the reasoning by which all the known results of the
‘native’ theory have been established, then it is better to eschew the set-
theoretical trappings that help only with the calibration question, and deal
with T directly, natively, sui generis.

Mathematical theories are learned, developed and communicated ‘na-
tively’. Each theory has its own special stock of concepts; and is ‘about’
its own special kinds of mathematical object. The early proofs by great
expositors of these theories treat these objects as sui generis, without pre-
senting them as complicated sets drawn from the cumulative hierarchy of
pure sets. The ‘Bourbakization’ of mathematics—the re-definition of all the
concepts of different branches of mathematics in terms of sets alone—makes
it harder for a beginner to understand what any particular mathematical
theory is about. It makes mathematics, which is already abstract enough,
seem utterly abstract, to the point of enjoying no enlivening or illuminating
connection whatsoever with any other area of human thought—be it physics,
computer science or economics.

The neo-logicist should seek to explain how a given branch of mathemat-
ics is applicable (if it is). The more searingly abstract a presentation one
provides for a mathematical theory, the more difficult it becomes to explain
how it is in the very nature of the mathematical objects concerned that one’s
theory about them can be applied in reasoning about real-world phenomena
and the regularities that underly them. Ironically, it was Frege who made
the most of the requirement that such applicability be explained—and who
then did the most damage to that very prospect.

The foregoing aims have important consequences. One attends more
carefully to what is really ‘built in’ to a (defined) concept, as opposed to
what is assumed in the hypotheses for one’s reasoning. One ‘carves informal
proofs at their joints’. Regimentation is anatomization! One can more easily
motivate the study of formal proofs for practicing mathematicians. One can

21EFA is exponential function arithmetic.
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devise proof-search strategies in automated or interactive theorem-proving
that are tailored to the branch of mathematics in question. One can address
the issue of analytic v. synthetic truth in mathematics with sharper tools
at one’s disposal. Occasionally one detects a deeply hidden fallacy in even
the best extant texts.

The question naturally arises, for any mathematical theory T : how far
might this natural-logicist approach be extended to T ? Could T be laid out
in its own ‘native’ terms, shorn of the specifically set-theoretic notions that
are employed in contemporary treatments in textbooks? Could one avoid
the ‘ontological riches’ of a set-theoretic foundation, by helping oneself only
to what is specifically needed, both conceptually and ontologically, in order
to attain the results one is after?

Various branches of pure mathematics, such as arithmetic, different ge-
ometries, set theory etc. have been axiomatized by the pure mathematicians
who practice in those fields. These mathematicians are interested first and
foremost in the abstract structures formed by the mathematical objects un-
der investigation, even when the intention is to try to characterize the struc-
ture in question up to isomorphism. Questions of applicability are usually
set to one side, as are questions concerning the ultimate logical foundations
of that branch of mathematics within rational thought as a whole. One of
the (perhaps unintended) consequences of this ‘pure isolationist’ approach
to particular mathematical theories is that their axioms are chosen with
a pragmatic eye on how quickly they can yield desired consequences, and
how readily they will be accepted (without proof) by the intended audience.
Both consistency and certainty are desiderata, to be sure; but pragmatic
compromises are also struck in pursuit of both brevity of proof and power
of single axioms.

This means, in the case of some of the traditional axiomatizations of
different branches of geometry, that there is a trade-off between the length
of axioms and their number—usually increasing the former and decreasing
the latter. The axioms eventually chosen serve mainly as convenient starting
points for deductions, provided only that they will be accepted as true of
the intended subject matter. There is no uncompromising concern, on the
part of practicing mathematicians, to ensure that all the axioms laid down
are conceptually basic, or—even better—analytic of the concepts involved.
Nor is there any concern to keep the axioms within some tightly constrained
syntactic class, involving, say, a minimal number of quantifier alternations.

One fruitful departure from this established precedent in mathematical
axiomatization is a natural-logicist treatment of synthetic projective geom-
etry. Rather than stating axioms—which are (usually complex) sentences
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of a formal language—one can state transitional atomic rules of inference.
These are rules of inference, in natural-deduction format, in which only
atomic sentences feature. Some of them may contain parameters, thereby
enabling one to express existential import—but still the only sentences in
view are atomic. One can state a great many rules, arranged, as far as pos-
sible, in thematically coherent groups. The basic methodological principle
is: state more simply and more frequently, rather than less simply and less
frequently. Fundamental principles of geometry should be like so many little
ants, making for a supple organic whole, rather than like heavy foundation
stones that are difficult to put in place.
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